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Abstract

Solar energy is an important renewable energy source that is already generated by millions of
solar panels attached to building roofs throughout The Netherlands. Whether a roof is suitable
for solar panels relies on its type, orientation and whether it is put in shadow by a neighbouring
object. This means, the higher the solar potential of a roof, the better.

A solar radiation model is used to determine the solar potential of a roof. Well-known Geo-
graphical Information Systems, such as ArcGIS and GRASS GIS provide solar radiation mod-
els for raster data. However, raster data does not model the 3D urban environment accurate
enough. Vector data is better capable of representing 3D buildings models, but solar radia-
tion models for vector data are not widespread available and are computationally inefficient,
because of the shadow casting step.

This research aims at providing an efficient solar radiation model for processing large-scale 3D
city models. The 3D BAG data set, containing all the buildings in The Netherlands as vector
data, is taken as use case. Their building models are stored in CityJSON format, subdivided
into smaller tiles based on the spatial extent. The implemented model in this research, called
SolarBAG, takes one or multiple tiles as input, processes the building geometries to compute
the solar potential, and outputs an enriched CityJSON file where each building roof consists of
yearly solar potential values. Within the process, the building geometries are stored in an R-
tree to allow fast retrieval when filtering neighbouring buildings that potentially cast a shadow
over another building. The roofs of buildings are sampled into a grid of points to account
for the variable solar radiation values on a roof surface caused by shadows of neighbouring
buildings. A ray-box intersection method is used to find the neighbouring buildings casting a
shadow on another building.

To assess the quality and scalability of the implemented solar radiation method, experiments
are conducted. For the quality assessment, the solarpy module used to compute the beam so-
lar radiation, is compared to ground truth values, and the solar radiation model is compared
to the solar radiation tool in ArcGIS. For the scalability assessment, the solar radiation model is
tested for an increasing number of tiles. Based on the assessments, it can be concluded that the
implemented solar radiation model can successfully enrich building roofs with solar potential
values for one or multiple CityJSON files. However, there are still some bugs and inconsis-
tencies present in the solar radiation model, and performance gains could still be achieved by
neighbour filtering improvements.
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1. Introduction

Solar energy is the sustainable and renewable energy source with the most promising future
prospects to meet global energy demand [Kabir et al., 2018]. Attaching solar panels to building
roofs is one such way to generate solar energy and is already being applied extensively in
practice. In fact, in The Netherlands, 18.8% of the buildings have already solar panels installed
on their roofs by May 2022 [van Groesen, 2022]. This means almost 3 million buildings, which
is almost 2.5 times as much as 5 years ago, as seen in the graph in Figure 1.1.

Figure 1.1.: Graph showing the growth in the amount of buildings with solar panels installed
in The Netherlands from 2017 until 2021. Data from Kerkhof [2022].

Whether individual roofs of buildings are suitable for solar panels depends on various factors,
such as the type of the roof [Song et al., 2018], the orientation of the roof surface, and whether
the roof’s visibility by the sun is obstructed by another object, for instance a building or a tree
[Fu and Rich, 2002]. So, correctly oriented building roofs are ideal locations for solar panels
because the generated energy can directly be applied to the household or company and as roofs
are elevated, they have a higher chance of avoiding shadows cast on the panels than locations
on ground-level. Facades of buildings can also be suitable locations for solar panels. Although
they generate less solar energy than roofs, the area to attach solar panels onto is larger, yielding
sufficient solar energy [Jaugsch and Löwner, 2016].

To determine the solar potential of a building one can manually utilise solar radiation sen-
sors1 such as a pyranometer or a pyrheliometer to gather raw solar radiation values for the
actual building. However, for large areas it is much more efficient to automate this process
and use a solar irradiance model to determine the solar potential of buildings. Modules of

1https://www.hukseflux.com/products/pyranometers-solar-radiation-sensors
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1. Introduction

well-known Geographical Information System (GIS) packages such as Solar Radiation Tools in
ArcGIS [ArcGIS, 2016b] and r.sun in GRASS GIS [Hofierka and Suri, 2007] offer solid and fast
solar irradiance modelling tools for raster data like a Digital Elevation Model (DEM). However,
raster data does not model the 3D urban environment accurate enough. This is specifically
noticeable for vertical surfaces such as facades, as a DEM models the environment in at most
2.5D [Redweik et al., 2012]. Another downside is that raster data with a low resolution causes
a loss of information and raster data with a high resolution takes more time to process.

To capture the 3D urban environment with more spatial detail, buildings can be stored as
vector data. As a benefit, vector data needs less computer memory than raster data. Moreover,
vector data is more versatile than raster data and it is built up of geometric primitives like
polygons and lines making vector data suitable to accurately represent 3D building meshes.
However, techniques that take only 3D vector data as input for solar irradiation modelling
are not widely implemented or available yet. The ones that are described or implemented
are mostly applied to small scale data sets and are generally not fast enough for large scale
data sets [Hofierka and Zlocha, 2012; Liang et al., 2015; Wieland et al., 2015]. This is mostly
due to the necessary and computational-intensive shadow casting step to determine whether
neighbouring objects such as trees or buildings are blocking the sun rays and therefore casting
a shadow on another building as shown in Figure 1.2. Shadow casting is an important topic in
this research and will be elaborated on in Sections 2.4 and 4.2.2.

Figure 1.2.: The principle of shadow casting in an urban environment. Adapted figure from
Desthieux et al. [2018].

Nowadays, more and more 3D city models are openly available. An example of this is the
massive 3D model of all the buildings in The Netherlands [Peters et al., 2022]. It is openly
available as the data set 3D BAG2, where BAG is an abbreviation for ’Basisregistratie Adressen
en Gebouwen’, meaning Register of Buildings and Addresses. This data set contains a 3D
representation of all the buildings as vector data in a LoD of at most 2.2, which includes wall
surfaces and sloped roof surfaces. The buildings are stored into squared tiles covering smaller
geographic areas.

2https://3dbag.nl/en/viewer
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1.1. Research objectives

1.1. Research objectives

The main objective of this research is to develop a methodology to compute the solar potential
of buildings in large 3D city models, such as 3D BAG, efficiently in terms of performance and
memory usage. The accompanying main question is:

How can the solar potential of vector buildings in large 3D city models, such as the 3D BAG data set,
be computed efficiently?

Sub-questions to help answering the main questions are:

• How can spatial indexing be used to speed up shadow casting computations on the 3D BAG vector
data set?

• What simplifications in the solar irradiation model can be applied?

• How can the solar irradiation model be implemented in Python by using open source libraries and
open data?

• How should the computer memory be managed while processing the buildings stored in tiles in
the 3D BAG data set?

1.2. Scope and goal

The goal of this research is to implement a computationally efficient methodology to compute
the solar potential for buildings in large 3D city models by taking the 3D BAG data set as a
use case. As previously mentioned, determining whether a building roof is put into shadow
by neighbouring objects, is a computational-intensive process. Together with the fact that the
3D BAG data set is a large vector data set, a trade-off between computational efficiency and
accurate solar potential values is inevitable.

The scope of this thesis is as follows.

• The solar potential will only be computed for roof surfaces as these are in general more
suitable for solar panel installation than wall surfaces;

• Only the direct component of the solar radiation will be computed as this component
accounts for the largest percentage of solar radiation emitted. Diffuse and reflected radi-
ation are out of scope for this research;

• To determine whether a building roof is put into shadow by neighbouring objects, only
buildings from within the 3D BAG data set are taken into consideration as these neigh-
bouring objects. Trees and other street furniture are out of scope for this research;

• For the computation of the solar radiation on roof surfaces, an existing Python library is
used;

• Only a couple of tiles from the 3D BAG data set are used in experiments to assess the
quality and scalability of the implemented system. Running the system for the whole of
The Netherlands is out of scope for this research.

3



1. Introduction

As limited by the scope of this research, the solar potential values computed for the building
roofs in the 3D BAG data set serve as an indication to determine which building roofs have
the highest potential to install solar panels. As the solar radiation is based on the direct com-
ponent only, the determination of shadows is an important factor influencing solar radiation.
To actually install solar panels on these roofs, the computation of diffuse radiation, further site
investigation and power yield processing is necessary. Solar energy needs to be converted to
other forms to make it suitable for household appliances. This conversion is also out of scope
for this research.

1.3. Reading guide

The report is structured as follows. Chapter 2 explains the most import theory as a background
for the rest of the report. Chapter 3 gives an overview of the relevant related work in the field
of solar radiation. Chapter 4 presents the methodology and argues its design choices. Chapter
5 lists the tools and data sets used in this research, and provides the implementation of the pro-
posed methodology. Chapter 6 shows the general results and the results for the experiments
on quality assessment and scalability assessment. Chapter 7 concludes the thesis by discussing
the limitations of the research, answering the research questions and giving recommendations
on future work.
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2. Theoretical background

To get a better understanding of the theoretical background needed for this research, this chap-
ter illustrates the most important concepts and techniques.

2.1. Solar radiation

Solar radiation is the general term referring to electromagnetic radiation emitted by the sun,
simply known as sunlight. In the scientific field of solar radiation various terms and definitions
for solar radiation exist. Duffie and Beckman [2013] list several useful definitions of which
these are relevant for this research:
Solar irradiance is ”the rate at which radiant energy is incident on a surface per unit area of
surface”, measured in unit W/m2.
Solar irradiation is the solar irradiance per unit area on a surface, which is found by integrating
solar irradiance over a specified time period, for instance an hour or a day, measured in unit
J/m2.

Nowadays, solar irradiation is also represented in watt-hour with unit Wh/m2 instead of Joule
with unit J/m2. In theory 1W is equal to 1J/s [Stouch Lighting Staff, 2015]. This means that
integrating the solar energy over one hour (3600 seconds) results in 1Wh = 3600J. So, J/m2

refers to solar irradiation per second, while Wh/m2 refers to solar irradiation per hour.

Throughout this research, the various terms for solar radiation are used interchangeably. These
are solar radiation, solar irradiation and solar potential. In general, they all refer to the same
concept unless stated otherwise. In Chapter 3, existing solar radiation models that take the
theory presented in this section into practice, are discussed.

2.1.1. Types

Solar radiation can be distinguished by several types. The important ones are:

1. Direct radiation

2. Diffuse radiation

3. Reflected radiation

4. Global radiation

The direct radiation, also called beam radiation, is the solar radiation received directly from the
sun without being scattered by particles in the atmosphere. On the contrary, diffuse radiation
is the solar radiation received indirectly from the sun as its direction is changed by particles in
the atmosphere. Reflected radiation is the solar radiation received indirectly from the sun after
it is being reflected by a surface such as a window or the ground. Global radiation is the sum
of the direct, diffuse and reflected radiation. The various types of solar radiation are shown in
Figure 2.1.

5



2. Theoretical background

Figure 2.1.: Various types of solar radiation. Figure from Souza et al. [2019].

Under a standard clear sky (without clouds), direct radiation accounts for 77% of the global
radiation and the other 23% is accounted by diffuse radiation. When the sky is overcast (only
clouds), the global radiation is only diffuse [Spitters et al., 1986]. The proportion of reflected
radiation to global radiation is so small that it can be neglected.

2.1.2. Factors influencing solar radiation

In order to compute the solar radiation for a whole region or a building roof, one needs to
take into account several factors that influence the solar radiation [U.S. Department of Energy,
2022]. The important factors to consider are:

• Latitude;

• Date and time;

• Orientation of the surface;

• Potential obstructions (causing shadows);

• Height;

• Weather and atmospheric conditions.
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2.1. Solar radiation

As example to explain these factors, imagine a building with a sloped roof surface located in
Delft such as shown in Figure 2.2. The latitude determines the north-south position of the roof
surface on the earth. Latitude is specified by an angle ranging from 0◦ at the equator to 90◦

at the poles. In Delft, for instance, the latitude is approximately 52◦N. During the day, the
position of the sun in the sky changes. This has as effect that the sun strikes the surface of
the earth at different angles. At sun rise and sun set, when the sun is just above the horizon,
this angle is 0◦ and during the day this angle might increase to maximal 90◦ depending on the
latitude and time of the year. At 90◦ the sun is directly overhead striking vertical rays at the
earth’s surface, generating the most solar energy possible. At lower angles, the rays are more
slanted meaning that they need to travel longer to hit a surface resulting in a lower generation
of solar energy. For Delft, the angle at which the sun strikes the earth is higher on days in
the summer than on days in the winter, meaning that solar energy is more effective in the
summer.

Figure 2.2.: Building with a sloped roof surface

The orientation of the roof surface is a very important factor influencing solar radiation. For
locations in the northern hemisphere, the sun rises in the east and turns via the south to eventu-
ally set in the west. This means that surfaces oriented to the south receive more solar radiation
than surfaces oriented to the north as the angle of incidence between the sun ray and the roof
surface is higher for surfaces oriented to the north than for surfaces oriented to the south. The
lower the angle of incidence, the more sunlight is hitting the roof surface as the projected area
orthogonal to the incoming sunlight is larger [Rudisill, 2010]. When the roof surface is perpen-
dicular (90◦) to the sun ray, it receives the most solar radiation possible as the projected area
orthogonal to the incoming sunlight is the largest possible. This is shown in Figure 2.3. Poten-
tial obstructions such as neighbouring buildings or trees might cast shadows on the building
reducing the solar radiation.

Another factor determining the solar energy is the height value. The higher in the atmosphere,
the thinner the atmosphere will be. This has as effect that less solar energy is absorbed higher
in the atmosphere than near the surface of the earth. At building level, the height values does
not significantly influence the solar potential for roof surfaces. Other atmospheric conditions
affecting solar energy are the particles such as dust or rain droplets in clouds. These factors
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Figure 2.3.: Incidence Angle Effect where the incidence angle is denoted by qi. Figure from
Rudisill [2010].

reduce the solar energy generated by direct radiation, but increase the solar energy generated
by diffuse radiation. In Figure 2.4 the so called ’Earth’s Energy Budget’ is shown, illustrating
how much energy is being received by the Earth and how much energy is reflected or radiates
back to space.

Figure 2.4.: Influence of the height in the atmosphere on the solar energy. Figure from NASA.

2.2. Spatial indexing

Spatial indexing is an optimisation technique by which a list of spatial elements, such as ge-
ometries, are stored in such a way that these can be requested efficiently by using spatial
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queries. The performance gain is achieved by the fact that not the whole list needs to be tra-
versed when looking for the requested geometry. Instead, the data can be directly accessed
from memory. In most cases, a hierarchical tree structure is used to store spatially referenced
bounding boxes containing a selection of geometries. When querying such a tree, first the
bounding box containing the geometry is selected after which it is traversed to find the re-
quested geometry. This means that the traversal of the other bounding boxes can be skipped,
saving a lot of processing time. Van Oosterom [1999] explains the importance of spatial access
methods which includes spatial indexing and discusses a few types.

Common spatial indexing structures are Bounding Volume Hierarchy (BVH), kd-tree and R-
tree. For the R-tree several variants exist such as the Hilbert R-tree, R+ tree and R*-tree. The
R-tree is the most popular structure for spatial indexing [Güting and Schneider, 2005]. In an
R-tree, the spatial objects are wrapped in bounding boxes and are grouped in MBRs as shown
in Figure 2.5. The root node of the tree contains MBRs A to C. A level lower, the nodes contain
the bounding boxes of spatial objects within each MBR.

Figure 2.5.: Example of spatial data with their own bounding boxes (D - M) and grouped MBRs
(A - C) in (a). The corresponding R-tree is shown in (b). Figure from Mon and Than [2015]

R+ tree is a variant on the R-tree. In order to convert the example in Figure 2.5 to an R+ tree, the
nodes of the MBRs would store references to all the bounding boxes contained within the MBR.
This would mean that a reference to H would also occur in MBR A and C, and a reference to
G and M would also occur in MBR B. This allows more efficient querying at the cost of storage
memory as duplicate bounding boxes might exist between nodes. The R*-tree variant uses a
different insert algorithm with as goal to minimise the the amount of duplicates between the
nodes to make the nodes as square as possible [Van Oosterom, 1999].
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2.3. Multiprocessing

Multiprocessing refers to the usage of two or multiple Central Processing Units (CPUs) on a
single computer. This is beneficial for processing times as the processing operations are spread
across the CPUs. There exist various ways to implement multiprocessing. The two most impor-
tant types are multiprocessing and multithreading. With multiprocessing multiple processors
are run concurrently, while for multithreading multiple threads on the same processor are run
concurrently [Wong, 2022]. The difference is shown in Figure 2.6.

Figure 2.6.: Multiprocessing versus multithreading. Figure from Wong [2022]

2.4. Ray tracing & intersection detection

In computer graphics, ray tracing is the technique used to render 3D objects in scenes while
taking lightning, surface types, orientation and reflections into consideration. Intersection de-
tection is part of ray tracing, where it is determined whether a ray cast from a source to an
object is intersected by another object in the scene. A technique to do this is ray-box intersec-
tion [Majercik et al., 2018], shown in Figure 2.7. In this case, a ray is cast from a position on
the building (the origin ’or’) to the sun as light source (the destination ’D’). In between, the
ray intersects another object. The goal of intersection detection in this research is to find out
whether buildings are put into shadow by neighbouring objects.

Figure 2.7.: Ray-box intersection
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2.5. Storage of 3D city models

3D city models could be stored in various formats. They can be stored in CityGML and CityJ-
SON format, but they can also be stored and processed in a geospatial DBMS, such as 3DCi-
tyDB.

CityGML is an exchange format to store 3D city models. It is also a data model and it is
standardised by the Open Geospatial Consortium (OGC) [OGC, 2012]. It covers common 3D
objects found in cities, such as buildings, roads, vegetation and bridges. As stated by Ledoux
et al. [2019], CityGML is not user-friendly as there are no easy ways to read and write CityGML
files. Therefore, CityJSON was developed.

CityJSON is presented as ”a compact and easy-to-use encoding of the CityGML data model”
[Ledoux et al., 2019]. In the CityJSON format, city models containing building models can
be efficiently stored. Extracting data from this format is easy as the contents are stored as
JavaScript Object Notation (JSON) objects instead of hierarchical Extensible Markup Language
(XML) encodings. Furthermore, CityJSON files are 6x more compact than CityGML files and
they support semantic surfaces.

Another encoding of CityGML is 3DCityDB. It is a free spatial database solution in which 3D
city models based on CityGML can be managed, analysed and visualised [Yao et al., 2018]. It
is seen as an alternative to GISS when used for large data sets.
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3. Related work

When presenting the existing methods for computing the solar irradiation of a building roof,
one can distinguish the methods on its input data type, namely raster and vector data. These
data types both need a different approach when computing solar irradiation. Figure 3.1 shows
a rasterisation of a vector polygon. It clearly shows that a smaller cell size results in a higher
resolution raster and a larger cell size results in a lower resolution raster. A high resolution
raster has more spatial detail, but takes more time to process than a low resolution raster.
Vector data does not have a resolution, but models the polygon with geometric primitives
such as lines and points without loss of spatial information.

Figure 3.1.: Relation of cell size to resolution. Figure from [Alexandre, 2018]

Table 3.1 gives an overview of some of the existing tools and methods for solar irradiation
modelling addressed for this research. For each tool or method it states the publication year,
the type of input data for the solar irradiation method, a key feature and the citation. The
entries are first ordered on type (raster, vector, other) and then ordered on year. Freitas et al.
[2015] also performed a state-of-the-art review of available solar radiation models.

3.1. Raster methods

One of the first solar irradiation models was SolarFlux [Hetrick et al., 1993]. This method used
simple formulas and was unfortunately not suitable for large area raster maps.

A first approach in implementing solar irradiation models with faster speeds, higher accuracy
and open source availability was done by Fu and Rich [2002]. They created the tool called Solar
Analyst, which is still implemented, although improved, within the ArcGIS software package.
Their method takes the topography, elevation and surface orientation of a DEM into account.
Obstructions by surrounding topographic features, like hills and trees are also considered, by
using a hemispherical viewshed algorithm.
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Tool/Method Year Type Key feature(s) References
SolarFlux 1993 Raster One of the first tools Hetrick et al. [1993]
Solar Analyst 2000 Raster Widely used, reliable Fu and Rich [2002]
GRASS GIS r.sun 2002 Raster Widely used, reliable Hofierka and Ri [2002];

Hofierka and Suri [2007]
Solar Potential on
multiple building
rooftops

2013 Raster Uses Solar Analyst. Com-
bines high-resolution DEM
with upward-looking hemi-
spherical viewshed

Kodysh et al. [2013]

Solar Potential
Remote Sensed
Rooftops

2018 Raster Takes variable rooftops into
account

Song et al. [2018]

GPU-Enabled
Shadow Casting
(Geneva)

2020 Raster Computationally efficient for
high resolution, but shadow
casting for rasters

Stendardo et al. [2020]

v.sun 2012 Vector to
voxel

Vector-voxel approach, lacks
benchmarking

Hofierka and Zlocha
[2012]

SORAM 2013 Vector Focused on diffuse radiation Erdélyi et al. [2014]
Solar3DCity 2015 Vector About error propagation,

takes CityGML as input but
does not consider shadows

Biljecki et al. [2015]

Solar radiation
on CityGML
building data

2015 Vector Takes CityGML as input,
does consider shadows.
Uses point sampling on the
surfaces

Wieland et al. [2015]

SURFSUN3D 2015 Vector to
raster

Rasterises 3D triangular
meshes, but not fast enough
for higher LoD

Liang et al. [2014, 2015]

Sparse Voxel Oc-
tree (SVO)

2017 Vector to
voxel

Extension of SURFSUN3D,
sparsely voxelises the 3D tri-
angular meshes in an octree

Liang and Gong [2017]

Skyline-based
method

2019 Vector Computes SVF and SCF. Also
uses the GPU to speed up

Calcabrini et al. [2019]

3D shadow cast
vector-based
model

2020 Vector Accurate; different projection
techniques used based on the
tilt of the surfaces

Viana-Fons et al. [2020]

3D Solar Photo-
voltaic Potential
Mapping in Ur-
ban Environment

2021 Vector Follow-up on Viana-Fons
et al. [2020] by applying the
skyline-based method on a
use case

Zhou et al. [2021]

Vertical 3D walls 2016 Raster to
3D points

Uses observer point columns
to efficiently ray cast 3D ver-
tical walls

Jaugsch and Löwner
[2016]

Solar3D 2020 OAP3D Very accurate, it uses the
cube mapping technique on
3D photographs of buildings

Liang et al. [2020]

Table 3.1.: Overview of various solar radiation modelling tools or methods
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The resulting insolation maps include both direct and diffuse radiation. Their resolution back
then was 30 meter, which is quite low for building roofs but sufficient for large geographic
areas. This work is a good starting point for solar irradiation studies and is therefore cited a
lot by other authors as well.

A more recent methodology utilising the Solar Analyst tool as described by Kodysh et al. [2013]
also makes use of a hemispherical viewshed. It is raster-based and has a resolution of less than
1 meter, which is necessary to capture all features of a roof. A similar tool as the Solar Analyst
was implemented for GRASS GIS, called r.sun [Hofierka and Ri, 2002; Hofierka and Suri, 2007].
It is also raster-based and widely used nowadays with reliable accuracy.

The way these tools work to compute the solar irradiation for specific buildings is to combine
the raster data set with a 2D vector data set of the building footprints. The building footprints
are then used as a mask laid over the pixels in the raster data set. Only these pixels are taken
into consideration when computing solar irradiation values for the building roofs. As one can
imagine, the higher the resolution of the raster grid, the better the geometry of the building
roofs can be represented.

The work by Song et al. [2018] focuses more on the various shapes of the rooftops. It states that
the solar potential differs per rooftop type and it selects the most suitable roof types to use for
solar irradiation computations based on some filters. Stendardo et al. [2020] incorporate the
Graphics Processing Unit (GPU) to speed up the shadow casting algorithm.

3.2. Vector methods

Vector data is more accurate than raster data as it is built up of geometric primitives such as
polygons and lines, representing the 3D environment with more spatial detail. This makes
modelling of for instance vertical facades easier. Moreover, vector data is more efficient to
store in computer memory than raster data. However, raster data is simpler and faster to use
as the resolution can be determined beforehand. Therefore, the challenge is to find a way to
process the vector data computationally efficient to incorporate the higher spatial detail into
the resulting solar potential of the individual 3D buildings.

An early approach in using 3D vector data in complex urban environments as input for solar
irradiation computations is described by Hofierka and Zlocha [2012]. The module v.sun is cre-
ated, which is based on the existing module r.sun to compute solar irradiation values. It takes
a vector-voxel approach to segment the vector objects into smaller polygons. Then, for each
voxel the proposed algorithm is applied: calculating the normal vector, solar ray directions
for various time and the shadows cast by neighbouring buildings. However, the performance
of the method is not assessed and it is not implemented in the GRASS GIS package as was
proposed to be.

A tool taking 3D city models stored in CityGML files as input for solar irradiation computa-
tions is Solar3DCity [Biljecki et al., 2015]. The tool extracts the roof surfaces for each building
and computes their inclination, area and orientation. Afterwards, it estimates the yearly solar
irradiation for each surface by using the solpy library [Charles, 2015] and writes the enriched
3D city model back to the CityGML file. A notable shortcoming of this tool is that it lacks
an implementation for shadows cast by neighbouring buildings. This is omitted because of
computational reasons.

The study described by [Wieland et al., 2015] also takes 3D city models stored in CityGML
format as input for solar irradiation computations. The improvement is that it does incorporate
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the determination of shadows. Their workflow is as follows. For each roof and wall surface of
a building they establish a point grid as shown in Figure 3.2. Then for each point they cast a
line towards the direction of the sun for specific points in time. By using an intersection tool
in PostGIS they check whether this line intersects with surrounding buildings to determine
whether the corresponding point is in shadow or not. Afterwards, the solar irradiance (beam
and diffuse) is computed for each surface point. Lastly, the values are integrated over time and
area to arrive at monthly values per building. This is a simple and effective way to compute
the shadows cast by surrounding buildings. However, it is quite inefficient because of the high
computation costs. This can be explained by the inefficient way the buildings are processed;
just brute force.

Figure 3.2.: Point sampled building surfaces. Figure from Wieland et al. [2015].

The work by Liang and Gong [2017] also takes a 3D vector-voxel approach to compute solar
irradiation like Hofierka and Zlocha [2012], but this time in combination with a SVO to store
the geometries. The strong point of using an SVO as storage model is that the computation
time of shadow casting does not slow down for more complex geometries. Its time complexity
stays the same with increasing LoD. Its predecessor is about just rasterising the 3D meshes in
2D [Liang et al., 2014], which does slow down shadow casting with increasing LoD. However,
storing a 3D city model into an SVO [Liang and Gong, 2017] is memory inefficient, making it
unusable for large 3D city models. Therefore, a better storage model than the SVO is needed as
indexing structure to speed up obstruction detection for shadow casting.

The work described by Calcabrini et al. [2019] uses the indicators Sky View Factor (SVF) and
Sun Coverage Factor (SCF) to represent the skyline profile for a building in a 3D city model.
This skyline-based method is implemented for direct, diffuse and reflected solar irradiation
making the model quite complex, but accurate. It also makes use of the GPU to speed up
computations for large areas.

A follow-up of this work is presented by Zhou et al. [2021] which makes use of the skyline-
based method to compute annual solar irradiation, direct current (DC) yield and alternating
current (AC) yield maps. The model provides a quick and accurate assessment of solar potential
on a large-scale and complex urban environment. As a use case the campus of TU Delft is
chosen.

Viana-Fons et al. [2020] describe an efficient 3D shadow cast vector-based model. They create a
3D city model out of Light Detection And Ranging (LiDAR) data and building footprints. Then
they apply their shadow model to the surfaces of a building, distinguishing whether a surface
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is vertical or not. This is necessary as projection techniques are used for different surfaces to
obtain a correct shadow profile. Their resulting values have low errors compared to real data,
yielding a high accuracy.

3.3. Other methods

The tool Solar3D is mainly focused on using a cube mapping technique to accurately recreate
3D scenes based on Oblique Airborne Photogrammetry-based 3D city models (OAP3Ds) [Liang
et al., 2020]. For this, real life photographs of the scene are needed, which is unfeasible for
large data sets. For this to work, the tool also relies on DEMs, Digital Surface Models (DSMs)
and feature layers as input data. The tool yields a high accuracy.

To enlarge solar energy generation, solar panels can also be installed on the facades of build-
ings. Jaugsch and Löwner [2016] implemented a method that takes 2D maps with additional
height information as input. 3D block models are extruded from this input. They introduced
the concept of observer point columns which determines whether a whole vertical part of the
facade is illuminated or not. To speed up shadow computations they take the maximum shade
length determined by the tallest building. As the building blocks are extruded from 2D data
resulting in 3D mesh data, this method is considered as a hybrid approach between raster,
points and vector to model the solar potential.

3.4. Simplifications and acceleration structures

Further methods to speed up computation times are simplifications in the solar irradiation
models and to apply acceleration structures. A possible simplification is the usage of the char-
acteristic declination of the sun [Brito et al., 2021]. This is the declination for the day on which
the daily solar irradiation on a horizontal surface is identical to its monthly average value.
This value, instead of daily values, can be used to reduce computing demand by a factor of
30. But, accuracy errors are introduced ranging from +5% to +12% depending on the latitude.
The higher the latitude, the higher the errors. This should be kept in mind when applying this
simplification to the solar irradiation model.

Another way to achieve better computation times is the usage of acceleration structures, in-
dexing the buildings in the 3D city model. This is beneficial when performing shadow casting
as obstructing neighbouring buildings can be efficiently found based on the index. The SVO as
used by Liang and Gong [2017] is an example of such an acceleration structure. However, the
SVO and voxelisation in itself raises some limitations and deficiencies as it is memory inefficient
to voxelise a massive 3D city model. The memory usage increases proportionally with the size
of the 3D city model. Another downside is that data management is challenging, because the
3D city model loses its spatial relations and semantics after the voxelisation.

Therefore, another acceleration structure is necessary for massive 3D city models. The BVH
is a tree structure to spatially organise data by wrapping the geometries into bounding boxes
[Wald et al., 2007]. Spatial relations and semantics of the geometries are not lost and it is also an
efficient way to detect intersections of neighbouring objects when doing ray tracing. The time
complexity of BVH is O(log(n)). This is achieved by the fact that geometries stored in children
nodes do not have to be checked for intersections when the bounding box of the parent node is
not intersected by the ray. Moreover, the BVH is already used in many ray tracing algorithms.
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The two acceleration structures described can be distinguished by their purpose in two classes:
space subdivision methods and object subdivision methods. SVO is a space subdivision method
while BVH is an object subdivision method. Space subdivision methods subdivide the 3D space
into smaller regions by using planes, where the geometry might belong to multiple regions.
Object subdivision methods subdivide the geometry into smaller objects, resulting in tight
volumes wrapped around the object [Pharr et al., 2004 - 2021]. The two method classes are both
successful at speeding up the ray intersection method, hence SVO and BVH are both suitable for
shadow casting.
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This chapter represents the methodology used to fulfil the research objectives listed in Section
1.1. First, an overview of the methodology is given and then the methodology is explained
step-by-step in more detail.

4.1. Overview

In short, the methodology can be described as follows. First, building geometries stored in one
or multiple CityJSON files from the 3D BAG data set, will be loaded in memory. Then, a 3D
R-tree is created in which the buildings needed to process one file are stored for fast access.
Afterwards, each building will be processed. First, the neighbouring buildings potentially
casting a shadow on the current buildings will be found by querying the R-tree. Afterwards,
each building in the file is processed in parallel on multiple CPUs where each triangular roof
surface will be sampled into a grid of points. For each point in the grid, the shadowing is
determined by intersection detection and the yearly beam solar irradiation is computed ac-
cordingly. The solar radiation values are then aggregated to surface level and statistics such as
average, standard deviation and several percentiles are computed. Lastly, the 3D city model
of each file is written back to CityJSON, enriched with the different solar irradiation values as
attribute per triangular roof surface. This whole workflow for processing one CityJSON file is
shown in Figure 4.1.

Figure 4.1.: Methodology workflow for one CityJSON file.
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4.2. Step-by-step explanation

The proposed methodology will be discussed and justified in more detail below. Its structure
can be roughly divided into three parts: preparing input data, processing the building geome-
tries and exporting output data. For some parts, more detailed information on reasons and
choices can be found in Chapter 5.

4.2.1. Input data preparation and loading

The first part of the methodology is to prepare the input data. The input data are building
geometries stored in one or more CityJSON files. CityJSON is chosen as input data format
because it is easy-to-use and it stores city objects such as buildings in a compact way. The
input files are taken from the 3D BAG data set. This data set is explained in more detail in
Section 5.1.4.

For this methodology, the geometric primitives of the buildings need to be triangles. Triangles
are convenient primitives as they are always planar, meaning that all corners of a triangle lie
on one plane. This makes triangles suitable to model complex 3D models. In the case that
the buildings in the city model are not triangulated, they need to be triangulated beforehand.
The triangulation might yield triangles that are not usable. At this point in the process, the
triangles are not further inspected on inconsistencies. This is done later on in the process.

As this research is focused on large data sets containing large 3D city models, it needs to be
taken into account that it is not possible to store all the data directly into memory. The com-
puter memory of a normal PC will not be sufficient enough to store large amounts of data.
Therefore, the CityJSON files are processed one at a time. So, only the building geometries
that are needed to process one CityJSON file are loaded into memory. To determine the solar
radiation of a roof surface, it is important to know whether the building roof is put in shadow
by another building. For buildings at the borders of the CityJSON file, a building from the ad-
jacent file could cast that shadow. Therefore, to process one CityJSON file, the buildings that
could potentially cast a shadow on buildings in the current CityJSON file need to be loaded
into memory as well. These buildings are chosen by applying a buffer. More details on the
selection of all building geometries needed to process a CityJSON file is written in 5.2.2.

Then, the selected building geometries are inserted into a 3D R-tree. An R-tree is used be-
cause it is a spatial indexing structure that allows fast retrieval of spatial data when requested.
This R-tree will be used in a later step to retrieve the neighbouring building geometries that
potentially put another building into shadow.

4.2.2. Processing building geometries

When all the building geometries necessary to process a CityJSON file are stored within mem-
ory and the accompanying R-tree is created, each building geometry in a CityJSON file is indi-
vidually processed in order to compute its solar potential value. First, the neighbouring build-
ings that might cast a shadow on a building geometry are filtered on their distance, height and
orientation with respect to the building geometry in order to reduce processing time. More
information on how these filters work and how their thresholds are chosen is found in Section
5.2.3. To retrieve these neighbouring buildings, the R-tree is queried before multiprocessing.
The reason for this is explained in more detail in Section 5.2.3.
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As the solar potential of one building is not influenced by the solar potential of another build-
ing, but only by its existence in the neighbourhood, each building is further processed in par-
allel on multiple CPUs. The benefit of performing parallel computing is that it reduces the
computation time for a whole city model by a factor equal to the number of cores used for
parallel computing.

Then, there are a couple of steps to go through to compute the yearly solar potential for each
triangular building roof surface, based on the work by Wieland et al. [2015]. For each build-
ing their triangular roof surfaces are extracted and filtered on undesirable thin and elongated
triangles. For each triangle its normal vector is computed and it is sampled into a uniformly
distributed grid of points. The normal vector is needed as a parameter for the solar radiation
computation and sampling is necessary to account for variable solar irradiation values on a
triangle, especially on larger triangles. Some parts of the triangle may be blocked by a shadow
from a neighbouring object, while other parts are not. An example of sampled roof surfaces is
shown in Figure 4.2.

Figure 4.2.: Point sampled building surfaces.

For each point on a surface it is determined whether it is illuminated or not, based on the shad-
ows cast by the filtered neighbouring buildings. Rays originating at each point on the surface
are cast in the direction of the sun at a specified time. If an intersection with a neighbouring
building is encountered, the grid point at the origin of the ray is considered to be in shadow
for this specific timestamp. Otherwise, the grid point is considered to be illuminated.

Now, that it is determined when each grid point is illuminated or in shadow, the yearly solar
potential can be computed. To speed up computation time, the shadow casting and solar
potential are computed at time intervals of 1 hour, for 12 days a year. Each day is the 21st day
of a month, meaning an average solar potential is computed per month. More explanation on
these numbers is given in Section 5.2.3. The solar potential per month is then aggregated to
arrive at a yearly solar potential value. This simplification will drastically improve processing
times as the solar potential values are not computed for each day of the year individually.
However, the downside is that the solar potential values might be less accurate.

To compute the solar potential for each illuminated grid point for a specified time, a couple of
parameters related to the building roof geometry are needed. These are the normal vector of
the surface the point belongs to, the height of the point, the position of the point, represented
by the latitude, and the timestamp. The direct solar radiation for each grid point based on these
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parameters is computed. As limited by the scope of this research (Section 1.2), the diffuse and
reflected radiation is not considered.

The solar radiation model described by Duffie and Beckman [2013] is used to compute the
direct solar radiation under clear-sky conditions. In their literature it is called clear-sky beam
normal radiation, given in equation 4.1, where Gon refers to the extraterrestrial radiation de-
fined by equation 4.2 and τb refers to the atmospheric transmittance for beam radiation given
in equation 4.4.

Gcnb = Gonτb (4.1)

The extraterrestrial radiation on the nth day of the year is defined by

Gon = GSC(1.000110+ 0.034221cosB+ 0.001280sinB+ 0.000719cos2B+ 0.000077sin2B) (4.2)

where GSC refers to the solar constant of 1367W/m2 and B is defined by

B = (n − 1)
360
365

(4.3)

The atmospheric transmittance for beam radiation is defined by

τb = a0 + a1exp(
−k

cosθz
) (4.4)

where a0, a1 and k are constants determining the atmospheric transmittance for the standard
atmosphere with 23 km visibility. The constants are dependant on the height for which the
beam radiation is computed with a maximum height of 2.5km. The parameter θz is the zenith
angle. This is the angle between the zenith and the sun ray on a roof as shown in Figure 4.3
which is derived from the timestamp (date) and the latitude as this angle changes throughout
the day and is different per latitude.

Figure 4.3.: A tilted surface with a couple of parameters, such as the zenith angle θz. Figure
from Duffie and Beckman [2013].

As the direct radiation as defined by equation 4.1 is computed as if the surface is perpendicular
to the sun, the equation needs to be adapted to equation 4.5 in order to account for tilted
building roofs.

Gcnb = Gonτbcosθ (4.5)
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4.2. Step-by-step explanation

where θ refers to the angle of incidence between the sun ray on a roof surface and the normal
vector of that roof surface. Just like the zenith angle, the angle of incidence is also different
throughout the day and per latitude. The effect of the angle of incidence is shown in Figure
2.3.

4.2.3. Exporting enriched output data

In the last part of the process, the solar potential of the buildings need to be exported to CityJ-
SON. From the solar potential at surface and building level some statistics can be deduced.
These are average, minimum, maximum, standard deviation, 50th percentile and 70th per-
centile.

The various statistics derived from the solar potential of a grid of points can be written to
CityJSON at different levels as shown in Figure 4.4. The levels that are considered including
their pros and cons are described below:

1. Per point. This is an accurate representation of the computed values per point. The down-
side is that it is inefficient to store, because of the many values per triangle and building.
For this choice, no aggregation over space is needed.

2. Per triangular roof surface. This is a less accurate representation than per point, but simpler
to store in a CityJSON file. For this choice, the statistics described above need to be
computed over all the points in the triangle.

3. Per polygonal roof surface. This is a less accurate representation than per triangular surface.
The triangular surfaces for which the solar potential is computed need to be converted
(by detriangulation) to polygonal surfaces and the statistics computed accordingly. This
is the original way the buildings in the 3D BAG data set are represented.

4. Per building. This is the least accurate way to represent the computed values, as it is not
known which part of the building surfaces has the highest solar potential. It is a too
simplified representation, but the building geometries are very easy to extend with an
extra attribute. For this choice, the solar potential statistics over all the roof surfaces in
the building need to be computed.

(a) Per sampled grid
point.

(b) Per triangular roof
surface.

(c) Per polygonal roof
surface.

(d) Per building as a
whole.

Figure 4.4.: Visualisation of the 4 different ways to store solar potential of a building geometry.

For the use case of 3D BAG, it is chosen to store the solar potential statistics per triangle. The
values are stored as extra attributes to triangular roof surfaces and written as such to CityJSON.
This is the easiest way to enrich the roof surfaces in the city model with solar potential values
as the geometric primitives are already triangles. The benefit is that no extra point geometries
need to be created that take up more memory. Also no detriangulation needs to be done or
additional aggregation to building level needs to be performed. However, one needs to take
into account that the actual solar potential value per location on the roof surface might be
different.
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4. Methodology

4.3. Quality Assessment

In order to prove that the implemented vector-based solar radiation model is correct in terms
of accurate solar radiation values, quality assessment needs to be performed. Comparing the
results to ground truth data says something about the reliability and quality of the imple-
mented model. However, ground truth data of solar radiation is not widely available at each
roof surface. But, weather stations throughout The Netherlands do exist which can be used for
ground truth comparison at an exact location.

Another way to perform quality assessment is to compare the implemented solar radiation
model to another existing solar radiation model. In this way, one is not restricted to a com-
parison of one specific location only, but a comparison of a whole city model incorporating
shadows can be performed. Both ways to perform quality assessment will be executed and
their approach and results will be discussed in Section 6.2.

4.4. Scalability Assessment

In addition to quality assessment, the implemented solar radiation model is assessed on its
scalability. This means that the system should not terminate during processing due to a lack
of available memory. The input of the solar radiation model is a folder with a number of
tiles stored in CityJSON files. For the scalability assessment, there will be experiments with
increasing number of tiles given as input to the model to prove that the system is scalable. The
experiments themselves and their results will be discussed in Section 6.3.
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5. Implementation

This chapter explains the implementation of the methodology. First, the tools and data used
for the implementation are discussed. Then, each step of the software implementation itself is
discussed in depth.

5.1. Tools and Data

5.1.1. Hardware

The specifications of the computer used for the implementation of the methodology and the
execution of the experiments in Chapter 6 is as follows.

• Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz

• RAM: 16.0 GB

• GPU: Intel(R) UHD Graphics 630 and NVIDIA Quadro P1000

• Operating System: Windows 10 Home x64

Besides this, it is important to note that the developed implementation is run on Windows
Subsystem for Linux (WSL)1. Directly running it on a Windows machine is not possible, but
running it on a Linux machine is possible.

5.1.2. Python

The programming language used to implement the methodology proposed in Chapter 4 is
Python2. Python is an open source and user friendly programming language that is very suit-
able for data science. It has a large community contributing to the knowledgebase of Python.
Many additional libraries and packages for numerous fields are freely available. The libraries
used in this research are listed below:

• NumPy3 is a library used for storing data in arrays and matrices. It is also used for simple
mathematical computations.

• PyVista4 is an Application Programming Interface (API) for the Visualisation Toolkit (VTK)5.
It is used to wrap the data in its native PolyData datastructures and perform some com-
putations. The library is also used to visualise intermediate results.

1https://learn.microsoft.com/en-us/windows/wsl/
2https://www.python.org/
3https://numpy.org/
4https://docs.pyvista.org/
5https://vtk.org/
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• solarpy6 is a package that provides a reliable solar radiation model, based on the work
by [Duffie and Beckman, 2013]. It is able to compute the solar beam irradiance on any
plane, any place on earth and any day in the year. In this research this package is used
as core solar radiation model to compute the direct radiation for each roof surface.

• cjio7 stands for CityJSON input/output. This library is used to read, write and manipu-
late CityJSON files.

• Rtree8 is a library that provides spatial indexing for Python. In this research it is used
to store 3D BAG tiles and building geometries in R-trees and provide fast access to them
when respectively performing neighbouring tile selection and intersection detection.

• concurrent.futures9 is a module that provides a high-level interface for asynchronously
executing callables. In this research it is used to process building geometries in parallel.

5.1.3. GIS and visualisation programs

In this research the GISs QGIS and ArcGIS are used. QGIS was initially used to load and inspect
the CityJSON files that were used as input. ArcGIS is used to compute the solar radiation for a
raster and to compare the results with the implemented method. This comparison is presented
in Section 6.2.2.

Programs used for visualisation of (intermediate) results are ParaView and Ninja. ParaView10

is an open-source, multi-platform data analysis and visualisation application. Users can inter-
actively explore data in 3D. In this research, ParaView is used to visualise intermediate results
stored in PyVista’s PolyData format that are written to a .vtm or .vtk file. In this research, a
seperate script is written that reads a CityJSON file and outputs a .vtk file where each triangu-
lar roof surfaces contains an attribute with the average solar potential value.

Ninja11 is a web-based visualisation application to visualise city models stored in CityJSON
files. It can show the city models at each LoD available, distinguish between their semantic
surface and list the attributes at surface and building level. In this research it is used to check
whether the resulting city model enriched with the solar potential is correct and to explore the
results. In addition, the software cjval12 is used to validate CityJSON files against the CityJSON
schemas.

5.1.4. 3D BAG data set

3D BAG13 is an open data set covering all the buildings in The Netherlands as 3D building
meshes [Peters et al., 2022]. The data set is fully automatically generated by combining two
Dutch open data sets, namely the building footprints from the ’Basisregistratie Adressen en
Gebouwen’ (BAG)14 and the elevation data as a point cloud from ’Actueel Hoogtebestand
Nederland’ (AHN)15. An example of some buildings, with the faculty of Architecture and the

6https://pypi.org/project/solarpy/
7https://cjio.readthedocs.io/
8https://pypi.org/project/Rtree/
9https://docs.python.org/3/library/concurrent.futures.html

10https://www.paraview.org/
11https://ninja.cityjson.org/
12https://github.com/cityjson/cjval
13https://3dbag.nl/en/viewer
14https://www.kadaster.nl/zakelijk/registraties/basisregistraties/bag
15https://www.ahn.nl/
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Built Environment of the TU Delft as central point, is shown in Figure 5.1.

Figure 5.1.: Sample of 3D BAG with LoD 2.2 (taken from the 3D BAG viewer).

The buildings within 3D BAG are individually stored as a 3D mesh with LoD 0, LoD 1.2,
LoD 1.3 and LoD 2.2. LoD 0 is the building footprint and does not include walls. LoD 2.2
can include sloped building roofs whereas LoD 1.2 and LoD 1.3 can only store the buildings as
block models with flat roofs. An overview of the available LoDs for CityJSON files as presented
by Biljecki et al. [2016] is shown in Figure 5.2. The building footprints at LoD 0 contain a list
of attributes such as its id, building year and roof type. The buildings at LoD 1.2, LoD 1.3
and LoD 2.2 contain semantic surfaces for ground, wall and roof alongside possible semantic
attributes.

Figure 5.2.: Overview of LoDs. Figure from Biljecki et al. [2016]

The geometric primitives of the 3D building models in the 3D BAG data set are polygonal
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surfaces defined by its vertices. These buildings need to be triangulated to be able to process
them. The details about the triangulation can be read in Section 5.2.1.

Because the 3D BAG data set consist of more than 10 million buildings, the data is subdivided
into tiles covering smaller geographic areas, as shown in Figure 5.3. The amount of buildings in
a tile are determined by a quad tree data structure. The tiles are available for download in sev-
eral formats: CityJSON, GeoPackage and Wavefront OBJ. The entire data set is also available
via web services WMS and WFS. Lastly, the raw 3D BAG data for the whole of the Netherlands
can also be downloaded as PostgreSQL data dump.

Figure 5.3.: 3D BAG tiles as quad tree

As 3D BAG is a large data set covering vector data, it is very suitable to use for this research.
The fact that the data set is available in LoD 2.2 and the buildings have semantic surfaces, en-
sures that sloped roofs are represented, and that roof surfaces can easily be distinguished from
other surfaces. Moreover, it is advantageous that the city models stored as tiles are available
in CityJSON format. CityJSON is a compact and easy-to-use encoding of the CityGML data
model very suitable to use when programming in Python [Ledoux et al., 2019].

For this research it is chosen to download the tiles used for the experiments presented in Chap-
ter 6 in CityJSON format. For the solar potential computation only buildings with LoD 2.2 are
taken into account.

5.2. Software implementation

In this section the software implementation of the methodology is explained in detail. The
technicalities are explained in such a way that it could be reproduced. Also the challenges that
were encountered and how they were solved are discussed. The code is made available in a
GitHub repository16.

16https://github.com/robinjo78/solarBAG
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5.2. Software implementation

5.2.1. Input preparation

This section describes the steps that need to be taken to prepare and pre-process the input data
before it can be given as input parameter to the implemented program called SolarBAG. The
program takes as input parameter a folder of CityJSON files. This could be one file or multiple
files as long as these are contained within a folder. The CityJSON files are tiles containing a
city model that can be downloaded from the 3D BAG dataset. The CityJSON file should be at
least version 1.1. The file needs to be triangulated by using the triangulate function in cjio:

$ c j i o [ f i l e . j son ] t r i a n g u l a t e save [ n e w f i l e . c i t y . j son ]

To check the triangulation, visualise the resulting CityJSON file in Ninja. Most probably there
will be some buildings containing triangles of which the orientation is flipped, yielding a hole
as a visual artefact. This could give problems for computing the solar radiation as the normal
vectors are incorrect.

Now, the folder containing one or multiple CityJSON files can be used as input to SolarBAG
by the following command:

$ python3 solarBAG CityJSON . py [ f o l d e r w i t h c i t y j s o n f i l e s ]

The reason that the input to SolarBAG is a folder containing CityJSON files is because this
makes it possible to process multiple tiles at once and to make the process scalable. It also
makes it possible to consider buildings at the edges of a tile as neighbouring buildings poten-
tially casting a shadow over a building in another tile.

5.2.2. Data loading and parameter settings

After the input is prepared, the CityJSON files in the folder given as input parameter to the
program need to be loaded into memory. It need to be taken into account that the data might
be too large to be stored in memory at the same time. Therefore, the CityJSON files in the
folder are processed one by one. As the buildings on the edges of the tile could potentially cast
a shadow over a building in another tile, these buildings also need to be loaded into memory
for the specific tile.

This goes as follows. For each tile, its bounding box is extracted, which is needed to determine
what the neighbouring tiles of a tile are. This extraction is done by manually reading through
the raw CityJSON file and searching for the ’metadata’ tag in which the ’geographical extent’
property, representing the bounding box of a tile, is stored. This search is much faster than first
loading all the CityJSON files and retrieving the ’metadata’ object by using a ’get’ function.
The retrieved bounding boxes of each tile are inserted into a 2D R-tree, by using the ’Rtree’
library.

The next step is to process each CityJSON file separately. The ’cjio’ library is used to load
the city model stored in a CityJSON file into memory. All the buildings in the city model are
already triangulated in the pre-processing step, but it would be better to do this when loading
the city model into memory, avoiding the overhead.

Then, from the city model the city objects, which are the buildings, are extracted. These are
stored in a native Python’s dictionary datastructure. This dictionary will be extended with
buildings from neighbouring tiles that may potentially cast a shadow on buildings in the cur-
rent tile. To actually find the neighbouring tiles of a tile, the R-tree containing the bounding
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boxes of the tiles, is queried by the bounding box of the current tile, enlarged with a buffer of
100 meters.

For each tile returned by the query, the city model is loaded into memory and their building
objects are inserted into an R-tree. On this R-tree, the same query as for finding the neighbour-
ing tiles (the bounding box with a buffer), is applied. This query will return buildings that
are located within the buffer extent that could potentially cast a shadow on the buildings at
the edges of the currently processed CityJSON file. A schematic of this process for a tile with
8 neighbouring tiles is shown in Figure 5.4. The selected buildings from the neighbouring
tiles within the buffer limits together with the buildings in the current tile are first stored in a
common dictionary and then inserted into an R-tree.

Figure 5.4.: Neighbouring tiles selection based on a buffer.

The R-tree is created by using the ’Rtree’ library. The R-tree will have a dimension of 3, mean-
ing it will be in 3D. For each building a bounding box is computed based on its surfaces. This
bounding box will be inserted into the R-tree. Its entry will also contain the original building’s
id with which it is stored in CityJSON to easily look up the building’s city object in the dic-
tionary containing all building geometries. The R-tree will later be used to efficiently extract
building geometries for intersection detection when performing shadow casting.

Before each building will be processed to compute its solar potential, some parameters need to
be set. These parameters are:

• Number of cores: the number of cores used for performing multiprocessing on each build-
ing model.

• LoD: the LoD of each building model being processed. LoDs above 2.0 are supported as
their roof surfaces can be distinguished from other semantic surfaces.

• Neighbour offset: the offset in meters considered when selecting neighbouring buildings
that potentially cast a shadow on the building currently being processed.

• Sampling density factor: the sampling density used when sampling a roof surface triangle
into grid points, given in meters.

• The dates: a list of dates for which the solar potential will be computed. This list will
contain a date for each month. Also, the number of days the corresponding month will
last is stored.
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5.2.3. Processing each building model

After the data is loaded in memory and the parameters are set, it is time to process each build-
ing in order to compute its solar potential. This is done in parallel on multiple CPUs by using a
multiprocessing library in Python.

The asynchronous multiprocessing library used is ’concurrent.futures’. The asynchronous exe-
cution can be performed with threads or separate processes. Within the context of this research,
it is necessary to parallelise processes by using the ’ProcessPoolExecutor instead of threads
for which the ThreadPoolExecutor could be used. This is because the implemented process
for each building can be executed independently. More on the different ways to parallelise
processes can be found in Section 2.3.

But before submitting a building to the ProcessPoolExecutor, the neighbouring buildings
with a high chance of casting a shadow on this building need to be selected. The neighbouring
buildings are filtered on a couple of factors:

• Neighbour offset: a Euclidean distance in x, y and z directions in meters measured from
the considered building;

• Maximum height;

• Azimuth (orientation) range.

To apply these filters the semantic roof surfaces of the considered building are extracted from
its geometry and stored in PyVista’s PolyData data structure. For the roof surfaces their center
of mass can be computed, which is used as center point for a cubic bounding box that will
be created based on the neighbour offset parameter. This bounding box is used as input to
the intersection function of the R-tree to determine which buildings fall within this bounding
box. The offset parameter has a large influence on the running time of the system. For a large
neighbour offset, more neighbouring buildings will be subject to shadow casting than for a
small neighbour offset. This also has effect on the accuracy of the resulting solar potential
values. Therefore a trade-off is found by trial-and-error. The neighbour offset can be chosen
by the user, but by default it is set at 100 meters.

The returned buildings are then filtered on their height. Neighbouring buildings of which
their maximum rooftop height is lower than the minimum rooftop height of the considered
building’s roof are filtered. Lastly, the orientation of the remaining neighbouring buildings
with respect to the considered building is computed. If the orientation of a neighbouring
building falls within the azimuth range for which the sun does not illuminate the earth at
the specific location and date, this building is filtered as well. In the end, only buildings that
potentially cast a shadow on the considered building are kept and subjected to shadow casting
later on. Visualisations of the filter process is shown in Figure 6.3 in Section 6.1.1.

The reason that the selection of neighbouring buildings is not done while multiprocessing is
because the multiprocessing executor cannot store a pointer to the R-tree in memory. This
means that the R-tree cannot be queried while multiprocessing. In practice, querying the R-
tree does not give an error, but it does not find the neighbouring buildings either. The query
result will be an empty list.

Now that the neighbouring buildings are selected, the considered building is submitted to the
parallel processing pool and processed further. This can be done for each processing core that
is set available for multiprocessing. When a core has finished processing its result will be saved
and a new building will be submitted to the pool.
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The process a building undergoes while multiprocessing is as follows. From the building ge-
ometry the roof surfaces and their individual triangles are extracted. For each triangle it is
checked whether it is a sliver triangle. A sliver triangle is a very thin and elongated triangle
as shown in Figure 5.5. They are undesirable because a simple geometric computation such as
computing the normal vector yields an unreliable result. The thinness is determined by the ra-
tio between the triangle’s perimeter and area. When the thinness ratio of the triangle is lower
than 0.001, the triangle is considered a sliver triangle and excluded from the solar potential
computations. This number is chosen based on computing the thinness ratio for known sliver
triangles and determining a ratio accordingly.

Figure 5.5.: Sliver triangle.

When a triangle is suitable for further computations, its normal vector is computed by using
the PyVista library. The returned normal vector is pointing inward and is in East North Up
(ENU) frame. Normally one would expect a normal vector to point outward. The ENU frame is
equal to x, y, z notation. However, the function that is used to compute the beam solar radiation
is expecting a normal pointing outward and stored in North East Down (NED) frame, equal to
y, x, z notation. Therefore, a conversion of the normal vector is needed. The conversion of
the normal vector from ENU to NED frame and from pointing inward to outward is done by
swapping and negating x and y:

NED : [−y,−x, z] = ENU : [x, y, z] (5.1)

Afterwards, on the triangle a uniformly distributed grid of points is sampled. For this, the
function create surface grid() written by former supervisor Stelios is used and adapted. It
can take a mesh with multiple surfaces as input, but for this implementation only one surface,
a triangle, is given as input. Also the density parameter, defined at the parameter settings, is
given as input to the function. In Figure 5.6, the effect of the density factor on the sampled grid
points is shown. A lower density factor yields a higher resolution grid than a higher density
factor.

(a) Grid sampled with a density
of 1m

(b) Grid sampled with a density
of 2m.

(c) Grid sampled with a density
of 3m.

Figure 5.6.: Grids sampled with increasing density values.
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The vertices of the triangle are projected to 2D and a polygon is created from it. On this 2D
polygon, a 2D grid of points according to the density is sampled. Only the sampled points
that are located within the 2D polygon are kept. Then, these points are projected back to 3D
with a small positive offset for the z-value. This ensures that the grid point is always above
the triangle, preventing an intersection with the triangle the grid point belongs to when the
grid point is subjected to intersection detection for shadow casting. Each of these points will
be put in a PolyData data structure and an empty attribute is added to store a list of solar
potential values for each month. Now, the triangle is enriched with a grid of points ready for
solar potential computations.

The next step is to compute the solar potential for each grid point on the triangle for each date
in the date list. For this research, for each month in a year, the 21st day is used as the day to
compute the solar potential. This value represents the average solar potential for that month.
As the 21st of December is the shortest day in the year and the 21st of June is the longest day
in the year in terms of sunlight hours, they will compensate each other. This value is then
aggregated to the length of the month to get an average solar potential for the month. Lastly,
all the months will be summed up to obtain a solar potential per year.

The actual solar radiation computation will be done by using the irradiance on plane()

function in the solarpy module. Code excerpts of this algorithm are given in equation 6.2
and 6.3 in Section 6.2.2. It is included in that chapter in order to easily compare the algorithm
with the solar radiation algorithm in ArcGIS.

The irradiance on plane() function takes as parameters:

• Normal vector

• Height

• Date

• Latitude

The input normal vector is the normal vector of the triangle. The height is the average height
of all the grid points on the triangle. The date is the day of the month in hourly intervals. So
each day will have 24 hours. The latitude value is computed by taking the coordinates of the
center point of the triangle and projecting it to a latitude. The height and the latitude of a grid
point is chosen to be the average value for the triangle’s roof, because at such a small local
scale, the height and latitude does not have much influence on the resulting solar radiation
value. Another reason to use the average height and latitude value of the triangle for a grid
point is to save processing time.

At first, the solar radiation is computed for the whole triangle for each date. Then, for each
grid point on the triangle it needs to be determined whether it is in put in shadow or not by
a neighbouring building. As this might change throughout the day, the path the sun travels
on the day at hourly intervals is determined. For each time stamp the solar vector, also called
sun beam, is computed. This vector determines the direction of the sun ray in NED frame. To
model the position of the sun, not the real distance is used, but a distance far enough to cover
buildings in the scene potentially blocking the sun’s rays. This distance needs to be more than
the neighbour offset distance of 100 meters. So, a distance of 500 meters is chosen.

After the sun path corresponding to a grid point is determined, a ray intersection test between
the position of the sun at each time stamp in the sun path and the grid point is performed. This
is done by applying the ray trace() function available in PyVista to each of the neighbouring
buildings of the building currently processed. In the case of a hit, the corresponding timestamp
is stored. Then, the daily solar potential for the grid point is recalculated while setting the solar
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potential at the time stamp of a hit to 0 and stored in the list attached as field to the PolyData
object of the grid point.

Now, when the solar potential for a grid point is calculated for each 21st day of a month, the
daily solar potential will be multiplied by the number of days in the specific month to arrive
at a solar potential for a month. Then, these monthly values will be summed up to arrive at a
yearly solar potential for a grid point.

Writing the various statistical values of the yearly solar potential per triangle to file will be
discussed in the next section.

5.2.4. Writing to CityJSON

During the main process, where a city object is being processed, the city object is prepared to
be written back to a CityJSON file. It is important to write the file back to CityJSON as it was
read, but with the solar radiation attributes added to each suitable roof triangle. These are:

1. Number of samples: reffering to the number of points that are used to sample this trian-
gle of a roof surface.

2. Average solar potential;

3. Maximal solar potential;

4. Minimal solar potential;

5. Standard deviation: describing the amount of variation of the solar potential of the grid
points;

6. 50th percentile: the solar potential value below which 50% of the solar potential values
of the grid points may be found;

7. 70th percentile: the solar potential value below which 70% of the solar potential values
of the grid points may be found.

8. Solar potential unit: the unit in Wh/m2/year.

The number of samples is saved per roof surface in order to make sense to the rest of the
attributes. The average solar potential value is meaningful for each surface, while the maxi-
mum, minimum and standard deviation is only meaningful for roof surfaces with 2 or more
grid points, otherwise the values do not make sense. The 50th and 70th percentile is becoming
useful for roof surfaces with 3 or more grid points as these statistics are meaningful for a larger
amount of values.

The save() function of the ’cjio’ library is used to write the city model, enriched with solar po-
tential statistics per roof surface, back to a CityJSON file. Unfortunately, the save() function
does not write a transformed version of the city model to file. The vertices of the geometries
are just written to the file uncompressed. This also means that the transform object is miss-
ing leading to an invalid file when validating the CityJSON file with the CityJSON validator
cjval17. In order to make the validator succeed, a transform object needs to added manually to
the CityJSON file. Visualising such a CityJSON file in Ninja does not give any problems.

17https://validator.cityjson.org/
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This chapter gives the general results after running the implemented model for a tile. Besides,
it lists the experiments and results for the quality assessment and scalability assessment.

6.1. General results

Figure 6.1 shows a resulting city model after running the implemented model for tile num-
ber 5873 of the 3D BAG dataset1. It covers a neighbourhood in The Hague. The CityJSON
file in which the city model is stored is loaded into visualisation program Ninja of which the
screenshot is taken. The roof surfaces of each building are enriched with solar potential values.
The list of attributes is shown for a specific building. You can see that the number of sampled
points for the specific triangle is 2 in this case. The solar radiation values of these two points
are different as the minimum and maximum solar potential values of this triangle are differ-
ent. This also gives varying values for the average, 50th and 70th percentile and a standard
deviation of non-zero.

Figure 6.1.: Building enriched with solar potential values, shown in Ninja.

1https://3dbag.nl/en/download?tid=5873
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When visualising the city model in this tile as a whole in Ninja alongside a visualisation of the
average solar potential values per triangle shown in ParaView, something interesting can be
observed. As already mentioned previously, the orientation of some triangular surfaces might
be flipped, which is visible as missing roof surfaces in Figure 6.2a. This has as effect that the
normal vectors of these surfaces point downwards resulting in a solar potential value of 0. In
Figure 6.2b this is shown by the blue coloured roof surfaces. A larger image of Figure 6.2b is
shown in Figure B.4 in Appendix B.1.

(a) Visualisation of the city model in Ninja.
(b) Visualisation of average solar potential values

(in Wh/m2) per triangle in ParaView.

Figure 6.2.: Visualisation of tile 5873.

Unfortunately, this issue could not have been solved during this research. The triangulation
function used from ’cjio’ is responsible for this behaviour. The issue could be solved manually
by flipping the orientation of the wrongly oriented roof surfaces. The validation of the solar
potential values for the correctly oriented triangles is executed in Section 6.2.2.

6.1.1. Visualisation of intermediate steps

In this section, some of the steps of the methodology of this research are visualised. The con-
cerned steps are neighbour filtering, point sampling and intersection detection. These steps
are visualised by using the software ParaView.

Figure 6.3 shows the remaining neighbouring buildings after applying filter operations based
on the distance, height and orientation of the neighbouring buildings. The two buildings
meshes for which the neighbours are filtered are shown in Figure 6.3a. Their neighbouring
buildings are shown in Figure 6.3b. In Figure 6.3c, the distance filter is applied to remove
buildings that are too far to cast a shadow. In Figure 6.3d, the neighbouring buildings are
filtered on the height of their roofs. If the maximum height of a neighbouring building roof
is lower than the height of the currently processed building, this neighbouring building is re-
moved. In Figure 6.3e, the neighbouring buildings are filter on their orientation with respect
to the currently processed building. The buildings are filtered for a certain azimuth range at
which the sun will not be positioned during a day.

These filters are applied when the neighbouring buildings of a building need to be found. The
filters have a performance benefit when neighbouring buildings potentially casting a shadow
over a building need to be found. The more buildings are filtered, the less buildings need to
be considered for the compute-intensive intersection detection operation.
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(a) Two starting meshes. (b) All neighbouring buildings meshes.

(c) Filter on distance to neighbouring build-
ings applied.

(d) Filter on height of neighbouring buildings
applied.

(e) Filter on orientation of neighbouring build-
ings applied.

Figure 6.3.: Applying filters on neighbour selection for intersection detection. Screenshots
taken in ParaView.

Figure 6.4 gives a visualisation of the intersection detection operation that is carried out for
each sampled point in order to find neighbouring buildings casting a shadow on a building.
Figures 6.4a and 6.4b show the locations of the intersections, represented by the light gray
points, from two perspectives. The coloured points show the number of times a sun ray cast
in the direction of that sampled point is intersected. It can be seen that the lower roof has a
higher intersection count than the higher roofs. This is as expected as lower roofs have a higher
chance to be put in shadow than higher roofs.

Figures 6.4c and 6.4d show the effect of the intersections on the resulting solar potential values
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per grid point on a building roof. Figure 6.4c shows the solar potential per sampled point
without taking intersections into account, while in Figure 6.4d, the intersections are taken into
account for the sampled points. As expected, the solar potential for some of the sampled points
is lower after taking intersection detection into account as the building itself puts a shadow on
its lower roofs. In Appendix B.1, additional screenshots of early visualisations or intermediate
steps are provided.

(a) Intersection locations (gray points) and in-
tersection counts on the sampled points.

(b) Intersection locations (gray points) and in-
tersection counts on the sampled points.

(c) Solar potential value per sampled point
without intersections taken into account.

(d) Solar potential value per sampled point
with intersections taken into account.

Figure 6.4.: Visualisation of intersection detection and the effects. Screenshots taken in Par-
aView.

6.2. Quality assessment

In Section 4.3 the ideas behind the ground truth comparison and ArcGIS comparison were al-
ready shortly introduced. These two comparisons will serve as quality assessment methods
to assess the solarpy solar model utilised in the implemented method, and to assess the im-
plemented method itself. In this section, the main workflow, results and discussion for both
comparison methods will be presented.

6.2.1. Ground truth comparison

To verify whether a simulated model is accurate and reliable, it can be compared with the
ground truth values of the phenomena, in this case the solar radiation. In The Netherlands
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there are 48 weather stations that can measure global solar radiation [KNMI]. For the ground
truth comparison three of these weather stations will be chosen and its global radiation values
will be compared to the direct radiation computed by the beam irradiance() function in the
solarpy package in Python for the location of the weather stations. The workflow of the ground
truth comparison is presented in Figure 6.5 and explained in more detail below.

Figure 6.5.: Workflow of ground truth comparison.

To start the ground truth comparison three weather stations spread throughout The Nether-
lands need to be chosen. The three weather stations chosen are:

1. Voorschoten;

2. Wilhelminadorp;

3. Nieuw Beerta.

In Figure 6.6 the locations of the three weather stations and the typical lay-out of such a
weather station are shown. These locations are chosen as such in order to account for vari-
ous factors influencing the resulting solar radiation values, such as humidity and latitude. For
each weather station the raw weather data for a specific month is extracted from the Koninklijk
Nederlands Meteorologisch Instituut (KNMI) data platform2.

(a) Map showing the location of the chosen
weather stations. (b) Lay-out of a weather station.

Figure 6.6.: Map of weather stations and their lay-out.

2https://dataplatform.knmi.nl/dataset/zonneschijnduur-en-straling-1-0

39



6. Experiments and Results

In such a weather file the data is organised row by row. Each row covers 10 minutes and con-
tains values for the date, timestamp, location id, location name, latitude, longitude, altitude,
average global solar radiation, minimum global solar radiation, maximum global solar radi-
ation and sunshine duration. The values to be used for the comparison are taken from the
column containing the average global solar radiation. As the values are averaged, they are
somewhere in the middle between the minimum and maximum values. As direct radiation
has the largest contribution to global radiation with approximately 77% [Spitters et al., 1986],
it is most logical to choose the average global solar radiation. Therefore, it is chosen to com-
pare the average global solar radiation as ground truth to the direct solar radiation computed
by solarpy.

Figure 6.7 shows the graphs for the solar radiation values of the three chosen weather stations
in The Netherlands. In each graph, the orange curve shows the ground truth average global
solar radiation as measured by the weather station, whereas the blue curve shows the beam
(direct) radiation as computed by the solarpy package in Python. Each graph covers a day
(01-07-2022) at 10-minute intervals for the corresponding weather station.

(a) Solar irradiance in
Voorschoten.

(b) Solar irradiance in Wil-
helminadorp.

(c) Solar irradiance in Nieuw
Beerta.

Figure 6.7.: Graphs showing the beam and global irradiance for the three weather stations.

As can be seen in the graphs, the curves do not really fit each other, but the curve develop-
ment is following more or less the same trend. If we take Figure 6.7a, showing the graph of
Voorschoten as example, we can see that the ground truth curve has a lot of peaks and val-
leys. This can be explained by the time the sun shines at each time interval. Where there is a
peak, the sun most likely shines more or less the complete time interval, whereas at a valley,
the sun most likely shines barely or not at all. The blue curve representing the computed solar
radiation, does not have peaks and valleys, because the model always considers a clear sky
condition, meaning that the sun shines the complete time range. Therefore this curve can be
considered to show the potential direct solar radiation for each timestamp at clear sky condi-
tions.

Furthermore, the comparison is not quite fair, because global solar radiation is compared to
direct solar radiation. It would be a more fair comparison if the global radiation is decom-
posed into diffuse and direct direction. But, this is not done as the data is then not ground
truth anymore but also derived. This would also have as effect that the curve shape would be
more or less the same but with lower peaks and deeper valleys as the diffuse radiation part is
not included anymore. In the end, the curves give an indication of the potential direct solar
radiation for each time interval throughout a day compared to the ground truth.

An idea for a better ground truth comparison with actual measured direct solar radiation,
instead of global solar radiation measured at fixed locations, could be by manually placing
pyrheliometers at building roofs and compare their measurements with the direct solar ra-
diation computations by solarpy. A pyrheliometer is a device that can measure only direct
radiation as it is designed in such a way that only solar energy from direct sun rays are being
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captured. In order to capture usable direct solar radiation data, the device needs to be facing
towards the direction of the sun.

6.2.2. ArcGIS comparison

State-of-the-art GIS packages such as ArcGIS [Redlands, 2011] and GRASS GIS [GRASS Devel-
opment Team, 2020] contain solar radiation modules to compute the solar radiation of raster
data sets. To verify the correctness of the implemented vector model using solarpy as core
solar radiation model, it is chosen to compare the vector model with a raster model as for both
data formats it should be possible to compute accurate solar radiation values.

Giannelli et al. [2022] performed a comparison analysis on existing solar radiation modules
within GIS programs. They tested the solar radiation modules in GRASS GIS, ArcGIS, Sim-
Stadt, CitySim and Ladybug. In their results it is shown that the solar radiation module within
ArcGIS is the fastest one and that the yearly solar radiation values computed by the ArcGIS
module differ the least from the ground truth. Therefore the raster-based module in ArcGIS is
chosen over the module in GRASS GIS for the comparison with the implemented vector model
described in this research.

As ArcGIS processes raster data and the implemented model in this research processes vector
data, a couple of pre-processing steps need to be performed in order to do a comparison. The
workflow of the pre-processing steps and the comparison is shown in Figure 6.8.

Figure 6.8.: Workflow of the ArcGIS comparison.

ArcGIS simulation

To be able to run the solar radiation module in ArcGIS a sparse raster is created based on a tile
in CityJSON format containing 3D building models downloaded from the 3D BAG data set. As
these building models are used for the vector-based method, this ensures that the raster has the
same elevation data as the 3D BAG data set: only the building models. As an alternative, raster
data from AHN could have been used, but this data also includes other objects like vegetation
which is not included in the 3D BAG dataset. This would result in an unfair comparison as the
features are different.

For the creation of the raster based on the 3D BAG dataset, a separate script is written. Its
workflow is as follows.

1. Load a 3D BAG tile, extract buildings and convert to PyVista’s PolyData;

2. Create a grid of resolution 0.5m by 0.5m on the extent of the 3D BAG tile;
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3. Loop over each pixel in the grid and use PyVista’s ray trace() function to check whether
a building is visible from this pixel with a downward vector;

4. Store an elevation value for each pixel in the grid belonging to a building, otherwise this
pixel will be stored as ’NoData’;

5. Write the grid to a ’.tif’ file.

The resulting raster file is then used as input for the solar radiation module in ArcGIS. Within
the ArcGIS environment a geoprocessing tool to compute solar radiation for raster data sets is
available. This tool is called ”Area Solar Radiation”3. Its description reads: ”Derives incoming
solar radiation from a raster surface” [ArcGIS, 2016a]. The relevant input/output parameters
are listed in Table 6.1. Only the direct radiation raster is considered for the comparison.

Parameter Value in ArcGIS Value in SolarBAG
Input Raster (.tif) Vector (CityJSON)
Latitude 52 Different per building
Sky size / Resolution 200 x 200 pixels N.A.
Time configuration Whole year Whole year
Hour interval 1 1
No. of cores 1 10
LoD N.A. 2.2
Neighbour offset N.A. 150m
Sampling density N.A. 3m
Calculation directions 32 N.A.
Transmittivity 0.7 Value unknown
Radiation type Global, direct and diffuse Direct
Output Raster (.tif) Vector (CityJSON)

Table 6.1.: Comparison of input/output parameters for the solar radiation model in ArcGIS
and SolarBAG.

SolarBAG simulation

To create a raster containing the resulting direct solar radiation values of the implemented
vector method, SolarBAG, the process is reversed as compared to the ArcGIS simulation. First,
SolarBAG is executed for a tile stored in CityJSON format, taken from the 3D BAG data set.
The relevant parameters are listed in Table 6.1.

The resulting CityJSON file enriched with the solar potential values is then rasterised to store
a solar potential value for each pixel. The creation of the raster file is similar as the one created
for the ArcGIS simulation. The workflow is as follows, where the differences are shown in
bold.

1. Take a with solar potential enriched tile, extract buildings and convert to PyVista’s Poly-
Data;

2. Create a grid of resolution 0.5m by 0.5m on the extent of the 3D BAG tile;

3. Loop over each pixel in the grid and use PyVista’s ray trace() function to check whether
a building is visible from this pixel with a downward vector;

3https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/area-solar-radiation.htm
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4. Store the average solar potential value for each pixel in the grid belonging to a building
by extracting this from the building geometry, otherwise this pixel will be stored as
’NoData’;

5. Write the grid to a ’.tif’ file.

Comparison

Now, that the direct solar radiation rasters from both methods are created, they can be com-
pared to each other. This is done by computing the absolute difference between both rasters.
The visual effect of the absolute difference raster is that the large differences in solar radiation
values are easily visible with an appropriate colour scheme.

For this computation two geoprocessing tools in ArcGIS are needed, namely ”Minus”4 and
”Abs”5. First, the Minus tool is used for the two rasters. Afterwards the Abs tool is used on
the raster resulting from the Minus operation.

The raster comparison is performed for tile number 3476 taken from the 3D BAG dataset6. It is
situated to the south west of Leiden and contains only a few buildings so processing it would
not take too much time. The resulting solar radiation rasters for a part of the tile as computed
by ArcGIS and the implemented vector model are shown in Figure 6.9.

(a) Solar radiation raster for ArcGIS method. (b) Solar radiation raster for vector method.

Figure 6.9.: Resulting solar radiation rasters.

By comparing the images in Figures 6.9a and 6.9b it can be seen that for most of the roof
pixels the colours representing the solar radiation values are similar. However, at some edges
or corners the values do differ significantly. This can easily be seen in Figure 6.10 where the
difference between the two rasters is shown. An example is visible in the top part of the image
where a band of yellow/green pixels is present in Figure 6.9a. This difference is caused by the
resolution. The raster used as input for the solar radiation tool in ArcGIS has a resolution of
0.5m by 0.5m, while in the vector method the solar radiation value is stored as average per

4https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/minus.htm
5https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/abs.htm
6https://3dbag.nl/en/download?tid=3476
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Figure 6.10.: Absolute difference raster between the two methods.

triangle. So practically, the size of the triangle determines its resolution. To get to an average
solar radiation value per triangle, point sampling with a certain density is performed. In this
example the density factor represents a point sampling resolution of 3.0m by 3.0m. As the
solar radiation value is eventually stored as average per triangle, this means that a higher
density (of for instance 0.5m by 0.5m) will not result in a higher resolution per triangle for
the vector method. It may only result in a slightly different average solar radiation value per
triangle as the average is then taken from more sampled points that may potentially be in
shadow. Of course, the resolution per sampled point is higher, but to emphasise once more,
this information is lost with the aggregation to triangle level. A last point to make, related to
the resolution, is that the raster created for the vector method has a resolution of 0.5m by 0.5m
while the actual resolution is determined by the size of each triangle.

A large difference in the solar radiation values can be found in the bottom (left) part of Figure
6.10. The reason for this large difference is not found out, but is probably caused by bugs in
the computations. But, after recalculation by extracting the normal vector from the roof surface
the resulting solar radiation of that part is similar to that part in the ArcGIS raster. To get an
indication of the sloped roof surfaces enriched with the average solar potential value computed
by SolarBAG, the 3D city model of the rasters in Figure 6.9, is shown in Figure 6.11.

Another factor that may cause differences in resulting solar radiation values is the algorith-
m/formula that is used per method. The method in ArcGIS processes raster data while the
implemented method in this research processes vector data. The difference in input data type
has as effect that a different algorithm/formula is needed for both methods. The solar radiation
calculation for the raster method is based on a viewshed algorithm. This algorithm determines
the raster surface locations visible from another raster pixel, known as the observer. The solar
radiation calculation for the vector method it is based on normal vectors and ray intersection
detection. This also means that the parameters may differ per method and might therefore not
completely match.

In equation 6.1 the formula for the computation of direct radiation for a raster in ArcGIS is
given7. Sconst refers to the solar constant, set at 1367W/m2, refers to the transmittivity of the

7https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-solar-radiation-is-
calculated.htm
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Figure 6.11.: 3D equivalent of the buildings in the rasters with solar potential in Wh/m2 stored
per triangle. Visualised in ParaView.

atmosphere, m(θ) refers to the relative optical path length, SunDurθ,α is the time duration
represented by the sky sector, SunGapθ,α is the gap fraction for the sun map sector and AngInθ,α
is the angle of incidence.

Dirθ,α = Sconst ∗ βm(θ) ∗ SunDurθ,α ∗ SunGapθ,α ∗ cos(AngInθ,α) (6.1)

In equations 6.2 and 6.3 the code excerpts taken from the solarpy library8 for the computation
of the solar irradiance on a plane based on the beam irradiation within the solarpy library is
given. The excerpts are a direct implementation of equations 4.1 and 4.5. gon(date) refers to
the extraterrestrial irradiance, prel refers to the pressure relation, m refers to the air mass ratio,
alpha int refers to the atmospheric extinction parameter set to 0.32 and cos(θ) refers to the
angle of incidence to the plane.

beam irradiance = gon(date) ∗ exp(−prel ∗ m ∗ alpha int) (6.2)

irradiance on plane = beam irradiance ∗ cos(θ) (6.3)

Between equation 6.1 and the code excerpts in equations 6.2 and 6.3 similarities can be found.
Sconst and gon(date) refer to the same parameter, namely the solar constant. However, in the
equation in ArcGIS just the constant of 1367W/m2 is taken while in the solarpy package the
value referring to gon(date) is a fraction of the solar constant influenced by the time of the
day. The transmissivity factor βm(θ) in the ArcGIS equation is related to the exp(−prel ∗ m ∗

8https://pypi.org/project/solarpy/
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alpha int) in the solarpy excerpt as these parameters are influenced by the weather and at-
mospheric conditions. The factors SunDurθ,α and SunGapθ,α in the ArcGIS equation are raster
exclusive and are related to the viewshed operation performed on the raster pixels. The last
parameter, AngInθ,α is related to cos(θ) referring to the angle of incidence on the plane. This
concludes the comparison between the equations for the ArcGIS solar radiation module and
the solarpy package.

Furthermore, the vector method in solarpy computes the beam solar radiation for clear-sky
conditions, meaning that the sun shines the whole day between sun rise and sun set all year
long. This results in best case solar radiation values. But in practice, the sun does not shine
the whole day of course as it might be cloudy or raining. In ArcGIS cloudy days can be taken
into account, reducing the amount of direct solar radiation reaching the earth. The parameter
responsible for this is the transmittivity: it is a factor (between 0 and 1) denoting the amount
of solar energy reaching the earth’s surface. The rest is received at the upper limit of the at-
mosphere meaning that it does not reach the earth’s surface. In the solarpy package which is
used for the vector method, this transmittivity factor cannot be set, but is encapsulated by the
pressure relation, air mass and atmospheric extinction. After some trial and error, with a trans-
mittivity factor of 0.7 the resulting solar radiation values computed in ArcGIS are the closest
to the results of the vector method. It can be expected that the factor needs to be 1 as the so-
larpy method computes beam solar radiation for clear-sky conditions. However, it does takes
atmospheric conditions such as the air mass and atmospheric extinction into consideration.
Therefore, the transmittivity factor of 0.7 is found to be suitable.

The discussed factors that may cause this difference are summarised below:

• Raster/sampling resolution;

• Different algorithm/formulas;

• Impossible to match input parameters exactly;

• Transmittivity.

6.3. Scalability Assessment

In order to show that the implemented method, SolarBAG, proposed in Chapter 4 is able to
process growing amounts of big data, its scalability needs to be assessed. The scalability is
addressed by executing a couple of scenarios in an experiment and by discussing some other
scalability issues.

6.3.1. Scalability experiment

To assess the scalability for SolarBAG practically, three scenarios are executed. In each scenario,
the model is run for a folder with a number of tiles. These numbers are respectively 1, 4 and
10 tile(s). A schematic of the spatial configuration of the tiles for each scenario is shown in
Figure 6.12a. The spatial context of the scenarios is the city of The Hague. A map with the
corresponding tiles overlaid is shown in Figure 6.12b. The program settings throughout all
these scenarios are equal and listed in Table 6.2. To recap the meaning of these settings, refer
to Section 5.2.2.

The specifications of the computer on which the three scenarios are run is given in Section
5.1.1.
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Parameter Value
No. of cores 10
LoD 2.2
Neighbour offset 20m
Sampling density 3m
Time configuration 1 year

Table 6.2.: The parameters of SolarBAG for the scalability assessment.

(a) Schematic configuration. (b) Map of the configuration.

Figure 6.12.: Configuration of the tiles.

The goal of the scalability assessment is to simply check whether the implemented program
terminates. If for a certain amount of tiles, the program crashes, one can simply say that the
program is not scalable. Another interesting part of the assessment is to keep track of the time
it takes to process all the tiles for a scenario. The results per scenario are shown in Tables 6.3,
6.4 and 6.5. Alongside the time, some other characteristics per tile are stored. These are the tile
ID as used in the 3D BAG data set, the spatial extent of the tile, the number of buildings the
tile contains, the number of buildings inserted in the R-tree used for intersection detection and
the number of neighbouring tiles.

Table 6.3 shows the results for the scenario with 1 tile. As expected, this scenario terminates.
The number of buildings in the R-tree is of course the same as the number of buildings in the
tile itself as no neighbouring tiles are present.

Table 6.4 shows the results for the scenario with 4 tiles. This scenario terminates as well. For a
tile the number of buildings in the R-tree is not the same as the number of buildings in the tile
anymore, because for each tile 3 neighbouring tiles are present. Therefore the execution of tile
1 in this scenario takes a bit longer than in the first scenario with only 1 tile. This shows that
more buildings in the R-tree will result in slower processing times.

Table 6.5 shows the results for the most interesting scenario: the scenario with 10 tiles where the
middle tile has neighbouring tiles in all directions. This scenario also terminates successfully.
So, simply put, the implemented model is scalable. But there are some peculiarities that will
be discussed.

When looking at the times, especially in Table 6.5, one can see that the execution times are
not always relative to the number of buildings in the tile. Different building sizes are a factor
that influences execution time. If we compare tile 5880 with tile 5873 in Table 6.5, we can see
that tile 5880 contains less buildings than tile 5873, but takes about an hour longer to process.
After visual inspection on the type of buildings in both tiles, it can be concluded that tile 5880
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Tile ID
Tile extent
(m)

No. of
buildings
in tile

No. of
buildings
in R-tree

No. of
neighbour
tiles

Time
(hh:mm:ss)

Tile 1 5801 652 x 686 1735 1735 0 02:18:53
Total time 02:18:53

Table 6.3.: Table showing the characteristics and the execution time per tile for a scenario with
1 tile.

Tile ID
Tile extent
(m)

No. of
buildings
in tile

No. of
buildings
in R-tree

No. of
neighbour
tiles

Time
(hh:mm:ss)

Tile 1 5801 652 x 686 1735 2760 3 02:27:12
Tile 2 5802 652 x 638 1620 2294 3 01:12:54
Tile 3 5875 671 x 647 1236 1825 3 01:07:28
Tile 4 5876 658 x 639 955 1659 3 00:54:17
Total time 05:41:51

Table 6.4.: Table showing the characteristics and the execution time per tile for a scenario with
4 tiles.

Tile ID
Tile extent
(m)

No. of
buildings
in tile

No. of
buildings
in R-tree

No. of
neighbour
tiles

Time
(hh:mm:ss)

Tile 1 5801 652 x 686 1735 2760 3 02:24:26
Tile 2 5802 652 x 638 1620 2646 5 01:11:06
Tile 3 5805 636 x 635 1688 2408 3 00:47:08
Tile 4 5872 644 x 654 1724 2644 5 00:48:23
Tile 5 5873 650 x 648 1400 1976 3 00:45:50
Tile 6 5875 671 x 647 1236 2412 8 01:06:04
Tile 7 5876 658 x 639 955 1951 5 00:52:54
Tile 8 5877 658 x 659 888 1667 4 00:44:12
Tile 9 5878 636 x 679 1352 1981 6 01:02:03
Tile 10 5880 694 x 646 1124 1475 2 01:46:05
Total time 11:28:11

Table 6.5.: Table showing the characteristics and the execution time per tile for a scenario with
10 tiles.

contains much larger buildings than tile 5873. Tile 5873 covers a neighbourhood with mainly
house blocks and small sheds, while tile 5880 covers large building blocks in the city centre.
In Figure 6.13, the buildings in both tiles are shown where the red surfaces represent the roof
surfaces. In this case larger buildings mean larger roof surfaces. If a building has a larger
roof surface this means that more points will be sampled leading to more computations for the
building and altogether to more computations for the tile.

Furthermore the parameter settings, and especially the neighbour offset, are chosen as listed
in Table 6.2 in order to make processing times relatively fast. A neighbour selection offset of
20 meters is quite low as compared to the neighbour offset of 150 meters used for the quality
assessment. Tall buildings, located more than 100 meters away that might cast shadows on
another building, will not be taken into account with these settings. However, the idea of the
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(a) Buildings in tile 5873. (b) Buildings in tile 5880.

Figure 6.13.: Tile 5873 versus tile 5880.

scalability assessment is not to compute accurate solar radiation values, but to assess whether
SolarBAG is scalable for large amounts of data. Therefore, a neighbour offset of 20 meters is
chosen to reduce execution times.

If the scenarios would be run on a PC with better specifications, such as a higher RAM or more
multiprocessing cores the execution times would be lower, i.e. the program will run faster.

The runtime of the implemented model is also compared with the runtime of the ’Area Solar
Radiation’ tool in ArcGIS. For this, tile 5873 is taken and rasterised and used as input for the
tool in ArcGIS. The settings of the ArcGIS tool are the same as in Section 6.2.2. The time it
takes to process the raster and create the resulting raster is 00:06:55. Compared to the time for
the entry of tile 5873 in Table 6.5, this is about 6,5 times faster. This is caused by the fact that
executing the ray tracing operation on many building objects in the implemented vector model
is more computational-intensive than the viewshed operation in the raster model.

6.3.2. Other scalability issues

In the previous section, it is shown that SolarBAG is scalable for multiple tiles in CityJSON for-
mat. However, scalability covers much more than just telling that a program can be executed
for large data in a certain format. What happens when the tiles are not rectangles of the same
size and what happens if the 3D building models are not stored in tiles in CityJSON format,
but in a DBMS for instance? And, if one wants to actually use SolarBAG for all the tiles in the
3D BAG data set, is this possible right away and how much time would it take? These issues
will be adressed in this section.

In the scalability experiments, the tiles are all of the same size. If the tiles would be of a different
size, SolarBAG will not behave differently. It is still possible to process the tiles with their
correct neighbouring tiles as the selection of the neighbouring tiles are based on the buffer
applied to the current tile. As shown in Figure 6.14, the buffer will also cover the spatial extent
of the tiles of different sizes. As explained in Section 5.2.2, the bounding box including the
buffer of the current tile will be used as query to the R-tree to select the bounding boxes of the
neighbouring tiles.

In the case the 3D building models are not stored in tiles, but all in one batch such as a DBMS a
different approach in processing the 3D building models as this is not possible with the current
implementation. A way to do this is to split up the buildings stored in the DBMS into smaller
areas by using an R-tree indexing structure. Then, each smaller area can be processed as before.
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Figure 6.14.: Tile configuration with different tile sizes.

In the case, the building models are not stored in CityJSON files but in CityGML9 or Wavefront
OBJ10 format, a different file parser and writer should be implemented, but the processing of
the building geometries itself could be done more or less similar.

The question whether SolarBAG is capable to run for all the buildings in The Netherlands is
interesting. In theory, the answer is yes. A folder with all the tiles could be given as input to the
program and after (quite) a while, a folder with the enriched tiles will be given as output. The
practical downsides, however, are that it is quite cumbersome to prepare a folder with all the
tiles being pre-processed, that the process will take a lot of time and that there is a chance that
the system will break on unforeseen exceptions or errors that are not covered in the scalability
experiments in the previous section.

In order to compute the total execution time for processing all tiles in The Netherlands, the
resulting time from the scalability experiment for 10 tiles could be extrapolated to estimate
the execution time for all the tiles in The Netherlands. The easiest way to do this, is to count
all the buildings in the 10 tiles and count all the buildings in all the tiles. Then, compute
the factor between these two counts and multiply this factor by the execution time for the 10
tiles. The result is approximately 338 days. One should be aware that extrapolation has a high
uncertainty and a high risk of producing meaningless results. Therefore, this number is just
seen as a rough estimation.

9https://www.ogc.org/standards/citygml
10http://paulbourke.net/dataformats/obj/
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This chapter first discusses the limitations of the research, followed up by the conclusion revis-
ing and answering the research objectives introduced in Section 1.1. Afterwards, recommen-
dations are listed as future work.

7.1. Discussion

Although the methodology carried out in this research is considered to be of sufficient quality,
there are some comments to be made. In this section the limitations and challenges of the
research are discussed.

First, it is worth noting that the ground truth comparison and the comparison with ArcGIS are
not completely fair comparisons. For the ground truth comparison, global radiation from the
ground truth is compared with direct radiation from the solarpy solar model, but in such a
way that the comparison makes sense. However, it would be better to compare the same types
of radiation with each other.

The comparison with ArcGIS has another reason of not being completely fair. Even though
a density value, serving as resolution, can be set as parameter to do point sampling, this is
not the actual resolution of the resulting solar potential values. In the experiments a sampling
density of 3 meters is used, but in the end the values are aggregated per triangle leading to
a loss of resolution. For example, if for a triangle 15 points are sampled, only the statistical
values such as average, minimum and maximum are stored for the triangle. If for instance,
a density of 1 meter is chosen, this will lead to more points sampled for the triangle, but in
the end only the statistical values for the points on the triangle are stored, leading to a loss of
resolution again. Simply put, the resolution is not very relevant for the final aggregated solar
potential value. It is relevant for the processing time, because a higher sampling density results
in slower processing times as more points are sampled that need to be processed.

Another limitation related to comparing results has to do with a lack of experiments on param-
eter tweaking. Parameter tweaking gives insights into the processing time of the implemented
model and into the accuracy of the results for varying parameter settings. In this way a trade-
off between accuracy and performance could be established.

The second type of limitation to discuss is the usage of workarounds instead of sound solutions
to solve a couple of issues. An issue that was posed with triangulating the 3D BAG tiles within
the model, is solved by doing the triangulation as a pre-processing step. However, it would
be much more convenient to have it integrated within the model, making the model easier to
use. Another issue is the error raised when finding empty lists of grid points after performing
point sampling on a triangle. This is now solved by just skipping this triangle instead of finding
the cause of the problem. Furthermore, the implemented model is still sensitive to issues in
geometry processing. There are still warnings raised when running the model. An example is
the warning that raises an error on extracting eigenvalues in the vtkMath module of package
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PyVista. According to other users, this gives unpredictable behaviour. Luckily, the program
does not crash so for now it is not much of an issue.

The third type of limitation to discuss has to do with the processing time of the implemented
model. It is still quite slow to process a whole tile. The neighbour filtering and data organisa-
tion are not optimal. At this moment, the bottleneck of the program is within the ray-tracing
part. To determine whether a building is put into shadow by another neighbouring building,
a ray trace operation needs to be performed on the neighbouring for a specific timestamp. To
make this process faster, the number of neighbouring buildings for which ray tracing needs to
be performed should be as small as possible. At this moment, a lot of unnecessary buildings
are ray traced making the program slow. So, the improvement can be achieved by implement-
ing a better neighbouring filter algorithm.

This improvement in neighbour filtering would be achieved by selecting neighbours from the
R-tree to perform ray tracing on based on the extent of the ray of a certain timestamp repre-
sented by a number of bounding boxes. This should result in less neighbouring buildings to
ray trace than with the current solution. However, it was not possible to do this while multipro-
cessing, because there is no way to store a pointer to the R-tree as the R-tree is not thread-safe1.
In practice, querying an R-tree while multiprocessing will not give an error, but it will result in
an empty R-tree query result. Instead another approach to only ray trace neighbouring build-
ing within the extent of a ray of a certain timestamp on a certain date was tried. This can be
achieved by querying the R-tree with the extent of the ray for each specific timestamp before
performing multiprocessing and storing the returned neighbouring buildings per timestamp.
But, in practice this turned out to be even less efficient than the current method implemented,
because the time-consuming operation of create sun rays to query on the R-tree was operated
on a single processor for each building.

The fourth type of limitation to discuss has to do with the scalability of SolarBAG. The scal-
ability for the whole of The Netherlands is questionable. Will there be unforeseen errors in
the geometries of the buildings in other tiles and will the computer memory and processors
be able to cope with all that data? This is considered an uncertainty. Also, SolarBAG is only
capable of processing tiles from the 3D BAG in CityJSON format, so SolarBAG is not scalable
to other file types. More discussion on these scalability issues is found in Section 6.3.2.

The fifth type of limitation is related to the physical circumstances of installing solar panels on
roof surfaces. The fact that parts of the roof surfaces might not be suitable for installation of
solar panels is not taken into account. Roof surfaces can consist of obstacles such as chimneys,
antennas or dormers, or roofs are simply too small to install panels. Also, the solar radiation
captured by solar panels need to be converted to DC and AC in order to be used by house-
hold appliances. With this conversion, there is a loss of energy which need to be taken into
account.

Within this research, walls are not taken into account for the computation of solar radiation.
SolarBAG could easily be extended to also compute the solar potential on walls. To compute
it more efficiently, the method by Jaugsch and Löwner [2016] using observer point columns
could be used. Just like roof surfaces, wall surfaces contain obstacles such as windows, doors
and balconies on which solar panels cannot be installed. Furthermore, walls have a higher
chance to be in shadow than roof surfaces.

A next limitation is related to the visualisation of the results. The solar potential values on each
triangle in the resulting CityJSON file cannot directly be represented with a colour scheme in
Ninja. For this, separate code should be written to convert the CityJSON file to ’.obj’ or ’.vtk’

1https://gis.stackexchange.com/questions/304711/python-rtree-and-parallelized-code
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format for instance. The conversion of CityJSON to ’.vtk’ is done in this research. Besides
that, it might be better to change the the unit of the solar potential values from Wh/m2/year
to kWh/m2/year as the yearly solar values are quite large. This could be done by dividing the
current values by 1000. It would make the value better readable, but it does not change the
value itself. On top of that, it would be useful to include an average solar potential value per
triangular surface with unit kWh/year in order to get insight into the aggregated value for the
surface. But this is just a design choice and depends on the use case of the data.

The last limitation to discuss is not really a limitation, but more a discussion whether the
implemented model could also be applied to other city models in the world. The title of this
research suggests an efficient solar potential estimation of 3D buildings with the 3D BAG taken
as use case. So, to what extent is the implemented model applicable to other data sets? This
can be answered quite easily, as the only constraint is that the city model should be stored in a
valid CityJSON file containing triangulated building geometries of LoD 2.0 or higher with roof
surfaces as semantic surfaces. If a folder with one or multiple CityJSON files are then given as
input to the program, a CityJSON file enriched with solar potential values per roof surface will
be the output.

7.2. General conclusion

In this section, the main research question will be answered by giving answers to the 4 sub-
questions. The main research question is:
How can the solar potential of vector buildings in large 3D city models, such as the 3D BAG data set,
be computed efficiently?

The sub-questions are:

1. How can spatial indexing be used to speed up shadow casting computations on the 3D BAG vector
data set?

2. What simplifications in the solar irradiation model can be applied?

3. How can the solar irradiation model be implemented in Python by using open source libraries and
open data?

4. How should the computer memory be managed while processing the buildings stored in tiles in
the 3D BAG data set?

Below, all the sub-questions are answered.

Sub-question 1:
How can spatial indexing be used to speed up shadow casting computations on the 3D BAG vector data
set?

At first, a general BVH was intended to be used as indexing structure. However, it appeared to
be more useful and easier to use a specific type of BVH, namely an R-tree. The R-tree hierarchi-
cally stores the geometry of each building in the 3D BAG data set encapsulated in a bounding
box. When buildings in a certain geographic extent are requested, first the bounding boxes
containing these buildings and located within the geographic extent are queried. This ensures
fast and easy look-up of the actual buildings as many bounding boxes can be skipped and only
the buildings in the relevant bounding boxes need to be traversed. Implementation-wise, the
R-tree can be used as spatial indexing by using the ’Rtree’ library in Python.
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Sub-question 2:
What simplifications in the solar irradiation model can be applied?

Computing the solar potential for all buildings in the 3D BAG at hourly intervals for each day
in the year takes a lot of time. A simplification applied in this research is to take one day for
each month to compute the solar potential. This is the 21st day of each month as this will be the
longest day of the year in June and the shortest day of the year in December, and therefore they
compensate each other. Instead of computing the solar potential for each day in the year, taking
one day per month, so only 12 days a year, will drastically decrease the computation time by
a approximately factor of 30. The solar potential outcomes are still realistic as proved by the
comparison with the solar radiation module available in ArcGIS. There are some differences
detected at corners of building roofs, caused by resolution differences. Also, there are still
some bugs, but the resulting solar potential values per roof surface are at least an indication.

Furthermore, the process of shadow casting takes a lot of computation time when this needs to
be executed for a lot of buildings. Therefore the number of buildings for which shadow casting
has to be applied, needs to be as small as possible. In this research, the neighbouring buildings
of a building are considered as potentially putting the building into shadow. However, not
every building in the neighbourhood will cast a shadow on this building. Therefore, filters
are applied based on the distance of the neighbouring building to the considered building,
the height difference and the orientation of the neighbouring buildings. After applying these
filters, only neighbouring buildings with a high chance of putting the considered building
into shadow are kept and subjected to shadow casting operations. This has as benefit for the
model that the computation time is improved. Moreover, applying filters will not influence the
resulting solar potential values of the building as only buildings that would not cast shadows
to the building are removed. Therefore, the solar potential outcomes after applying these filters
are still realistic.

Sub-question 3:
How can the solar irradiation model be implemented in Python by using open source libraries and open
data?

The solar irradiation model is successfully implemented in Python with the usage of open
source libraries within Python and the large open data set 3D BAG, containing 3D building
models of all buildings in The Netherlands. The implemented methodology is presented in
Chapter 5. It is possible to enrich a 3D BAG tile, stored in CityJSON format, containing build-
ing geometries of LoD 2.2 with statistics on yearly solar potential values per triangular surface.
The most important open source libraries used are NumPy, PyVista, solarpy, cjio and RTree.
NumPy and PyVista are both used for data organisation and mathematical computations. So-
larpy is used to compute the direct radiation for each roof surface. Cjio is used to read and
write CityJSON files and RTree is used to wrap the building geometries in R-trees.

Sub-question 4:
How should the computer memory be managed while processing the buildings stored in tiles in the 3D
BAG data set?

Processing big data requires a lot of processing power and computer memory. Therefore smart
solutions are necessary to make sure that the PC’s resources are able to cope with this. For
this research the solution for managing the computer memory lies in subsequently storing and
processing the required spatial data for each tile. When processing a tile, only the buildings
in the tile and buildings within a buffer from directly neighbouring tiles are stored in memory
and in an R-tree. When getting to the next tile, the memory is cleaned and the buildings in the
following tile are loaded, stored and processed. This ensures that the PC can always execute
the implemented model for increasing number of tiles.
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7.3. Future work

This section lists some recommendations for future work with respect to this research. From
the discussion in Section 7.1, recommendations can be derived. The important topics for fu-
ture work to outline are implementation improvements, solar radiation model extensions, and
additional analyses.

7.3.1. Efficient implementation improvements

Efficient implementation improvements have as goal to make SolarBAG more computational
and memory efficient. A couple of ideas to make SolarBAG more computational efficient are
discussed.

The first straightforward computational improvement would be to make use of the GPU to
manipulate geometries and perform ray tracing for shadow casting operations. As stated by
Viana-Fons et al. [2020], usage of the GPU will accelerate shadow casting operations and simple
geometric computations. A straightforward improvement on memory limitation would be to
make use of a more powerful computer to run SolarBAG for a lot of tiles.

In order to reduce the amount of ray tracing operations to be performed on neighbouring
buildings potentially casting a shadow on another building, better filters need to be applied.
Currently, the neighbouring buildings are filtered on their distance, height and orientation
with respect to the currently processed building. On these buildings the ray trace() function
is applied to find out whether they are actually blocking a sun ray towards a another build-
ing. This operation is very computational-intensive, so the amount of neighbouring buildings
subject to ray tracing need to be as small as possible. A way to achieve this is to only perform
the ray trace operation on neighbouring buildings that are within the spatial extent of a couple
of bounding boxes representing the ray. A schematic visualisation of this process is shown
in Figure 7.1. The resulting buildings can be retrieved by querying the R-tree with bounding
boxes representing the ray.

(a) Building with neighbour-
ing buildings.

(b) Building with neighbour-
ing buildings close to a sun
ray.

(c) Building with neighbouring
buildings that are subject to
ray tracing.

Figure 7.1.: Improvement of filter operation on neighbouring buildings

Another way to increase the performance of SolarBAG is to apply mesh simplification to re-
duce the number of triangles contained in 3D building models. Zhou et al. [2021] make use of
this technique to remove unnecessary vertices or meshes. This has as effect that a building will
consist of fewer triangular surfaces, increasing performance.
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7.3.2. Solar radiation model extensions

In order to better simulate real-life situations, the solar radiation model could be extended
in several ways. The first way is to incorporate diffuse and reflected radiation into the solar
radiation model. Right now, only direct radiation is taken into consideration as it has a contri-
bution of 77% to the global radiation. The remaining 23% is accounted by diffuse and reflected
radiation. Incorporating diffuse and reflected into the solar radiation model, by extending the
formula in equation 4.1 will give a better representation of the solar potential of a building
roof.

As SolarBAG takes vector data as input, wall surfaces are also modelled. This means that the
solar potential of buildings in the 3D BAG could also be computed for walls. This extension
is quite easy to implement, as the same approach could be taken as for roofs. However, the
chance that a wall surface is put into shadow by another building is higher than for roof sur-
faces. Therefore, smart and efficient approaches should be taken, such as described by Jaugsch
and Löwner [2016]. They use observer point columns to efficiently execute shadow casting on
wall surfaces.

Instead of downloading CityJSON files from the 3D BAG data set and use them as input to
SolarBAG, the building data could also be accessed from a database. 3D BAG has the option
to dump the building geometries in a PostgreSQL database. PostgreSQL has the PostGIS ex-
tension which is suitable to storing and managing large geospatial databases. Making use of
a database, solves the cumbersome process of downloading and preprocessing the CityJSON
files before inputting it to SolarBAG.

7.3.3. Additional analyses

Next to improvements and extensions, additional analyses on the current solar radiation model
could be performed. Right now, an R-tree is created per tile in which buildings are hierarchi-
cally grouped together in bounding boxes. It might also be efficient to create an R-tree per
building in which the triangles forming the building are grouped in an R-tree.

In this research, a lot of parameters can be set for the solar radiation model. It is not com-
pletely investigated what the effect of these parameters are on the accuracy and performance
of the implementation system. Therefore a thorough analysis by parameter tweaking could be
performed to illustrate the overall impact.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

A.2. Reproducibility marks

Criteria Mark
Input data 3
Preprocessing 2
Methods 2
Computational environment 2
Results 1
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A.3. Self-reflection

In my research, I have made use of the large open data set 3D BAG containing all the buildings
geometries of The Netherlands. The tiles in which the buildings are stored are available to
download in numerous formats or to use in web based systems or databases. Therefore, the
mark for input data is the highest possible.

The implemented methodology is made available on GitHub1. A readme with how-to-use the
program is provided. The preprocessing steps are explained as well as what systems to use
and how to run the code. Furthermore, the methodology is intended to explain the steps in
such a way that a skilled reader and programmer could implement the system themselves.

The results are not all available in the GitHub repository. They are documented in the thesis.
Statistical measures are not outstanding.

1https://github.com/robinjo78/solarBAG
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B. Additional Figures

B.1. ParaView screenshots

Figure B.1.: Early in research point sampling visualisation, with solar radiation stored per tri-
angle.
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B. Additional Figures

Figure B.2.: Early in research point sampling visualisation, with solar radiation stored per
point.

Figure B.3.: Visualisation of the sun rays throughout a day pointing to a grid point.
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B.1. ParaView screenshots

Figure B.4.: Visualisation of average solar potential values (in Wh/m2) per triangle in ParaView
- enlarged.
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