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Glossary

Term Definition

Cell proliferation The process by which cells increase in number, as is defined by the balance
between cell division and cell loss (by either cell death or cell differentiation).

CRISPR Screening CRISPR screening is a large-scale, genome-wide, in vitro experimental
technique which aims to determine gene function by silencing specific genes
and measuring a particular phenotype. Gene silencing is achieved using the
CRISPR-cas9 gene-editing system, which cleaves genes from the genome to
prevent expression.

Endogeneous Substances or processes that originate from within a biological system such
as an organism, tissue, or cell. In this paper, this generally refers to something
which originates from within the cell.

Gene expression The process by which genes, encoded in DNA, are converted into a gene
product, such as proteins, which carry out functions within the cell. A gene’s
expression can be measured by the abundance of RNA for that gene within
the cell.

Gene silencing The regulation of gene expression to prevent the expression of a certain gene.

Genotype An organisms complete set of genes.

Inactive gene A gene which is currently silenced.

In vitro Performed or taking place in a test tube, culture dish, or elsewhere outside a
living organism

In silico Conducted or produced using computer modelling or computer simulation.

Knockdown Partial suppression of a gene’s expression through RNAi screening technology.

Knockout Complete suppression of a gene’s expression through CRISPR screening
technology.

Missense mutation A single nucleotide change in the DNA sequence of a gene which changes the
amino acid sequence. May result in a change in protein function.

Phenotype An observable physical property of an organism.

RNA interference (RNAi) Similar to CRISPR screening (see above) except utilises RNAi technology to
partially suppress gene expression. It does so by interrupting the genetic
information flow in the translation phase from mRNA to protein.

Silent mutation A change in the DNA sequence of a gene without a subsequent change in the
amino acid or the protein function

v
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Abstract

Motivation: Synthetic lethality (SL) arises between two genes when loss of function of both genes would lead cells to
become inviable. This can be exploited for therapy, where a drug is used to selectively kill diseased cells by perturbing one
gene of an SL pair where the other gene is inactive (e.g. through naturally occurring mutation). Computational prediction
of SL relationships is very appealing as it can help reduce cost- and labour-intensive experimental testing to the most
promising candidate pairs. Even though machine learning models have shown promising results for SL prediction compared
to traditional statistical approaches, crucial questions remain. First, which sources of molecular data are most useful for SL
prediction? Many approaches rely on either cell line or patient tumour data separately, and ignore data from healthy tissue.
We argue these should be combined to leverage relevant data sources that are exclusively available for cancer cell models
and patient tumours, and to enable the transfer of knowledge between models and actual patient tumours. Likewise, changes
in the relationship of gene pairs between healthy and tumour tissue may be informative for SL prediction. We assess several
machine learning techniques to best leverage molecular profiles for cancer-specific or pan-cancer SL prediction. Second,
what are the effects of selection bias on SL prediction methods and which techniques are most robust? This has been
insufficiently addressed, as models in the literature are often tested using data from one or two cancer types or datasets.
We investigate robustness to cancer representation and gene selection biases, which are inherent to most SL datasets. We
hypothesise that approaches based on matrix factorisation will be especially sensitive to the latter, as they are dependent
on an a priori SL network structure, which also determines the scope of the prediction space.
Results: In this work, we used a dataset of over 10,000 experimentally validated SL and non-SL gene pairs spanning
four cancers (breast, lung, ovarian, colon) to train logistic regression and random forest models. Our models achieved the
best precision amongst the highest-ranking predictions compared to our selected baseline methods (DAISY, DiscoverSL,
PCA-gCMF). Model feature importance scores showed that gene dependency and mutual exclusivity data contained
useful information for SL prediction. Our results also show that our random forest models were more resilient to cancer
representation bias in the context of pan-cancer SL classification than were our logistic regression models. We demonstrated
that the impact of this bias on predictive performance can be mitigated through balancing cancer representation. Finally, our
logistic regression models exhibited a superior ability to generalise to unseen cancer types and genes. Our selected matrix
factorisation baseline, PCA-gCMF, was the most sensitive to gene-selection bias. Given the prevalence of gene-selection
bias in the literature, we speculate that the real-world effectiveness of many SL prediction techniques may be over-estimated.

1 Introduction
Synthetic lethality (SL) describes a relationship between a pair of genes
where the inactivation of a single gene within the pair allows the cell to
retain viability, but the simultaneous inactivation of both genes results in
the cell death (Boone et al., 2007) (Fig 1). SL is an interesting concept
in the field of personalised medicine (Fig 2). SL provides a mechanism
for personalised therapeutics whereby drugs can be developed to target
the SL neighbour of a naturally inactive gene (e.g. due to mutation). For
instance, the PARP1 gene was found to be SL with both BRCA1 and
BRCA2 genes in breast cancer. PARP1 inhibitors were later approved for
use to selectively kill breast cancer cells with mutations in either of the
BRCA1 or BRCA2 genes (Fong et al., 2009) (see Huang et al. (2019) for
a review of SL in cancer therapy). The first step to developing new SL

therapies like these is to identify SL interactors which might later become
viable drug targets.

Modern identification of SL typically occurs experimentally through
in vitro loss-of-function (LoF) screening (Shen et al., 2017; McDonald
et al., 2017). These screens identify SL pairs by quantifying the change
in cell proliferation after the silencing of both queried genes within cells.
Alternatively, one can measure this change by silencing one gene and
comparing contexts where the second gene is or is not endogenously
inactive. This silencing is achieved using CRISPR or RNAi technology
(for a review of current LoF technologies, refer to Schuster et al. (2019);
for applying these technologies to screen for SL pairs, refer Nijman
(2011)). These screens are both laborious and expensive. Additionally, the
number of combinations of candidate synthetic lethal pairs for validation is
tremendous. To visualise the scale of this problem, imagine a search space
encompassing every gene-gene interaction for every cell type of interest.

1



2 Colm Seale

Fig. 1: Synthetic lethality. Circles A and B represent a synthetic lethal pair
of genes within a cell. Inactivation of either gene A or B leaves the cell
viable, whereas inactivation of both results in cell death.

Fig. 2: Personalised medicine. (Left) Traditional approaches prescribe
treatment based on population averages, potentially leading to mixed
results, having either a positive (green circle), negative (red circle)
or no effect (grey). (Right) Personalised medicine takes individual
characteristics into account, such as genetic background, to stratify patients
into certain treatment categories to improve the likelihood that treatments
will have a positive effect.

Methods have been proposed to alleviate this issue by predicting SL
interactions in silico between queried genes. In turn, such approaches can
help inform the construction of new experimental studies by reducing the
list of candidate gene pairs to only the most promising (O’Neil et al.,
2017). Numerous approaches for SL prediction have been discussed in
the literature. These methodologies fall into three categories: statistics-,
machine learning-, and matrix factorisation-based methods.

Statistics-based methods utilise hypotheses about SL relationships to
make inferences about new SL interactors. For example, DAISY infers SL
interactions between genes based on how either the cell line dependency,
expression, or mutation of one gene changes with respect to mutation or
expression in another (Jerby-Arnon et al., 2014). BiSEp takes advantage
of genes which exhibit bimodally distributed gene expression profiles. It
outputs ranked lists of candidate SL gene pairs which exhibit mutually
exclusive low expressivity, or exhibit high or low expressivity in one gene
that is mutually exclusive with mutations in the other (Whalen et al., 2016).
However, reliance on expert knowledge of genomic data means these

methods can miss underlying relationships between known SL interactors.
These relationships could be advantageous for SL prediction.

Machine learning (ML) methods attempt to predict SL by applying
general-purpose algorithms to discover these latent relationships in
genomic data. DiscoverSL is a random forest pan-cancer SL classification
model which has been trained on breast and lung cancer data. It uses
features derived from patient tumour and biological pathway data (Das
et al., 2019). EXP2SL use neural networks to learn low-dimensional
representations of gene expression profiles. These are then used as features
in a logistic regression model to predict cell line-specific SL interactions
(Wan et al., 2020).

Matrix factorisation is a branch of ML methods which aim to factorise
a large matrix into a product of matrices. In this paper, we treat them as
entirely separate to other ML models for simplicity. These methods account
for network structure between individual entities (e.g. SL interactions
between genes). SL2MF uses logistic matrix factorisation to predict gene-
gene SL interactions while incorporating neighbourhood regularization
using gene ontology semantic similarities and protein-protein interaction
topological similarities (Liu et al., 2019). PCA-gCMF utilises group
sparse-collective matrix factorisation to relate information between gene
pairs across an arbitrary number of input matrices (Liany et al., 2019).

Common to statistical-, ML-, and matrix factorisation-based
approaches are several recurring weaknesses. Many utilise only a few
genomic data types sourced from a limited number of biological contexts.
Thus, they are not taking advantage of the full plethora of publicly available
data genomic data. Furthermore, these studies tend to overlook model
generalisation. The absence of such analysis in the literature means that
their real-world applicability may be over-estimated. As part of our work,
we aim to address both these problems.

First, we introduce several features into an ML context for SL
prediction, and train both linear and non-linear ML models. These features
broaden the types and sources of data under consideration by current ML
approaches. We integrate new data points: gene dependency scores; mutual
exclusivity scores; and clinical information such as a patient’s age, race,
sex, and survival. Gene dependency scores indicate the sensitivity of an
immortalised cell line (cancer models whose molecular characteristics are
well understood) to the inactivation of a single gene (McDonald et al.,
2017; Behan et al., 2019). Incorporating mutation data with these gene
dependency scores may indicate SL in cell-lines. Mutual exclusivity scores
describe the likelihood that mutations in two or more given genes do not
co-occur (Babur et al., 2015; Canisius et al., 2016). Non-co-occurrence in
cells may indicate that these genes are SL. Coupling mutation, clinical, and
survival data may reveal SL pairs which provide a therapeutic advantage
(Lee et al., 2018).

Moreover, we hypothesise that data extracted from other biological
contexts, such as healthy tissue (donated from a cancer-free doner) and
paired-normal tissue (healthy tissue extracted from a region adjacent to
a tumour site) may contain useful information for SL prediction. Such
data has not been previously considered in the literature. We incorporate
gene expression data from these tissues, which may reveal functional
relationships. The change in those relationships between healthy and
diseased tissue from the same region may highlight SL interactions.

Second, we identify two forms of bias in SL datasets which affect
the ability of a model to generalise: “cancer representation” and “gene
selection“ biases. Cancer representation bias occurs due to the popularity of
some cancers in the literature and the rarity in the occurrence of others. This
leads to an imbalance of cancer representation in current available datasets.
Similarly, gene selection bias occurs because certain genes are better
studied than others. Typical SL datasets utilised in many studies feature
only a fraction of all human genes. Certain genes are over-represented due
to historical or academic reasons and others are under-studied despite their
possible importance to certain cancers (Stoeger et al., 2018).
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We construct several experiments to study the effect these biases have
on model generalisability. We explore the capability of models to predict
SL pan-cancer despite been trained on a very limited number of cancers,
as assumed by DiscoverSL (Das et al., 2019). We also assess the impacts
of gene selection bias on the training and evaluation of different machine
learning techniques. We argue that matrix factorisation methods are the
most affected by this bias, considering their dependence on an a priori
labelled gene-gene SL network to make further link predictions. Other SL
prediction models do not mandate this network.

To summarise, the main aims of this research are twofold: (i) to
introduce novel data sources and features into a machine learning context
and propose machine learning models for in silico SL prediction; (ii) to
investigate the generalisability of SL machine learning models, and the
impact of cancer representation and gene selection bias. We evaluate these
models in the context of cancer-specific and pan-cancer SL classification
using linear and non-linear machine learning models and selected baselines
from the literature.

2 Methods
In this section, we describe the methodology and data used to build and
evaluate models for predicting SL. First, we formalize the SL prediction
problem. Then, we describe the data collection and preprocessing, and the
generation of features used in the prediction models. Next, we describe the
different models, our selected baselines, and explain how they are trained
and evaluated. Finally, we describe variations in the construction of the
train and test sets. These variations are employed in each of our different
experiments to assess generalisation across cancers and to unseen genes.

2.1 Problem Formulation

Throughout this paper, we refer to a "gene pair" as a pair of genes for
which the presence of a synthetic lethal interaction in a specific biological
context is either known or being predicted. The biological context is
determined by a set of biological samples of a given tissue or cancer type,
e.g. breast cancer, which is characterized by gene-wise measurements and
pairwise gene relationships at the molecular level. We define the synthetic
lethality prediction problem as follows. Let X = {x1,x2, ...,xn},
where xi ∈ Rm and i ∈ [1..n]. Here, xi is an m-dimensional, real-
valued vector representing a single example for a specific gene pair and
biological samples context. Each of the m features denotes an individual
gene measurement or a relationship between measurements obtained for
the gene pair in the given biological sample. As a result, the set X is
a set of n examples between n unique gene pairs (with context), where
index i denotes the i-th example in the set X . We let yi ∈ {0, 1} be the
binary class label indicating the existence of a synthetic lethal relationship
between the gene pair (in context) associated with the i-th example in X .
We also define f(xi) = ȳi as a function that maps an example or feature
vector xi to ȳi, where ȳi ∈ R. Additionally, let ŷi ∈ {0, 1} be the
predicted value for yi, and let t be some threshold such that when ȳi < t,
ŷi = 0 and when ȳi ≥ t, ŷi = 1. For a given set of gene pairs X , we
ideally wish to learn a mapping function f(xi) and select a threshold t

such that for any gene pair in X , P (yi = ŷi) is close as possible to 1. We
treat this as a binary classification problem, and employ machine learning
techniques to determine this mapping function f(xi) from some dataset
of examples D, where D is a n×m matrix in the form:

D =




y11 x11 · · · x1m

...
...

. . .
...

yn1 xn1 · · · xnm


 .

2.2 Data Collection and Preprocessing

To be able to assess generalisation and bias of synthetic lethality prediction
models, we sought to analyse data for multiple cancer types and datasets.
We collected SL relationships from two studies and four cancer types,
which we use as yi class labels. We also derived gene pair features per
cancer type xi based on molecular profiles of both cell lines and patients,
as well as of healthy tissues related to the four cancer types under study.

Synthetic lethality gold standard. In order to train and test ML models, we
require a labelled dataset of in vitro experimentally validated gene-gene
SL interactions. These labels will act as the ground truths during learning
and evaluation. In this paper, we will refer to such labels as our "gold
standard" class labels.

We obtained cancer-specific SL relationships between pairs of genes
by combining data from two previous studies, ISLE and DiscoverSL (Lee
et al., 2018; Das et al., 2019). Together, the ISLE and DiscoverSL datasets
included both positive and negative pairwise SL gene relationships derived
experimentally by 26 other studies. They were validated through either
double gene knockdown/knockout or the targeting of one gene in contexts
where the other gene is endogenously inactive (e.g. by naturally occurring
mutations) using CRISPR or RNA interference. We conducted quality
analysis and curation on these datasets, and subsequently, we combined
these gold standards to maximise the number of examples available for
training and testing.

First, we assessed the level of disagreement between duplicated gene
pairs in each gold standard, separately, by calculating the Jaccard distance
per cancer type. The Jaccard distance is defined as follows:

dJ = 1− |A ∩B|
|A ∪B| (1)

where A and B are the sets of duplicate gene pairs which have positive
and negative labels, respectively. When dJ = 0, no common gene pairs
with opposing labels exist. When dJ = 1, every duplicate gene pair has an
entry with at least 1 opposing label. The Jaccard distance for DiscoverSL
was 0 for BRCA and LUAD, while the Jaccard distances were generally
higher within the ISLE (Table 1). This indicated that ISLE contained more
conflicting information than DiscoverSL. To clean our data, we reduced
the number of duplicate gene pair entries within each dataset to zero. We
retained an entry of a duplicate pair if all duplicate entries for a gene pair
had identical class labels. Otherwise, we removed all duplicate entries if
there was any disagreement on the label.

After we had curated ISLE or DiscoverSL to include no duplicate gene
pair entries within the separate sets, we combined the two gold standards
into one. To combine these datasets, we reduced 63 duplicate gene pair
entries that existed between the gold standards to a single entry. When

Number of Duplicates Jaccard Distance (dJ )
BRCA 300 .663
COAD 7 0
LUAD 568 .112
OV 10 .8

(a) ISLE

Number of Duplicates Jaccard Distance (dJ )
BRCA 3 0
LUAD 0 0

(b) DiscoverSL

Table 1. Breakdown of the number of duplicates and the level of disagreement
within each gold standard source. The level of disagreement is indicated by the
Jaccard distance.
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ISLE DiscoverSL Combined
+ - + - + -

BRCA 713 1168 835 72 1548 1240
COAD 859 806 0 0 859 806
LUAD 202 5155 347 312 549 5467
OV 223 449 0 0 223 449
All 1997 7578 1182 384 3179 7962

Table 2. Breakdown of numbers of examples with positive and negative labels
per cancer type for each of the gold standard synthetic lethality datasets, after
quality analysis and curation.

the gold standards agreed on a gene pair’s label, one entry was retained.
When the gold standards disagreed on the label between them, the label
from DiscoverSL was chosen as the ground truth. We choose the label
from the DiscoverSL gold standard due to the lower level of disagreement
within DiscoverSL as compared to ISLE (Table 1). Both studies included
SL labels for different cancer types. We included in our dataset only those
cancer types for which we had at least 200 positive and negative samples
after quality analysis and curation. Specifically, we included breast, colon,
lung, and ovarian cancer, which we denote respectively as BRCA, COAD,
LUAD, and OV. Note that the ISLE, DiscoverSL, and combined gold
standards have differing cancer type representation and class imbalances
(Table 2). In all of our experiments, we use the combined dataset except
where specified otherwise.

Cancer cell line data. Cell lines are often used as a simple model to aid in
the study of more complex biological systems, including cancer. A cell line
is an homogeneous, immortalised population of cells from a multicellular
organism that has acquired the ability to propagate indefinitely through
genetic mutation. Their immortal nature simplifies analysis of cell biology,
as they are easier to control, manipulate, and publish, which allows for
repeatable scientific experiments. Recently, cell lines have been used to
measure gene dependencies. A cell is considered dependant on a given gene
if the cell loses viability when that gene is inactivated. Gene dependencies
for cancer cell lines are made available by the Cancer Dependency Map in
the form of real-valued scores (Dempster et al., 2019; Meyers et al., 2017;
McFarland et al., 2018; Behan et al., 2019). We downloaded dependency
scores derived by CRISPR (CERES) and RNA interference (DEMETER2)
screens from the 19Q3 DepMap public release. We also downloaded
corresponding mutation data for these cancer cell lines (Ghandi et al.,
2019). This mutation data included which genes within a cell line were
mutated and what was the nature of this mutation, such as a silent mutation,
missense mutation, etc. We use cell line gene dependency and mutation
data as we can derive relationships within a gene pair under specific cellular
conditions, such as when one gene in a pair is mutated, as detailed in
Section 2.3.

Cancer patient tumour and survival data. One of the main disadvantages
of using cell lines to analyse cell biology is that, due to their immortalising
mutations, these cells are less biologically relevant than cells isolated
directly from multicellular organisms (also called primary cells). This
means that the functions and relationships derived from cell lines may not
be consistent with those found in their non-immortal cells of origin. For this
reason, scientists also study primary cells. Primary cells, in contrast to cell
lines, retain the true characteristics of the original tissue at the expense of
possessing a finite lifespan. Cancer patient tumour samples are an example
of primary cells. Studying patient tumours also presents an opportunity to
study the donors themselves, allowing for the inclusion of factors such
as age, race, sex, survival rates, etc. These data may allow a machine-
learning algorithm to analyse characteristics of SL interactions which
are biologically relevant to patient tumours. For instance, if mutations
in an SL pair provided a therapeutic effect, we would expect patients

harbouring such mutations to have a survival advantage. The Cancer
Genome Atlas Research (TCGA) is a cancer genomics program, and vast
source of primary sample data, which has molecularly characterised over
20,000 patient tumour samples and matched normal samples across 33
cancer types. We downloaded the following data from TCGA, which was
generated on the 28-Jan-2016:

• Mutation data detailing which genes are mutated in which samples
and the nature of these mutations, similar to our cancer cell line data
above.

• Copy-number variation (CNV) data in the form of real- and integer-
valued scores obtained via GISTIC (Mermel et al., 2011). CNV
describes a phenomenon in which the number of copies of a particular
gene varies between individuals. Increases in the number of copies are
termed amplifications, while reductions are referred to as deletions.
The integer-valued scores are derived by applying low- and high-level
thresholds to the real-valued data. Entries with +1 or -1 only exceed
the respective low-level thresholds for amplifications and deletions,
while entries with +2 or -2 exceed the high-level thresholds.

• Clinical data such as race, age, sex, and right-censored survival data
indicating the number of days until the death of a patient.

We also downloaded the patient tumour sample gene expression data
in the form of transcript read counts aggregated per gene, sourced
from the TCGA RNA-seq data and preprocessed using the RSubread
package. This preprocessing produced fewer zero-expression genes and
less variance across replicate biological samples when compared to the
TCGA preprocessing pipeline. These data can be found under accession
number GSM1536837 in the Gene Expression Omnibus (GEO) (Rahman
et al., 2015).

Healthy tissue data. In the previous section, we described how in
vitro patient tumour sample data is the most biologically relevant as
it maintains many important biomarkers and characteristics seen in
vivo. Nonetheless, healthy tissue data from the same region may still
possess useful information, and the preservation or abandonment of
characteristics and functions between patient tumour samples and data
from the equivalent healthy tissue could provide SL indicators. We
examine two different sources for healthy tissue data: tissue samples taken
from healthy test subjects and matched-normal tissue taken from cancer
patients. The latter are samples extracted from cancer patients from a
region of healthy tissue adjacent to the cancerous tumour. Matched normal
samples are often used as controls for understanding disease mechanisms.
We downloaded the gene expression data for breast, lung, colon, and
ovarian tissue extracted from healthy test subjects, provided as gene-
aggregated transcript per million (TPM) values, from the GTEx Portal
(dbGaP Accession phs000424.v8.p2). We downloaded the gene expression
data for matched normal BRCA samples from GEO (accession number
GSM1536837) as described previously for cancer patient data. No matched
normal data existed for COAD or OV.

Biological pathway data. Genes which tend to co-participate in the same
biological pathways may be more co-dependent on one another than genes
that do not and therefore might also have a higher chance of being SL. To
derive measures of co-participation, we downloaded canonical pathways
gene sets derived from the KEGG, PID and Reactome pathway databases
from the molecular signatures database v7.1 (Subramanian et al., 2005;
Liberzon et al., 2011). These sets detail lists of genes which are known to
be involved in different biological pathways within the cell.

2.3 Feature Generation

Every example xi is characterized by 26 features (Table 3). Each feature,
or element of xi, is calculated based on one or more data types. They
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Symbol Description Biological sample Data type
CRISPR_dep_stat Change in CRISPR dependency score of one gene based on non-silent

mutations in the other (Wilcoxon)
Cancer cell lines Gene dependency, mutation

CRISPR_dep_pvalue Significance of change in CRISPR dependency score in one gene
based on non-silent mutations in the other (Wilcoxon)

Cancer cell lines Gene dependency, mutation

CRISPR_cor_stat Correlation of gene-wise CRISPR dependency scores (Pearson’s) Cancer cell lines Gene dependency
CRISPR_cor_pvalue Significance of correlation of gene-wise CRISPR dependencies (t-

test)
Cancer cell lines Gene dependency

CRISPR_avg Average of gene-wise means of CRISPR dependency scores Cancer cell lines Gene dependency
RNAi_dep_stat See CRISPR equivalent - -
RNAi_dep_pvalue See CRISPR equivalent - -
RNAi_cor_stat See CRISPR equivalent - -
RNAi_cor_pvalue See CRISPR equivalent - -
RNAi_avg See CRISPR equivalent - -
DISCOVER Mutual exclusivity score Patient tumour CNV, mutation
discoversl_mutex_amp Significance of non-co-occurrence of amplifications (hypergeom.) Patient tumour CNV, mutation
discoversl_mutex_del Significance of non-co-occurrence of deletions (hypergeom.) Patient tumour CNV, mutation
discoversl_mutex_mut Significance of non-co-occurrence of non-silent mutations

(hypergeom.)
Patient tumour CNV, mutation

discoversl_mutex Combined p-value of previous three scores using Fisher’s method Patient tumour CNV, mutation
mutex_alt Significance of non-co-occurrence of amplifications, deletions or

non-silent mutations
Patient tumour CNV, mutation

logrank_pval Significance of change in survival time between patients with and
without aberrant expression or copy number in both genes

Patient tumour,
patient clinical data

CNV, expression, mutation,
patient age, race, sex, days
until death

diff_exp_logFC Differential expression of one gene when the other is mutated (log
fold-change)

Patient tumour CNV, mutation, expression

diff_exp_pvalue Significance of differential expression of one gene when the other is
mutated (edgeR test p-value)

Patient tumour CNV, mutation, expression

gtex_corr Co-expression measure (Pearson’s correlation) Healthy tissue CNV, mutation, expression
gtex_corr._pvalue Significance of co-expression (t-test) Healthy tissue CNV, mutation, expression
tumour_corr See GTEx equivalent Patient tumour -
tumour_corr._pvalue See GTEx equivalent Patient tumour -
normal_corr See GTEx equivalent Patient matched-

normal tissue
-

normal_corr._pvalue See GTEx equivalent Patient matched-
normal tissue

-

pathway_coparticipation Significance of co-occurrence in pathways (hypergeom.) Pathway databases Pathway gene sets
Table 3. Symbols and descriptions of all the generated features used within our machine learning models. The biological sample column indicates where the
measurements were taken from. The data type column indicates what measures were taken.

summarise individual gene measurements or a relationship between the
pair of candidate genes across multiple samples of a given cancer type
or corresponding tissue type. We rely on cancer type for patient tumour
and cancer cell line data, or the corresponding tissue type for healthy
and matched-normal tissue. The only exception to this is the pathway
co-participation feature, which is calculated based on biological pathway
data.

Gene dependencies. For each candidate pair of genes A and B, we
calculated features based on cancer cell line gene dependencies. We
calculated five features for the CRISPR-based dependency scores, and
the same five features for the RNAi-based dependency scores, leading to
10 features in total. We determined the first two features by performing
two two-tailed Wilcoxon rank-sum tests (Mann and Whitney, 1947), one
for the pair (A, B) and another for the same pair in reverse order (B, A).
Each Wilcoxon rank-sum test quantifies the change in cell line dependency
on the first gene between two groups of cell lines: those which have
a non-silent mutation in the second gene, and those which do not. We
take the statistic and p-value from the tested pair (A,B) or (B,A) yielding
the smallest p-value as our features. Smaller p-values indicate a higher

likelihood that a mutation in one gene leads to a change in cell line
dependency on the other gene. We expect this to occur between truly
SL gene pairs.

The second two features were the Pearson’s correlation and
corresponding two-tailed t-test p-value of the dependency scores of genes
A and B across the cell lines for a given cancer type. Correlations closer
to +1 or -1, together with p-values closer to 0, may indicate some sort
of interaction between genes. The fifth feature was the average of mean
dependency score, defined as the average of the means of the dependency
scores over the cell lines on genes A and B. Both genes of an SL gene pair
should have low individual gene dependency scores across the cancer cell
lines, and thus a low average gene dependency score.

Mutual exclusivity. A possible explanation for mutual exclusivity between
a gene pair is that there might exist an SL interaction between the two.
If a gene pair is SL, then we would expect to find less examples of co-
mutations of these genes in cells. Mutual exclusivity p-values express the
probability that the co-occurrence of mutations in a pair of genes A and B is
lower than expected by chance. We calculated mutual exclusivity p-values
based on patient tumour mutation data using three different methods:
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DiscoverSL, DISCOVER, and MUTEX (Das et al., 2019; Canisius et al.,
2016; Babur et al., 2015). DiscoverSL tests three null hypotheses that non-
silent mutations, amplifications and deletions are not mutually exclusive
using Eq. 2 and Eq. 3. Eq. 2 is a hypergeometic test which represents
the p-value for the co-occurrence of mutations. Eq. 3 then calculates the
mutual exclusivity p-value for the i-th hypothesis test.

hi =

min(nA,nB)�

j=nA,B

�nA
j

��nT−nA
nB−j

�
�nT
nB

� (2)

pi = 1− hi (3)

Here, nA and nB are the numbers of tumour samples with mutations
of the given type in genes A and B, respectively (Das et al., 2019).
Additionally, nA,B is the number of samples with mutations of the given
type in both genes, and nT is the total number of samples for that cancer
type. DiscoverSL then combines the three p-values using Fisher’s method,
as follows:

X2
2k ∼ −2

k�

i=1

ln(pi) (4)

where pi is the p-value of the i-th of k hypothesis tests, and X2
2k has a

chi-squared distribution with 2k degrees of freedom. Using this fact, we
can determine the combined p-value (Mosteller and Fisher, 1948).

Some p-values resulting from the above hypothesis tests had a value
of 0 when a given alteration never co-occurred between two genes. This
caused an issue since Fisher’s method is a summation of log values and
ln(0) is undefined. Therefore, we only combined p-values when at least
one of the individual p-values was larger than 0. If all p-values were 0, we
took the combined p-value to be 0 as well. We used the p-values from the
individual hypothesis tests and the combined p-value as features.

We defined an additional mutual exclusivity feature by treating every
non-silent mutation, amplification and deletion as an "alteration" event,
and then calculating a single p-value based on alteration events using the
mutual exclusivity test as defined in Eq 2 and Eq. 3.

The MUTEX algorithm also uses a hypergeometric test to determine
mutual exclusivity between a gene pair, but excludes tumour samples
that have more alterations than Q3+(1.5×IQR), where Q3 is the third
quartile in the distribution and IQR is the interquartile range (Babur et al.,
2015). The MUTEX software produced near-constant results and thus
was not included in the final set of features. DISCOVER works by using
a null model that takes into account the overall tumour-specific alteration
rates when deciding whether alterations co-occur more or less often than
expected by chance (refer to Canisius et al. (2016) for details). The software
for these methods was downloaded from their respective repositories.

Survival analysis. SL interactions between gene pairs in cancer patient
tumours could lend a survival advantage to patients harbouring deleterious
mutations in both those genes. This may be due to SL interactions which
make cancer cells less viable. We used Cox proportional hazard models
to check for a significant difference in survival times between patients
possessing tumour samples with and without copy-number amplifications
or deletions, non-silent mutations, or aberrant expression in both genes.
Amplifications and deletions were defined as having thresholded GISTIC
values of 2 and -2, respectively. Aberrant expression was defined as having
an expression level within the upper or lower 5th percentile of expression
levels for that gene across all patients. We also controlled for age, race,
and sex as follows:

ln h(t) ∼ ln h0 + β1inactiveOrAberrant(A,B) +

β2sex+ β3age+ β4race
(5)

whereh(t) is the hazard function defined as the conditional probability of a
patient dying at time t given that the patient has survived to time t (Bewick

et al., 2004). The indicator variable inactiveOrAberrant(A,B)

expresses the copy-number, mutation, and expression status of both
genes in gene pair (A, B) in a patient tumour sample as described
above. The β values are the regression coefficients for the explanatory
variables, estimated using the R package "Survival" (Therneau, 2020).
We calculated whether the β1 coefficient of the indicator variable
inactiveOrAberrant(A,B) is statistically significantly different from
0 using the Wald statistic (Bangdiwala, 1989). Smaller p-values could be an
indicator that an SL relationship is giving a survival advantage to patients
harbouring mutations in the gene pair (A, B). We used this p-value as our
feature.

Gene expression. Co-expression is commonly used as another indicator of
interactions between two genes. Here we did similarly, but we determined
co-expression between a gene pair for each of three types of biological
samples: tumour tissue samples from TCGA, paired-normal tissue samples
from TCGA (available for BRCA only), and tissue samples coming from
healthy doners from GTEx. Our aim is to determine if extra information
can be gained using the similarities or differences in interactions between
cancerous, and healthy or matched normal tissues. This was done by
calculating pairwise Pearson’s correlations and the corresponding two-
tailed t-test p-values, similar to the calculations performed for gene
dependencies. We use the Pearson’s correlation statistic and corresponding
p-values per biological sample type as features, yielding six features in
total.

In addition to co-expression, we used differential expression analysis
on the tumour tissue samples to quantify the variation in the expression of
a gene given the presence or absence of non-silent mutations in another
gene. Differential expression values were calculated using the edgeR
package based on the gene-aggregated expression count data obtained
from GEO (Rahman et al., 2015; Robinson et al., 2010). EdgeR first
normalises the gene expression counts to account for RNA library size and
composition using the Trimmed Mean of M-values normalisation (TMM).
Non-transcribed genes are ignored, and a reference sample is selected to
determine scaling factors for each of the other samples. As part of deciding
the scaling factor for each sample with respect to the reference sample,
TMM ignores biased genes and genes which are highly or lowly transcribed
in both samples (Robinson and Oshlack, 2010). Differential expression of
a given gene between two groups of samples of interest is then determined
using an exact test adapted for over-dispersed data (Robinson et al., 2010),
where gene-wise dispersion is calculated by quantile-adjusted conditional
maximum likelihood (qCML) conditioning on the total counts for that
gene. We perform two differential expression tests per gene pair (A, B):
one for gene A where the two groups are defined as those containing
patient tumour samples with and without a non-silent mutation in gene B;
another for gene B between groups of patient tumour samples with and
without non-silent mutations in gene A. The minimum p-value from the
two differential expression tests and the corresponding log fold-change
values are used as features for the gene pair (see Robinson and Smyth
(2007) and Robinson and Smyth (2008) for more in-depth details on the
edgeR differential expression methodology).

Pathway co-participation. We calculated p-values for the significance
of the co-occurrence of genes in a set of gene pathways using the
hypergeometric test defined in Eq. 2, where nA, nB is the number of
occurrences of gene A and B in all gene pathways, respectively. nA,B is
the number of occurrences of both genes in the same pathway, and nT

is the total number of pathways. The set of pathways was defined as the
union of the KEGG, PID and Reactome gene sets.
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2.4 Our synthetic lethality prediction models

Our aim is to produce a function f(xi), which maps an example denoted
by its feature vector to some real value expressing the predicted SL
level for a gene pair in a specific biological context. We employed
machine learning techniques to determine the function or model f(xi).
We elected to build both linear and non-linear models. Linear models were
chosen to investigate whether SL gene pairs would be linearly separable
from non-SL gene pairs, and because their simplicity could result in
better generalisation. We utilised non-linear models to leverage eventual
non-linear interactions between features to predict SL. Moreover, our
selected models should be reasonably interpretable. This is important for
understanding how our features contribute to the overall performance of
the SL prediction models. For these purposes, we chose to use logistic
regression for our linear models and random forests as our non-linear
models, both of which we elaborate on in the following sections.

Logistic regression models. Logistic regression is a reasonable choice for a
linear model when facing a linearly separable binary classification problem
and interpretability is a desirable property. Consider a logistic regression
equation as defined as follows:

ȳ =
eβX

1 + eβX
, (6)

where X denotes an n×m matrix with n examples (or gene pairs) and m

features, β denotes the coefficients of each of the m features in X , and ȳ

is model output, understood as the probability of an SL interaction within
each of the n gene pairs. Note that both matrix X and β include the bias
terms for simplicity. These models are interpretable because the model
derives coefficients β for each feature, which describe how those features
influence the predicted value ȳ. To control overfitting, we trained logistic
regression models with both L0 and L2 regularisation as implemented in
the L0Learn R package, or L1 and L2 regularisation as implemented in the
glmnet package (Hazimeh and Mazumder, 2018; Friedman et al., 2010).
We refer to the former as "L0L2" and to the latter as "Elastic Net". L0L2
and Elastic Net attempt to find the optimal values for β which minimise
the objective functions Eq. 7 and Eq. 8, respectively.

argmin
β

L(y, ȳ) + λ0||β||0 + λ2||β||22 (7)

argmin
β

L(y, ȳ) + λ1||β||1 + λ2||β||22 (8)

Here, y denotes the actual value for the response variable. L is the logistic
loss function between y and ȳ. The ||β||0 term is the L0 norm, which
is the number of non-zero coefficient values in β. Higher values of λ0

favour sparser models with more zero coefficients. The ||β||2 term is the
euclidean distance of the vector of feature coefficients β from the origin.
Higher values of λ2 results in the shrinkage of coefficients and reduce
the effect that multicollinearity has on the interpretability of the trained
model (see Section 2.7, “Multicollinearity”). The ||β||1 term represents
the L1 norm and acts as a middle ground between the L0 and L2 norms
by both shrinking the coefficients and encouraging sparsity in the model
by reducing small coefficients to zero.

Random forest models. Random forests are ensembles of decision tree
classifiers capable of capturing non-linear relationships between the
predictor and outcome variables. They are trained using bootstrap
aggregation of individual decision tree models built on subsets of the
training set chosen randomly with replacement and combined with
random feature selection for each split in a tree. Random forests make
no assumption about the underlying distribution of the data and are
reasonably interpretable by their nature as rule-based classifiers. The

relative importance of a feature can be measured by the average decrease
of the weighted Gini impurity over every node that chooses that feature
for node splitting, across all trees. The Gini impurity at node v is defined
as follows for binary classification:

Gini(v) = ρv+(1− ρv+) + ρv−(1− ρv−) (9)

where ρv+ and ρv− are the proportion of positive and negative class labels
at node v, respectively.

We used two implementations of random forests: Multivariate methods
with Unbiased Variable selection in R (MUVR) (Shi et al., 2019) and
Regularised Random Forests (RRF) (Deng and Runger, 2012). Both
methods attempt to control overfitting through different algorithms for
feature selection.

MUVR combines the standard implementation as proposed by
Breiman (2001) with a feature selection algorithm. This feature selection
algorithm performs repeated, nested, cross-fold validation combined with
backwards-elimination on the train set to select a reduced set of features.
This assists in identifying redundant features and reduces overfitting. We
also investigated Boruta (Kursa et al., 2010) for the same purposes. Since
the MUVR and Boruta algorithms produced similar results, we decided
to only include MUVR in our final results because it has built-in cross-
validation. We used the MUVR R package made publicly available by Shi
et al. (2019).

RRF is a modified version of the classic random forest implementation
as proposed by Breiman (2001). RRF has two parameters, mtry, which
controls how many features are randomly sampled at each new node,
and coefReg, which controls how much predictive information a feature
needs to contribute before being added to an node. To understand the
difference between the standard random forest and RRF models, consider
the Gini impurity at node v split on feature j, Gini(j, v). We calculate
the information gain of a feature j for splitting node v as the difference
in impurity at node v and the weighted average of the impurities at each
child node vL and vR, as follows:

Gain(j, v) =

Gini(v)− (wL ·Gini(j, vL) + wR ·Gini(j, vR))
(10)

where vL, vR are the left and right child nodes of v, respectively. The wL

andwR terms are the proportions of instances assigned to the left and right
child nodes, respectively. In a classical random forest implementation, at
every newly created node, each of the mtry randomly selected features
is evaluated and the feature j which maximises Gain(j, v) is selected to
split the tree at node v. In an RRF model, Gain(j, v) is replaced by the
regularised information gain GainR(j, v) defined as follows:

GainR(j, v) =

�
Gain(j, v), j ∈ F

coefReg ·Gain(j, v), j /∈ F
(11)

where F is the set of features used by any node previous to the creation
of node v in the forest, and coefReg ∈ (0, 1]. When j /∈ F, coefReg

penalises the gain for using that feature to split the tree at node v. This
means that new features have a larger hurdle to overcome if they are to
be added to the feature set used to split the tree at node v. We used the
“RRFglobal” model as provided by the caret package in R.

2.5 Training

Train and test sets. For our experiments, we constructed different train and
test sets with varying constraints depending on the research question under
study. Here we describe the train and test set creation assuming that we are
working with a single cancer type from our combined dataset. In Section
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2.8, we describe the other train and test set variants utilised. To deal with
class imbalances highlighted earlier on the curation of our gold standard
labels, we downsampled the dataset using uniform random sampling to
ensure an equal number of synthetic lethal and non-synthetic lethal pairs.
We then divided it into train and test sets with a 70/30 split via uniform
sampling. We centred each feature of the training data by subtracting the
mean and then scaled each feature by dividing it by the standard deviation.
This standardisation is required due to the use of regularisation with the
logistic regression models, as scaling a feature will affect the size of the
coefficient and thus alter how that feature is penalised. The feature means
and standard deviations found on the train set were used to standardise
features in the test set. We removed near-constant features, which we
defined as those where less than 95% of the values within the feature
vector are constant.

Repeated k-fold cross-validation. To select the best hyperparameters for
each model, we carried out repeated, stratified, and nested grid-search
cross-validation as described in Krstajic et al. (2014). We defined a
grid for the hyperparameters for each model, and repeated k-fold cross-
validation was conducted on the train set with k = 10 and 5 repeats.
This means that one-tenth of the training data was held out for evaluation
of the selected parameters, while the model was trained on the other
nine-tenths. The purpose of repeating the cross-validation is to reduce
the variance in the chosen parameters. Where possible, we evaluated the
parameters’ performance at each element of the grid using the area-under-
the-receiver-operating characteristic curve (AUROC, described in Section
2.7). However, the L0Learn package is limited to the use of logistic loss
as its fitness function for tuning the L0L2 model. The logistic loss L is
defined as follows:

L(y, ȳ) =
n�

i=1

−y log(ȳi))− (1− y)log(1− ȳi), (12)

where n is the number of examples in the validation set, yi ∈ {0, 1} is the
actual class label and ȳi ∈ [0, 1] is the logistic regression model output
for the ith example. Similarly, the MUVR package is limited to the use of
misclassification error as its fitness function. The misclassification error
is simply the number of misclassified class labels on the validation set.
These metrics were averaged across the repeats and the parameters with
the best average performance were selected as the parameters for the final
model.

2.6 Baseline synthetic lethality prediction methods

We compared our models against three other published methods for
predicting synthetic lethality: DAISY, DiscoverSL and PCA-gCMF
(Jerby-Arnon et al., 2014; Das et al., 2019; Liany et al., 2019). Here,
we provide a brief description and motivate our choice of these baselines.

DAISY. DAISY was selected for being one of the earliest, and most
widely cited, approaches to in-silico SL prediction Jerby-Arnon et al.
(2014). DAISY is a statistics-based approach which utilises cancer cell-
line and patient tumour data. DAISY relies on statistical hypothesis testing,
consisting of three tests. The first test is termed "Genomic Survival of the
Fittest" (GSOF) and is defined as the p-value of a two-tailed Wilcoxon rank-
sum test for the change in somatic copy number alteration (SCNA) score for
gene A in a pair between cell lines with and without inactivations in gene
B. Jerby-Arnon et al. (2014) define the inactivation of a gene in a sample as
when that gene possesses non-silent mutations or SCNA score of < −0.3.
As Wilcoxon rank-sum test is employed to determine the significance of
the change in the SCNA score of gene B between cell lines with and without
inactivations in gene A, and then select the most significant p-value. The
second test is similar to the first but calculates the significance in the
difference in RNAi-based gene dependency scores instead of SCNA scores.

The final test determines the significance of the Pearson’s correlation
between the expression of the two genes. This results in three p-values
which are again combined using Fisher’s method (for further details, refer
to the "Extended Experimental Procedures" provided in the supplementary
materials of Jerby-Arnon et al. (2014)). We implemented this method using
by conducting the GSOF and Pearson’s correlation tests across cancer cell
line and patient tumour datasets and combining the p-values using Fisher’s
method. The RNAi-based gene dependency tests are limited to only cancer
cell line data. We implemented DAISY in R.

DiscoverSL. DiscoverSL is a recently published SL classifier which uses
a random forest model trained on breast and lung cancer data (Das et al.,
2019). The DiscoverSL model incorporates four features, calculated as
previously described in Section 2.3: differential expression and expression
correlation in tumour samples, pathway co-participation, and combined
mutual exclusivity p-value. The pre-trained model was made public as an
R package for classification of SL pairs. DiscoverSL outputs probabilities
that gene pairs have SL relationships. We used this pre-trained model in
our experiments as an example of a pan-cancer or "general" SL interaction
prediction model.

PCA-gCMF. PCA-gCMF is another recently published machine learning
approach which uses group-sparse collective matrix factorisation (gCMF)
and principal component analysis to predict SL relationships (Liany et al.,
2019). It was selected as an example of matrix factorisation approaches to
SL prediction.

PCA-gCMF uses a combination of principal component analysis
(PCA) and group-sparse collective matrix factorisation (gCMF) to predict
SL interactions. Low-rank matrix factorisation decomposes a single matrix
X ∈ Rp×q into a product of matrices such that X ≈ U1 · UT

2 ,
where U1 ∈ p×K, U2 ∈ q ×K, and K < min(p, q). Group-
space collective matrix factorisation generalises this idea to where we
can decompose an arbitrary collection of M matrices which describe
the relationships between E entities, {X1, · · · , XM}, into E low-rank
matrices, {U1, · · · , UE}, while imposing a group-sparse penalty on these
decomposed low-rank matrices (Klami et al., 2013). Liany et al. (2019)
use PCA transformations as a method to overcome a gCMF limitation
whereby unique representations for each entity cannot be learned when
multiple input matrices contain identical row and column entity-types. We
used PCA-gCMF with four feature matrices as presented by Liany et al.
(2019):

• Gene dependency profiles. An p×p matrix with p genes. For any gene
pair (A, B), the p-value of a Wilcoxon rank sum test is calculated which
quantifies the change dependency scores for gene A for cell-lines with
and without a mutation in gene B. This test is conducted in reverse on
(B,A) and the smallest p-value is used in the resulting matrix.

• mRNA Expression profiles: An p×q matrix with p genes and q patient
tumour samples, where each element of the matrice is the mRNA
expression count.

• Co-expression: An p× q matrice with p genes where the p-value for
the Spearman correlation coefficient is measured between gene pairs
across all patient tumour samples.

• CNV profile: An p × q matrice with p genes and q patient tumour
samples, where each element of the matrice are the CNV real-valued
scores produced by the GISTIC algorithm.

The original publication reported high prediction performance for
PCA-gCMF on their included test sets (AUROC ≈ 0.9). We downloaded
the publicly available software for this method and used it directly. It should
be noted that the solution space for matrix factorisation methods is a lot
smaller than for classical machine learning techniques, such as logistic
regression. This is because matrix factorisation methods can only make
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predictions on relationships between entities, such as genes, provided in the
input. For many practical applications, machine learning models need to
be able to make predictions about relationships between previously unseen
genes, also in new biological contexts. Ideally, to make comparisons fair
between approaches we could initialise the input matrix defining gene-wise
relationships to include an entry for every gene in the human genome. For
our experiments, we found it sufficient to initialise the input matrices to
include all unique genes represented in our combined dataset across all
cancer types. PCA-gCMF outputs a continuous score per queried gene
pair relationship.

2.7 Evaluation

We evaluated each model f(xi) by measuring prediction performance
against the ground truth yi in different experimental scenarios. For our SL
prediction models, we also determined the contribution of each feature, or
element in xi, in the context of each model.

Prediction performance. One of the goals of SL prediction models is to
reduce the number of candidate gene pairs for in-vitro experimentation to
one with a higher probability of producing true-positive results. In practice,
this could mean choosing the top k results from a list of n candidate gene-
pairs output by a prediction model for further in-vitro experimentation,
where k << n. Therefore, we are more interested in the true-positive
predictions ranked higher in our results rather than the entire results space.
More formally, a classifier f(xi) should have the following property:
P (yi = 1|ȳi) ∝ ȳi. This means that as our model output ȳi increases,
the probability that the actual class label yi is truely positive should also
increase.

We used receiver-operating characteristic (ROC) and precision-recall
(PR) curves as a graphical representation of the ability of the binary
classifier, f(xi), to correctly predict the class label, yi, by varying a
threshold t over the real-valued range of output values ȳi. ROC curves are
a standard form of evaluation of models in machine-learning literature.
ROC curves are plotted with the false positive rate (FPR) and true positive
rate (TPR) on the x and y-axes, respectively. A line is generated from the
bottom left corner of the plot to the top right by varying the threshold, t,
from the most stringent possible value where all examples are classified
negatively, t > max(ȳi), to the most lenient where all examples are
classified as positive, t < min(ȳi), and plotting the TPR and FPR values.
Curves which come closer to the top-right corner of the plot are indicative
of better performance, while curves which form a straight line from the
origin to the point (1, 1) are indicative of random classification.

Given the aforementioned goal of our model, we were interested in
observing the precision of our classifier as we predict more positive labels
from our test set. PR curves achieve this by representing the trade-off
between recall and precision, which are plotted respectively on the x and
y-axes. This produces a curve from the top-right point (0,1) to the point (1,
minprec), where minprec is the precision when all points are classified
positively. Curves which come closer to the top-left corner of the plot
are indicative of better performance. We averaged the ROC and PR curves
across test set evaluations using the vertical-averaging method (see Fawcett
(2006) for details).

We determined the area-under-the-curve (AUC) to summarise the
performance of these classifiers, denoted AUROC and AUPRC for the
corresponding ROC and PR curves, respectively. For both curves, an
AUC closer to 1 indicates better performance. In the case of AUROC,
a value of 0.5 indicates random performance. The AUPRC value which
indicates random performance in a binary classification problem is equal
to that of the class balance ratio for the test set. Our test sets are always
class balanced, and thus this value is 0.5 for our experiments. However,
determining the AUROC and AUPRC over the entire result space may not
be the most informative measure of performance. As mentioned, one of the

Algorithm 1: Model-Agnostic Permutation Feature Importance
Result: List of 4-tuples of variable name and median, 5th

quantile, and 95th quantile feature importance score,
ordered by median score

T ← Test dataset;
M ← Some model;
L ← Some loss function;
lorig ← L(M,T );
importances ← {};
for var in M.variables do

j ← {};
for i in 1:100 do

Tperm ← Permute(T, var);
lperm ← L(M,Tperm);
j.insert(lperm/lorig)

end
importances.insert({var,median(j),

05quantile(j), 95quantile(j)})
end
importances ← order(importances);

main practical applications of these methods would be to choose the top
k results for in vitro experimentation based on their likelihood to produce
true positive results.

To assess the performance at the top of the ranking, we also determined
the Average Precision at rank k, AP@k, defined as the average precision
over the top k ranked results as follows:

AP@k =
1

k

k�

i=1

TP (i)

i
. (13)

We took k = floor(n/3), where n is the number of examples in the
test set. TP (i) is a function which returns the number of true positives in
the first i results. The results are ordered by the model output ȳi for these
test examples as described in the problem formulation. We will refer to
this value in later sections as AP@n/3. We evaluated the performance of
every final model against the test set. To examine the variance in model
performance we repeated the process, from downsampling to training
to evaluation against the test set, 10 times. We calculated averages and
standard deviations for all metrics across all 10 runs.

Feature importance. We measured feature importance (FI) using a model-
agnostic permutation approach as proposed by Fisher et al. (2019)
(Algorithm 1). We chose this to be able to generate feature importance
scores in a consistent manner and improve interpretability across models.
This algorithm provides an estimate per feature of the median, 5th, and 95th
quantile of the changes in the prediction error, defined as 1− AUROC.
This is done for the model when the values of each of the features are
permuted. A median increase in error which is generally > 1 with a low
variance indicates that a feature is "important". Features which are not
important will cause no change in the error and have a value ≈ 1. A
median decrease in the error of < 1 can happen when the permutation of
an unimportant feature randomly leads to a reduction in error.

This metric can be calculated using the train or test set forT , as defined
in Algorithm 1. As noted by Molnar (2020), the choice of training or test set
comes down to what we mean when we describe the feature importance
of our models. Feature importance (FI) is an ill-defined concept in the
literature. To define feature importance, we need to pose the question of
what we are trying to observe. If our question is: “what features are the
most important to my model for predicting correctly on unseen data?”; then
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we should use the test data. This is because our model could be positively
biased towards certain features which it may have overfit on during the
training process. Conversely, if our question was “what features has my
model learned to use to make predictions?”, then we would use the training
data (refer to Molnar (2020), Chapter 5.5 for more details). In our case, we
are interested in the former, and thus we will calculate feature importance
on the test data.

Multicollinearity. A confounding factor to the interpretability of many
machine learning models is multicollinearity. Multicollinearity is a
phenomenon where one feature in a model may be linearly predicted
using some combination of the other features. Multicollinearity can make
the interpretation of feature coefficients or the relative ranking of feature
importance difficult. For example, from a set of multicollinear features,
a model may randomly select only one of these features as "important".
Interpreting the feature importances from such a model directly may lead
to the false impression that any features that are collinear with the chosen
feature do not hold any predictive value. Multicollinearity can be assessed
on a per-feature basis using variance inflation factors (VIF). The VIF is
calculated using linear regression, where the feature j is the response
variable, and every other feature in the model are explanatory variables.
From this linear model, we can determine the multiple R2 value, which
measures the amount of variation in the response variable that can be
explained by the predictor variables (Draper and Smith, 1998). The R2

value for this model is used to calculate the VIF for feature j as follows:

V IFj =
1

1−R2
j

. (14)

Large multiple R2 values imply that much of the variation in a feature can
be predicted by other features in the model. In return, this will result in a
large VIF value and indicates the presence of multicollinearity. Conversely,
a multiple R2 value close to 0 will result in a VIF close to 1, indicating the
absence of multicollinearity. A high VIF which might highlight a problem
is often considered to be > 5 or 10, although the ideal threshold is specific
to each problem (Becker et al., 2015).

2.8 Model generalisation and effect of selection bias

We wish to quantify the resilience of a learned mapping function, f(xi),
to biases within the dataset used to train the model. Recall that a dataset
D encompasses both the gold-standard labels y and the feature vector
x for each gene-pair as described in Section 2.1. Consider two datasets
Dsource and Dtarget where P (xi|Dsource) �= P (xi|Dtarget). The
model trained on datasetDsource, fDsource (xi), should be learned such
that P (yi = ŷi|xi ∈ Dsource) ≈ P (yj = ŷj |xj ∈ Dtarget) where
ŷi = fDsource (xi) > t, where t is a constant threshold. Ideally, this
means that as the underlying distributions of the feature vectors X change,
the learned relationship f(xi) to the outcome variable yi should not
change. To examine how these models are affected by the aforementioned
biases, we train and test said models against datasets Dsource and
Dtarget, respectively, whereP (x|Dsource) �= P (x|Dtarget). We then
evaluate and compare the predictive performance of these models to assess
their ability to generalise to different datasets of different distributions.
In this section, we enumerate the experiment variations conducted to
perform this analysis. Each variation involves the construction of datasets,
Dsource and Dtarget, and is informed by which research question
we are aiming to answer. We define the set of cancer types as C =

{BRCA,COAD,LUAD,OV} and the datasets used for constructing our
training and test sets as D, Disle, and Ddsl, for the combined, isle, and
discoverSL datasets, respectively.

We also investigate the effects of sampling biases. Sampling bias
describes a situation where a population is sampled in such a way that

some members have a higher probability of being sampled than others
and, in turn, the distribution of these sampled data does not reflect the true
distribution of the underlying population. We are interested in how two
sources of sampling bias in the curation of a gold standard SL labels can
affect the training and evaluation of SL classifiers. We term these biases
cancer representation bias and gene selection bias. We will describe these
biases later as we detail each of the experiments.

Cancer-specific models
The features we have detailed previously, in Section 2.3, describe different
relationships between gene pairs within the biological context from which
the raw measurements were taken, such as a tumour of a particular
cancer type. These differing contexts could give rise to differing biological
markers for SL identification. Accordingly, our initial aim was to determine
if the knowledge a model gained through learning on one cancer type could
generalise to effectively predict SL in a different cancer type.

Cancer-specific model performance. To establish a baseline for
comparison in later experiments, we analysed the performance of cancer-
specific models when trained and tested on disjoint sets of examples from
the same cancer type. To achieve this we split D into four datasets, one
per cancer type, Dc. Train and test sets Dc

source and Dc
target were then

created separately from each cancer type dataset, Dc, using a 70/30 split
as described in Section 2.5, "Training and test sets".

Cross-cancer generalisation. To evaluate the ability of the cancer-specific
models to transfer knowledge across cancer types, we measured the
prediction performance of models trained on each individual cancer type
against three different test sets, each containing samples from one of the
other three cancer types. We constructed the training and test datasets as
per the per-cancer experiment above. Then for each model trained on a
dataset Dc

source, we tested that model against every other cancer type d

test set, i.e. Dd
target∀c, where d �= c.

Pan-cancer models
Despite inherent differences in biological tissue and molecular landscape,
using data from different cancers could provide complementary
information that is useful to learn more general rules that determine when a
pair of genes is synthetic lethal. We, therefore, set to assess if incorporating
knowledge from other cancers together with that of a select cancer type
could improve prediction on this same cancer type. Additionally, we also
consider cancer representation bias. This is a form of sampling bias which
can occur due to the popularity of certain cancer types studied in the
literature or the rarity of other cancers, leading to an over- or under-
representation of available data per cancer type. We examine if such
biases can have an impact on pan-cancer learning and if their effects can
be mitigated through the balancing of cancer representation. Finally, we
inspect how pan-cancer models generalise to previously unseen cancer
types.

Pan-cancer model performance. To determine if predictive performance
on a particular cancer type could be improved by incorporating knowledge
from other cancers, we needed to construct a pan-cancer dataset. To
accomplish this, we constructed four datasets (one per cancer) and split
them into training and test, Dc

source and Dc
target, as described in the

per-cancer experiment above. We created the pan-cancer training set as
the union of the four training sets, Du

source = {Dc
source : c ∈ C}.

The trained models were then evaluated against every one of the four
cancer-specific test sets Dc

target.

Resilience to cancer selection bias. We also investigated the influence
of cancer type representation within a dataset on model prediction
performance. For this, the union training set Du

source was downsampled
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to generate a new training set Db
source containing an equal number of

positive and negative samples per cancer type. As before, the trained
models were then evaluated against each cancer-specific test setsDc

target,
and the performance was compared to that of the models trained on
Du

source.

Cross-cancer generalisation (leave-one-cancer-out). Subsequently, we
examined how models leveraging knowledge gained from multiple cancer
types could generalise to an unseen cancer type. This was done by holding
out one cancer type c from the pan-cancer training set described above
and testing the trained model against the held-out cancer type. Again,
beginning with our per-cancer datasets as constructed in the per-cancer
experiment, the training set is constructed such that for each held-out
cancer c, Du

source = {Dnc
source : nc ∈ C,∀nc �= c}. Du

source is
then downsampled as in the pan-cancer experiment to produce Db

source.
Models are trained on Db

source and are evaluated against Dc
target.

Effects of gene selection bias
Gene selection bias occurs when gene pairs are sampled non-uniformly
from all available genes in the human genome. This typically occurs due
to the popularity of certain genes in the literature or their likelihood to
be involved in cell processes. In turn, as with cancer selection bias, this
leads to an unequal representation of genes across gold standard datasets.
We created dot plots to investigate gene selection bias in the ISLE and
DiscoverSL gold standard datasets. In these plots, the x-axis and the y-
axis both contain entries for every unique gene included in either dataset.
Dots appear on the plot where either a positive or negative label exists
between each pair of genes, coloured by the SL gold standard dataset.
Obvious patterns in these plots, such as long sequences of consecutive dots,
may highlight gene-selection biases. Essentially, we are visualising the
adjacency matrix for gene pairs in either SL gold standard. Our hypothesis
was that models that account for the structure of such a matrix, such as
matrix factorisation models, will be more susceptible to effects of gene
selection bias than other models.

Cross-gold standard generalisation. Since the ISLE and DiscoverSL gold
standard SL datasets showed different gene selection biases, we did a
preliminary analysis to investigate model generalisation ability across SL
datasets. For this experiment, we first selected a single cancer type c ∈
{BRCA,LUAD}. We then chose one dataset, either Disle or Ddsl, to act
as the source of the training data, and the other dataset was used for testing.
For example, when c = BRCA, we randomly sampledBRCA instances
fromDisle to construct a class-balanced training setDc

isle,source. Recall
from Section 2.2 that when curating our datasets, we remove any pairs that
may be duplicated between these sets. The same was done to construct the
test set Dc

dsl,target from Ddsl. When c = LUAD, we constructed the
training and test sets from Ddsl and Disle, respectively.

Resilience to gene selection bias (gene holdout). We then investigated
the effect of gene selection bias in the gold standard SL datasets on the
prediction performance of the best performing machine learning models
under two different scenarios. In the first scenario, training and test sets
were constructed such that for every gene pair (A, B) in the test set, either
A or B was present in the training set, while the other was not. In the second
scenario, the sets were created such that for every gene pair (A, B) in the
test set, neither gene A or B appeared in the training set. Data from the
first cancer-specific experiment was used as a baseline to compare model
performances against these two scenarios. We used only BRCA data for
this experiment since it was the only cancer type with enough diversity in
its gene pairs to construct reasonably sized training and test sets under the
given constraints.

2.9 Other experiments

Gene dependency-based feature reliance analysis
We conducted an experiment to examine how the predictive power of our
models was affected when we removed gene dependency-based features
from the feature set. We trained and tested our models on two pan-cancer
datasets, one which included all features, and one which excluded any
feature which was generated using gene-dependency scores. Both datasets
were constructed from the combined dataset, which was downsampled
through uniform sampling to include an equal number of positive and
negative labels across all cancer types. The datasets were split 70/30,
also through uniform sampling. Identical indices were used to create the
training and test splits in both datasets, i.e. the only difference between the
training and test sets was the number of included features. Training and
evaluation were performed as described earlier in this section.

3 Results and Discussion
In this section, we describe and discuss the results of our experiments
designed to analyse the predictive performances of our cancer-specific and
pan-cancer SL prediction models. We detail their generalisation and the
effects of representation and selection biases on training and evaluation.
Our initial set of experiments analysed predictive performances in a cancer-
specific context. We compared the performances of our models with those
of our selected baselines: DAISY, DiscoverSL, and PCA-gCMF. We then
examined the effect of cancer representation bias on SL prediction. This
included: examining how models trained on a single cancer type performed
when tested against the other cancer types; investigating whether training
models on datasets containing all available cancer types could help improve
the performances in cancer-specific test sets; assessing whether pan-
cancer models would be able to leverage knowledge from multiple cancers
to generalise to unseen cancer types. Following these, we examined
gene selection bias in gold standard data and quantified the sensitivities
of different models to such biases. Finally, we analysed the feature
importances for each model.

3.1 Linear models show best precision at the top

We first evaluated the prediction performance of the regularised logistic
regression (L0L2, Elastic Net) and random forest (MUVR, RRF) models
trained using all 26 features in a cancer-specific context. Four models
were trained and tested separately using each algorithm, one per cancer
type: BRCA, COAD, LUAD, and OV. We compared these models against
the selected baseline methods DAISY, DiscoverSL and PCA-gCMF based
on AUROC, AUPRC and AP@(n/3) values. This experimental setup
represents the simplest scenario for an SL prediction task, where the train
and test data comes from the same distribution. Both the DAISY and
DiscoverSL methods performed close to random across all cancer types
with respect to both AUROC and AUPRC, and will not feature prominently
in further analysis (Tables 4a and 4b).

Our results show that our cancer-specific models and PCA-gCMF
performed well on the BRCA and LUAD datasets. On BRCA data, our
regularised logistic regression (Elastic Net, L0L2) and random forests
(MUVR, RRF) achieved average AUROCs of 0.84 to 0.86, and average
AUPRCs of 0.88 to 0.89. PCA-gCMF performed slightly better with an
average AUROC of 0.92. On LUAD data, regularised logistic regression
and random forests showed consistently high AUROC (0.85 to 0.87) and
AUPRC (0.87), while PCA-gCMF had an AUROC of 0.87 and a lower
AUPRC of 0.81 (Tables 4a and 4b). Precision-recall curves showed that
logistic regression and random forest models exhibited high precision
among higher-ranking positively predicted gene pairs (recall between 0 and
0.25 or 0.3), whereas the precision of PCA-gCMF remained significantly
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BRCA COAD LUAD OV
DAISY .61± .02 .38± .02 .44± .03 .41± .04

DiscoverSL .54± .02 .54± .02 .54± .03 .45± .04

Elastic Net .84± .01 .6± .02 .85± .02 .59± .03

L0L2 .84± .01 .6± .02 .85± .02 .59± .03

MUVR .86± .01 .64± .01 .86± .01 .54± .07

pca-gCMF .92 ± .01 .54± .03 .87± .03 .94 ± .02

RRF .86± .01 .63 ± .02 .87 ± .02 .57± .07

(a) AUROC

BRCA COAD LUAD OV
DAISY .58± .02 .42± .01 .46± .03 .47± .04

DiscoverSL .55± .02 .53± .02 .54± .03 .48± .04

Elastic Net .87± .01 .59± .01 .87± .02 .58± .04

L0L2 .88± .01 .59± .02 .87± .02 .58± .05

MUVR .89± .01 .62± .01 .87 ± .01 .51± .05

pca-gCMF .92 ± .01 .56± .03 .81± .06 .92 ± .04

RRF .89± .01 .63 ± .02 .87± .02 .54± .05

(b) AUPRC

BRCA COAD LUAD OV
DAISY .6± .04 .77 ± .04 .42± .07 .52± .1

DiscoverSL .6± .05 .54± .03 .58± .07 .5± .12

Elastic Net .99± .01 .67± .04 .97 ± .01 .62± .11

L0L2 .99 ± 0 .66± .05 .97 ± .01 .61± .12

MUVR .99 ± 0 .68± .03 .95± .02 .44± .11

pca-gCMF .97± .02 .66± .04 .79± .11 .93 ± .06

RRF .99± .01 .72± .04 .95± .02 .51± .12

(c) Average precision over the first third of ranked predictions.

Table 4. AUROC, AUPRC, and AP@(n/3) estimates for cancer-specific
models tested on the same cancer type. Mean and standard deviation of 10
repetitions. AP@(n/3) denotes average precision over the first third of ranked
predictions.

lower (Fig. 4). This was quantified by the average precision calculated over
the first third of the ranked results, where all logistic regression and random
forest models scored higher than PCA-gCMF (Table 4c). The difference
between these models was particularly significant for LUAD models.

On COAD data, our logistic regression and random forest models
performed worse in comparison to their performance on BRCA and
LUAD data, with AUROCs between 0.60 and 0.64 (Table 4a). We
hypothesize that different characteristics of cancer datasets could reduce
the effectiveness of certain predictors. For example, COAD has a higher
prevalence of microsatellite instabilities (MSI) (Bonneville et al., 2017).
MSI are regions of hypermutability in the genome caused by the loss
of DNA mismatch repair activity. Hypermutability may add noise to
some mutation-based predictors, such as CRISPR_dep_stat, as it
becomes harder to determine if changes in a measured phenotype, like
gene dependency, are correlated with a particular mutational event (Behan
et al., 2019). As our later results in Section 3.5 demonstrate, mutation-
based features like CRISPR_dep_stat are of high importance to our
BRCA and LUAD models. On OV, our logistic regression models out-
performed our random forest models slightly, with AUROCs of 0.59 for
both L0L2 and Elastic Net, while MUVR and RRF had AUROCs of 0.54
and 0.57, respectively (Table 4a). We advance two potential reasons for the
lower performance of our models on OV data. First, the number of samples
available for training and testing of OV models was approximately one-
third of that available for BRCA and LUAD (Table 2). This is a good
example of cancer representation bias. The second reason for this might
be that the OV cell lines contain a much lower number of mutations per
gene pair than the other cancer types (OV: 1.6 mutations per gene pair on

(a) BRCA (b) COAD

(c) LUAD (d) OV

Fig. 3: Adjacency matrix dot plot showing labelled gene pairs from BRCA,
COAD, LUAD, and OV cancer types in the combined dataset. The x-
axis and y-axes are the unique genes per cancer type gene pairs. Each
dot represents a gene pair where a positive (blue) or negative (red) label
exists. Whitespace represents gene pairs with no labels. These matrices
are symmetric along the diagonal.

average, BRCA: 4.33, LUAD: 11.35, COAD: 5.97). Lack of mutation data
may cause similar issues with mutation-based features as hypothesised for
COAD.

Our results on COAD and OV data demonstrated interesting behaviour
on behalf of our baseline matrix factorisation method, PCA-gCMF. For
COAD, PCA-gCMF performed close to random (AUROC: 0.54), while
obtaining very high performance on OV data (AUROC: 0.94). We noted
that COAD and OV gold standard class labels display very different
characteristics. The COAD gold standard labels are very sparse, and only
105 of the 1560 unique genes are featured in more than one gene pair (Fig.
3b). Only five genes appear in more than three labelled pairs, with roughly
even priors of being involved in SL interactions (BLM: 0.57, KRAS: 0.5,
MUS81: 0.5, PTEN: 0.54, PTTG1: 0.48). Conversely, the number of
unique genes in the SL gold standard for OV is at most 10% that of other
datasets (OV: 83 unique genes, BRCA: 1072, LUAD: 804, COAD: 1560)
and all genes except two are featured more than twice as members of a
gene pair within the dataset (Fig. 3d). In comparison to COAD, it is very
likely for individual genes to be featured in both the train and test sets. The
performance of PCA-gCMF in this context is in line with our hypothesis
that matrix factorisation techniques will be less effective when predicting
on previously genes with no a priori class label information. We provide
further evidence for this in Section 3.4.

Overall, these observations show the potential of our models in
classifying SL interactions on BRCA and LUAD data while displaying the
most desirable property of ranking the most promising candidates more
consistently at the top. However, our COAD and OV results illustrate that,
while our models might demonstrate high efficacy on certain cancer types
such as BRCA and LUAD, our models are not as effective across all cancer
types.
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Fig. 4: Receiver-operating characteristic (ROC) curves and precision-recall (PR) curves for each cancer-specific model tested against samples from the
same cancer type that it was trained on. The top plots show ROC curves, the bottom plots show PR curves, and each column corresponds to a different
cancer type.

3.2 Cancer representation affects pan-cancer learning

We experimented to ascertain whether our models could improve their
predictive performances on a single cancer type by leveraging information
from other cancers. We also investigated whether pan-cancer model
learning is affected by cancer representation bias. In this context, we
trained separate models on two training sets: one with and one without
equal cancer representation. We then evaluated these models against each
of our four cancer types in turn.

Our results show that the pan-cancer random forest models
outperformed the pan-cancer logistic regression models with respect to
average AUROC in every case except one (Table 5). They also illustrate
that the pan-cancer models performed worse than their cancer-specific
counterparts and the difference between the two was larger in general for
our logistic regression models compared to our random forest models. We
also noted that the random forest models were less affected by training on a
dataset with unbalanced cancer representation. The random forest models
suffered a drop of between 0.05 and 0.06 in AUROC when trained on
a dataset with unbalanced instead of a balanced cancer representation,
whereas the predictive performance of the logistic regression models
dropped by 0.11, to 0.12.

From these results, it is difficult to conclude that knowledge from
other cancers cannot be leveraged to improve predictive performance on a
target cancer. Our results suggest that training on multiple cancers could
dilute our models ability to predict SL on individual cancer. This seems

especially true for logistic regression models. However, the fact that our
cancer-specific models performed poorly on COAD and OV data may
also partially explain the drop in performance when we use this data to
train our pan-cancer models. Nonetheless, our results do demonstrate
that cancer representation is an issue which must be considered when
constructing datasets for pan-cancer learning. As we examine the columns
in Table 5 from right to left, we note that the AUROCs of our logistic
regression models drop more between columns than do the AUROCs of
our random forest models. A possible explanation for this is that the logistic
regression models average out the effects across cancers, and the impact
of this worsens as the cancer representation becomes more unbalanced.
Conversely, the non-linearity in the random forest models enable context-
specific rules which may empower its resilience when exposed to data
from multiple cancers at different ratios. Finally, we demonstrate that
balancing cancer representation can lead to an improvement in pan-cancer
model learning, highlighting that future research on machine learning
modelling of pan-cancer SL prediction should take cancer representation
into consideration.
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Pan-cancer (all cancers)
Unbalanced Balanced Single cancer

BRCA .64± .02 .75± .01 .83 ± .01

COAD .52± .02 .51± .02 .6 ± .02

LUAD .73± .03 .79± .02 .83 ± .02

OV .4± .04 .53± .04 .58 ± .03

(a) L0L2

Pan-cancer (all cancers)
Unbalanced Balanced Single cancer

BRCA .65± .02 .77± .02 .84 ± .01

COAD .52± .02 .53± .02 .6 ± .02

LUAD .74± .02 .8± .02 .85 ± .02

OV .4± .04 .5± .04 .59 ± .03

(b) Elastic Net

Unbalanced Balanced Single cancer
BRCA .76± .01 .82± .02 .86 ± .01

COAD .62± .02 .6± .01 .64 ± .01

LUAD .81± .02 .83± .02 .86 ± .01

OV .55 ± .06 .52± .04 .54± .07

(c) MUVR

Unbalanced Balanced Single cancer
BRCA .75± .02 .8± .02 .86 ± .01

COAD .62± .02 .61± .02 .63 ± .02

LUAD .8± .02 .83± .02 .87 ± .02

OV .55± .04 .53± .05 .57 ± .07

(d) RRF

Table 5. AUROC estimates for pan-cancer models (with unbalanced or balanced cancer representation) and cancer-specific models tested on each individual cancer
type. Mean and standard deviation of 10 repetitions. Models: logistic regression models with L0 and L2 regularisation (L0L2) or with L1 and L2 regularisation
(Elastic Net), and random forest models MUVR and RRF.

3.3 Our models can generalise between certain cancers

Next, we investigated how our models generalised to unseen cancer types.
In the case of our cancer-specific models, we tested these models on the test
sets for each of our four cancers, individually. For our pan-cancer models,
we did this by holding out one cancer type, training models using samples
from the other three, and then testing on the samples from the held out
cancer type. We dub this experiment as "leave-one-cancer-out". For this
section, our conclusions are the same regardless of our choice of linear or
non-linear models. For brevity, we primarily focus on L0L2 and MUVR
models. The interested reader can optionally refer to the supplementary
materials where indicated for more details.

First, we look at the results for our cancer-specific models. We see that
for the L0L2 models, when trained on BRCA and tested against LUAD,
and vice versa, the models generalised well with average AUROCs of
0.79 and 0.69, respectively (Fig. 5, top) . Elastic Net behaved similarly
(Supplementary Figure S5, top-right). We hypothesize that the logistic
regression models can generalise between BRCA and LUAD because the
BRCA and LUAD datasets possess similar linear relationships between
predictors and class labels. We will explore this further in Section 3.5.
MUVR generalised well when trained on BRCA and tested against LUAD
(AUROC: 0.73), but not when trained on LUAD and tested on BRCA
(AUROC: 0.53) (Fig. 5, bottom). This behaviour is consistent with that
of the RRF model (Supplementary Figure S5, bottom-right). All models
struggled to generalise when trained on OV or COAD to other cancers,
with predictive performance varying from poor to random when tested
against other cancer types (Fig. 5 and Supplementary Figure S5).

The results of our leave-one-cancer-out experiments for pan-cancer
L0L2 and MUVR models are shown in Fig. 6, bottom. Both the L0L2
and MUVR models performed well on LUAD (AUROC: 0.78 and 0.72),
possibly owing to the inclusion of BRCA data in the training set (Fig. 6).
As observed in earlier cross-cancer experiments, all our cancer-specific
models were able to predict well on LUAD data when they had been
trained on BRCA data (Fig. 5). On BRCA, the L0L2 model had a
modest AUROC of 0.67 and the MUVR model exhibited near-random
performance with an AUROC of 0.52 (Fig. 6). This is also in accordance
with the cross-cancer experiments showing that cancer-specific MUVR
models trained on COAD, LUAD or OV did not generalise to BRCA at all
(with near-random AUROCs), while the L0L2 model was able to leverage
the LUAD data to predict on BRCA with an AUROC of 0.71 (Fig. 5). The
Elastic Net and RRF models performed similarly to the L0L2 and MUVR
models, respectively (Supplementary Figure S6). We also note that the
leave-one-cancer-out models performed similarly to the best generalising

Fig. 5: Heatmaps of average AUROC performances for the L0L2 (top) and
MUVR models (bottom) over 10 repetitions. On the y-axis is the cancer
type that each model was trained on. On the x-axis is the cancer that each
model was tested against.

cancer-specific models from the cross-cancer experiment. For example,
pan-cancer models trained on COAD, LUAD and OV generalised equally
as well to BRCA as did their cancer-specific counterparts trained only on
LUAD (Fig. 5 and Fig. 6, and Supplementary Figures S5 and S6). This
might indicate that training on multiple cancer types does not have a strong
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Fig. 6: Heatmaps of average AUROC performances for L0L2 models (top)
and MUVR random forest models (bottom) over 10 repetitions. On the x-
axis is each cancer type that was held out for testing. The models were
trained on a balanced dataset of all other cancers.

negative effect on a models predictive power when generalising to unseen
cancers. All models exhibited poor-to-random performance when OV and
COAD were held out for testing, similar to the cross-cancer generalisation
experiment.

Overall, our results demonstrated that our cancer-specific and pan-
cancer logistic regression models could generalise between BRCA and
LUAD datasets. Random forest models were shown to generalise from
BRCA to LUAD, but not vice-versa. Training models on multiple cancer
types did not improve a models’ ability to predict on samples from
a previously seen cancer type or generalise to unseen cancer data.
Nonetheless, it is also encouraging to note that the models’ abilities to
generalise to unseen cancers only marginally decreased when trained pan-
cancer. This is despite being trained on additional data in COAD and OV
which have proved to be difficult problems for our models to solve in our
previous experiments (Table 4a). This suggests that our models may still
be able to learn and handle multiple contexts, which could form a basis
for pan-cancer SL modelling.

3.4 Complex models are sensitive to gene selection bias

Our next goal was to understand the impact of gene selection biases on
classifier generalisability. We observed some gene selection bias in the
gold standard gene pairs by visualising the adjacency matrix dot plots
of the ISLE and DiscoverSL gold standard SL datasets. We saw distinct
lines of labelled pairs when we stratified the combined dataset by cancer
type and gold standard SL dataset (DiscoverSL or ISLE). Each horizontal
or vertical line represents experimentally validated SL labels that exist
between a single gene and other genes in the dataset. One striking pattern
for DiscoverSL in LUAD was that all pairs involved one particular gene.
In this case, the labels were originally obtained from a single double
knockdown gene experiment which focused on KRAS as the cancer driver
gene. The ISLE dataset featured more diverse pairwise gene combinations
but covered a far smaller set of unique genes (Fig. 7b). Both datasets very
clearly had different structural characteristics due to individual gene and
gene pair selection biases (Fig. 7).

(a) BRCA

(b) LUAD

Fig. 7: Adjacency matrix dot plot showing BRCA (a) and LUAD (b) gene
pairs in the ISLE and DiscoverSL gold standard datasets. Elements along
the x-axis and y-axis represent unique genes in the combined dataset.
Each dot represents a gene pair with a label in the ISLE (red), DiscoverSL
(black), or both (blue) gold standards. Whitespace denotes gene pairs
unknown to either gold standard dataset.

Linear models generalise better across SL gold standards
We first sought to assess which models would be most susceptible to gene-
selection biases in SL gold standard class labels. We trained our models
and PCA-gCMF on one cancer type based on one gold standard SL dataset
and tested on the same cancer type based on the other gold standard. We
first trained models based on the pairs in the ISLE gold standard and tested
them against the pairs in the DiscoverSL gold standard, using BRCA data.
Secondly, we trained the opposite scenario, this time using LUAD data.
The cancer types chosen were due to data restrictions and an intent to
have an adequate and equal number of class labels for training the models,
consistent with all the other experiments.

Our results show that logistic regression methods generalised better
than the random forest and PCA-gCMF methods in both cases (Fig. 8a
and 8b, Table 6). Our random forest models displayed a large difference in
performance when generalising between the two BRCA gold standards and
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(a) BRCA: Trained on ISLE,
Tested on DiscoverSL

(b) LUAD: Trained on DiscoverSL,
Tested on ISLE

(c) Gene Holdout

Fig. 8: ROC curves of models trained using one gold standard dataset and tested using the other gold standard dataset for BRCA (a) and LUAD (b). The
BRCA models was trained on ISLE and tested on DiscoverSL gold standards. The LUAD models were trained on DiscoverSL and tested on ISLE. The
curves are averaged over 10 runs. (c) Boxplots of AUROC for the gene holdout experiment (10 runs per boxplot). The y-axis denotes the AUROC value.
Categories on the x-axis denote one of three scenarios: for “None”, we only guaranteed that the training and test sets of gene pairs were disjoint; for
“Single”, only one of the genes out of every gene pair in the test set was present in the training set; and for “Double” neither gene of a gene pair in the
test set appeared in the training set.

the two LUAD gold standards. One possible explanation for our logistic
regression models’ superior abilities to generalise is their simpler linear
nature. By comparison, the complexity of the random forest model may
inform it’s tendency to overfit.

PCA-gCMF showed the largest difference in AUROC between the
BRCA and LUAD experiments (BRCA: 0.93, LUAD: 0.56), and
performed close to random on LUAD with a large standard deviation on
BRCA (0.07) across 10 runs. Interestingly for PCA-gCMF, the ISLE and
DiscoverSL gold standards possess similar characteristics to those of the
COAD and OV gold standards as described in Section 3.1. For the BRCA
data, 522 gene pairs out of the 907 in DiscoverSL contained genes which
also appeared in ISLE. This means that uniformly sampled train and test
sets would have a high probability of sharing genes, comparable to OV.
Conversely, DiscoverSL and ISLE LUAD gold standards only share 19
genes, each partaking in a single labelled gene pair. This would produce
train and test sets with little gene overlap, akin to COAD. Likewise, PCA-
gCMF displayed similar predictive patterns on these datasets: performing
very well on train and test sets with high gene overlap, and almost randomly
on sets where little overlap exists (Tables 4a and 6, Fig. 4, 8a and 8b). These
results supported our hypothesis that matrix factorisation techniques will
be less effective when predicting on previously genes with no a priori class
label information. We investigated this hypothesis using our gene holdout
experiments, which we detail in the following section.

PCA-gCMF fails to predict on gene-pairs with no a priori class labels
We conducted gene holdout experiments to investigate the effect of gene
selection bias on SL prediction performance. For this experiment, we
trained and tested our models and PCA-gCMF using the combined gold
standard pairs under three different scenarios. The first scenario involved
no explicit gene holdout, as per our original setup, where we only made
sure that there was no overlap between gene pairs in the training and test
sets. This scenario was our baseline for this experiment. For the second
scenario, referred to as single gene holdout or “Single”, we constructed
training and test sets such that every gene pair in the test set featured only
one of its genes in the training set. For the third scenario, referred to as

Trained on ISLE, Tested
on DiscoverSL (BRCA)

Trained on DiscoverSL,
Tested on ISLE (LUAD)

LR w/ L0 L2 .95 ± .02 .71 ± .02

LR w/ L1 L2 .95 ± .02 .71 ± .02

MUVR .95 ± .02 .6± .03

PCA-gCMF .93± .07 .56± .03

RRF .92± .03 .59± .02
Table 6. Average and standard-deviations of AUROC scores for each model
as follows: trained based on ISLE gold standard gene pairs and tested on
DiscoverSL gene pairs for BRCA; trained based on DiscoverSL gold standard
gene pairs and tested on ISLE gene pairs for LUAD.

double gene holdout or “Double”, we created training and test sets such that
all individual genes in the test set were absent from the training set. These
models were trained and tested on BRCA data only since all three machine
learning techniques performed well on BRCA under the first scenario of
no explicit gene holdout and the size of the BRCA datasets allowed us to
construct reasonably sized training and test sets under the given constraints
(see Section 2.8).

All models exhibited a baseline average AUROC in the range of
0.84 to 0.92 on BRCA, where PCA-gCMF achieved the highest average
performance, followed by our random forest models and then our logistic
regression models. Under the second scenario, we observed only a small
drop in performance and the ranked performance of the models was similar
to the first scenario with the exception of RRF. However, under the third
scenario, the average performance of PCA-gCMF dropped to that of a
random classifier, while other models still achieved an average AUROC ≈
0.72 (Fig. 8c). Recall our hypothesis that a matrix factorisation methods
would predict less effectively than classical machine learning models on
genes with no a priori class label information. The results from the gene-
holdout experiment partially agreed with this argument. The predictive
performance of PCA-gCMF remained higher than the other models in the
“Single” holdout scenario when the class labels for a single gene from
each pair in the test set was held out of the training data. Conversely,
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Experiment Training Set Test Set
Samples Genes Samples Genes

None 1252 799.3 536 395.8
Single 710 221.3 381.6 181.3
Double 707.2 121.5 160.4 65.3

Table 7. Average number of samples and unique genes in the training and test
sets used in the gene holdout experiment.

it fell to that of a random classifier for the ‘Double” holdout scenario,
when it predicted on pairs of genes where neither gene had class label
featured in the training data. The poor performance suggests that this
matrix factorisation approach goes beyond considering the structure of
the SL gold standard pairs to heavily relying on this structure for making
SL predictions. Our result could also indicate that the collective matrix
factorisation approach in PCA-gCMF is insufficiently leveraging relevant
information contained in the other four distinct feature matrices provided
as input.

Interestingly, we also noted that between the “Single” and “Double”
holdout scenarios, the performance and stability of all our models dropped.
This was despite both scenarios possessing a similar number of training
samples. However, the number of unique training genes is almost halved
between the two cases. A confounding factor here is the reduction in
test samples between the two scenarios, but this may indicate that gene
diversity may also have a part to play in generalisability of models to
new data (Table 7). These results should give researchers some pause
for thought to consider if their reported SL predictive performances are
overly optimistic, especially with regards to methods which employ matrix
factorisation.

3.5 Gene dependency-based features are most important

In our final analyses, we aimed to quantify the contribution of our features
to the overall predictive performance for our models. First, we discuss
the potential for multicollinearity to confound any resulting analyses. We
inspect our dataset for the presence of multicollinearity by calculating
variance inflation factors (VIF, refer to Section 2.7). We follow our
discussion on multicollinearity with a description of the FI scores for the
BRCA and LUAD cancer-specific models. To get meaningful insights on
feature importance (FI), the trained models should prove to be reasonably
accurate. Attempting to run permutation FI algorithms (see Section 2.7)
on inaccurate models could lead to results which vary greatly and can
not be treated as significant (Parr et al., 2018). Thus, OV and COAD
models are excluded due to their poor performances (Table 4a). Finally,
we assess the reliance of our models on gene dependency-based features.
We do this by training separate models on datasets which either include
or exclude these gene-dependency based features and comparing their
predictive performances. Finally, we analyse the feature importances for
these gene dependency-free models.

Multicollinearity may reduce the reliability of any FI metrics. For
example, random forest models can inflate the FI scores of correlated
variables when measured through permutation methods (Molnar, 2020).
To quantify its presence, we calculated VIF values for each feature in our
combined dataset (Table 8). We found that both the RNAi_dep_stat
and CRISPR_dep_stat features had VIF values of approximately five.
These features displayed a high correlation with one another, but the
linear models that produced these VIFs also suggested that these high-
VIF features were significantly multicollinear with other features. To
account for this, we first conducted FI analyses across the full feature
set. Afterwards, we removed these features and reassessed the models.

CRISPR_dep_stat, a feature quantifying the change in cell line
dependency on one gene given a mutation in the other, ranks highest in

Feature VIF Feature VIF
discoversl_mutex_amp 1.39 CRISPR_dep_stat 4.95
discover_mutex 1.04 gtex_corr 1.33
mutex_alt 1.38 gtex_corr.pvalue 1.07
RNAi_avg 2.22 tumour_corr 1.17
RNAi_cor_pvalue 1.01 tumour_corr.pvalue 1.05
RNAi_cor_stat 1.01 normal_corr 1.29
RNAi_dep_pvalue 1.11 normal_corr.pvalue 1.43
RNAi_dep_stat 4.92 diff_exp_logFC 1.02
CRISPR_avg 2.25 diff_exp_pvalue 1.07
CRISPR_cor_pvalue 1.00 pathway_coparticipation 1.01
CRISPR_cor_stat 1.00 logrank_pvals 1.35
CRISPR_dep_pvalue 1.14

Table 8. Variance inflation factors for each feature of the combined dataset. The
features in bold exhibited high multicollinearity.

all models for both BRCA and LUAD (Fig. 9, see Supplementary Figures
S8 and S9 for higher resolution). CRISPR_avg ranks second in most
models, consistently scoring above one in all of the LUAD models and
the BRCA random forest models. RNAi_avg, which is correlated with
CRISPR_avg, ranks second in the BRCA logistic regression models.
The rankings for the BRCA and LUAD logistic regression models seem
to suggest the data are linearly separable along the CRISPR_dep_stat
and RNAi_avg or CRISPR_avg features. The commonality between
these sparse BRCA and LUAD logistic regression models in ranking
CRISPR_dep_stat at the top may partially explain their ability to
generalise between these two cancer types (Fig. 5, top). These three
top features are all based on gene dependency scores and exhibit the
highest VIF values (Table 8). Conversely, metrics based on the correlations
between dependency scores are consistently shown to be unimportant
across models (Fig. 9). Considering our previous concerns regarding
multicollinearity, interpretability, and score inflation, we conducted an
additional experiment to assess the reliance of our models on gene
dependency-based features.

To evaluate the impact of excluding gene dependency-based features,
we trained and tested our models on BRCA or LUAD datasets which
either included the entire feature set or excluded the gene dependency-
based features. Overall, we find that excluding the gene dependency-based
features has a significant negative impact on predictive performance
across all models (Fig. 11). However, we also find that all models still
perform significantly better than that of a random classifier i.e. AUROC
> 0.5. Analysing the FI of these models using the permutation-based
approach leads to results with higher variability (Parr et al. (2018)),
but a few clear patterns do emerge. A measure of mutual exclusivity,
discover_mutex, appears to be important across all BRCA models
and LUAD logistic regression models (Fig. 10). Our mutual exclusivity
score, mutex_alt seems important to random forest BRCA models (Fig.
10a). Differential expression measures also rank highly across random
forest models, especially for LUAD, where they rank at the top and the
distributions of their scores are greater than one (Fig. 10). Finally, gene
coexpression in healthy tissue samples, gtex_corr, ranked highly for the
BRCA models, with almost the entire distributions of their feature scores
greater than one (Fig. 10a). Our results demonstrate that some features,
other than those based on gene dependency, do contain useful information.
They also reinforce our previous findings that gene dependency-based
features are the most important, as we see that all gene dependency-free
models perform worse than any model which includes these features (Fig.
11).



18 Colm Seale

(a) BRCA (b) LUAD

Fig. 9: Median FI scores for the BRCA (top) and LUAD (bottom) cancer-specific L0L2 and MUVR models trained. These were scored using 100
repetitions of the model agnostic permutation FI algorithm described in Section 2.7. The bars represent the distribution of scores between the lower and
upper 5% quantiles of importance values from the repetitions. See Supplementary Figures S8 and S9 for higher resolution images.

(a) BRCA (b) LUAD

Fig. 10: Median FI scores for the BRCA (top) and LUAD (bottom) cancer-specific L0L2 and MUVR models trained without gene dependency-based
features. These were scored using 100 repetitions of the model agnostic permutation FI algorithm described in Section 2.7. The bars represent the
distribution of scores between the lower and upper 5% quantiles of importance values from the repetitions. See Supplementary Figures S10 and S11 for
higher resolution images.
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Fig. 11: Distribution of AUROCs of the logistic regression and random
forest models trained on data sets with or without features based on gene
dependency scores over 10 runs (top: BRCA, bottom: LUAD). The y-axis
denotes the AUROC value. The models without gene dependency score
features are labelled “No Dep”.

4 Conclusion
Synthetic lethality is a promising concept in the field of personalised
medicine. SL provides researchers with a mechanism by which they can
selectively target tumour cells. However, in vitro identification of SL
interactions is laborious and expensive. Consequently, this impedes the
development of novel SL anti-cancer therapies. In silico prediction of SL
interactions could help to substantially improve the efficiency of these
efforts by focusing experimentation on the most promising gene pairs.
Machine learning provides an avenue by which we can tackle this in silico
SL prediction problem.

The aims of this research were twofold: (i) to introduce novel data
sources and features into a machine learning context and propose machine
learning models for in silico SL prediction in cancer-specific and pan-
cancer contexts; (ii) to examine the impact of cancer representation and
gene selection bias on SL model generalisation. Firstly, our research
illustrates the clear potential for including gene dependency- and mutation-
based features in SL prediction models for breast and lung cancer. Our
models were especially effective at ranking positive SL interactions
highly in their predictions compared to our selected baselines. Our
work also suggests that other proposed features, like those based on
molecular data from healthy tissue, contain useful information for SL
prediction. Secondly, based on our quantitative analysis of cross-cancer
model generalisation we can conclude that it is possible for models to
generalise cross-cancer but this ability to generalise cannot be assumed.
This is contrary to the pan-cancer approach proposed by Das et al.
(2019). From our analysis of biases in SL gold standard datasets, we
can conclude that: cancer representation bias does impact the predictive
performance of pan-cancer models, and can be mitigated through cancer
representation balancing; gene-selection bias in SL gold standards can
lead to an optimistic estimation of model performance. We can also
conclude that simpler logistic regression models are more sensitive to
cancer representation bias than their random forest counterparts, but are

less affected by gene selection biases and can generalise better across gold
standard datasets.

Compared with previous works on SL prediction, the evaluation of
our SL machine learning models offers several key differences. Uniquely
among studies in the field, we consider quantifying the predictive
performance at the top of our ranked results instead of summarising
over the whole results list using the “Average Precision@k” metric.
This intentionally mimics the intended use of these models in practical
applications as a precursor to in vitro experimentation. We argue that this
allows for a more realistic comparison between approaches in a single
study. However, as this value is dependent on the cut-off parameter k

and the proportion of positive classes in the test set, it is difficult to use
to compare across studies. We also put a much greater emphasis on the
generalisability of our methods to new data, lending greater fidelity to our
results and avoiding the pitfalls of over-estimating our models’ predictive
capabilities.

Limiting the generalisability of our results is the fact that we
simply demonstrate one example of both a linear and non-linear method
when conducting our experiments. Our choices, therefore, do not
comprehensively cover the families of linear and non-linear methods to
draw any broader conclusions about either family of classifiers. Similarly,
it is difficult to conclude that all methods based on matrix factorisation
techniques will suffer the same weakness with respect to gene-selection
bias as demonstrated by the matrix factorisation technique PCA-gCMF
that we used in our experiments. Therefore, expanding on the number of
approaches under examination per classification technique may permit us
to draw wider conclusions. Also, considering our pan- and cross-cancer
experiments, the fact that our cancer-specific models performed poorly on
colon and ovarian cancer data may also explain the drop in performance
when we train our pan-cancer models. It may be better to revisit these
pan-cancer experiments if further studies suggest differing SL predictors
correlate to good performances in different cancers. This could allow us to
more accurately gauge a pan-cancer model’s ability to learn cancer-specific
SL rules. Despite these limitations, we provide clear evidence for the
effectiveness of our breast and lung cancer models and the potential impacts
of cancer representation and gene selection bias on classifier performance
and evaluation. Based on our conclusions, we advocate that practitioners
should take care to consider cancer representation and gene selection bias
during the curation and construction of their train and test sets as to avoid
over-estimation of predictive performance.

Considering the broad scope of our work, there are numerous paths
left unexplored and areas that deserve deeper analysis. Future work could
focus on the gene dependency-based features which demonstrated high
importance for breast and lung cancer-specific models but were shown
to be ineffective for colon and ovarian. Further research is needed to
investigate the sensitivity of these features to the individual characteristics
of particular cancers, such as the prevalence of microsatellite instabilities
in colon cancer. Another interesting avenue could be to explore the
potential use of the raw gene dependency values as predictors in cancer-
specific models. Furthermore, our demonstration of the impact of cancer
representation bias could be valuable for future research into pan-cancer
SL predictive modelling. The successful development of such pan-cancer
models could allow for SL predictive capabilities to be extended to rarer
cancer types with insufficient available data for model training and testing.
Continuing our theme of SL model generalisation, a meta-analysis of the
current literature might indicate if the problem of cancer representation and
gene selection bias is widespread among SL predictive research. Finally,
we also identified gene diversity (the number of unique genes) within
SL gold standard datasets as a possible issue which could affect model
generalisation and deserves further examination.
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1 Supplementary Figures

1.1 Counts of gene occurrence per cancer type in combined gold standard

Figure S1: Counts of the number of occurrences of each gene in a labelled synthetic lethal pair in our combined
gold standard dataset, separated per cancer type. BRCA has 1072 unique genes, LUAD has 804, COAD has
1560 and OV has 83. Due to resolution, COAD is not clear, but only 5 genes are featured more than 3 times,
and only 105 genes out of 1560 genes are featured more than 1 time. For our OV gold standard labels, we can
see that every gene is featured in multiple labelled gene pairs. Note the different scales for the y-axis.
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1.2 Number of mutations per gene-pair per cancer type in combined gold standard

Figure S2: Counts of the maximum number of mutations between two genes of any gene pair in the CCLE
cell-lines in our labelled datasets. The x-axis is the maximum number of mutations present between either gene
in a pair, ranging from 0 to 10+. The y-axis is the counts for the number of gene pairs. Note the different
scales for the y-axis.
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1.3 Adjacency matrix dot plots stratified per dataset

(a) BRCA (b) LUAD

Figure S3: Dot plot showing labelled gene pairs from BRCA(a) and LUAD(b) data from both the ISLE and
DiscoverSL dataset. The x-axis and y-axis are the unique genes. Each dot represents a gene pair where a label
exists in either the ISLE (red), DiscoverSL (black), or both (blue) datasets. Whitespace represents gene pairs
which are unknown to either dataset.
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1.4 Adjacency matrix dot plots stratified per cancer type

Figure S4: Dot plot showing labelled gene pairs from BRCA, COAD, LUAD, and OV cancer types in the
combined dataset. The x-axis and y-axes are the unique genes per cancer type gene pairs. Each dot represents
a gene pair where a positive (blue) or negative (red) label exists. Whitespace represents gene pairs with no
labels.
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1.5 Cross-cancer heatmap of predictive performance

Figure S5: Heatmaps of average AUROC performances for the L0L2 (top-left), Elastic Net (top-right), MUVR
(bottom-left), and RRF models (bottom-right) over 10 runs. On the y-axis is the cancer type that each model
was trained on. On the x-axis is the cancer that each model was tested against.
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1.6 Leave-one-cancer-out heatmap of predictive performance

Figure S6: Heatmaps of average AUROC performances for L0L2 (top-left), Elastic Net (top-right), MUVR
(bottom-left), and RRF models (bottom-right) over 10 runs. On the x-axis is each cancer type that was held
out for testing. The models were trained on a balanced dataset of all other cancers.
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1.7 Pearson’s correlation between features in combined dataset

Figure S7: Heatmap of Pearson’s correlation coefficient between features from the combined dataset.
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1.8 Median feature importance scores for the BRCA one-cancer models

Figure S8: Median feature importance scores for the BRCA one-cancer models.These were scored using 100
repetitions of the model agnostic permutation feature importance algorithm. The bars represent the distribution
of scores between the lower and upper 5% quantiles of importance values from the repetitions.
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1.9 Median feature importance scores for the LUAD one-cancer models

Figure S9: Median feature importance scores for the LUAD one-cancer models.These were scored using 100
repetitions of the model agnostic permutation feature importance algorithm. The bars represent the distribution
of scores between the lower and upper 5% quantiles of importance values from the repetitions.

11



1.10 Median feature importance scores for the BRCA models trained without
gene dependency-based features

Figure S10: Median feature importance scores for the BRCA models trained without gene dependency-based
features. These were scored using 100 repetitions of the model agnostic permutation feature importance algo-
rithm. The bars represent the distribution of scores between the lower and upper 5% quantiles of importance
values from the repetitions..
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1.11 Median feature importance scores for the LUAD models trained without
gene dependency-based features

Figure S11: Median feature importance scores for the LUAD models trained without gene dependency-based
features. These were scored using 100 repetitions of the model agnostic permutation feature importance algo-
rithm. The bars represent the distribution of scores between the lower and upper 5% quantiles of importance
values from the repetitions..
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1.12 L0L2 regularisation per cancer type

(a) BRCA (b) COAD

(c) LUAD (d) OV

Figure S12: L0L2 Cross Validation and Regularisation. Mean logistic loss values of the optimised local search
cross validation results across each of the 10 folds across all 10 cross-validation runs for each cancer type. See
Section 2.5. L0Learn implements gamma (x-axis) and lambda (y-axis) parameters control the regularisation.
Deeper red values indicate lower mean logistic loss for that combination of gamma and lambda. Please refer
to Section 2.4 for a theoretical description of the Elastic Net model. With respect to the Eq. 6, λ0 = lambda,
λ2 = gamma. L0Learn uses a local search algorithm to find the optimal values for lambda, the use specifies a
grid of gamma values.
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1.13 Elastic Net regularisation per cancer type

(a) BRCA (b) COAD

(c) LUAD (d) OV

Figure S13: Elastic Net Cross Validation and Regularisation. Mean AUROC grid search cross validation results
across each of the 10 folds across all 10 cross-validation runs for each cancer type. See Section 2.5 in the main
text. Glmnet implements alpha (x-axis) and lambda (y-axis) parameters control the regularisation. Deeper
red values indicate higher mean AUROC for that combination of alpha and lambda. Please refer to Section
2.4 for a theoretical description of the Elastic Net model. With respect to the Eq. 7, λ1 = lambda × alpha,
λ2 = lambda×(1−alpha). The alpha parameters controls the smooth switching from lasso regression (alpha=1)
to ridge regression (alpha=0). The lamdba parameter controls the strength of the regularisation.
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1.14 Regularised Random Forest regularisation per cancer type

(a) BRCA (b) COAD

(c) LUAD (d) OV

Figure S14: RRF Cross Validation and Regularisation. Mean AUROC grid search cross validation results across
each of the 10 folds across all 10 cross-validation runs for each cancer type. See Section 2.5 in the main text.
Caret implements mtry (x-axis) and coefReg (y-axis) parameters control the regularisation. Deeper red values
indicate higher mean AUROC for that combination of coefReg and mtry. Please refer to Section 2.4 for a
theoretical description of RRF.
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2 Supplementary Tables

2.1 Cross-cancer experiment results

BRCA COAD LUAD OV
BRCA .82 ± 0.01 .41 ± 0.04 .69 ± 0.04 .32 ± 0.13
COAD .5 ± 0.01 .6 ± 0.03 .52 ± 0.01 .48 ± 0.01
LUAD .79 ± 0.01 .35 ± 0.07 .86 ± 0.02 .28 ± 0.12
OV .43 ± 0.01 .51 ± 0.02 .46 ± 0.03 .59 ± 0.06

(a) L0L2

BRCA COAD LUAD OV
BRCA .82 ± 0.01 .43 ± 0.02 .71 ± 0.03 .38 ± 0.11
COAD .5 ± 0.01 .6 ± 0.02 .52 ± 0.01 .47 ± 0.02
LUAD .8 ± 0.01 .38 ± 0.04 .86 ± 0.02 .32 ± 0.11
OV .43 ± 0.02 .53 ± 0.01 .45 ± 0.03 .6 ± 0.07

(b) Elastic Net

BRCA COAD LUAD OV
BRCA .86 ± 0.01 .53 ± 0.02 .53 ± 0.02 .37 ± 0.04
COAD .5 ± 0.01 .64 ± 0.01 .51 ± 0.01 .56 ± 0.02
LUAD .73 ± 0.02 .54 ± 0.02 .87 ± 0.02 .39 ± 0.05
OV .43 ± 0.02 .52 ± 0.02 .51 ± 0.02 .58 ± 0.06

(c) MUVR

BRCA COAD LUAD OV
BRCA .85 ± 0.01 .53 ± 0.02 .46 ± 0.03 .38 ± 0.05
COAD .49 ± 0.01 .63 ± 0.02 .49 ± 0.02 .56 ± 0.02
LUAD .72 ± 0.02 .47 ± 0.04 .87 ± 0.02 .39 ± 0.05
OV .46 ± 0.02 .54 ± 0.02 .49 ± 0.03 .58 ± 0.08

(d) RRF

Table S1: AUROC estimates for the single-cancer models trained against a single cancer type (left) and tested
against another (top). Mean and standard deviation of 10 repetitions.
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2.2 Leave-one-cancer-out experiment results

AUROC
BRCA 0.69 ± 0.03
COAD 0.5 ± 0.02
LUAD 0.79 ± 0.01
OV 0.48 ± 0.01

(a) L0L2

AUROC
BRCA 0.67 ± 0.02
COAD 0.5 ± 0.02
LUAD 0.78 ± 0.01
OV 0.45 ± 0.02

(b) Elastic Net

AUROC
BRCA 0.52 ± 0.04
COAD 0.53 ± 0.01
LUAD 0.72 ± 0.02
OV 0.49 ± 0.02

(c) MUVR

AUROC
BRCA 0.49 ± 0.04
COAD 0.53 ± 0.01
LUAD 0.72 ± 0.02
OV 0.51 ± 0.02

(d) RRF

Table S2: AUROC estimates for all models. Mean and standard deviation of 10 repetitions. In the left column
is each cancer type that was held out for testing. The models were trained on a balanced dataset of all other
cancers.
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2.3 Gene holdout experiment results

Model None Single Double
Elastic Net 0.84 ± 0.01 0.81 ± 0.02 0.71 ± 0.1
L0L2 0.84 ± 0.01 0.81 ± 0.02 0.74 ± 0.08
MUVR 0.86 ± 0.01 0.84 ± 0.02 0.72 ± 0.11
pca-gCMF 0.92 ± 0.01 0.87 ± 0.01 0.5 ± 0.04
Random Forest 0.86 ± 0.01 0.83 ± 0.02 0.72 ± 0.11

Table S3: AUROC estimates for each model trained under 3 conditions. Mean and standard deviation of 10
repetitions. Columns denote one of three scenarios: for “None”, we only guaranteed that the training and test
sets of gene pairs were disjoint; for “Single”, only one of the genes out of every gene pair in the test set was
present in the training set; and for “Double” neither gene of a gene pair in the test set appeared in the training
set.
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2.4 No gene dependency feature experiment results

Model AUC
Elastic Net (No Dependencies) 0.67 ± 0.02
Elastic Net 0.83 ± 0.01
L0L2 (No Dependencies) 0.68 ± 0.02
L0L2 0.83 ± 0.01
Random Forest (No Dependencies) 0.76 ± 0.02
Random Forest 0.86 ± 0.01
MUVR (No Dependencies) 0.7 ± 0.05
MUVR 0.86 ± 0.02

(a) BRCA

Model AUC
Elastic Net (No Dependencies) 0.64 ± 0.02
Elastic Net 0.84 ± 0.01
L0L2 (No Dependencies) 0.64 ± 0.03
L0L2 0.84 ± 0.01
Random Forest (No Dependencies) 0.76 ± 0.02
Random Forest 0.85 ± 0.02
MUVR (No Dependencies) 0.74 ± 0.02
MUVR 0.85 ± 0.02

(b) LUAD

Table S4: AUROC estimates for the one-cancer models that both do and do not include dependency score based
features, trained and tested on BRCA and LUAD separately. Mean and standard deviation of 10 repetitions.
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