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LIST OF SYMBOLS AND THEIR SI-UNITS

Throughout this thesis SI-units will be employed. The basic quantities,
units and dimensions of the International System of Units (SI) are shown
in Table 0.1. In Table 0.2 the SI-units and dimensions of the most
important quantities that occur in this thesis are listed. Table 0.3

contains a list of conventions and frequently used symbols.

Table 0.1, Basic quantities, units and dimensions of the

International System of Units (SI).

Basic quantity Basic unit Basic dimension
name symbol name symbol symbol

length 1 meter m L

mass m kilogram kg M

time t second s T

electric current I ampere A I

thermodynamic

temperature T kelvin K ]

amount of

substance n mole mol N

luminous intensity I candela cd Jd
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Table 0.2. SI-units and dimensions of the most important

quantities occurring in this thesis.

name symbol name symbol symbol

volume density of

fluid mass p kilogram/meter3 kg/m3 L_3M
fluid velocity Yi meter/second m/ s LE;1 .
stress Tij pascal Pa L MT
volume density of

body force £, newton/meter> N/m3 L-?MT_E
pressure p pascal Pa L MT
viscous stress % ; pascal_1 P?1 L::MT_z
deformation rate dij second s T

spin i3 second”’ g7 7]
viscosity niqu pascalesecond Paes L::MT:l
bulk viscosity [4 pascalesecond Pa«s L MI
dynamic viscosity n pascalesecond Pass L_1MT_1
fluidity ¢pqij (pascal-secondf1 Paq-s_1 Lg-lfz
kinetic energy Ekin Jjoule d L2MT \
work W joule L ™MT
time rate of work Q joule/second J/s L2MT_3
acceleration of free

fall g meter/second2 ,m/s2 LT"2
Mach number Ma

Strouhal number Sr

Reynolds number Re

(continued on next page)
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Table 0.2. (continued)

Quantity Unit Dimension
name symbol name symbol symbol
Froude number Fr
volume of
representative
elementary domain D€ VE meter3 m3 L3

. . . £
fluid fraction in DE ¢

s

solid fraction in D€ ¢
tensorial resistivity

of a fluid-saturated

porous medium R, . kilogram/

) 3 3 S

(meter~+second) kg/(m”+s) L -MT

: e 2 ek g -2 ’ -2 -2
intrinsic resistivity Rij meter m L
volume source density
of volume injection
rate <> second” ! s 77!
volume source density
of external force
(other than gravity) <> newton/meter- N/m3 L72mr ™2
area of representative
elementary surface Aé AE meter'2 m2 L2
tensorial permeability
(=inverse resistivity) Ki’ meter3-second/ 3 3.-1

J kilogram moes/kg  LM'T
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Table 0.3. List of conventions and frequently used symbols.

at partial differentiation with respect to t (3_1)
ai partial differentiation with respect to xi (m_1)
dij symmetrical unit tensor of rank two (Kronecker tensor)
De representative elementary domain of a
fluid-saturated porous medium
Dz subdomain of D€ in which the fluid is present
Dz subdomain of De in which the solid is present
<P> fluid average of a quantity ¢
<¢>f intrinsic fluid average of a quantity ¢
ZE interface(s) between fluid and solid phases
in the interior of De
AE representative elementary surface of a

fluid-saturated porous medium
8(x-x") three-dimensional unit pulse (delta function)
operative at x=x'

(a_) orthogonal transformation

pPa
t(p) p-th eigenvalue of (Kij)
A determinant of (Rij)
T pi (3.14159...)
x| length of vector x
) summation
ST planar triangle
C

boundary curve of ST

(continued on next page)
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Table 0.3. {continued)

Eijk completely antisymmetrical unit tensor
of rank three (Levi-Civita tensor)
It product
. +1 if h>0
sign(h) _ 4 jrp <o




CHAPTER 1

INTRODUCTION

The subject of investigation of the present thesis is the application of
the boundary-integral-equation method to the computational modeling of
three-dimensional, steady groundwater flow problems.

Problems concerned with the flow of groundwater have a wide field of
application. In the practice of groundwater hydrology, for example, they
occur in the managing of subsurface water reservoirs employed for the
supply of drinking water, and in the managing of irrigation systems for
agriculture. Equally important are applications encountered in, for
example, civil engineering practice, where the knowledge of the behavior
and the characteristics of the flow of groundwater is needed in the
design of all kinds of hydraulic structures like dams and drainage
systems.

In any theoretical study concerning the flow of groundwater one's
interest is to obtain insight in the average or so-called macroscopic
behavior of the groundwater flow in the interior of some given porous
substance. Solutions of groundwater flow problems (see, e.g., Muskat,
1946, Polubarinova-Kochina, 1962, Scheidegger, 1963, or Bear, 1972), are,
in general, based on the fundamental laws of the flow of viscous fluids
and on various, often rather intuitive, generalizations of an empirical
law for one-dimensional flow discovered by Darcy in 1856 (Darcy, 1856) to
deal with the permeability characteristics of some subsoil. Darcy's law

expresses that the rate of flow through a bed of fine particles is
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proportional to the pressure drop along it. Although with the aid of
these generalizations many practical problems concerned with, e.g.,
groundwater flow in aquifers, seepage through and below dams, and the
like, can successfully be solved, there is a need for a more profound
theoretical justification of the various generalizations of Darcy's law,
as well as for more explicit knowledge under which conditions these
apply.

The first part of the present thesis is especially set up to serve
this purpose. It provides a theoretical insight into Darcy's law and its
generalizations. Envisaging the soil as a fluid-saturated porous medium,
the underlying thought in the analysis is that the relevant macroscopic
equations for the flow of groundwater can be obtained upon applying a
suitable spatial averaging procedure to the well-established equations
for common fluid flows, where the latter equations describe the fluid
flow phenomena at the scale of the pores, i.e., the so-called microscopic
scale. Once the relevant macroscopic equations for flow of groundwater
have been derived in this manner, they serve to formulate steady
groundwater flow problems as (mathematical) boundary-value problems for
the relevant flow equations in porous media, i.e., a macroscopic
continuity equation for incompressible fluid flow and Darcy's law.

The literature on solving boundary-value problems is very extensive.
A review of the analytical techniques for solving these problems,
especially concerning groundwater flow problems, can be found in, e.g.,
Polubarinova-Kochina (1963) and Bear (1972). In general, the
applicability of analytical methods is limited to flow configurations of
a simple shape and composition. In practice, however, we are often
confronted with complex geometries with (partially) inhomogeneous and/or
anisotropic media.

With the advent of high-speed, large-capacity digital computers,
numerical techniques have started to play a role of increasing importance
in groundwater flow calculations. The main advantage of these techniques
is their general applicability: they are flexible as regards shape, size

and physical composition of the different geometrical constituents that
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together form the configuration that one wants to analyze. The main
limitations are dictated by the speed and storage capacity of the
computer system at one's disposal. The numerical techniques are based on
a discretization of the equations governing the relevant groundwater flow
phenomena. In this respect, discretized versions of the pertaining
partial differential equations are used; in their simplest form they lead
to finite-difference formulations. The application of this approach to
the flow of groundwater, has been started in the 1960s (see, e.g.,
Remson, Appel and Webster, 1965). Later, also the finite-element method,
which is more flexible as far as the geometry of the domain of
computational interest is concerned, entered into the numerical solving
of groundwater flow problems (see, e.g., Pinder and Gray, 1977). On the
other hand, groundwater flow problems can also be formulated in terms of
integral equations, the discretization of which leads again to a
different type of numerical implementation.

In the present thesis, we have investigated a particular type of
integral-equation technique, viz. the boundary-integral-equation method.
The main attraction of this method as compared with the finite-difference
and finite-element methods is that it achieves computational efficiency
through a reduction in the problem's dimensionality. Especially in
implementing three~dimensional problems, this advantage shows up.
Moreover, the differential equations describing the groundwater flow in
the interior of the relevant porous substance are in principle solved
exactly; all approximations are made on the boundaries. Since, however,
the boundary-integral-equation method can in practice only be handled for
piecewise homogeneous subdomains in the flow configurations, it does not
defeat the finite-difference and finite~element methods in all cases. In
general, for groundwater flow problems concerned with flow in strongly
inhomogeneous media, a finite-difference, finite-element, or a hybrid
approach, may be a better choice.

In arriving at the boundary—integﬁal-equation formulation for solving
steady groundwater flow problems, the main tool is the use of suitable

source-type integral representations for the flow field quantities
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involved, i.e., the pressure and the flow velocity. The representations
express the latter quantities in terms of related quantities on a closed
surface bounding'the flow configuration under consideration. The
source-type integral representations, in their turn, follow from a
suitable reciprocity theorem that interrelates, in a specific way, the
field quantities of two admissible, but non-identical, states that can
occur in one and the same bounded domain in space. This theorem can be
regarded, both mathematically and physically, as one of the most
fundamental theorems from which many properties of groundwater flow
fields follow. In the reciprocity theorem one of the states is chosen as
the actual one, the other is taken to be one of several "auxiliary
states". Taking the latter to correspond to the presence of appropriate
point sources, the desired source-type integral representations are
obtained. The latter contain Green's type, singular kernel functions.
Once these kernel functions are known, the different
boundary-integral-equation-formulations follow upon taking, in the
integral representations, the point of observation on the boundary
surface of the domain for which the Green's functions have been
determined. In practice, simple analytical expressions for the Green's
kernels can be obtained for unbounded, homogeneous and reciprocal media
only. As a consequence, the boundary-integral-equation method is, in
practice, implemented for piecewise homogeneous flow configurations only.
In order to solve the resulting boundary integral equations numerically,
a suitable discretization scheme is developed. In the present thesis the
boundary integral equations are applied to a number of simple, isotropic
and anisotropic, test configurations, but the software developed for them

is of general applicability. More details are given in the outline below.

Qutline of the different chapters

In Chapter 2, the basic equations governing the theory of isothermal flow
of viscous fluids is summarized. Envisaging the permeation of groundwater

in a common (sub)soil as the flow of a fluid in a porous medium, these
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equations describe the flow at the scale of the pores, i.e., the
microscopic scale of the porous medium. It is shown that for common
groundwater flows the conditions are satisfied under which the, in
general,'compressible fluid flow governed by a non-steady and non-linear
equation of motion can be approximated by an incompressible one governed
by a sSteady and linear equation of motion. These approximate equations
adequately describe the flow inside the pores of the commonly encountered
(sub)soils.

In Chapter 3, the latter pore-scale or microscopic equations serve to
develop the macroscopic equations for the flow of groundwater. The latter
describe the groundwater flow phenomena at a scale that complies with the
one at which these flow processes are encountered in practice. To this
aim the microscopic equations are averaged over a so-called
representative elementary domain of the fluid-saturated porous medium
under consideration. The expressions that arise after employing the
volume-averaging operator all have a clear physical meaning and can, in a
natural way, be identified with the quantities that one usually observes
and measures in practice. It is shown that as far as the macroscopic
equation of motion is concerned, an equation that essentially is Darcy's
law is arrived at. In the literature on porous media flow, the idea of
deriving macroscopic equations by applying a suitable averaging procedure
to the well-established microscopic equations has been initiated by
Slattery (1967) and Whitaker (1967 and 1969). Later, it has been
exploited and extended by many others (see, e.g., Hassanizadeh and Gray,
1979a,b and 1980, and the references cited therein). Chapter 3 is
concluded with formulating problems concerned with steady flow of
groundwater as mathematical boundary-value problems.

In Chapter 4, boundary-integral-equation formulations for those
steady groundwater flow problems that can mathematically be formulated as
boundary-value problems are further developed. In the literature (see,
e.g., Liggett and Liu, 1983), most boﬁndary-integral—equation
formulations for analyzing the steady flow of groundwater are based on

the source-type integral representation for only one of the field
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quantities that characterize the flow of groundwater, viz. the pressure.
It is one of the purposes of Chapter 4 to give a general survey of the
boundary-integral-equation formulations that follow from using both the
source~type integral representation for the pressure and the source-type
integral representation for the velocity.

In Chapter 5 an efficient and straightforward method is presented for
solving numerically the relevant systems of boundary integral equations
pertaining to the steady groundwater flow in piecewise homogeneous
configurations. The technique amounts to the geometrical discretization
into planar triangles of the boundary surfaces of the homogeneous
subdomains involved, the approximation of the relevant flow quantities by
piecewise linear interpolation functions, and, finally, the application
of the method of collocation (point matching) at the nodal points of the
discretized geometry. The procedure results into the replacement of the
boundary integral equations and, hence, of the relevant flow problem, by
a system of linear, algebraic equations. Particular emphasis is given to
the analytic evaluation of all (matrix) coefficients occurring in the
latter system.

In Chapter 6, numerical experiments are carried out in order to test
the computer code developed. Simple test flows in homogeneous, isotropic
and anisotropic, but reciprocal, media are considered. The results

obtained look very promising for further applications.



CHAPTER 2

BASIC RELATIONS OF FLUID MECHANICS

In this chapter, the basic relations governing the theory of isothermal
flow of viscous fluids are summarized. The equation of continuity, the
equation of motion, the equation of deformation rate, and the
constitutive relations for viscous fluids, together with (some of) their
consequences, are discussed in Section 2.1. The boundary conditions at a
surface of discontinuity in fluid properties are studied in Section 2.2,
Section 2.3 deals with the exchange of mechanical energy that takes place
in viscous fluid flow. Finally, in Section 2.4, we analyze the conditions
under which a fluid flow can be regarded as incompressible, and discuss
in some detail the.conditions under which we may approximate the
non-steady and non-linear equation of motion for a Newtonian fluid by a
steady and linear one. In the remainder of Section 2.4, we discuss the
important simplifications that can be made in case we are dealing with
the permeation of groundwater inside the pores of common subsoils. The
resultant equations are known as the equations for creeping motion; they
play a fundamental role in Chapter 3, where they serve to develop the
equations that describe, on a macroscopic scale, the permeation processes

of groundwater in common subsoils.
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2.1. BASIC EQUATIONS OF FLUID MECHANICS

3

A point in three-dimensional Euclidean space R~ is referred to by its
coordinates {x1,x2,x3} relative to a fixed, orthogonal, Cartesian
reference frame with origin O and three mutually perpendicular base
vectors {11,12,13} of unit length each. In the indicated order, the base

vectors form a right-handed system. The subscript notation for vectors

and tensors is employed; for repeated subscripts the summation convention

applies. Occasionally, a direct notation will be used to denote a

vectorial quantity; in particular, 5=xi£i will denote the position

Fig. 2.1. Reference frame, Cartesian coordinates {x1,x2,x3},

position vector x and time of observation t.




CHAPTER 2 : BASIC RELATIONS OF FLUID MECHANICS -9-

vector. The time of observation is denoted by t (see Figure 2.1). As
system of units we use the International System of Units (SI), For the
SI-units and the dimensions of the quantities occurring in the theory, we
refer to the overview "List of symbols and their SI-units" that precedes
Chapter 1.

For our summary of the basic equations of fluid mechanics we start
with the local form of the equation of conservation of fluid mass in the
absence of either mass production or mass annihilation (see, e.g.,

Malvern, 1969, p. 207, or Eringen, 1967, p. 85)

atp + Bi(pvi) = 0, (2.1.1)
where

at = partial differentiation with respect to t,

p = volume density of fluid mass,

d, = partial differentiation with respect to x,,

i i
fluid velocity.

<
1}

Equation (2.1.1) is known as the continuity equation of mass flow. Next,
from the integral form of the equation of conservation of linear momentum
and using (2.1.1) we obtain Cauchy's first law of motion (see, e.g.,

Malvern, 1969, p. 214, or Eringen, 1967, p. 103)

8jTij + fi = p(atvi + vjajvi), (2.1.2)
where
1,. = Stress,
1]
f = volume density of body force.

For nonpolar fluids (i.e., fluids in which neither body torques nor

couple stresses are present, see, e.g., Aris, 1962, pp. 103~104, or
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Malvern, 1969, pp. 217-220), and those are the ones that we consider
here, the integral form of the equation of conservation of angular

momentum, with the further use of both (2.1.1) and (2.1.2), leads to
Cauchy's second law of motion (see, e.g., Malvern, 1969, p. 216, or

Eringen, 1967, p. 103);

Ty T i (2.1.3)
i.e., the stress is a symmetrical tensor.

In fluid mechanics, the stress is usually written as the sum of a
part that corresponds to an omnidirectional pressure and a viscous or
dissipative part; the latter accounts for the internal friction in the
fiuid (see, e.g., Aris, 1962, p. 105, or Landau and Lifshitz, 1966, p.
47). We write

Tij = = pdij + Gij’ (2.1.4)
where
p = scalar pressure,

viscous stress.

oij

Here, Gij denotes the symmetrical unit tensor of rank two (Kronecker

tensor), which is defined as éij=0 if i#j and § For a fluid

117822783371
at rest, the scalar pressure p can be identified with the pressure as
introduced in classical thermodynamics. When the fluid is in motion, we
retain, on the assumption of local thermodynamic equilibrium, this
identification (see, e.g., Aris, 1962, p. 105, or Thurston, 1964, pp. 49-
50). The internal friction in a fluid manifests itself only when adjacent
fluid particles are in a relative motion. For this relative motion, the
velocity gradients aivj are taken as a quantitative measure.

Decomposition of 3ivj into its symmetric and antisymmetric parts leads to
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aivj = dij + wij’ (2.1.9)
with

dij = (1/2)(aivj + ajvi) (2.1.6)
and

Wiy o= (1/2)(Biv\j - ajvi), (2.1.7)
where

dij = deformation rate,

wij = spin.

Since the spin corresponds to a local rigid-body rotation (see, e.g.,
Aris, 1962, p. 89), while the deformation rate provides a measure for the
rate of change of the infinitesimal distance between two neighboring
fluid particles, only the deformation rate plays a role in the processes
that govern the internal friction.

The macroscopic viscous properties of a fluid are accounted for by a
constitutive relation that relates the viscous stress to the deformation
rate. If we assume the fluid to be time invariant and to react linearly,

instantaneously and locally, we have (see, e.g., Aris, 1962, p. 111):

o,.(x,t) =n,. (x)d_ (x,t), (2.1.8)
1J = nlJDq(—) pq =
where

niqu = viscosity.

Since both the viscous stress and the deformation rate are symmetrical

tensors, satisfies the following symmetry relations:

"ijpq
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(x). (2.1.9)

(x) =n,, (X)) =n, (x)-= "yipq %

“ipa = T Mep = T Mjigp
If, in addition, we assume the fluid to be isotropic, the properties of
the fluid are, at each position, independent of the direction. For
isotropic fluids the most general form of "iqu that complies with
(2.1.9) is given by (see, e.g., Aris, 1962, p. 34, or Thurston, 1964, pp.
49-50, or Malvern, 1969, p. 298)

)s (2.1.10)

ﬂiqu(ﬁ) = a(i)éijdpq + b(x) (s,

§, + 8. 6.
1p Jg 1q Jp
where a and b are arbitrary scalar quantities. Substituting (2.1.10) in

(2.1.8) and taking into account the symmetry of dij’ we arrive at

.. =ad_ 6., + 2bd, .. ' 2.1.11
%1 pp°1j ij ( )
Now, the standard form of (2.1.11) follows upon replacing a by z-(2/3)n
and b by n, where (see, e.g., Aris, 1962, p. 34, or Truesdell and Toupin,
1960, p. 718, or Batchelor, 1983, p. 154)

Y
[}

bulk or expansion viscosity,

dynamic or shear viscosity.

=
[}

Clearly, (2.1.11) then becomes

L. = - (2/ d §..+ 2nd,., 2.1.12
%5 [z - (2/3)n] ppti; nd; ( )

and, hence, (2.1.4) is replaced by

.. = — D6, + - (27 d_§.. + 2nd,.. 2.1.1
T PS5 [z - (2/3)n] opti; nd; ( 3)
A fluid whose viscous properties are characterized by the constitutive

equation (2.1.12) is usually denoted as a Newtonian one (see, e.g., Aris,

1962, pp. 110-111, or Malvern, 1969, p. 298). Upon writing the stress 5
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and the deformation rate dij each as the sum of an isotropic and a

deviatoric part, i.e., writing

Leo= (17 §.. + 1!, L1
Tij ( 3)rpp ij * oy (2.1.14)
and

d,. = (1/3)d_68.. + d!., - 1.1

i; (173) pp’i ij (2 5)
where

Tij = deviatoric stress,

dij = deviatoric deformation rate,

we obtain from (2.1.13) the relations
(1/3)1 = - + rd 2.1.16
3 pp pred, ( )

and

T, = 2nd£ (2.1.17)

13 A

Note that Tii=0 and dii=0. The quantity (1/3)rpp is also known as the
opposite of the mean (mechanical) pressure (see, eig., Aris, 1962, p.
105, or Truesdell and Toupin, 1960, p. 545). From (2.1.16) it readily
follows that for a vanishing bulk viscosity the mean pressure equals the
thermodynamic pressure. Since in the majority of common fluid-flow
situations the bulk viscosity proves to be relatively unimportant (see,
e.g., Malvern, 1969, p. 301, or Batchelor, 1983, pp. 154-174, or Bird,
Stewart and Lightfoot, 1960, p. 79), its influence is often neglected,

Under this assumption (2.1.13) reduces to

L= - .. +2nd, .. -~ o 2.1.18
Ty [p + (2/3)ndppja1J + nle ( 18)
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Next, we substitute the constitutive equation (2.1.13) into Cauchy's

first law of motion, use (2.1.6) and arrive at the following result:
- up 9, {lz - (2/3)n]3pvp} + 3j[n(aivj + iji)] *fy
= p(atvi + vjajvi). (2.1.19)

Equation (2.1.19) is denoted as the generalized Navier-Stokes equation.
Now, assuming that the quantities g, n and fi are known, it is clear that
in order to determine the unknown quantities Vis p and p, the
Navier-Stokes equation (2.1.19) has to be supplemented by the equation of
continuity (2.1.1) and by one other scalar equation. This additional
eduation is provided by the equation of state for the fluid under

consideration and can be written as
p = p(p,T), (2.1.20)

where T denotes the temperature, which, in view of the assumed isothermal
flow, has a constant value throughout the fluid. ’

To conclude this section, we sum up some special types of fluid flows
and list some of their properties.

First of all, if the viscous stress Uij in (2.1.4) vanishes
identically, the relevant fluid is denoted as an ideal one (see, e.g.,
Landau and Lifshitz, 1966, p. 4). In that case, we arrive from (2.1.2)
and (2.1.4) at

- Bip + fi = p(Stvi + vjajvi), (2.1.21)

which is known as Euler's equation of motion (see, e.g., Landau and

Lifshitz, 1966, p. 3). This equation is widely used for describing flow

systems in which the viscous effects are relatively unimportant.
Secondly, we consider the case that a fluid is behaving as if it were

incompressible. For this situation we have the internal constraint that
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the volume density of fluid mass p is not affected by the motion of the
fluid. Then, Btp + viaip = 0, and the continuity equation reduces to (cf.
(2.1.1)):

Siv. = 0. (2.1.22)

The conditions under which a fluid flow can be regarded as an
incompressible one, are discussed in some detail in Section 2.4, It is
emphasized that if we assume that the fluid is behaving as if it were
incompressible, the pressure p in (2.1.4) has to be considered as an
independent variable since it is no longer thermodynamically defined
(see, e.g., Aris, 1962, p. 105, or Malvern,. 1969, pp. 295-298). Clearly,
for an incompressible viscous fluid (2.1.22) leads to dpp = 0, and the

constitutive equation (2.1.12) reduces with the aid of (2.1.6) to

0, . = ani

i i (2.1.23)

J

while (2.1.13) is replaced by

Ty 7T pdij + anij' (2.1.24)
As a consequence, the generalized Navier-Stokes equation (2.1.19) reduces
to

- Bip + Bj[n(aivj + ajvi)] + fi = p(Btvi + vjajvi). (2.1.25)

Note that (2.1.25) which, for an incompressible Newtonian fluid,
constitutes the equation of motion, only has to be supplemented by the
continuity equation (2.1.22) in order to determine the unknown quantities
vy and p (the quantities n, p and fi are assumed to be known). Equation

(2.1.25) will be studied in some more detail in Section 2.14.
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2.2. BOUNDARY CONDITIONS

At those positions of a given flow configuration where the properties of
the fluid show abrupt changes, (some of) the quantities that describe the
motion of the fluid (such as the velocity and the stress) will, in
general, change discontinuously, too. In particular, this situation
arises when at the two sides of a surface two different fluids are
present; the presence of such a surface of discontinuity, or interface,
implies that the fluids are immiscible. On physical grounds we assume
that the jumps in both the constitutive parameters and the field values
will remain bounded; hence, across the discontinuity surface they can at
most jump by finite amounts. At those locations the local form of the
conservation equations (e.g., the continuity equation of mass flow, the
equation of conservation of linear momentum and the equation of
conservation of angular momentum), the kinematic equation (2.1.6), and
all equations deduced from these, will in general cease to hold, since at
least some of the derivatives occurring in these equations do not exist.
As a consequence, théy'have to be supplemented by so-called boundary, or
interface, conditions that interconnect, in a certain manner, (parts of)
the relevant field values at either side of the surface of discontinuity
under consideration.

In the present section, we derive the relevant interface conditions
pertaining to the basic flow equations (2.1.1), (2.1.2) and (2.1.8). The
standard manner to interrelate the solutions to these equations at either
side of a surface of discontinuity in fluid properties is to replace,
locally, the basic flow equations by another system of equations that for
continuously varying fluid properties is equivalent to the system
(2.1.1), (2.1.2) and (2.1.8), but that contains no spatial
differentiations across the surface of discontinuity under consideration.
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Let S denote the interface and assume that S has everywhere a unique
tangent plane. Further, let Vi denote the vector along the normal to S
such that upon traversing S in the direction of Vi, We pass from the
domain D2 to the domain D1, D1 and D2 being located at either side of S
(see Figure 2.2). Let x be the position vector of some point on S. Now,

Fig. 2.2. Surface of discontinuity in fluid properties S.

to avoid the problem of differentiation along vy in (2.1.1), (2.1.2) and
(2.1.8), we integrate these equations along a straight line joining a
point with position vector x - hv (with h > 0) located in D2 to a point

with position vector x + hv located in D, (see Figure 2.2). Applying this

1
procedure to Cauchy's first law of motion, we obtain (ef. (2.1.2))

h h )
J 9.1, ,(x+sv,t)ds + [ f.(x+sv,t)ds
s=-h J 1Y s=-h
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plx+sv,t)[d + vj(1+sx,t)aj]vi(§+sg,t)ds = 0. (2.2.1)

At this point, it should be noted that the operator Bt + vjaj occurring
in (2.2.1) produces the time rate of change that an observer registers
when moving through the fluid with the velocity vy This rate of change
is denoted as the co-moving time derivative and remains bounded at the
interface between the two fluids. Furthermore, the spatial derivatives
along the interface S remain continuous and bounded. To separate these

from the derivatives along v, we write

3. =N, 93 _+ T, 0, (2.2.2)
J js's js’s
where
N, = v,v _ (2.2.3)
js Jj’s
and
T. =6._ - v.,v_. (2.2.4)
Js Js J s
Obviously,

stas is the part of aj along v and Tjsas is the part of aj
perpendicular to v, i.e., along S. All components of the integrands in
(2.2.1) parallel to S remain bounded and hence, their contribution
vanishes as h + 0. The same applies to components of the integrands of
the last two terms in (2.2.1) along v. In view of these properties, upon

letting h tend to zero in (2.2.1), we arrive at

h h
lim J 3.1, .(xtsv,t)ds = lim J N, 9_1..(x*+sv,t)ds
neo ‘s=-n 9 J he0 ‘s=-n 9% % 1J

= 1im v.[1,.(x+hv,t) - 1..(x-hv,t)] = 0, (2.2.5)
iig vyl (xeho,e) = 1y (x-hy, t)]
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or

v,[

3 Tij]1 5 = 0 at S, (2.2.6)

where [Tij]1,2 = Tij'] - Tijlz,

limiting value of the preceding quantity as S is approached via Da'

in which la’ with a=1,2, denotes the

The interface condition (2.2.6) expresses the continuity of the traction
Tijvj across the interface S (see, e.g., Eringen, 1967, pp. 105-106,
Landau and Lifshitz, 1966, pp. 50-51, or Truesdell and Toupin 1960, p.
546). Upon applying a similar procedure to the continuity equation in the

following form (ef. (2.1.1)):

3, v, + (3

ivi Pt Viaip)/p =0, (2.2.7)

where, as far as the co-moving time derivative of the volume density of
fluid mass is concerned the same condition as regards immiscibility is

invoked as above, it follows that

vi[vi]1,2 =0 at S, (2.2.8)
i.e., the component of the fluid velocity that is normal to the interface
is continuous across the interface (see, e.g., Eringen, 1967, pp. 105-

106, or Landau and Lifshitz, 1966, p. 5). Upon rewriting the constitutive

relation (2.1.8), in which we use (2.1.6), as

1/2)(3 v_+3v)=9%¢ . .0,, (2.2.9)
(172) pPq qQ p) paij ij’
where ¢pqij is the fluidity of the fluid, and employing the same
procedure as above, we arrive at

=0 at S. (2.2.10)

vp[vq]1,2 + Vq[va1,2

Contraction of this equation with vp leads to
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[vq]1,2 + vpvq[vp]1,2 =0 at S. (2.2.11)

Combining (2.2.11) with (2.2.8),7it follows that
Cv.] =0 at s, (2.2.12)

i.e., at a surface of discontinuity in matter separating two different
viscous fluids, all components of the fluid velocity are to be continuous
across this surface (see, e.g., Landau and Lifshitz, 1966, pp. 50-51).
This boundary condition can also easily be understood physically: due to
the presence of viscosity the fluid at one side of the interface drags
the fluid at the other side along and vice versa. At a surface of
discontinuity in matter separating two ideal fluids instead of two
viscous ones, however, only the component of the fluid velocity normal to
the interface is continuous across the interface (cf. (2.2.8)), and the
continuity of the traction is replaced by the continuity of the pressure.
Equation (2.2.6) is then replaced by (see, e.g., Landau and Lifshitz,
1966, pp. 50-~51, or Truesdell and Toupin, 1960, p. 711)

[p]1,2=0 , at S. (2.2.13)

It is emphasized that in the above derivations of the interface
conditions at S all interfacial effects, such as, e.g., surface tension,
have been neglected. If one wants to deal with a surface of discontinuity
with special properties, one usually accounts for the relevant effects by
introducing so-called surface sources on the right-hand sides of the
relevant boundary conditions. For a more detailed discussion on this
subject we refer to Batchelor (1983, p. 60) and Slattery (1967), and to
the references cited therein. Finally, we remark that if the procedure
outlined above is applied to the local form of the equation of
conservation of angular momentum no new interface conditions at S are

obtained.
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Finally, we analyze the boundary conditions at some special types of
surfaces of discontinuity. First of all, at the boundary surface of a
viscous fluid and a rigid and immovable body we have vi + 0 upon
approaching the -boundary surface of the body, i.e., the fluid adheres to
the body (see, e.g., Landau and Lifshitz 1966, p. 50). On this type of
boundary surface Tijvj remains unspecified. For such a body in contact
with an ideal fluid we have ViV + 0, and, hence, slip may occur parallel
to the boundary surface, while instead of Tijvj now p remains unspecified
upon approaching the boundary surface. At a traction-free boundary
surface of a viscous fluid we have Tijvj + 0 upon approaching this
boundary, while now vi on the surface remains unspecified. For an ideal
fluid in this latter case we have p » 0, while, instead of Vi’ now vivi
remains unspecified upon approaching the traction-free surface (and the
other components of v, as well).

To conclude, a summary of the boundary conditions across a two-sided
surface of discontinuity in material properties is given in Table 2.1.
The explicit boundary conditions that have to be prescribed on boundaries

of a specific type have been included as well.

Table 2.1. Boundary conditions for viscous and ideal fluids at
a surface S of discontinuity in fluid properties.

type of boundary viscous fluids ideal fluids

interface between vy and Tijvj continuous vivi and p continuous

two fluids across S across S

boundary surface vi+0; Tijvj remains vivi+0; p remains
of rigid and unspecified on S unspecified on S
immovable body

(continued on next page)
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Table 2.1. (continued)

traction-free 1, ,v.?0; vi remains p>0; vivi remains

137
boundary surface unspecified on S unspecified on S
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2.3. ENERGY CONSIDERATIONS

In this section we consider the exchange of mechanical energy in a
flowing fluid.

Consider a configuration where a fluid is present in some bounded
domain D that moves along with the fluid. Let 3D denote the closed
boundary surface and let the unit vector along the normal to 3D, pointing

away from D, be denoted by vi (see Figure 2.3). As a first step to arrive

I<

ab

Fig. 2.3. Bounded domain D with closed boundary surface 3D with
unit vector 2 along the normal to oD pointing away

from D.

at the mechanical energy equation, we contract the equation of motion
(2.1,2) with vy This yields
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viajrij + fivi = pvi(atvi + vjajvi). (2.3.1)
As a next step, we rewrite the first term on the left-hand side of
(2.3.1) as

viajrij = aj(viTij) - Tijajvi, (2.3.2)
and the right-hand side as
pvi(atvi + vjajvi) = at[(1/2)pvivi] + aj[vj(T/z)pvivi]. (2.3.3)

In (2.3.3) we have used the continuity equation (2.1.1). Subsequent
integration of (2.3.1) over the domain D then leads with the aid of

Gauss' theorem, (2.3.2), (2.3.3), and the identity

JD 3t[(1/2)pvivi]dv + [aD (1/2)pvjvjvividA
= dt[ (1/2)pvividV (2.3.4)
D
to the result

J v,T,.v,dA - J 1,.9,v.dV + [ f.v.dV = d J (1/2)pv.v.dV. (2.3.5)
3D i1 D ij7ji D ii t D 11

Now, since from (2.1.3) and (2.1.5) we further have

Tijajvi = Tijdij’ (2.3.6)
(2.3.5) can be rewritten as
Wsurrace * "body = 9tFkin * Wder: (2.3.7)

in which the different terms can be interpreted as follows:
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¥surface ~ J ViTijvjdA (2.3.8)
oD

is the time rate at which the surface forces acting on 3D deliver power

to the fluid in D,

wbody = ID fividv (2.3.9)
is the time rate at which work is done by the body forces acting on the
fluid in D, )

E (1/2)pvividV (2.3.10)

kin [D
is the kinetic energy associated with the motion of the fluid in D, and

.

wdef = [D 1ijdijdV (2.3.11)

is the time rate at which work is done by the internal stresses in the
fluid present in D. Equation (2.3.7) expresses the conservation of
mechanical energy for the fluid during its motion, viz. the time rate at
which work is done by the surfaee and the body forces acting on the fluid
in D, is balanced by the sum of the rates of change of the kinetic energy
of the fluid in D and the time rate at which work is done by the internal
stresses of the fluid in D.

As regards the work done by the internal stresses, we note that some
part of this work is, in general, reversibly stored, while the remaining
part, which accounts for the different loss mechanisms in the fluid
motion, is always irreversibly dissipated. In particular, working out the
quantity Tijdij for a Newtonian fluid defined by (2.1.13) and using
(2.1.4) and (2.1.15), it readily follows that

2
Cd.. = -pd_ + z(d + 2nd!.d! .. 2.3.12)
Ti3%; pdpp * eldgy) "¢i5%; (2.3
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The first term on the right-hand side of (2.3.12) represents the volume
density of the reversible rate of change of internal energy, while the
sum of the last two terms represents the volume density of the time rate
of dissipation of mechanical energy due to the viscosity of the fluid
(see, e.g., Aris, 1962, p. 117, or Bird, Stewart and Lightfoot, 1960, p.
314, or Malvern, 1969, p. 300).

To conclude this section, we note that the mechanical energy quantity
Tijdij often is referred to as the volume density of stress power (see,
e.g., Eringen, 1967, p. 117).
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2.4, MACH, STROUHAL, REYNOLDS AND FROUDE NUMBERS

In this section we examine the circumstances under which the flow of a
Newtonian fluid can be regarded as incompressible. Furthermore, we
discuss the conditions under which the non-linearity in the Navier-Stokes
equations is sufficiently unimportant to be neglected, and the
circumstances under which the non-steady flow of a Newtonian fluid can be
approximated by a steady one. To conclude this section, we investigate
for the case of subterranean flow of water, what simplified equations
accurately describe the flow at the scale of the pores, i.e., in the
interstices of the relevant subsoil. The latter equations will serve as a
start, in the next chapter, for the analysis of groundwater flow.

In Section 2.1 we have listed the consequences of the important
simplification that arises if a fluid flow behaves as if it were
incompressible (see (2.1.22) and (2.1.25)). In this approximation, the
variations in the volume density of fluid mass produced by the flow are
sufficiently small to be negligible. Inspection of the continuity
equation of mass flow (2.1.1) reveals that under these circumstances we

must have (see, e.g., Batchelor, 1983, p. 167)
[(3eo + v,3,00/p] << [3;v 1. (2.4.1)

From (2.1.20), the principle of local thermodynamic equilibrium, and the

assumed isothermal flow, we further have

2
9.p + viaip = (3,p + viaip)/cT, (2.4,2)

t t

where Cp denotes the isothermal speed of sound in the fluid. With the aid

of (2.4.2), the condition (2.4.1) can be rewritten as (see, e.g.,

Batchelor, 1983, p. 167)
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[(3,p + v,3,0)/(pe2)| << [a,v,]. (2.4.3)

To elucidate the implications of (2.4.3), let us consider a given flow

. * * * * *
configuration and let 1 , v , 4p , p and eT

linear dimension, characteristic fluid velocity, characteristic pressure

represent its characteristic

difference, characteristic fluid-mass density and characteristic
isothermal speed of sound, respectively. The non-steady fluid flow is
further characterized by a characteristic frequency f* that determines
the rate at which the fluid quantities change in time. Then, the
condition (2.4.3) under which a fluid flow may be regarded as

incompressible leads to

2 * * %2
Ma“(1 + Sr)Ap /(p v ) <L 1, (2.4.4)
where
* *
Ma = v /cT (2.4.5)

is known as the Mach number (see, e.g., Landau and Lifshitz, 1966, p.
171, or Batchelor, 1983, p. 168), and

sr=1¢/v (2.4.6)

is known as the Strouhal number (see, e.g., Landau and Lifshitz, 1966, p.
63, or Batchelor, 1983, p. 216). To estimate the order of magnitude of
Ap* in (2.4.4), we now consider the Navier-Stokes.equation (2.1.19) in
some more detail, First of all, we note that in the course of our
applications of (2.1.19) the only body force to be present is assumed to

be the one due to gravity. Hence, we write

fi = 08> (2.4.7)
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in which gi denotes the local acceleration of free fall. In analyzing
(2.1.19), we start with gaining some insight in the orders of magnitude

of the convective inertia forces and the viscous forces. The former is
* *2 * * * *2 *
given by p v /1 and the latter by n v /1 , in which n represents the

characteristic dynamic viscosity, and where it should be noted that in
this last estimation it is assumed that the order of magnitudes of the
bulk viscosity ¢ and the dynamic viscosity n are the same, although the
effects of the former viscosity can be neglected in most fluid flow
situations met in practice (see Section 2.1). Now, the ratio of the
orders of magnitude of the two forces [(convective inertia
forces)/(viscous forces)], designated as Re, is given by

* % %
1/ n (2.4.8)

*

Re = p v
.and is known as Reynolds number (see, e.g., Landau and Lifshitz, 1966, p.
62, or Batchelor, 1983, p. 214). For a fluid flow at small Reynolds
number, the convective inertia forces are at each point in the fluid
negligible with respect to the viscous forces; the flow is only
controlled by the pressure forces, the viscous forces, the forces due to
gravity and the local inertia forces, and as a consequence, the
characteristic pressure difference Ap* is of the order of magnitude of
(n*v*/l* + p*g*l* + p*f*v*l*), where g* represents the characteristic
local acceleration of free fall. Hence, with the aid of (2.4.6) and
(2.4.8), the condition (2.4.4) for incompressible fluid flow at low
Reynolds numbers becomes (cf., e.g., Tritton, 1977, p. 59)

Ma(1 + Sr)(1/Re + 1/Fr° + Sr) << 1, (2.4.9)

where

* *
Fr=v /(1 g )72 (2.4.10)
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is known as the Froude number (see, e.g., Landau and Lifshitz, 1966, p.
63). Thus, under the circumstances that Re << 1, the fluid is behaving as
if it were incompressible whenever the condition (2.4.9) is satisfied.

In addition to the above, we determine the conditions under which the
non-steady flow of the fluid at small Reynolds numbers can be
approximated by a steady one. To this end, we compare in (2.1.19) the
local inertia force term with the viscous force term; the ratio of these
two [(local inertia forces)/(viscous forces)] is (cf. (2.4.6) and
(2.4.8))

* x %2 %
p f1 /n = Ree3r. (2.4.11)

Hence, for small Reynolds numbers a non-steady Newtonian-fluid flow can
be approximated by a steady one whenever the additional condition
Re*Sr << 1 is satisfied. Finally, it should be noted that, in general,
only for periodic fluid flows the Strouhal number is taken to have a
value different from unity. For a non-periodic flow we take f* = v*/l*,
which entails that Sr = 1; as a consequence, a non-periodic flow of a
Newtonian fluid at small Reynolds number is only controlled by the
pressure forces, the viscous forces and forces due to gravity.

As already remarked in the introduction to this section, we need in
Chapter 3 the equations that accurately describe the flow of groundwater
in the interstices of common subsoils, the soil being envisaged as a
water-saturated porous medium. Hence, at this stage in our analysis, we
may gain some insight into the possible approximations of the general
basic equations that govern the flow inside the pores of water-saturated
soils. First of all, we note that in the case of subterranean water flow
it seems to be fair that, due to the large heat capacity of the
water-solid composite, all flow processes involved can be considered as
isothermal processes. Now, for permeation of water in common subsoils, a
typical value of the volume density of fluid mass is given by
p* = 1.0x103 3

* -
n = 1.5x10

kg/m~, a typical value of the viscosity by

3 Pa-s, and a representative value of the characteristic
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* -
linear dimension of the pores in the porous system by 1 = 1,0x10 2 m,

* -
Then, for a characteristic fluid velocity of v = 1.0x10 3 m/s, which in
common groundwater flow situations is considered as rather high, a

Reynolds number of Re = 6.7><10_3

results. Hence, in all applications to
groundwater flow we have Re << 1, Furthermore, on the assumption that the
groundwater flow under consideration is non-periodic, we have (cf.
(2.4.6)) Sr = 1, and hence, as outlined above, the fluid flow in the
pores is controlled by the pressure forces, the viscous forces, and the
forces due to gravity only. Now, in order to determine whether or not the
fluid flow inside the pores can be approximated by an incompressible one,
we are left with the task of estimating Maz, Maz/Re, and (Ma/Fr)2 (cf.
(2.4.9)). For the configurations at hand, a characteristic value of the

3

isothermal speed of sound is e = 1.4%10

*
the local acceleration of free fall is g = 10 m/sz. Utilizing (2.4.5),
(2.4.8), and (2.4.10), we then find Ma> = 5.1x10" 5, Ma’/Re ~ 7.7x107 "',

and (Ma/Fr)2 = 5.1x10_11, respectively. Clearly, with these values, and

m/s, and a typical value of

Sr = 1, the condition (2.4.9) under which a Newtonian-fluid flow behaves
as if it were incompressible is found to be not a very restrictive one.

In summary, the flow phenomena inside the pores of common,
water-saturated, subsoils, are, first of all, governed by the oontinuity
equation as given in (2.1.22). Secondly, we have Cauchy's first law of
motion in the absence of the inertia forces and identification of the
body forces with the force due to gravity, i.e., (cf. (2.1.2) and
(2.4.7))

3.1.. + pg. =0, (2.4.12)

which is known as the equation for creeping motion (see, e.g., Tritton,
1977, p. 82). Finally, (2.1.22) and (2.4.12) have to be supplemented by
(2.1.4), the constitutive equation (2.1.23), and the equation of
deformation rate (2.1.6). These equations will play a fundamental role in

the next chapter, where they serve as the point of departure for
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developing the theory of permeation processes of groundwater in common

subsoils, such as aquifers, dams, etc.



CHAPTER 3

BASIC MACROSCOPIC RELATIONS FOR FLOW OF GROUNDWATER

In this chapter, we develop the basic relations, on a macroscopically
averaged scale, for the flow of a single-phase fluid in a porous medium.
In particular, we discuss the macroscopic relations for the flow of
groundwater, where the soil is envisaged as a water-saturated porous
substance.

In principle, once the equations that govern the flow phenomena
inside the pores of a porous medium are known and once the geometry of
all interstices in the porous material is determined, the flow problem
can, on this scale, be solved. However, due to the fact that measurements
inside the pores can, in general, not be easily performed, and the fact
that the detailed geometries of the interstices cannot properly be
described for the majority of porous media that one observes in practice,
this procedure will usually amount to an unfeasible task. Fortunately, in
most practical civil-engineering groundwater flow problems, one's
interest is not to gain a detailed insight into the behavior of
fluid-flow phenomena on the scale of the pore sizes (the so-called
microscopic scale), but merely to analyze fluid/solid systems on the
gross, or average scale (the so-called macroscopic scale). For example,
the design of civil-engineering structures calls for the determination of
the macroscopic flow pattern of the groundwater in formations like
aquifers, dams, etc., where the average or macroscopic quantities are
associated with the ones that one usually observes and measures in a

practical field situation.
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Solutions of groundwater flow problems are generally based on
various, often rather intuitive, generalizations of the one-dimensional
empirical law formulated by Darcy in 1856 (Darcy, 1856). Examples of this
partly heuristic and empirical approach to the modeling of
three-dimensional fluid flows in homogeneous and inhomogeneous
anisotropic subsoils can be found in Muskat (1946, pp. 127-136), Morse
and Feshbach (1953, p. 172), Polubarinova-Kochina (1962, pp. 343-345),
Scheidegger (1963, pp. 76-79), Bear (1972, pp. 119-125), and Batchelor
(1983, pp. 223-234). Although with the aid of these generalizations many
practical problems concerned with, e.g., groundwater flow in aquifers,
seepage from dams, etc., can successfully be solved, there is a need for
a more profound theoretical justification of the various generalized
Darcy's laws, as Qell as for explicit knowledge under which conditions
they apply.

The literature on the many theoretical aspects of the behavior of
mul ti-component systems, such as fluid/solid systems, on a macroscopic
scale is very extensive. Apart from the partly phenomenological and
heuristic approaches referred to above, one distinguishes between the
so-called direct and indirect approaches. In the direct approach, the
multi-component system is treated directly at the relevant macroscopic
level and hence, in terms of continuum physics, the multi-component
system is envisaged as a system of overlapping continua. The relevant
conservation equations are postulated directly at the macroscopic level
and are intuitive extensions of the basic equations that hold for a
singlejphase continuum. The constitutive equations are then developed at
this macroscopic level as well, often in a manner similar to the one used
in the theory of mixtures (see, e.g., Bowen, 1976). For example, Bowen
(1984, pp. 63-119), employes this method for formulating various
mathematical models of porous media. The resultant equations are,
however, in most cases too general for practical use. In the indirect
approach, one starts from the well-established conservation equations at
the microscopic level pertaining to each constituent separately,

sometimes supplemented by the relevant constitutive equations at this
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level. Then, upon applying to these equations some mathematical averaging
procedure, one arrives at equations that hold on a higher level, viz. the
macroscopic one. As a first example of this indirect approach we mention
the so-called two-space method of homogenization used in statistical
physics, where one uses a spatial averaging procedure in addition to a
rather complicated asymptotic analysis. This method reveals which effects
at the microscopic level play a role at the macroscopic level. Keller
f1980) has employed this method to assert Darcy's law, while Burridge and
Keller (1981) and later Auriault, Borne and Chambon (1985) have used it
to treat various aspects of poroelasticity. A different type of indirect
"approach is furnished by the spatial averaging procedure. Here, the
equations at the microscopic scale are averaged over a so-called
representative elementary domain of the relevant multi-component
composite. This kind of averaging was initiated by Slattery (1967) and by
Whitaker (1967 and 1969) and was employed to arrive at macroscopic
equations for the flow of single-phase fluids in porous solids. The
method has later been used and extended by many others in order to
develop "rigorous" theories for more complicated flow phenomena in porous
systems, for example, systems containing multi-phase fluids together with
multi-phase solids (see, e.g., Dybbs and Schweitzer, 1973, Gray and
0'Neill, 1976, or De la Cruz and Spanos, 1983). In particular, we mention
the work by Hassanizadeh and Gray (1979a,b, and 1980), who adopted the
spatial averaging method to derive general macroscopic conservation laws
for multi-phase systems. They postulate a general set of admissible
constitutive relations at the macroscopic scale and then apply a special
method from thermodynamics (the method of Coleman and Noll (1963)) to
reduce this general set to proper onesbthat do not violate the second law
of classical thermodynamics. However, the constitutive equations thus
obtained are often, even after applying, for example, an extensive
linearization procedure, too general for use in practice. This is partly
due to the fact that the method does hot exploit often important
additional information from some of the fluid and/or solid properties at

the microscopic level. For example, in the case of flow of a single-phase
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fluid in some porous material, one can often determine the viscosity of
the fluid rather easily. Furthermore, due to the large heat capacity of,
for example, the fluid-solid composites one observes in common
water-saturated subsoils, one may consider, in a first approximation, the
flow processes to proceed under isothermal conditions and, in addition to
this, one may often approximate the interstitial fluid flow by an
incompressible one.

To conclude this brief overview of some of the numerous theories of
the modeling of multi-phase systems at a macroscopic scale, it should be
noted that recently, by using consistently a particular procedure of
volume averaging only, a macroscopic theory for acoustic wave phenomena
in porous solids has been developed (De la Cruz and Spanos, 1985, and De
Vries and De Hoop, 1988).

Finally, for a more detailed overview of the various attempts to
develop correct and adequate macroscopic descriptions for multi-component
composites we refer to Hassanizadeh and Gray (1979a,b, and 1980), and
Bachmat and Bear (1987, pp. 5-20), asvwell as to the references cited
therein.

In the present analysis, the basic equations, on a macroscopic scale,
for the creeping, incompressible flow of a Newtonian fluid in a porous
solid are developed upon utilizing an indirect method which to some
extent is similar to the one introduced by Slattery (1967) and Whitaker
(1969), i.e., we average the "microscopic" conservation and constitutive
equations over a representative elementary domain of the fluid-solid
composite; the solid matrix material being envisaged as rigid and
immovable. The choice in favor of this kind of averaging procedure is
based on the fact that the expressions that arise after applying the
volume averaging operator all have, in general, a clear physical meaning,
and can be identified in a natural way with the quantities one usually
observes and measures in practice. An additional advantage of the volume
averaging method applied here is that all mathematical procedures

involved are straightforward.




CHAPTER 3 : BASIC RELATIONS OF .GROUNDWATER FLOW -37-

Section 3.1 deals with the relevant averaging definitions and
provides the necessary tools for Section 3.2 in which they are applied to
the linearized equations for quasi-steady, incompressible, viscous fluid
flow. It is shown that, as far as the macroscopic equation of motion for
the permeation of groundwater is concerned, we end up with an equation
that essentially is Darcy's law. In Subsection 3.2.1 we incorporate in
the macroscopic equations for subterranean waterflow the action of
external sources that comply with the structure of these equations. In
Subsection 3.2.2 it is shown how the quantity that one observes in a
practical pressure-gauge measurement in groundwater flow is related to
the volume-averaged pressure introduced in the section preceding it. The
boundary conditions that are compatible with the relevant macroscopic
groundwater flow equations and that apply at a surface of discontinuity
in material properties are discussed in Section 3.3. Finally, in Section
3.4, the uniqueness of the solution of those groundwater flow problems
that can mathematically be formulated as boundary-value problems is

investigated upon utilizing energy considerations.
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3.1. AVERAGING CONSIDERATIONS

The basic assumption underlying our analysis is that the macroscopic,
large~scale, properties of a fluid-filled porous medium and a
corresponding description of the flow phenomena involved can be arrived
at by the spatial averaging of the relevant pore-scale quantities and
equations over a so-called representative elementary domain of the porous
medium under consideration.

Although the concept of a representative elementary domain of a
multi-phase system is well established in the literature on flow in
porous media (see, e.g., Whitaker, 1969, Bear, 1972, pp. 19-22,
Hassanizadeh and Gray, 1979a, or Baveye and Sposito, 1984), we first
summarize for completeness-in some detail its essential features. To this
end, it is helpful to consider the following hypothetical experiment
applied to some fluid~saturated porous material. At a fixed time, we
average a local, pore-scale, fluid quantity over a spatial domain whose
characteristic linear dimension, to be denoted by d, varies from very
small to very large (e.g., we integrate the relevant local quantity over
a sphere whose radius varies from less than the size of the diameter of
the pores up to several thousands of times of the latter value). In the
beginning, rapid fluctuations in the averaged fluid quantity may occur;
clearly, these can be ascribed to the fact that relatively large portions
of the fluid phase and/or the solid phase of the porous medium become
gradually included in the averaging domain and therefore strongly affect
the averaged quantity. Let the representative length scale over which
¢ Then, L.< represents the
so-called microscopic characteristic length scale of the porous medium

these rapid variations occur be denoted by L

under consideration. An increase of the characteristic linear dimension d
of the averaging domain will smooth out these rapid fluctuations and the

averaged fluid quantity will, within some interval, be independent of d.
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A further increase of d may lead again to variations in the averaged
fluid quantity. These ones are due to the large-scale (gross)
inhomogeneities of the porous medium and occur at the so-called
macroscopic scale of the relevant porous medium. Now, in order to arrive
at a meaningful averaged quantity and so at a meaningful averaging
procedure, the averaged quantity should be insensitive to small changes
of d. Clearly, this does not happen if d is either so small that it is of
the order of the diameter of the interstices, or so large that the
macroscopic inhomogeneities affect the averaging procedure. Hence, the

reasonings outlined above lead to the following criterion for d:

L, < d << L

< >’ (3.1.1)

where L> represents the characteristic scale of the macroscopic
inhomogeneities. At this stage it should be noted that for those
fluid-filled porous media for which (3.1.1) does not apply (e.g., if L>
cannot be identified), the "representative elementary domain concept"
fails, and instead of the domain averaging procedure one has to resort to
other techniques. For those cases where (3.1.1) does apply, the
representative elementary domain for the pertaining quantity can be
introduced.

Recently, Bachmat and Bear (1987, pp. 5-20) have presented, upon
utilizing a statistical procedure, quantitative upper and lower limits of
d. In an actual multi-phase system these upper and lower limits can serve
to select an appropriate value for d and hence for the volume of the
representative elementary domain (see, e.g., Van der Grinten, 1987).

In what follows, it is assumed that a common representative
elementary domain can be determined for all relevant microscopic
quantities to be averaged. This representative elementary domain will be
denoted as De; it is taken to be time- and shift-invariant, and its
position is specified by the position vector x of its "center”, for which

we take its barycenter, given by (see Figure 3,1)
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x = v [ x'dv, (3.1.2)
€ Jx'ep (x)
Xx'€D (x
where
vV = I v = [ dv (3.1.3)
© xvep_(x) £6D _(0)

is the volume of De = De(z), and where the shift invariance of De implies
that if §'eDE(5) with x' = x + g, then EGD2(9)° All averages over De of

Fig. 3.1. The position vector x' of the fluid and solid particles
in the subdomains DZ and D: inside the (schematic)
representative elementary domain De with position
vector x. The solid matrix material is assumed to be

rigid and immovable,
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the pore-scale quantities are assigned to the position of the barycenter
of De’ and are subsequently identified with the corresponding quantities
on the macroscopic scale. By following this procedure, we use in fact the
so-called continuum hypothesis (of statistical physics): appropriate
averages over De of microscopic quantities lead to the associated
macroscopic quantities, where the latter are assumed to vary piecewise
continuously with position. By this spatial averaging process, the actual
fluid-filled porous medium is replaced by a model continuum.

In our applications we aésume the solid phase of the fluid-saturated
porous material to be rigid and immovable, and to be noninteracting with
the fluid filling the void space, while the interstices of the porous
system are assumed to be interconnected.

In the two-component composite of the fluid-saturated porous medium,
DE = Ds(z) is the union of the subdomain Di(z) in which the fluid is
present and the subdomain Dz(g) in which the solid is present (see Figure

3.1). The volumes of Di(i)' and D:(Z) are denoted by Vg(g), where

vl - f o, (3.1.%)
x'€D (x)
x'eb (X

]

and Ve(z), where

S

Vo(x) = [ av, . (3.1.5)

€ x'€D2(x)

;

respectively. The volume fractions occupied by the fluid in Da is denoted

by
f f
8 x) = V O/ (3.1.6)

it is also known as the volumetric porosity of the medium. The volume
fraction ¢s occupied by the solid in Ds is denoted by

0°(x) = V() . (3.1.7)
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Since Ve = Vi(é) + Vi(l)’ it readily follows that for all x throughout
the domain of application we have (ef. (3.1.3) - (3.1.7))

¢f(_x_) v 65%(x) =1 and 0 S q)f(i) $1, 05 ¢f(5) s 1. (3.1.8)

For any quantity y associated with the fluid phase in DE (¢ may be a
scalar, or a Cartesian component of a vector, or a tensor of arbitrary
rank) we now define its corresponding "fluid average", designated as <y>,
and its corresponding "intrinsic fluid average", to be denoted by <w>f,

as

-1

< (x,t) = v j
¢ Jxrenl(o)

y(x',t)dv (3.1.9)

and

o) = vie w(x',t)av, (3.1.10)

-1
)] J ¢
x'€D (x)
X SR X

respectively. From (3.1.6) and (3.1.9) - (3.1.10) the interrelation
between <yY> and <w>f follows as

W (x,t) = o' (0 wlix, ). (3.1.11)

In the volume averaging of the pore-scale equations to be carried out in
Section 3.2, a mathematical relation is needed which links the averages
of the spatial derivatives of microscopic quantities to the spatial
derivatives of their averages, i.e., to the spatial derivatives of the
macroscopic quantities. In the literature on the subject the relevant
relation is known as the "Slattery-Whitaker averaging theorem",
formulated independently by Slattery and by Whitaker in 1967. For ¢ the
relevant interrelation between ai<w> and <aiw> amounts to (see, e.g.,
Slattery, 1967, p. 1067, or Whitaker, 1969, p. 20)
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-1

3, W (x,t) = Qv (x,t) -V,

[ Vi(ﬁ')w(ﬁ',t)dA- (3.1.12)
ﬁ'eze(g)

where 8; denptes partial differentiation with respect to x}, Ee
represents the interface(s) between the fluid phase and solid phase as
far as they are present in the interior of De’ andfv. denotes the unit
vector along the normal to ZE pointing away from D€ (see Figure 3.1). The
proof of this theorem as given by Slattery (1967, p. 1067) and Whitaker
(1969, pp. 18-20) has been obtained by applying several, rather tedious
and inconvenient, manipulations with the’ general Reynolds transport
theorem (Truesdell and Toupin, 1960, p. 347). Later, Gray and Lee (1977)
have presented a different proof of (3.1.12) based, to some extent, on
the theory of generalized functions. In Appendix A, an alternative, less
verbose, proof of (3.1.12) is presented that is based on Gauss' theorem.

To conclude this section, we observe that upon substituting ¢ = 1 in
(3.1.12), we are led to (cf. (3.1.6))

-1

f
9,0 (%) = =V

[ v (x')aa. (3.1.13)
x'€r_(x)

The averaging operators (3.1.9) and (3.1.10), and the property (3.1.12)

are used in the next section.
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3.2. VOLUME AVERAGING OF THE PORE-SCALE EQUATIONS

In this section it is shown how the equations governing the flow of
groundwater on a macroscopic scale arise from the volume averaging over
the representative elementary domain D6 of the pore-scale equations for
creeping flow.

As argued in Section 2.4, the isothermal flow in the interstices of a
water-saturated soil can, for most cases met in practice, be accurately
described by the equations for quasi-steady, incompressible, viscous
fluid flow. The relevant equations are recapitulated below (cf. (2.1.22),
(2.4.12), (2.1.4), (2.1.23), and (2.1.6)):

aivi =0, (3.2.1)

ajTij + Pg; = 0, (3.2.2)

TlJ = - pélJ M 013' (302-3)
where

95 = 2r|dij : (3.2.4)
and

dij = (1/2)(aivj + iji). (3.2.5)

We start the averaging procedure by applying the volume averaging
operator as defined in (3.1.9) to (3.2.1) - (3.2.5). In view of the
assumption that p and g; in (3.2.2) and n in (3.2.4) can be taken to be

constant over Di, and observing the property (3.1.12), we then obtain
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Bi<vi> = v.v.dA, (3.2.6)

oy [
© Yxter (x)

f
8j<ri.> * o egy = v.T, ,dA, (3.2.7)

J

<rij> = - <D>61j + <°ij>’ (3.2.8)
<cij> = 2n<dij>, (3.2.9)
and
<d, .> = (1/72)(3.,<v.,> + 3 .<v. >)
ij i joi
+ V;1 J (1/2)(viv. + v.vi)dA, (3.2.10)
1ve):e(i) J J .

where the second term on the left-hand side of (3.2.7) has been obtained
with the aid of (3.1.4) and (3.1.6). In interpreting the different
surface integrals over the fluid/solid interface(s) Ze in (3.2.6),
(3.2.7) and (3.2.10), we first recall that the solid matrix of the porous
system was assumed to be rigid and immovable. Then, with the aid of the-
boundary conditions listed in Table 2.1, we have upon approaching 26 from

f -
Ds (see Figure 3.1)

v, =0 at I , (3.2.11)
and, as an immediate consequence, the surface integrals over Ze in the
right-hand sides of (3.2.6) and (3.2.10) vanish identically. Hence,
(3.2.6) and (3.2.10) reduce to

ai<vi> =0, (3.2.12)

and
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<dij> = (1/2)(ai<vj> + aj<vi>)’ (3.2.13)
respectively. This leaves us with the task of interpreting the remaining
integral at the right-hand side of (3.2.7). At this stage in our
analysis, it should be emphasized that the averaged equations (3.2.6) ~
(3.2.10) and (3.2.12) ~ (3.2.13) are exact within the approximations that
have already been made. However, without a further relationship between
the remaining surface integral in (3.2.7) and some averaged, macroscopic,
field quantity, the equations are not yet fully on the macroscopic scale.
Clearly, the relevant integral represents the volume density of the total
force that the fluid via the fluid/solid interface(s) ZE exerts on the
rigid solid material. To get some idea of what the fluid/solid
interaction integral amounts to, we apply the volume averaging procedure
to the simpler pore-scale equation for hydrostatic equilibrium.

For a fluid in hydrostatic equilibrium, (3.2.2) reduces to

- Bip *opg; = 0, (3.2.14)
from which we have

p = pPg.X. * D, (3.2.15)
where Py is an arbitrary constant pressure. Upon applying the volume
averaging operator (3.1.9) to (3.2.14) we arrive with the aid of (3.1.12)

and (3.1.6) at

- ap> ¢ ¢fpgi - v;‘ j pv.dA = 0. (3.2.16)
x'er_(x)

To obtain a macroscopic value for the surface integral in (3.2.16), which
represents the volume density of force that the fluid, in equilibrium,

exerts on the rigid solid material in D:, we further apply the intrinsic
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volume averaging operator as defined in (3.1.10) to (3.2.15). The result

can be written as
<p>f(x) = pg.X, * PE (<x'>f(x) -x,)+p (3.2.17)
- i%i i i7 = i o’ T

in which (<xi>f(5) - Xi) represents the vectorial di?tance between the
position vector of the barycenter of the subdomain 95 of DE and the
position vector of the barycenter of De itself (ef., (3.1.2)). However,
the difference between these two position vectors is of the order of
magnitude of the microscopic length scale L< of the porous medium under
consideration; on the scale d the term averages out (this condition is
inherent to the assumption that the volume averages introduced are,
within certain limits, insensitive to the choice of d). Upon
differentiating both sides of (3.2.17) with respect to X;, we then have
{ef. (3.1.1))

' f
3,<p> = pgi[1 + Order(L</L>)] ~ pg;- (3.2.18)

Now, upon utilizing (3.2.18) in (3.2.16) it is with the further aid of
(3.1.11) easily verified that the following expression for the surface
integral in (3.2.16) results:

-1

v

£, f
AN pv;dA = - <p> ai¢ . (3.2.19)

Jx'GZ (x)
X et

The macroscopic picture associated with (3.2.19) can be elucidated as
follows. Due to the fact that the solid phase in DE is, in general, not
completely surrounded by the fluid phase (see Figure 3.1) the volume
density of force which the fluid, under hydrostatic conditions, exerts on
the solid material in De differs from -¢spgi and is, as (3.2.19) shows,
balanced by the product of the intrinsically averaged hydrostatic fluid
pressure and the gradient of the volumetric porosity. Finally, upon

identifying <p>f with the macroscopic pressure that one usually observes
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and measures in practice (see Subsection 3.2.2), (3.2.18) constitutes the
equation for hydrostatic equilibrium at the macroscopic scale.

Now, let us return to the analysis of the fluid/solid interaction
integral in (3.2.7). Since rigidity and immovability of the porous
material have been preassumed, it is obvious that its hydrodynamic part
(its hydrostatic part led to (3.2.19)) can be seen as the volume density
of resultant resistance or drag force that the fluid in Di experiences
when it permeates through the interconnected interstices of the porous
substance. In general, these resistance or drag forces depend on the
statistical properties of the interface ZE and on the physical properties
of the fluid under consideration. For instance, the latter forces vanish
if there is either no fluid motion, or no viscosity, or no solid phase at
all. In principle, we could via methods of statistical physics arrive at
the macroscopic value of these forces. This, however, is beyond the scope
of the present analysis. On the other hand, it is well known that an
isolated, rigid and immovable, spherical solid particle of radius r,
immersed in an unbounded, uniform, steady fluid flow at a small Reynolds
number, whose velocity at a large distance from the particle is v:,
experiences a hydrodynamic surface force F? given by (see, e.g., Landau
and Lifshitz, 1966, p. 66, or Batchelor, 1983, pp. 230-235)

F‘? = 6mnrv], (3.2.20)

which is known as Stokes' formula and which constitutes a linear
relationship between F? and v:. Now, Brenner (1963) has shown that for an
object of arbitrary shape, the direction of the hydrodynamic surface
force is not necessarily the same as the one of the "velocity at a large
distance" and has derived the following linear relationship between F?

o«
and v,:
i

h
Fi = naijvj, (3.2.21)
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where aij is a symmetric and positive definite tensor that only reflects
the intrinsic properties of the solid particle, viz. its geometrical
shape and dimensions. Now, upon identifying v: with the averaged velocity
<Vi>’ it seems fair to assume that on the macroscopic scale the net part
of the hydrodynamic surface force in (3.2.7) (produced by the fluid
motion) is also linearly related to <vi> and is a fraction of the value
that would hold for the isolated solid particles considered above.
Accordingly, with the further aid of the results obtained from the
hydrostatic case we now postulate the following linear expression for the
relevant interaction integral on the right-hand side of (3.2.7):

-1

v
€

v.t, . dA = - ¢fRij<vj> + <p>f

£
li'eze<l) i it (3.2.22)
Equation (3.2.22) constitutes, within the realm of a linear theory, the
most general relationship that exists between the fluid/solid interaction
integral and the averaged macroscopic field quantities. In (3.2.22), Rij
is denoted as the tensorial resistivity of the fluid-filled porous medium
and incorporates the topological properties of the rigid solid material
in Di as well as the viscous properties of the fluid. By analogy with aij
in (3.2.21), we assume Ri' to be symmetric and positive definite. The
inclusion of the factor ¢ in the flow resistance term in (3.2.22)
accounts for the fact that in the absence of a fluid phase the concept of
a flow resistance is no longer meaningful. Relations similar to (3.2.22),
but based on other arguments, have also been formulated by, for example,
Lehner (1979) and Hassanizadeh and Gray (1980). In the work of
Hassanizadeh and Gray (1980), the right-hand side of (3.2.22) only arises
after a strong reduction of their general set of macroscopic constitutive
equations, viz. after applying a linearization procedure, neglecting
inertia and thermal effects, etc. Lehner (1979) ends up with (3.2.22) as
an immediate result of a reciprocity relation that involves the volume
averaged stress and the volume averaged fluid velocity. However, in

deriving this reciprocity theorem by averaging an approximated form of
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the mechanical energy balance for fluid flow at the pore-scale, he
directly links the volume average of the product of two microscopic fluid
quantities to the product of the volume average of each of the two
quantities, without proving that such relationship applies. The
reciprocity theorem arrived at shows that, in fact, the symmetry of Rij
has been preassumed in the onset of the procedure.

A straightforward dimensional analysis shows that we can write

R.. = nR'i (3.2.23)

ij 3’

where Rij is the so-called intrinsic resistivity of the porous medium.
The inverse of Rij can be identified with the tensorial (intrinsic)
permeability that one is accustomed to use in practical groundwater flow
problems. Henceforth, we shall use Rij as the fundamental constitutive
parameter that is representative of the resistance that the flow
encounters.

Returning to (3.2.7), with (3.2.22) now substituted in it, and using
(3.1.11) and (3.2.8), we are led to the following equation of motion:

- ¢fai<p>f + 3j<oij> - ¢fRij<vj> - - ¢fpgi, (3.2.24)

which has to be supplemented by (3.2.9), (3.2.13), and (3.2.12). The
macroscopic picture associated with these equations is that the fluid and
the solid phases are fully mixed and simultaneously present in some
domain in space, while their interaction is incorporated in the
coefficient Rij' Henceforth, the averaged quantities occurring in the
latter equations are identified with the associated macroscopic
quantities and the relevant equations are considered as the macroscopic
equations for fluid flow in porous media, applicable under the conditions
and assumptions outlined above. Upon examining (3.2.24), one can now say
that the macroscopic behavior of the fluid (water) flow in a porous
substance is controlled by the macroscopic pressure forces, the

macroscopic viscous stress forces, the resistance forces due to the
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presence of the matrix material, and by the earth's gravity. It should
further be noticed that in the absence of fluid motion, (3.2.24) directly
reduces to the macroscopic equation for hydrostatic equilibrium as given
in (3.2.18).

With a view to the application to common groundwater flow problems,
we examine in (3.2.24) in some more detail the relative importance of the
macroscopic viscous stress term 9, <°ij> as compared with the macroscopic
resistance term ¢ R J<Vj> To this end, we use scaling arguments similar
to the ones discussed in Section 2.4. Let L, (ef. (3.1.1)) denote the
characteristic linear dimension of the groundwater flow problem under
consideration and let a typical value of L be 102 m. Then, if in
(3.2.23), as we suggested earlier, Rij is of the same order of magnitude
as the inverse of the usual permeability of subsoils, which for isotropic
soils varies from = =15 m2 for peat to = -10 m2 for coarse sands, it
readily follows that the ratio of the orders of magnitude of macroscopic
viscous stress and the macroscopic resistivity (i.e., the (second
term)/(third term) in (3.2.24)) will be in the range of = 10“19 to
= 10-1u. Clearly, in common groundwater flow problems one can therefore
neglect the influence of the macroscopic viscous stress forces with
respect to the macroscopic resistance forces, and accordingly approximate

(3.2.24) by
f £ f f
- ¢ Bi<p> - ¢ Rij<vj> = - ¢ P8, (3.2.25)

which is equivalent to

f
- 8i<p> - Rij<vj> = - g (3.2.26)

Equation (3.2.26) is essentially Darcy's law. It expresses that in common
groundwater flows, for example, seepage through dams and aquifers, etc.,
the flow phenomena involved are predominantly governed by the pressure
forces, the resistivity of the porous mass, and the forces due to the

earth's gravity.
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With reference to (3.2.24), we remark that the term aj<°ij> is often
denoted as the Brinkman correction term, after Brinkman (1947) who rather
heuristically proposed this extra term in Darcy's law in order to deal
with some special situations. In particular, he added this term to
develop boundary conditions different from the ones that comply with
(3.2.12) and (3.2.26) (see Section 3.3) for problems of fluid flow
through common porous substances with low permeability and adjoining
media with a very high permeability, i.e., a very low solid particle
density. Scaling arguments similar to the ones discussed above to justify
the neglect of the macroscopic viscous forces in (3.2.24), have also been
used by Slattery (1969). Lehner (1979) confirms, upon using different
arguments, the relative unimportance of the Brinkman correction term in
(3.2.24) for most situations met in practice.

Finally, we note that Darcy's formula only has to be supplemented by
the macroscopic continuity equation as given in (3.2.12) to complete the
set of equations in the flow-field quantities <p>f and <Vi> (¢f, 0, gi,

and Rij’ and/or n and R are assumed to be known).

]
ij’
3.2.1, INTRODUCTION OF MACROSCOPIC SOURCES

In many problems concerned with fluid flow in porous media we encounter
the presence of sources, for instance sources that either inject into or
abstract fluid from the fluid-solid composite. In view of this, we
discuss in present subsection the introduction of macroscopic sources in
the macroscopic fluid flow equations.

Since the detailed physical behavior of the sources is either
irrelevant to or beyond the scope of the present analysis, it suffices
here to incorporate the action of the sources in a manner that is
compatible with the structure of the basic equations discussed in the
previous section. Consider a fluid-saturated porous medium present in

some bounded domain D and let the macroscopic sources be located in some
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bounded subdomain DSRC of D. The closed boundary surface of D

denoted by BDSRC and the unit vector along the normal to 3D
SRC by vy ?he part of aDSRC
phase is denoted by aDSRC’ and the part of 9D

sme 1®

SRC pointing

away from D that is occupied by the fluid

SRC that is occupied by the

solid phase by ap3 (see Figure 3.2). The two types of sources that are

SRC
fluid /
solid
f snc
9Dgp¢
V B -
Dsre
Fig. 3.2. The bounded source domain D§RC interior to the closed
boundary surface aDSRC = SRC U aDSRC (schematically).

compatible with the structure of the macroscopic equations (3.2.12) and
(3.2.24), and hence (3.2.25), are those that either inject (or abstract)

a certain net volume across 8D§Rc or exert a certain net force across
f
aD

SRC”
First, let us consider the presence of a volume injection source in

, and let Q represent the net time rate of outward flow across an

DSRC SRC

produced by this source, i.e.,
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Q= v.v.dA, (3.2.27)

f ii

X' €Dgpe

where Q is positive for volume injection and negative for volume
abstraction. To arrive at the local form of (3.2.27), we extrapolate this
equation to the level of the representative elementary domain De’

centered at the position x. Accordingly, we have

-1
<@y =V I v.v.dA, . (3.2.28)
€ E'esi(i) i'i

where <g> is the local equivalent time rate of volume source density of
volume injection (abstraction) and Si denotes the part of BDe that is
occupied by the fluid phase. Accordingly, the macroscopic continuity

equation (3.2.12) is to be extended to

3;<vy> = <. (3.2.29)
Secondly, we consider a force source to be present in DSRC' Let Fi
denote the net surface force transmitted by this source across aDgRC onto

the surrounding fluid, i.e.,
F. = .T. .dA, .2.30
i [x'ean Vit (3.2.30)
= SRC

To arrive at the local form of (3.2.30), we extrapolate this equation to
the level of the representative elementary domain as well. Accordingly,

we have

v.T, .dA, (3.2.31)

£ = vgl I {
xtest (x) Jid

m

where <fi> is the equivalent volume source density of force. Accordingly,
Equation (3.2.24) is to be extended to



CHAPTER 3 : BASIC RELATIONS OF GROUNDWATER FLOW -55-

f f f £
¢ ai<p> + 3j<uij> -0 Rij<vj> = - ¢ pg ~<F. (3.2.32)

Now, upon applying to (3.2.32) similar arguments as that have led us from
(3.2.24) to Darcy's law (3.2.26), it readily follows that (ef. (3.1.11)):
- a_<p>f - R, .<v,> = - pg. - <f.>f. (3.2.33)
i ijt'] i i
Note that in a source-free domain D, i.e., a domain throughout which both
<@> = 0 and <fi> =0, (3.2.29), (3.2.32), and (3.2.33) reduce to
(3.2.12), (3.2.24), and (3.2.26), respectively. In the theory of
groundwater flow a source abstracting water from the subsoil is often
referred to as a "sink"; further, in most practical situations <fi> =0,
For reasons of symmetry in the equations, however, the latter source term
has been retained which will prove to be helpful in the course of our
further analysis in Chapter 4.

At this point it is remarked that, through the action of external
sources, we can introduce a time dependence in the flow problem, i.e.,
<g> and <fi> can be functions of both space and time. This time
dependence induces a corresponding time dependence in <p>f and <vi>.

Equations (3.2.29) and (3.2.33) will serve as the basic field
equations for groundwater flow and in order to fully specify a
groundwater flow problem they only have to be supplemented by appropriate

boundary conditions. The latter conditions are discussed in Section 3.3.
3.2.2. PRACTICAL PRESSURE-GAUGE MEASUREMENT IN GROUNDWATER FLOW

In this subsection it is argued that the quantity that one observes in a

practical measurement of the (macroscopic) pressure in a water—-saturated
. . . f

subsoil corresponds to the intrinsic fluid averaged pressure <p> that

has been introduced in Section 3.2.
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In a practical pressure-gauge measurement in groundwater flow, the
pressure-gauge probe (also known as a piezometer) usually consists of a
tube injected into the subsoil up to the depth where one wants to measure
the local macroscopic pressure, The endface of a pressure-gauge probe,
inserted into the subsoil, is schematically shown in Figure 3.3, Now, let
us assume that the cross-sectional surface of the probe coincides with a

representative elementary surface AE, located around the position X. The

O W -

Fig. 3.3. Schematic detail of the endface of a pressure-gauge probe

injected in the water-saturated subsoil.
part of Ae that is occupied by the fluid is referred to as Ai; the part
of A€ that is occupied by the solid as Ai. Hence,
f ) .
Ae = AE U Ae' (3.2.34)

The areas of As’ Ag and As are denoted as Ae, AZ and A:, respectively.

The probe is considered to be an ideal one: it does not influence the
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fluid flow in the subsoil and all capillary effects that might occur
inside the tube are neglected.

Let us consider a situation where the groundwater has reached a level
h above'the endface of the probe, at which level it is at rest (see
Figure 3.3). Then, the pressure P at the endface of the probe will be
related to the height h by

P = pgh, (3.2.35)

where g is the constant scalar acceleration of free fall at the earth's
surface, or near to it, and where we have used the fact that in
groundwater flow the vectorial acceleration of free fall is directed

along -i., (see Figure 2.1). Note that P in (3.2.35) is to be taken zero

3
at the height h in the tube. Now, the force F acting on the water just

beneath the endface of the probe is given by
f
F = PAE. . (3.2.36)

Since, however, the groundwater in the probe is assumed to be at rest, F

also equals

F = J ¢ p(x')dA. (3.2.37)
x'€ (%) :

Then, on the assumption that (for arguments that support this assumption
for predominantly capillary flow we refer to Whitaker (1969), and Bear
and Bachmat (1983)),

(Al 01! f . plx)aa
x'en (x)

I;(x)]-1

< IV plxav = <p>T(x), (3.2.38)

Jx'eDf(x)
XD X
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we arrive from (3.2.36) and (3.2.37) at the following interrelation
between P and <p>f:

P = <p>f_ (3.2.39)

For the water level h that is measured in a practical pressure-gauge

measurement, we then obtain from (3.2.35) and (3.2.39)
-1 f
h = (pg) <p> . (3.2.40)

Equation (3.2.40) directly relates h to the intrinsically fluid-averaged,
macroscopic, pressure <p>f.
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3.3. MACROSCOPIC BOUNDARY CONDITIONS

In fluid-saturated porous media configurations, one often encounters
regions where (some of) the constitutive parameters (the volumetric
porosity, the resistance of the fluid-saturated porous medium, and/or the
volume density of fluid mass) experience rapid changes within a distance
of the order of the characteristic linear dimension of the relevant
representative elementary domain. From a macroscopic point of view the
relevant constitutive parameters suffer jump discontinuities and in view
of the macroscopic theory developed sofar, it seems natural to treat
these regions macroscopically as surfaces of discontinuity in material
properties., For any type of these surfaces (interfaces) we assume that
the fluids at either side of it neither mix nor move away from it.

Since across a discontinuity surface (interface) the constitutive
parameters show abrupt changes, also (some of) the dependent field
quantities will, in general, show a discontinuous behavior, where,
similar to the case of a single-phase continuum (see Section 2.2), on
physical grounds only jumps by finite amounts are admissible. Now, due to
these jump discontinuities that arise in (some of) the field quantities,
the latter quantities are no longer continuously differentiable
throughout a domain that contains (part of) a discontinuity surface and
hence the partial differential equations that govern the relevant
fluid-flow phenomena cease to hold in the immediate vicinity of these
surfaces. Therefore, the latter equations have to be supplemented by a
certain set of boundary conditions that interrelate the flow-field
quantities at either side of the surface of discontinuity.

For groundwater flow, the basic equations are (3.2.29) and (3.2.33).
Now, to interconnect the solutions to (3.2.29) and (3.2.33) at either
side of a surface of discontinuity in medium (fluid and/or solid) =

properties, we apply the same method as outlined in Section 2.2 : we



CHAPTER 3 : BASIC RELATIONS OF GROUNDWATER FLOW -60~

locally replace the flow equations (3.2.29) and (3.2.33) by another
system that contains no spatial differentiations across the relevant
discontinuity surface, but that for continuously varying medium
properties is equivalent to the system (3.2.29) and (3.2.33). Let S
denote a smooth surface of discontinuity that intersects a bounded domain
D, containing a fluid-saturated porous medium; S divides D into the
subdomains D, and D2, respectively. The unit vector vy along the normal

1

to S is pointing into D Now, let x be the position vector of some point

1
on S. Then, to circumvent the problem of the differentiation along vi in
(3.2.29) and (3.2.33), we integrate these equations along a straight line

joining a point with position vector x - hv (with h > 0) located in D2 to

a point with position vector x + hv located in D, (see Figure 3.4).

1

Fig. 3.4. Configuration employed for the derivation of the boundary

conditions at the interface S.

Applying this procedure to (3.2.33), we obtain
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h P h
- J Bi<p> (x+sv)ds - J Ri.(§+53)<v.>(5+§3)ds
$=-h s=-h J J
h h ¢
+ I p{x+sv)g.ds + [ <f > (x+sv)ds = 0. (3.3.1)
XTsvig, {7 VETSY
s8==h 8==h

As a next step, we use (2.2.2) in (3.3.1) and take into account that all
components of the integrands in (3.3.1) parallel to S remain bounded;
hence, their contribution vanishes as h + 0. The same remarks apply to
the components along v of the integrands of the last three terms in the
left-hand side of (3.3.1). As a consequence, if h tends to zero in

(3.3.1), we are led to (cf. (3.3.1) and (2.2.2))

h f h f
lim ] ai<p> (§+sx)ds = lim J Nisas<p> (§+§2)ds

h+0 ‘s=-h hv0 “s=-h
. f f
= lim v [<p> (x+hy) - <p> (x-hv)] = 0, (3.3.2)
o h
or
[<p>f]1 , =0 at S, (3.3.3)

where Nis is defined in (2.2.3). Equation (3.3.3) expresses that the
intrinsically fluid-averaged, i.e., the macroscopic, pressure is to be
continuous across a surface of discontinuity in material properties. In
deriving (3.3.3) we have assumed that no surface sources are concentrated
on S. Upon applying a similar procedure to the continuity equation as
given in (3.2.29), it is easily verified that in the absence of any

sources acting on S we arrive at

vi[<vi>]1 5 =0 at S; (3.3.4)
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the component of the fluid-averaged, i.e., the macroscopic, fluid
velocity that is normal to the interface is to be continuous across the
interface.

Finally, we mention the explicit boundary conditions that have to be
prescribed on boundaries of a specific type. First of all, for an
immovable and fluid-impenetrable body immersed in a fluid-saturated
porous substance, we have vi<vi> »> d upon approaching the body's boundary
surface via the interior of the porous medium. For this situation, <p>f
remains unspecified on the relevant boundary, In groundwater flow, this
boundary condition applies for instance at an impervious base of some
water-saturated subterranean formation. Secondly, we mention the
occurrence of pressure-free surfaces, for which we have <p>f + 0 upon
approaching them. On this type of surface, vi<vi> remains unspecified.

In groundwater flow we are also often confronted with the situation
where the location of a part of an interface is unknown beforehand, but
must be determined from other considerations in the groundwater flow
problem. As an example, we first mention the flow of grbundwater in a
dam, where the position of the water/air interface in the porous medium
has to determined. Now, the boundary conditions at such an interface are:

,<p>f > Poem and vi<vi> + 0, in which Patm represents the atmospheric
pressure. Secondly, we mention the problem of the determination of the
position of fresh-water/salt-water interfaces occurring, for example, in
subsoils located in the vicinity of seas. Here, the position of the
interfaces follows from the requirement that both boundary conditions
(3.3.3) and (3.3.4) are simultaneously satisfied.

Henceforth, for reasons of convenience in the subsequent chapters, we
denote the quantities <p>f, <vi>, <q>, and <fi>f,.as P, vi, q, and fi’
respectively. In addition to this we shall denote v; as the velocity
instead of the (averaged) flow velocity. Adopting this nomenclature in
(3.2.29), (3.2.33), and in (3.3.3) and (3.3.4), we are led to

3.v. = Qq, (3.3.5)

3;p * Rijvj = pg; * I, (3.3.6)
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and
[p]1 5 =0 at s, (3.3.7)
\).[v.]1 5, =0 at s, (3.3.8)

respectively. In our applications, (3.3.5) - (3.3.8) are referred to as

the basic (macroscopic) relations for flow of groundwater.
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3.4. UNIQUENESS THEOREM FOR GROUNDWATER FLOW,
BASED ON ENERGY CONSIDERATIONS

The purpose of the present section is to investigate the uniqueness of
the solution of those groundwater flow problems that can mathematically
be formulated as boundary-value problems.

Quite a number of groundwater flow problems can mathematically be
formulated as boundary-value problems. In problems of this kind, we have
to construct, in a certain bounded domain D that is either a bounded
subdomain of the actual flow configuration or contains the entire actual
flow configuration, solutions to the basic groundwater flow equations
(3.3.5) - (3.3.6), that satisfy certain additional conditions at the
boundary surface 9D of D. As such we mention the flow of groundwater in
bounded subterranean formations like confined aquifers. From a physical
point of view, a unique flow field exists in these flow configurations,
and hence, the question arises what boundary conditions do represent the
physical situation such that uniqueness results. In this respect, it is
known from the theory of partial differential equations that three types
of admissible, local, boundary conditions deserve attention. They may
apply to different parts of 3D and therefore, we assume 3D to be the

union of three parts (see Figure 3.5):

oD = 9D, U 8D2 U 9D

1 (3.4.1)

31

where at least one of the parts is not the null set. Consider again the

basic equations for flow of groundwater (cf. (3.3.5) and (3.3.6))
3,v, =q when x6D, (3.4.2)

and
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aip + Rijvj = pgy * fi when x6D. (3.4.3)

For the first boundary-value problem (Dirichlet problem) we have

P = when 5€3D1; (3.4.4)
for the second boundary-value problem (Neumann problem)
when x63D,, (3.14.5)
and for the third boundary-value problem (Robin problem)

- av,v, + Bp =y (3.4.6)

ivi 3 when x€3D

3*
Here, ¢1, wz, and w3 denote prescribed surface source distributions on 3D
(see Figure 3.5), while the known quantities a and B incorporate the

relevant physical properties of the boundary surface 3D, (see, e.g., Aziz

3

3
and B have positive values and, hence, an excess pressure in D leads to

and Settari, 1983, p. 73). The boundary condition on 93D, is passive: a

an outward normal flow across 3D3. To complete the boundary-value problem
posed by (3.4.2) - (3.4.6) we note that upon integrating (3.4.2) over D
and applying Gauss' theorem, the following compatibility relation

results:

J ViV GA = [ q av, (3.4.7)
X69D x6D

in which vi denotes the unit vector along the normal to 3D pointing away
from D and where the contributions from the (possible) interfaces present
in D have cancelled in view of the continuity condition (3.3.8).

Before we shall prove that the relations (3.4.2) - (3.4.7) uniquely
determine the flow field {p, vi} in D, we give some physical explanation
of the different conditions (3.4.4) - (3.4.6). First of all, the boundary

condition (3.4.4) applies whenever the porous flow domain D is adjacent
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to a (porous) fluid continuum body of relatively large size. Then, any
fluid flow between the fluid continuum body and D will not appreciably
alter the (known) pressure distribution in the relevant continuum body
and hence (3.4.4) can be used on the boundary surface of D. In
groundwater flow, this situation occurs, for example, at the interface
between a saturated subsocil and a water reservoir of sufficiently large
size (e.g., a relatively large lake). A special case of (3.4.4) occurs if
P =D, in which Py is a given constant on 3D1. In this case, BD1 is an
equipressure surface.

The boundary condition (3.4.5) applies whenever we want to specify

Fig. 3.5. Domain D with closed boundary surface 3D = 8D1U aDZU 3D3,
for which the uniqueness theorem is derived.

the normal outflow (inflow) across the boundary surface of a porous flow
dogain into (from) some adjacent aquifer or reservoir. A special case of

(3.4.5) is the occurrence of an impermeable surface bounding (part of)
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the porous flow domain D, for which we have wz = 0 everywhere on the
relevant surface.

Finally, the more general type of boundary condition (3.4.6) applies
whenever the normal flow across (part of) the boundary surface of a
porous-medium domain D is related to the pressure difference across that
surface. In porous-media flow this occurs if the relevant porous flow
domain is separated from an adjacent fluid continuum or another porous
flow domain by some relatively thin semipermeable layer. For example, in
practical groundwater flow configurations, (part of) the relevant subsoil
may be separated from the open air by a relatively thin semipervious clay
layer, Upon approaching such an interface via the subsoil we then have
(ef. (3.4.6)) —(a/B)\)ivi *P = Pan

quantity a/B, with a/B > 0, expresses the resistivity of the thin layer,

on the relevant surface, where the

and pat is the atmospheric pressure at the level of the interface. It is

observeg that upon comparing (3.4.6) with (3.4.4) and (3.4.5), one can
say that o = 0 and 8 = 1 on BD1 (with w3 = ¢1). while a = 1 and 8 = 0 on
8D2 (with w3 = —wz).

Returning to the uniqueness proof itself, we shall presuppose the
existence of at least one solution to the groundwater flow problem posed
by (3.4.2) - (3.4.7). Obviously, this assumption, too, needs a _
mathematical proof; this, however, 1s beyond the scope of the present
monograph. Let {p(1), v§1) @)
solutions of the boundary-value problem posed by (3.4.2) - (3.4.7). Then,

the flow field defined by

} and {p , viZ)} be two non-identical

M p(Z), VF1) - v§2)}, (3.4.8)

{p, Vi} = {p i

will satisfy (3.4.2) - (3.4.7) in which the right-hand sides are replaced

by zero, 1i.e.,
3.v, =0 when x6D, (3.4.9)

9.p + R, .v. =0 when x€D, (3.4.10)
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p=0 when x€3D,, (3.4.11)

v;v; =0 . when- x€9D.,, ' (3.4.12)

- av vy +8p =0 when 563D3, (3.4.13)
and

J v Vv dA = 0. (3.4.14)

X609D

Now, upon successively multiplying (3.4.9) by p, (3.4.10) by Vis
combining the results, integrating the result over the domain D, and

applying Gauss' theorem, we arrive at

J pvividA + I v.R..v.dV = 0, (3.4.15)
x&9D

where the contributions from the (possible) interfaces in the interior of
D have cancelled in view of the continuity conditions (3.3.7) and
(3.3.8). Obviously, the part in the left-hand side of (3.4.15) over aD1
vanishes in view of (3.4.11); similarly, the part over 8D2 vanishes in

view of (3.4.12). On 3D, we use (3.4.13) and end up with either

3

(a/8) (v,v)%an + f v.R v -o, (3.4.16)

Jlean XED

3

or

(B/a)(p)sz + [ viR dv = 0. (3.4.17)

i.V.
6D 373

IXGQD
=3
Now, Rij is positive definite as a result of the dissipativity of the

viscous fluid flow (cf. Section 3.2). Consequently, the last term on the

left-hand sides of (3.4.16) and (3.4.17) is positive for any
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non-identically vanishing vy Further, since a/f8 > 0 and B/a > 0, the
first term on the left-hand sides of (3.4,16) and (3.4.17) is positive,

too, for any non-identically vanishing vivi or p on 3D Hence, a

3
contradiction in both (3.4.16) and (3.4.17) arises, unless vivy and p are

identically zero on dD_ and vy is identically zero in D. Reusing

(3.4.10), it then follgws that Bip =0 in D and, hence, p is constant
throughout D. However, in view of (3.4.17) this constant must be zero on
8D3, and, hence, p = 0 throughout D. Consequently, the assumption that
the problem posed by (3.4.2) - (3.4.7) admits more than one single
solution has been contradicted: the difference of the two solutions
{p(]), v§1)} and {p(z), viz)} proves to be identically the null solution
throughout D. Hence, at most a single solution results, provided that at
least one solution to (3.4.2) - (3.4.7) exists.

If the part 3D, of 3D is the null set and E)D1 is not present either,

(3.4.16) leads to 31 = 0 throughout D, which in view of (3.4.10) entails
p is constant throughout D. Since aD1 is absent, this constant now
remains unspecified, and hence, upon taking into account (3.4.8), the
relevant boundary-value problem admits a single solution up to an

arbitrary additive constant.



CHAPTER 4

GENERAL CONSIDERATIONS ON THE BOUNDARY-INTEGRAL-EQUATION
FORMULATION OF STEADY GROUNDWATER FLOW PROBLEMS

This chapter deals with the general aspects of the boundary-integral-
equation formulation of problems concerned with the steady flow of
groundwater.

The integral~equation method has proved its usefulness in a wide
variety of engineering problems. We mention the fields of
electrocardiography (see, e.g., Barr et al., 1966), gravimetry (see,
e.g., De Jong, 1981), quasi-magnetostatics (see, e.g., Lindholm, 1980,
Van Herk, 1981, and De Hoop, 1982), electromagnetic scattering and
diffraction (see, e.g., De Hoop, 1977), elastostatics (see, e.g., Cruse,
1969, and Rizzo and Shippy, 1977), scattering and diffraction of acoustic
and elastic waves (see, e.g., Tan, 1975a,b, and Herman, 1981a,b, 1982),
and flow in porous media (see, e.g., Liggett and Liu, 1983, and Van der
Weiden and De Hoop, 1988). Evidently, this list is far from exhaustive,
and for recent developments the reader is referred to the proceedings of
the conferences on integral-equation methods and the references cited
therein. In particular, as far as the boundary-integral-equation method
applied in solid and fluid mechanics is concerned, we refer to Cruse
(1988).

The main advantage of the integral-equation method lies in its
flexibility as regards shape, size and physical composition of the
different geometrical constituents that together form the configurations

that can be analyzed with it. Also, its implementation on a computer



CHAPTER 4 : BOUNDARY-INTEGRAL-EQUATION FORMULATION -T2~

offers no extreme difficulties and the main limitations are put by the
speed and the storage capacity of the computer system at one's disposal.

The first step in the integral-equation method consists of acquiring
appropriate integral representations for the field quantities involved.
These representations follow, in their turn, from a suitable reciprocity
theorem that interrelates, in a specific manner, the field quantities
associated with two possible, but different, physical states that can
occur in one and the same domain in space. The reciprocity theorem needed
in our analysis is derived from thé basic equations of groundwater flow
given in Section U4.1; it can be regarded as a basic theorem, both
mathematically and physically, from which many properties of groundwater
flow fields follow. For example, in Section 4.2 it is used to
reinvestigate the uniqueness of the solution of those groundwater flow
problems that can mathematically be formulated as boundary-value
problems. In Section 4.3, the reciprocity theorem for groundwater flow
serves as a point of departure in the derivation of the integral
representations for the two field quantities that characterize the flow
state of groundwater, viz. the pressure and the velocity. In this
derivation, one of the two states occurring in the reciprocity theorem is
identified with the actual flow state, while the remaining one is
identified with an auxiliary (Green's) flow state generated by,
successively, a point injection source and a point force source. The
source-type integral representations that result from this procedure
express the relevant flow guantities in the interior of some bounded
domain in space in terms of related quantities at the boundary surface of
this domain. .

In the literature on boundary-integral-equation formulations for
groundwater flow problems, most formulations are based on the source-type
integral representation for the pressure only (see, e.g., Liggett and
Liu, 1983, p. 22). A survey of the several types of
boundary-integral-equation formulations that follow from employing the
source representations for both the pressure and the velocity is given in

Section 4.4, In Section 4.5, the solution to the auxiliary point-source
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excitation states, i.e., the Green's functions, occurring in the integral
representations are determined explicitly for the case of a homogeneous
and reciprocal medium of infinite extent. Further, suitable scalar and
vector potentials are introduced in the above representations; they are
employed to arrive at a standard form of the source-type integral
representations for the pressure and the velocity and apply to an

arbitrary, bounded, domain in a fluid-saturated, homogeneous and
reciprocal porous medium.
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4,1, RECIPROCITY THEOREM FOR GROUNDWATER FLOW

Starting from the basic equations for the steady flow of groundwater,
viz. the continuity equation and Darcy's law, we derive in the present
section a reciprocity theorem in the two field quantities, pressure and
velocity, that characterize the flow of groundwater, The reciprocity
theorem applies to two admissible, but non-identical groundwater flow
states that can occur in one and the same bounded domain in some
fluid-saturated porous medium. It serves as a point of departure for the
derivation of the source-type integral representations for the velocity
and the pressure. The latter will play a vital role in arriving at the
boundary-integral-equation formulation of a groundwater flow problem.

We consider a bounded domain D in three-dimensional space R3, in
which two non-identical groundwater flow states can occur. The closed
boundary surface of D is denoted by 9D and the complement of D U 3D in R3
by D'. The unit vector along the normal to 9D, pointing away from D, is
denoted by vy . The two flow states in D are marked as States A and B,
respectively (see Figure 4.1). The quantities associated with each of the
two States A and B are denoted by their corresponding symbol to which the
superscripts A and B, respectively, are attached.

State A is characterized by the flow field {pA, v?}, the external

A
ij}'
The basic groundwater flow equations pertaining to this state are given
by (cf. (3.3.5))

source distributions {qA, f?} and the constitutive parameters {pA, R

A
aivi =q, (4.1.1)

and (ef. (3.3.6))

A A A A A
Bip + Rijvj =pg, +f.. (4.1.2)
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Similarly, State B is characterized by the flow field {pB, v?}, the

external source distributions {qB, f?} and the constitutive parameters

State A State B

Fig. 4.1. Bounded domain D with closed boundary surface 3D and
two non-identical groundwater flow states (States A

and B) to which the reciprocity theorem applies.

{pB, R?.}. The basic groundwater flow equations pertaining to this state

are (ef. (4.1.1) and (4.1.2))

3. vP = o, (4.1.3)
i'i
and
B B B B B
aip + Rij Vi= P8t fi- (4.1.4)
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To arrive at the reciprocity theorem, we consider the following

fundamental interaction quantity between the two states:

A B B A B A A B A B B A
ai(p vi P vi) = viaip +p Bivi - viaip -p aivi. (4.1.5)
. R B B A
Upon multiplying (4.1.1) by p, (4.1.2) by Vi (4.1.3) by p and (4.1.4)

by v?, and using the resulting relations in (4.1.5), we are led to

A B B A B A, A B A B B A
ai(p Vi TP vi) = (Rij -Rji)vivj + (p vi - vi)gi
A B B A A B B A
+ f‘lvi - fivi -qp *+qp . (4.1.6)

Equation (4.1.6) is the local (or differential) form of the reciprocity
theorem for groundwater flow. The corresponding global (or integral) form
of the reciprocity theorem is obtained by the integration of (4.1.6) over
the bounded domain D, followed by the use of Gauss' theorem. This yields
A B B A B
(p Vi =P vi)vidA = I (R .

1T Rei)v?vadv
xep W J

J;_GZ)D

+ J [(oAvs - vaA)g. + fAv? - f - qp° + qp)]av, (4.1.7)
<€D i i°7i i'i

where the left-hand side of (4.1.6) has been assumed to be continuously
differentiable. Note that on account of the boundary conditions at a
surface of discontinuity in matter, viz. the continuity of the pressure
and the continuity of the normal component of the velocity, in State A as
well as in State B, we can extend the validity of (4.1.7) to regions in
which the field quantities, together with their first-order derivatives,
are only piecewise continuous.

As regards the local and global forms of the reciprocity theorem, it
should be noted that the first term on the right-hand sides of (4.1.6)
and (4.1.7) is characteristic for the difference in resistivity of the

media present in the States A and B, while the remaining part represents
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the interaction between the sources and the accompanying fluid-flow
states. Further, we observe that the first terms on the right-hand sides
of (4.1.6) and (4.1.7) vanish in case the media in the two states are

chosen such that
R = BB (4.1.8)

for all x€D. Under this condition, the interaction between the two states
is only related to the external influences acting on the flow in the two
states. If (4.1.8) holds, the medium in State B is denoted as the medium
adjoint to the one in State A, and vice versa. In particular, (4.1.8) can
hold for one and the same medium; the relevant medium is then denoted as
self-adjoint or reciprocal. For a reciprocal medium, Rij must therefore
be a symmetrical tensor everywhere in D. A special case of the latter
arises for isotropic media, for which we have

= R¢ (4.1.9)

Rig = Ry
in which R is the scalar resistance. Obviously, an.isotropic medium is
always reciprocal.

The reciprocity theorem as given in (4.1.6) or (4.1.7), can, both
physically and mathematically, be regarded as one of the most fundamental
theorems of applied groundwéter flow theory. Physically, it describes the
interaction between two groundwater flow states, a feature that is
characteristic for any type of measurement situation. In the latter, one
state can be identified as the one to be probed, the other as the one
that is probing (i.e., the one that is handled by the observer who
carries out the measurement). Mathematically, the global form of the
reciprocity theorem will serve to construct the source-type integral
representations for both the pressure and the velocity, which, in their
turn, are employed to arrive at the desired boundary-integral-equation
formulation of a groundwater flow problem. This procedure is discussed in

the Sections 4.3 and 4.4. Furthermore, as we shall see in the next
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section, the reciprocity theorem as given in (4.1.7) enables us to
reinvestigate the uniqueness of those groundwater flow problems that can

mathematically be formulated as boundary-value problems (cf. Section
3.4).
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4,2. UNIQUENESS THEOREM FOR GROUNDWATER FLOW,
BASED ON RECIPROCITY

In the present section we investigate again the uniqueness of the
solution of those groundwater flow problems that can mathematically be
formulated as boundary-value problems. In distinction to the uniqueness
theorem derived in the Section 3.4, the one to be presented here is based
on the reciprocity theorem developed in Section 4.1.

Similar to Section 3.4, we start.from the boundary-value problem
posed by the relations (3.4.2) - (3.4.7) that applies to a bounded domain
D that is either a bounded subdomain of the actual flow configuration or
contains the entire actual flow configuration. The boundary surface of D
1° 8D2, and 9D
respectively, where at least one of them is not the null set (cf.

is denoted by 9D; it is the union of three parts: 3D 1
(3.4.1)). The unit vector vy along the normal to 3D is pointing away from
D. For convenience, the relevant boundary-value problem is recapitulated

below and schematically visualized in Figure 4.2, We have

aivi =q when x€D, (4.2.1)
Bip + Rijvj = pg; * fi when x6€D, . (4.2.2)
p = w1 when 5@3D1 (Dirichlet problem), (4.2.3)
Vv o= wz when 568D2 (Neumann problem), (4.2.4)
- avv, + Bp = ¢3 when 568D3 (Robin problem), (4.2.5)

and
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J vividA = I q dv (compatibility relation), (4.2.6)
x63D x&D

where w1, wz, and w3, are the prescribed surface source distributions on
aD. For a physical explanation of the different boundary conditions
(4.2.3) - (4.4.5) we refer to Section 3.4. Further, as in Section 3.4, we
shall presuppose the existence of at least one solution of the problem
posed by (4.2.1) - (4.2.6).

ViV,

Fig. 4.2. Domain D with closed boundary surface 8D = BD}U BDEU 3D3,
for which the uniqueness theorem is derived.

From (4.2.1) -~ (4.2.2) it is apparent that the reciprocity theorem of
(1) p(2)

Section 4.1 applies to the domain D. Let now {p , v§1)} and {

viz)} be two non-identical solutions of the boundary-value problem
(4.2.1) - (4.2.6). Then, it readily follows that the flow field defined
as State A through

NUNNG

A
eh v = ! - p®, [

}, (4.2.7)
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will satisfy (4.2.1) - (4.2.6) in which the right-hand sides are replaced

by zero, i.e.,

Biv? =0 when x6D, (4.2.8)
A A A '
aip + Rijvj =0 when x€D, (4.2.9)
A
p =0 when 59301, (4.2.10)
v vA =0 when x&3D (4.2.11)
i'i T XoTpe e
A A
S av vyt Bp =0 when 563D3, (4,2,12)
and

A
J v.v.dA = 0. (4,2.13)
X63D ti

As a next step, we identify State B through the following relations:

aiv? = qB when xeD, (4.2.14)
B B B B B
aip + Rijvj =pg; fi when x6D, (4.2.15)
B
p =0 when 568D1, (4.2.16)
vl =0 when x€93D (4.2.17)
i'i P P 2.
and
B B
T avve ot Bp =0 when 5$8D3. (4.2.18)

Note that (4.2.14) entails a compatibility relation of the type (4.2.6).

If, in addition to the above considerations, we choose the medium in
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State B to be the adjoint of the one in State A, it follows from (4,1.7)
that

0 = [ pBgiv?dV N f (f?v? - ¢®pMav. (4.2.19)
XED X€D

This equation must hold irrespective of the sofar arbitrary values of qB

and f?. In (4.2.19) we now choose f? to be equal to -pBgi - c1v? and qB

to be equal to csz, in which c, and e, denote arbitrary but positive

constants. Then, the resulting right-hand side only vanishes if both pA

and v? vanish identically throughout D. In view of (4.2.7), this implies
that {p(1), v£1)} = {p(Z), viZ)} throughout D. Consequently, the
boundary-value problem posed by the basic groundwater flow equations
(4.2,1) - (4.2.2), together with the boundary conditions (4.2.3) -
(4.2.5) and the compatibility relation (4.2.6), has a single solution at
most, provided, of course, that at least one solution of (4.2.1}) -
(4.2.6) exists.

If neither E)D,I nor 3D_ is present, only 3D2 remains and (4.2.14) and

3
(4.2.17) are contradictory, which implies that State B does not exist. In

that case we take qB = 0 throughout D, and (4.2.19) is replaced by
A B A
0 = J pBgiVidV + f f£v av. (4.2.20)
x6D x6D

Again, this equation must hold irrespective of the sofar arbitrary value

B

of fi. Now, choosing in (4.2.20) f?.to be equal to -pBgi -c in which

v, ,
4 denotes an arbizrary non-zero constant, the resulting riggtihand side
only vanishes if vy vanishes identically throughout D. In view of
(4.2.9), pA then has a constant value throughout D. The latter constant
remains unspecified, and as a result of this, the relevant boundary-value
problem admits a single solution up to an arbitrary additive constant

(ef. (4.2.7)).
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Finally, it is emphasized that the uniqueness theorem presented in
the current section puts less restrictions on the values of Rij' a and B

than the one proved in Section 3.4,
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4,.3. SOQOURCE-TYPE INTEGRAL REPRESENTATIONS FOR THE GROUNDWATER FLOW FIELD

In the present section it is outlined how the reciprocity theorem for the
flow of groundwater in its global form (4.1.7) leads to source-type
integral representations for the two flow quantities that charécterize
the flow state of groundwater, viz. the pressure and velocity.

State A is chosen as the actual flow field for which the integral
representations are to be obtained; it satisfies the basic groundwater
flow equations (4.2.1) and (4.2.2) throughout the bounded subdomains of D
where the constitutive coefficients change continuouslyﬁwith position,
and the supplementing boundary conditions (3.3.7) and (3.3.8) at the
interfaces. The closed boundary surface of D is denoted by 9D, the domain

exterior to 3D by D', and the unit vector along the normal to 3D,

aD

Fig. 4.3. Configuration to which the source-type integral
representations for the pressure field and the

velocity field apply.
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pointing away from D, by v, (see Figure 4.3). Accordingly, we write

A A
{p ’ vl} = {p’ Vi}y (u-3-1)
A A
{q", r{) = ta, £,3, (4.3.2)
and
A A
{o, Rij} = {p, Rij}' (4.3.3)

Next, the flow state B in (4.1.7) is chosen such that (4.1.7) leads to
the values of {p, vi} at any point in space. Inspection of the right-hand
side of (4.1.7) reveals that this is accomplished by making appropriate
choices with respect to the external source distributions {qB, f?}
present in D: if a representation for the pressure field is wanted, we
choose qB to be a point source of volume injection and take f? to be
equal to a source distribution that compensates the gravity term -pBg.,
while if a representation for the velocity field is wanted, we take q to
be equal to zero and f? to be equal to a point source of force in
addition to the compensating distribution —pBgi.

Accordingly, we first take

(0%, %) = tas(x - x), 0%, (4.3.4)

where a denotes an arbitrary constant and &§(x - x') is the
three-dimensional spatial unit pulse (delta function) operative at the
point x = x', where x' may be located anywhere in space. As a next step,
we take the medium in State B the adjoint of the one in the actual
configuration and denote the flow field generated by the source
distributions as given in (4.3.4) as

Gq Gq}(

0%, v = % VS, (4.3.5)
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For the choice (4.3.5), State B is denoted as an injection-source Green's
state. The basic flow equations pertaining to such a Green's state
readily follow from (4.1.3) and (4.1.4) as

Gq

d;vi" = adlx - x'), (4.3.6)

and

Gq , Gq

R..v.
J1i]

3;P o, (4.3.7)
while this Green's state, too, satisfies the interface conditions (3.3.7)
and (3.3.8). No explicit boundary conditions on 3D are imposed on the
Green's state (4.3.6) - (4.3.7). Now, upon using (4.3.1) - (4.3.5) in
(4.1.7) and employing the integral property of the delta function, i.e.,

J p(x)8(x - x")aV = x(x")p(x'), (4.3.8)
x6D
where
XD(E') = {1,1/2,0} when x'€{D,3D,D'}, (4.3.9)

is the characteristic function of the domain D, (4.1.7) leads to

J (pvgq - quvi)vidA - J E(pgi + fi)v?q - quq]dV
X89D X6D
= axp(x"Iplx"). (4.3.10)

In (4.3.10), the results for x'€D and x'€D' are clear, while from a
detailed analysis it follows that the result for x'€3D holds at points
where 9D has a unique tangent plane. For the latter case, the
aforementioned analysis further reveals that the surface integral

oceurring in (4.3.10) has to be interpreted a Cauchy principal value,
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i.e., the relevant integral is, when necessary, calculated by a limiting
procedure that excludes a singularity of the integrand‘in a symmetrical
manner, In Appendix B the derivation of (4.3.10) is presented in more
analytical detail in case the relevant medium in D is homogeneous. There,
it also shows up that for both x'€dD and x'€D, the volume integral in
(4.3.10) is to be understood as a convergent improper integral. Finally,
from (4.3.10) an integral relation for the pressure itself follows by
taking into account that both qu and v?q are linearly related to the
constant a (cf. (4.3.6) - (4.3.7)). Expressing this dependence by
introducing the quantities {Gq, F?} as

%% VI = ate?, -1, (1.3.11)

where Gq and F? are denoted as the injection-source scalar and vector
Green's functions, respectively, and recalling that (4,3.10) has to hold
for arbitrary values of a, we end up with

ext(i,)

- J [Gq<§',5)vi(§) + r‘i‘(z_',z)p(_{)]vi(g)dA +p
x&3D

= xp{x"plx"), (4.3.12)

in which peXt is the pressure due to the volume source distributions

present in D and is given by

p¥*txr) = [ t6¥x',0a(x) + e, 0le(x)g; + £, AV, (4.3.13)
x€D

Equation (4.3.12) is the desired source-type integral relation for the
pressure field. Note, that if x'eD, (4.3.12) constitutes an integral
representation.

Comparing, in (4.3.12), the structure of the surface integral with
the one of the volume integral, we conclude that -v;v; can be regarded as

the density of equivalent surface injection rate, while —vip can be
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regarded as the density of equivalent surface force. Hence, when x'e€D,
(4.3.12) expresses the value of the pressure in the point x = X' as the
sum of the contributions from the volume sources present in D and the
equivalent surface sources present on 3D.

Secondly, to arrive at the integral representation for the velocity
field, we take in (4.1.7) the external source distributions pertaining to
State B as

te® %) = 10, v8(x - x) - o%,), (4.3.11)

where bi denotes an arbitrary constant vector. As before, the medium in
State B is taken to be the adjoint of the one in the actual configuration
in D, The flow field generated by the source distributions as given in
(4.3.14) is now denoted as
B B Gf Gf

tp™y vyl =Mo", vt Hx,x"). (4.3.15)
For the choice (4.3.15), State B is denoted as a force-source Green's
state. As regards the basic flow equations pertaining to such a state,
these result from (4.1.3) and (4.1.4) as

aivi =0, (4.3.16)

and

5. p0f + Of _ b s(x - x'). _ (4.3.17)

iP Rypvy = by8lx - x

This Green's state, too, is taken to satisfy the interface conditions
(3.3.7) and (3.3.8), while no explicit boundary conditions on 9D are
imposed on (4.3.16) - (4.3.17). As a next step, we use (4.3.14) -
(4.3.15) in (4.1.7), employ (4.3.8), in which we replace p by b;v;, and
arrive at
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f

Gf Gf Gf G
(pvi p v )v,dh - J CCog; + £Ovy -ap ldv

J;eao X6D

= - b (x)v, (x). (4.3.18)

As regards the result in (4.3.18) the same remarks apply as have been
made with regard to (4.3.12); for a more detailed analytical analysis
pertaining to (4.3.18) for the case of a homogeneous medium, we refer to
Appendix B. Finally, from (4.3.18) the desired integral relation for the
velocity field itself is obtained by expressing the linear dependence of

p°T and vff on by (ef. (4.3.16) and (4.3.17)) as

{V?f, pr}(_)S’_)S') = bJ{Gj\i) -F\?}(l'yi)’ (u-3.19)

where the quantities Gij and ri are denoted as the force-source tensor

Green's function of rank two and the force-source vector Green's
function, respectively. Now, using (#.3.19) in (4.3,18)) and recalling
that (4.3.18) has to hold for arbitrary values of bi, we end up with

- JX%D Cr{(y,yvj(p + afJ.(y,yp(g)ij(ydA s v

= xp(x"v,(x"), (4.3.20)

in which V?Xt is the velocity due to the volume source distributions

present in D and is given by

vei"t(y) = [ {r?(y.yq(y + cij(y,pzp(ygj + £ (x)1av.

x€eb
(4.3.21)

Equation (4.3.20) is the desired source-type integral relation for the
velocity field. If x'6D, (4.3.20) constitutes an integral representation

for the velocity field. It expresses the value of the velocity at the
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point x = x' as the sum of the contributions from the volume sources

present in D and the equivalent surface sources present on 3D.

At this stage in the analysis, it is emphasized that the construction of
the different Green's tensor functions is, in general, complicated for

inhomogeneous media, but is rather straightforward for homogeneous media.
In Section 4.5, the Green's functions GY, r?, ng and ri will be
calculated explicitly for a homogeneous and reciprocal medium of infinite

extent.
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4.4, BOUNDARY-INTEGRAL-EQUATION FORMULATIONS OF GROUNDWATER FLOW PROBLEMS

In this section we present several types of boundary-integral-equation
formulations that apply to problems of the steady flow of groundwater.
These integral-equation formulations enable us to determine, in ’
principle, the flow fields in given configurations if on their boundary
surfaces appropriate boundary values are prescribed.

In R3 we consider a bounded domain D with closed boundary surface aD.
The domain exterior to 9D is denoted by D' and the unit vector along the
normal to 9D, pointing away from D, by vy (see Figure 4.2). D is assumed
to be occupied by a given fluid-saturated porous medium. As regards the
boundary conditions that hold on the outer boundary surface, we refer to

the Sections 3.4 and 4.2, where we have seen that a flow field in D is

Table 4.1. Summary of the boundary conditions together with the
unknown field quantities on the different parts of the

closed boundary surface 9D bounding the domain D.

part of 9D prescribed quantity unknown quantity
oD, P =1 Vivi

8D2 vV = ¥y p

3D3 = avev, + Bp = w3 poor v, v,

The boundary surface 3D consists of three parts: 3D1, aD2, and 8D

that together form 9D; at least one of them is not the null set.

3;
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uniquely determined if on 9D either the pressure, or the normal component
of the velocity, or a linear combination of these quantities is
prescribed (see Figure 4.2). The boundary conditions, with their
accompanying unknown field quantities on 9D, are summarized in Table 4.1,
where we have adopted the nomenclature that has been introduced in
Section 3.4 (cf. (3.4.4) - (3.4.6)). It is noted that in a practical
configuration not all three parts of 3D need be present; however, at
least one of them is not the null set.

In view of the considerations made in the previous section, it is
apparent that the two integral relations (4.3.12) and (4.3.20) both
apply. As regards the Green's (scalar, vector, and tensor) functions that
occur in them, these are considered as known functions; they are
determined explicitly in Section 4.5 for an unbounded, homogeneous and
reciprocal medium.

To formulate the boundary-integral-equation method, we first employ
the integral relation (4.3.12). By taking in it the point of observation
on 9D, we are led to

xt

[69x',00v, (0) + TT0e",x)p(x) Iy, (x)dA + pFF(x")

[568D

= (1/2)p(x") where x'€aD. (4.4.1)

As a next step, we decompose the surface integral into its contributions
over BD1, 8D2 and 803, respectively, take successively 5’€3D1, 5'68D2

and 5'6303, and rearrange the resulting equations such that all unknown
quantities appear on the left-hand sides and all known quantities on the

right-hand sides. In this way, we obtain

- J quividA - J F(il\)ipdA - J [(8/a)GY + vir‘i‘]pdA
x€3D x63D x63D
X595 X59Y; X&5ols
= (172)9,(x") + [ riv v, da + J Gy, an - J Gq(w3/a)dA
56301 56802 55303
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- pext(i,) where 5'€8D1, (4.4.2)
- J ¢ vida - (172)p(x") - J 9, pda
X63D x63D, 11
E s =2
- { [(B/a)GcY + vir?]PdA
x6aD
-3
= I ngiw1dA + I Gy, - I Gq(w3/a)dA - p®*txn)
563D1 568D2 563D3
where x'€3D,, (4.4.3)
and
- J ¢, v da - I r?vipdA - (1/2)p(x")
x63D x&9D
- 1 - 2
- J [(8/a)GY + vifg]pdA
x&aD
=73
- J riviv,an s I cly,an - J Y (py/a)an ~ p®Xt(x1)
x63D Xx60D X&aD
x50, =772 =3
where 5’€3D3. (4.4.4)

Equations (4.4.2), (4.4,3) and (4.4.4) constitute a system of three
simultaneous boundary integral equations, from which, in principle, the
unknown field distributions vivy on BD1, p on BDZ, and p on 3D3 can be
determined (cf. Table 4.1). If in an equation of this system the unknown
quantity, i.e., p or vivi, only occurs under the integral sign, the
relevant equation is an integral equation of the first kind in that
quantity, while if the unknown quantity also occurs outside the integral
sign, the relevant integral equation is an integral equation of the
second kind. Hence, the above system of boundary integral equations is,

as far as the unknown field distributions p on 302 and p on 3D, are

3
concerned, a system of the second kind, while as far as the unknown field
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distribution viv; on aD1 is concerned, it is of the first kind. On the

whole, in accordance with common usage, the system is denoted as a system
of the mixed kind. At this point it should be noted that, since on 3D3
the Robin condition (3.4.6) applies, p could be eliminated at each point
on BD3 in (4.4.2) - (4.4.4) by means of (3.4.6). Clearly, (4.4.4) would

then amount to a boundary integral equation of the second kind in Vivye
The integral relation (4.3.20) for the velocity field leads to a
system of boundary integral equations as well from which, in principle,
the unknown field distributions of p and Vivi on 9D can be determined. To
this end, we apply (4.3.20) to the configuration shown in Figure 4.2,

take the point of observation on 9D, and arrive at

£, f . ext, ,
JXGBD[P1(§ :K)Vj(ﬁ) + Gij(§ ,g)p(i)]vj(i)dA v
= (1/72)v,(x") where x'€3D. (4.4.5)

As a next step, we multiply (4.4.5) on both sides by vi(z'), and
decompose the surface integral into its contributions over anw, 802 and
3D3, respectively. Then, upon taking successively 1‘68D1, 5'63D2 and x'€
3D3, and rearranging the resulting equations such that all unknown
quantities appear on the left-hand sides and all known quantities on the

right-hand sides, we arrive at

f f
- (1/2)v. (x")v.(x") - V-(K')J r,v,v.dA - v.(x')J G, .v.pdA
: ! * x6aD, 1= Vyesp, MY
X5 X=o8s
f f
- V-(i')[ [(B/a)T, + G, .v.]pdA
! x63D oo

=3

= vi(ﬁ')J Gi.v.w1dA + v.(z')[ Fiwsz
x63p, VY * x63D
- 1 - 2

- vi(z')J rg(w3/a)dA - vi(i')vat(g') where 5’6801, (4.4.6)

6aD
X630,
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f f
- v.(g')j r.v.,v.dA - V-(E')I G, .v.pdA
' xe, I ' xeap,

- “1(5')I [(B/a)Fg + Gg.v.]pdA
x63D I

3
= (172)y,(x") + vi(i')[ of v an s v.(z')[ riv,a
xeap, I * X80,
f ext
- v.(x')J Io(y,/a)dA - v, (x")v.,” 7" (x') where x'€3D., (4. 4.7)
i = i* '3 it= i - - 2
x6aD
=3
and
t f L f 1]
- vi(5 )[ v, v.dA = vi(i )[ Gi.v.pdA - (B/2a)p(x")
x€3D xgap, I
oYy X5,
£ f
- v.(x')[ [(B/a)T, + G, .v.lpdA
1= "Jxeop 17
=3
- - (/20)4y(x") + V.(1->[ 6 vy an + v.(z')[ riy, o
. x63Dp, 97 t x6aD,
2795 250%o
- v.(x')J Pf(w /a)dA - vA(x')v?Xt(x') where x'€3D.. (4.4.8)
1= o, b3 1= = -3

3

Equations (4.4.6), (4.4.7) and (4.4.8) constitute again a system of
simultaneous boundary integral equations that is of the mixed kind. As

far as the unknown field distributions v.v, on aD1 and p on 3D, are

i'i 3
concerned (cf. Table 4.1), it is of the second kind, while as far as the
unknown distributions p on 8D2 is concerned, it is of the first kind. At

in (4.4.6),
3 )

(4.4.7) and (4.4.8), p could, with the aid of the Robin condition

this point it is noted again that at each point on 8D

(3.4.6), be rewritten in terms of v;Vv; and 5. Equation (4.4.8) would

then amount to an integral equation of the second kind in ViV
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It is clear that in arriving at a boundary-integral-equation
formulation suitable for determining the unknown field distributions on
3D, we can either use the system of equations (4.4,2) - (4.4.4), or the
system (4.4.6) - (4.4.8), or a proper combination of these two systems.
When solving (systems of) integral equations with the aid of iterative
methods, preference is usually given to equations of the second kind, the
latter having better convergence properties than (systems of) integral
equations of the first kind. As an exémple, we write down a system that
is consistently of the second kind; it consists of (4.4.6), (4.4.3) and
(4. 4.), i,e.,

f f
- (1/72)v, (x")v. (x") - v.(x')[ r,v.v.da - v.(z’)[ G, .v,pdA
it~ hits i= 563D1 17373 i X630, ij

£ £
((8/a)T; + Gijvj]pdA
3

- v.(x')J
YT Uxeop

f f
X G,.v.y,dA + v.(g')[ .y, dA
i IiSBD‘ ij g™ i ZGaDg ir2

- “i‘i')] r§<w3/a>dA - v v e

(x') where 5'6301, (4.4.9)
59393

¢l .v.da - (1/2)p(x") - J rdy, pda
11 - 11
593D2

szBDl
[(B/a)GY + viF?]pdA

J563D3

6%p/aran - p¥C(x)

3

6y dn -

q
r;v,y . dA + 2

i1 JKGBD

§63D1 ZGQDZ

where §'€8D2, (4.4.10)

and
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- J quividA - J ngipdA - (1/72)p(x")
x63D x63D, *
X595 X5,
- J [(8/0)6% + v rlpan
x63D
=3
= f F?viw1dA + [ qusz - I Gq(w3/a)dA - p¥Xb(xn)
X€3D x63D x69D
X595, X5ebs 27953
where x'63D (4.4.11)

3°

For reference, we have listed the properties of each of the integral
equations that arise from (4.4,1) and (4.4%.5) in Table 4.2,

Table 4.2. Properties of the integral equations resulting from

the integral relations (4.4.1) and (4.4.5).

part of 3D representation for unknown field resulting integral

the field quantity quantity equation
aD p v, V. ist kind in v, v,
1 i'i i1
D, p p 2nd kind in p
BD3 p p’ 2nd kind in p
3D3 P vivy 1st kind in vivy
3D V.V, v, V, 2nd kind in v,v,
1 i'i i'i i'i
3D2 v vy p 1st kind in p
8D3 vivi p 1st kind in p
aD V.V, v, Vv, 2nd kind in v.v,
3 i'i i'i i'i

At this point in the analysis it is recalled that the construction of
the different Green's functions is, in general, for inhomogeneous media

an unfeasible task. For a homogeneous and reciprocal media, however, they
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can be obtained in a straightforward manner (cf. Section 4.5). In view of
this, the use of the boundary=-integral-equation method is, in practice,
restricted to piecewise homogeneous domains. In configurations of this
kind, the integral relations (4.3.12) and (4.3.20) are applied to each
homogeneous subdomain out of which the relevant flow configuration is
assumed to be composed. Let D denote the domain that is occupied by the
given piecewise homogeneous flow configuration and assume D to be the
union of N homogeneous subdomains {Dn; n=1,...,N} (see Figure 4,4), Let,

further, aDn be the boundary surface of Dn' We now apply either

Fig. 4.4, Example of configuration with piecewise homogeneous
subdomains. D = D1 U D2 1] D3 and 3D is the outer
boundary surface of D,

(4.3.12) or (4.3.20) to each homogeneous subdomain Dn' In this, the
Green's functions pertaining to each of the subdomains are taken to be
the ones that apply to the "infinite medium" with the adjoint properties
of the actual homogeneous medium. Then, by taking in either (4.3.12) or

(4.3.20) the point of observation on aDn for each n=1,...N, either
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(4.3.12) or (4.3.20) leads to a number of boundary integral equations. At
the interfaces between adjacent subdomains, the continuity requirements
for the pressure and the‘normal component of the velocity are used to
introduce these quantities as (unique) unknowns in the integral
equations., In addition, at the outer boundary 9D of D, the non-prescribed
field quantities (see Table 4.1) occur as unknowns in the boundary
integral equations.

Obviously, since for each subdomain we can either start from the
source-type integral relation for the pressure, i.e., (4.3.12), or from
the one for the velocity, i.e., (4.3.20), there is a freedom in choice of
the boundary integral equations to be employed in the actual formulation.
Since for nearly all configurations met in practice, all the above
boundary integral equations have to be solved with the aid of numerical
techniques, it is, at the present stage, rather difficult to make a
proper selection which integral equations are to be used. A full
discussion of the numerical aspects of solving the boundary integral
equations is postponed to Chapter 5, while in Chapter 6 the results of
some numerical experiments carried out on test configurations are
reported.

Finally, it is noted that once the unknown field distributions p
and/or v;Vv; on aD, and on the possible interfaces in the interior of D,
have been determined, the values of the flow field {p, Vi} at any point
in D straightforwardly follow upon reusing the integral representations

(4.3.12) and (4.3.20).
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4.5, CALCULATION OF THE GREEN'S SOLUTIONS PERTAINING TO A
HOMOGENEOUS AND RECIPROCAL MEDIUM OF INFINITE EXTENT

In the present section the Green's states pertaining to the flow fields
generated by a point source of volume injection and a point source of
volume force, present in a homogeneous and reciprocal medium of infinite
extent, are determined. In Subsection 4.5.1, we also introduce for this
case the injection-rate scalar and force vector potentials and rewrite
the two source-type integral relations developed in Section 4.3 in terms
of these pore-flow potentials. Their explicit forms in case the
reciprocal medium is isotropic are presented as well.

To evaluate the injection-source Green's flow state pertaining to a
homogeneous and reciprocal medium of infinite extent we first multiply

(4.3.7) on both sides by the, symmetric and positive definite, inverse

K., of R,.. We then have
ij ij
Gq Gq _
Kijajp rvg s 0. (4.5.1)

Now, upon applying to both sides of (4.5.1) the operator Bi and using
(4.3.6), it follows that
K..9,9 qu = - ad(x - x'). (4.5.2)
13°1%] =- =
To determine the solution of (4.5.2) we subject X5 - x; to an orthogonal

transformation such that the first term on the left-hand side is

transformed on to its principal axes. Let

Yp = apq(xq - xé) (4.5.3)
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be the relevant transformation, then the columns of the matrix (apq) are

the normalized right eigenvectors of (Kij) corresponding to the p-th
eigenvalue t(p) of (Kij)' We then have

Gq (p) Gq
K. .9.9. =t 3 4,5.4
ij71 Jp ypaypp ! (4.5.4)

where ay denotes differentiation with respect to yp. Since (apq) is
p

orthogonal, we have det(apq) = 1 and, hence
8(x - x') = 6&(y). (4.5.5)

Next, we introduce the variables zp through

_(.(p)y-1/2

z, = (£77) Yoo (4.5.6)
then

(p) Gq _ Gq

t ay ey Pr=3, 03, P, (4.5.7)

p°p pp

and

s(y) = [P B317172 505y 2 21250, (4.5.8)
where

A = det(R,.). (4.5.9)

1]
With the aid of (4.5.3) - (4.5.8), (4.5.2) transforms into

3_ 9 qu = - aA1/26(§). (4.5.10)
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Equation (4.5,10) is nothing but Poisson's equation for a point source

with strength aA1/2 (see, e.g., Kellogg, 1954, p. 156) and its solution

that is regular at infinity, i.e., vanishes as Ig] + o uniformly in all

directions, is given by

p9 - g, . (4.5.11)

where G is given by

6 = a"2/qun|z)). (4.5.12)

Gq

However, p is needed in terms of the original coordinates. Now, using

(4.5.6) and (4.5.3), we obtain

- (p)y-1 o 172
|z| = [apiapj(t ) (x, xi)(xj Xj)] . (4.5.13)

_ (q) . _ _
Now, RpiKijaqj = Rpit aqi’ or, since RpiKij = dpj' aqp = Rpit aqi for
any q. With this we have

(p)y-1 = - -
a o . (tF7) piRyrdpr = RypSyn = Ry = Ryje (4.5.14)

i = qa
Pl PJ

Using (4.5.14) in (4.5.13), the following expression for qu in the

{x1,x2,x3} coordinate system is obtained (cf. (4.5.12) and (4.5.11))

p%9 - aG(x - x), (4.5.15)

in which G is given by

Gix - x) = a"2/ ), (4.5.16)
and D by
, o172
D = [Rij(xi - %} (x; xj)] . (4.5.17)
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The quantity D can be considered as the geodetical distance from X' tox
with the resistivity as the metric tensor. From (4.5.1) it further
follows that

qu

P aKiijG(i - x"). (4.5.18)

Ga and v?q as given in (4.5.15) and (4.5.18),

Comparing (4.3.11) with p
respectively, it follows that the injection-source Green's tensor
functions (of ranks zero and one, respectively) pertaining to a

homogeneous and reciprocal medium of infinite extent are given by
¢d = 6lx - x"), (4.5.19)

and

q . - x!
ri = KijajG(§ x'). (4.5.20)

To arrive at the force-source Green's flow state pertaining to a
homogeneous medium of infinite extent, we apply Kij to both sides of
(4.3.17) and obtain

Gf Gf
K, .9, + v, =K. .b.8(x - x"). (4.5.21)
1] Jp 1 13 F— x')
Next, we apply the operator ai to both sides of this equation. Taking
(4.3.16) into account, it then follows that
Gf

- - 1
Kijaiajp —aiKijbj(sQ x"). (4.5.22)

In view of the fact that (cf. (4.5.15), (4.5.2) and (4.5.8))

Kijaiajcq - x") = - 8(x - x"), (4.5.23)

f
pG can be expressed in terms of G through
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PO - - K 0y0,00x - 5. (4.5.24)

Finally, from (4.5.21) and (4.5.24) the expression for v?f follows as

Gf
. =K Db,K .09G - K, b - 4,5.2
\ 14%%p3%¢%p (x - x') + i3 8(x - x"). (4.5.25)

Comparing (4.3.19) with p°L in (4.5.24) and vgf in (4.5.25), it follows

that the force-source Green's functions (of ranks two and one,
respectively) pertaining to a homogeneous and reciprocal medium of
infinite extent are given by

f

Gij = KJqulapaqG(x -x") + K 6(x -x"), (4.5.26)

and

£
ry o= KypdG(x - xN). (4.5.27)

To complete the analysis on the Green's functions we observe that G only
Ax, - x! R ef.
iJ(ql : P oy - «
(4.5.17)). Hence, the Green's functions G~, F Glj’ and Fi can also be
written as (cf. (4.5.19), (4.5.20), (4.5.26) and (4.5.27))

depends on x and x' through the term R

¢ = o(x' - x), (4.5.28)
Q _ _ -
ry = KiJBBG(z x), (4.5.29)
£ _ reye .~ _ '
Gij KJqulapaqG(x' Xx) + K 6(x' x), (4.5.30)
and
rf - —k..3t6x' - x) (4.5.31)
i jij— Al Do
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respectively, where 3; denotes spatial differentiation with respect to

the coordinate xi.
4.5.1. THE PORE-FLOW SCALAR AND VECTOR POTENTIALS

To account for the special structure of the Green's functions evaluated
above, we introduce in this subsection the so-called pore-flow scalar and
vector potentials that are associated with the pore-flow from distributed
sources in an unbounded, homogeneous, reciprocal medium.

Consider the source-type integral representations (4.3.12) and
(4.3.20) and apply them to a bounded domain D with boundary surface 3D
present in a homogeneous and reciprocal medium. Obviously, the Green's
3 and Fi, as given in (4.5.28), (4.5.29), (4.5.30)
and (4.5.31), respectively, apply to (4.3.12) and (4.3.20). It should be

noted that for the expressions of the Green's functions we have chosen

functions Gq, Pg, Gg

the ones in which the spatial differentiations are carried out with
respect to the observation-point coordinates x'. We now introduce the

following quantities:

{AD, F?I(E’) =f G(x" = x) la, pg; *+ £ }(x)dV, (4.5.32)

x€D

In (4.5.30), AD is denoted as the pore-flow scalar potential associated
with the distribution of volume injection present in D and F? is denoted

as the pore-flow vector potential associated with the distribution of the

volume force present in D. Similarly, we introduce the quantities ABD and

F?D defined as

%%, ¥y = - J Gx' - 0 vy, vp)x)a, (4.5.33)

x63D



CHAPTER 4 : BOUNDARY-INTEGRAL-EQUATION FORMULATION -106-

as the pore-flow scalar and vector potentials associated with the
distribution of equivalent surface source densities of injection rate and
force, respectively, present on 3D. Now, with the aid of (4.5.28) -
(4.5.31), (4.5.32) and (4.5.33), the source-type integral relations
(4.3.12) and (4.3.20) can be written as

A - KijaSFi = xpxpx") (4.5.34)

- K 3A + K. K 813'F. = xp(x"){v,(x") - Kji[pgj + fj(ﬁ')]},

JiJ Jp Qi p qJ
(4.5.35)
respectively, in which A is given by
A= A% 4 AP, (4.5.36)
and Fi by
F, = F20 + FD. (4.5.37)

Equations (4.5.34) - (4.5.37) serve as the standard source-type integral
representations for the groundwater flow field in a bounded subdomain of
a homogeneous and reciprocal, fluid-saturated porous medium.

With the aid of (4.1.9), it is easily verified that for a homogeneous
and isotropic medium the standard source-type representations (4.5.34)

and (4.5.35) are given by
_'I .
A= ROOIF, = xp(x")p(x') (4.5.38)

and

-1 -2 -1
- R 0jA + R 0L = XD(g'?{vi(K') - R [pgy + £,(xN1),  (4.5.39)
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respectively, to which (4.5.32), (4.5.33), (4.5.36) and (4.5.37) apply,
with G(x' - x) now given by

G(x' - x) = R/Am|x' - x|. (4.5.40)



CHAPTER 5

NUMERICAL ASPECTS IN SOLVING THE BOUNDARY INTEGRAL EQUATIONS
FOR GROUNDWATER FLOW IN PIECEWISE HOMOGENEOUS CONFIGURATIONS

Except for the very few configurations where analytical techniques are
applicable, all boundary integral equations discussed in the previous
chapter have to be solved with the aid of numerical techniques. In the
present chapter an efficient and straightforward method to solve the
systems of integral equations that apply to groundwater flow
configurations with piecewise homogeneous media is discussed. Like in
most numerical methods for solving integral equations, the relevant
equations are replaced by a system of linear, algebraic equations. To
obtain representative numerical results for practical situatioﬁs, all
steps involved must be implementeq on a high-speed, large-capacity,
digital computer.

For the ease of discussing the numerical aspects in solving the
boundary integral equations, they are assumed to apply to a flow
configuration in a domain that is occupied by a single homogeneous and
reciprocal medium. The extension to configurations composed out of a
finite number of homogeneous subdomains is discussed later on.

In Section 5.1 we discuss the geometrical discretization of the
boundary surface of the domain of computation. In this process, the
planar triangle is employed as the fundamental surface element, In
Subsection 5.1.1, we introduce the barycentric coordinates of the
position of observation. in the triangle, These serve, in Subsection
5.1.2, to construct a local interpolation function that varies linearly

with position in the interior and on the boundary of each triangle., In
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Section 5.2 this linear interpolation function is used to represent
locally, i.e., on each planar triangle, both the known and the unknown
surface distributions of the pressure and the normal component of the
velocity. In this manner, the continuity of these two flow quantities
across the common edges of adjacent triangles is automatically satisfied.
The structure of the global field representations follows
straightforwardly from the local representations; they are presented in
Section 5.3. In Subsection 5.4.1, the triangulation scheme and the global
field representations are substituted in the source-type integral
relations developed in Section 4.4 for the pressure and the velocity
fields. Once a particular choice as regards which boundary integral
equations to use has been made, we employ the method of collocation (or
point matching) in the relevant discretized system of boundary integral
equations in order to arrive at the square system of linear, algebraic
equations that will replace it. The choice of the sequence of collocation
points is discussed in Subsection 5.4.2, After applying the collocation
scheme of Subsection 5.4.2, we are led to the final approximate versions
of the selected system of boundary integral equations. To conclude
Section 5.4, we show in Subsection 5.4.3 how to evaluate analytically the
(singular) surface integrals over the planar triangles that occur in the
discretized versions of the integral equations. Finally, in Section 5.5,
the problem is addressed of how to incorporate in the resulting system of
linear, algebraic equations the (discretized) version of the
compatibility relation that pertains to the basic equations for the

steady flow of groundwater.




CHAPTER 5 : NUMERICAL ASPECTS -111-

5.1. THE DISCRETIZATION OF THE GEOMETRY

In the present section, we discuss the first steps towards the
discretization of any of the systems of boundary integral equations
developed in Section 4.4, We start with the geometrical discretization of
the surface bounding the domain of computation. For this process, the
planar triangle (simplex in RZ) is used as the elementary surface
element. We then introduce on each triangle a local reference frame and
employ this to construct a local, linsar interpolation function, This
interpolation function will be utilized to represent, on each triangle,
the pertaining flow field distributions.

Let D denote the computational domain, i.e., the domain occupied by
the homogeneous flow configuration of interest, and let 3D be its closed
boundary surface. We first subdivide or approximate 3D by a finite number
of elementary surface elements, the maximum diameter of which is so small
that expressions of a simple nature, in fact linear expansions, suffice
to represent the variations of the pertaining flow field quantitieslover
it. Considerations in algebraic topology (see, e.g., Naber, 1980, p. 49)
learn that the simplex (the point in RO, the line segment in R1, the
triangle in RZ, and the tetrahedron in R3) is the most fundamental shape.
For these reasons (and some others as well), we discretize 3D into
planar, triangular surface elements. Let {ST(N); N=1,...,NT} be the
collection of planar triangles that together (approximately) span 9D; we

then have
3} = U S.(N), (5.1.1)
NT being the total number of triangleé. Obviously, for polyhedral domains

the subdivision (5.1.1) can be made exact. The oriented boundary curve of

each planar triangle ST(N) is denoted by CT(N). We take the orientation
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such that the direction of circulation along CT(N) and the unit vector
along the outward normal to ST(N) form a right-handed system. As regards
the error introduced By aﬁﬁ%oximating the, in general, curved surface 3D,
it is fortunately so that in the geometrical modeling of commonly
encountered groundwater flow configurations (confined aquifers, and the
like), it often suffices to model the possible interfaces and the outer
boundary surface of the relevant flow configuration by a relatively small
number of relatively large flat surfaces. Hence, the actual surfaces met
in practice are usually well represented by utilizing planar triangles.
Henceforth, in our analysis we only consider computational domains that
are interiors of polyhedral surfaces (e.g., brick-like domains) for which
the subdivision (5.1.1) can be made exact.

The subdivision (5.1.1) is arranged in such a manner that the
triangles all have vertices and edges in common. In practice, the
representation of 9D by NT planar, triangular elements is obtained by
choosing a finite number NP points on 3D and connecting the latter points
by straight line segments such that a network (grid) of NT triangles
results. Since in (5.1.1) it is assumed that the triangles all have
vertices and edges in common, we restrict in this procedure every point
chosen on 9D to be vertex of all-triangles meeting at that point. Then,
for a closed surface, we have a unique relationship between the number of

surface or nodal points NP and the number of triangles NT, viz.
NT = 2NP - U, (5.1.2)

Hence, for a closed surface subdivided into a large number of planar
triangles, the number of triangles is about twice as large as the number
of nodal points.

In the subsequent analysis we need several geometrical quantities

associated with the triangles. For each triangle S these are, first of

T
all, the position vectors of its vertices with respect to the common
background Cartesian reference frame (see Figure 2.1) and, secondly, its

oriented edges. In their turn, these quantities enable us to determine
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other necessary'geometrical quantities pertaining to each triangle, such
as, for example, its vectorial area, its scalar area, its unit vector
along the normal. To this end, we first introduce a local numbering of
the vertices of ST' In this numbering, the vertices carry the labels
{1,2,3} and are denoted by {P1,P2,P3}. From 3lgebraic topology it follows
that each simplex (apart from the point in R”) can have two orientations.
Since the computations can only be carried out for a particular
orientation, we have to select one; the one that is chosen here is
indicated in Figure 5.%a. It is such that the orientations‘of the edges
P1P2, P2P3 and P3P1, induce a direction of circulation along CT that
forms a right-handed system with the unit vector along the normal to the
(discretized) boundary surface 3D, this normal pointing away from the
domain D (see Figure 4.3). In view of later considerations, we further
denote the edges of each triangle ST by the labels {1,2,3} according to
the rule that each edge carries the label of the vertex opposite to it.
These edges are referred to as {CT(1),CT(2),CT(3)} (see Figure 5.1a). Let
{xp(1),xp(2),xp(3)} denote the position vectors with respect to the
origin of the chosen background reference frame shown in Figure 2.1 of
the vertices {P1,P2,P3} of ST’ then the vectorial edges {ap(1),ap(2),
ap(3)} follow as (see Figure 5.1b)

ap(I) = xp(K) - xp(J) : PJPK with {I,J,K}=cycl{1,2,3}, (5.1.3)

being the vectorial edge oriented from PJ to PK’

for "cyclic permutation of" (note, that I, J and K are different from

and "cyel" being short

each other). For example, if I=1 in (5.1.3), we have J=2 and K=3, while
if I=2, we have J=3 and K=1. The lengths {a(1),a(2),a(3)} of the

respective edges {CT(1),CT(2),CT(3)} of ST follow as (ef. (5.1.3))

172

a(I1) = Cap(l)ap(l)] with 16{1,2,3}. (5.1.4)

The vectorial area of S to be denoted by Ai’ forms with the edges

T'
{CT(1),CT(2),CT(3)}, in the indicated order, a right-handed system and
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{a)

Fig. 5.1. Nomenclature of the (geometrical) quantities associated
with the triangle ST: (a) spatial view of ST, (b)

perpendicular view on ST'
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can be expressed in terms of the vectorial edges through (cf. (5.1.3))

=
L

(1/2)eijk[xj(l) - xj(K)][xk(J) - xk(I)]

(1/2)eijkaj(J)ak(K) with {I,J,K}=cycl{1,2,3}, (5.1.5)
or in the symmetrical form

Ay = (172)e [xj(1)k(2) + xj(2)xk(3) + xj(3)xk(1)], (5.1.6)

ijk
where Eijk is the completely antisymmetric unit tensor of rank three
(Levi-Civita tensor):
+ 1 if {i,j,k} is an even permutation of {1,2,3},
€.. = - 14if {i,j,k} is an odd permutation of {1,2,3}, (5.1.7)

ijk
0 if not all subscripts are different.

Now, the unit vector vy along the normal to S,r follows from

v, = A /A, (5.1.8)
where A denotes the scalar area of ST which is given by (ef. (5.1.5) or
(5.1.6))

172, (5.1.9)

A= [AiAi]
Note that vy has a constant value on ST' In our subsequent analysis we
further need the vectors {Lp(1),Lp(2),Lp(3)} that are oriented along the
outward normals to the respective edges {CT(1),CT(2),CT(3)} in the plane
of ST(n), each of them having a magnitude that equals the length of the

relevant edge. We have (see Figure 5.1b).

L (1) = eijkaj(l)“k with I€{1,2,3}. (5.1.10)
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With the aid of (5.1.10) and (5.1.3) it readily follows that

3
1oy LD

0, (5.1.11)

"

Lp(Da (1) =0, L(Da () =~ 24,

Lp(I)ap(K) + 24, with {I,J,K}=cyecl{1,2,3}. (5.1.12)
The above geometrical quantities together with same of their properties

will be used in the next (sub)sections.
5.1.1. THE BARYCENTRIC COORDINATES

To arrive at the desired local representations of the flow field
quantities in the interior and on the boundary of each planar triangle,
it is advantageous to employ the so-called barycentric coordinates of the
position of observation in the triangle.

Let ST be the triangle under consideration to which the geometrical
quantities introduced in Section 5.1 apply and let {A{1),1(2),x(3)]}
denote the barycentric coordinates pertaining to ST‘ Then, the position
of observation xp in the interior and on the boundary of ST can be
specified by the barycentric coordinates through the relation (see, e.g.,
McConnell, 1957, pp. 52-54)

3

. 3
= < =
x5 21=1 A(I)xp(I), where 0SA(I)S1 with 21:1 A(I) =1 for x6,

(5.1.13)

where {xp(1),xp(2),xp(3)} are the position vectors of the respective

vertices {P1,P2,P3} of ST. Equation (5.1.13) yields the value of xp for



CHAPTER 5 : NUMERICAL ASPECTS -117-

given values of {A(1),x(2),x(3)}. However, we would also like to have an
expression that yields the values of {A(1),A(2),A(3)} for a given value
of xpGST’ This problem can be addressed as follows.

Select one of the vertices of ST as the preferred one and eliminate
the barycentric coordinate that has the value one at that vertex. As an
example, we take in (5.1.13) P1 to be the preferred vertex, and

accordingly eliminate A(1). This yields (ef. (5.1.13))
- - 53 -
X, = %, (1) 2ien MDIx (1) = %, (1] (5.1.14)

Next, with the aid of (5.1.12) and (5.1.3), it is easily verified that
(ef. (5.1.14))

[xp(I) - xp(1)]Lp(J) = - 2A8(I,J) with I€{2,3} and J&{2,3}, (5.1.15)

where 6(I,J) is the "two-subscript" Kronecker symbol

1if I =4,
§(I1,J) = (5.1.16)
0if I ¢ J.

Equation (5.1.15) implies that at the vertex P, the vectors {x (2) -

1
- 1 t - /2A,-L /2A} £
xp(1),xp(3) xp( )} and the vectors { Lp(z) 2A p(3) } form a

reciprocal system. Furthermore, upon applying (5.1.15) to (5.1.14), we
conclude that

- = - i . L1
[xp xp(l)]Lp(J) 2AA(J) with J€{2,3} (5 7)

Adding the results for J=2 and J=3, and using the fact that (cf.
(5.1.11))

= - 2) - ‘ .1.18
Lp(I) Lp( ) Lp(3), (5 )

we obtain
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[xp - xp(1)]Lp(1) = 2A[A(2) + A(3)] = - 2ax(1). (5.1.19)

Using in (5.1.14) the expressions for A(2) and A(3) that result from
(5.1.17), and the one for A(1) that results from (5.1.19), it readily
follows that

- . -153 -
x5 = x,(1) A" I, {lx, xq(1)]Lq(I)}xp(I). (5.1.20)
Results similar to (5.1.20) hold when xp(l) is replaced by xp(2) and

xp(3), respectively. Upon adding the relevant results, we end up with the

symmetrical expression

b = - —1y3 -
X, = by @A) I7y [(xy = bl (DIx (D), (5.1.21)
in which
by = (/3 (1) + x (2) + x,(3)] (5.1.22)

is the position vector of the barycenter of ST’ Upon comparing the
structure of (5.1.21) with the one of (5.1.13), we conclude that

ACT) =173 - (28)""

(x =-b )L (1) with 16{1,2,3}. (5.1.23)
q q q

Equation (5.1.23) yields the values of the barycentric coordinates of the

position of observation in ST whose position vector is xq, which was the

expression that we were after.

5.1.2. THE LINEAR, SCALAR, LOCAL INTERPOLATION FUNCTION

Inspection of (5.1.23) and (5.1.13) reveals that the barycentric

coordinates perform, in the interior and on the boundary C. of S

T T @
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linear interpolation between the values of the expanded function (i.e.,
X, in (5.1.13)) at the vertices of S;. We further observe that this
interpolation function. takes on the value one at one of the vertices and
the value zero at the remaining vertices. When stressing this aspect of
the barycentric coordinates, we shall write ¢(I,x) instead of A(I), i.e.,

(5.1.23) is rewritten as

1

o(I,x)= 1/3 = (2A)~ (xq - by Lg (1) with 16{1,2,3}, (5.1.24)
with the property
$(I,x(Jd)) = §(I1,J) with 16{1,2,3} and J6{1,2,3}, (5.1.25)

that is easily verified with the aid of (5.1.22), (5.1.10), (5.1.8), and
(5.1.9), respectively. In our computations we also need the spatial
derivatives of ¢(I,x). Upon differentiating both sides of (5.1.24) with
respect to Xis it follows that

1

3;6(I,x) = - (28)" 'L (D) with 16{1,2,3}. (5.1.26)

“In Section 5.2, the function ¢(I,x) and some of its properties will be
used to represent locally, i.e., on each planar triangle S both the

Tf
pressure and the normal component of the velocity.
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5.2. THE LOCAL FIELD REPRESENTATIONS

In this section we discuss the structure of the local representations of
the groundwater field quantities at an elementary surface element (i.e.,
a planar triangle) of the discretized surfaces.

The easiest, but at the same time coarsest, way to approximate the
field distributions is to represent them by a constant value over ST. The
value of this constant can then be attributed to the value of the
relevant quantity at some point of ST' e.g., its barycenter. The next,
more advanced, manner to represent the field quantities locally, is to
employ interpolation formulas that vary linearly with position in the
interior and on the boundary of each triangle. In our analysis, we have
chosen this last approach, i.e., both the pressure and the normal
component of the velocity are expanded in functions that vary linearly
between the values of these quantities attributed to the vertices of the
triangle. The reasons for using this type of local expansion function are
discussed in Section 5.3.

In view of the results of Subsection 5.1.2, it is clear that the
linear, scalar, local interpclation function ¢(I,x) defined by (5.1.24)
can serve directly to arrive at the desired local expansions for the flow
field quantities. For the distribution of the pressure on S we have

T

p(x) = 2; p(I)¢(I,x) with xS (5.2.1)

T

In view of the property (5.1.25), p(I) is the value of p(x) at xq=xq(I),
approaching this vertex via the interior of ST‘ Similarly, for the local

expansion of the normal component of the velocity on ST we write

v (x)v (x) = Z%ﬂ v (Dv,(D)¢(I,x)  with X6, (5.2.2)
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where vi(I)vi(I) is the value of vi(z)vi(i) at xq=xq(I), approaching this
vertex via the interior of S;. Note that since v,(x) has a constant value
for all x6S., v,(I) has the same (constant) value (5.1.8) for all I6
{1,2,3}.

The local field representations (5.2.1) and (5.2.2) will serve to
construct the global field representations over the discretized boundary

surface 9D; this will be discussed in the next section.
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5.3. THE GLOBAL FIELD REPRESENTATIONS

In this section we discuss the structure of the global representations of
the flow field quantities over the discretized boundary surface of the
homogeneous domain under consideration. They result upon using the local
representations of Section 5.2 on each planar, triangular surface element
of the discretized surface and putting these expansions properly
together., We also summarize the major computational advantages of the
representations of the flow field quantities employed here, as compared
to other, simpler, representations.

The global field representations of the flow field quantities for all

X630, where 3D = I\'. S.(N), are written as (of. (5.2.1) and (5.2.2))

N=1
p(x) = INL, I3, p(N,De(N,1,x) (5.3.1)
and
v v ) = INL B3 v (4, Dy, (L DN, 1), (5.3.2)

where ¢(N,I,x) is given by (cf. (5.1.24))
d(N,1,x) = 1/3 = (26N 17 [x, - b (MIL (W, D), (5.3.3)

in which A(N) is the scalar area of ST(N), bq(N) the position vector of
the barycenter of ST(N) and {Lq(N,1),Lq(N,2),Lq(N,3)} are the vectors
normal to the respective edges {CT(N,1),CT(N,Z),CT(N,3)} in the plane of
ST(N) (ef. (5.1.10)). In these quantities we have incorporated the
ordinal number N to indicate that they belong to the triangle ST(N).

The representations (5.3.1) and (5.3.2) will be employed in the

discretization of any of the boundary integral equations discussed in
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Section 4.4 both for the known and unknown surface distributions. In this
manner, both (5.3.1) and (5.3.2) provide us with 3<NT vertex expansion
coefficients, Not all of these are, however, also global expansion
coefficients. In this respect a distinction must be made between nodal
points that are located on the flat parts of the discretized geometry and
at which a unique unit normal is defined, and nodal points that are
located on edges or in corners of the discretized geometry where the unit
normal is not uniquely defined. At the nodal points of the first category
(the so~called simple nodes), p and vivi are continuous and hence the
values of p(N,I) and vi(N,I)vi(N,I) at the vertices that meet at that
nodal point are equal. This condition could be enforced after setting up
the system of linear algebraic equations that results from applying the
method of collocation (cf. Section 5.4). However, enforcing that
condition before setting up the system of equations leads to a much more
efficient handling of the computer's storage capacity. Hence, we shall
introduce the relevant vertex values as single global knowns and unknowns
and correspondingly let the support of their global gxpansion functions
be the union of the triangles to a vertex of which the considerations
apply. The corresponding variables will be denoted as nodal variables. At
those nodal points that do not have a uniquely defined unit normal (the
so-called multiple nodes) we retain (5.3.1) and (5.3.2) as they stand;
the relevant variables will be denoted as vertex variables and they will
be used as the global ones. Hence, the number of global expansion
coefficients NG is smaller than or equal to 2x(3-NT) and greater than
2xNP = 2x[(NT+4)/2] (cf. (5.1.1) and (5.1.2)). As we have stipulated in
Section 5.1, however, the surface(s) that have to be subdivided into
planar triangles, usually involve relatively large flat parts (brick-like
geometries) and the number of multiple nodes (at which the unit normals
are not uniquely defined) is, in general, relatively small.

Apart form the discussion on the nodal points at which the unit
normals are not uniquely defined, we have in fact in the considerations
made above already highlighted implicitly some of the major advantages of

our piecewise linear interpolation scheme as compared to the piecewise
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constant one as suggested by, e.g., Jawson and Symm (1977, p. 233). In
the latter, the field quantities are, on each surface element,
approximated by a constant, whose value is attributed to the field value
at a particular point (e.g., the barycenter) of the relevant surface
element. These values are subsequently taken as the expansion
coefficients. Doing this for a domain with a closed boundary surface that
has been subdivided into NT planar triangles, we end up with NT unknowns.
If, like in our situations, the relevant boundary surface is composed out
of a relatively small number of relatively large flat parts, we have to
compare this number of unknowns with the somewhat more than (NT+4)/2 ones
resulting from the piecewise linear interpolation scheme. Hence, whenever
in the discretization of a boundary integral equation a relatively large
number of triangles is needed and a piecewise linear interpolation scheme
is used instead of a piecewise constant one, the final number of unknowns
will be reduced by a factor of about two. In addition to this, it is
evident that in a piecewise constant approximation more surface elements
are, in general, needed to follow the field variations over the elements,
than in a piecewise linear one. The piecewise constant interpolation
scheme also leads to (unphysical) discontinuities in the field values
across the common edges of adjacent triangles, whereas in the linear
interpolation scheme continuity is automatically guaranteed (except, of
course, for the values of the pressure and the normal component of the
velocity at those locations where these quantities do jump indeed).

These considerations have motivated us to use the linear field
representations (5.3.1) and (5.3.2) in the discretization of any of the

boundary integral equations of Section 4.4,
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5.4, THE METHOD OF COLLOCATION

As outlined in the introduction to this chapter, our aim is to replace
any of the systems of boundary integral equations developed in Section
4.4 to forms amenable to numerical solution. To this end, we employ, in
addition to the discretization procedure discussed in the previous
sections, the method of collocation (also denoted as the method of point
matching) (see, e.g., Kantorovich and Krylov, 1964, pp. 97-110). This
method can be seen as a special case of the method of moments (see, e.g.,
Harrington, 1968, pp. 5-21).

The discretized forms of the boundary integral relations for both the
pressure and the velocity that result after applying the triangulation
scheme of Section 5.1 and using the global field representations of
Section 5.3, are presented in Subgéction 5.4.1, In Subsection 5.4.2, the
choice of the sequence of collocation points is discﬁssed. In this
subsection it is further outlined how the square system of linear,
algebraic equations is obtained. The latter replaces (approximately) the
system of boundary integral equations under consideration. In Subsection
5.4.3, we outline how the (singular) integrals over planar triangles that
arise from the discretization procedure and the collocation method are
evaluated analytically. These integrals occur as coefficients in the

square system of linear, algebraic equations.
5.4.1, THE DISCRETIZED BOUNDARY INTEGRAL RELATIONS

In this subsection we present the discretized forms of the boundary
integral relations for both the pressure field and the velocity field
that result after applying the triangulation scheme of Section 5,1 and
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after insertion of the global field representations (5.3.1) and (5.3.2).
We further list the (singular) integrals over planar triangles that occur
in the two discretized integral relations.

Inserting the global field representations (5.3.1) and (5.3.2) in
(4.4.1) and (4.4.5) (after multiplying both sides by the unit normal
vector at x') and taking into account (5.1.1), we end up with the

approximate equations

NT
- I B, v, Dy, (4, DI, Lx') + p(, DI, I,x0) ]
+ p®F(x') = (1/2)p(x')  when x'€3D, (5.4.1)
and
v {= Iy T3y Do (4, Dy, QUDIN (N Lx') + p(N, DIC{(N, 1,x')]
ext
vt s (172)v (x")v (x")  when x'€3D, (5.4.2)
in which
163N, 1,x") = I $(N,I,x)6%(x",x)dA, (5.4.3)
EGST(N)
Ird(N,I,x') = [ o(N, IL,x)TH(x",x)v, (N)dA, (5.4.4)
X6S,.(N) ' *
£ £
Iri(N, Ix') - J SN, T,X)TL(x",x)ah, (5.4.5)
* x6S,.(N)
X857
£ £
e, 1,x") - J 6N, 1,65 (x',x)v . (N)dA, (5.4.6)
' X8S,(N) H J

with ¢(N,I,x) defined by (5.3.3), and where vy has the constant value
vi(N) for all ZQST(N)' In (5.4.3) - (5.4.6) the Green's functions Gq, F?,
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FE and ng are known (cf. (4.5.19), (4.5.20), (4.5.27) and (4.5.26)). It
is emphasized that all integrals in (5.4.3) - (5.4.6) can be evaluated
analytically; this will be discussed in Subsection 5.4.3 and Appendix C.
In Subsection 5.4.3, it is also ocutlined how to deal with the (known)
source functions peXt and V§Xt ocecurring in (5.4.1) and (5.4.2),

respectively.
5.4,2, THE SEQUENCE OF COLLOCATION POINTS

In the present subsection the choice- of the sequence of collocation
points on the triangulated boundary surface 3D is discussed.

In applying the collocation method to (5.4.1), (5.4.2), or some
suitable combination of these (cf. Section 4.4), one has to take care
that the indicated (approximate) equality only holds at points of the
discretized boundary surface where the unit normal is uniquely defined.
In our collocation scheme we shall strictly adhere to this condition.

In view of this, in choosing the sequence of collocation points, we
must distinguish between simple nodal points, i.e., nodal points having a
unique unit normal, and multiple ones, i.e., nodal points at which planar
triangles with different (constant) unit normal vectors meet. At a simple
nodal point, (5.4.1), (5.4.2), or same suitable combination of them (ef.
Section 4.4), are straightforwardly used. At a multiple node, (5.4.1),
(5.4.2), or some suitable combination of them are used at the vertices
that meet at that node (each with its own unit normal). In Figure 5.2 we
have schematically visualized the choice of collocation points for the
different situations.

After applying the above collocation scheme and carrying out the
appropriate rearrangements we end up with a square system of linear,

algebraic equations for the unknown (vertex and nodal) expansion
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(a)

Fig. 5.2. The sequence of collocation points in different situations:
(a) simple node; unique unit normal, (b) multiple node on
edge; two unit normals, and (c) multiple node in corner;

three unit normals.
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coefficients that can be written as

2’;51 a, by = o for 16{1,...,NG}, (5.4.7) .
where NG denotes the total number of global unknown (vertex and nodal)
expansion coefficients on 3D (ef. Section 5.3). In (5.4.7), the known
coefficients {a j; ie{1,...,NG} and je6{1,...,NG}} result from the
(analytlc) evaluatlon of IGq(N I,x'") and Irq(N I,x'), and/or Ir (N I,x")
and IG (N,I,x') for the pertaining values of N and I. The coefflclents
{c ,_19{1,...,NG}} contain the contributions fram the prescribed surface
dlstrlbutlons and the known source terms p ext and/or veXt (ef. (5.4.1)
and (5.4.2)). -

The global representation scheme discussed in Section 5.3, together
with the collocation procedure outlined above, has been tested for a
mathematical test flow, viz., a uniform flow with linearly varying
pressure and constant flow velocity in a homogeneous, cube-like domain.
Obviously, in this case also at the multiple nodes there must exist a
unique pressure. This is confirmed by the numerical experiment that shows
equal values of all pressures at the vertices that meet at the common
nodal points located on the edges and in the corners of the triangulated
boundary of the computational domain., This and other numerical

experiments are discussed in detail in Chapter 6,

5.4.3. ANALYTIC EVALUATION OF THE SURFACE INTEGRALS OCCURRING
IN THE DISCRETIZED BOUNDARY INTEGRAL EQUATIONS

In this subsection it is outlined how the integrals IGq, IPq, Ir{ and IG?

(ef. (5.4.3) - (5.4.6)) can be evaluated analytically. They are in fact
the potentials due to certain single-, double-, and triple-layer

distributions on a triangular disk in an anisotropic medium.
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In the literature, surface potentials for constant surface densities
on polygonal disks have been treated analytically by, e.g., Birtles, Mayo
and Bennett (1973), Rao et al. (1979), Waldvogel (1979), and Herman
(1981, pp. 171-176). Analytic expressions for surface potentials with
linearly varying surface densities on polygonal disks are given by, e.g.,
Van Herk (1980, pp. 157-166) and Wilton et al. (1984). All these authors
consider only surface potentials due to single- and double-layer
distributions in isotropic media. We shall derive analytic expressions
for all integrals (5.4.3) - (5.4.6) both for isotropic and anisotropic
media.

The main tool to evaluate the above integrals is to rewrite their
integrands in such a form that Stokes' theorem can be employed.
Subsequent use of this theorem replaces the surface integrals by line
integrals along the boundary curve of the disk. Each boundary curve of
the triangular disk is the union of three straight line segments and it
can easily be shown that the resulting line integrals along these
straight line segments can be expressed in terms of elementary functions.
Obviously, this method is not restricted to planar triangles, but can be
applied to any polygonal surface element as well,

For the isotropic case the method indicated above can be employed
straightforwardly. For the anisotropic case, however, we first apply to
the relevant integrals an orthogonal transformation, followed by a
stretching procedure of the (transformed) coordinates. In this manner,
the "anisotropic" integrals will acquire an "isotropic" structure, and
hence, we can reuse the techniques applicable to the latter.

As an intermediate step in transforming the surface integrals to
forms amenable to the application of Stokes' theorem, we come across a
particular integral that cannot be handled in this manner. Since the
relevant integral also has a geometrical interpretation (viz., the solid
angle at which the relevant triangle is observed from the point of
observation), a closed-form expression can be obtained from the theory of

spherical trigonometry. On the other hand, analytic evaluation is still
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possible by an alternative method; for campleteness, the latter method is
discussed in some detail, too.

Since the actual computations are rather lengthy and tedious, they
are collected in Appendix C. The final expressions obtained are fairly
compact; they have been used to arrive at the numerical results discussed
in Chapter 6.

In the discretized integral relations (5.4.1) and (5.4.2), and hence,
in the final square system of linear, algebraic equations, the
contributions from the known source terms peXt and/or vat (ef. (4.3.13)
and (4.3.21)) are still to be considered.

First of all, the parts in these domain integrals that are associated
with gravity are reduced to surface integrals over the boundary surface
3D of each homogeneous (sub)domain D, For this purpose, we take into
account that the Green's functions G% and F? are interrelated through

(ef. (4.5.19) and (4.5.20))
rixt,x) = Kijajaq(g,p, (5.4.8)

and, similarly, the Green's functions rg and ij through (ef. (4.5.26)
and (4.5.27)),

£ £
Gij(y.z) = ijapri(x_',i) + Kjis(g - x"). (5.4.9)

Furthermore, since p has a constant value throughout D, it follows with

the aid of Gauss' theorem, and in (4.3.21) also with the aid of the

integral property of the three-dimensional delta function, that pext and

vat can be written as (cf. (4.3.13))

pext(iv) = pg.K

Qg
%1 vj(z)G (x',x)dA

[5630

+ [ [6%x',x)alx) + rix',x)f, (x)lav, (5.4.10)
x€D
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s

and (ef. (4.3.21) and (4.3.8))

ext, ,y _ '
ViR = xp(x )pst.. + pg K,

£
r.(x',x)dA
SERRRAS BN} Jxeao vp(XIT; (27, x)

£t oo
+ fxeD (ri(x",x)a(x) + Gij(i ,i)fj(g)]dV, (5.4.11)

respectively. After applying to the surface integrals on the right-~hand
sides of (5.4.10) and (5.4.11) the discretization scheme outlined in the
present chapter, it readily follows that they are to be replaced by {cf.
(5.1.1), (5.3.1) and (5.3.2))

NT
pgiKij j Vj(i)cq(i'»l)dA = pgiKij 2N=1 vj(N)IGq(N,i'), (5.4,12)
x69D
and
£, - NT £ oy
pg Ky Jxeao vp(§)ri(5 ,X)dA = 8K, ZN=1 Vp(N)IFi(N'i ), (5.4.13)

where IGq(N,l') and IF?(N,&') are given in (5.4.3) and (5.4.5),
respectively, with ¢(N,I,x) replaced by unity, and, accordingly, the
ordering of the vertices has been omitted.

Finally, once the distributions of the injection and force sources
acting in D have been specified, we can evaluate their contributions to
peXt and vat (ef. (5.4.10) and (5.4.11)). In general, the relevant
domain integrals have to be computed with the aid of numerical
integration rules. To this end, we subdivide the part(s) of D in which g
and fi differ from zero into a number of tetrahedra and approximate in
each tetrahedron q and fi by a constant value, Hence, in the domain
integrals over each tetrahedron q and fi can be put in front of the
relevant integrals and we are left with the integrations of the Green's
q £

i’ Fi and ng over the tetrahedra. Obviously, with the aid

of (5.4.8), (5.4,9), and the relation (ef. (4.5.20) and (4.5.27))

functions Gq, r
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(x',x) = I}x',x), (5.4.14)

in which we have taken into account the symmetry of K , the integrals
over the tetrahedra containing the Green's functions Y , I‘f and G ij can
with the further application of Gauss' theorem be replaced by surface
integrals over the triangular faces of the tetrahedra. The analytic
evaluation of the latter surface integrals proceeds along similar lines
as the ones outlined in the beginning of this subsection. With this, the
analytic evaluation of the domain integrals containing Fq Ff and Gij has
been settled, and hence, only the domain integration over the tetrahedra
of G remains to be considered. To this end, we first observe that (cf.

(4.5.19))

1/2 1/2

K,.3.9 .[R (x' ~ x ){x' - x)]

S =
Go(x',x) = <1/2)[det(Rij)] 137173 ' mn m m’*"n n

(5.4.15)

when x#x', which is verified by carrying out the differentiations. Now,
upon integrating (5.4.15) over each tetrahedron and using Gauss' theorem
in the resulting integrals on the right-hand side, the relevant domain
integrals are replaced by surface integrals over the faces of the
tetrahedra. The integrands of the latter are of the form
leIJBJ[Rmn(xé—xm)(x -X )] 2, where vy denotes the outwardly directed,
constant, unit normal vector on each face. These integrals, too, can be
evaluated analytically upon employing the procedures outlined in the
first part of the present subsection.

Through these procedures, piecewise constant values of q and f lead
to contributions to peXt and VTXt in (5.4.10) and (5.4.11) that can be
expressed in terms of elementary analytic functions.

As already remarked in Subsection 3.2.1, most flow configurations met
in practice deal with injection (abstraction) sources only, and hence,
fi=0 throughout the domain of interesf. In regional (large-scale)
groundwater flow problems these (injection) sources are commonly

represented as point sources (see, e.g., Liggett and Liu, 1983, p. 4).
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Taking into account the integral property of three-dimensional delta
function, this implies that their contributions to pext in (5.4.10) and
to V§Xt in (5.4.11) reduce to simple multiplications of the source
strength of the relevant point source by the corresponding Green's
function, in which now the distance from the location of the relevant

sources to the point of observation occurs,
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5.5. THE INCORPORATION OF THE COMPATIBILITY RELATION

In this section a method is presented to incorporate the compatibility
relation (3.4.7) in the numerical procedure.

The compatibility relation (3.4.7) expresses that the out-(in-) flux
across the closed boundary surface 3D of the bounded flow domain D of
interest must be equal to the rate at which the sources inject (abstract)
a certain net volume into (out of) D. In general, it is conjectured that
the discretized version of (3.4.7) will not be satisfied by the solutions
of the discretizeq systems of boundary integral equations. The degree of
this violation is related to the ratio of the part(s) of the boundary
surface 9D on which the normal component of the velocity is unknown and
the part(s) on 3D on which it has a known prescribed value. We shall now
discuss a method to incorporate the discretized form of the campatibility
relation in any of the square systems of linear, algebraic equations by
which the boundary integral equations have been replaced.

First of all, we apply the triangulation scheme of Section 5.1 to
(3.4.7) and insert in the resulting left-hand side the field
representation (5.3.2). In this, by taking into account that in each
planar triangle ST(N) the expansion function ¢(N,I,x) is nothing but the
barycentric coordinate A(I) on ST(N), each integral over ST(N) is easily

evaluated and leads to a net outward flux qS(N) on ST(N)
S 3
(N = (1/3)A(N) 51=1 v (N, Dv, (N, D), (5.5.1)

in which A(N) is the scalar area of ST(N) and vi(N’I)Vi(N’I) is the value
of the normal component of the velocity at the I-th vertex of ST(N)'
Taking into account that oD is subdivided into NT planar triangles, the

discretized version of (3.4.7) can be written as
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(1/3) INT AT v (LD, (D) = g, (5.5.2)

where Q denotes the value that results after the integration over the
domain D of the external injection (abstraction) sources acting in D.
Now, fram Section 5.3 it is known that the 3+NT expansion coefficients
for the normal component of the velocity that (5.5.2) would suggest at
first sight, correspond to NG global (vertex and nodal) expansion
coefficients with (NT+4)/2 < NG £ 3+NT. Some of their values are known,
viz., the variables that correspond to points on 3D on which the normal
component of the velocity has a given prescribed value (cf. Table 4.1),
while the values of the remaining ones, viz., the ones that correspond to
points on 3D on which the pressure has a known value (cf. Table 4.1) are,
of course, unknown. Now, the first step to incorporate (5.5.2) into the
system of linear, algebraic equations (5.4.7) is to rearrange (5.5.2)
such that on its left-hand side all unknown global expansion variables
for the normal component of the velocity with their corresponding
coefficients (i.e., (1/3)A(N) in (5.5.2)) occur and on the right-hand
side, in addition to Q, the known ones with their corresponding
coefficients, Next, the structure of the vector of unknowns that occurs
in this system will be matched to the one in (5.4.7). The latter vector
of unknowns, i.e., bi with ié{1,...,NG}, does not only contain the
unknown global (vertex,gnd nodal) expansion variables for the normal
component of the velocify, but also the unknown global (vertex and nodal)
expansion variables for the pressure. However, in (5.5.2) we can easily
replace the vector of unknown global expansion variables for the normal
component of the velocity by the vector {bi; i6{1,...,NG}} of (5.4.7)
provided that we take the coefficients multiplying the unknown global
pressure expansion variables occurring in {bi; i€{1,...,NG}} equal to

zero. In this way, (5.5.2) is replaced by

2§S1 djb; =h, (5.5.3)



CHAPTER 5 : NUMERICAL ASPECTS -137-

in which the coefficients di that correspond to (unknown) pressure
variables are put equal to zero. The known scalar quantity h on the
right-hand side of (5.5.3) contains, apart from Q, all known values of
the global expansion variables for the normal camponent of the veloeity
and their multiplying coefficients. The structure of the discretized
version of the compatibility relation as given in (5.5.3) now matches the
one of (5.4.7). To satisfy (5.4.7) and (5.5.3) simultaneously, we now

minimize the following squared error:

NG NG 2 NG 2
ERROR = ). . a. . = C. + . d.b, - hj, 5.4
iy 150y a;, g0y - o7 + €Ll ajby - n] (5.5.4)
in which £ is a positive parameter. The minimum of ERROR is attained when

{bm; mé{1,...,NG}} satisfies the system of linear, algebraic equations

ZNG [XNG

jo1 a + gdjdm]b. =

NG
11 21 P 1000 8y o0 * Ed.h, (5.5.5)

J i=t "i,m
for all m&{1,...,NG}. By varying the parameter § in (5.5.5), one
influences the relative importance of taking into account the
(discretized) compatibility relation in this system. For £=0, the square
system (5.5.5) has the same form as the original one in (5.4.7), be it
“that it is multiplied on both sides by the transpose of the matrix of
coefficients.

The only remaining question is the choice of a suitable value for the

parameter g£. This value must be established by trial and error.
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NUMERICAL RESULTS FOR TEST FLOWS

In the present chapter some numerical experiments are carried out in
order to test the performance of the boundary-integral-equation method
for analyzing steady groundwater flow problems as it has been developed
in the previous chapters. The test flow taken for this purpose is a
uniform source-free one; it is considered in a cube as the computational
domain of interest. The cube is filled with a homogeneous medium, either
isotropic or anisotropic (but reciprocal); both cases are considered.
Then the flow velocity is an, arbitrarily oriented, vector of constant
magnitude, and the accompanying pressure varies linearly with position.
The boundary surface of the cube is discretized into triangles; examples
of this are shown in Figure 6.1 in Section 6.1. The cube-shaped domain D

under consideration is defined by

D = {EGRB; 0<x1<1,0<x2<1,0<x3<1}. (6.0.1)
The closed boundary surface of D is denoted by 3D. The unit vector along
the normal to 9D, pointing away from D, is denoted by v, 3D is the union
of two sets, BD1 and aD2, respectively. On BD1 the pressure will be
prescribed and on 8D2 the normal component of the flow velocity (cf.
Table 4.1). Throughout the computational domain under consideration the
vectorial acceleration of free fall is taken to be 5=-gi3 (see Figure 6.1
in Section 6.1), where g denotes the (constant) scalar acceleration of
free fall.
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In Section 6.1 we analyze the boundary integral equations that are
obtained upon using the source-type integral relation for the pressure
field. In discretizing these integral equations the flow field quantities
are, on each triangle, as is customary done in the literature (see, e.g.,
Jawson and Symm, 1977, p. 233), approximated by constants. The values of
the latter are attributed to the field values at the barycenters of the
relevant triangles. Subsequently, collocation is applied at the
barycenters of all triangles involved. The errors in the results obtained
in this way are typically related to the geometrical discretization of
the faces of the cube. Numerical experiments are carried out to
investigate the effects of incorporating the compatibility relation for
the velocity in the discretized system of boundary integral equations in
the manner discussed in Section 5.5.

In Section 6.2, the numerical experiments of Section 6.1 are
repeated, but now with the piecewise linear interpolation scheme
discussed in Section 5.3, in combination with the collocation method of
Section 5.4, Since the piecewise linear expansion functions comply
exactly with the structure of the test flow field, the results obtained
are expected to be exact in the number of digits that is used to
represent the numbers in the computer code. This expectation is
confirmed. Also, the performance of the system of boundary integral
equations resulting from the integral relation for the velocity field is
tested, and the performance of mixtures of the two systems. In
discretizing these systems, we only employ the piecewise linear field
representations of Section 5.3, together with the collocation method of
Section 5.4. Since, in all these cases, the field representations
employed match the structures of the test flows exactly, all solutions
turn out to be, as expected, exact within the computational accuracy
employed. This confirmation is regarded as an important test on the
correctness of the computer code developed.

Conclusions about the above numerical experiments are drawn in
Section 6.3.
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The algorithms have been implemented in the Fortran 77 language. All
computations have been performed on an IBM PC/AT (operating at 6 MHz)
with floating point processor, while the Ryan-McFarland Fortran 77 V 2.00

compiler has been used.
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6.1. NUMERICAL RESULTS; PIECEWISE CONSTANT INTERPOLATION

In the present section we investigate some of the numerical features of
the boundary-integral-equation method, when it is applied in its simplest
version, i.e., when the integral relation for the pressure and the
piecewise constant approximation for the flow field quantities are used.
Inspection of the expressions for the Green's functions pertaining to
a homogeneous and reciprocal medium of infinite extent reveals that the
ones pertaining to a point injection source, i.e., GY defined by (4.5.19)
and r? defined by (4.5.20), have the simplest structure. Since the latter
ones apply to the integral relation for the pressure field, we
investigate the system of boundary integral equations that follows from
it first. In its most general form the relevant system is given by
(4,4.2) - (4.,4.4), to which (4.5.19) and (N.S;ZO) now apply. In a first
numerical study the system is applied to a homogeneous and isotropic
medium inside the cube~-shaped computational domain D, defined by (6.0.1).

In D we consider the following mathematical test flow:

- 3“"2(31 + 1,0 1) (6.1.1)

|I<

-1/ /
p=-3 ! ZR[X1 + X, + x3) - pg[x3 - 1)+ 31 2R, (6.1.2)

i.e., a uniform flow with constant diagonal flow velocity from x=0 to

5=(i1+12+l3) and with a linearly varying pressure. Note that at

§=(£1+12+13), we have taken p=0; at x=0 we then have p=pg+31/2R. Clearly,
(6.1.1) - (6.1.2) satisfy the basic groundwater flow equations (3.3.5)

.3. ith q=0, f£=0, R,.=R§.. =-gi._.
and (3.3.6) with q=0, =0, R, =R§;, and g=-gi,
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Now, (4.4.2) - (4.4.3) serve as the system of boundary integral
equations. As a consequence of the assumed isotropy of the homogenous

medium, Rij occurring in the expressions (4.5.19) and (4.5.20) for the
q
i,
(B.1.1) and (B.1.2)). Since 3D in (4,4.,2) - (4.¥.3) is the boundary

Green's functions Gq and T respectively, is to be replaced by Réi. (ef.

J
surface of the unit cube, it is clear that 3D can be represented in an
exact manner by the planar triangles of Chapter 5 (cf. (5.1.1)). Each
face of the cube is, in an identical manner, subdivided into NT/6
triangles, where NT=24 (see Figure 6.1a), NT=48 (see Figure 6.1b), NT=96
(see Figure 6.1c) and NT=14}4 (see Figure 6,1d), respectively. As regards
the discretization patterns that are used, it is obvious that the one
depicted in Figure 6.1a is the almost simplest one we can employ.
Clearly, the one shown in Figure 6.1b is just a straightforward extension
of the one in Figure 6.1a., With regard to the patterns of Figures 6.1c
and 6.1d it is observed that the one shown in Figure 6.1d is similar to
the one in Figure 6.1c, except for a finer discretization around the
corners of the cube. The latter two have been chosen to analyze the
effects of such a partially finer discretization.

On each triangle, both the known and the unknown field distributions
of the pressure and the normal component of the flow velocity are
approximated by a constant, whose value is attributed to the field value
at the barycenter of the relevant triangle. Subsequently, NT out of the
resulting 2xNT known and unknown field values are taken as the global
expansion coefficients, and collocation is applied at the barycenters of
all triangles., The resulting system of linear, algebraic equations

a as defined

contains in its coefficients the surface integrals IGq and IT
by (5.4.3) and (5.4.4), respectively, in which, as a consequence of the
piecewise constant interpolation, the linear interpolation function ¢
(ef. (5.3.3)) is replaced by unity. For these surface integrals the
analytic expressions derived in Appenqix C (cf. Section C.1) are used.
Finally, each system of linear, algebraic equations is solved by a direct
procedure, viz., either a Gaussian elimination or a Gauss-Jordan

elimination.
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[{le]

(c)

lle}

(d) i,

Fig 6.1. The unit cube D as the computational domain of interest.
The boundary surface 3D Qf D is the union of Z)D1 and 3D2.
On 2)D1 , P is prescribed and on 3D2, ViV 9D is represented
by: (a) NT=24 triangles, (b) NT=48 triangles, (c) NT=96
triangles, and (d) NT=144 triangles.
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The system (4.4,2) - (4.4.3), discretized in the indicated manner,
has been tested for the test flow (6.1.1) - (6.1.2), with p=1, R=1 and
g=-1, for the following three cases:

(i) aD, = {£6R3; x,=0,0<x <1,O<x3<1} and

1 1 2
(6.1.3)
8D2 = aD\SDi,
(ii) 301 = {§§R3; x1=0,0<x2<1,0<x3<1} U
{56R3; 0<x1<1,x2=1,0<x3<1} U
3, -
{x6R”; 0<x1<1,0<x2<1,x3—1} and
(6.1.4)
3D2 = 3D\8D1,
and
e B 3. _
(iii) 802 = {x6R”; x1—1,0<x2<1,0<x3<1} and
(6.1.5)
BD1 = 3D\3D2,

where on aD1 the field distribution of the pressure is prescribed and the
one of the normal component of the flow velocity is unknown, while on 3D2
the field distribution of the pressure is unknown and the one of the
normal component of the flow velocity is prescribed. The different
boundary conditions (6.1.3), (6.1.4) and (6.1.5) are schematically
visualized in Figures 6.2a, 6.1b and 6.1c, respectively.

In order to quantify the error of a particular solution of the
boundary value problems two error criteria are used, viz., a local one
and a global root-mean-square one. Let pex denote the exact field value
of the pressure at the barycenter of a particular triangle on 3D and let

pcomp be the computed value at that point. Then the local error ERR(p) in
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Fig 6.2. Schematic visualization of the different boundary conditions

that have been chosen to apply to the boundary surface 3D:
(a) the boundary condition (6.1.3), (b) the boundary
condition (6.1.4), and (c¢) the boundary condition (6.1.5).
3D has been discretized into 24 triangles (cf. Figure 6.1a).
The dots indicate the bafycenters of the triangles at which
the local errors in p and v.v

i'i
Tables 6.2a, 6.2b, and 6.2c, for NT=24),

have been computed (cf.
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the pressure at the relevant point is taken to be

ERR(p) = |p - Py, l/max(|p 1), (6.1.6)

comp ex,bary

where max[lpex,bary

at the barycenters of the triangles spanning 3D. Similarly, the local

|) denotes the maximum of the absolute values of Poy

error ERR(vivi) in the normal component of the flow velocity at the

barycenter of a particular triangle on 3D is defined by

ERR(v,v;) = |vivi,comp - vivi,exl’ (6.1.7)

where v, v, is the computed value of the normal flow velocity and
i'i,comp

vivi ex is its exact value, and where it has been taken into account that

, i

for our test flow max(|lex|)=1 (ef. (6.1.1)). Further, the global

root-mean-square error RMSE(p) in the computed pressure is defined by

]1/2
’

(6.1.8)

2 2
comp Poyl dA/JaD [Py |"an

RMSE(p) = [J [p
3D, )

and, similarly, the global root-mean-square error RMSE(vivi) in the
computed normal flow velocity is taken to be

RMSE(v.v.) = [J Jv,v, V.V, |2dA/J |v.v, |2dA]1/2.
i'i 3 i"i,comp i'i,ex 3D ii,ex

1
(6.1.9)

A summary of the global root-mean-square errors obtained for the
three cases (6.1.3) - (6.1.5) with NT=24, NT=48, NT=96 and NT=144,
respectively, is presented in Table 6.1. Typical values of the local
errors in p and vivi at the barycenters of some triangles spanning 3D are
listed in Tables 6.2a, 6.2b and 6.2c. A first inspection of Table 6.1
shows that, as we would expect, both the value of RMSE(p) and RMSE(vivj)
decrease as the number of triangles employed increases. A further

inspection learns that the results obtained for the pressure are more
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accurate than the ones obtained for the normal component of the velocity.
Perhaps this has to do with the fact that p is solved from an integral

equation of the second kind, while vivi is solved from an integral

Table 6.1. Global root-mean-square errors in p and vivi.

test NT=24 NT=48 NT=96 NT=144
case RMSE(p) RMSE(p) RMSE(p) RMSE(p)
(i) 0.0512 0.0336 0.0201 0.0172
(ii) 0.0328 0.0229 0.0120 0.0103
(iii) 0.0143 0.0110 0.0056 0.0055
test

case RMSE(vivi) RMSE(vivi) RMSE(vivi) RMSE(vivi)
(i) 0.3103 0.2153 0.1386 0.1209
(ii) 0.2903 0.2120 0.1541 0.1448
(iii) 0.2521 0.1972 0.1527 0.1501

equation of the first kind (cf. Section 4.4). As a consequence, the part
of the system of linear, algebraic equations that corresponds to the
unknown pressures might be somewhat better conditioned than the part that
corresponds to the unknown normal flow velocities. Finally, Table 6.1
illustrates that for all discretizations that have been used, the value
of RMSE(p) decreases if we consider ih succession the test cases (i),
(ii) and (iii). This behavior can be understood upon recalling that in

each of the discretization patterns used, the number of points
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Table 6.2a. Test case (i); local errors in p and vV, at the

barycenters of some triangles spanning 3D.

-150~

ERR(p) NT=2l NT=48 NT=96 NT=144
at

(1,1/6,1/72) 0.0196

(1,1/2,5/6) 0.0524

(1,1/3,576) 0.0234

(1,2/3,576) 0.0381%

(1,1/6,1/2) 0.0076 0.0065
(1,173,1/2) 0.0074 0.0062
(1,1/2,5/6) 0.0169 0.0139
(1,172,2/3) 0.0123 0.0102
ERR(v,v;) NT=24 NT=48 NT=96 NT=1L44
at

(0,5/6,1/2) 0.0871

(0,1/2,5/6) 0.2379

(0,2/3,5/6) 0.1400

(0,1/3,5/6) 0.1064

(0,5/6,1/2) 0.0182 0.0154
(0,2/3,1/2) 0.0368 0.0340
(0,1/2,5/6) 0.0391 0.0373
(0,1/2,2/3) 0.0487 0.0456
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Table 6.2b. Test case (ii); local errors in p and vivy at the

barycenters of some triangles spanning 9D.

(1,1/6,1/2) 0.0163
(1,1/2,5/6) 0.0030

(1,1/3,5/6) 0.0026

(1,2/3,5/6) 0.0015

(1,1/6,1/2) 0.0040 0.0032
(1,1/3,1/2) 0.0042 0.0036
(1,1/2,5/6) 0.0015 0.0013
(1,1/2,2/3) 0.0024 0.0020
ERR(vivi) NT=24 NT=48 NT=96 NT=144
at

(0,5/6,1/2) 0.0943
(0,1/2,5/6) 0.0877

(0,2/3,5/6) 0.0570
(0,1/3,5/6) 0.1120
(0,5/6,1/2) 0.0505 0.0470
(0,2/3,1/2) 0.0129 0.0085
(0,1/2,5/6) 0.0767 0.0664

(0,172,2/3) 0.0123 0.0063
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Table 6.2c. Test case (iii); local errors in p and vivy at the

barycenters of some triangles spanning 9D.

(1,1/6,1/2) 0.0070
(1,1/2,5/6) 0.0069

(1,1/3,5/6) 0.0063

(1,2/3,5/6) 0.0033

(1,1/6,1/2) 0.0030 0.0028
(1,1/3,1/2) 0.0016 0.0014
(1,1/2,5/6) 0.0001 0.0001
(1,1/2,2/3) 0.0005 0.0004
ERR(vivi) NT=24 NT=48 NT =96 NT=144
at

(0,5/6,1/2) 0.0747
(0,1/2,5/6) 0.0750

(0,2/3,5/6) 0.0510
(0,1/3,5/6) 0.1022
(0,5/6,1/2) 0.0442 0.0408
(0,2/3,1/2) 0.0018 0.0042
(0,1/2,5/6) 0.0713 0.0614

(0,1/2,2/3) 0.0006 0.0049




CHAPTER 6 : NUMERICAL RESULTS ~153-

(barycenters) at which the pressure is calculated decreases in this
succession (ef. Figure 6.2). A similar behavior was expected to hold for
the values for RMSE(vivi). However, only when 9D is discretized into a
relatively large number of triangles (NT=144) such a behavior, although
less pronounced, manifests itself., When 3D is discretized into less
elements, the values of RMSE(vivi) are, as compared to the corresponding
variations in the values of RMSE(p), rather constant. The results shown
in the Tables 6.2a, 6.2b and 6.2¢c again indicate that the results for p
are more accurate than the ones for vivi' i.e., the local errors follow
in this respect the same pattern as the global errors. Inspection of
these tables, in particular the columns for NT=96 and NT=144, further
learns that a finer discretization around the corners of the cube (cf.
Figures 6.1c and 6.1d) leads to smaller local errors in the pressure and
in the normal flow velocity at points (barycenters) located around the
center of each face of the cube, i.e., farther away from the corners. We
also observe that, except for the results obtained when 3D was
discretized in only 24 or 48 triangles, ERR(p) decreases if p needs
computation in fewer points on 3D (cf. Figures 6.2a, 6.2b and 6.2c).
Finally, the numerical data in Table 6.2 illustrate that for the method
under consideration local errors in the computed pressure of less than
“one per cent and in tﬁé normal flow velocity of only a few per cents are
arrived at, upon using only a relatively small number of triangles
(NT296) . '

The computation time to calculate the pressure and the normal flow
velocity at the barycenters of 24 triangles spanning the boundary surface
3D of the unit cube D (cf. Figure 6.1a) was approximately 35 s. This
computation time includes the time needed to solve the system of linear,
algebraic equations not only with the aid of a Gaussian elimination, but
(in order to verify the results from the latter) with the aid of a Gauss-
Jordan elimination as well. Using successively 48, 96 and 144 triangles

to solve each boundary value problem, both elimination procedures belng
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Table 6.3a. Global root-mean-square errors obtained with the aid of
(5.5.5) for some typical values of the parameter E; 93D

has been subdivided into 24 triangles.

value (i) (ii) (iii)
of RMSE(p) RMSE(vivi) RMSE(p) RMSE(vivi) RMSE(p) RMSE(vivi)

0 0.05121 0.31031 0.03279 0.29033 0.01428 0.25213
0.001 0.05078 0.31036 0.03260 0.29009 0.01419 0.25207
0.020 0.04388 0.32982 0.02882 0.28801 0.01225 0.25178
0.040  0.04163 0.39031 0.02463 0.29205 0.00997 0.25391
0.110  0.09520 0.87784 0.01577 0.38732 0.00069 0.29556
0.180  0.23003 1.84530 0.04763 0.68214 0.01888 0.44087

Table 6.3b. Global root-mean-square errors obtained with the aid of
(5.5.5) for some typical values of the parameter £; 9D
has been subdivided into 48 triangles.

value (1) (ii) (iii)
of £  RMSE(p) RMSE(v v,) RMSE(p) RMSE(v,v,) RMSE(p) RMSE(v;v,)

.02287 0.21189 0.01104

0 0.03662 0.21534 0 0.19717
0.001 0.03638 0.21536 0.02278 0.21178 0.01099 0.19715
0.020 0.03247 0.22233 0.02091 0.21041 0.01013 0.19699
0.050 0.02930 0.25922 0.01788 0.21203 0.00870 0.19810
0.160  0.06372 0.58967 0.01043 0.27267 0.00341 0.22313
0.240 0.11832 0.97839 0.02073 0.38343 0.00663 0.27281
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employed, ‘the computation times were approximately 2.5 m., 10 m., and 25
m., respectively. Clearly, doubling the number of triangles employed,
induces a multiplication by a factor of four of the computation time

consumed.

In Table 6.3a the results of taking into account the compatibility
relation for the velocity via the method of Section 5.5 (ef. (5.5.5)) for
some typical values of the parameter £ are shown for the case that 3D has
been discretized into 24 triangles. Table 6.3b contains the results of
the latter numerical experiment with 3D discretized into 48 triangles.
First of all, the results shown in Tables 6.3a and 6.3b clearly
demonstrate the strong influence of the parameter £ on the values of
RMSE(p) and RMSE(vivi). Inspection of these tables further shows that in
all test cases considered and for both discretizations employed the
global errors in the computed pressure can considerably be reduced by the
implementation of the compatibility relation for the velocity field in
the discretized system of integral equations. The results for the normal
flow velocity, however, can hardly be improved. For the values of &£ that
correspond to the improved results for the pressure, an increase in
errors in the computed normal velocity is obtained, i.e., the values of g
for which the improved results for vivi are obtained do not match the
values of £ for which the (most) improved results for p are arrived at.
To conclude, since the improved results for p and vivi can only be
obtained after a tedious trial and error procedure, the use of the
incorporation of the compatibility relation for the velocity field with
the method discussed in Section 5.5 is, especially for large systems of

linear, algebraic equations, debatable.

A next choice to test the numerical features of the
boundary-integral-equation method, is to apply the above numerical
experiments to the system of integral equations that follows from the
integral relation for the velocity field. For the flow configuration at

hand the relevant system is given by (4.4.6) - (4.4.7), where the Green's
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functions Fi and Gij are defined by (4.5.27) and (4.5.26), respectively,
in which Rij is to be replaced by Rsij (ef. (B.2.1) and (B.2.2)). In
order to make a fair comparison between the two systems, the system
(4.4,6) - (4.4,7) is to be treated in the same manner as the previous
one, i.e., the flow field quantities are to be represented again by
constants on each triangle. However, as we have seen in Appendix B,
Section B.2, the integral relation for the velocity field and, hence, the
relevant integral equations are arrived at on the assumption that the
pressure is continuously differentiable in the neighborhood of a point of
observation on 3D. Now, upon approximating on each triangle the pressure
(as well as the normal component of the velocity) by a constant, jumps in
the approximated field values occur across the common edges of two
adjacent triangles which upon taking the derivative lead to delta
functions along the edges. Hence, if the system (Y4.4.6) - (4.4.7) is
implemented in this manner and subsequently solved, the results obtained
will, in general, show large errors. This is confirmed by the following
numerical experiments. First of all, we have tested the corresponding
integral representation (4.4.5) at several observation points located in
the interior of the unit cube D, filled by the homogeneous and isotropic
medium used before. The flow field quantities from (6.1.1) - (6.1.2) were
sampled at the barycenters of the triangulated boundary surface and
subsequently used as the piecewise constant representations at this
surface in the integral representation (4.4.5). At all observation points
considered the computed values of the flow velocity field were
(completely) incorrect and no appreciable improvements were obtained when
using 96 or 144 triangles instead of 24, Secondly, similar numerical
experiments have been carried out to test (4.4.5) for the point of
observation located at the barycenters of the triangles spanning 3D.
Again, totally incorrect values for the velocity field were obtained,
irrespective of whether we used 24, 96 or 144 triangles to represent 3D.
From these experiments we conclude that implementation of the actual
system (4.4.6) - (4.4.7) when using a piecewise constant interpolation

scheme, is just a waste of time. With the integral representation for the
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velocity and, hence, from the resulting boundary integral equations,
reliable results can therefore oniy be obtained if at least linear
interpolation between the vertices is employed to represent the relevant
flow field quantities on each triangle. The results of the corresponding

scheme will be discussed in Section 6.2,
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6.2. NUMERICAL RESULTS; PIECEWISE LINEAR INTERPOLATION

In this section, we investigate some of the numerical features of the
boundary-integral-equation method in case the piecewise linear
interpolation scheme of Section 5.3, in combination with the collocation
method of Section 5.4, is employed. Not only the system of boundary
integral equations resulting from the integral relation for the pressure
field is considered, but also the one following from the integral
relation for the velocity field, and mixtures of the two integral
relations. The integral equations are applied to test flows in both
isotropic and anisotropic (but reciprocal) media.

Throughout this section the source-free unit cube D, defined by
(6.0.1) (cf. Figure 6.1), will serve again as the computational domain of
interest. If D is filled by a homogeneous and isotropic medium, the
uniform flow defined by (6.1.1) - (6.1.2) is again taken as the
mathematical test flow. If D is filled by a homogeneous and anisotropic,

but reciprocal, medium the following mathematical test flow is employed:

v = 3_1/2(21 + 12 + 13] (6.2.1)
and
-1/2
o= =37 TRy xRy, xRy ) - pelxg - 1)
-1/2v3 3
+3 Ei=1zj=1Rij, (6.2.2)

where (Rij) is a symmetrical and positive definite tensor of rank two.
Clearly, (6.2.1) and (6.2.2) constitute a uniform flow with a constant
diagonal flow velocity from x=0 to 5=(i1+12+13) and with a linearly

varying pressure. Note that at 5=(11+52+13)’ we have taken p=0; at x=0 we
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then have p=pg+3 1/221 12? 1Ry Obviously, (6.2.1) - (6.2.2) satisfy the
basic groundwater flow equations (3.3.5) and (3.3.6) with g=0, f=0 and

5"323-

In discretizing any of the boundary integral equations, the resulting
system of linear, algebraic equations will, both for the isotropic and
the anisotropic case, contain in its coefficients the surface integrals
164 and Irq as defined by (5.4.3) and (5.4.4), respectively, and/or Irf
and IG , as defined by (5.4.5) and (5.4.6), respectively. For these

ntegrals the analytic expressions derived in Appendix C are used. In
view of the fact that the relevant expressions are rather lengthy, it is
clear that in implementing them errors in the software can easily occur.
Hence, before we actually tested any of the systems of boundary integral
equations for the mathematical test flows (6.1.1) - (6.1.1) or (6.2.1) -
(6.2.2), we have followed a procedure similar to the one outlined at the
end of Section 6.1, i.e., we have first extensively tested the integral
representations for the pressure and the velocity fields. Both
representations were applied to the unit cube D and were tested for
observation points located in the interior of D as well as for points
located on the boundary surface aD of D. As regards the latter points two
categories were distinguished (cf. Figure 6.1), viz. (a) nodes in the

interior of a face of the cube, and (b) non-nodal points in the interior

of some triangle on 3D. The non-nodal points in a triangle ST have, to
retain symmetry, been specified through the three relations
Xop(1) = (1 = 28)x, + 8%, + 6x, for 0<s<1, (6.2.3a)
X () = 8x, + (1~ 28)x, + 824 for 0<4§<1, (6.2.3b)

and

(3) = 6%y * 83, + (1 - 28)x4 for 0<s<1, (6.2.3¢)
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where 50b(1)’ iob(Z) and 5ob(3) denote the three (non-nodal) observation

points in ST’ while x X, and x

10 =2 3
vertices of ST‘ For §, values varying from §=10

are the position vectors of the
! to 6-=10_'4 have been
chosen, causing the observation points to move close to one of the
vertices of the triangle under consideration. In the testing of the
integral representations (4.4.1) and (4.4,5) for the pressure field and
the velocity field, respectiyely, the flow field data needed on the
triangulated boundary surface 9D, i.e., the values of p and vivy at the
vertices of the triangles spanning dD, were, in the isotropic case,
obtained from (6.1.1) - (6.1.2) with p=1, R=1 and g=-1. Similarly, in the
anisotropic case, the data needed on the discretized boundary surface &D
were obtained fram (6.2.1) - (6.2.2) with p=1, g=-1, while for (Rij) we

have taken

1 _(31/2)/2

(r,) = | -3"%) 72 2 01, (6.2.4a)
J 0 0 3

[ ) 2 1 1

R = 1 2 1 . (6.2.4b)
13 11 2

and

( 4 1 2

R,.)=[1 5 3|, (6.2.4¢)
H 2 3 6

respectively; these tensors are symmetric and positive definite. The
tests on the integral representations have been performed for 3D
discretized into 24, 96, 144 triangles (cf. Figures 6.ta, 6.1c and 6.1d,
respectively). Since the local piecewise linear field representations
comply exactly with the structure of the isotropic and anisotropic test
flows under consideration, the computed values of the pressure and the
flow velocity must be exact, within the canputatibnal accuracy employed,

at all observation points at hand. Typical values of the absolute errors
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in the computed values of p and v, at observation points located in the
interior of D and at the nodes in the interior of a face of the cube are
of the order of 10_11 when 24 triangles span 3D and of the order of 10-9
when 144 triangles span 8D (ef. Figures 6.1a and 6.1d). The occurring
loss in accuracy is ascribed to the accumulation of round-off errors in
the arithmetic operations carried out on the numbers used in the computer
code. Further, typical values of the absolute errors in the computed
values of p and vy at non-nodal points in the interior of same triangle
on 3D are, 3D being subdivided into 24 triangles (ef. Figure 6.1a), of
the order of 10_11 for <S=10-1 and of the order of 10-8 for 6=10—u. The
latter loss in precision can be understood by taking into account that
the values for the expressions for the surface integrals 169 and Irq,
and/or IF{ and IGg will become less accurate if the distance between the
point of observation and a vertex of a triangle becomes very small (which
4

).

In addition to the above tests the integral representation for the

happens, e.g., for 6=10_

pressure field has also been tested for two other categories of
observation points on 3D, viz. nodes on the edges of D and nodes at its
corners. These tests have been carried out for the unit cube D filled by
a homogeneous and isotropic medium with the test flow (6.1.1) - (6.1.2)
with p=1, R=1 and g=-1, as well as for D filled by a homogeneous and
anisotropic (but reciprocal) medium with the test flow (6.2.1) - (6.2.2)
with p=1, g=-1 and (Rij) given by (6.2.4a), (6.2.4b), (6.2.4c),
respectively. Now, from Appendix B, Section™B.1.2, we have learned that
when the point of observation x' is located on the boundary surface 3D of
a homogeneous and isotropic medium D, the integral representation for the
pressure field at x', as given by (B.1.16), holds on the assumption that
around x' 3D is locally flat. To prove this we have followed the
procedure of excluding fram D a semi-ball with x' as center, and
subsequently letting the radius of this semi-ball go to zero. If the
point of observation X' coincides with a node on an edge of the
homogeneous and isotropic unit cube D, we can repeat this procedure by

now excluding from D, symmetrically around x', a quarter of a ball, and
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again letting its radius tend to zero. We then arrive at the integral
representation for p as given by (B.1.16), but with the factor of 1/2
replaced by 1/4. Furthermore, when the observation point is located at a
corner of the homogeneous and isotropic unit cube D, one eighth of the
above ball is excluded from D. The procedure of letting the radius of the
ball go to zero leads again to the integral representation for p as given
in (B.1.16), but with the factor of 1/2 replaced by 1/8. The factors of
1/2, 1/4, and 1/8 are nothing but the fractions of the total solid angle
at which the cube-shaped domain D is seen from the corresponding
observation points. The occurrence of the factors of 1/4 and 1/8, as well
as the factor of 1/2 previously, were confirmed numerically.

The testing of the integral representation for the pressure field at
edges and corners of the cube D has for the test flows considered before
also been carried out in case D was filled by a homogeneous and
anisotropic, but reciprocal, medium. In this respect it is observed that
the value of the solid angle needed at the point of observation on edges
or in corners are, for the isotropic case, obtained by taking for the
boundary surface of the domain excluded around the singularity (point of
observation) a sphere. (Note that in the actual evaluation of the solid
angle the shape of the surface over which the relevant surface integral
is calculated is immaterial.) For the anisotropic case it proves to be
easiest to take as the surface used to calculate the "affine" solid angle
the boundary surface of a tetrahedral/polyhedral domain excluding the
singularity. For this, we put the analytic results of Appendix C, Section
C.2, judiciously together and obtain the analytic expressions for the
"affine" solid angles needed for observation points located on edges or
in corners of the cube D. Using this procedure, the integral
representation for the pressure field has been tested at the same points
of observation and for the same discretizations that have been considered
in the isotropic case. Since in all cases considered the local piecewise
linear interpolation scheme again matches the structure of the test flows
in D, exact results, within the computational accuracy employed, were

obtained.-These additional numerical experiments are a test on the
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correctness of the implementation of the analytic expressions derived in
Appendix C for the integrals IGq and'Irg, both for the anisotropic case.

After the integral representations (4.4,1) and (4.4.5) had been
tested in the manners indicated above, we have implemented the systems of
boundary integral equations resulting from (4.4,.1), (4.4.5), as well as
their combinations (cf. Section 4.4), They have been applied to the
isotropic test flow used before. In their discretization we have,
together with the piecewise linear field representations of Section 5.3,
employed the method of collocation discussed in Section 5.4. In the
computer code developed, all nodal points on 3D at which collocation was
to be applied were, for reasons of simplicity in implementing the codes,
treated as multiple nodes (cf. Section 5.4). Also, instead of applying
collocation at the vertices of the triangles, coliocation was applied in
the immediate vicinity of the vertices for which, to retain symmetry, the
collocation points (6.2.3a) - (6.2.3c) were chosen. A code that
automatically distinguishes between simple and multiple nodes is under
development. The systems were tested for the given boundary values
according to (6.1.3), (6.1.4) and (6.1.5), respectively. The boundary
surface 3D was subdivided into 24 triangles. The computation time for
each test case was approximately 20 m, A5 was to be expected, all results
were exact within the computational accuracy employed. Using 24 triangles
to represent 3D and taking «S=1O“1 to locate the collocation points in the
vicinity of the vertices of the triangles, the absolute errors in the
computed values of the pressure and the normal velocity at the
collocation points are of the order of 10719,

The above numerical experiments are to be considered as essential
tests on the correctness of the computer code developed. The outcome of
the tests gives confidence to apply the code to actual steady groundwater
flow problems met in practice. For this, a larger computer system than
the IBM PC/AT must be employed.
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6.3. CONCLUSIONS

The numerical experiments discussed in this chapter are a first
investigation into the performance of the boundary-integral-equation
method as it has been developed in the previous chapters.

In Section 6.1 we have investigated some of the numerical features of
the boundary-integral-equation method when it was applied in its simplest
version, i.e., when a piecewise constant approximation for the flow field
quantities is used. The resulting systems of boundary integral equations
have been applied to a cube as the computational domain of interest. The
cube was filled by a homogeneous and isotropic medium. In this cube a
uniform source-free flow served as the mathematical test flow. Three
different mixtures of-Dirichlet and Negmann conditions were applied to
the boundary surface of the cube.

As regards the integral equations resulting form the representation
for the pressure field the errors in the computed pressure and the normal
component of the flow velocity are typically related to the geometrical
discretization of the boundary surface of the cube. The results obtained
for the pressure were, for each discretization used and for each of the
boundary conditions considered, more accurate than the ones obtained for
the normal flow velocity. The numerical experiments also learned that,
for a fixed number of triangles used in the subdivision of the faces of
the cube, the errors in the computed pressure decrease if the numbers of
points at which this quantity remains to be calculated decreases. Only
for a relatively fine discretization of the faces of the cube a similar
behavior, although less pronounced, was found to hold for the errors in
the computed normal flow velocities. We further observed that a finer
partial discretization around edges entails a decrease in the errors of
the computed pressure and normal flow velocity at locations that were not

part of this finer discretization. Furthermore, implementation of the
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compatibility relation for the velocity in the discretized system of
integral equations shows that, doing this, more accurate results can
indeed be obtained. The improved results are, however, only arrived at
after a tedious trial and error procedure; therefore, its use in
practice, especially when large systems of linear, algebraic equations
are needed, is debatable.

As regards the integral equations resulting from the integral
representation for the velocity field large errors in the computed
pressure and normal velocity occurred, irrespective of whether we used
finer discretizations on the boundary surface of the cube or not. In view
of the higher singularities in the kernels of the relevant integral
representation (equations), with which a piecewise constant approximation
is not compatible, this can be understood. Froam the system of boundary
integral equations resulting from the integral relation for the velocity
field reliable results can therefore only be obtained if at least linear
local expansion of the flow field quantities is employed.

In Section 6.2 we have investigated some of the numerical features of
the boundary integral equations in case the piecewise linear
interpolation scheme of Section 5.3, together with the collocation method
of Section 5.4, were employed. To this end, we have first extensively
tested, in a systematic manner, both the integral representation for the
pressure field and the one for the velocity field. Again the unit cube
was taken as the computational domain of interest; it was filled by a
homogeneous isotropic or anisotropic medium. Uniform source-free flows
served as the mathematical test flows. The two integral representations
and their corresponding integral equations have been tested for points of
observation located in the interior of the cube as well as for
observation points located at the interior nodes of the triangulated
faces of the cube and at interior points in the triangles spanning the
boundary surface of the cube. Since the local piecewise linear
interpolations for the flow field quahtities on the discretized faces of
the cube match the structure of the isotropic and anisotropic test flows

~
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exactly, the results obtained were all exact within the camputational
accuracy employed.

In all the numerical experiments considered sofar, field evaluation
has been carried out at points that were located on a flat part of the
boundary. In order to investigate what happens when an observation point
is located on an edge or in a corner we have, both analytically and
numerically, investigated the integral representation for the pressure
field at such pdints of observation. It is noted that this investigation
is only meaningful if the quantity that is to be considered is a
continuous one. For both the isotropic and the anisotropic case agreement
was reached within the computational accuracy employed.

The outcome of all tests show the correctness of the computer code
developed; this gives the confidence that the boundary integral equations
developed in this thesis can successfully be employed to solve actual

three-dimensional steady groundwater flow problems.



APPENDIX A

THE AVERAGING THEOREM

In this appendix, a theorem is derived that relates the fluid phase
average of the spatial derivative of an arbitrary fluid quantity y (¢ may
be a scalar or a Cartesian component of a vector or tensor of arbitrary
rank), to the spatial derivative of the fluid phase average of ¢ and an
additional term,

Consider the representative elementary domain D as it has been
introduced in Section 3.1, where Ds denotes the subdomain of D that
contains the fluid phase and De the subdomain of Ds where the solid
material is present. The closed boundary surfaces of D ! Di, and Ds are
denoted by 9D e’ aDi, and QDE, respectlvely The 1ntersectlons of BD and
: BD and of aD€ and BDQ are denoted by S and Se’ respectively, whlle the
1ntersection of BDf and BD 1s denoted by Z (see Figure A.1). The unit
vector along the normal to SD is directed away from Dz and is denoted by
Vi Finally, VE, VZ, and VE, denote the volumes of De’ Di, and Di,
respectively.

Let the fluid phase average of ¢y, designated as <y>, be defined by
(ef. (3.1.9))

P> (x,t) = v j s bx',tav, (a.1)
£ Uxve (x)

Now, upon taking the spatial derivative of <y> and employing the

definition of derivative, it follows that (see Figure A.2)
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-1
h,9, <y>(x,t) =V [j
i € x'8D

Fig. A.1. Bounded averaging domain (schematically) De = Df U D:
interior to the closed boundary surface 3D = Se U Si

The closed boundary surfaces of Di and Di are denoted

by BDf = Sf U s and aD° = s®u L , respectively, where
€ € € € € €

ZE represents the fluid-solid interface(s) in Ds' The

solid material present in Di is assumed to be rigid and

immovable.

where D£(§+h) results from the translation of De(i), and hence Di(i)’
over the small vectorial distance h (see Figure A.2). Inspection of the
right-hand side of (A.2) reveals that the elementary volumes that remain
after the subtraction of the volumes of D£(§+g) and Di(i) can, as h.l

tends to zero, be written as vihidA, where dA is an elementary area of Sz
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(see Figure A.2). Hence, the right-hand side of (A.2) leads, in limit
h, » 0, to

Vij[f £ w(x',t)av - J e Wx',t)av]

€ x'6D” (x+h) x'6D” (x)
= Tgl= = X oYX
-1 J

=V hov, (x')e(x",t)dA. (A.3)
€ i'esz(i) 11— -

/// 52 , 55

Vs
D (x+h) “

et

Fig. A.2. D£(5+g) results upon translating De over a small

s
1>

1

vectorial distance h.

h.v.p dA - f hyv,v dA. (A.3)
x'€L

! ' i'i i
X GBDE(K) E(5_)

Upon applying Gauss' theorem to the first integral on the right-hand

side, i.e., using
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h.v.y dA = [

iVi h.8!y dA, (A.4)

f ii

Jg'eani(g) x'ed_(x)

where ai denotes partial differentiation with respect to xi, and

collecting the results, it follows that

x'6r_(x)

Equation (A.5) holds for any hi' As a consequence, we have

3. <u>(x,t) = <31 (x,t) - J v (x")w(x',t)dA. (A.6)
i = = i=""=
x'€r_(x) -

Equation (A.6) is referred to as the averaging theorem and is used in
Chapter 3.




APPENDIX B

DETAILED DERIVATION OF THE SOURCE-TYPE INTEGRAL RELATIONS
PERTAINING TO A HOMOGENEOUS AND RECIPROCAL MEDIUM

In present appendix the derivation of the source~type integral relations
for the pressure field and the velocity field pertaining to a bounded
domain occupied by a homogeneous and reciprocal medium is discussed in
more detail.

The Green's solutions of Section 4.5 for the flow field in
homogeneous and reciprocal media of infinite extent all are regular
throughout the three-dimensional space R3 except at a single point, the
source point, where they are singular. As a consequence of this property,
the Green's solutions cannot be directly used in the global form of the
reciprocity theorem given in the main text in (4.1.7), if the source
point is situated either in the interior of the domain of application of
the reciprocity theorem, or on its boundary.

The purpose of the‘present appendix is to discuss the derivations of
the source-type integral relations for the pressure and velocity fields
for these cases with the aid of a detailed limiting procedure. In Section
B.1 this analysis is carried out for the source-type integral relation
for the pressure field when the relevant homogeneous medium is isotropic.
In Section B.2 the analysis is carried out for the source-type integral
relation for the velocity field pertaining to such a medium. The
extension of the analysis to the case of a homogeneous and anisotropic,

but reciprocal, medium is discussed in Section B.3.
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B.1. SOURCE-TYPE INTEGRAL RELATION FOR THE PRESSURE FIELD
(ISOTROPIC CASE)

In this section we derive the source-type integral relation for the
pressure field pertaining to a bounded domain D occupied by a homogeneous
and isotropic medium.

As a starting point, we recapitulate the injection-source (scalar and
vector) Green's functions for a homogeneous and isotropic medium of
infinite extent, i.e., (ef. (4.5.19), (4.5.20), (4.5.16), (4.5.17) and
(4.1.9))

63 = (R/am]x - x'|” (B.1.1)

i

and

rd
1

(“n)-1ai|§ - x|, (B.1.2)

where R is the constant scalar resistivity of the medium under
consideration., From (B.1.1) and (B.1.2) it is apparent that ¢? and F?
both are singular at the source point x=x'. In Subsections B.1.1, B.1.2
and B.1.3, the derivation of the integral relation for the pressure field
is discussed in case this source point is located in the interior of D,

on its boundary surface 9D, or outside D U 9D, i.e., in D', respectively.

B.1.,1. PRESSURE FIELD; THE CASE x'€D
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In this subsection we consider the case where the source point with
position vector x' is an interior point of D. To handle this situation

the reciprocity theorem (4,1.7) is applied to the domain D\Bs(ﬁ') where
By(x') = {3(_8R3; 0%]x - x'[<§ with &>0}. (B.1.3)

The boundary surface of the ball 86(5') is the sphere 856(5'); the
exterior of Bé(l') is denoted by Bé(l')- The ball's radius § is assumed
to be so small (eventually we shall consider the limit §-+0) that 8B6(§')

is completely interior to the boundary surface 3D of D (see Figure B.1).

Fig. B.1. The ball Bs(l') around x=x' with boundary surface
386(5') and radius 8§ is excluded from the domain

to which the reciprocity theorem (4.1.7) applies.
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In applying the reciprocity theorem-to the domain D\Ba(z'), State A is
identified with the actual flow state. The auxiliary flow State B is
identified with the Green's flow state generated by a point-injection
source at x=x' in an unbounded, homogeneous and isotropic medium with the
same constitutive properties as the ones in the actual flow state. The
Green's functions G% and F? defined by (B.1.1) and (B.1.2), respectively,
apply to the latter auxiliary state. Since the point source generating
these fields is located outside the domain of application, we have (cf.
(4.1.7), (4.3.2) - (4.3.7), and (4.3.11))

(G, + qu)vidA =

i i )]dV

a q
(6% + rileg; + £,

559886(5') fﬁGD\BG(i‘)

- J [qui + r?p]vidA. (B.1.4)
x63D
We first examine the.surface integral over 3B (x') in some more detail.

On 886(5‘) we have (see Figure B.1)

v; = - (xi - x&)/|§ - x'| when 56386(5'), (B.1.5)

and hence (cf. (B.1.2))

1

vr8 = T x - x| = (ame®)TT wnen x638(x"). (B.1.6)

On the assumption that p is continucus at x=x', we have (cf. (B.1.4))

J F?vipdA = (Nnéa)-1f pdA = p(x') + o(1) as §-0.
X638 (x") X638 (x")

(B.1.7)

On the further assumption that ! is bounded on 886(5') it is easily
verified that the remaining integral on the left-hand side of (B.1.4)
leads to (ef. (B.1.1))
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quividA = R(Und)-1[ v.,v,dA = 0(8) as §-0.

J563136(5’) X638 (x')

(B.1.8)
Further, in the limit §+0, the volume integral in (B.1.4) leads to

[c% + r{(pg; + £,)]av

JEGD\Bé(é') !

= J (69 + r%(pg, + £.)]dv + 0(s) as 80, (B.1.9)
i i i
x€D
where the integral on the right-hand side is to be understood as a
convergent improper integral. Upon collecting the results (B.1.4) and
(B.1.7) - (B.1.9), we have, in the limit §-0,

p(x') = + Tip)v,an + f (6% + rJ(eg, + £,)]av

zGD .
when x'€D, (B.1.10)

which complies with (4.3.12) when x'6D, in case the latter is applied to

a homogeneous and isotropic medium.
B.1.2. PRESSURE FIELD; THE CASE x'&aD

For the source point located on the boundary surface 3D of D, we exclude
from the domain of application of the reciprocity theorem (4.1.7) the
part D /\ Bé(g') of the ball Bs(i') defined by (B.1.3) that intersects D.
Now, 3B6(5') is the part of the boundary surface of 35(5') that

intersects D and 26 denotes the part Qf aD that lies inside Bd(z') (see
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Fig. B.2. The domain D /\ Bs(l') is excluded from the domain
to which the reciprocity theorem (4.1.7) applies.

Figure B.2). Upon applying now (4.1.7) to D /\ Bé(z') and taking the

States A and B as before, we obtain

(qu. + F?p)v.dA =

q q
i i [6% + ri(pg, + £,)]av

J3(__90/\3'(5')

ZGaBG(l') 5

[qu + Yq

{ ip)vidA, (B.1.11)

J)_(.GQD\):(S

to which (B.,1.1) and (B.1.2) apply and where, from now on, it is assumed
that 3D has a unique tangent plane at x=x'. In the left-hand side of

(B.1.11) we have, on the assumption that vy is bounded on aad(i'),
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quividA = R(HHG)_1J v.dA = 0(8) as §~0.

j .
X638, (x") X698 (x')

(B.1.12)

On the further assumption that p is continuous at x=x', followed by the

use of (B.1.6), we now have

rgvipdA = (unaz)'1j pdA = (1/2)p(x') + o(1) as §-0.

KGBBG(i') 56386(1')

(B.1.13)

Similar to (B.1.9), the volume integral in (B.1.11) leads to

) Jav

J (6% + ri(eg, + £,
KGD/\Bé(E')

= f (6% + r%pg, + r.)]av + 0(s) as 620, (B.1.14)
i i i
x€D
where the resulting integral on the right-hand side is to be understood
as a convergent improper integral. Finally, for the surface integral on

the right-hand side of (B.1.11) we have in the limit 6-0

(qu. + qu)vidA =

R, (6. + F?p)vidA + 0(8) as 60,
5

1

JESQD\Z fzeam

(B.1.15)

where } denotes that the relevant integral is interpreted as a Cauchy
principal value, i.e., the singularity of the integrand is excluded in a
symmetrical manner. After this interpretation it can for the case at hand
be shown that the integral is an improper convergent one. Collecting the
results and taking the limit &-0, (B.}.1i) - (B.1.15) lead to

(1/2)p(x') = (qui + F?p)vidA

{ZSBD
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Y

+ f (6% + r%pg, + £,)]av when x'€3D. (B.1.16)
i i i =
x6D
This source-type integral relation for the pressure at x=x', with x'€aD,
is identical to the one in (4.3.12) when x'€3D, in case the latter is

applied to a homogeneous and isotropic medium.
B.1.3. PRESSURE FIELD; THE CASE x'e€D'

In the case x'€D', i.e., the source point is located outside D U 3D, it
is obvious that ¢4 and F? are both regular throughout D. Hence, in this
case the reciprocity theorem (4.1.7) can be used directly. Taking in
(4.1.7) the States A and B as before, it immediately follows that for x'6
D', the source-type integral relation for the pressure field in a
homogeneous and isotropic medium is arrived at by directly employing
(B.1.1) and (B.1.2). The resulting integral relation is identical to the
one in (4.3.12) when Xx'6D', in case the latter is applied to a
homogeneous and isotropic medium.

To conclude this section it should be noted that with the
introduction of the characteristic domain function XD(E')’ defined by
(4.3.9), the results for the pressure field obtained in the Subsections
B.1.1, B.1.2 and the present one, can conveniently be combined to the one

presented-in (4.3.12).




APPENDIX B : SOURCE-TYPE INTEGRAL RELATIONS -181-

B.2. SOURCE-TYPE INTEGRAL RELATION FOR THE VELOCITY FIELD
(ISOTROPIC CASE)

In this section we derive the source-type integral relation for the
velocity field pertaining to a bounded domain D occupied by a homogeneous
and isotropic medium.

As a starting point, we recapitulate the force-source (vector and
tensor) Green's functions pertaining to a homogenous and isotropic mediuﬁ
of infinite extent, i.e., (cf. (4.5.26), (4.5.27), (4.5.16), (4.5.17) and
(4.1.9))

£ -1 -1 -1 ,

Gyy = (HmR) aiajlg X' tRO6;8(x - x") (B.2.1)
and

rg - (Nn)_131|1 - x|, (B.2.2)

where R is the constant scalar resistivity of the medium under
consideration. From (B.2.1) and (B.2.2) it is apparent that Gij and F§
both are singular at the source point x=x'. In Subsections B.2.1, B.2.2
and B.2.3, the derivation of the integral relation for the veloc¢ity field
is discussed in case this source point is located in the interior of D,

on its boundary surface 9D, or outside D U 9D, i.e., in D', respectively.

B.2.1. VELOCITY FIELD; THE CASE x'€D

In this subsection we consider the case where the source point with

position vector x' is an interior point of D. Similar to the "pressure
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case" discussed-in Subsection B.1.1, the reciprocity theorem (4.1.7) is
applied to the domain D\B (x') where the ball Bé(g') is defined by
(B.1.3) (see Figure B.1). In applying the reciprocity theorem (4.1.7) to
the domain D\Ba(l') we again identify State A with the actual flow state.
The flow State B is now identified with the one that is generated by a
point-force source at x=x', in addition to a source distribution that
compensates gravity (ef. (4.3.14)). These source distributions apply to
an unbounded, homogeneous and isotropic medium with the same constitutive
properties as the ones in the actual flow state. The Green's functions
ij and Fi defined by (B.2.1) and (B.2.2), respectively, apply to this
auxiliary state. Since the point source generating these fields is
located outside the domain of application, we have (cf. (4.1.7), (4.3.2)
- (4.3.3), (4.3.14) - (4.3.17), and (4.3.19))

f f f f
(F.v. + Gijp)v.dA = [riq + Gi.(pgj + f.)]dv

J J

Jieasé(g) IEGD\BG(y)

(Piv.

f
5t Gi.p)vjdA. (B.2.3)

Jzeao v
We first examine the surface integral on the left-hand side of (B.2.3) in
some more detail. On the assumption that vy is continuous at x=x' we have

(ef. (B.2.2) and (B.1.5))

J riv.v.dA = (Hnéz)_1j viv.v.dA
X3 (x") © Y x68B(x) * 7Y

= (1/3)vi(§') + o(1) as §-0, (B.2.4)

which is easily verified by carrying out the relevant integration with
the aid of spherical coordinates around x=x' as variables of integration.
To evaluate the remaining part of the integral on the left-hand side in
(B.2.3) we assume that the pressure is continuously differentiable at

x=x' and write
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p(x) = p(x") + (x = x1)3:p(x') + o(8) as 830 for x63B(x'), (B.2.5)

where 3& denotes differentiation with respect to xé. Using (B.2.5) and

(B.2.1) in the relevant integral, we then have

J Gg.v.pdA
x63B(x)

-1

= (“nR)_1J lo(x") + (x - xr'n)ar'np(g')]vjajailz - x'| aa

x89B(x')
+ o(1) as 6-0. (B.2.6)
Since with aid of Gauss' theorem it follows that (see Figure B.1)

j vidA = 0, (B.2.7)
59355(1')

the first part of the integral on the right-hand side of (B.2.6) leads to

J p(x")v.3.9, x - 1'|_1dA
x63B (%) 3

= 29(5’)6_3[ v;dA =0 for §>0, (B.2.8)
X608 (x")

while for the remaining part we obtain

-1
(x_ - x1)3'p(x")v.3.3, |x - x'| dA
IESBBG(K') m-m JJ1

- 26-2f vovp[orp(x ) JdA = - (81/3)3:p(x"). (B.2.9)
X638 (x")
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This result easily is verified by carrying out the relevant integration
with the aid of spherical coordinates around x=x' as variables of
integration. Using (B.2.8) and (B.2.9) in (B.2.6) we have

Gr.v.pdA

fgsaeé(y) 13

i}

- (2/3)R7a1p(x") + o(1) as 620. (B.2.10)

Next, it readily follows that for the first part of the volume integral
in (B.2.3) we have (cf. (B.2.2))

J Fiqu = [ ngdV + 0(8§) as 6-0, (B.2.11)
160\86(5') x6D

where the integral on the right-hand side is as a convergent improper

integral. As regards the remaining part of the volume integral in (B.2.3)
we successively take into account the expression (B.2.1) for G?j’ use the
fact that this expression is regular throughout D\Bd(z'), and rewrite the

relevant integral, assuming that fj is continuously differentiable, as

£
G, (g, + £ Jav
J5(;1)\}36(5') M
- (unm”(f 3. [(og, + £)3,]x - x| av
: xed\B(x) Y
[a.(oe, + £)]3, ]x - x| "av). (B.2.12)

JEGD\Bs(E') J J J il= -

With the aid of Gauss' theorem the first integral on the right-hand side

can be rewritten as (see Figure B.1)

: -1
3.[(pg, + £.)3 |x - x'| Jav
[ZGD\BG(EV) J J Jo i

-1
= s .+ £.)93, - x' dA
[xeaovJ(ng ke -l
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+ I v,(pg, + f,)ailz - x' -1dA, (B.2.13)
xe(x) T

where, similar to (B.2.4), it is easily verified that

-1
v.(pg, + £.)0.[x = x'|7'dA = (41/3)(pg. + £.(x"))+ o(1)
[.)_(.6386(5‘) J J J 1 ' 1 1=

as §-0. (B.2.14)

For the remaining volume integral on the right-hand side of (B.2.12) we

have

[a.(pg, + £.)]5.|x - x'|'1dv
J'EGD\BG(Z.') J J J ll— -

= [ [9.(pg. + f.)]a.lx - x'|_1dV + 0(8) as §-0, (B.2.15)
x€ED J J J 1'= -

where the volume integral on the right-hand side is a convergent improper
integral., Hence, upon using (B.2.13) - (B.2.15), together with (B.2.2),

in (B.2.12), we have

J Gi.(pg. + £ )av
ZGD\B(S(E') J J J

-1 -1 £
= (1/3)R '(pg, + £.(x")) + R ([ r;(pg. + f.)v,dA
i i x63D L 3 3773

- J F?B‘(pg. + f.)av) + o(1) as &-0. (B.2.16)
xep L33 J

Collecting the results, it follows that, in the limit §-+0, (B.2.3) leads
to

(1/3)v (x") - (2/3)R_1B;p(§') - (1738 (pg, + £, (x")
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= - J [Fiv. + Gf.p]v.dA + R-1J Fi(pg. + f.)v.dA
x69D J 37T x69D J 3’73
+ I rflq - R73 . (og. + £.)]av when x'€D. (B.2.17)
«op 3R J =

In (B.2.17) we further take into account the equation of motion (3.3.6),

in which we replace Rij by Réij, X by x', and ai by Bi. Then we arrive at

v (x') = R (pg, *+ £,(x")

f £ -1
- I (riv. + Gijp)vjdA + R [

f
F.(pg. + f.)v.dA
X63D J 1 J 37 )

X69D

+ I rflq - R (pg. + £.)]av when x'€D, (B.2.18)
x€D 1 J J J -

which is the source-type integral representations for the velocity field
when the source point is an interior point of D. Note that all integrals
in (B.2.18) are convergent (improper) integrals.

It remains to be shown that (B.2.18) is identical to the integral
representation (4.3.20) when x'6D, in case the latter is applied to a
homogeneous and isotropic medium. To this end we successively directly
employ (B.2.1) and (B.2.2) in (4.3.20), take in (4.3.21) further into
account the relation G§j=R_1(3jF€ + 6ij6(57§')), and use the property of

the delta function as shown in (4.3.8). Then we arrive at

-1 f f
v.(x') =R (pg, + f.(z')] - J (rov, + G;.p)v.da
i i i X63D i3 13. J
f -1 f
+ rilqa+ R '(pg, + £.)d.r Jav when x'€D, (B.2.19)
%ED 1 J J°J1 -

Obviously, the second part of the volume integral in (B.2.19) is
divergent. The detailed analysis leading to (B.2.18) learns how this part

is to be interpreted, viz. as the combination of the second surface
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integral on the right-hand side of (B.2.18), together with the second
part of the volume integral in (B.2.18).

B.2.2. VELOCITY FIELD; THE CASE x'€3D

For the source point located on the boundary surface oD of D, we exclude
from the domain of application of the reciprocity theorem (4.1.7) the
common part D /\ 86(5') of D and the ball BG(E') defined by (B.1.3) (see
Figure B.2). Upon applying (4.1.7) to the domain D /\ Bé(ﬁ') and taking
the States A and B as before, we obtain

(rfv. + ¢fp)v.an
6B (xS0 T

= J [r?q + Gf.[pg. + £} ]adv, (B.2.20)
X6D/B(x') R

where 336(5') is the part of the boundary surface of Bd(l') that

intersects D, and I, denotes the part of 3D that lies inside Bs(g') (see

8
Figure B.2). From now on, it is assumed that 3D has a unique tangent
gj and r? are given by (B.2.1) and (B.2.2),

respectively. Since the point source generating these fields is located

plane at x=x'. In (B.2.20), G
outside the domain of application, we have

ng - R0 (B.2.21)
With the aid of the identity

©1mn®1ki” Cmlni T Omilnk (B.2.22)

it is further easily verified that
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v.B.P? = g, € v 3 Ff

A
373t ilk lmn m%n’ k when Xx#x', (B.2.23)

and hence we have

pvjéjrg = v 9 (pr ) - v (3 p)F when x#x'. (B.2.24)

1lk lmn m 1lk lmn m

Now, upon using (B.2.21), together with (B.2.24), in the left-hand side
of (B.2.20), we obtain

(Piv. + G .p)v.dA
X638 (x)UGNZ) Y 17

-1J £
= R €., € v 3 (pr,)dA
X638 (x")UD\L ) PRIk

f -1
+ J (I‘.\).V. - R v (3 p)l" ) (B.2.25)
59336(§')U(BD\26) 13 €i1k®1mn’m

The first integral on the right-hand side vanishes. This follows by
recalling that 886(5')U(BD\26) is a closed surface (see Figure B.2),
which can always be written as the union of two open surfaces,
[386(1')U(3D\26)](1) and [886(3')U(8D\26)](2) for example, and applying
Stokes' theorem to the integrals over these open surfaces. The resulting

line integrals along the closed boundary curve of [aB (x' )U(BD\Z )](1)

and along the closed boundary curve of [BB (x' )U(aD\Z )] (2)

cancel in
view of their opposite directions of clrculatlon. To handle the remaining
surface integral on the right-hand side of (B.2.25) we start by employing
the equation of motion (3.3.6), in which we replace Rij by Rdij, and
rewriting vj as

-1
=R (-3.p+pg. +f.). B.2.26
vy ( P+ eg; J) ( )

Further, we take into account that (ef. (B.2.22))
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£ £ f
eilkelmnvm(anp)rk = (aip)vkrk - vi(akp)rk. (B.2.27)

We then obtain

£ £
V. + G..p)v.
(r vyt lJp]deA

[

J56386(5')U(ao\26>

rfpg, + £ v,

~1J
R
X638 (x)UGNMNT ) J

- R-1J [T?v.(B.P) + (3ip)vkri - vi(akp)ri]dA.
3B (x UML) T I

(B.2.28)

In this equation we first examine the surface integral over 355(5') in
the second integral on the right-hand side. For x on 385(5') we have (cf.
(B.1.6) and (B.2.2), and Figure B,2)

rl = el when X608, (B.2.29)
and hence
f 2,-1
vy o= (Hms%) when x€3B. (B.2.30)

On the assumption that Bip is continuous at x=x' we then have

£
(Bip)vkrk]dA

(unaz)'1J (3, p)dn

Leasa(y) X698 (x')

(1/2)3;p(£’) + o(1) as §-0, (B.2.31)
while with the aid of (B.2.29) it follows that

I3 £
[riv.(3.p) - v, (3, p)r, Jda
J_)SGBB(SQ(_') 1] J 1 K K
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= (uncz)'lj [v.v.(3,p) - vivk(akp)]dA =0 for 80, (B.2.32)
9B (x') ~ I

since the integrand vanishes. In the limit 6+0, we further have (cf.
(B.2.28))

f f f
I [rov,(3,p) + (3,p)v, I, - v, (3 p)T, JdA
ZSaD\Zé i3] i kK k itk K

fXGaD[Fivj(ij) + (Bip)vkrk - vi(akp)rk]dA as -0, (B.2.33)

where { denotes that this integral is to be interpreted as a Cauchy
principal value, i.e., the singularity of the integrand is excluded in a
symmetrical manner. After this interpretation it can for the case at hand
be shown that the integral is an improper convergent one. Collecting the
results we obtain

(rfv. + ijp)vjdA

oo e ;
X608 (x")U(IDNL)

£
rflog. + £.)v.dA
(og, + J)vJ

_1J

= R i

X698 _(x")U(3D\E ) J
27Es L s

f f f

1V3(85p) * 3Py, Ty - v, (3, p)T, Jaa

- R_1} [r
x63p Y

- (1/2)R—18£p(£') + o(1) as §+0. (B.2.34)

~ Subsequently, we investigate the right-hand side of (B.2.20). Here, we
have (cf. (B.2.11))

FquV = I Fiqdv + 0(8) as §-0, (B.2.35)
x€D

Jzeo/\sé(l')
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where the volume integral on the right-hand side is a convergent improper
one. As regards the remaining part we successively take into account

(B.2.21), assume that fj is continuously differentiable, and observe that
f -1 f f

G. . .+ f.) =R 9.l T; .+ £, - T.93. .+ )t B.2.36

15085 * £ [3;[r;Cogy + £0] - ry3, (o8 + £} (B.2.36)

Using this in the volume integral in (B.2.20) we have

f
G,.(pg. + £, )av
- R_1j ri(og; + £y)vjan
X698 (x")U(ID\L,)
-1 £
- R J r:o (pg, *+ £,)dv, (B.2.37)

xeoneixy T

where the surface integral results from a direct application of Gauss'
theorem, Further, in the limit §+0, we have
f f
r;d.(eg, + £.)av = r;9 (o8 + £ Jav + 0(s8) as 620,
EGD/\Bé(i') J J J x€D J J J
(B.2.38)

where the volume integral on the right-hand side is a convergent improper
one. Collecting the results (B.2.34), (B.2,35), (B.2.37) and (B.2.38) in
(B.2.20), it follows that, in the limit 8§40, we arrive at

~1 -1 £ £ f
- (1/2)R aip(x') - R }xeao[rivj(ajp> + 3Py, T, - vi(akp)rk]dA

= j rf[q -R7'5 (pg. + £,)]av when x'€3D. (B.2.39)
x6D . J J J s -

Finaily, upon using in (B.2.39) the equation of motion (3.3.6), in which
1 1 i
we replace Rij by Réij, x by x', and Bi by ai, we end up with
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(1/2)v (x") = (1/2)R'1(pgi + 1 (x")

—1]( r f £
+ R [riv.(3.p) + (3.p)v, I, - v, (3 p)r. Jda
x6D 17377 i K k i7k7k

+ [ Ff[q - R™'9.(pg, *+ £.)]av when x'€3D, (B.2.40)
x€D i J

which is the desired source~-type integral relation for the velocity field
when the source point is located on the boundary surface of D. Note that
in the surface integral we can always replace (ajp), and/or (aip) and
(akp), by the expression that follows upon using the equation of motion.
The integral relation for the velocity field for x'€3D that is
obtained upon directly employing (B.2.1) and (B.2.2) in (4.3.20) and
using the property of the delta function as shown in (4.3.8), contains
divergent integrals. The above detailed derivation shows how these

integrals are to be interpreted.

B.2.3. VELOCITY FIELD; THE CASE x'€D'

In the case x'€D', i.e., when the source point is located outside D U 3D,
it is obvious that ij and Ff are both regular throughout D. Hence, in
this case the reciprocity theorem (4.1.7) can be used directly. Taking in
(4.1.7) the States A and B as before, it immediately follows that for x'6
D' the source-type integral relation in a homogeneous and isotropic
medium is arrived at by directly employing (B.2.1) and (B.2.2). The
resulting integral relation is identical to the one in (4,3.20) when x'€

D', in case the latter is applied to a homogeneous and isotropic medium.
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B.3. SOURCE~TYPE INTEGRAL RELATIONS FOR THE GROUNDWATER FLOW FIELD IN
THE CASE OF A HOMOGENEOUS AND ANISOTROPIC, BUT RECIPROCAL, MEDIUM

For the case of a homogeneous and anisotropic, but reciprocal, medium the
technique of excluding the singularity can be most easily carried out by
introducing successively the coordinate transformations used in Appendix
C (Section C.2), i.e., the ones defined by (C.2.,8) and (C.2.9),

respectively. In this manner, the relevant analysis is reduced to the one

of an isotropic medium in the coordinate system defined by (C.2.11).



APPENDIX C

CALCULATION OF THE SURFACE INTEGRALS OCCURRING
IN THE DISCRETIZED BOUNDARY INTEGRAL EQUATIONS

In this appendix we derive analytic expressions for the surface integrals
IGq, Irq, Iri and IG?, that are given in (5.4.3) - (5.4.6) and occur in
the application of the boundary-integral-equation method. The technique
will be discussed for the triangle ST' The integrals to be evaluated are

recapitulated below (ef. (5.4.3) - (5.4.6)):

16%(1,x") = [ o(1,x)6%x" ,x)dh, (c.1)
xES
Xooq
q "o Q.
Ir*(I,x') = ¢(I,x)T(x",x)v. dA, (C.2)
x€S L 1 :
X&oq
£ £
Ir,(r,x') = J ¢(1,x)r (x',x)dA, (c.3)
. X6S.. 1
6fer,x) = [ 01,65 (x',x)v . dA (.4
i R A lJ P 2. J ) .

EGST

where 16{1,2,3}, ¢(I,x) is defined in (5.1.24) and the Green's functions
¢, 9, Ff and ng are given in (4.5.19), (4.5.20), (4.5.27) and
(4.5.26). Note that in (C.2) and (C.4) the unit vector v, along the
normal to ST has a constant value for all ZSST° Henceforth, it assumed
that .in (C.1) - (C.4) the point of observation with position vector x' is

neither a point of ST nor of its boundary CT'
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In the analytic evaluation of the integrals in (C.1) - (C.4) it will
prove to be advantageous to treat the case where they apply to isotropio
media separately from..the general case where they apply to anisotropic
media; in Section C.1 the isotropic case is discussed and in Section C.2
the anisotropic case.

Although the analysis presented in this appendix is applied to a
planar triangle, it applies to an arbitrary, planar, polygonal disk as
well.
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C.1. ANALYTIC EVALUATION OF THE SURFACE INTEGRALS (ISOTROPIC CASE)

In this section we derive the analytic expressions for the integrals in
(C.1) = (C.4) in case they apply to isotropic media. With the aid of
(4.5.19), (4.5.20), (4.5.26), (4.5.27), (4.1.9) and (4.5.40) it follows

that for an isotropic medium (C.1) - (C.4) are given by

m%Ly)=(mw)j ¢ugﬂz—zﬂqw, (C.1.1)
x6S
%%
r9,x") = () ™! [ o(I,x)v,3, |x -‘5'|"dA, (C.1.2)
x€S
=0T
f -1 -1
Ir, (I,x') = (4m) I o(L,x)3, |x - x'| "da, (C.1.3)
x6S
207
165 ¢1,xt) = (4nm)”! J o(I,x)v. 3.8, |x - x'| ' da (C.1.14)
r= X6 Bl D AE e '

where R is the constant resistivity of the medium under consideration. As
we have argued in Subsection 5.4.3, the main tool in the analytic
evaluation of the above integrals is Stokes' theorem that enables us to
The

rewrite the integrals over S. to integrals along its boundary C

details of this procedure arz outlined in Subsection C.1.1; in gubseotion
C.1.2 we show that the resulting line integrals along each edge of the
boundary curve CT of ST are expressible in terms of elementary analytic
functions. In the procedure discussed in Subsection C.1.1, we shall
encounter one surface integral that cannot be cast into a form amenable
to an application of Stokes' theorem. This integral is, apart from a
constant, nothing but the solid angle at which the relevant triangle is

observed from the point of observation. Its value is in Subsection C.1.3
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determined by applying geometrical considerations, where a purely

analytic determination is given as well.

C.1.1. REDUCTION OF THE SURFACE INTEGRALS TO CONTOQUR INTEGRALS

In this subsection we reduce each of the surface integrals (C.1.1) -
(C.1.4) to one or more line integrals-along the boundary curve CT of ST
plus a surface integral whose evaluation will be discussed in detail in
Subsection C.1.3. The first relation that we use in (C.1.1) is

o(Lx)|x - x| = - [2,0(1,x)70,|x - x'|

+ (1/2)3,9,[e(I,x)|x - x'|], (C.1.5)
where ¢(I,x) and the constant ai¢(1,5) are given in (5.1.24) and
(5.1.26), respectively. Equation (C.1.5) is easily verified by carrying
out the differentiations at the right-hand side and taking into that
ai¢(1,5) is a constant. Since ai¢(1,5) lies in the plane of ST’ we have

v,3,6(1,x) = 0. (C.1.6)

As a next step towards the replacement of IGq(I,i') by a to contour

integral we take into account that

ai = vjvjai = elmkvmakelpivp + vivjaj, (C.1.7)
where €1 mk is the Levi-Civita tensor defined in (5.1.7). In (C.1.7), we
have used the fact that vjvj=1, and the e-§ identity

[ -6 .6 (C.1.8)

elmkelpi = mp ki mi“kp*®
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Employing (C.1.7) in (C.1.5), we obtain the expression

o(I,x)[x - £'|-1 = - [3i¢(I,ﬁ)l[elmkvmakelpivp + vivjaj]|5 - x'|
+ (1/2)elmkvmakelpivpai[¢(1,5)[5 - x'|]
+ (1/2)vyv 858, [o(T,x) [x - x'[]. (€.1.9)

With the further aid of (C.1.6) and the relation

' ' -1
vivjajai[¢(l,§)|5 - x'|1 = o(Lx)1 + v, (xy - xi)vjaj]]£ - x|,
(C.1.10)

it follows from (C.1.9) that

¢(I,x)|x - §'|-1 = = 203,¢(I,x) e v 0 € |x - x'|

1mk ‘m~k lpivp

-yt
* Sk mdkC1pt Vpd (LX) [x - x'[]

+ ¢(I,_x_)vi(xi - xg)ujajli - §'|_1. (C.1.11)

Taking into account that Bi¢(I,£) has a constant value on S the surface

’
integral over ST of the first term on the right-hand side og (C.1.11) can
be reduced to a contour integral along the boundary curve CT of ST by
applying Stokes' theorem. Also the surface integral over ST of the second
term on the right-hand side of (C.1.11) can be handled in this way.
Further, in view of the fact that vi(xi-xi), i.e., the (signed) distance
from x' to the plane S

is constant for all x6S it is apparent that

T!
the surface integral over S

Tl
T of the last term on the right-hand side of

(C.1.11) equals ani(xi—xi)xqu(l,l') (ef. (C.1.2)). Hence, upon

substituting (C.1.,11) in (C.1.1) and using Stokes' theorem, we are led to
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IGq(I,i') = (R/Nﬂ){- 2[Bi¢(1,5)][ “pll - z'lds

N1 %1pi

EGCT

* I 78151 Vp?3 (LX) [x - x'|Jds}
EGCT

q
- y!
* Ry, (x; x)Ir(L,x), (C.1.12)

where T is the unit tangent along CT in the direction of circulation
that forms a right-hand system with vy - Since CT is the union of three
straight edges {CT(1),CT(2),CT(3)} the unit tangent vector rl(J) will
have a constant value along CT(J). Upon using this property in (C.1.12)
and carrying out the differentiation in the integrand of the second line
integral, it follows that

16%(1,x") = (R/Am){~ [3,0(1,x)] I3_, (Dv L1(3,x")

£11pM1
+ 93, 12(1,0,x0 ]} + Ry (xp - xDIT(ILx), (€.1.13)

in which L1(J,x') and L2(I,J,x"') are defined as

L1(Jd,x") = Ix - x'|ds (C.1.14)

IZ_GCT(J)
and

(x, = xD|x - x'|7'ds,(C.1.15)

L2(1,Jd,x') = I ¢(I,1)11(J)elpivp i

EQCT(J)
respectively. In Subsection C.1.2 these line integrals are evaluated
analytically. In (C.1.13) we are left with the evaluation of Irq(I,x').

Now, from (C.1.2) and (C.1.3) it is clear that

r%1,x") = vilri(l,i'). (C.1.16)
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Therefore, we discuss the evaluation of Iri(I'l')' which is needed
anyway, first, and use the result in (C.1.16). To this end, we rewrite
the integrand of IF?(I,{') as (cf. (C.1.3))

$(L,x)3,[x - x|V - 3, [e(T,x)|x - x| - (3,01, x)]|x - x|

’

(C.1.17)
where in the last term we further employ the relation
x - x| = v 3 e dlx = x|+ vilxy = xPv.ax - x|
- = E1micVmk 1p1 p i i3 = = ’
(C.1.18)

that follows from (C.1.11) with ¢(I,x) replaced by unity. Using (C.1.7)
and (C.1.6) in the first term on the right-hand side of (C.1.17), it then
follows that

-1
o(1,x)3;|x - x' = SV mdk1pi Vp [o(I,x)|x - x'l

-1
+o(Lx)v;vdx - x|

- [ai¢(l’5)][ 1mk mak 1p3vpag| E'I

10
+ vj(xj - xj)vkakli - x| (C.1.19)

Substituting (C.1.19) in (C.1.3) and using Stokes' theorem, together with
the constancy of VJ(XJ'XB) during the integration over ST’ and the fact
that the unit tangents along the (straight) edges of ST are constants, we
end up with

Iri(L,x) = vIrHLo) « Gm I3 ey T (v L3(T,0,x0)

11p B

- 0,0(L 013, Wdx) = vy - xDan ]l (e.1.20)
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in whieh L3(I,J,x'), L4(J,x') and @(x') are defined as

L3(I,d,x') = I o(I,x)|x - 5'|_1ds, (C.1.21)
x6C...(J)
=T
t = - 1 -1
L4(J,x") -[ T (De v lx = xi)[x - x'| 7 ds, (C.1.22)
x6C, (J)
=T
and
a(x') = - J vl - x| aa, (C.1.23)
xGST

respectively. Q(x') equals the solid angle subtended by the triangle ST
at the point of observation with position vector x' (see, e.g., Spiegel,
1974, p. 124); its value is, both geometrically and analytically,
determined in Subsection C.1.3. The analytic evaluation of the line
integrals L3(I,J,x') and L4(J,x') is discussed in the next subsection. It
should be noted that upon multiplying (C.1.20) on both sides by Vi and
using (C.1.6) and the fact that visilpTl(J)vp=O, the right-hand side
reduces to Irq(I,i').

To evaluate Irq(l,z'), we first extend through (5.1.24) the domain of
¢(I,x) to the entire R3 and rewrite ¢(I,5) as

3

o(I,x) = ¢(I,x') + [3j¢(I,§)](xj - XB) (where x'€R”), (C.1.24)

and use this to rewrite the integrand of Irq(I,E') as (ef. (C.1.2))
(I, x)v,. 9. |x - x'|_1 = ¢(I,x")v.d,|x ~ X'|_1
RS RS LTSN ENAS RS LTS

' - Nl
tovy(xg - xi)[8j¢(1,§)]8j|5 x'| . (C.1.25)

Further, we have on account of (C.1.7) and (C.1.6)
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x'| 1. (c.1.26)

[8j¢(1;£>33jl§ - i”l = [9,8(1,x) ey Vi3 €1pi p| T =

Using this result in (C.1.25), (C.1.2) can upon applying Stokes' theorem
be rewritten as

r%rxt = 7 vy g - xDI3L 08,000 Tey) 1 (DY IS (LX)

J

- #(Ix")ax"}, (c.1.27)

where for xj in vj(xj-xg) we can take any point in ST (e.g., a vertex)
and where L5(J,x') is defined as

-1

L5(J,x') = x - x'| 'ds. (C.1.28)

J_)S_GCT(J)

The evaluation of (C.1.28) is discussed in the next subsection.
Finally, to reduce the surface integral IG?(I,;’) (ef. (C.1.4)) to
line integrals along the boundary curve CT and an additional surface
integral that can be identified with Q(x'), we first consider the
relation
~1

¢<1,§)vjajai|§ - x' = € mnPkE1pi? p[¢(l x")x - x'|

vt
* Viajaj[‘p(l’i)li - X | ]
vt
- [aicp(l,g)lvjz}jli -x'| (C.1.29)

which is verified by using identity (C.1.8) and taking into account
(C.1.6). Recalling that (un|§-5'|)'1 is the Green's function of Poisson's
equation and using (C.1.7) and (C.1.6), it is easily verified that the
second term on the right-hand side of (C.1.29) can be written as

=1

v—1 = - A
viajaj[¢(l,§)|5 -x'] )= 2vi[8j¢(l,§)]elmk n2K€1pj p|x x
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when xix'. (C.1.30)

Using (C.1.30) in (C.1.29) and substituting the result in (C.1.4), we

arrive after applying Stokes' theorem at

£ 1 - -1 3 ]
IG,(I,x') = (4mR) {ZM eilpTl(J>[ap¢(1,5)]L5<J,5)

3

v vl

[ajtb(I.z)]ejlprl(J)vpLS(J,y)
- 13, 16,(1,0,x") + [9,0(L,x)lax") ], (C.1.31)

where L5(J,x') is given by (C.1.28), @(x) by (C.1.23) and L6i(I,J,§') is
defined as

L6i(I,J,i') = I ¢(I,5)eijktj(J)(xk - x&)|§ - 5’|—3ds. (C.1.32)

ZGCT(J)

The evaluation of (C.1.32) is discussed in the next subsection.
C.1.2. EVALUATION OF THE LINE INTEGRALS

In the present subsection we discuss the evaluation of the line integrals
L1(J,5'), L2(I,J,§'), L3(I,J,§'), LH(J,E'), LS(J,E') and L6i(I,J,§') that
have been introduced in Subsection C.1.1.

Inspection of (C.1.15) and (C.1.22) reveals that L4(J,x') results
from L2(I,J,x') by replacing ¢(I,x) by the value one. Similarly,
inspection of (C.1.21) and (C.1.28) reveals that L5(J,x') is obtained
from L3(I,J,x') by replacing ¢(I,x) by the value one. Hence, we only have
to investigate the evaluation of L1(J,x'), L2(I1,d,x'), L3(I,J,x') and
L6, (1,d,x").
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For this purpose we consider the straight line segment (edge) CT(J)
with J€{1,2,3}; it is indicated in Figure C.1. Along CT(J) we have

-:i(J) = ai(J)/a(J) with Je{1,2,3}, (C.1.33)

where ai(J) is the vectorial length and a{(J) the scalar length of CT(J).

Taking into account the chosen orientation of CT(J) (ef. Section 5.1), it

C,

Fig. C.1. Configuration employed in the analytic evaluation

of the line integrals.
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is apparent that the starting point and the end point of CT(J) are the
vertices PK and PI of triangle ST’ respectively, where {I,J,K}=
cycl{1,2,3}. In the subsequent analysis we also employ the vectorial
distances from the point of observation to the starting point and the end

point of CT(J). These are introduced as (see Figure C.1)

p (J+1) = x; (J*1) - x; with J€{1,2,3}, (C.1.34)

and
pi(J+2) = xi(J+2) - xi with J€{1,2,31, (C.1.35)

respectively, where xi(J+1) is the position vector of the starting point
of CT(J) and xi(J+2) the position vector of the end point of CT(J) and
hence ai(J)=xi(J+2) - xi(J+1). In (C.1.34) and (C.1.35) the convention
applies that pi(4)=pi(1), xi(u)=xi(1), pi(5)=p1(2) and xi(5)=xi(2). Upon
comparing (C.1.34) and (C.1.35) with the notation introduced in Section
5.1 for the vertices of ST’ it is apparent that xi(J+1) is the position
vector of vertex PK and xi(J+2) the position vector of vertex PI of ST’
with {I,J,K}=cycl{1,2,3}. Further, the corresponding length p(J) of pi(J)
is given by

/2 with J€{1,2,3}. (C.1.36)

p(d) = [pi(J)pi(J)J
Along CT(J) we now have (see Figure C.1)
x; = x} = p;(J*1) +ra,(J)  with 0 5 A ST aﬁd Je{1,2,3}, (C.1.37)
and

ds = a(J)dx with Je&{1,2,3}. (C.1.38)

From (C.1.24) and (C.1.37) we further have
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¢(I,x) = ¢(I,x") + [3,0(L,x)]Lp;(J*+1) + Xa;(J)] when x6C(J),
with Ie{t1,2,3} and J6{1,2,3}, (C.1.39)

where in view of (5.1.26) and (5.1.12) it is clear that [31¢(I,£)Jai(J)
equals 0, -1, or +1, depending on the actual values of I and J.

With the aid of (C.1.37) - (C.1.39) the integrals L1(J,x'),
L2(1,J,x'), L3(I,J,x') and L6i(I,J,£') can be rewritten as (cf. (C.1.14),
(C.1.15), (C.1.21) and (C.1.32))

1
L1(Jd,x") = a(J)[ D(a)da, (C.1.40)
A=0

1
L2(1,d,x") ai(J)eij vjpk(J+1)[[8m¢(1,5)]am(J)[A D)1 Nar,

=0

1
+ {¢(I,x") + [3m¢(1.5)]pm(J+1)}J [D(A)]_1dx], (C.1.41)
A=0

1
a( {le(1,x") + [ai¢<1,5>1pi<J+1>]{ [D(x) 1" ax
A=0

L3(I,d,x")

1 . ,
+ [ai¢(1.5>lai(J)J ALD() T art, (C.1.42)
1=0 .

1
' = -3
16 (1,4,x') = eijkaj<J)pk<J+1>{[am¢(1,5)Jam(J)fx=o;LD(A>J dx
1

+ [o(1,x") + [3 ¢(I,x)]p (J+1>][ [D(V)173dx}, (C.1.43)
- m - m 1=0

where (cf. (4.5.23), (4.5.25), (4.5.56) and (C.1.37))

D(A) = [p, (J+1)p, (J+1) + 2ha; (I)p (J+1) + Azai(J)ai(J)]1/2. (C.1.44)



APPENDIX C : ANALYTIC EVALUATION ~-208-

The remaining scalar integrals are elementary (see, e.g., Gradshteyn and

Ryzhik, 1980, pp. 81-83); they are given by

(o)1 'ar = (C.1.45)
—a(J)p(J+1)

-a(J)p(d+2),

JT A(J,_X_'),

A=0 AS(J,x") 1f a, (J)p (J*1)
and a, (J)p, (J+2)

1
I ALDOD T an = [a(d) 173 p(d+2) = p(J*1)
A=0

1
- ai(J>p.<J+1)j [D(A)]-1dA], (C.1.46)
' A=0

1
{ D(\)dx = (1/2)[a(J)]-2{ai(J)[pi(J+2)p(J+2) - pi(J+1)p(J+1)]
A=0

1
+ E(J,l')I (o)1 daad, (C.1.47)
A=0
1 T(J,x'),
[ [D(A)J'3dA = TS1(J,x") if ai(J)pi(J+1) = a(Jd)p(d+1), (C.1.48)
10 12(4,x") if a,(3)p,(J+1) = -a(d)p(d+1),
1 A(J,x"),
[ ALD(A) 1 3an = AS1(J,x") if a;(Np,;(J*1) = a(d)p(d*1), (C.1.49)
=0

AS2(J,x") if a (e (I+1) = —a(dp(d+1),

where A(J,x'), AS(J,x'), E(J,x'), T(J,x"), TS1(J,x"), TS2(J,x"), A(J,x"),
AS1(J,x') and AS2(J,x'), are defined as

a, (J)p. (J+2) + a(Jd)p(J+2)
L t -1, (C.1.50)

AD,x") = [a(J)]"ln[ --------------------------

AS(J,x") = [a<J>J‘11n[-9$4i11-], (€.1.51)
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5(,x") = [a(@)p(3+1)1% = [a, (D (3+1)7%, (C.1.52)
-1 ai(J)pi(J+2) ai(J)pi(J+1)

T(J,x") = [E(J,x")] TRy YT T TTTRUEY T , (C.1.53)
-1 -2 =2

TS1(J,x') = [2a(0)] {[p(J+1)17° - [p(J+2)17 7}, (C.1.54)

152(J,x") = [2a() 1 {Ip(3+2)172 - [p(3+1) 172}, (C.1.55)
-1 pi(J+1)pi(J+2)

A(d,x") = [E(J,x")] p(J+1) - LRIy T , (C.1.56)

A31(J,x") = (1/2)[a() 172 {[p(3+1) 17" = [2a(d) + p(3+1)Ip(+2) 172},

(C.1.57)
A52(J,x") = (1/2)[a(d) 1 2 {0p(+1)17" = [p(d+2) - 2a(d)1p(J+2)1 7).

(C.1.58)

With the aid of these standard integrals the final expressions for the

line integrals are obtained as
L1(3,x") = [2a(N]7 {a, (0o, (5+2)p(3+2) = p (3+1)p(+1) ]
+ B3, x" A, x") ], (C.1.59)

L2(1,4,x") = a;(J)e vjpk(J+1){[a(J)]_2[3m¢(I.§)Jam(J)

ijk
x [p(d+2) = p(3+1) = a_(Dp (I+1)A(I,x")]
+ [o(I,x") + [3 0(L,x)Tp (3+1)]JAC,x") }, (C.1.60)

L3(1,9,x) = a(){[e(L,x") + [3,6(1,x)1p,(3+1) ]a(3,x") + [a(NI™°

x« [3,0(1,x)]a, (N]p(3+2) - p(I+1) ~ aj(J)pj<J+1)A(J,§')]}.
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(C.1.61)
LU(J,x") = 2y (Dey s, v, (J+1I005,X1)) (C.1.62)
L5(J,x') = a(dA(I,x"), (C.1.63)
and
L6 (I1,d,x") = eijkaj(J)pk(Jﬂ){[3m¢(1,1)]am(J)A(J.§_')
+ [o(T,x") + [3, (L, x)1p (J+D) [T, x")}, (C.1.64)

where A(J,x') is to be replaced by AS(J,x') if either ai(J)pi(J+1) =
-a(Jd)p(Jd+1) or ai(J)pi(J+2) = —a(J)p(J+2), T(J,x") by TS1(J,x') and
A(J,x') by BS1(J,x') if ai(J)pi(JH) = a(J)p(J+1), and, finally, T(J,x')
by TS2(J,x') and A(J,x') by AS2(J,x') if ai(J)pi(J+1) -a(Jd)p(Jd+1). With

this, the analytic evaluation of the line integrals has been completed.

C.1.2. EVALUATION OF THE SOLID ANGLE SUBTENDED BY A PLANAR TRIANGLE

In the present subsection we determine from geometrical considerations as
well as with the aid of an analytic method different fram the one
employed in Subsection C.1.1, the value of the surface integral 9 defined
by (C.1.23).

As we have seen in Subsection C.1.1, the surface integral Q occurs as
a secondary result in the analytic evaluation of the integrals IGq, IFq,
Iri and IG?, and cannot be evaluated with a straightforward utilization
of Stokes' theorem. Since, however, Q(x') represents the solid angle at
which the triangle ST is observed from a point of observation with

position vector x', its value can be determined with the aid of the
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theory of spherical geometry. To this end, it is recalled that the
(numerical) value of the solid angle Q(x') subtended by a planar triangle
ST at a point X' equals the area of the spherical triangle that results

upon projecting S, on a sphere with unit radius and center at x' (see,

T
e.g., Spiegel, 1974, p. 124). Now, expressions for the area of a
spherical triangle can be found in (old) textbooks on spherical
trigonometry. In our analysis we have used the following one (see,

Todhunter and Leathem, 1901, p. 103):
Qx') = ZSign[vipi(1)]arccos --------------------- , (C.1.65)

in which cos(a(J)) is defined by

pi(J+1)pi(J+2)
cos{a(d)) = ==fremrc—ro—zc- with J&{1,2,3}, (C.1.66)

p(J+1)p(J+2)
and where vy is the (constant) unit vector along the normal to ST and
pi(J+1) and p(J+1) the vectorial and scalar distances from x' to the
(J+1)-th vertex of ST’ respectively (ef. (C.1.34) and (C.1.36)). For a
geometrical interpretation of a(J) we refer to Todhunter and Leathem
(1901) . Another, slightly more compact, expression for Q(x') resulting
from the one given in (C.1.65) is presented by Van Oosterom and Strackee
(1983). )

As noted in the introduction to this subsection, an expression for
Q(x') in terms of elementary functions can also be obtained in a purely
analytic manner. To this end, we first decompose in the integrand of
(C.1.23) the vectorial distance between the point of observation x' and

the point of integration x in S_ into a part that is normal to ST and a

T
part that is parallel to it, i.e.

»

- yx! = i ol
X, X3 ;vi +y with ESST, (C.1.67)

i
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where ¢ is given by
r = \)i(xi - xi) with EGST' (C.1.68)

and has a constant value for all KGST' Since y is a vector in the plane
of ST we can represent this vector with respect to same local,
two-dimensional orthogonal Cartesian reference frame in this plane. Let
ya with a=1,2 denote the Cartesian coordinates in this reference frame,
where for repeated Greek subscripts the summation convention applies to
the.range a=1, 2, and let partial differentiation with respect to Yy be
denoted by Ba. Then, upon employing (C.1.67) in (C.1.23), taking into
account that v and y are mutually perpendicular, and adopting the above
notation in the result, we have

2 =372
) 3

Q(g) = el + YoV dA. (C.1.69)

[XSST
When ¢ = 0 and 1¢ST, Q =0; when ¢ + 0 and ¢ + 0, and xssT, geometrical
considerations learn that @ » 2% and Q@ » ~2mw, respectively. Henceforth,
we assume ¢ to be unequal to zero, i.e., x' is not lying in the plane of

ST. As a next step in our analysis, we differentiate (C.1.69) on both

sides with respect to rz and apply in the resulting right-hand side the

relation
2 -3/2 2¢.2 -5/2 _ 2 -3/2
(&% ¢ vy )77 = 38702 vy )77 = - Ly (&5 + vy )70l
(C.1.70)

This leads to

R'(g) = -J 3 [y (%« yy,)73?)aa, (C.1.71)

a’a B'B
xSST

where Q'(z) denotes the derivative of Q(r) with respect to g. Now, with

the aid of the two-dimensional form of Gauss' theorem, the surface



APPENDIX C : ANALYTIC EVALUATION -213-

integral over ST in (C.1.71) can be replaced by a contour integral along

its boundary curve CT. In this, taking into account that CT is the union

of three straight line segments {CT(1),CT(2),CT(3)}, where the outwardly
directed unit vector along the normal to CT(J), with J€{1,2,3}, in the

plane of S is given by [a(J)]'1g(J) (ef. (5.1.10)), and rewriting the

T
result with respect to the original reference frame, we end up with (cf.
(C.1.71))

_3/2ds.

AGERED (C.1.72)

3 -1
a'(g) = - 17, [a(N)] L‘(J)f
b lyee(ay 7 7

J=1

To solve Q(g), and hence 2(x'), from (C.1.72) it is advantageous to first
integrate both sides of it with respect to g. In this, the appropriate
end point of the interval of integration is obtained upon taking into

account that Q(g) tends to zero as ¢ » = (ef. (C.1.69). We then have

2o = 13, (@17 W NI RGRE PR
- y6C_(J) -
P T €=
- - -1/2
- 13 [a()] 1L,(J)I v,y - elef vy y, )T P as
J=1 i XQCT(J) i3] K’k
- 13, i - Lo, (c.1.73)
where L7(J,z) and L8(J,z) are defined by
L7(Jd,z) = [a(J)]-1Li(J)J yi(yjyj)'1ds (C.1.74)
XQCT(J)
and
-1 ' -1,.2 -1/2
L8(J,z) = gla(d)] Li(J)J yiyyyy) (2% + vy, as.

ZGCT<J)
(C.1.75)
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To express L7(J,z) and L8(J,z) in terms of elementary analytic functions,
wé first apply (C.1.37), together with (C.1.67) and (C.1.38), to (C.1.74)
and (C.1,75), and take into account that Li(J) and v,, and Li(J) and
ai(J) are mutually perpendicular (see Fig. 5.1). We then have (cf.
(C.1.74))

1
L7(J,) = Li(J)pi(J+1>[ (o102, 22172 (C.1.76)
A=0

and (ef. (C.1.75))

1
L8(J,z) = ;Li(J)pi(J+1)[ [D(A)]-1ED1(A,;)]-2dA, (C.1.77)
A=0

where D1(A,z) is defined by

DI(A,E) = [=¢% + p (J+1)p,(J+1) + 2ha, (Do (I+1) + %2, (Da (D17,

(C.1.78)

and D(A) by (C.1.44). The integral on the right-hand side of (C.1.76) is
elementary (see, e.g., Gradshteyn and Ryzhik, 1980, p. 68); it is given
by

1
I [D1(x,2)1 2d = |Li(J)pi(J+1)|"arctan(e1(J)), (C.1.79)
A=0

where we have used the addition rule for two arctan-functions and ©1(J)

is defined by

[L (3o, (IJ+1) ]a, (e (I+2) = p (J+1)]
81(J) = m===-Zommetom el Lo S . C.1.80)
ILi(J)pi(J+1)| + ai(J)pi(J+1)aj(J)pj(J+2)

To evaluate the remaining integral on the right-hand side of (C.1.77), we

first reduce it to a more convenient form by applying successively the
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following two algebraic substitutions (see, e.g., Gradstheyn and Ryzhik,
1980, pp. 80-81):

A=t - ai(J)pi(J+1)/[aj(J)aj(J)], (€C.1.81)
and
51-1/2
ez o Lo (0,03 - L (e (ML e
ak(J)ak(J)al(J)al(J) ) o

Then, after a tedious but straightforward analysis we end up with

1

J I M (L)1 % = (|;||Li(J)pi(J+1)|)'1arotan(e2(J)],

A=0

(€C.1.83)

where we used the addition rule for two arctan-functions and 82(J) is
defined by
57
ca; (9)p, (3+1)a (p(3+2) + p(3+1)p(3+2) |Ly (D)py (3+1) |

C.1.84)

Using (C.1.79) in (C.1.76) and (C.1.83) in (C.1.77), it readily follows
that Q(g) is given by

a(g) = Z§=1 sign(Li(J)pi(J+1)]aretan{e1(J))
- sign(;)23=1 sign[Li(J)pi(J+1))arctan[BZ(J)). (C.1.85)

Equation {C.1.85) constitutes, upon taking into account (C.1.68), the

analytic expression for (x').
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Haitjema (1987) also presented, by a different method, a completely
analytic manner to arrive at an expression for the solid angle subtended
by a planar disk.

Obviously, the analytic method discussed in the present subsection is
not limited in applying it to the evaluation of Q(x'); in fact, it can be
directly employed for the evaluation of (C.1.1) - (C.1.4) as well, This
procedure has been followed by Van der Weiden and De Hoop (1988).

In the numerical experiments discussed in Chapter 6 both the
geometrical expression for Q(x') and the one resulting fram the purely
analytic evaluation have been employed. Naturally, no differences in the
numerical values of Q(x') resulting from either (C.1.65) or (C.1.85)

occurred.
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C.2. ANALYTIC EVALUATION OF THE SURFACE INTEGRALS (ANISOTROPIC CASE)

In present section we derive the analytic expressions for the integrals
(C.1) = (C.4) in case they apply to anisotropic media
With the aid of (4.5.19), (4.5.20), (4.5.26) and (4.5.27) it follows

that for an anisotropic medium (C.1) = (C.¥4) are given by

169(1,x") = (am 172 f o(I,x)[D(x,x")] "aa, (c.2.1)
x6S
X550
3, x') = (am) a2 [ o(I,%)v.K, .3.[D(x,x" )1 "da, (€.2.2)
X x)viK; 53,LD(x,x
x6S
XS
iz, x) = (am 12172 J o(I,x)K,.9.[D(x,x")1 ", (€.2.3)
it hr= =ity ==
X€s
f oo -1,1/2 -
IGi(I,i ) = (47R) _A Ixes ¢(I,5)ijijqiap3q[D(§,§ )] 'da,
E557
(c.2.4)
where A and D(x,x') are defined as (cf. (4.5.9) and (4.5.16))
A = det(R,,), (C.2.5)
iJ .
o - aq1/2
D(x,x') = [Rij(xi Xi)(xj xj)] s (C.2.6)

and Kij is the symmetric and positive definite inverse of the constant
resistivity Rij (=Rji) of the medium under consideration.
To evaluate (C.2.1) - (C.2.4) analytically, we first subject the

integrals to a coordinate transformation similar to the one used in
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Section 4.5. Then, in the new coordinate system, the integrals will
acquire an "isotropic" form and we can employ the techniques of Section
C.1. After the relevant expreésions in the new coordinate system have
been obtained, they are transformed back to the original coordinate
system. The details of the transformation procedure applied to (C.2.1) -
(C.2.4) are discussed in Subsection C.2.1, while in Subsection C.2.2 we
discuss the evaluation of those line integrals that have not already been

treated in Section C.1.

C.2.1. TRANSFORMATION OF THE "ANISOTROPIC" SURFACE INTEGRALS
TO AN "ISOTROPIC" FORM

In this subsection the surface integrals (C.2.1) - (C.2.4) are subjected
to a coordinate transformation such that they will acquire their
"isotropic" form. In the new coordinate system we evaluate the
transformed surface integrals with aid of the techniques outlined in
Subsection C.1.1. In this procedure some not yet encountered line
integrals will show up. Their analytic evaluation is discussed in detail
in Subsection C.2.2,

In (C.2.1) we first apply (C.1.2U4), This yields

[ 6(1,x)[D(x,x") 1 dA = ¢(I.§')[ (D(x,x') 1 "da
X685 X68,

+ [ai¢<1.5>1[ (x

- XD, 1AL (€.2.7)
EGST

i

Now, in the integrals on the right-hand side of (C.2.7) we employ the

following orthogonal transformation

’ (C.2.8)

X, = Bpe¥q
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where the columns of the matrix (B ) are the normalized right

eigenvectors of (R ) correspondlng to the g-th eigenvalue s(q) of (R,

J
(ef., (4.5.3)). Th1s orthogonal transformation is followed by the
introduction of the the variables zq through
(g)y1/2 )
_ c.2.9
z, = () Ty, ( )
and, hence, we have
(q)y-1/2
X = ) 2z (C.2.10)
b ™ Bl ) "
and inversely
(gq)y1/2 -1
s X (C.2.11)
2o = (7] T8 %
Taking into account that
8. R..B (P)g (C.2.12)

. =5 ’
ip 1J°Jq Pq

it is clear that D(x,x') transforms into D(z,z') given by (cf, (C.2.6))
D(z,z") = |z - z'|, (C.2.13)
while the integrals on the right-hand side of (C.2.7) transform into

- * -
f [(D(x,x")] Tan = (a/a ){ « 12 = 2" Taa (C.2.14)
x€S EGST

[ (x, - x!)[D(g,i')]_1dA
X6S.. . '
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- (A/A*)Bi (s(p)]'1/2j . ®
P z€8

. |z - z'|dA, (C.2.15)

T P

* *
where ST’ with scalar area A , denotes the transformed planar triangle ST

in the {z1,22,23} coordinate systenm, 32 denotes differentiation with

p
respect to zp, and where we have taken into account that the elementary
areas on the two sides of both (C.2.14) and (C.2.15) are proportional to

the total areas of the triangles in the two different coordinate systems.
3
The position vectors of the vertices of ST in the {z1,22,z3} coordinate
* *
system follow from (C.2.11) , while the scalar area A of ST’ expressed

in terms of geometrical quantities in the original {x1,x2,x3} coordinate
system, is given by (ef. (5.1.9), (5.1.5), (C.2.11), (C.1.8) and (5.1.3))

¥ *¥.1/2
= [AiAi] = {(1/2)eijk[zj(l) - Zj(K)][Zk(J) - zk(I)]

=
I

« /206, [z (D -z (0)1[z (9) - z (D]

(1/2){[xi(I) - Xi(K)]Rip[Xp(I) - xp(K)]

x [xj(J) - xj(I)]qu[xq(J) - xq(I)]

2,172
- (x (D - x; (IR, [x (D) - xp(I)]] }
= (1/2){ai(J)Ripap(J)aj(K)quaq(K)
- [ai(J)Ripap(K)]2}1/2 with {I,J,K}=cycl{J,213}. (C.2.16)

Now, to evaluate the surface integrals on the right-hand sides of
(C.2.14) and (C.2.15), we rewrite their integrands to such forms that
Stokes' theorem in the {z1,z2,z3} coordinate system can be used. To this
end, we employ in (C.2.14) a relation similar to the one given in

(C.1.11) in which ¢(I,x) is replaced by unity and the differentiations
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are carried out with respect to 2. Then after utilization of Stokes'
theorem, it is easily verified that (C.2.14) leads to

* *

- *
Tan = (A/a ){[ " v |z =-z2'|ds
EGCT

Jxes [oe.x)] "1°1p17p z;

|z -z aay, (c.2.17)

where Tz is the unit tangent vector along the boundary curve C; of S; in
the direction of circulation that forms a righ:-handed system with Vi
the constant unit vector along the normal to ST given by (ef. (5.1.8) and
(C.2.16))

* % %
v, = A_/A . (C.2.18)
i i

In (C. 2 17), similar to the isotropic case, we have taken into account
that vy (z 1725 ') has a constant value for all zGST The surface integral on
the rlght-hand side of (C.2.17) equals minus the solid angle Q (z') at
which the triangle ST is observed from the point of observation z', i.e.
(ef. (C.1.23)),

*
Q (z') = v.,d_ |z - z'| dA, (C.2.19)

For its value we can use the expressions presented in Subsection C.1.3
(ef. (C.1.65) and (C.1.85)). Obviously, the geometrical quantities
occurring in these expressions now refer to the {21,22,23} coordinate
system. With the aid of the inverse transformation (C.2.11) they can be
expressed again in terms of the geometrical quantities pertaining to the
original {x1,x2,x3} coordinate system (ef. (C.2.16)). In the numerical
experiments discussed in Chapter 6 we have followed this procedure to

handle the "anisotropic solid angle".
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Returning to (C.2.15), we successively employ in its right-hand side
(C.1.7), where the differentiations are now carried out with respect to

Zys use Stokes' theorem, and are led to

,[ (x; - X'i)[D(z,z')J-‘dA
x6S

T
- * (p)y-172 * L PR
= (A/A )Bip(s ) {[zgc* Tlslmpvmlé z'|ds,
e
‘vz - zv)f |z - z'] aa. (C.2.20)
paa Tal* = =
2507

Using (C.2.14) and (C.2.17) in the surface integral on the right-hand
side of (C.2.20), and using the resulting expression for (C.2.20),
together with (C.2.17) and (C.2.19), in (C.2.7), and substituting this in
(C.2.1), it follows that IGq(I,i') can be written as

16(1,x") = (am)”

A‘/Z(A/A*)l¢(1,z'>[J ; "3 |z - 2'|ds
Z!

x T1Eq .V 9
_SCT 171pi’p zi

- vtz - zPazn] ¢ [ai¢(1.z)]sip(s(p))_1/2

x [ e v*lz - z'|ds
zGC* 1"lmp ml= =

T
* *a 'lg
T,E \Y Z - 2 S
¥ "17lmnm an— =

+ v*v*(z - z‘)(J
pPa q q
. T

z6C
* . * . )
= vz, = 2)a (z") 11. (C.2.21)
* * * *
Taking into account that CT is the union of the edges {CT(I),CT(Z),CT(3)}

where each edge is a straight line segment, it is apparent that along

* *
each CT(J) with J€{1,2,3}, the corresponding unit tangent vector Tl(J)
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*
has a constant value. Using these properties of CT in (C.2.21), it
readily follows that (C.2.21) can be expressed as

16%(1,x") = (Mﬂ)-1A1/2(A/A*){[¢(I,£') +

RVER.
+tageL0ley (s G - 0] 13 a2,z
*

- *
e om0 ds, (PR3 e oAz

vz - 21727 (2] - #(Lx" v (z, - 28 2z}
= vy zq zq z $(I,x" v, (2, z] [ ADN

(C.2.22)
in which AL1(J,z') and AL2(J,z') are defined by
AL1(J,2") = f M |z - z'|ds (€C.2.23)
z6C, (J)
=T
and
AL2(J,z2') = [ M T*E .v*(z. -z!)|z - z'|-1ds. (c.2.24)
z ZQCT(J) 17lpi p i i7l= = )

Upon comparing the structure of the line integral AL1(J,z') with the one
of L1(J,x") in (C.1.14), it is apparent that the results of the analytic
evaluation of L1(J,§'), as discussed in Subsection C.1.2, can
straightforwardly be used in the evaluation of AL1(J,z'). In this, we
only have to transform the results obtained in the {21,22,23} coordinate
system back to the original {x1,x2,x3} coordinate system. Similarly, in
the analytic evaluation of AL2(J,z') we use the results obtained in the
evaluation of L2(I,d,x') (ef. (C.1.15)) in which we replace ¢(I,x') by
unity. Again, the inverse transformation is applied to the results
obtained in the transformed coordinate system. To complete the evaluation
of IGq(I,E'), we also apply the inverse transformation to the quantities

*® *
vp, Tl(J), (zq—zé) and their combinations. Since the evaluation of ALl
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and AL2, and the application of the inverse transformation (C.2.11%)
contain no new ingredients and are straightforward procedures, they are
not worked out in detail.

Similar to the isotropic case, inspection of (C.2.2) and (C.2.3)
reveals that (note that Kij=Kji)

1r9(L,x") = v, I (Lx"). (c.2.25)

Hence, we first discuss the evaluation of (C.2.3) and apply (C.2.25) in
the resulting expression to arrive at the expression for Irq(I,l'). To

this end, we first use (C.1.24) in the integral on the right-hand side of
(C.2.3) and observe that

[ $(I,x)K . 3.[D(x,x")]1 A = - ¢(I,5'>[ (x; - xID(x,x") ] 2an
X6, It X6S,

- 3 ¢(1,x>JI (%, - %) (x, - x)ID(x,x") 1 3dA.  (C.2.26)
A e
XS5

Now, upon applying the transformation (C.2.10) to the surface integrals
on the right-hand side of (C.2.24) and taking (C.2.12) into account, it

is easily verified that we have

- J (x. - x1)[D(x,x')] 3da
1 1 -
xGST

- (A/A*)Bip(s(p))'1/zj 5. |z - z'| da (C.2.27)

*
EGST p

! M [} -3
) Jxes Geg = x§) Oy = xp)ID(x,x7) ] ~dA
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* (p)y=1/2 (q)y-1/2 -1
= (a8 )8, (s'°7) 8. (%) {J 3 [z -2")|z - 2'| IdA
Jp iq zss; 2, P P =
-8 I v lz -z}, (C.2.28)

Upon using in the right-hand side of (C.2.27) a relation similar to the
one in (C.1.19) in which we replace ¢(I,x') by unity and carrying out the
differentiations with respect to Zi’ the surface integral over S; can,
with the further utilization of Stokes' theorem, be replaced by a contour
integral along C*

T
*
identified with Q@ (z'). We have (cf. (C.2.25), C.1.19) and (C.2.19))

and an additional surface integral that can be

- J (x; = x})[D(i,z')]_3dA
XGST

* (p)y-1/2 * * -1 * %
= (A/a )8, (') {[ x 16, v |z = 2'] 'ds - v a (zM)}.
ip EGC 1" lmp m p

T
(€.2.29)

To evaluate the first surface integral on the right-hand side of (C,2.28)

we first rewrite its integrand as

-1 * * -1
- ot - z! = -t - g
qu[(zp Zp)‘é 2 , ] elmkvmazkslnqvn(zp zp)lg z |

+ v*v*Iz - 2'.'[-1
pa~-= =

* ¥ * \
+ - -
quj(zj 2 )[Elmk m-z, “1np n'z z l
% % L =1
*vvd, lz - z'| 1, (€.2.30)

1

which can be verified with the aid of the identity (C.1.8) and by

carrying out the relevant differentiations. Then, with the aid of Stokes'



APPENDIX C : ANALYTIC EVALUATION -226-

* *
theorem, the fact that Vj(zj_zﬁ) has a constant value for all EGST, and

the further aid of (C.2.14), (C.2.17) and (C.2.19), the relevant integral
yields

-1
[ 3 [(z_=~2z")]z - 2" '1dA
* = =
268 2 P P

='[ r*e v*(z - z')|z - z']—Ids + v*v*[ - *(z - z')n*( ")
zGC* 1"lng n "p pil=- = P q Yn'2m m z
=T

+ I e v*(z -2z - z'|_1ds] + v*vf(z. -z - v*Q*(z')
zGC* 1"lmn'm "n nl= = qJ 7] J p =
T
* * -1
+ *TflmﬂJg-y| ds]. v (C.2.31)
EGCT

With the aid of (C.2.14), (C.2.17) and (C.2.19) it further follows that

the remaining surface integral on the right-hand side of (C.2.28) can be
written as

lz - z'|_1dA = e, vz - 2|z - 2 “las
zes* - = zGC* 1"lmn'm “n nl= =
Z557 EASS

* *
- v (zp - zpe(zh). (C.2.32)

No:, taking inEo account that C; is the union of the edges
{CT(1),CT(2),CT(3)}, where the unit tangent along each edge has a
constant value, and collecting the results (C.2.27) - (€.2.32) in
(C.2.26), it follows thdt IF?(I,&') can be written as (ef. (C.2.24))

i = om

Ax/Z(A/A*){¢(I,§')Bip[s<p))-1/z
* * * %
x [23=1eplmTl(q)vaL3(J,g') - va(zh]

L (p)y-1/2 (q)y~1/2; % %3 ‘
+ 13,001,008, (s277)7 %8, (s I ORI A
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s 93 AL2(d,z) + vz -z H3 T (J) AL (J,2")
pakd=1 2 qum 4 Y 3 zZ

J=1 pln 1

*
ZJ 1 ql l J)v ALM (d,2') - 2vpv v (Z ~ zé)n (z')

* *
8,02~ 20 (z" ]}, (C.2.33)

in which AL3(J,z') and Ath(J,g') are defined by

AL3(J,z') = lz - 2'] "as (C.2.34)

[ *
EGCT(J)
and

ALY (J,z') = [ M .(z -zz - 5'|_1ds. (C.2.35)
P wch PP

Comparison of the structure of AL3(J,z') with the one of L5(J,x') in
(C.1.28) reveals that we can use the analytic expressions obtained for
L5(J,x') where the relevant results now apply to the {z1,22,z3}
coordinate system and have to be transformed back to the original
{x1,x2,x3

procedure contains no new aspects it is not worked out in detail. The

} coordinate system with the aid of (C.2.11). Since this

structure of ALMP(J,E'), however, is different from the ones of the line
integrals that occurred in the isotropic case, and, therefore, its
evaluation is discussed in Subsection C.2.2. Finally, to arrive at the
expression for Ir?(I x') in (C.2.33) with respect to the original
{x ,x2,x } coordinate system; we also apply the inverse transformation
(C.2.11) to the quantities vp, T (J), (z zp), and their combinations.
Now, to arrive at the analytlc expre351on for 1191, x') (ef.
(C.2.25)), we simply multiply (C.2.33) on both sides by Vi i.e., the
unit vector along the normal to the (non-transformed) triangle ST'
Finally, we discuss the analytic evaluation of (C.2.4). To this end,

we pfoceed along lines similar to the ones discussed in the evaluation of
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(C.2.1) and (C.2.3), i.e., we successively apply to (C.2.4), (C.1.,24),

the transformation (C.2.10), and take (C.2.12) into account. We then have

10?(1,5')

= a2 e[ - vk, J < |z -2 3
265,

+ 3v.8 (S(Q))~1/2B

(S(p))—1/2j
J da ip

-5
M (zp - z;})(zq - za)|5 - 2" PdA]

EGST

[o,(1, x)][v K (s (p)]’1/zj x (2, - z))|z - z'| an

285,

Ji mp

- gt (p)y-1/2 (q)y-1/2
3vj(xj xj)Bmp[s ) siq(s )

- o ot IS )
x Jzes* (zp zp)(zq zq)[g z'|Pdall. (C.2.36)

With the aid of (C 2.19) and using the fact that vy (z —z ) has a constant
value for all zGST, it is clear that the first surface 1ntegral on the

right-hand side (C.2.36) can be written as

-3 * -1 %
« |2 - 2'| CadA = [vm(zm - zh)] a(z"). (C.2.37)
EGST

Further, from (C.2.27) and (C.2.29), it follows directly that for the
third surface integral on the right-hand side of (C.2.34) we have

I M (zp - zé)[g - g'|—3dA = ZJ 1€p1n rl(J)v *AL3(J, z') + v Q (z'),
EGST

(C.2.38)
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where AL3(J,E') is defined in (C.2.34). Clearly, this leaves only the
second and the last surface integral on the right-hand side of (C.2.34)

to be evaluated. To this end we first observe the following relation

-5
z =-z'¥z_ -2")]z - z'
3 P p q q)l_ = l
* * el L * ) -1
= Cimk¥m°z elnqvnaz lz - 2'] Vaf1mkm®z, C1np°z |z - 2'|
K o} k n
x ¥ - _
*vva 3 lz-z2' Tes [z - z'| 3, (C.2.39)
oz, “z 127 2 pq'= " =

which can be easily verified with the aid of the identity (C.1.8) and
upon carrying out the relevant differentiations. Now, upon integrating

*
(C.2.39) on both sides over the triangle ST'and using Stokes' theorem in

the first and second resulting surface integral on the right-hand side,
we have

[} ' ' ~5
3 [zes; (zp - zp)(zq - zq)]z -~ z'| “dA

| Az, -2z - 20|
= - x TqE vz =-12')jz -2 s
26C 1"lngn "p p

3_ [z - §'|_1dA * 80 J . 1z - §'|'3dA. (C.2.40)

* * *
Now, taking into account that C; is the union of the edges {CT(1),CT(2),

*
CT(3)}, and using the fact that z#z', it is with the further aid of
(C.2.37) easily verified that (C.2.40) can be written as

3 ' ' V5
3 fzes* (z, = 2))(z - zq)lg - 2'| “dA
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_ 3
ZJ . qlnrl(J)v ALS (J z2') - v z AL6 (J z')

-1 %
- 1 1
+ qu[vn(zn z )1 (z'), (C.2.m)
where ALSp(J,g‘) and AL6p(J,§') are defined by

ALS (4,2") = (z, - 20)|z - 2'| 3ds (C.2.42)

I *
ESCT(J) P
and

AL6p(J,§') = [ (J)(z -z)|z - g'|_3ds. (C.2.43)

*
ZSCT(J) pln T

respectively. Upon comparing the structure of AL6p(J,§') with the one of
L6p(I,J,1‘) in (C.1.32), it is clear that if in (C.1.32) ¢(I,x) is
replaced by unity, their structures are the same. Hence, in the analytic
evaluation of AL6p(J,5') we can employ the results obtained for
L6p(I,J,l'), where in the resulting expressions we use the inverse
transformation (C.2.11) in order to obtain them in terms of geometrical
quantities referring to the original {x1,x2,x3} coordinate system. Since
the structure of ALSp(J,E') differs from ones we have seen sofar, this
integral is evaluated analytically in the next subsection. Finally, upon
using (C.2.37), (C.2.38), (C.2.39) and (C.2.41) in (C.2.36), it follows

that IGE(I,E‘) can be expressed as

- * * - *
1G§<1,5v) = (am a2y {o(n,x)| - VK Doz, = 2] 9" (z")
(q)y=1/2 (p)y=1/2(c3 X % ,
- vi8,(s ) 877 (Lyoy equat (D VAL (902"

v 23 ALG (J,z') - 8 [v (z, - z)1 "% (z")]

-1/
+ (3 01, x)1{v KJlsmp[ s(P))=1/2
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(23=1 €pln 1(J)v AL3(J z') - Vo o (z y)

_ ot (p)y-1/2 (p)y-1/2
Vg T EY Bppls )T ey ls )

x

(23=1 €qln 1(J)v ALS (J,2") + v Z L ALE (J,2)

- dpq[v;(zn - zh)]-19*(5'))]f. (C.2.44)

To obtain the expression for IG?(I,;') in terms of quantities referring
to the original £x1,x2,§3} coordinate system we apply again (C.2.11) to
the quantities Tl(J), Vo (zi;zi) and their combinations. With this and
the further expressions for Q@ , AL3, AL5p and AI..6p in terms of elementary
functions in the {xl,xz,x3} coordinate system, the evaluation of (C.1.4)

has been completed.
C.2.2. EVALUATION OF THE LINE INTEGRALS

In the present subsection the line integrals ALHD(J,é') and ALSD(I,J,z'),
defined by (C.2.35) and (C.2.42), respectively, are evaluated
analytically since their structures do not directly comply with the ones

discussed in Subsection C.1.2. They are expressed in terms of elementary

analytic functions pertaining to the original {x1,x2,x3} coordinate
system.
In (C.2.35) and (C.2.42) we consider 1n the {z1,z } coordinate

system the straight line segment (edge) C (J) with Jef{1, 2 3}. Similar to
the isotropic case we introduce in this coordlnate system the vectorial
distance from the point of observation with position vector zi to the

*
starting point of CT(J) with position vector zi(J+1) as (ef. (C.1.34))

pz(J+1) =z, (3*1) - 2] with J€{1,2,3}, (C.2.45)
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*
and from the zi to the end point of CT(J) with position vector zi(J+2) as
(cf. (C.1.35))

*
pi(J+2) = zi(J+2) - 2!

i with Je{1,2,3}. (C.2.46)

In (C.2.45) and (C. 2 46) the convention applies that 0 (u) =Py (1),
z; (U)-z (1), Ch (5) =p; (2) and z, (5)=z (2). The corresponding length P (J)
of N (J) is glven by

172

* * *
p (J) = [pi(J)pi(J)] with J&{1,2,3}. (C.2.47)

*
Along CT(J) we have (cf. Figure C.1)
* *
z, - 2] = p,(J*1) + ra, (9) with 0 £ A $1 and Je€{1,2,3}, (C.2.48)
and
*
ds(z) = a (J)dA with J€{1,2,3}. (C.2.49)

* * *
where ai(J) is the vectorial length of CT(J) and a (J) its scalar length.
With the aid of (C.2.45) - (C.2.49) the integrals ALMP(J,E') and
ALSp(J,E') yield (ef. (C.2.35))

* * L * -1 * L * -1
ALY (J,2') =a (D]p (J+1)f [D (x)] 'dx + a (J)f ALD (A)] "da
P P =0 Pl
(C.2.50)

and (cf. (C.2.42))

1 * -3 * 1 * _3
[0 0T ar + a (| ALD (NI,

ALS (J,z") OIS, 1)[
1y = +
‘5p 2 a pp 120

A=0
(C.2.51)

where (cf. (C.1.44))
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D* _ * " * N * * . ) . 2 % * 1/2
() = [pi(J 1)pi(J+1) 2Aai(J)pi(J 1 A ai(J)ai(J)] .

(C.2.52)
The integrals on the right-hand sides of (€.2,50) and (C.2.5%1) are
elementary and have the same structure as the ones in (C.1.45), (C.1.46),
(C.1.48) and (C.1.49). For completeness, the expressions for (C.2.50) and
(C.2.52) are given explicitly in terms of the quantities referring to the
original coordinate system. Taking into account the results of Subsection
C.1.2 and utilizing the inverse transformation (C,2.11), it can be
verified that the integrals on the right-hand sides of (C.2.50) and

(C.2.51) are expressible as

1 % -1 An(d,x"),
j [D (A)] 'dr = (C.2.53)
A=0 AAS(J,x") if ai(J)Rijpj(J+1) —Aa(J)Ap(J+1)

and ai(J)Rijpj(J+2) -Aa(Jd)Ap(J+2),

! * -1 - -2
I ALD (X)] 'ax = [Aa(d) 1 “[Ap(J+2) - Ap(J+1)

1 M
- ai(J)Rijpj(J+1)fA=o[D (M177dA], (C.2.54)

1 AT(J,x'),
[ [0 ()13 = ATS1(J,x") if ai(J)Hijpj(J+1)
A=0 ATS2(J,x") if a,(JIR J+1)

Aa(Jd)Ap(Jd+1),
-Aa(J)Ap(J+1),
(C.2.55)

13°5¢

1 AR(Jd,x"),
[ AD ()13 = ARS1(J,x") if ai(J)Rijpj(J+1)
A=0 oo

ARS2(J,x") if ai(J)Rijpj(J+1)

Aa(J)Ap(J+1),
~Aa(JYAp(Jd+1)
(C.2.56)

where AA(J,x'), AAS(J,x'), AT(J,x'), ATS1(J,x'), ATS2(J,x'), AR(J,x'),
AASl(J,i'), ARS2(J,x'), Aa(J) and Ap(J) are defined by
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and

and

a, (IR, .p.(J+2) + Aa(J)Ap(J+2)
AA(d,x") = [Aa(J)]qln[--—i-——-i‘l—‘l --------------------

sty = a5,
_ a,(J)R; .p
AT(J,x") = [AE(J,x1)]7 ["i"KE%iig)
ATS1(Jd,x') = [2Aa(J)]'1{[Ap(J+1)]‘2 - [Ap(J+2)]_2}’

1]

ATS2(J,x")

AR(J,x") = [AE(J,;_’)J'1 [Ap(J+1) -

ARS1(J,x")

- [28a(J) + Ap(J+1) ILAp(J+2) 174},

ARS2(J,x")

- [Ap(J+2) - 2Aa(J)ICAp(J+2) 172},

1/2

Aa(Jd) = [ai(J)Rijaj(J)J ,

, 1/2

Ap(J) = Epi(J)Rijpj(J)] ,
where AE(J,x') is defined by

AZ(I,x") = [Ra(DAP(IDIZ = [a (DR ;e (3117

((J+2)

[28a(0) 17 {[Ap(3+2) 172 = [Ap(d+1) 172},

Ap(J+2)

(1/72)[Aa(9) 172 {CAp(d*1) 1™

(1/2)[8a(N 12 {[ap(a+1) 1™

gl 3 (DR, 4py(01)

-23Y4-
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62)
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64)

65)
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With the aid of these standard integrals the final expressions for the
line integrals ALllp(J,y) and ALSP(J,_:g') are obtained as (ef. (C.2.11),
(C.1.34) and (C.1.35))

A (0,2 = a0 (sP) 280 o (31 ARGLx) + 8 (DRI
x [Ap(J+2) ~ Ap(J+1) - am(J)Rmnpn(Jﬂ)AA(J,i')]}
(C.2.68)

and

15 (3,27 = a0 (P20 (o () TCax) ¢ a (DAAGLxD],
(C.2.69)

respectively, where AA(J,x') is to be replaced by AAS(J,x') if either
a; (J)R p (J+1) = =Aa(J)Ap(Jd+1) or 8y (J)R p (J+2) = -Ra(J)Ap(J+2),
AT(J x') by ATS1(Jd,x') and AA(J, x ) by AAS1(J x') if a; (J)R p (d+1) =
Aa(J)Ap(J+1), and, finally, AT(J,x') by ATS2(J,x') and AA(J i ) by
ARS2(Jd,x") if a; (J)R p (J+1) = -Aa(JI)Ap(J+1). With this, the analytic
evaluation of the llne 1ntegrals ALUP(J,K') and AL5P(J,§') has been
completed.
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SAMENVATTING

In dit proefschrift wordt onderzoek verricht aan het berekenen van
driedimensionale stationaire grondwaterstromingsproblemen met behulp van
de randintegraalvergelijkingsmethode.

Grondwater speelt een belangrijke rol in veel problemen die met het
ingrijpen van de mens op zijn omgeving verband houden, Als voorbeeld
wordt genoemd het ontwerpen en realiseren van allerlei civieltechnische
constructies zoals dijken, dammen, wegen, funderingen en dergelijke,
waarbij de grond als constructie-element wordt gebruikt. Ook bij het
beheer van ondergrondse waterreservoirs ten dienste van de drinkwater-
voorziening en/of voor agrarische doeleinden is kennis omtrent de
stroming van het grondwater onontbeerli jk.

In het algemeen is het doel van ieder onderzoek aan de stroming van
grondwater het verkrijgen van inzicht in het gemiddelde, zogenaamde
"macroscopische, gedrag van die stroming in een bepaald gedeelte van de
ondergrond. Oplossingen voor dit soort problemen zijn in het algemeen
gebaseerd op het beginsel van het behoud van massa en op generalisaties
van een experimenteel opgestelde bewegingsvergelijking: de wet van Darcy.
Alhoewel met deze wet vele praktische grondwaterstromingsproblemen kunnen
worden opgelost, bestaat de behoefte aan een meer theoretische ondergrond
ervoor. In het eerste gedeelte van dit proefschrift is daartoe onderzocht
op welke wijze de macroscopische bewegingsvergelijking voor de stroming
van grondwater kan worden afgeleid uit de fundamentele wetten van de
vloeistofmechanica, wanneer deze wetten worden toegepast op het poreuze
medium dat als model voor de met water verzadigde ondergrond dient. De
overweging die hierin wordt gevolgd is, dat de macroscopische

vergelijkingen worden verkregen door het ruimtelijk middelen van de
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basisvergelijkingen op de schaal van de afmetingen van de porién, de
zogenaamde microscopische schaal. Dit middelen vindt plaats over een
zogenaamd representatief elementair middelingsgebied. De macroscopische
basisvergelijkingen die op deze wijze worden verkregen - een
macroscopische continuiteitsvergelijking en een generaliseerde vorm van
de wet van Darcy - worden vervolgens aangevuld met (macroscopische)
randvoorwaarden en tenslotte gebruikt om stationaire grondwaterstromings-
problemen te formuleren als (mathematische) randwaardeproblemen.

Als methode van oplossing van deze randwaardeproblemen is gekozen
voor het gebruik van randintegraalvergelijkingen. De randintegraal-
vergelijkingen volgen uit geschikte integraalvoorstellingen voor de
fundamentele stromingsgrootheden, te weten de macroscopische druk en de
macroscopische stromingssnelheid; zij drukken deze grootheden uit in
gerelateerde grootheden op het randoppervlak van de van belang zijnde
stromingsconfiguratie. Op hun beurt worden de integraalvoorstellingen
verkregen uit een reciprociteitsrelatie. Deze reciprociteitsrelatie wordt
uit de basisvergelijkingen afgeleid en legt op een bepaalde wijze een
verband tussen de grootheden optredende in twee mogelijke, doch onderling
verschillende, grondwaterstromingstoestanden. De ene stromingstoestand
wordt gei'dentificeerd met de werkelijke stromingstoestand van het
grondwater, terwijl voor de andere toestand geschikte "hulptoestanden"
worden gekozen. Voor deze laatste worden zogenaamde Greense toestanden
gekozen, die achtereenvolgens behoren bij een injectiepuntbron en een
mechanische puntkracht. Dit proces leidt tot de gewenste
integraalvoorstellingen. Alle bevatten zij singuliere kernfuncties van
het Greense type. Zodra deze laatste bekend zijn, worden de verschillende
randintegraalvergelijkingsformuleringen verkregen door in de
integraalvoorstellingen het waarnemingspunt op het randoppervlak van de
stromingsconfiguratie te kiezen. Aangezien in het algemeen alleen voor
onbegrensde, homogene en reciproke media de Greense kernfuncties
expliciet kunnen worden bepaald, worden de randintegraalvergelijkingen in
praktische toepassingen alleen gebruikt voor stuksgewijs homogene en

anisotrope, doch reciproke, media.
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Vervolgens worden de randintegraalvergelijkingen numeriek opgelost.
Hiertoe is een eenvoudige en efficiénte methode ontwikkeld. De
ontwikkelde methode is getest op een aantal eenvoudige isotrope en
anisotrope, doch reciproke, stromingsconfiguraties. Opgemerkt wordt, dat
de ingewikkeldheid van in de praktijk te behandelen configuraties slechts
wordt beperkt door de geheugencapaciteit en de snelheid van de
beschikbare rekenmachine.

Hieronder volgt een wat meer gedetailleerde samenvatting van de

verschillende hoofdstukken.

In Hoofdstuk 2 wordt een overzicht gegeven van de basisvergelijkingen
voor de isotherme stroming van viskeuze vloeistoffen. Bij beschouwing van
de stroming van grondwater als de stroming van water door een poreus
medium beschrijven deze vergelijkingen de stroming op de schaal van de
afmetingen van de porien (de microscopische schaal). Er wordt aangetoond,
dat voor veel praktische situaties de samendrukbaarheid van de vloeistof
met voldoende nauwkeurigheid kan worden verwaarloosd en dat de
niet-stationaire en niet-lineaire bewegingsvergelijking eveneens met
voldoende nauwkeurigheid door een stationaire en lineaire vergelijking
kan worden benaderd.

Met de vereenvoudigde microscopische basisvergelijkingen uit
Hoof dstuk 2 als uitgangspunt worden in Hoofdstuk 3 de macroscopische
basisvergelijkingen voor de stationaire stroming van grondwater afgéleid.
Hiertoe wordt middeling over het representative elementaire
middelingsgebied uitgevoerd. De uitdrukkingen .die na dit "volume-
middelen" worden verkregen, hebben alle een goed gedefinieerde fysische
betekenis en kunnen op een eenvoudige wijze worden gerelateerd aan de
macroscopische stromingsgrootheden die in de praktijk van belang zijn.

In Hoofdstuk 4 worden de integraalvoorstellingen voor de druk en de
stromingssnelheid van het grondwater afgeleid. Er wordt een overzicht
gegeven van de verschillende randintegraalvergelijkingsformuleringen die

uit deze integraalvoorstellingen volgen. Tevens worden de Greense
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functies voor een onbegrensd homogeen en anisotroop, doch reciprook,
medium bepaald.

In‘Hoofdstuk 5 wordt een numerieke methode besproken waarmee de
verkregen randintegraalvergelijkingen kunnen worden opgelost. Deze
methode berust op het benaderen van het betreffende randoppervlak door
een eindig aantal vliakke driehoekige elementen. Vervolgens worden op
ieder element de druk en de normale component van de stromingssnelheid
ontwikkeld in polynomen van de graad &én. Hierna wordt op de
gediscretiseerde randintegraalvergelijkingen de collocatiemethode ("point
matching") toegepast. E&n en ander resulteert in een (eindig) stelsel
lineaire, algebraische vergelijkingen, dat via een directe methode wordt
opgelost. In de discretisatieprocedure worden alle oppervlakte-integralen
over de vlakke driehoekige elementen analytisch bepaald.

Om de ontwikkelde programmatuur te testen, worden in Hoofdstuk 6 een
aantal numerieke experimenten uitgevoerd. Eenvoudige teststromingen in
met homogene, isotrope en anisotrope, doch reciproke, media gevulde
rechthoekige blokken worden behandeld. Voor die teststromingen waarvan de
druk en de stromingssnelheid exact door polynomen van ten hoogste de
graad &én kunnen worden weergegeven, blijken de resultaten exact te zijn
in het aantal cijfers dat bij de representatie van de getallen in het
rekenmachineprogramma is gebruikt. Voor algemenere configuraties hangt de
nauwkeurigheid af van de gebruikte verdeling van het randoppervlak in
vlakke driehoekige elementen.

Het ontwikkelde programma kan dienen als bestanddeel bij het
analyseren van niet-stationaire grondwaterstromingsproblemen
(bijvoorbeeld het bepalen van het bewegende grensvlak tussen zoet en zout
grondwater, als gevolg van het toevoegen of onttrekken van water).

Alle ontwikkelde programmatuur is geschreven in Fortran 77 en

geimplementeerd op een IBM PC/AT.
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het samenstellen van dit proefschrift.



