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 a b s t r a c t

We present a stable and accurate algorithm for tracing principal stress lines (PSLs) in shell struc-
tures, applicable to both first- and second-order triangular and quadrilateral elements. The al-
gorithm operates directly in the isoparametric space of the elements, leveraging their inherent 
shape functions to account for curved geometry without resorting to artificial subdivision. This 
approach enables, for the first time, a consistent stress topology analysis for shell elements, in-
cluding a rigorous treatment of stress degeneracies. Our PSL seeding strategy integrates stress 
topology with the curved shell surface, ensuring a uniform and consistent PSL distribution. We 
evaluate the algorithm’s performance through a series of numerical experiments, demonstrating 
its utility for advanced stress analysis. Furthermore, we demonstrate the generation of a globally 
consistent, space-filling PSL structure, which is directly applicable to downstream tasks such as 
lightweight structural design. To support practical use, we provide a publicly available MATLAB 
implementation. The implementation features a unified file interface that supports diverse mesh 
types and is compatible with standard finite element method (FEM) output, offering a versatile 
tool for stress investigation and design evaluation in computational mechanics. The code is avail-
able at https://github.com/PSLer/PSLshell.

1.  Introduction

The principal stress lines (PSLs) offer an intuitive and physically meaningful representation of how stresses propagate through a 
structure. By following the trajectories of principal stresses, PSLs reveal the underlying load paths that govern structural behavior, 
providing insights beyond what scalar stress measures can capture. For shell structures, PSLs are of particular importance: they 
visualize stress flow over curved surfaces and thus directly support engineering tasks such as aligning fibers in composite laminates, 
placing stiffening ribs along efficient load paths, and identifying critical regions that dominate the stress-carrying capacity of thin-
walled components [1–5]. High-quality PSL generation and distribution, therefore, play a significant role in both the interpretation 
of structural mechanics and the guidance of practical design decisions.

As a trajectory-based representation of stress fields, PSLs trace the principal stress directions across a shell surface and are often 
visualized using color to convey stress magnitude. They reveal the tensile and compressive directions that shape the shell’s under-
lying load-bearing behavior and show how these directions adapt to geometric curvature, boundary conditions, and applied loads. 
Patterns in the compressive PSLs can help identify mechanically sensitive regions: areas where these trajectories converge or ex-
hibit pronounced curvature often coincide with high compressive stress and may correlate with increased susceptibility to buckling 
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$[f_1^{[\min ]}, f_1^{[\max ]}]$


$[f_2^{[\min ]}, f_2^{[\max ]}]$


$Q8$


$Q8$


$(\xi ,\eta )\in [-1,1]^2$


\begin {equation}u=\frac {\xi +1}{2}, \quad v=\frac {\eta +1}{2}, \quad (u,v) \in \left [0,1]\right ]^2 \label {Xeqn31-A.1}\end {equation}


$f \in \lbrace f_1, f_2 \rbrace $


$(u,v)$


$3\times 3$


\begin {equation}(u,v) \in \lbrace 0, \frac {1}{2}, 1 \rbrace \times \lbrace 0, \frac {1}{2}, 1 \rbrace \label {Xeqn32-A.2}\end {equation}


$Q8$


$f$


$(u,v)$


$3\times 3$


$\bm {S}$


$s_{ij}$


$f(u_i, v_j)$


$(s_0, s_{\frac {1}{2}}, s_1)$


$(b_0, b_1, b_2)$


\begin {equation}b_0 = s_0, \quad b_2=s_1, \quad b_1 = 2s_{\frac {1}{2}} - \frac {1}{2}(s_0 + s_1) \label {Xeqn33-A.3}\end {equation}


$3\times 3$


$\bm {C}$


\begin {equation}\label {eqn:C} \begin {bmatrix}b_0 \\ b_1 \\ b_2 \end {bmatrix} = {\underbrace {\begin {bmatrix} 1 & 0 & 0\\ -\frac {1}{2} & 2 & -\frac {1}{2} \\ 0 & 0 & 1 \end {bmatrix}}}_{\bm {C}} \begin {bmatrix} s_0 \\ s_{\frac {1}{2}} \\ s_1 \end {bmatrix}\end {equation}


$\bm {S}$


\begin {equation}\bm {B} = \bm {C} \bm {S} \bm {C}^{\mathrm {T}} \label {Xeqn35-A.5}\end {equation}


\begin {equation}\min \bm {B} \leq f(u,v) \leq \max \bm {B} \label {Xeqn36-A.6}\end {equation}


\begin {equation}[f^{[\min ]}, f^{\max }] = [\min \bm {B}, \max \bm {B}] \label {Xeqn37-A.7}\end {equation}
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Fig. 1. The generated PSLs by the proposed framework, where the trajectories of the major and minor PSLs are separately color-coded with major 
and minor principal stresses along the corresponding trajectories. From yellow to blue, the corresponding principal stress values vary from the 
maximum to minimum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

phenomena [6,7]. Tensile PSLs that vary smoothly across the surface indicate regions where the direction of tensile stress changes 
gradually, which can be a qualitative sign of efficient tension distribution and overall structural efficiency. At a broader structural 
scale, localized variations in the direction or curvature of PSLs may highlight geometric features or stress gradients that influence 
how loads are redistributed toward boundaries and supports [8,9]. In this sense, PSLs offer a physically grounded visualization of 
load flow, providing interpretable insight into how shells transmit and redistribute stresses [4].

Beyond the analytical values, PSLs also offer a valuable perspective for lightweight structural design, where stress-aligned material 
layouts are essential for achieving structural efficiency. This relevance traces back to Michell’s Theory [10], which establishes that 
a stiffness-optimal structure avoids shear stresses and aligns material distribution with principal stress directions, a principle echoed 
in modern topology-optimization frameworks [11–13]. At the same time, stringent design requirements, such as tolerance against 
local damage, robustness to variations in loading direction, and resilience against buckling, often motivate structural layouts with 
increasingly fine-grained details. Capturing these features within a conventional topology optimization pipeline requires simulations 
at very high resolution, which quickly becomes computationally prohibitive [14–17]. This motivates interest in lower-cost design 
strategies that require only a single stress analysis rather than repeated high-fidelity optimization cycles.

Within this context, PSLs can be exploited as a heuristic material-alignment strategy when strict optimality is not required [18–
20], as a diagnostic tool for interpreting topology optimization outcomes [21], or as guiding fields within hybrid methods that 
combine trajectory-based material alignment with numerical optimization [22,23]. These approaches assume that the stress field 
of the initial structure remains sufficiently close to that of the PSL-guided design, despite the inherent mismatch introduced when 
material layout is updated. Several infill-design studies have shown this approximation within their design settings [12,22,23]. While 
stress-informed methods have been established for 2D and 3D solids, applying them to shell structures is less straightforward and 
requires both theoretical and algorithmic adaptations. For example, recent work  [24] uses PSLs to design rib reinforcements for 
thin shells, improving stiffness and regularity. However, that approach requires significant regularization of nodal stress directions 
in quadrilateral elements to interface with generic streamline integration tools (i.e., Matplotlib’s streamplot). In contrast, our tracing 
algorithm is tailored to the inherent features of stress fields, eliminating the need for such regularization.

Achieving high-fidelity PSLs is particularly critical for shell structures, since their curved geometries and thin-walled nature 
make design decisions highly sensitive to the accuracy of stress trajectory representation. However, tracing PSLs on shell structures 
is fundamentally more complex than in 2D or 3D solids, where the principal directions are defined in the global Cartesian frame 
and trajectories can be integrated directly. By contrast, the principal stresses are usually interpreted on the tangent plane of the 
shell elements, i.e., an element-wise local frame, while the PSLs still need to be displayed in the global Cartesian frame. Ensuring 
consistency between these representations is nontrivial, particularly as trajectories cross elements with varying orientations. The 
challenge is further compounded by geometric curvature, which requires PSLs to remain faithful to the surface embedding and 
to navigate features such as creases. Higher-order shell elements, often introduced to capture curved geometry more accurately, 
increase the difficulty even further, since nonlinear interpolation complicates both direction evaluation and trajectory integration. 
Singularities, characterized by stress degeneracies, also demand careful treatment for a faithful PSL distribution. In applications, 
incomplete PSL distribution risk missing dominant load paths and separatrices, overlooking localized stress concentrations that are 
critical for reinforcement placement. Comprehensive coverage of PSLs across the shell is therefore essential [4,5,19,25]. In current 
practice, however, such coverage is often pursued by first generating a dense set of PSLs and then clustering to extract members, 
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which inevitably amplifies noise, obscures behavior near degeneracies, and relies on heuristic post-selection. This is partly because the 
quality of individual trajectories cannot be guaranteed, and the topological separatrices of the principal stress field are overlooked.

This paper is motivated by the above and aims to generate curvature-faithful and analysis-consistent stress trajectories on shell 
structures. Due to the limitations of pre-smoothed direction fields, we adopt a surface-intrinsic, FEM-aligned strategy for PSLs gener-
ation. Conceptually, the tracing algorithm does not predefine a direction field. Instead, it evaluates the stress state in which the curve 
currently resides and determines the principal direction on the fly, so PSL trajectories respond to the actual mechanics rather than 
to a preprocessed proxy. This design keeps the method agnostic to element type, allowing it to operate seamlessly on a wide range 
of element types, as well as their hybrids. The curvature is preserved by querying geometry and stress through the elements’ native 
interpolation. To address ambiguity where principal values coalesce and to distinguish genuine mechanical features from potential 
tensor-field artifacts, we introduce the stress topology analysis to preserve structural coherence in the resulting PSL distribution. 
Instead of generating a dense PSL distribution first and then conducting clustering operations to get a visually clean PSL distribu-
tion [5,25], we propose a surface-adapted spacing mechanism to produce a domain-filling and evenly spaced PSL distribution suitable 
for analysis and design. Fig. 1 showcases the generated results in various applications.

Methodologically, PSL generation can be regarded as part of stress tensor visualization. In general, stress tensor visualization 
techniques can be grouped into three complementary categories based on the chosen visual abstractions: trajectory-based, glyph-
based, and topology-based [26]. Trajectory-based approaches integrate principal stress direction fields to produce curves such as 
PSLs, thereby revealing stress flow in an intuitive manner [27]. Seeding strategies are often incorporated into this process to control 
line density and coverage [28,29]. Texture-based extensions such as HyperLIC also fall within this category [30]. These methods are 
valued for their ability to convey directionality, continuity, and convergence or divergence of stress fields. Glyph-based approaches, 
in contrast, encode tensor magnitudes and orientations locally (e.g., ellipsoids or superquadrics), allowing dense and quantitative 
inspection without integration, though at the expense of global continuity and with the risk of visual clutter in complex datasets [31,
32]. Topology-based approaches analyze the structural properties of the tensor field by identifying and classifying degenerate points 
in 2D or degenerate curves in 3D and extracting the associated topological skeleton [33–35]. Recent advances have enriched this 
category with topological features such as mode faces, transition points, and core lines [36–38], providing a foundation for structurally 
consistent seeding and reliable organization of PSL patterns, though the physical interpretation of these features and the practical 
robustness of the corresponding extraction methods are still in their infancy. Comprehensive surveys have contextualized these 
categories in mechanics, highlighting their relevance for stress and strain analysis and summarizing best practices [39]. Specific to 
PSL generation on shell structures, the problem falls into the trajectory-based category. However, its practical realization requires a 
range of adaptations and extensions to planar or volumetric settings, as well as the integration of other categories.

For shell structures, trajectory-based PSL pipelines primarily aim to identify a set of trajectories that represent the principal stress 
directions and typically follow one of several implementation patterns. A prevalent choice is to precompute principal directions on a 
triangulated surface, often after down-converting higher-order shells to first-order triangles. This is followed by smoothing or orienting 
the field, and then integrating streamlines in the world space. This route is simple and fast, benefiting from mature tooling (e.g., 
Karamba3D [40]) and has recently been explored by [25,41]. However, this routine linearizes geometry, inherits noise from stress 
recovery, and requires heavy field smoothing or orientation. Especially when hybrid or high-order shells are present, the necessary 
down-conversion can degrade curvature fidelity and impair mesh refinement behavior. Besides, though the smoothing operations 
on the principal stress directions can lead to more regular PSL trajectories, the directional deviations between the generated PSL 
trajectories and the original principal stress directions can become large, especially when the field carries singularities [42]. A second 
technical routine flattens the surface via a conformal or quasi-conformal parameterization, transforms the tensor in 2D, conducts the 
tracing operations, and then maps trajectories back. While numerically clean in the plane and convenient for seeding and texture or 
LIC-style filtering, it introduces distortion and management of seam and atlas. Further, it is still challenging to maintain fidelity for 
curved and high-order geometry  [43–45]. A third line integrates steps in ambient 3D with closest-point or level-set re-projection 
to the surface. This is straightforward and can be metric-aware if a signed-distance or closest-point representation is maintained. 
However, repeated projections incur tangency drift, thus, are sensitive to high curvature, and become intricate at element boundaries 
and creases [46–48]. Finally, some approaches construct optimized frame fields to enforce global consistency before integrating 
integral curves. These fields improve robustness to noise and orientation flips but depend on pre-processing and smoothing that 
may blur stress variation, and they do not remove ambiguities near degeneracies or guarantee domain-filling coverage [49–51]. 
Taken together, existing strategies trade speed and convenience for geometric linearization, relying on pre-smoothed direction fields, 
projection, and parameterization artifacts that incur particularly brittle behavior near creases on curved high-order elements and 
across mixed discretizations.

The remainder of the paper is organized as follows. Section 2 establishes the conceptual foundations and notation. Section 3 
details the PSL tracing algorithm. Sections 4 and 5 present the stress-topology analysis and the topology-aware PSL seeding strategy, 
respectively. Numerical verifications and case studies are reported in Section 6. Section 7 concludes the paper and outlines directions 
for future work.

2.  Shell elements

Before introducing our PSL tracing algorithm on shell structures composed of first- and second-order triangular and quadrilateral 
elements that are separately denoted as T3, Q4, T6, and Q8, we review the fundamental concepts underlying such representations. 
Unlike the finite elements of volumetric and planar structures that only involve the global Cartesian frame () and the natural 
coordinate system ( ), the distinctive feature of shell elements is the presence of an additional local frame () attached to the shell’s 
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Fig. 2. Schematic diagrams of the shell elements. From top to bottom, each column sequentially shows a specific element type in the global Cartesian 
frame, local frame, and natural coordinate system. The edges of elements 𝑄4, 𝑇 6, and 𝑄8 in the local frame are shown as dotted lines to indicate 
that such a projection can be a curved surface due to the spatially varying normals.

mid-surface. This local frame is introduced because the stress and strain measures for a thin shell are naturally defined in the tangent 
plane of the mid-surface, with the normal direction representing the shell’s thickness axis. In other words, the constitutive law, the 
in-plane stress tensor, and the principal stress directions are most meaningfully expressed in a basis aligned with the shell surface 
rather than in the arbitrary global Cartesian frame.

To ease expression, we use (𝑋, 𝑌 ,𝑍), (𝑥, 𝑦), and (𝜉, 𝜂) to represent the coordinates in the global Cartesian frame, local frame, and 
natural coordinate system, respectively. I.e., (𝑋, 𝑌 ,𝑍) ∈ , (𝑥, 𝑦) ∈ , and (𝜉, 𝜂) ∈  . Fig. 2 shows the schematics of the shell elements 
in different frames.

2.1.  Construction of the local frame

The local frame is an orthonormal basis attached to the shell’s mid-surface at a given point, aligned with its tangent plane and 
normal direction. It is constructed so that in-plane quantities, such as principal stress directions, can be expressed in a more physically 
meaningful reference system before being mapped to or from the global Cartesian frame.

For a shell element (𝑒) in 3D, any position (𝑷 ) on its mid-surface is given by the isoparametric mapping, or so-called element 
interpolation:

𝑷 (𝜉, 𝜂) =
𝑀𝑒
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)𝑷 [𝑖] (1)

Here, 𝑀𝑒 is the number of element nodes, (𝜉, 𝜂) are the natural coordinates corresponding to 𝑷 , 𝑷 [𝑖] are the node coordinates in the 
global frame, and 𝑁𝑖 are the shape functions.

The tangent plane at 𝑷 (𝜉, 𝜂) is spanned by the two tangent vectors

𝒕1 =
𝜕𝑷 (𝜉, 𝜂)

𝜕𝜉
; 𝒕2 =

𝜕𝑷 (𝜉, 𝜂)
𝜕𝜂

(2)

From these, the unit normal vector 𝒏 at 𝑃 (𝜉, 𝜂) is

𝒏 =
𝒕1 × 𝒕2

‖𝒕1 × 𝒕2‖
(3)

To resolve the in-plane rotation ambiguity, a reference vector 𝒓 is projected onto the tangent plane to define the first local axis (i.e., 
𝑥-axis in Fig. 2):

𝒆1 =
𝒓 − (𝒓 ⋅ 𝒏)𝒏

‖𝒓 − (𝒓 ⋅ 𝒏)𝒏‖
(4)

The second local axis (𝑦-axis in Fig. 2) is obtained by the right-handed rule:
𝒆2 = 𝒏 × 𝒆1 (5)

The local orthonormal frame (𝑹) at 𝑃 (𝜉, 𝜂) is then
𝑹 = [𝒆1, 𝒆2, 𝒆3], 𝒆3 = 𝒏 (6)
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Where 𝒆𝑖 (𝑖 = 1, 2, 3) are the column vectors of 𝑹.
Given that the first local axis in  aligns with 𝒆1 and, thus, is determined by the reference vector 𝒓, the setting of 𝒓 directly relates 

to the interpretation of the principal stress directions in . This paper primarily utilizes ABAQUS to generate stress datasets, which 
are node-wise stress fields represented in the local frame. By default, ABAQUS initializes 𝒓 for all elements with [1, 0, 0], but in case 
𝒏 is parallel to the X-axis in , [0, 0, 1] is used as a fallback [52].

In the first-order triangular element (𝑇 3), the shape functions are affine in , so the tangent vectors 𝒕1 and 𝒕2 remain constant 
throughout the element. For the quadrilateral element (𝑄4), this constancy holds only when the element is a perfect parallelogram 
without bilinear distortion. In the general case, although 𝑄4 is still classified as a first-order element, 𝒕1 and 𝒕2 can vary across the 
element. In higher-order elements (𝑇 6, 𝑄8), the presence of mid-side nodes introduces curvature to the mid-surface, causing 𝒕1 and 𝒕2
(and consequently the normal 𝒏 and local frame 𝑹) to depend explicitly on (𝜉, 𝜂). Therefore, the local frame must be evaluated at each 
point of interest (e.g., Gaussian integration points), and projections to or from the local coordinate system are performed point-wise.

2.2.  Transformation between global and local frames

To make this paper self-contained and avoid ambiguity in later derivations, we define here the transformations between the global 
Cartesian frame  and the local frame  attached to each shell element. These transformations will be used repeatedly in the following 
sections for both position and direction vectors.

With the local frame 𝑹 defined in Eq. (6), and the selected origin 𝑶 in , which is usually set as the mass center of an element, 
the global-to-local transformations for positions and directions are achieved as

[

𝒑
0

]

= 𝑹T(𝑷 −𝑶), (7)

[

𝒗
0

]

= 𝑹T𝑽 . (8)

Here, 𝑷  and 𝑽  respectively denote the position and vector in , and 𝒑 and 𝒗 are the corresponding projections of 𝑷  and 𝑽  in , their 
3rd entries are 0 in theory and shall be excluded in the use. By leveraging 𝑹𝑹T = 𝑰 (𝑰 is the identity matrix), the corresponding 
local-to-global transformations can be obtained similarly.

Considering that 𝑹 is constant across 𝑇 3, one can easily get the planar projection of such a shell element in  by applying Eq. (7) 
to the element vertices. For 𝑄4, 𝑇 6, and 𝑄8 such a projection does not exist exactly, since 𝑹 is not necessarily consistent across the 
element, refer to the middle row of Fig. 2.

2.3.  Stress representation in shell elements

In finite elements of shells, the stress tensor (𝑻) is directly computed in the local frame () to reveal the in-plane properties, and 
the corresponding stress tensor (𝑻) in  of 𝑻 can be obtained by the projection

⎡

⎢

⎢

⎣

𝜎𝑋𝑋 𝜎𝑋𝑌 𝜎𝑋𝑍
𝜎𝑋𝑌 𝜎𝑌 𝑌 𝜎𝑌 𝑍
𝜎𝑋𝑍 𝜎𝑌 𝑍 𝜎𝑍𝑍

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑻

= 𝑹
⎡

⎢

⎢

⎣

𝜎𝑥𝑥 𝜎𝑥𝑦 0
𝜎𝑥𝑦 𝜎𝑦𝑦 0
0 0 0

⎤

⎥

⎥

⎦

𝑹T, (9)

where, 
[

𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦

]

 forms 𝑻.
Commercial FEM software typically provides these quantities after analysis in formats tailored to shell theory. For example, 

membrane stresses and bending stresses are often reported separately, either as stress resultants or as surface stresses evaluated at the 
top and bottom shell surfaces. Depending on the solver and element formulation (e.g., Mindlin-Reissner or Kirchhoff-Love theory), 
transverse shear stresses may also be available. These outputs already assume a local element frame, even if the results are stored 
in global coordinates for post-processing. Note that, while different shell formulations influence the stress quantities delivered by an 
FEM solver, the present work treats these stresses as given input and assumes a symmetric in-plane stress tensor field defined on the 
shell surface and expressed in the local shell frame. The proposed PSL tracing and stress topology analysis are therefore independent 
of the specific shell kinematic model used to generate the stress results.

This distinction is critical for PSL tracing, i.e., numerical integration along the principal stress directions, although different types 
of elements follow the same paradigm: the final result is displayed in , and the interpolation computation is conducted in  . For a 
shell element, the principal directions are interpreted in  instead of  like in planar or volumetric elements. For intuitiveness, one 
can also consider  the Display frame,  the Interpretation frame, and   the Computation frame. By distinguishing the roles of , , 
and  , PSL tracing in shell elements can be formulated in a way that is both mathematically consistent and directly compatible with 
the stress outputs of commercial FEM codes.

It is worth emphasizing that the stress interpolation within an element needs to be performed in a consistent frame, e.g., in  for 
convenience. Thus, if the stress field is given in , we first need to convert the corresponding stress tensors at nodes to  for element 
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interpolation, then project the interpolated stress tensor in  back to  for principal stress interpretation.

𝑻(𝜉, 𝜂) = 𝑹T(𝜉, 𝜂)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑀𝑒
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝑹[𝑖]𝑻
[𝑖]
 𝑹T

[𝑖]

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑻 [𝑖]


⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑹(𝜉, 𝜂) (10)

Here, 𝑹[𝑖] denotes the local orthonormal frame at node-𝑖 of the considered element, 𝑻 [𝑖]
  refers to the stress tensors at node-𝑖 in . For 

𝑇 3, since 𝑹[𝑖], 𝑖 = 1 ∶ 𝑀𝑒 are constant over the element, this formula can be simplified to directly conduct interpolation in . Since 
𝑹[𝑖] can vary spatially over 𝑄4, 𝑇 6 and 𝑄8, it is required to precisely follow Eq. (10) for higher precision. Note that the formulation 
above relies solely on the isoparametric description of geometry and the interpolation of nodal stress values via shape functions, 
whereas PSL tracing evaluates the stress field at arbitrary parametric locations and does not depend on element-specific integration 
schemes or Gauss points.

3.  PSL tracing

Principal stress lines are trajectories that start from a seed point and follow the principal stress directions. These are the directions 
where the shear stress components vanish, and are computed as the eigenvectors of the symmetric second-order stress tensor (𝑻), 
see, for instance, Wang et al. [29] for a more detailed discussion. The tracing algorithm propagates element-by-element along the 
selected stress direction. For efficiency, elements are stored in a topological data structure that records element types, adjacency 
relationships, and edge types (interior vs. boundary). When a PSL reaches an edge, this structure allows immediate retrieval of the 
adjacent element or termination of the trace if the edge indicates a boundary or hole.

In the following, we begin with the first-order Runge-Kutta method (Euler method) as the numerical integrator for computing 
principal stress lines, as it offers the simplest formulation for illustrating the core idea. Later, we employ the second-order Runge-Kutta 
method (RK2) to achieve higher accuracy in the actual tracing. The Euler update for PSL tracing can be written as

𝒔𝑛+1 = 𝒔𝑛 + 𝛿𝒅𝑛 (11)

Here, 𝛿 is the prescribed step size for integration, and 𝒅𝑛 is the selected principal stress direction at position 𝒔𝑛, which is a unit 
directional vector. 𝒔𝑛+1 is the newly updated point.

3.1.  Point advancing strategy

In problems where the global Cartesian frame and the local frame coincide, Eq. (11) can be used directly to advance points along 
principal stress directions in . In shell elements, however, the stress tensor is defined in the local element frame , which typically 
differs from  and requires explicit consideration during point advancement.

There are two seemingly straightforward ways to tackle this situation, yet both face problems in practice. One approach is to 
project the stress tensor field from  to , and then conduct PSL tracing in the transformed field. However, this global representation 
mixes in-plane and out-of-plane components, obscuring the in-surface stress directions and requiring repeated projection operations. 
Furthermore, it becomes cumbersome to precisely locate 𝒔𝑛+1 in   for interpolation purposes. The alternative approach is to directly 
conduct PSL tracing in  and then project the updated positions to . This is viable for 𝑇 3 since its planar projection in  is always 
available. From this, one can easily detect whether 𝒔𝑛+1 is within the current element or not. However, this approach becomes 
infeasible in 𝑄4, 𝑇 6, and 𝑄8, since they do not necessarily obey a consistent projection in . Besides, this approach involves locating 
𝒔𝑛+1 in  , which, except for 𝑇 3, makes it similarly cumbersome as the first way, i.e., repeatedly solving a small nonlinear system 
using the Newton-Raphson method.

To overcome these limitations, we propose a new tracing algorithm. In particular, we solve Eq. (11) in  , i.e., 𝒔𝑛 and 𝒔𝑛+1 are 
the natural coordinates (𝜉𝑛, 𝜂𝑛) and (𝜉𝑛+1, 𝜂𝑛+1). To avoid that 𝒅𝑛 is not defined in  , we arrange the term 𝛿𝒅𝑛 as a mapping of the 
physically meaningful update in . This facilitates locating the updated integration point in the mesh by comparing 𝒔𝑛+1 with the 
standard isoparametric element in  , and also circumvents repeatedly calling the Newton-Raphson method since 𝒔𝑛+1 is already 
given in  . I.e., one only needs to conduct an element interpolation to get the physical coordinate of 𝒔𝑛+1 in  to form the PSL.

Clearly, the key idea of this method is to establish a mapping relation between  and  , ensuring that the position update in 
 can be precisely correlated with the update in  . This is laid on the basis that either an increment in  (Δ𝑥,Δ𝑦) or  (Δ𝜉,Δ𝜂)
corresponds to an increment in  (Δ𝑋,Δ𝑌 ,Δ𝑍). Given the increment is essentially a vector in the corresponding frames, we can get 
(Δ𝑋,Δ𝑌 ,Δ𝑍) from (Δ𝑥,Δ𝑦) by Eq. (8), i.e.,

⎡

⎢

⎢

⎣

Δ𝑋
Δ𝑌
Δ𝑍

⎤

⎥

⎥

⎦

= 𝑹
⎡

⎢

⎢

⎣

Δ𝑥
Δ𝑦
0

⎤

⎥

⎥

⎦

(12)

Analogously, an increment in the natural coordinates can also be mapped to the global space through the surface Jacobian
⎡

⎢

⎢

⎣

Δ𝑋
Δ𝑌
Δ𝑍

⎤

⎥

⎥

⎦

=
[

𝜕𝑷 (𝜉,𝜂)
𝜕𝜉

𝜕𝑷 (𝜉,𝜂)
𝜕𝜂

]

[3×2]

[

Δ𝜉
Δ𝜂

]

=
[

𝒕1 𝒕2
]

[

Δ𝜉
Δ𝜂

]

(13)
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Fig. 3. Schematic diagram of advancing PSL when the directly computed new point (𝒔𝑛=1) is outside of the current element. Grey patches show the 
elements in , and light yellow ones are the corresponding isoparametric elements in  . (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Let Eq. (12) be equal to Eq. (13) and left-multiply by 𝑹T, we obtain
⎡

⎢

⎢

⎣

Δ𝑥
Δ𝑦
0

⎤

⎥

⎥

⎦

= 𝑹T[𝒕1 𝒕2
]

[

Δ𝜉
Δ𝜂

]

(14)

Substituting Eq. (6) into Eq. (14) and omitting the zero items corresponding to the third dimension, we can establish the correlation 
between (Δ𝑥,Δ𝑦) and (Δ𝜉,Δ𝜂) as

[

Δ𝑥
Δ𝑦

]

=
[

𝒆1 ⋅ 𝒕1 𝒆1 ⋅ 𝒕2
𝒆2 ⋅ 𝒕1 𝒆2 ⋅ 𝒕2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑱

[

Δ𝜉
Δ𝜂

]

(15)

Here, 𝑱  represents the Jacobian matrix that transforms parametric increments in   into . In our context, the increment in the local 
frame is directly updated by the principal stress direction 𝒅𝑛, i.e., (Δ𝑥,Δ𝑦) = 𝛿𝒅𝑛. Thereby, the corresponding increment Δ𝒔 = (Δ𝜉,Δ𝜂)
in   is given by 𝛿𝑱−1

𝑛 𝒅𝑛, and thus,
𝒔𝑛+1 = 𝒔𝑛 + 𝛿𝑱−1

𝑛 𝒅𝑛
⏟⏟⏟Δ𝒔

(16)

Thereby, the point is advanced in   under the guidance of the actual principal stress directions in .

3.2.  Point update

Eq. (16) conceptually paves the way for advancing a point along a PSL, yet some aspects concerning the implementation of PSL 
tracing remain critical. In the case where 𝒔𝑛 and 𝒔𝑛+1 are within the same element 𝑒𝑛, we can determine the position 𝑷𝑛+1 of 𝒔𝑛+1 in 
, and thus the PSL direction, by element interpolation (Eq. (1)). The stress tensor (𝑻 [𝑛+1]

 ) corresponding to 𝒔𝑛+1 can be computed 
accordingly using Eq. (10). For the selected type of principal direction (𝒗[𝑛+1]1 ), either major or minor, it needs to be determined 
into which direction to proceed, either +𝒗[𝑛+1]1  or −𝒗[𝑛+1]1 . To obtain a consistent continuation of a PSL, we introduce a direction 
regularization process as follows

𝒅𝑛+1 = ∡(𝑫𝑛,𝑽
[𝑛+1]
1 ) < ∡(𝑫𝑛,−𝑽

[𝑛+1]
1 ) ? 𝒗[𝑛+1]1 ∶ −𝒗[𝑛+1]1 (17)

where, 𝑫𝑛 and 𝑽 [𝑛+1]
1  are the projections of 𝒅𝑛 and 𝒅[𝑛+1]

1  through Eq. (8). With the updated 𝒅𝑛+1 and 𝒔𝑛+1 one can proceed to the 
next position 𝒔𝑛+2. Note that the direction comparison is performed in  for directional consistency.

When 𝒔𝑛+1 falls outside 𝑒𝑛 (Fig. 3a), we must determine the next element 𝑒𝑛+1 that actually contains this point and then perform 
element interpolation there to obtain 𝑷𝑛+1 and 𝑻 [𝑛+1]

 . This transition is non-trivial because 𝒔𝑛+1 is expressed in   of 𝑒𝑛, but the 
interpolation on 𝑒𝑛+1 requires 𝒔𝑛+1 to be expressed in   of 𝑒𝑛+1. However,   carries no information about mesh connectivity, and 
there is no direct mapping between the natural coordinate systems of two adjacent elements. Moreover, if the surface normal of 𝑒𝑛
and 𝑒𝑛+1 differ substantially, as is typical when the two elements lie on different faces meeting at a crease, naively using the traced 
point 𝒔𝑛+1 in 𝑒𝑛+1 as the updated PSL point in 𝑒𝑛+1 leads to geometric inconsistencies.

To handle this situation, we perform element interpolation in four steps: Firstly, we compute the intersection (𝒔∗𝑛+1) of the line 
segment 𝒔𝑛𝒔𝑛+1 and the vertex edge (𝑙𝑖) of the corresponding isoparametric element of 𝑒𝑛 (Fig. 3b) (the ordering of 𝑙𝑖 is according 
to Fig. 2). Secondly, from 𝑙[𝑒𝑛]𝑖  we relate to the corresponding vertex edge (𝐿[𝑒𝑛]

𝑖 ) of 𝑒𝑛 in  (Fig. 3c). 𝐿[𝑒𝑛]
𝑖  must be shared by a 

different element 𝑒𝑛+1 if it’s not the boundary edge for a 2-manifold shell mesh, saying 𝐿
𝑒[𝑛+1]
𝑗  (Fig. 3d). Thirdly, we relate 𝐿𝑒[𝑛+1]

𝑗  to 
the corresponding edge 𝑙𝑒𝑛+1𝑗  in the isoparametric element of 𝑒𝑛+1 (Fig. 3e). Fourthly, according to the positions of 𝑙[𝑒𝑛]𝑖  and 𝑙𝑒[𝑛+1]𝑗  in 
their corresponding isoparametric elements, the intersection (𝒔∗𝑛+1) in 𝑒𝑛 can be equivalently transferred to 𝒔

[𝑒𝑛+1]
𝑛+1 , which is taken as 
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Fig. 4. Schematic diagrams of how Rodrigues rotation works for a convex ridge (a) and a concave valley (b).

the updated position 𝒔𝑛+1 but in element 𝑒𝑛+1 (Fig. 3f). In this way, the tracing process can be advanced smoothly, i.e., 𝑷𝑛+1 and 
𝑻 [𝑛+1]
  can be correctly computed by conducting element interpolation with 𝒔𝑛+1 in 𝑒𝑛+1, see Fig. 3g. If 𝐿𝑒𝑛

𝑖  is only shared by 𝑒𝑛, which 
indicates that the tracing process is approaching the boundary, then 𝒔∗𝑛+1 in 𝑒𝑛 is considered as the updated position 𝒔𝑛+1 to compute 
the end point of a PSL and terminate the tracing process. The efficient computation of edge indices when transitioning from 𝑒𝑛 to 
𝑒𝑛+1 is supported by a pre-computed element-connectivity map. Since 𝑒𝑛 and 𝑒𝑛+1 always share a common edge by nature, i.e., they 
are adjacent to each other, PSL tracing proceeds strictly element-by-element and cannot skip intermediate elements.

It is worth noting that Eq. (17) needs to be adapted carefully when advancing to a different element and encountering the scenario 
where 𝑒𝑛 and 𝑒𝑛+1 form a crease, which can either be a convex ridge or a concave valley, as shown in Fig. 4. To counteract this issue, 
we resort to the Rodrigues rotation. Specifically, element 𝑒𝑛, including 𝑫𝑛 on it, is rotated by a certain angle 𝛼 around the edge 
tangent (𝒉) that is shared by 𝑒𝑛+1 to make these two elements coplanar. Thus, 𝑫𝑊

𝑛 , i.e., the rotated 𝑫𝑛, becomes coplanar with 𝑽 [𝑛+1]
1 , 

which is given by
𝑫𝑊

𝑛 = 𝑾 (𝒉, 𝛼)𝑫𝑛 (18)

with

𝑾 (𝒉, 𝛼) = 𝑰 + sin 𝛼𝑯 + (1 − cos 𝛼)𝑯2 (19)

Here, 𝑾 (𝒉, 𝛼) is the Rodrigues matrix. 𝑰 is the identity matrix. 𝑯 is the 3 × 3 skew-symmetric cross-product matrix of 𝒉 = (ℎ𝑥, ℎ𝑦, ℎ𝑧)T

and defined by

𝑯 =
⎡

⎢

⎢

⎣

0 −ℎ𝑧 ℎ𝑦
ℎ𝑧 0 −ℎ𝑥
−ℎ𝑦 ℎ𝑥 0

⎤

⎥

⎥

⎦

(20)

𝛼 is the signed dihedral angle that ranges in [−𝜋, 𝜋] and given by
𝛼 = atan2

(

𝒉 ⋅ (𝒏𝑛 × 𝒏𝑛+1),𝒏𝑛 ⋅ 𝒏𝑛+1
)

𝛼 > 0 ⇒ convex ridge
𝛼 < 0 ⇒ concave valley
𝛼 ≈ 0 ⇒ nearly coplanar
𝛼 ≈ 𝜋 ⇒ f lipped

(21)

Where 𝒏𝑛 and 𝒏𝑛+1 are the outward normals of 𝑒𝑛 and 𝑒𝑛+1. For 𝑄4, 𝑇 6, and 𝑄8 elements that do not necessarily have a consistent 
normal vector, the normal at position 𝒔𝑛 and 𝒔𝑛+1 are taken. Replacing 𝑫𝑛 with 𝑫𝑊

𝑛 , we can decide the tracing direction in 𝑒𝑛+1 by 
adapting Eq. (17) as following

𝒅𝑛+1 = ∡(𝑫𝑊
𝑛 ,𝑽 [𝑛+1]

1 ) < ∡(𝑫𝑊
𝑛 ,−𝑽 [𝑛+1]

1 ) ? 𝒗[𝑛+1]1 ∶ −𝒗[𝑛+1]1 (22)

Clearly, 𝑫𝑊
𝑛  becomes 𝑫𝑛 when 𝑒𝑛 and 𝑒𝑛+1 are coplanar. And note that in implementation, the direction of the edge tangent must 

respect the orientation of the edge in 𝑒𝑛, i.e., it is consistently used in determining 𝒏𝑛.

3.3.  PSL creation

Fig. 5 summarizes the PSL tracing process from the given position 𝒔0 in 𝑒0 and the principal stress direction 𝒅0. Note that for 
computing the complete PSL going through this position, also −𝒅0 needs to be considered in a separate run.

Given that the point update is essentially driven by an increment in , rather than by absolute positions in , thus, the algorithm 
does not rely on a consistent projection of the physical element onto . This makes the algorithm applicable to 𝑇 3, 𝑄4, 𝑇 6, and 𝑄8, 
as well as for hybrid meshes that include both triangular and quadrilateral elements.

For 𝑇 3 elements, the local frame 𝑹 and the tangent plane spanned by 𝒕1 and 𝒕2 remain constant within each element. In contrast, 
for 𝑄4, 𝑇 6, and 𝑄8 elements, 𝒕1 and 𝒕2 must be evaluated at each tracing point 𝒔𝑛. Within a single element, we assume that 𝒔𝑛 and 
𝒔𝑛+1 lie in the same local tangent plane, i.e., the tangent plane (and therefore the frame 𝑹) is effectively constant over one integration 
step (𝛿).
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Fig. 5. Flow chart of tracing a PSL. The symbol ∃𝑒𝑛+1 refers to checking whether element 𝑒𝑛+1 exists.  (𝑒𝑛+1, 𝒔𝑛+1) is for computing the information 
of a PSL at the position 𝒔𝑛+1 in the element 𝑒𝑛+1, including determining the tracing direction for updating the next point. Γ = 0 indicates the tracing 
process reaches the boundary edge. 𝑁 is the maximum number of integration steps. ≈ is a generalized comparison operator to evaluate whether 
encountering excessive deviation in direction between two consecutive points. "Advanced" refers to a more sophisticated determining condition when 
stepping into a new element.

Fig. 6. Demonstration of PSLs generated on 𝑇 6 (a) and 𝑄8 (b) from the same starting position (blue ∗). Orange and green trajectories represent 
the major and minor PSLs, respectively. The left end of the cylinder is clamped, and an axial torque is applied to the right end (blue arrows). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

When working with high-curvature elements, this assumption may break down if 𝛿 is chosen too large. In that case, 𝒔𝑛 and 𝒔𝑛+1
may no longer be sufficiently co-planar, leading to inconsistencies between the PSL trajectory and the underlying curved geometry. 
To mitigate this issue, we propose an element-adaptive strategy to determine 𝛿, i.e.,

𝛿𝑒𝑛 =
𝐶𝑒𝑛

𝐾𝑐
𝑒𝑛
𝐾𝑢 (23)

Here, 𝐶𝑒𝑛  is the length of the shortest edge of element 𝑒𝑛, 𝐾𝑐
𝑒𝑛
 is a scaling factor reflecting the curvature of this element, which is 

selected to range in [1, 5] from the flat element to the highly curved one. 𝐾𝑢 is a user-defined scaling factor to control the granularity 
of the PSL, and also serves as a safety factor. We let 𝐾𝑢 = 5 in this paper. With this strategy, the deviation between the tangent planes 
at 𝒔𝑛 and 𝒔𝑛+1 does not exceed 10−4 radian in all of the involved examples in this paper. Fig. 6 shows the generated PSLs by this 
method, where the cylinder object is separately discretized by the 𝑇 6 and 𝑄8 elements.

4.  Stress topology analysis

Principal stress directions are the fundamental ingredient for PSL tracing, yet these directions are not always uniquely defined. At 
certain points, known as Degenerate Points, the two in-surface principal stresses become equal (𝜎1 = 𝜎2) and the associated principal 
directions collapse. In the context of stress tensor analysis, such degenerate points correspond to the bifurcation or branching locations 
of PSLs, where principal directions are undefined. To correctly trace PSLs in the vicinity of such points, it is necessary to analyze the 
local topology of the direction field. This gives rise to the topological skeleton [33], a set of special PSLs that originate at degenerate 
points, with their initial directions determined by the local behavior of the tensor field rather than a single eigenvector. The topological 
skeleton is not only essential for continuing PSLs across singularities, but also serves as the natural separatrices of the stress field: 
within each subdomain bounded by separatrices, PSLs exhibit similar behavior and never cross the topological skeleton.

4.1.  Degenerate point

A degenerate point does not necessarily coincide with mesh nodes, and because the FE stress field is only guaranteed to be 
continuous within individual elements, degenerate points must be identified on a per-element basis. Similarly to Section 3, the stress 
state in  is considered, i.e., the degenerate point is defined in , and element interpolation in Eq. (10) is used to represent the stress 
state within an element.

To locate the degenerate points, we introduce the deviatoric stress vector

𝒈 = (𝑓1, 𝑓2) =
( 1
2
(𝜎𝑥𝑥 − 𝜎𝑦𝑦), 𝜎𝑥𝑦.

)

(24)
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Fig. 7. Demonstration of principal stress behaviors within an element containing the degenerate point. (a)-(d) use curved color maps sequentially 
show the normalized 𝜎1 − 𝜎2 on 𝑇 3, 𝑄4, 𝑇 6, and 𝑄8 elements in . (e)-(f) show the corresponding principal stress directions in . (i)-(l) show the 
corresponding topological skeleton in . The selected 𝑇 6 element contains 2 degenerate points, including a single wedge degenerate point. The 
purple points indicate the positions of the degenerate points in the elements. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

The magnitude of 𝒈 is the Mohr-circle radius, and its argument (tan(2𝜃) = 𝑓2
𝑓1

= 2𝜎𝑥𝑦
𝜎𝑥𝑥−𝜎𝑦𝑦

) gives the double of the principal direction 
angle (𝜃). Degeneracy corresponds to zero radius. Fig. 7a–d show the possible distributions of 𝜎1 − 𝜎2 over the selected element that 
contains the degenerate point.

Clearly, at a degenerate point (𝑥∗, 𝑦∗), 𝑓1(𝑥∗, 𝑦∗) = 𝑓2(𝑥∗, 𝑦∗) = 0. The algebraic structure of Eq. (24) is determined by the element 
shape functions 𝑁𝑖, 𝑖 = 1 ∶ 𝑀𝑒. For 𝑇 3, 𝑁𝑖 are affine, hence 𝑓1 and 𝑓2 are affine and their zero sets are straight lines. Consequently, 
Eq. (24) reduces to a 2 × 2 linear system, yielding either no intersection or a single intersection in the reference triangle. In contrast, 
for 𝑄4, the fields are bilinear, and for 𝑇 6 and 𝑄8, they are quadratic on the reference domains, as shown in Fig. 2. Algebraically, 
two bilinear or two quadratic level sets may intersect in multiple isolated points, which is generically up to two for bilinear pairs 
and four for quadratic pairs, with the multiplicity being counted. Thus, in principle, an element of 𝑄4, 𝑇 6, and 𝑄8 may contain more 
than one degenerate point, though this expectation is at odds with stress-analysis practice, where one typically observes at most one 
degenerate point per element. This is because the stress state produced by linear elasticity on regular shell meshes typically varies 
smoothly and only mildly across the domain. Therefore, (𝑓1, 𝑓2) generally behaves as a gently curved map, even when higher-order 
interpolation or stress recovery is used. Nevertheless, the possibility of having multiple degenerate points within a single element 
cannot be simply excluded.

The number of potential degenerate points within an element directly decides the design of the root-searching strategy for Eq. (24). 
If it’s known that there is at most one degenerate point in the targeted element, then one can apply a damped Newton-Raphson method 
to solve Eq. (24). Since the intended solution is unique, this process can converge rapidly. Otherwise, one may need to subdivide the 
element into smaller patches to isolate different potential degenerate points.

In principle, one can evaluate the number of potential degenerate points in an element by introducing a boundary-based winding-
number (𝑤) for the vector field (𝑓1, 𝑓2). This is typically achieved by mapping the element boundary through (𝑓1, 𝑓2) and tracking 
the resulting closed curve in the tailored plane 𝑓1 − 𝑓2. If this curve winds once around the origin (0, 0) of this plane (|𝑤| = 1), there 
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Fig. 8. The subdivision strategies for 𝑇 6 (a) and 𝑄8 (b), that is used to counteract the issues where an element contains multiple degenerate points.

is exactly one interior point where (𝑓1, 𝑓2) = (0, 0). However, this method can only precisely predict the situation where only one 
degenerate point is within the element. For cases where the degenerate point is located at the element edge or multiple isolated 
degenerate points exist in an element, one still needs to subdivide the element for a deeper search, since these two situations may 
lead to 𝑤 = 0, which also corresponds to the situation where the element does not contain a degenerate point.

To maintain a simple and robust procedure, we always subdivide the 𝑇 6 and 𝑄8 into four smaller subdomains. Within each 
subdomain, we assume at most one degenerate point and locate it, if present, by a standalone Newton iteration. In practice, the 
subdomains are small, and the deviatoric stress field is nearly affine within them, making multiple roots within a single subdomain 
highly unlikely. Even if it occurs in rare cases, we report a single representative. Note here that the deviatoric stress vectors in these 
subdomains are still interpolated by the parent element shape function, i.e., we only separate them by the definition domains of 
the involved natural coordinates. If the degenerate point is located precisely at the shared edge of different subdomains, a merging 
operation is performed. Fig. 8 shows the subdivision strategy, where 𝑇 6[𝑖] and 𝑄8[𝑖] with 𝑖 = 1 ∶ 4 refer to the partitioned subdomains. 
Fig. 7e–h show the located degenerate point(s) and the behaviors of the corresponding principal stress directions in an element 
containing the degenerate point, where it is worth mentioning that the selected 𝑇6 element has two degenerate points (Fig. 7g, k).

4.2.  Topological skeleton

As mentioned above, the topological skeleton is a set of special PSLs that originate at degenerate points. To tackle the problem 
of indeterminable principal stress directions (i.e. eigenvectors) at the degenerate point, we follow the procedure introduced by 
Delmarcelle et al. [33] and resolve the indeterminacy by considering the local behavior of the tensor field. In this method, the 
deviatoric part is expanded into a first-order Taylor series around the degenerate point (𝑥∗, 𝑦∗). I.e., for a small displacement Δ =
(Δ𝑥,Δ𝑦)T

𝑔((𝑥∗, 𝑦∗) + Δ) = 𝑔(𝑥∗, 𝑦∗) +𝑴(𝑥∗, 𝑦∗)Δ + 𝑂(‖Δ2
‖) (25)

Since (𝑥∗, 𝑦∗) is a degenerate point, i.e., 𝑔(𝑥∗, 𝑦∗) = 𝟎, the linear part can be approximated by
𝒈((𝑥∗, 𝑦∗) + Δ) ≈ 𝑴𝚫 (26)

Here, 𝑴 is matrix of first partial derivatives of 𝒈 in Eq. (24)

𝑴 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎤

⎥

⎥

⎥

⎦

=
[

𝑎 𝑏
𝑐 𝑑

]

(27)

This implies that the pair (𝑓1, 𝑓2) transforms under a rotation of the spatial coordinates by an angle 𝜃 as a 2D vector rotated by 2𝜃. 
This is also reflected in Mohr’s circle where principal directions rotate at twice the coordinate angle. Consequently, the determinant 
of 𝑴 denoted by 𝛿 = 𝑎𝑑 − 𝑏𝑐 is invariant under such rotations. According to [33], this invariant 𝛿 at a degenerate point is used to 
determine both the index and the sector structure

index 𝐼 = 1
2
δ, 𝛿 < 0 ⇒ trisector, 𝛿 > 0 ⇒ wedge (28)

Equivalently, a trisector has three hyperbolic sectors (Fig. 7i–l), and a wedge has one hyperbolic sector (Fig. 7k). These are the only 
two types of stable degenerate points in a planar stress field. Intuitively, the process above, which is essentially a mapping from 
(Δ𝑥,Δ𝑦 to 𝑓1, 𝑓2 by 𝑴(Δ𝑥,Δ𝑦)), can be understood as how the tensor lifts off isotropy in different directions, and 𝛿 being negative or 
positive flips the local winding of eigen-directions, which is what the tensor index counts.

As prescribed, the principal stress angle 𝜃 of an eigenvector satisfies tan(2𝜃) = 𝑓2
𝑓1
, and a PSL is a curve whose tangent aligns with 

an eigenvector. Near a degenerate point (𝑥∗, 𝑦∗), a separatrix, i.e., a skeleton branch, is a PSL that leaves (𝑥∗, 𝑦∗) along a ray 𝜑 for 
which the direction is self-consistent at leading order. By parameterizing the ray via (Δ𝑥,Δ𝑦) = 𝑟 ⋅ (cos𝜑, sin𝜑), and using the linear 
model above, we can have

𝑓1 ≈ 𝑟(𝑎 cos𝜑 + 𝑏 sin𝜑), 𝑓2 ≈ 𝑟(𝑐 cos𝜑 + 𝑑 sin𝜑) (29)

According to the self-consistency condition, i.e., the tangent of the PSL equals the eigenvector direction,

𝜃 ≡ 𝜑 (mod 𝜋) ⇔ tan(2𝜑) =
𝑓2
𝑓1

=
𝑐 cos𝜑 + 𝑑 sin𝜑
𝑎 cos𝜑 + 𝑏 sin𝜑

(30)
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Fig. 9. Pipeline for conducting stress topology analysis. (1). Pre-selecting the candidate elements. (2) Locating degenerate points. (3) Computing 
the topological skeleton. The hemispherical shell is discretized by 𝑄8, where the bottom is fixed and a downward distributed force is applied at the 
top. The topological skeleton aligning with the major and minor principal stress directions is distinguished by colors, red for major and green for 
minor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Let 𝑡 = tan𝜑 and use tan(2𝜑) = 2𝑡
1−𝑡2 . By dividing the numerator and denominator by cos𝜑, we obtain the cubic equation firstly pre-

sented in [33] and used in [21]
𝑑𝑡3 + (𝑐 + 2𝑏)𝑡2 + (2𝑎 − 𝑑)𝑡 − 𝑐 = 0 (31)

Solving this cubic equation, its real roots give the admissible initial directions for the separatrices of the topological skeleton. This 
is because tracing a PSL can be considered solving an ordinary differential equation that fulfills d𝑦d𝑥 = tan 𝜃(𝑥, 𝑦). Along a straight line 
𝑦 = 𝑡𝑥, the limiting slope must equal the field direction. The cubic encodes exactly this fixed-point condition for the linearized field, 
so each real root is a direction where a PSL can approach or leave the degenerate point without immediate turning, i.e., a separatrix. 
The cubic has at most three real roots. In the classical 2D theory, trisectors and wedges, respectively, have three and two separatrices, 
since in the later case the parabolic sector collapses to one, as shown in Fig. 7i–l.

To determine the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 in Eq. (31), we use the mapping (𝑱 ) defined in Eq. (15) to convert the explicitly 
expressed 𝜕𝑓1𝜕𝜉 , 

𝜕𝑓1
𝜕𝜂 , 

𝜕𝑓2
𝜕𝜉 , and 

𝜕𝑓2
𝜕𝜂  to 𝜕𝑓1𝜕𝑥 , 

𝜕𝑓1
𝜕𝑦 , 

𝜕𝑓2
𝜕𝑥 , and 

𝜕𝑓2
𝜕𝑦 . Specifically, for any scalar field on the surface, the chain rule gives

[

𝑎
𝑏

]

= 𝑱−T

[ 𝜕𝑓1
𝜕𝜉
𝜕𝑓1
𝜕𝜂

]

,
[

𝑐
𝑑

]

= 𝑱−T

[ 𝜕𝑓2
𝜕𝜉
𝜕𝑓2
𝜕𝜂

]

(32)

Although different shell elements interpolate stresses with different orders, the topological skeleton near a degenerate point 
is governed solely by the leading-order departure from isotropy, i.e., by the first derivatives of the in-plane stress tensor in the 
local tangent frame. Linearizing the deviatoric representation 𝒈 at the degenerate point yields 𝒈 ≈ 𝑴Δ. This first-order model alone 
determines both the rotation-invariant classifier 𝛿 = det(𝑴) and the separatrix directions obtained as the real roots of the standard 
cubic equation derived from the self-consistency condition between the PSL tangent and the principal directions. Because these 
constructions depend only on 𝑴 at the point and are invariant under smooth reparameterization ( →  → ) and uniform scalings 
of (𝑓1, 𝑓2), they are independent of the underlying element formulation. In other words, the same analysis applies uniformly to all 
shell element types considered here, including 𝑇 3, 𝑄4, 𝑇 6, and 𝑄8 elements.

4.3.  Pre-selection of candidate elements for degenerate points

Degenerate points are critical for a robust PSL tracing algorithm, yet they occur under very restrictive conditions: the two in-
plane principal stresses must coincide, the stress state must approach pure isotropy, and the deviatoric stress component must vanish. 
Consequently, large parts of the shell structure are fundamentally incapable of containing such points. For instance, regions dominated 
by strong tensile-compressive contrast or by uniaxial or shear-dominated stress states. This observation motivates a computationally 
efficient preselection strategy, i.e., before applying the more elaborate degenerate point search, one can exclude with certainty those 
elements that cannot satisfy the necessary isotropy condition. By culling these non-candidate elements in a cheap and robust manner, 
the overall detection procedure becomes significantly more tractable without sacrificing accuracy.

In earlier work by Wang et al. [21], a simple sign-comparison strategy was utilized to achieve such a pre-selection, where they 
concluded that if the signs of 𝑓1 or 𝑓2 remain consistent at all four nodes of a quadrilateral element in 2D, that element can be 
excluded from further degenerate point searching. This is effective for first-order elements 𝑇 3 and 𝑄4, and even some higher-order 
elements like 𝑇 6 with non-negative shape functions over the isoparametric triangle. However, it does not naturally extend to 𝑄8, 
where stress variations along edges and within interiors may introduce zeros that are invisible at nodal locations. To achieve a reliable 
preselection across both first- and second-order shell elements, a more general framework is required.

We therefore adopt Invariant Bernstein-Bézier Bounding. The central idea is to represent the scalar fields 𝑓1 and 𝑓2 (Eq. (24)) in 
the Bernstein-Bézier basis of the isoparametric element. This representation expresses the polynomial as a convex combination of its 
Bernstein coefficients, which serve as “control values”. A fundamental consequence is the convex-hull property, i.e., the range of the 
polynomial over the element lies entirely within the minimum and maximum of these coefficients. Hence, once 𝑓1 and 𝑓2 are cast 
in Bernstein-Bézier form, we immediately obtain rigorous element-wise intervals [𝑓 [min]

1 , 𝑓 [max]
1 ] and [𝑓 [min]

2 , 𝑓 [max]
2 ]. If either interval 

lies strictly above or strictly below zero, then the corresponding function cannot vanish within the element, meaning no degenerate 
point can exist there, and the element can be safely excluded. The derivation of these intervals for 𝑄8 is given in Appendix A.
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Fig. 10. Procedure of the topology-aware PSLs seeding. (a) Initial seed points. (b) Seed points that are embedded with the topological skeleton. 
(c)-(e) The intermediate results of the seeding process, where the seeds with different valence values are distinguished by colors.

It is worth noting that one could construct more precise exclusion rules by directly bounding the isotropy measure 2
√

𝑓 2
1 + 𝑓 2

2  using 
vector-valued Bernstein control points. While such refinements may exclude additional elements, their increased complexity offers 
little practical benefit, as the interval-based criterion already eliminates the vast majority of non-candidate elements at negligible 
cost. This criterion is computationally efficient, invariant, and order-agnostic. For 𝑇 3, 𝑄4, and 𝑇 6, the Bernstein coefficients coincide 
with the nodal values, reducing the method to the original sign-checking rule. In contrast, for 𝑄8, mid-edge and interior control 
values are naturally incorporated, ensuring that interior stress variations are correctly captured. More generally, the Bernstein-Bézier 
representation extends seamlessly to arbitrary orders, providing a unified and mathematically certified tool for preselecting candidate 
elements in degenerate point searching.

Fig. 9 shows the pipeline for conducting the stress topology analysis. It begins with the pre-selection strategy mentioned to distill 
the candidate elements that may contain degenerate points. Then, precisely locating the positions of the degenerate points on the 
candidate elements. Finally, from the located degenerate points, the corresponding topological skeleton is computed.

5.  Topology-aware PSL seeding

The placement of PSLs is a decisive factor in how effectively a stress field can be conveyed. In general, the objective of PSL 
seeding is to produce a set of trajectories that are domain-filling, evenly spaced, and visually balanced, thereby enabling a global 
understanding of the directional structure of the stress field. Due to the strong convergence and divergence of principal directions, a 
naive seeding strategy often results in PSLs that cluster in specific regions, while leaving other areas sparsely populated or completely 
empty. Moreover, the presence of degenerate points and separatrices further complicates the distribution, potentially producing large 
void regions that obscure essential field characteristics. Although such patterns reflect intrinsic properties of the stress field to a 
certain degree, an uneven or incomplete set of PSLs can significantly hinder both interpretation and subsequent engineering use. 
From a visualization perspective, a balanced PSL distribution ensures consistent coverage, reduces clutter, and provides a faithful 
representation of the stress field. From a design perspective, regularly distributed PSLs serve as valuable primitives for applications 
such as rib placement and fiber-reinforcement paths, where global completeness and uniformity are indispensable. For these reasons, 
a topology-aware PSL seeding strategy is required to explicitly account for degenerate structures, ensure spatial balance, and preserve 
the meaningful features of the stress field, while enabling its effective use in both analysis and design.

From a methodological perspective, the central task of PSL seeding is to control the spacing between adjacent PSL trajectories. For 
shell structures, this can be regarded as treating the major and minor principal stress fields as two independent pseudo-vector fields 
and applying streamline seeding techniques developed in flow visualization. Since major and minor PSLs typically intersect, handling 
them separately does not increase geometric complexity. Nevertheless, concurrent consideration of both major and minor principal 
stress directions ensures that the resulting PSL set is space-filling and topologically consistent. This problem has been systematically 
discussed by Wang et al. [29] in their work for 3D stress fields. The key idea there is to distribute a set of domain-filling seed points 
and assign each seed a binary valence indicator [0, 0, 0] that records whether the local region is traversed by major, medium, or minor 
PSLs. When a PSL passes through a region, the associated seeds are merged with that trajectory, and their corresponding valence 
components are turned to 1. In this way, seeds effectively “share” trajectories, and a merging threshold provides direct control over 
spacing and sparsity. Our PSL seeding strategy extends this concept to shell structures by introducing adaptations specifically tailored 
to surface-based stress fields.

The first adaptation for shell structures involves replacing the Euclidean distance metric with the geodesic distance along the shell 
surface when the shell structure has high curvature, as seen in the wing example reported in Fig. 1. In the volumetric case considered 
by Wang et al. [29], Euclidean distances between seeds and PSL trajectories provide a natural and consistent measure of spacing. 
However, for shell structures, PSLs are intrinsically confined to the curved surface, and Euclidean distances may underestimate 
proximity in regions with high curvature. By adopting a geodesic distance metric, spacing is evaluated in the intrinsic geometry of 
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the surface, thereby ensuring that the merging of seeds with PSL trajectories reflects the true physical neighborhood on the shell. 
This adaptation enables the spacing control mechanism to remain consistent with the shell’s geometry, preventing distortions that 
would arise from using Cartesian distances. In our implementation, we use an approximate method to compute geodesic distances by 
counting the lengths along the mesh edges.

The second adaptation involves incorporating stress topology analysis as a pre-processing step for PSL seeding. While the overall 
strategy still relies on a set of domain-filling seed points (Fig. 10a), regions associated with the topological skeleton are treated with 
priority. Specifically, merging operations are first carried out along the topological skeleton to ensure that these critical structures 
are faithfully represented (Fig. 10b). The remaining PSLs are then traced to cover the remaining seeds until all points are traversed. 
This hierarchical procedure integrates the intrinsic topology of the stress field into the PSL distribution, guaranteeing that degenerate 
structures are explicitly captured while maintaining a balanced, space-filling coverage of the entire shell domain.

The entire seeding process is governed by the binary valence indicator assigned to each seed point, as shown in Fig. 10a–g. Since 
the stress field of a shell structure involves only major and minor PSLs, the valence is initialized as a bi-value vector. Its possible 
states are [0, 0] (no PSLs passed), [1, 0] (passed by a major PSL), [0, 1] (passed by a minor PSL), and [1, 1] (passed by both), refer to the 
remarks in Fig. 10. During seeding, seed points with non-filled valence are iteratively selected (Fig. 10c–e), and the process terminates 
once all seed points reach the state [1, 1] (Fig. 10f). Provided that the initial seeds cover the domain (Fig. 10a), this mechanism ensures 
that the resulting PSLs are evenly spaced and collectively span the entire surface (Fig. 10g). Moreover, if one is interested only in 
either the major or the minor principal stress direction field, the method can be specialized by initializing the valence to [1, 0] or 
[0, 1], respectively. This flexible formulation enables the generation of PSL distributions that are both complete and balanced, while 
remaining easily adaptable to single-direction analyses, thus making the method broadly applicable to visualization and design tasks. 
Additionally, we show in Fig. 10h the PSL distribution without considering topology analysis, i.e., directly conducting seeding from 
the initial seed points. By comparing it to Fig. 10g, it can be clearly seen that the proposed strategy achieves a more consistent 
structure around the degenerate points.

In principle, seed points may be initialized arbitrarily as long as they lie on the mesh. In this work, we simply take the element 
centers as seeds, which guarantees domain coverage without additional pre-processing. To prescribe the PSL spacing in a dimensionless 
and size-independent manner, we use the minimal edge length 𝐷min of the object’s bounding box as a reference and define the spacing 
threshold as 𝐷min∕𝜔, where 𝜔 is a user-specified control parameter. Larger values of 𝜔 reduce the spacing and therefore produce a 
denser PSL distribution.

6.  Results

In this section, we demonstrate the capabilities of the proposed framework, entitled PSLshell, through a series of representative 
experiments. We begin by employing a planar benchmark to highlight the core ideas of PSLshell and to contrast it with existing 
pipelines. A cylindrical shell under torque is used to showcase the framework’s support for multiple discretization formats, followed 
by a polyhedral structure with sharp edges to evaluate robustness across creases and element-orientation variations. To further 
assess robustness on highly complex shell topologies, we also apply PSLshell to triply periodic minimal surface (TPMS) shells [53], 
which feature strong curvature variations and multiple holes. Finally, several examples from engineering, architecture, and nature 
demonstrate the broad practical applicability of the framework. In all results, unless otherwise stated, major and minor PSLs are 
respectively rendered in red and green. The topological skeleton adopts the same color convention, but with thicker trajectories. 
Degenerate points are depicted as purple spheres.

The stress datasets used in our experiments are primarily generated with ABAQUS, which provides node-wise stress fields in the 
local frame. To further validate the generality of PSLshell, we also employ an open-source FEM package (MiniFEM1) to produce stress 
fields represented in the global Cartesian frame. For stress simulation, the per-element local frame is defined using the default reference 
vector [1, 0, 0] in ABAQUS. All components of PSLshell are implemented in a single MATLAB script ("PSLshell.m"). A lightweight 
ASCII format (".TSV") is introduced to interface stress data from common CAE packages. Additional implementation details, usage 
instructions, and datasets are provided in the public code repository. In PSLshell, the stress field is interpreted as an in-plane tensor 
field defined on the shell surface, and the framework analyzes the corresponding in-plane stress behavior. The specific stress quantity 
to be visualized (e.g., membrane stresses, bending-related stresses, or stress resultants) is selected by the user during stress extraction 
and represented as a symmetric in-plane stress tensor in the local shell frame.

The computational cost of PSLshell is modest and is governed primarily by the number of seeds and the number of PSLs to be 
generated. The dominant expense arises from computing distance maps between seeds and existing trajectories. For thin-featured 
geometries such as wings or blades, the geodesic distance metric is required for reliable spacing control, which is slower than the 
Euclidean alternative. Across all examples, PSL generation completes within approximately 2 s (the cylinder case below, where 
trajectories are traced from prescribed positions without spacing control) to about 2 min (the wing case, where the full PSLshell
pipeline is employed), adding only a negligible overhead to the overall structural analysis process.

Planar Plate. In this example, we consider a planar rectangular domain discretized with 𝑇 3 elements. The four corner vertices are 
fixed, and a uniform vertical load is applied across the top surface, inducing a bending deformation (Fig. 11a). The corresponding 
von Mises stress distribution is shown in Fig. 11b for reference. The PSL distribution generated by PSLshell is shown in Fig. 11c and 

1 https://github.com/PSLer/MiniFEM
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Fig. 11. (a) Problem description and deformation pattern of the planar plate. (b) Von Mises stress for reference. (c) and (d) PSLs that are generated 
by the proposed framework, separately from the stress fields on the top surface and the bottom one. (e) PSLs distribution generated by Karamba3D, 
with the same stress field in (d). The major and minor PSLs are distinguished by orange and green. The thicker PSLs in (c) and (d) are the topological 
skeleton, and circles in purple indicate the degenerate points. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

d, clearly illustrating the key features of our framework: a domain-filling, evenly spaced PSL distribution built upon a high-fidelity 
tracing algorithm and a systematic treatment of stress singularities.

The difference between Fig. 11c and d lies in the stress field used: (c) corresponds to the top surface, while (d) corresponds to 
the bottom. As expected from Fig. 11a, the top surface is primarily under horizontal compression, whereas the bottom surface is 
dominated by horizontal tension. This difference is reflected in the PSL orientation, i.e., in Fig. 11c, the minor PSLs (green) align 
with the horizontal direction under compression, while in Fig. 11d, it is the major PSLs (orange) that align horizontally in response 
to tension.

For comparison, Fig. 11e shows the result generated using a widely adopted approach based on pre-computed principal stress 
directions. Since that method does not systematically address stress singularities or PSL spacing, it exhibits noticeable inconsistencies 
near degenerate points and suffers from visual clutter. From the perspective of PSL-guided lightweight structural design [5,25,41], 
where clustering of dense PSLs is typically required to extract a structured, manufacturable layout, our method directly yields a 
well-organized PSL distribution without post-processing or trajectory distortion.

Cylinder. In this experiment, we revisit the cylindrical shell shown in Fig. 6 and discretize it using six different mesh types: 𝑇 3, 
𝑄4, hybrid 𝑇 3-𝑄4, 𝑇 6, 𝑄8, and hybrid 𝑇 6-𝑄8 (Fig. 12, top). This setup allows us to evaluate the adaptivity of PSLshell across diverse 
discretization formats. The experiment is designed with two complementary objectives. First, to enable a fair comparison of the 
PSL tracing algorithm, the proposed PSL-seeding strategy is disabled, and PSLs are traced from an identical set of prescribed initial 
positions for all discretizations. This allows the influence of mesh type on the tracing procedure itself to be isolated. As shown 
in the second row of Fig. 12, all discretizations produce coherent and physically meaningful PSL trajectories, confirming that the 
element-transition strategy operates reliably across different mesh types. Second, the proposed PSL-seeding strategy is enabled on the 
same set of discretizations. The resulting PSL distributions, shown in the third row of Fig. 12, exhibit consistent global patterns with 
similar density and regularity, demonstrating that the seeding algorithm remains robust with respect to variations in mesh type and 
discretization.

A closer comparison of the PSL trajectories in Fig. 12 further shows that, under identical boundary conditions, all discretizations 
yield the same stress trajectory patterns. This provides strong evidence for the robustness of PSLshell across supported mesh types. 
It is essential to note that this consistency does not diminish the value of high-order shell elements in practice, particularly when 
high geometric fidelity is required. First-order elements approximate the geometry only in a piecewise linear manner, which may 
introduce visible gaps between PSL trajectories and the intended curved surface. Such geometric discrepancies are substantially 
reduced when higher-order elements are used. Finally, although this example focuses on structured meshes for clarity of comparison, 
PSLshell handles unstructured meshes equally well (see Fig. 6).

Polyhedra-like structure. This example illustrates the capability of PSLshell to handle shell structures featuring sharp creases. We 
consider a polyhedra-like shell discretized with 𝑇 6 elements (Fig. 13b), subject to the boundary conditions shown in Fig. 13a. The 
geometry features multiple creases, including both convex ridges and concave valleys, creating a challenging environment for PSL 
propagation. As shown in Fig. 13c, our strategy based on the signed dihedral angle and Rodrigues rotation performs robustly when 
PSLs traverse these creases, regardless of whether the transition is across a ridge or a valley. Fig. 13d presents the same result from an 
alternative viewpoint to better highlight the PSL geometry and the associated stress topology. In Fig. 13e, we suppress the background 
surface and color-code each PSL according to its corresponding principal stress component. A close-up view of a selected crease further 
confirms the correctness of PSLshell in handling PSL propagation across sharp geometric transitions, where the arrows, matching the 
color of the nearby PSLs, indicate the local principal stress directions.
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Fig. 12. Top row: Different discretizations of the cylinder model. Middle row: the corresponding PSLs traced from an identical set of prescribed 
initial positions. Bottom row: the corresponding PSLs generated by the proposed PSL-seeding strategy. The yellow spheres in the top row indicate 
the mid-nodes of the second-order elements, and the orange and green trajectories separately represent the major and minor PSLs that are traced 
from the same positions denoted in blue spheres. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

TPMS. This experiment examines the robustness of PSLshell on shell structures with highly complex geometry and topology, char-
acterized by strong curvature variations and multiple holes. We consider four representative TPMS shells: the Schwarz-P, Diamond, 
Neovius, and Gyroid surfaces, each arranged in a 2 × 2 × 2 periodic configuration. All shells are discretized using 𝑇 3 elements, fixed 
at the bottom edges, and subjected to a downward load applied on the top edges. The top row of Fig. 14 shows the corresponding 
surface meshes, while the second row presents the traced PSLs. Despite the intricate geometry, dense perforations, and frequent prox-
imity to degenerate regions, PSLshell produces coherent and smoothly varying PSL patterns across all cases. These results demonstrate 
that the proposed framework remains stable on multiply connected shell domains with complex boundaries, and further highlight its 
applicability to complex shell structures encountered in metamaterial design and additive manufacturing.

Wing and wind turbine blade. In this experiment, we first examine a wing model discretized with 𝑇 6 elements and subjected to 
boundary conditions that approximate in-situ aerodynamic loading (Fig. 15a). The resulting PSL distribution is shown in Fig. 15b. 
In addition to the regular spacing of the PSLs, a clear physical pattern emerges: the minor PSLs on the upper surface (Fig. 15f) 
converge toward the wing root, where the structure is fixed, while the major PSLs on the lower surface (Fig. 15d) exhibit a similar 
convergence. This behavior aligns with the actual stress state of aircraft wings in flight, i.e., lift causes the wing to bend upward, 
producing dominant compressive stresses on the upper surface and tensile stresses on the lower surface. Fig. 15d also provides a 
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Fig. 13. PSLs on the polyhedron. (a) shows the used 𝑇 6 mesh, where the four edges on the left are fixed, and two distributed forces are separately 
applied at the top surface and the slope surface on the right. (b) shows the generated PSLs that are drawn on the color map of the von Mises stress 
field. The close-up view shows the principal stress directions in the corresponding region. (c) shows the same result as (b) but in a different viewing 
angle. (d) shows the same PSLs before, but both the major and minor PSLs are color-coded with the shear stress component (𝜎𝑥𝑦) along the PSL 
trajectories. In (b) and (c), the orange and green tubes correspond to the major and minor PSLs. The topological skeleton and degenerate points are 
indicated by the thicker tubes and purple spheres, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 14. Top: The T3 meshes of the considered TPMS shells. Bottom: the corresponding PSLs.

close-up view of the trailing edge, confirming the robustness of our crease-crossing strategy in PSL propagation. A different viewing 
angle in Fig. 15c further highlights the orthogonality of the major and minor PSLs. In Fig. 15e, both major and minor PSL groups are 
color-coded according to the von Mises stress along each trajectory, clearly illustrating the expected stress intensification toward the 
wing root.

We next consider a wind turbine blade [54], discretized with 𝑇 3 elements (Fig. 16a). The corresponding stress topology, consisting 
of the topological skeleton and degenerate points, is shown in Fig. 16b. Fig. 16c and d present the complete PSL distributions. In 
Fig. 16c, all PSLs are color-coded with the von Mises stress along their trajectories, whereas in Fig. 16d, major and minor PSLs are 
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Fig. 15. (a) Problem description and mesh of the wing example. (b) The major (orange) and minor (green) PSLs. (c) The same PSLs but in a different 
viewing angle to show the orthogonality of the major and minor PSLs. (d) and (f) the major and minor PSLs shown separately. (e) The PSLs that are 
color-coded with von Mises stress. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 16. (a) Problem description and mesh of the blade example. (b) The degenerate points and topological skeleton. (c) and (d) The PSLs that are 
color-coded differently, in (c), the color map shows the shear stress components along the PSL trajectories.

distinguished to highlight their structural roles. These results illustrate the applicability of PSLshell to complex freeform geometries 
commonly encountered in wind energy engineering.

Doom. In this experiment, we consider a dome-like structure inspired by [5,25], discretized with 𝑄8 elements. The short edges 
along the base (P. 1-9 in Fig. 17a) are fixed by constraining the translational DOFs in the 𝑌 - and 𝑍-directions and the rotational DOF 
around the 𝑍-axis. The stress field is induced by the self-weight of the structure. Fig. 17b shows the resulting major and minor PSLs, 
while Fig. 17c presents a top view in which both major and minor PSL groups are color-coded by their corresponding principal stress 
magnitudes.

Beyond exhibiting a regular and coherent PSL layout, the visualization also reveals a strong correlation between PSL convergence 
and elevated stress levels near the constrained boundary. This provides a clear indication of structurally critical or “weak” regions and 
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Fig. 17. (a) Dome model, P. 1–9 indicate the fixed positions. (b) The major and minor PSLs. (c) The PSLs color-coded with the corresponding 
principal stress values and viewed from the top.

Fig. 18. (a) Problem description of the snail shell, where the orange and grey regions indicate the loaded and fixed nodes, respectively. (b) The 
topology of the stress field. (c) to (e) The resulting PSLs under the density control parameter 𝜔 = 6, 10, 14 sequentially.

offers intuitive guidance on where stiffeners or reinforcement should be placed. These observations underline the utility of PSLshell
in supporting early-stage conceptual and performance-driven architectural design.

Snail shell. We conclude the experimental section with a nature-inspired example, a snail shell, chosen to illustrate a current limita-
tion of PSLshell. The structure is discretized with 𝑇 3 elements, and the boundary conditions are indicated in Fig. 18a. Fig. 18b–e first 
display the stress field topology and then show PSL distributions of progressively increasing density, controlled by the parameter 𝜔
introduced in Section 5. In this case, several minor PSLs belonging to the topological skeleton terminate prematurely, as highlighted 
by the black circles in Fig. 18b-e. This phenomenon is concurrently caused by the spiral geometry and the intricate stress topology, 
resulting in trajectories that wind indefinitely rather than converging outward. As a result, the tracing process becomes constrained 
by the maximum number of integration steps, leading to visually discontinuous trajectories. This behavior represents an inherent 
limitation of the current tracing algorithm when applied to geometries with strong spiral features and nontrivial topology.
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7.  Conclusion and future work

In this paper, we have introduced a novel framework that systematically addresses the critical challenges associated with generat-
ing principal stress lines (PSLs) on shell structures. The proposed approach comprehensively accommodates the practical conditions 
in shell analysis, where higher-order elements are frequently employed to represent complex curvatures. It consistently supports 
both first- and second-order triangular and quadrilateral elements by rigorously adhering to the element shape functions, thereby 
avoiding the geometric distortion and artificial discontinuities introduced by piecewise linear subdivision. Furthermore, the frame-
work enables seamless PSL propagation across sharp creases, ensuring continuity of stress trajectories on non-smooth surfaces. The 
inherent singularities in shell stress fields are systematically analyzed and resolved through an extended stress topology formulation, 
which guarantees the topological consistency of PSLs in degenerate regions. By integrating stress topology with surface-based spatial 
computations, the framework achieves domain-filling and evenly spaced PSL distributions over curved shells while maintaining local 
coherence near singularities.

All components of the methodology are implemented in a unified and openly available MATLAB package, providing a robust 
and user-friendly platform for stress field investigation, design evaluation, and the development of PSL-guided lightweight structural 
design strategies. Beyond serving as an advanced tool for stress investigation, the framework establishes a general foundation for 
diverse domain-oriented applications. The structured PSL patterns provide direct insights into load transfer mechanisms and offer 
quantitative guidance for the placement of stiffeners, the orientation of fibers in composite laminates, and the design of lightweight 
shell structures that follow principal stress trajectories. Through a series of examples, the framework has been demonstrated to capture 
the stress characteristics across a variety of shell geometries. These examples collectively illustrate the framework’s potential to bridge 
stress analysis and structural design, providing a unifying basis for future research and applications that couple mechanical insight 
with geometry-driven design principles.

Although the proposed framework provides a comprehensive solution for generating domain-filling and topology-consistent PSLs 
on shell structures, several extensions are envisioned. The current implementation is limited to 2-manifold shell meshes, and its adap-
tation to non-manifold configurations such as intersecting webs would broaden its applicability. Incorporating physically informed 
adaptive seeding strategies could further enhance the quality and efficiency of PSL distribution. Moreover, coupling PSLs with geomet-
ric parametrization techniques presents an opportunity for field-aligned modeling and PSLs-guided structural optimization on curved 
shells. These directions will further strengthen the framework’s integration with computational design and geometry processing.
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Appendix A.  Derivation of Bernstein-Bézier interval bounds for quadratic elements

In this appendix, we illustrate how the element-wise intervals [𝑓 [min]
1 , 𝑓 [max]

1 ] and [𝑓 [min]
2 , 𝑓 [max]

2 ] are obtained using Bernstein-Bézier 
representations for quadratic elements 𝑄8.

On the isoparametric element of 𝑄8, defined by natural coordinate (𝜉, 𝜂) ∈ [−1, 1]2, we introduce affine coordinates

𝑢 =
𝜉 + 1
2

, 𝑣 =
𝜂 + 1
2

, (𝑢, 𝑣) ∈ [0, 1]]2 (A.1)

Each stress-derived scalar field 𝑓 ∈ {𝑓1, 𝑓2} is biquadratic in (𝑢, 𝑣). We evaluate it on the 3 × 3 grid

(𝑢, 𝑣) ∈ {0, 1
2
, 1} × {0, 1

2
, 1} (A.2)
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which corresponds to the eight nodes of 𝑄8 and the element center. Collecting the values of 𝑓 on (𝑢, 𝑣), we can form a 3 × 3 matrix 
𝑺 with each entry 𝑠𝑖𝑗 being given by 𝑓 (𝑢𝑖, 𝑣𝑗 ).

As known in 1D, the quadratic Lagrange values (𝑠0, 𝑠 1
2
, 𝑠1) relate to the Bernstein coefficients (𝑏0, 𝑏1, 𝑏2) through

𝑏0 = 𝑠0, 𝑏2 = 𝑠1, 𝑏1 = 2𝑠 1
2
− 1

2
(𝑠0 + 𝑠1) (A.3)

This defines a fixed 3 × 3 linear transformation 𝑪
⎡

⎢

⎢

⎣

𝑏0
𝑏1
𝑏2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 0 0
− 1

2 2 − 1
2

0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑪

⎡

⎢

⎢

⎢

⎣

𝑠0
𝑠 1
2
𝑠1

⎤

⎥

⎥

⎥

⎦

(A.4)

The biquadratic Bernstein coefficients are obtained by applying this transformation to 𝑺
𝑩 = 𝑪𝑺𝑪T (A.5)

The convex-hull property ensures
min𝑩 ≤ 𝑓 (𝑢, 𝑣) ≤ max𝑩 (A.6)

and thus the element-wise intervals are
[𝑓 [min], 𝑓max] = [min𝑩,max𝑩] (A.7)
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