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LIST OF SYMBOLS AND THEIR SI-UNITS 

Throughout this thesis Sl-units will be employed. The basic quantities, 
units and dimensions of the International System of Units (SI) are shown 
in Table 0.1. In Table 0.2 the Sl-units and dimensions of the most 
important quantities that occur in this thesis are listed. Table 0.3 
contains a list of conventions and frequently used symbols. 

Table 0.1. Basic quantities, units and dimensions of the 
International System of Units (SI). 

Basic quantity Basic unit 

symbol name 

Basic dimension 

symbol symbol 

length 
mass 
time 
electric current 
thermodynamic 
temperature 
amount of 
substance 

1 
m 
t 
I 

T 

n 

meter 
kilogram 
second 
ampere 

kelvin 

mole 

m 
kg 
s 
A 

K 

mol 

L 
M 
T 
I 

0 

N 
luminous intensity I candela cd 



SYMBOLS AND SI-UNITS 

Table 0 .2 . S i - u n i t s and dimensions of the most important 

q u a n t i t i e s occurr ing in t h i s t h e s i s . 

Quantity Unit Dimension 

name symbol name symbol symbol 

volume densi ty of 

fluid mass 
fluid velocity 
stress 
volume density of 
body force 
pressure 
viscous stress 
deformation rate 
spin 
viscosity 
bulk viscosity 
dynamic viscosity 
fluidity 
kinetic energy 
work 

time rate of work 
acceleration of free 
fall 
Mach number 
Strouhal number 
Reynolds number 

P 
v. .1 
Tij 

fi 
P 
o. . ij 
d. . ij 
w. . lj 
n. . ijpq 
c 
n 
* pqij 
kin 

W 

W 

gi 
Ma 
Sr 
Re 

3 kilogram/meter 
meter/second 
pascal 

newton/meter 
pascal 
pascal 

-1 second 
second 
pascal«second 
pascal«second 
pascal-second 
(pascal'Second) 
joule 
joule 

joule/second 

meter/second 

kg/m3 

m/s 
Pa 

N/m3 

Pa 
Pa 
-1 s 
-1 s 
Pa-s 
Pa-s 
Pa-s 
Pa -s 
J 
J 

J/s 

. 2 . m/s 

L 3M 
LT"1 

L-1MT"2 

-2 -2 L MT 
L" 1MT~ 2 

L~1MT~2 

T"1 

T"1 

L _ 1MT - 1 

L - 1MT" 1 

L_1MT~1 

LM" 1T 
2 -2 

L MT 2 -2 L MT 
2 -3 L MT 3 

LT"2 

(continued on next page) 



SYMBOLS ANP SI-UNITS 

Table 0 . 2 . (continued) 

Quantity Unit Dimension 

symbol name symbol symbol 

Froude number Fr 
volume of 
representative 
elementary domain D V e E 

f fluid fraction in D * 
e s solid fraction in D d> e 

tensorial resistivity 
of a fluid-saturated 
porous medium 

intrinsic resistivity 
volume source density 
of volume injection 
rate 
volume source density 
of external force 
(other than gravity) 
area of representative 
elementary surface A> A e E 
tensorial permeability 
(=inverse res i s t iv i ty) K.. 

R. . 

i j 

<q> 

<f .> 
i 

3 3 
meter m 

kilogram/ 
3 3 - 3 - 1 

(meter -second) kg/(m »s) L JMT 

meter 
- 2 

second -1 

-2 

„-1 

newton/meter3 N/m3 L~ MT 

met er m 

meter «second/ 
kilogram m3»s/kg L3M 1T 



SYMBOLS AND SI-UN ITS 

Table 0.3. List of conventions and frequently used symbols. 

3. partial differentiation with respect to t (s ) 
c -1 

3. partial differentiation with respect to x. (m ) 
6.. symmetrical unit tensor of rank two (Kronecker tensor) 
D representative elementary domain of a 

fluid-saturated porous medium f D subdomain of D in which the fluid is present e £ 
D subdomain of D in which the solid is present e e 
<i>> fluid average of a quantity i|i 

f <4i> intrinsic fluid average of a quantity 41 
I interface(s) between fluid and solid phases 
E 

in the interior of D 
£ 

A representative elementary surface of a 
fluid-saturated porous medium 

<5(x_-x') three-dimensional unit pulse (delta function) 
operative at x=x' 

(a ) orthogonal transformation PQ 
t p p-th eigenvalue of (K..) 
A determinant of (R..) 
IT pi (3.14159...) 
|xj length of vector x 
1 summation 
S planar triangle 
C boundary curve of S_ 

(continued on next page) 



SYMBOLS AND SI-UNITS 

Table 0 . 3 . (continued) 

E. ., completely ant isymmetrical uni t tensor 
i j k 

of rank t h r ee (Levi -Civi ta t ensor ) 
n product 

. ,_ , + 1 if h > 0 s ign(h) 



CHAPTER 1 

INTRODUCTION 

The subject of i nves t i ga t i on of the present t h e s i s i s the a p p l i c a t i o n of 
the boundary- in tegra l -equat ion method to the computational modeling of 
three-dimensional , steady groundwater flow problems. 

Problems concerned with the flow of groundwater have a wide f i e l d of 
app l i ca t i on . In the p r a c t i c e of groundwater hydrology, for example, they 
occur in the managing of subsurface water r e s e r v o i r s employed for the 
supply of dr inking water, and in the managing of i r r i g a t i o n systems for 
a g r i c u l t u r e . Equally important a re app l i c a t i ons encountered i n , for 
example, c i v i l engineering p r a c t i c e , where the knowledge of the behavior 
and the c h a r a c t e r i s t i c s of the flow of groundwater i s needed in the 
design of a l l kinds of hydraul ic s t r u c t u r e s l i ke dams and drainage 
systems. 

In any t h e o r e t i c a l study concerning the. flow of groundwater o n e ' s 
i n t e r e s t i s to obtain ins igh t in the average or so -ca l l ed macroscopic 
behavior of the groundwater flow in the i n t e r i o r of some given porous 
substance. So lu t ions of groundwater flow problems ( see , e . g . , Muskat, 
1916, Polubarinova-Kochina, 1962, Scheidegger, 1963, or Bear, 1972), a r e , 
in genera l , based on the fundamental laws of the flow of v iscous f l u i d s 
and on var ious , often r a the r i n t u i t i v e , g e n e r a l i z a t i o n s of an empir ica l 
law for one-dimensional flow discovered by Darcy in 1856 (Darcy, 1856) to 
deal with the permeabi l i ty c h a r a c t e r i s t i c s of some subso i l . Darcy ' s law 
expresses t ha t the r a t e of flow through a bed of f i n e p a r t i c l e s i s 
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propor t iona l t o the pressure drop along i t . Although with the aid of 
these gene ra l i za t ions many p r a c t i c a l problems concerned with, e . g . , 
groundwater flow in a q u i f e r s , seepage through and below dams, and the 
l i k e , can successfu l ly be so lved, t h e r e i s a need for a more profound 
t h e o r e t i c a l j u s t i f i c a t i o n of the var ious gene ra l i za t i ons of Darcy's law, 
as well as for more e x p l i c i t knowledge under which condi t ions these 
apply . 

The f i r s t par t of the present t h e s i s i s e spec i a l l y se t up to serve 
t h i s purpose. I t provides a t h e o r e t i c a l i n s igh t in to Darcy's law and i t s 
g e n e r a l i z a t i o n s . Envisaging the s o i l as a f l u i d - s a t u r a t e d porous medium, 
the underlying thought in the a n a l y s i s i s tha t the r e l e v a n t macroscopic 
equat ions for the flow of groundwater can be obtained upon applying a 
s u i t a b l e s p a t i a l averaging procedure t o the we l l - e s t ab l i shed equations 
for common f l u i d flows, where the l a t t e r equat ions descr ibe the f l u id 
flow phenomena a t the s c a l e of the pores , i . e . , the so - ca l l ed microscopic 
s c a l e . Once the r e l evan t macroscopic equat ions for flow of groundwater 
have been derived in t h i s manner, they serve to formulate steady 
groundwater flow problems as (mathematical) boundary-value problems for 
the r e l evan t flow equat ions in porous media, i . e . , a macroscopic 
con t inu i ty equation for incompressible f l u id flow and Darcy 's law. 

The l i t e r a t u r e on solving boundary-value problems i s very ex tens ive . 
A review of the a n a l y t i c a l techniques for solving these problems, 
e spec i a l l y concerning groundwater flow problems, can be found in , e . g . , 
Polubarinova-Kochina (1963) and Bear (1972). In genera l , the 
a p p l i c a b i l i t y of a n a l y t i c a l methods i s l imi ted t o flow conf igurat ions of 
a simple shape and composition. In p r a c t i c e , however, we are often 
confronted with complex geometries with ( p a r t i a l l y ) inhomogeneous and/or 
a n i s o t r o p i c media. 

With the advent of high-speed, l a rge -capac i ty d i g i t a l computers, 
numerical techniques have s t a r t e d to play a r o l e of increas ing importance 
in groundwater flow c a l c u l a t i o n s . The main advantage of these techniques 
i s t h e i r general a p p l i c a b i l i t y : they are f l ex ib l e as regards shape, s i z e 
and physical composition of the d i f fe ren t geometrical cons t i t uen t s tha t 
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together form the conf igurat ion tha t one wants to analyze. The main 
l i m i t a t i o n s are d i c t a t e d by the speed and s torage capaci ty of the 
computer system at one ' s d i sposa l . The numerical techniques a re based on 
a d i s c r e t i z a t i o n of the equations governing the r e l evan t groundwater flow 
phenomena. In t h i s r e s p e c t , d i s c r e t i z e d vers ions of the pe r t a in ing 
partial differential equations are used; in their simplest form they lead 
to finite-difference formulations. The application of this approach to 
the flow of groundwater, has been started in the 1960s (see, e .g . , 
Remson, Appel and Webster, 1965). Later, also the finite-element method, 
which i s more flexible as far as the geometry of the domain of 
computational interest i s concerned, entered into the numerical solving 
of groundwater flow problems (see, e .g. , Pinder and Gray, 1977). On the 
other hand, groundwater flow problems can also be formulated in terms of 
integral equations, the discretization of which leads again to a 
different type of numerical implementation. 

In the present thesis , we have investigated a particular type of 
integral-equation technique, viz. the boundary-integral-equation method. 
The main attraction of this method as compared with the finite-difference 
and finite-element methods is that i t achieves computational efficiency 
through a reduction in the problem's dimensionality. Especially in 
implementing three-dimensional problems, th i s advantage shows up. 
Moreover, the differential equations describing the groundwater flow in 
the interior of the relevant porous substance are in principle solved 
exactly; al l approximations are made on the boundaries. Since, however, 
the boundary-integral-equation method can in practice only be handled for 
piecewise homogeneous subdomains in the flow configurations, i t does not 
defeat the finite-difference and finite-element methods in a l l cases. In 
general, for groundwater flow problems concerned with flow in strongly 
inhomogeneous media, a finite-difference, finite-element, or a hybrid 
approach, may be a better choice. 

In arriving at the boundary-integral-equation formulation for solving 
steady groundwater flow problems, the main tool is the use of suitable 
source-type integral representations for the flow field quantit ies 
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involved, i . e . , the pressure and the flow v e l o c i t y . The r e p r e s e n t a t i o n s 
express the l a t t e r q u a n t i t i e s in terms of r e l a t e d q u a n t i t i e s on a closed 
sur face bounding1 the flow conf igurat ion under cons ide ra t ion . The 
source- type i n t e g r a l r e p r e s e n t a t i o n s , in t h e i r t u r n , follow from a 
s u i t a b l e r e c i p r o c i t y theorem tha t i n t e r r e l a t e s , in a s p e c i f i c way, the 
f i e l d q u a n t i t i e s of two admiss ib le , but n o n - i d e n t i c a l , s t a t e s that can 
occur in one and the same bounded domain in space. This theorem can be 
regarded , both mathematically and phys ica l ly , as one of the most 
fundamental theorems from which many p roper t i e s of groundwater flow 
f i e l d s fol low. In the r e c i p r o c i t y theorem one of the s t a t e s i s chosen as 
the a c t u a l one, the o ther i s taken to be one of seve ra l " a u x i l i a r y 
s t a t e s " . Taking the l a t t e r t o correspond t o the presence of appropr ia te 
point sources , the des i red source-type i n t e g r a l r ep re sen ta t ions are 
ob ta ined . The l a t t e r contain Green's type, s ingular kernel func t ions . 
Once these kernel functions are known, the d i f f e r e n t 
boundary- in tegra l -equa t ion- formula t ions follow upon t ak ing , in the 
i n t e g r a l r e p r e s e n t a t i o n s , the point of observat ion on the boundary 
surface of the domain for which the Green's funct ions have been 
determined. In p r a c t i c e , simple a n a l y t i c a l express ions for the Green 's 
ke rne l s can be obta ined for unbounded, homogeneous and rec ip roca l media 
only . As a consequence, the boundary- in tegra l -equat ion method i s , in 
p r a c t i c e , implemented for piecewise homogeneous flow conf igura t ions only. 
In order to solve the r e s u l t i n g boundary i n t e g r a l equat ions numerical ly, 
a s u i t a b l e d i s c r e t i z a t i o n scheme i s developed. In the present t h e s i s the 
boundary i n t e g r a l equations are applied to a number of simple, i s o t r o p i c 
and a n i s o t r o p i c , t e s t conf igura t ions , but the software developed for them 
i s of general a p p l i c a b i l i t y . More d e t a i l s a re given in the ou t l i ne below. 

Out l ine of the d i f f e r en t chapters 

In Chapter 2, the bas i c equat ions governing the theory of isothermal flow 
of v iscous f l u i d s i s summarized. Envisaging the permeation of groundwater 
in a common ( sub ) so i l as the flow of a f l u i d in a porous medium, t h e s e 
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equat ions descr ibe the flow a t the s c a l e of the po res , i . e . , the 
microscopic s c a l e of the porous medium. I t i s shown tha t for common 
groundwater flows the condi t ions are s a t i s f i e d under which t h e , in 
genera l , compressible f lu id flow governed by a non-steady and non- l inear 
equat ion of motion can be approximated by an incompressible one governed 
by a s teady and l i n e a r equation of motion. These approximate equat ions 
adequately descr ibe the flow ins ide the pores of the commonly encountered 
(sub)soils. 

In Chapter 3, the l a t t e r pore-scale or microscopic equations serve to 
develop the macroscopic equations for the flow of groundwater. The l a t t e r 
describe the groundwater flow phenomena at a scale that complies with the 
one at which these flow processes are encountered in pract ice. To th i s 
aim the microscopic equations are averaged over a so-called 
representative elementary domain of the fluid-saturated porous medium 
under consideration. The expressions that arise after employing the 
volume-averaging operator a l l have a clear physical meaning and can, in a 
natural way, be identified with the quantities that one usually observes 
and measures in practice. I t i s shown that as far as the macroscopic 
equation of motion is concerned, an equation that essent ial ly is Darcy's 
law is arrived a t . In the l i t e ra tu re on porous media flow, the idea of 
deriving macroscopic equations by applying a suitable averaging procedure 
to the well-established microscopic equations has been in i t i a ted by 
Slattery (1967) and Whitaker (1967 and 1969). Later, i t has been 
exploited and extended by many others (see, e .g. , Hassanizadeh and Gray, 
1979a,b and 1980, and the references cited therein) . Chapter 3 is 
concluded with formulating problems concerned with steady flow of 
groundwater as mathematical boundary-value problems. 

In Chapter 4, boundary-integral-equation formulations for those 
steady groundwater flow problems that can mathematically be formulated as 
boundary-value problems are further developed. In the l i t e ra tu re (see, 
e .g . , Liggett and Liu, 1983), most boundary-integral-equation 
formulations for analyzing the steady flow of groundwater are based on 
the source-type integral representation for only one of the field 
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q u a n t i t i e s t h a t cha rac t e r i ze the flow of groundwater, v i z . the p res su re . 
I t i s one of the purposes of Chapter H to give a general survey of the 
boundary- in tegra l -equa t ion formulat ions that follow from using both the 
source- type i n t e g r a l r ep re sen t a t i on for the pressure and the source- type 
i n t e g r a l r e p r e s e n t a t i o n for the v e l o c i t y . 

In Chapter 5 an e f f i c i e n t and s t ra igh t forward method i s presented for 
so lv ing numerically the r e l e v a n t systems of boundary i n t e g r a l equat ions 
pe r t a in ing t o the steady groundwater flow in piecewise homogeneous 
con f igu ra t i ons . The technique amounts to the geometrical d i s c r e t i z a t i o n 
i n to planar t r i a n g l e s of the boundary surfaces of the homogeneous 
subdomains involved, the approximation of the r e l evan t flow q u a n t i t i e s by 
piecewise l i n e a r i n t e r p o l a t i o n func t ions , and, f i n a l l y , the a p p l i c a t i o n 
of the method of co l loca t ion (po in t matching) a t the nodal poin ts of the 
d i s c r e t i z e d geometry. The procedure r e s u l t s i n t o the replacement of the 
boundary i n t e g r a l equat ions and, hence, of the r e l e v a n t flow problem, by 
a system of l i n e a r , a lgebra ic equa t ions . Pa r t i cu l a r emphasis i s given t o 
the a n a l y t i c eva lua t ion of a l l (matrix) c o e f f i c i e n t s occurr ing in the 
l a t t e r system. 

In Chapter 6, numerical experiments are ca r r i ed out in order t o t e s t 
the computer code developed. Simple t e s t flows in homogeneous, i s o t r o p i c 
and a n i s o t r o p i c , but r e c i p r o c a l , media are cons idered . The r e s u l t s 
obta ined look very promising for fu r ther a p p l i c a t i o n s . 



CHAPTER 2 

BASIC RELATIONS OF FLUID MECHANICS 

In this chapter, the basic relations governing the theory of isothermal 
flow of viscous fluids are summarized. The equation of continuity, the 
equation of motion, the equation of deformation rate, and the 
constitutive relations for viscous fluids, together with (some of) their 
consequences, are discussed in Section 2.1. The boundary conditions at a 
surface of discontinuity in fluid properties are studied in Section 2.2. 
Section 2.3 deals with the exchange of mechanical energy that takes place 
in viscous fluid flow. Finally, in Section 2.H, we analyze the conditions 
under which a fluid flow can be regarded as incompressible, and discuss 
in some detail the conditions under which we may approximate the 
non-steady and non-linear equation of motion for a Newtonian fluid by a 
steady and linear one. In the remainder of Section 2.4, we discuss the 
important simplifications that can be made in case we are dealing with 
the permeation of groundwater inside the pores of common subsoils. The 
resultant equations are known as the equations for creeping motion; they 
play a fundamental role in Chapter 3, where they serve to develop the 
equations that describe, on a macroscopic scale, the permeation processes 
of groundwater in common subsoils. 
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2 . 1 . BASIC EQUATIONS OF FLUID MECHANICS 

3 
A poin t in three-dimensional Euclidean space R i s re fe r red t o by i t s 
coord ina tes (x . ,Xp,x,} r e l a t i v e to a f ixed , orthogonal , Car tes ian 
r e fe rence frame with o r i g i n 0 and t h r ee mutually perpendicular base 
vec to r s {i_. ,j_p,i_,} of un i t l eng th each. In the ind ica ted order , the base 
v e c t o r s form a r ight-handed system. The subsc r ip t no ta t ion for vectors 
and t e n s o r s i s employed; for repea ted s u b s c r i p t s the summation convention 
a p p l i e s . Occasionally, a d i r e c t no ta t ion wi l l be used to denote a 
v e c t o r i a l quant i ty ; in p a r t i c u l a r , x_=x.i_. wi l l denote the posi t ion 

F i g . 2 . 1 . Reference frame, Car tes ian coordinates {x ,x ,x }, 
pos i t ion vector x and time of observat ion t . 
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vec tor . The time of observat ion i s denoted by t (see Figure 2 . 1 ) . As 
system of un i t s we use the I n t e r n a t i o n a l System of Uni t s (S I ) . For the 
S l - u n i t s and the dimensions of the q u a n t i t i e s occurr ing in the theory , we 
r e f e r t o the overview "Lis t of symbols and t h e i r S l - u n i t s " that precedes 
Chapter 1. 

For our summary of the bas ic equat ions of f lu id mechanics we s t a r t 
with the l o c a l form of the equat ion of conservat ion of f l u id mass in the 
absence of e i t h e r mass production or mass a n n i h i l a t i o n ( see , e . g . , 
Malvern, 1969, p . 207, or Eringen, 1967, p . 85) 

3tP + 3 . (pv . ) - 0, ( 2 .1 .1 ) 

where 

3. = p a r t i a l d i f f e r e n t i a t i o n with respect t o t , 

p = volume dens i ty of f l u i d mass, 
3. = p a r t i a l d i f f e r e n t i a t i o n with respec t t o x . , 
v. = f lu id v e l o c i t y . 

Equation (2 .1 .1) i s known as the con t inu i ty equation of mass flow. Next, 
from the i n t e g r a l form of the equat ion of conservat ion of l i n e a r momentum 
and using (2 .1 .1) we obtain Cauchy's f i r s t law of motion (see , e . g . , 
Malvern, 1969, p . 214, or Eringen, 1967, p. 103) 

3 . T . . + f. = p(3vv. + v .3 .v. ) , (2 .1 .2) 
J iJ i t l j j l 

where 

T . . = s t r e s s , 
iJ 

f. = volume densi ty of body fo r ce . 

For nonpolar f lu ids ( i . e . , f l u ids in which ne i the r body torques nor 
couple s t r e s s e s are p resen t , see , e . g . , Ar is , 1962, pp . 103-104, or 
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Malvern, 1969, pp. 217-220), and those are the ones tha t we consider 
h e r e , the i n t e g r a l form of the equat ion of conservat ion of angular 
momentum, with the fu r the r use of both (2 .1 .1) and ( 2 . 1 . 2 ) , leads to 
Cauchy's second law of motion (see , e . g . , Malvern, 1969, p . 216, o r 
Eringen, 1967, p. 103); 

T i j = T j i ' ( 2 - 1 - 3 ) 

i.e., the stress is a symmetrical tensor. 
In fluid mechanics, the stress is usually written as the sum of a 

part that corresponds to an omnidirectional pressure and a viscous or 
dissipative part; the latter accounts for the internal friction in the 
fluid (see, e.g., Aris, 1962, p. 105, or Landau and Lifshitz, 1966, p. 
47). We write 

T i j - - P 6 i j + o i J ( (2.1.4) 

where 

p = sca l a r p r e s su re , 
o . = viscous s t r e s s . 

Here, <$. . denotes the symmetrical uni t tensor of rank two (Kronecker 
t e n s o r ) , which i s defined as 6 . ^ 0 if i^j and 6. =6? =6, =1 . For a f l u i d 
at r e s t , the sca la r pressure p can be i d e n t i f i e d with the pressure as 
introduced in c l a s s i c a l thermodynamics. When the f l u id i s in motion, we 
r e t a i n , on the assumption of loca l thermodynamic equi l ibr ium, t h i s 
i d e n t i f i c a t i o n (see, e . g . , Ar i s , 1962, p . 105, or Thurston, 1964, pp. 49-
5 0 ) . The i n t e r n a l f r i c t i o n in a f l u i d manifests i t s e l f only when adjacent 
f l u i d p a r t i c l e s are in a r e l a t i v e motion. For t h i s r e l a t i v e motion, the 
v e l o c i t y g rad ien t s 3jV. a re taken as a q u a n t i t a t i v e measure. 
Decomposition of 3JV-. i n to i t s symmetric and antisymmetric pa r t s l eads to 
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3.v. = d.. + w.., (2.1.5) 

with 

d = (1/2)(3.v + 3.v.) (2.1.6) 

and 

w.j = (1/2)0.Vj - 3..V.), (2.1.7) 

where 

d.. = deformation rate, 
ij 

w. . = spin. 
ij 

Since the spin corresponds to a local rigid-body rotation (see, e.g., 
Aris, 1962, p. 89), while the deformation rate provides a measure for the 
rate of change of the infinitesimal distance between two neighboring 
fluid particles, only the deformation rate plays a role in the processes 
that govern the internal friction. 

The macroscopic viscous properties of a fluid are accounted for by a 
constitutive relation that relates the viscous stress to the deformation 
rate. If we assume the fluid to be time invariant and to react linearly, 
instantaneously and locally, we have (see, e.g., Aris, 1962, p. 111): 

o.,(x,t) - n. . (x)d (x.t), (2.1.8) 
IJ - ijpq - pq -

where 

n. . = viscosity. 

Since both the viscous stress and the deformation rate are symmetrical 
tensors, n.. satisfies the following symmetry relations: 
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n.. (x) = n. . (x) = n.. (x) = n.. „(x). (2.1.9) 
ljpq - 'ljqp - Jiqp - jipq -

If, in addition, we assume the fluid to be isotropic, the properties of 
the fluid are, at each position, independent of the direction. For 
isotropic fluids the most general form of ri.. that complies with 

ijpq 
(2.1.9) is given by (see, e.g., Aris, 1962, p. 34, or Thurston, 1964, pp. 
49-50, or Malvern, 1969, p. 298) 

n. . (x) = a(x)6, .6 + b(x)(6. 6. + 6 . 6 . ) , (2.1.10) 
iJPQ ~ - iJ PQ - IP jq iq JP 

where a and b are arbitrary scalar quantities. Substituting (2.1.10) in 
(2.1.8) and taking into account the symmetry of d.., we arrive at 

o. . = ad 6. . + 2bd. . . (2.1.11) 
iJ PP iJ iJ 

Now, the standard form of (2.1.11) follows upon replacing a by <;-(2/3)n 
and b by n, where (see, e.g., Aris, 1962, p. 34, or Truesdell and Toupin, 
1960, p. 718, or Batchelor, 1983, p. 154) 

5 = bulk or expansion viscosity, 
n = dynamic or shear viscosity. 

Clearly, (2.1.11) then becomes 

o.j = U - (2/3)n]dpp6.J + 2nd.J, (2.1.12) 

and, hence, (2.1.4) is replaced by 

A fluid whose viscous properties are characterized by the constitutive 
equation (2.1.12) is usually denoted as a Newtonian one (see, e.g., Aris, 
1962, pp. 110-111, or Malvern, 1969, p. 298). Upon writing the stress x.. 
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and the deformation rate d.. each as the sum of an isotropic and a 
deviatoric part, i.e., writing 

Tij " ( 1 / 3 ) V u + T i j ( 2 - K l 4 ) 

and 

dij ■ ( 1 /3><Vij+ < V < 2 - 1 - l 5 > 

where 

T'. . = dev ia to r i c s t r e s s , 
d'. . = dev ia to r i c deformation r a t e , 

we obtain from (2.1.13) the r e l a t i o n s 

( 1 / 3 ) T
P P = - P + ^ p p < 2 - 1 ' 1 6 > 

and 

T! . = 2 n d ! . . ( 2 .1 .17 ) 

Note t h a t T! .=0 and d! .=0. The quant i ty ( 1 / 3 ) T i s a l so known as the i l i l pp 
opposite of the mean (mechanical) p res su re ( see , e : g . , Ar i s , 1962, p . 
105, or Truesdell and Toupin, 1960, p . 545). From (2 .1 .16) i t r e a d i l y 
follows that for a vanishing bulk v i s c o s i t y the mean pressure equals the 
thermodynamic p res su re . Since in the majori ty of common f lu id- f low 
s i t u a t i o n s the bulk v i s c o s i t y proves to be r e l a t i v e l y unimportant ( see , 
e .g . , Malvern, 1969, p . 301, or Batchelor , 1983, pp. 154-171, or Bird , 
Stewart and Lightfoot , 1960, p . 7 9 ) , i t s inf luence i s often neg lec t ed . 
Under t h i s assumption (2 .1 .13) reduces t o 

i = - [p + ( 2 / 3 ) n d p p ] 6 . j + 2 n d . r • • (2 .1 .18) 
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Next, we s u b s t i t u t e the c o n s t i t u t i v e equation (2 .1 .13) in to Cauchy's 
f i r s t law of motion, use (2 .1 .6) and a r r i v e a t the following r e s u l t : 

- SjP + a^Cc - (2/3)n]3pvp) + SjEnO^j + 3 ^ ) ] + ?x 

- P(3 .v + v . 3 , v . ) . ( 2 .1 .19 ) 
L i j j i 

Equation (2 .1 .19) i s denoted as the genera l ized Navier-Stokes equat ion. 
Now, assuming t h a t the q u a n t i t i e s t;, n and f. a re known, i t i s c l e a r tha t 
i n order t o determine the unknown q u a n t i t i e s v . , p and p, the 
Navier-Stokes equat ion (2 .1 .19) has to be supplemented by the equat ion of 
con t inu i ty (2 .1 .1 ) and by one other s ca l a r equat ion . This add i t iona l 
equation i s provided by the equation of s t a t e for the f lu id under 
cons ide ra t ion and can be wr i t t en as 

p = p ( p , T ) , ( 2 .1 .20 ) 

where T denotes the temperature, which, in view of the assumed isothermal 
flow, has a constant value throughout the fluid. 

To conclude this section, we sum up some special types of fluid flows 
and list some of their properties. 

First of all, if the viscous stress o.. in (2.1.'t) vanishes 
identically, the relevant fluid is denoted as an ideal one (see, e.g., 
Landau and Lifshitz, 1966, p. 4). In that case, we arrive from (2.1.2) 
and (2.1.1) at 

- 3.p + f. = p(3,.v. + v.3.v.), (2.1.21) 
l l t l J J l 

which i s known as E u l e r ' s equation of motion ( see , e . g . , Landau and 
L i f s h i t z , 1966, p . 3 ) . This equation i s widely used for descr ibing flow 
systems in which the viscous e f fec t s are r e l a t i v e l y unimportant. 

Secondly, we consider the case t ha t a f l u id i s behaving as if i t were 
incompressible . For t h i s s i t u a t i o n we have the i n t e r n a l cons t ra in t tha t 
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the volume densi ty of f l u i d mass p i s not a f fec ted by the motion of the 

fluid. Thf 
(2.1.1)): 
fluid. Then, 3 p + v.3.p = 0, and the continuity equation reduces to (cf. 

3.v. = 0. (2.1.22) 

The conditions under which a fluid flow can be regarded as an 
incompressible one, are discussed in some detail in Section 2.4. It is 
emphasized that if we assume that the fluid is behaving as if it were 
incompressible, the pressure p in (2.1.4) has to be considered as an 
independent variable since it is no longer thermodynamically defined 
(see, e.g., Aris, 1962, p. 105, or Mai vern,. 1969, pp. 295-298). Clearly, 
for an incompressible viscous fluid (2.1.22) leads to d = 0 , and the 

PP 
constitutive equation (2.1.12) reduces with the aid of (2.1.6) to 

0 i J = 2ndiJ, (2.1.23) 

while (2.1.13) i s replaced by 

T. . = - p<5. . + 2nd. . . (2.1 .24) 

As a consequence, the general ized Navier-Stokes equat ion (2.1.19) reduces 

to 

- 3.p + 8 . [ n ( 3 . v . + 3 . v . ) ] + f. = p(3 ,v . + v . 3 . v . ) . (2 .1 .25) 
i J i J J i i t i J J l 

Note that (2.1.25) which, for an incompressible Newtonian fluid, 
constitutes the equation of motion, only has to be supplemented by the 
continuity equation (2.1.22) in order to determine the unknown quantities 
v. and p (the quantities n, p and f. are assumed to be known). Equation 
(2.1.25) will be studied in some more detail in Section 2.4. 
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2.2. BOUNDARY CONDITIONS 

At those positions of a given flow configuration where the properties of 
the fluid show abrupt changes, (some of) the quantities that describe the 
motion of the fluid (such as the velocity and the stress) will, in 
general, change discontinuously, too. In particular, this situation 
arises when at the two sides of a surface two different fluids are 
present; the presence of such a surface of discontinuity, or interface, 
implies that the fluids are immiscible. On physical grounds we assume 
that the jumps in both the constitutive parameters and the field values 
will remain bounded; hence, across the discontinuity surface they can at 
most jump by finite amounts. At those locations the local form of the 
conservation equations (e.g., the continuity equation of mass flow, the 
equation of conservation of linear momentum and the equation of 
conservation of angular momentum), the kinematic equation (2.1.6), and 
all equations deduced from these, will in general cease to hold, since at 
least some of the derivatives occurring in these equations do not exist. 
As a consequence, they have to be supplemented by so-called boundary, or 
interface, conditions that interconnect, in a certain manner, (parts of) 
the relevant field values at either side of the surface of discontinuity 
under consideration. 

In the present section, we derive the relevant interface conditions 
pertaining to the basic flow equations (2.1.1), (2.1.2) and (2.1.8). The 
standard manner to interrelate the solutions to these equations at either 
side of a surface of discontinuity in fluid properties is to replace, 
locally, the basic flow equations by another system of equations that for 
continuously varying fluid properties is equivalent to the system 
(2.1.1), (2.1.2) and (2.1.8), but that contains no spatial 
differentiations across the surface of discontinuity under consideration. 
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Let S denote the interface and assume that S has everywhere a unique 
tangent plane. Further, let v. denote the vector along the normal to S 
such that upon traversing S in the direction of v., we pass from the 
domain D to the domain D , D and D being located at either side of S 
(see Figure 2.2). Let x be the position vector of some point on S. Now, 

x + hv 

x - h v 

Fig. 2 .2 . Surface of d i s c o n t i n u i t y in f lu id p rope r t i e s S. 

to avoid the problem of d i f f e r e n t i a t i o n along v. in ( 2 . 1 . 1 ) , ( 2 . 1 . 2 ) and 

( 2 . 1 . 8 ) , we i n t e g r a t e these equat ions along a s t r a i g h t l i n e j o i n i n g a 

point with pos i t ion vector _x - hv (with h > 0) located in D? t o a po in t 

with pos i t ion vector x + hv loca ted in D (see Figure 2 . 2 ) . Applying t h i s 

procedure to Cauchy's f i r s t law of motion, we obta in (of. ( 2 . 1 . 2 ) ) 

fh ,h 
3 , T . . ( x + s v , t ) d s + f . ( x + s v , t ) d s 

' s=-h J 1 J Js=-h 
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h 
p(x+sv, t ) [3 + v . ( x + s v , t ) 3 . ]v . (x+sv , t )ds = 0. (2 .2 .1) 

s=-h Z J J X 

At t h i s p o i n t , i t should be noted t h a t the opera tor 3 + v . 3 . occurring 
t J J 

in ( 2 . 2 . 1 ) produces the time r a t e of change t ha t an observer r e g i s t e r s 
when moving through the f l u i d with the ve loc i t y v . . This r a t e of change 
i s denoted a s the co-moving time d e r i v a t i v e and remains bounded a t the 
i n t e r f a c e between the two f l u i d s . Furthermore, the s p a t i a l de r iva t ives 
along the i n t e r f ace S remain continuous and bounded. To separa te these 
from the d e r i v a t i v e s along v, we w r i t e 

3. = N. 3 + T. 3 , ( 2 .2 .2 ) 
j j s s j s s ' 

where 

N. = v . v (2 .2 .3 ) 
j s j s 

and 

T. = 6 . - v . v . ( 2 .2 .4 ) 
j s j s j s 

Obviously, N. 3 i s the pa r t of 3 . along v and T 3 i s the par t of 3 . 
J S S J J S S J 

perpendicular to _v, i.e., along S. All components of the integrands in 
(2.2.1) parallel to S remain bounded and hence, their contribution 
vanishes as h + 0. The same applies to components of the integrands of 
the l.ast two terms in (2.2.1) along _v. In view of these properties, upon 
letting h tend to zero in (2.2.1), we arrive at 

lim 
h+0 ' 

3.T. .(x+sv,t)ds = lim N . S T . .(x+sv,t)ds 

lim V,[T..(x+hv,t) - T, . (x-hv,t) ] = 0, (2.2.5) 
h+0 J J J 
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or 

V . L T , . ] . , = 0 a t S, ( 2 . 2 . 6 ) 

where [ T . . L _ = T . . L - T. . L , in which | , wi th o=1 , 2 , denotes the 
l i m i t i n g value of the preceding quant i ty as S i s approached v ia D . 
The i n t e r f ace condit ion (2 .2 .6 ) expresses the con t inu i t y of the t r a c t i o n 
T. .v, across the i n t e r f a c e S ( see , e . g . , Eringen, 1967, pp. 105-106, 
Landau and L i f s h i t z , 1966, pp. 50-51, or Truesdel l and Toupin 1960, p . 
516). Upon applying a s imi la r procedure t o the con t inu i ty equat ion in the 
following form (cf. ( 2 . 1 . 1 ) ) : 

3 iv i + ( 3 t p + v
i

3
i P ) / P = ° - ( 2 . 2 . 7 ) 

where, as far as the co-moving time de r iva t i ve of the volume dens i ty of 
f lu id mass i s concerned the same condi t ion as regards immisc ib i l i ty i s 
invoked as above, i t follows that 

v . [ v . ] 1 2 = 0 at S, ( 2 . 2 . 8 ) 

i.e., the component of the fluid velocity that is normal to the interface 
is continuous across the interface (see, e.g., Eringen, 1967, pp. 105-
106, or Landau and Lifshitz, 1966, p. 5). Upon rewriting the constitutive 
relation (2.1.8), in which we use (2.1.6), as 

(1/2) (3 v + 3 v ) = $ . .o. ., (2.2.9) 
P q q P pqij u 

where * . . is the fluidity of the fluid, and employing the same 
p q i j 

procedure as above, we a r r i v e a t 

v J v J i o + v„[v„L 0 = 0 a t S. ( 2 . 2 . 1 0 ) 
P q 1.2 q p 1,2 

Contraction of this equation with v leads to 



CHAPTER 2 : BASIC RELATIONS OF FLUID MECHANICS -20-

[ v o ^ i o + vr,vJvJi o = ° a t S - (2 .2 .11 ) 
q 1,2 p q p 1,2 

Combining (2.2.11) with (2.2.8),""it follows that 

[vi]1 2 = 0 at S, (2.2.12) 

i.e., at a surface of discontinuity in matter separating two different 
viscous fluids, all components of the fluid velocity are to be continuous 
across this surface (see, e.g., Landau and Lifshitz, 1966, pp. 50-51). 
This boundary condition can also easily be understood physically: due to 
the presence of viscosity the fluid at one side of the interface drags 
the fluid at the other side along and vice versa. At a surface of 
discontinuity in matter separating two ideal fluids instead of two 
viscous ones, however, only the component of the fluid velocity normal to 
the interface is continuous across the interface (cf. (2.2.8)), and the 
continuity of the traction is replaced by the continuity of the pressure. 
Equation (2.2.6) is then replaced by (see, e.g., Landau and Lifshitz, 
1966, pp. 50-51, or Truesdell and Toupin, 1960, p. 711) 

[p], 2 = 0 at S. (2.2.13) 

I t i s emphasized that in the above derivations of the interface 
conditions at S al l interfacial effects, such as, e .g . , surface tension, 
have been neglected. If one wants to deal with a surface of discontinuity 
with special properties, one usually accounts for the relevant effects by 
introducing so-called surface sources on the right-hand sides of the 
relevant boundary conditions. For a more detailed discussion on this 
subject we refer to Batchelor (1983, p. 60) and Slattery (1967), and to 
the references cited therein. Finally, we remark that if the procedure 
outlined above is applied to the local form of the equation of 
conservation of angular momentum no new interface conditions at S are 
obtained. 



CHAPTER 2 : BASIC RELATIONS OF FLUID MECHANICS - 2 1 -

F i n a l l y , we analyze the boundary condi t ions a t some spec i a l types of 
surfaces of d i s c o n t i n u i t y . F i r s t of a l l , a t the boundary surface of a 
viscous f l u i d and a r i g i d and immovable body we have v. -> 0 upon 
approaching the boundary surface of the body, i . e . , the f l u id adheres to 
the body ( see , e . g . , Landau and L i f s h i t z 1966, p . 50) . On t h i s type of 
boundary surface T . . V . remains unspec i f ied . For such a body in contac t 
with an idea l f lu id we have v .v . + 0, and, hence, s l i p may occur p a r a l l e l 
to the boundary su r face , while ins tead of T. .v. now p remains unspeci f ied 
upon approaching the boundary su r f ace . At a t r a c t i o n - f r e e boundary 
surface of a viscous f l u i d we have x. .v . -» 0 upon approaching t h i s 
boundary, while now v. on the surface remains unspeci f ied . For an idea l 
f lu id in t h i s l a t t e r case we have p •* 0, while , i n s t ead of v . , now v .v . 

y ' l l i 

remains unspecif ied upon approaching the t r a c t i o n - f r e e surface (and the 
other components of v. as w e l l ) . 

To conclude, a summary of the boundary cond i t ions across a two-sided 
surface of d i s con t inu i ty in mater ia l p r o p e r t i e s i s given in Table 2 . 1 . 
The e x p l i c i t boundary condi t ions tha t have t o be prescr ibed on boundaries 
of a s p e c i f i c type have been included as we l l . 

Table 2 . 1 . Boundary condi t ions for viscous and idea l f l u i d s a t 

a surface S of d i s con t inu i ty in f l u id p r o p e r t i e s . 

type of boundary viscous f l u i d s idea l f l u i d s 

i n t e r f ace between v. and T. .V. continuous v .v . and p cont inuous 
i i j J i i 

two f l u i d s across S across S 

boundary surface v.-*0; T. .V. remains v.v.+O; p remains J l i j j ï i v 

of r i g i d and unspecif ied on S unspec i f ied on S 
immovable body 

(continued on next page) 



CHAPTER 2 : BASIC RELATIONS OF FLUID MECHANICS -22-

Table 2 . 1 . (continued) 

t r a c t i o n - f r e e t . . v . + 0 ; v. remains p+0; v .v . remains 
ij J i y ii 

boundary surface unspecif ied on S unspecif ied on S 
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2.3. ENERGY CONSIDERATIONS 

In this section we consider the exchange of mechanical energy in a 
flowing fluid. 

Consider a configuration where a fluid is present in some bounded 
domain D that moves along with the fluid. Let 3D denote the closed 
boundary surface and let the unit vector along the normal to 3D, pointing 
away from D, be denoted by v. (see Figure 2.3). As a first step to arrive 

Fig. 2.3. Bounded domain D with closed boundary surface 3D with 
unit vector v. along the normal to 3D pointing away 
from D. 

at the mechanical energy equation, we contract the equation of motion 
(2.1.2) with v.. This yields 
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V . 3 . T . . + f . v . = p v . ( 3 t v . + V . 3 . V . ) . 
i j i j 1 1 K i t i J J i 

( 2 .3 .1 ) 

As a next s t e p , we r e w r i t e the f i r s t term on the l e f t -hand side of 

( 2 . 3 . 1 ) as 

v.3 . T . . = 3 . ( V . T . .) - T. .3 . v . , 
i J i j J i i j i J J i 

( 2 .3 .2 ) 

and the r ight -hand s ide as 

p v . O . v . + v , 3 . v . ) = 3 , [ ( 1 / 2 ) p v , v . ] + 3 . [ v , ( 1 / 2 ) p v . v . ] . ( 2 . 3 . 3 ) 
i t i J J i ^ J J i i 

In (2.3-3) we have used the con t inu i ty equat ion ( 2 . 1 . 1 ) . Subsequent 
i n t e g r a t i o n of (2 .3 -1) over the domain D then leads with the aid of 
Gauss' theorem, ( 2 . 3 . 2 ) , ( 2 . 3 . 3 ) , and the i d e n t i t y 

3 [ ( 1 / 2 ) p v . v . ] d V + ( 1 / 2 ) p v . v . v . v . d A 
D t l i J a D J J i i 

= d t ( 1 /2 )pv .v .dV t J D 
(2 .3 -1 ) 

t o the r e s u l t 

3D 
V . T . . v . d A -

i i J J 
^ . S . v ^ V + f i v i d V = d

t ( 1 / 2 ) p v i v . d V . (2 .3 -5 ) 

Now, s ince from ( 2 . 1 . 3 ) and (2 .1 .5 ) we fur ther have 

T. .3 .v . = T. .d . . , 
i J J i i j i J 

(2 .3 -6 ) 

(2-3-5) can be r e w r i t t e n as 

W + W = t 1 F + W 
surface "body at kin wdef* ( 2 . 3 . 7 ) 

in which the d i f f e r e n t terms can be i n t e r p r e t e d as fol lows: 
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W . = 1 V . T . .v.dA (2 .3 .8 ) 
surface J3D ï i j j 

i s the time r a t e at which the surface forces ac t ing on 3D de l ive r power 
t o the f lu id in D, 

f .v .c Wv . = I f.v.dV (2 .3 .9 ) 
body J l i v J " 

i s the time r a t e at which work i s done by the body forces ac t ing on the 
f l u id in D, 

(in = J D
( E, . = ( 1 / 2 ) p v . v . d V ( 2 . 3 . 1 0 ) 

k i n J n l l 

is the kinetic energy associated with the motion of the fluid in D, and 

T . . d . Wdef " JD
 T i j d i j d V < 2 - 3 . l D 

i s the time r a t e at which work i s done by the i n t e r n a l s t r e s s e s in the 
f lu id present in D. Equation ( 2 . 3 . 7 ) expresses the conservat ion of 
mechanical energy for the f l u i d during i t s motion, v i z . the t ime r a t e a t 
which work i s done by the surface and the body forces ac t ing on the f l u i d 
in D, i s balanced by the sum of the r a t e s of change of the k i n e t i c energy 
of the f lu id in D and the time r a t e a t which work i s done by the i n t e r n a l 
s t r e s s e s of the f lu id in D. 

As regards the work done by the i n t e r n a l s t r e s s e s , we note t h a t some 
part of t h i s work i s , in genera l , r e v e r s i b l y s to r ed , while t he remaining 
pa r t , which accounts for the d i f f e r en t l o s s mechanisms in the f l u i d 
motion, i s always i r r e v e r s i b l y d i s s i pa t ed . In p a r t i c u l a r , working out the 
quant i ty T . . d . . for a Newtonian f l u i d defined by (2.1.13) and using 
(2.1.4) and (2 .1 .15 ) , i t r e ad i l y follows that 

T . . d . . = - p d + c ( d ) 2 + 2nd! . d ! . . (2 .3 .12) 
i j i j F PP ^ PP i j i j 
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The f i r s t term on the r igh t -hand s ide of (2.3.12) r epresen t s the volume 
dens i ty of the r e v e r s i b l e r a t e of change of i n t e rna l energy, while the 
sum of the l a s t two terms r ep re sen t s the volume densi ty of the time r a t e 
of d i s s i p a t i o n of mechanical energy due to the v i s cos i t y of the f l u i d 
( s e e , e . g . , Ar is , 1962, p . 117, or Bird, Stewart and Lightfoot , 1960, p . 
314, or Malvern, 1969, p . 300) . 

To conclude t h i s s ec t i on , we note that the mechanical energy quant i ty 
T. . d . . often i s r e f e r r ed t o as the volume densi ty of s t r e s s power ( see , 
e . g . , Eringen, 1967, p . 117). 
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2 . 4 . MACH, STROUHAL, REYNOLDS AND FROUDE NUMBERS 

In t h i s sec t ion we examine the circumstances under which the flow of a 
Newtonian f l u id can be regarded as incompress ible . Furthermore, we 
discuss the condi t ions under which the n o n - l i n e a r i t y in the Navier-Stokes 
equations i s s u f f i c i e n t l y unimportant t o be neglec ted , and the 
circumstances under which the non-steady flow of a Newtonian f l u i d can be 
approximated by a s teady one. To conclude t h i s s e c t i o n , we i n v e s t i g a t e 
for the case of subterranean flow of water , what s impl i f ied equa t ions 
accura te ly descr ibe the flow at the s c a l e of the pores , i . e . , i n the 
i n t e r s t i c e s of the re levan t s u b s o i l . The l a t t e r equat ions wi l l serve as a 
s t a r t , in the next chapter , for the ana lys i s of groundwater f low. 

In Sect ion 2.1 we have l i s t e d the consequences of the important 
s imp l i f i ca t ion t ha t a r i s e s if a f l u id flow behaves as i f i t were 
incompressible (see (2.1.22) and ( 2 . 1 . 2 5 ) ) . In t h i s approximation, the 
v a r i a t i o n s in the volume densi ty of f l u i d mass produced by the flow are 
s u f f i c i e n t l y small to be n e g l i g i b l e . Inspec t ion of the con t inu i ty 
equation of mass flow (2 .1 .1 ) r evea l s tha t under these circumstances we 
must have (see , e . g . , Batchelor , 1983, p . 167) 

| O t P + v . 3 . p ) / p | « J3 iv11 . (2 .4 .1 ) 

From (2 .1 .20 ) , the p r i n c i p l e of l o c a l thermodynamic equ i l ib r ium, and the 
assumed isothermal flow, we fur ther have 

3fcp + v .a .p = O t p + v . 8 . p ) / c ^ , (2 .1 .2 ) 

where c„ denotes the isothermal speed of sound in the fluid. With the aid 
of (2.4.2), the condition (2.4.1) can be rewritten as (see, e.g., 
Batchelor, 1983, p. 167) 
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| O t P + v . 3 . p ) / ( p c ^ ) | « | 3 1 v 1 | . ( 2 .4 .3 ) 

To e l u c i d a t e the impl ica t ions of ( 2 . 4 . 3 ) , l e t u s consider a given flow 
conf igura t ion and l e t 1 , v , Ap , p and c_ represent i t s c h a r a c t e r i s t i c 
l i n e a r dimension, c h a r a c t e r i s t i c f l u id v e l o c i t y , c h a r a c t e r i s t i c p ressure 
d i f f e rence , c h a r a c t e r i s t i c f luid-mass densi ty and c h a r a c t e r i s t i c 
isothermal speed of sound, r e s p e c t i v e l y . The non-steady f l u id flow i s 

x 
fu r the r cha rac te r i zed by a c h a r a c t e r i s t i c frequency f that determines 
the r a t e a t which the f lu id q u a n t i t i e s change in time. Then, the 

condi t ion (2 .4 .3) under which a f l u i d flow may be regarded as 
incompress ible l eads to 

Ma2(1 + Sr)Ap*/(p v* ) << 1, (2 .4 .4 ) 

where 

Ma = v*/c* (2 .4 .5 ) 

i s known as the Mach number ( see , e . g . , Landau and L i f s h i t z , 1966, p . 
171, or Batchelor , 1983, p . 168) , and 

Sr - l*f*/v* (2 .4 .6 ) 

i s known as the Strouhal number ( see , e . g . , Landau and L i f s h i t z , 1966, p . 
63, or Batchelor , 1983, p . 216). To es t imate the order of magnitude of 
Ap in ( 2 . 4 . 4 ) , we now consider the Navier-Stokes equation (2.1.19) in 
some more d e t a i l . F i r s t of a l l , we note t h a t in the course of our 
app l i ca t i ons of (2 .1 .19) the only body force to be present i s assumed t o 
be t h e one due to g rav i ty . Hence, we wri te 

rt = Pg i ( ( 2 . 4 . 7 ) 
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in which g. denotes the l o c a l a c c e l e r a t i o n of f ree f a l l . In analyzing 
( 2 . 1 . 1 9 ) , we s t a r t with gaining some ins igh t in the o rde r s of magnitude 
of the convective i n e r t i a forces and the viscous fo r ce s . The former i s 

x *^ x * * *2 % 
given by p v / l and the l a t t e r by n v / l , in which ri r ep re sen t s the 
c h a r a c t e r i s t i c dynamic v i s c o s i t y , and where i t should be noted t h a t in 
t h i s l a s t es t imat ion i t i s assumed tha t the order of magnitudes of the 
bulk v i s c o s i t y t; and the dynamic v i s c o s i t y n are the same, al though the 
e f fec t s of the former v i s c o s i t y can be neglected in most f lu id flow 
s i t u a t i o n s met in p rac t i ce (see Sect ion 2 . 1 ) . Now, the r a t i o of the 
orders of magnitude of the two forces [ (convect ive i n e r t i a 
fo rces ) / (v i scous f o r c e s ) ] , designated as Re, i s given by 

Re = p v 1 / n (2 .4 .8 ) 

and i s known as Reynolds number ( see , e . g . , Landau and L i f s h i t z , 1966, p . 
62, or Batchelor , 1983 , ' p . 211). For a f l u id flow at small Reynolds 
number, the convective i n e r t i a forces are a t each point in the f l u i d 
n e g l i g i b l e with respec t t o the viscous forces ; the flow i s only 
cont ro l led by the pressure f o r c e s , the viscous fo rces , the fo r ce s due to 
g rav i ty and the loca l i n e r t i a fo rces , and as a consequence, the 

x 
c h a r a c t e r i s t i c pressure d i f ference Ap i s of the order of magnitude of 

x x * x * x x x * x * 
( n v / 1 + p g l + p f v l ) , where g represen t s the c h a r a c t e r i s t i c 
l oca l a c c e l e r a t i on of f ree f a l l . Hence, with the aid of ( 2 . 4 . 6 ) and 
( 2 . 4 . 8 ) , the condi t ion (2 .4 .4) for incompressible f l u i d flow a t low 
Reynolds numbers becomes (c f . , e . g . , T r i t t o n , 1977, p . 59) 

Ma2(1 + Sr)(1/Re + 1/Fr2 + Sr) << 1, (2 .4 .9 ) 

where 

Fr = v / ( l g Y'd (2 .4 .10) 
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i s known as the Froude number ( see , e . g . , Landau and L i f s h i t z , 1966, p . 
63 ) . Thus, under the circumstances t h a t Re << 1, the f l u i d i s behaving as 
i f i t were incompressible whenever the condi t ion (2 .4 .9 ) i s s a t i s f i e d . 

In add i t ion to the above, we determine the condi t ions under which the 
non-steady flow of the f lu id a t small Reynolds numbers can be 
approximated by a steady one. To t h i s end, we compare in (2.1.19) the 
l o c a l i n e r t i a force term with the viscous force term; the r a t i o of these 
two [ ( l o c a l i n e r t i a f o r c e s ) / ( v i s c o u s fo r ce s ) ] i s (cf. (2 .1 .6 ) and 
( 2 . 4 . 8 ) ) 

2 
X X X X 

p f 1 / n = Re«Sr. (2 .4 .11 ) 

Hence, for small Reynolds numbers a non-steady Newtonian-fluid flow can 
be approximated by a s teady one whenever the add i t i ona l condition 
Re-Sr << 1 i s s a t i s f i e d . F i n a l l y , i t should be noted t h a t , in genera l , 
only for pe r iod ic f lu id flows the Strouhal number i s taken to have a 

x x * 
value d i f f e r en t from u n i t y . For a non-per iodic flow we take f = v / l , 
which e n t a i l s tha t Sr = 1 ; as a consequence, a non-per iodic flow of a 
Newtonian f l u i d a t small Reynolds number i s only con t ro l l ed by the 
p ressu re f o r c e s , the viscous forces and forces due to g r av i t y . 

As a l ready remarked in the in t roduc t ion t o t h i s s e c t i o n , we need in 
Chapter 3 the equations that accura te ly descr ibe the flow of groundwater 
in the i n t e r s t i c e s of common s u b s o i l s , the s o i l being envisaged as a 
wa te r - sa tu ra t ed porous medium. Hence, a t t h i s s tage in our a n a l y s i s , we 
may gain some ins igh t i n t o the poss ib le approximations of the general 
ba s i c equat ions tha t govern the flow in s ide the pores of wate r - sa tu ra ted 
s o i l s . F i r s t of a l l , we note t h a t in the case of subterranean water flow 
i t seems to be f a i r t h a t , due t o the l a rge heat capaci ty of the 
w a t e r - s o l i d composite, a l l flow processes involved can be considered as 
isothermal processes . Now, for permeation of water in common s u b s o i l s , a 
t y p i c a l value of the volume densi ty of f l u i d mass i s given by 

» 3 3 
p = I.Oxio kg/m , a t yp ica l value of the v i s c o s i t y by 

x -3 
n = 1.5*10 Pa-s , and a r e p r e s e n t a t i v e value of the c h a r a c t e r i s t i c 
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* -5 
l i nea r dimension of the pores in the porous system by 1 = 1.0x10 m. 

* -3 
Then, for a c h a r a c t e r i s t i c f l u id ve loc i t y of v = 1.0x10 m/s , which in 
common groundwater flow s i t u a t i o n s i s considered as r a the r h igh , a 
Reynolds number of Re = 6.7x10 r e s u l t s . Hence, in a l l app l i c a t i ons to 
groundwater flow we have Re << 1. Furthermore, on the assumption t h a t the 
groundwater flow under cons idera t ion i s non-per iod ic , we have (cf. 
( 2 . 4 . 6 ) ) Sr = 1 , and hence, as ou t l i ned above, the f l u i d flow in the 
pores i s con t ro l l ed by the pressure fo rces , the viscous f o r c e s , and the 
forces due to g rav i ty only. Now, in order t o determine whether or not the 
f l u id flow ins ide the pores can be approximated by an incompressible one, 

2 2 2 
we are l e f t with the task of es t imat ing Ma , Ma /Re, and (Ma/Fr) (cf. 
( 2 . 4 . 9 ) ) . For the conf igura t ions a t hand, a c h a r a c t e r i s t i c value of the 
isothermal speed of sound i s c„ = 1.1x10 m/s, and a t y p i c a l value of 

1 * 2 
the loca l a c c e l e r a t i o n of f ree f a l l i s g = 1 0 m/s . U t i l i z i n g ( 2 . 4 . 5 ) , 
( 2 . 4 . 8 ) , and ( 2 . 4 . 1 0 ) , we then f ind Ma2 = 5 .1x l0~ 1 3 , Ma2/Re - 7 .7x10~ ' 1 , 

2 -1 1 
and (Ma/Fr) = 5.1x10 , r e s p e c t i v e l y . C lea r ly , with these va lues , and 
Sr = 1, the condi t ion (2 .4 .9) under which a Newtonian-fluid flow behaves 
as if i t were incompressible i s found to be not a very r e s t r i c t i v e one. 

In summary, the flow phenomena ins ide the pores of common, 
wa te r - sa tu ra t ed , s u b s o i l s , a r e , f i r s t of a l l , governed by the c o n t i n u i t y 
equation as given in ( 2 . 1 . 2 2 ) . Secondly, we have Cauchy's f i r s t law of 
motion in the absence of the i n e r t i a forces and i d e n t i f i c a t i o n of the 
body forces with the force due to g r a v i t y , i . e . , (cf. (2 .1 .2 ) and 
(2 .4 .7 ) ) 

*ixLi * pg i - 0, (2 .4 .12) 

which i s known as the equat ion for creeping motion ( see , e . g . , T r i t t o n , 
1977, p . 82) . F i n a l l y , (2 .1 .22) and (2 .4 .12) have to be supplemented by 
( 2 . 1 . 4 ) , the c o n s t i t u t i v e equat ion ( 2 . 1 . 2 3 ) , and the equat ion of 
deformation r a t e ( 2 . 1 . 6 ) . These equat ions w i l l play a fundamental r o l e in 
the next chapter , where they serve as the poin t of depar ture for 
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developing the theory of permeation processes of groundwater in common 

s u b s o i l s , such as a q u i f e r s , dams, e t c . 



CHAPTER 3 

BASIC MACROSCOPIC RELATIONS FOR FLOW OF GROUNDWATER 

In th is chapter, we develop the basic re la t ions , on a rnacroscopically 
averaged scale, for the flow of a single-phase fluid in a porous medium. 
In part icular , we discuss the macroscopic relat ions for the flow of 
groundwater, where the soil is envisaged as a watei—saturated porous 
substance. 

In principle, once the equations that govern the flow phenomena 
inside the pores of a porous medium are known and once the geometry of 
all inters t ices in the porous material is determined, the flow problem 
can, on this scale, be solved. However, due to the fact that measurements 
inside the pores can, in general, not be easily performed, and the fact 
that the detailed geometries of the interst ices cannot properly be 
described for the majority of porous media that one observes in practice, 
this procedure will usually amount to an unfeasible task. Fortunately, in 
most practical civil-engineering groundwater. flow problems, one's 
interest is not to gain a detailed insight into the behavior of 
fluid-flow phenomena on the scale of the pore sizes (the so-called 
microscopic scale) , but merely to analyze fluid/solid systems on the 
gross, or average scale (the so-called macroscopic sca le) . For example, 
the design of civil-engineering structures calls for the determination of 
the macroscopic flow pattern of the groundwater in formations l ike 
aquifers, dams, e tc . , where the average or macroscopic quantit ies are 
associated with the ones that one usually observes and measures in a 
practical field si tuat ion. 
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Solutions of groundwater flow problems are generally based on 
various, often rather intuitive, generalizations of the one-dimensional 
empirical law formulated by Darcy in 1856 (Darcy, 1856). Examples of this 
partly heuristic and empirical approach to the modeling of 
three-dimensional fluid flows in homogeneous and inhomogeneous 
anisotropic subsoils can be found in Muskat (1946, pp. 127-136), Morse 
and Feshbaeh (1953, p. 172), Polubarinova-Kochina (1962, pp. 343-345), 
Scheidegger (1963, pp. 76-79), Bear (1972, pp. 119-125), and Batchelor 
(1983, pp. 223-234). Although with the aid of these generalizations many 
practical problems concerned with, e.g., groundwater flow in aquifers, 
seepage from dams, etc., can successfully be solved, there is a need for 
a more profound theoretical justification of the various generalized 
Darcy's laws, as well as for explicit knowledge under which conditions 
they apply. 

The literature on the many theoretical aspects of the behavior of 
multi-component systems, such as fluid/solid systems, on a macroscopic 
scale is very extensive. Apart from the partly phenomenological and 
heuristic approaches referred to above, one distinguishes between the 
so-called direct and indirect approaches. In the direct approach, the 
multi-component system is treated directly at the relevant macroscopic 
level and hence, in terms of continuum physics, the multi-component 
system is envisaged as a system of overlapping continua. The relevant 
conservation equations are postulated directly at the macroscopic level 
and are intuitive extensions of the basic equations that hold for a 
single-phase continuum. The constitutive equations are then developed at 
this macroscopic level as well, often in a manner similar to the one used 
in the theory of mixtures (see, e.g., Bowen, 1976). For example, Bowen 
(1984, pp. 63-119), employes this method for formulating various 
mathematical models of porous media. The resultant equations are, 
however, in most cases too general for practical use. In the indirect 
approach, one starts from the well-established conservation equations at 
the microscopic level pertaining to each constituent separately, 
sometimes supplemented by the relevant constitutive equations at this 
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level. Then, upon applying to these equations some mathematical averaging 
procedure, one arrives at equations that hold on a higher level, viz. the 
macroscopic one. As a first example of this indirect approach we mention 
the so-called two-space method of homogenization used in statistical 
physics, where one uses a spatial averaging procedure in addition to a 
rather complicated asymptotic analysis. This method reveals which effects 
at the microscopic level play a role at the macroscopic level. Keller 
(1980) has employed this method to assert Darcy's law, while Burridge and 
Keller (1981) and later Auriault, Borne and Chambon (1985) have used it 
to treat various aspects of poroelasticity. A different type of indirect 
approach is furnished by the spatial averaging procedure. Here, the 
equations at the microscopic scale are averaged over a so-called 
representative elementary domain of the relevant multi-component 
composite. This kind of averaging was initiated by Slattery (1967) and by 
Whitaker (1967 and 1969) and was employed to arrive at macroscopic 
equations for the flow of single-phase fluids in porous solids. The 
method has later been used and extended by many others in order to 
develop "rigorous" theories for more complicated flow phenomena in porous 
systems, for example, systems containing multi-phase fluids together with 
multi-phase solids (see, e.g., Dybbs and Schweitzer, 1973, Gray and 
O'Neill, 1976, or De la Cruz and Spanos, 1983). In particular, we mention 
the work by Hassanizadeh and Gray (1979a,b, and 1980), who adopted the 
spatial averaging method to derive general macroscopic conservation laws 
for multi-phase systems. They postulate a general set of admissible 
constitutive relations at the macroscopic scale and then apply a special 
method from thermodynamics (the method of Coleman and Noll (1963)) to 
reduce this general set to proper ones that do not violate the second law 
of classical thermodynamics. However, the constitutive equations thus 
obtained are often, even after applying, for example, an extensive 
linearization procedure, too general for use in practice. This is partly 
due to the fact that the method does not exploit often important 
additional information from some of the fluid and/or solid properties at 
the microscopic level. For example, in the case of flow of a single-phase 
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fluid in some porous material, one can often determine the viscosity of 
the fluid rather easily. Furthermore, due to the large heat capacity of, 
for example, the fluid-solid composites one observes in common 
water-saturated subsoils, one may consider, in a first approximation, the 
flow processes to proceed under isothermal conditions and, in addition to 
this, one may often approximate the interstitial fluid flow by an 
incompressible one. 

To conclude this brief overview of some of the numerous theories of 
the modeling of multi-phase systems at a macroscopic scale, it should be 
noted that recently, by using consistently a particular procedure of 
volume averaging only, a macroscopic theory for acoustic wave phenomena 
in porous solids has been developed (De la Cruz and Spanos, 1985, and De 
Vries and De Hoop, 1988). 

Finally, for a more detailed overview of the various attempts to 
develop correct and adequate macroscopic descriptions for multi-component 
composites we refer to Hassanizadeh and Gray (1979a,b, and 1980), and 
Bachmat and Bear (1987, pp. 5-20), as well as to the references cited 
therein. 

In the present analysis, the basic equations, on a macroscopic scale, 
for the creeping, incompressible flow of a Newtonian fluid in a porous 
solid are developed upon utilizing an indirect method which to some 
extent is similar to the one introduced by Slattery (1967) and Whitaker 
(1969), i.e., we average the "microscopic" conservation and constitutive 
equations over a representative elementary domain of the fluid-solid 
composite; the solid matrix material being envisaged as rigid and 
immovable. The choice in favor of this kind of averaging procedure is 
based on the fact that the expressions that arise after applying the 
volume averaging operator all have, in general, a clear physical meaning, 
and can be identified in a natural way with the quantities one usually 
observes and measures in practice. An additional advantage of the volume 
averaging method applied here is that all mathematical procedures 
involved are straightforward. 
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Section 3.1 deals with the r e l e v a n t averaging d e f i n i t i o n s and 
provides the necessary t o o l s for Sect ion 3.2 in which they a r e applied to 
the l i n e a r i z e d equat ions for quas i - s t eady , incompress ible , viscous f l u id 
flow. I t i s shown t h a t , as far as the macroscopic equat ion of motion for 
the permeation of groundwater i s concerned, we end up with an equation 
tha t e s s e n t i a l l y i s Darcy 's law. In Subsection 3.2.1 we incorpora te in 
the macroscopic equat ions for subterranean waterflow the a c t i o n of 
ex te rna l sources t h a t comply with the s t r u c t u r e of these equa t ions . In 
Subsection 3.2.2 i t i s shown how the quant i ty t h a t one observes in a 
p r a c t i c a l pressure-gauge measurement in groundwater flow i s r e l a t e d to 
the volume-averaged pressure introduced in the s ec t i on preceding i t . The 
boundary condi t ions tha t are compatible with the r e l evan t macroscopic 
groundwater flow equat ions and t h a t apply a t a surface of d i s c o n t i n u i t y 
in mater ia l p rope r t i e s are discussed in Section 3 -3 . F i n a l l y , in Sect ion 
3 . 1 , the uniqueness of the so lu t i on of those groundwater flow problems 
that can mathematically be formulated as boundary-value problems i s 
inves t iga ted upon u t i l i z i n g energy c o n s i d e r a t i o n s . 
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3.1. AVERAGING CONSIDERATIONS 

The basic assumption underlying our analysis is that the macroscopic, 
large-scale, properties of a fluid-filled porous medium and a 
corresponding description of the flow phenomena involved can be arrived 
at by the spatial averaging of the relevant pore-scale quantities and 
equations over a so-called representative elementary domain of the porous 
medium under consideration. 

Although the concept of a representative elementary domain of a 
multi-phase system is well established in the literature on flow in 
porous media (see, e.g., Whitaker, 1969, Bear, 1972, pp. 19-22, 
Hassanizadeh and Gray, 1979a, or Baveye and Sposito, 1981)), we first 
summarize for completeness-in some detail its essential features. To this 
end, it is helpful to consider the following hypothetical experiment 
applied to some fluid-saturated porous material. At a fixed time, we 
average a local, pore-scale, fluid quantity over a spatial domain whose 
characteristic linear dimension, to be denoted by d, varies from very 
small to very large (e.g., we integrate the relevant local quantity over 
a sphere whose radius varies from less than the size of the diameter of 
the pores up to several thousands of times of the latter value). In the 
beginning, rapid fluctuations in the averaged fluid quantity may occur; 
clearly, these can be ascribed to the fact that relatively large portions 
of the fluid phase and/or the solid phase of the porous medium become 
gradually included in the averaging domain and therefore strongly affect 
the averaged quantity. Let the representative length scale over which 
these rapid variations occur be denoted by L . Then, L represents the 
so-called microscopic characteristic length scale of the porous medium 
under consideration. An increase of the characteristic linear dimension d 
of the averaging domain will smooth out these rapid fluctuations and the 
averaged fluid quantity will, within some interval, be independent of d. 
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A further increase of d may lead again to variations in the averaged 
fluid quantity. These ones are due to the large-scale (gross) 
inhomogeneities of the porous medium and occur at the so-called 
macroscopic scale of the relevant porous medium. Now, in order to arrive 
at a meaningful averaged quantity and so at a meaningful averaging 
procedure, the averaged quantity should be insensitive to small changes 
of d. Clearly, this does not happen if d is either so small that it is of 
the order of the diameter of the interstices, or so large that the 
macroscopic inhomogeneities affect the averaging procedure. Hence, the 
reasonings outlined above lead to the following criterion for d: 

L< « d « L>( (3.1.1) 

where L represen ts the c h a r a c t e r i s t i c s c a l e of the macroscopic 
inhomogeneities. At t h i s stage i t should be noted t h a t for those 
f l u i d - f i l l e d porous media for which (3 .1 .1) does not apply ( e . g . , if L 
cannot be i d e n t i f i e d ) , the " r ep re sen ta t i ve elementary domain concept" 
f a i l s , and ins tead of the domain averaging procedure one has t o r e s o r t t o 
other t echn iques . For those cases where (3-1 -1) does apply, the 
r ep resen ta t ive elementary domain for the pe r t a in ing quant i ty can be 
introduced. 

Recently, Bachmat and Bear (1987, pp. 5-20) have presen ted , upon 
u t i l i z i n g a s t a t i s t i c a l procedure, quan t i t a t i ve upper and lower l i m i t s of 
d. In an ac tua l mult i -phase system these upper and lower l i m i t s can serve 
t o s e l ec t an appropr ia te value for d and hence for the volume of the 
r ep resen ta t ive elementary domain ( see , e . g . , Van der Grinten, 1987). 

In what fol lows, i t i s assumed tha t a common r e p r e s e n t a t i v e 
elementary domain can be determined for a l l re levant microscopic 
q u a n t i t i e s to be averaged. This r e p r e s e n t a t i v e elementary domain wi l l be 
denoted as D ; i t i s taken to be t ime- and s h i f t - i n v a r i a n t , and i t s e 
pos i t ion i s speci f ied by the pos i t i on vector x of i t s " cen t e r " , for which 
we take i t s barycenter , given by (see Figure 3.1) 
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x = V x'dV, (3.1.2) 
x'SD (x) — e — 

where 

J v' en tv 1 J 
dV (3.1.3) 

'x'SD (x) 
— E — 

5GDe(0) 

is the volume of D = D (x), and where the shift invariance of D implies e e — e 
that if x'SD (x) with x' = x + £, then 5GD (0). All averages over D of 

Fig. 3.1. The position vector x' of the fluid and solid particles 
f s in the subdomains D and D inside the (schematic) e e 

representative elementary domain D with position 
vector x_. The solid matrix material is assumed to be 
rigid and immovable. 
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the pore-sca le q u a n t i t i e s are assigned t o the pos i t i on of the barycenter 
of D , and are subsequently i d e n t i f i e d with the corresponding q u a n t i t i e s 
on the macroscopic s c a l e . By following t h i s procedure, we use in fac t the 
s o - c a l l e d continuum hypothesis (of s t a t i s t i c a l phys ics ) : appropr ia te 
averages over D of microscopic q u a n t i t i e s lead to the assoc ia ted 
macroscopic q u a n t i t i e s , where the l a t t e r are assumed t o vary piecewise 
continuously with p o s i t i o n . By t h i s s p a t i a l averaging process , the ac tua l 
f l u i d - f i l l e d porous medium i s replaced by a model continuum. 

In our app l i ca t ions we assume the so l id phase of the f l u i d - s a t u r a t e d 
porous mate r ia l to be r i g i d and immovable, and to be non in te rac t ing with 
the f lu id f i l l i n g the void space , while the i n t e r s t i c e s of the porous 
system are assumed to be in te rconnec ted . 

In the two-component composite of the f l u i d - s a t u r a t e d porous medium, 
f D = D (x) i s the union of the subdomain D (x) in which the f l u i d i s 

E E — E — 
g 

present and the subdomain D (x) in which the solid is present (see Figure 
f e s f 

3.1). The volumes of D (x_), and D (;c) are denoted by V (x), where 
Vf(x_) = ( dV, (3.1.1) 
e Jx'€D^(x) 

g and V (x), where e — 

Ĉ  = f s 
Jx'6D3(x) 

V®(x) = | o dV, . (3.1.5) 

respectively. The volume fractions occupied by the fluid in D is denoted 
by 

/(x) = Vf(x)/V ; (3.1.6) 

it is also known as the volumetric porosity of the medium. The volume 
fraction $ occupied by the solid in D is denoted by 

$s(x) = Vs(x)/V . (3.1.7) 
— E — E 
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f s 
Since V = V (x) + V (x_), i t r e ad i l y follows that for a l l _x throughout 

the domain of app l i ca t ion we have (cf . (3 .1 .3 ) - ( 3 . 1 . 7 ) ) 

<t>f(x) + <f,s(x) = 1 and 0 < <|>f(x) < 1, OS <|>f(x) < 1 . ( 3 -1 .8 ) 

For any quant i ty I|I a s soc ia ted with the f l u id phase in D (41 may be a 
s c a l a r , or a Car tes ian component of a vec to r , or a tensor of a r b i t r a r y 
rank) we now define i t s corresponding " f lu id average", designated as <I|J>, 

f 
and i t s corresponding " i n t r i n s i c f l u i d average" , t o be denoted by <ty> , 
as 

V " ( f <i|)>(x,t) = V I i|)(x',t)dV (3 .1 .9 ) 
x'GD (x) 

and 

<i^> r(x,t) = [ / ( x ) ] " 1 i M x \ t ) d V , (3 .1 .10) 
x'GD (x) 
— £ — 

r e s p e c t i v e l y . From (3 .1 .6) and (3-1 .9) - (3 .1 .10) the i n t e r r e l a t i o n 
f between <ii> and <ty> follows as 

<i|/>(x,t) = $ f (x)<i( .> f (x , t ) . (3 .1 .11) 

In the volume averaging of the po re - sca l e equat ions to be car r ied out in 
Sec t ion 3 .2 , a mathematical r e l a t i o n i s needed which l i n k s the averages 
of the s p a t i a l de r iva t ives of microscopic q u a n t i t i e s to the s p a t i a l 
d e r i v a t i v e s of t h e i r averages , i . e . , t o the s p a t i a l de r iva t ives of the 
macroscopic q u a n t i t i e s . In the l i t e r a t u r e on the subject the re levant 
r e l a t i o n i s known as the "Sla t tery-Whitaker averaging theorem", 
formulated independently by S l a t t e r y and by Whitaker in 1967. For \\> the 
r e l e v a n t i n t e r r e l a t i o n between 3. < I(J> and <3!I(J> amounts to (see, e . g . , 
S l a t t e r y , 1967, p . 1067, or Whitaker, 1969, p . 20) 
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3j<1i>(x,t) = O ^ X x . t ) - v"1 v ( x ' H ( x ' . t ) d A , (3 .1 .12) 
x'GE (X) 

where 3! denotes p a r t i a l d i f f e r e n t i a t i o n with respec t t o x'., I 
l K l e 

r ep resen t s the i n t e r f a c e ( s ) between the f lu id phase and so l id phase as 
far as they are present in the i n t e r i o r of D , and v. denotes the u n i t 

e f 1 

vector along the normal to l point ing away from D (see Figure 3-1)• The 
proof of t h i s theorem as given by S l a t t e r y (1967, p . 1067) and Whitaker 
(1969, pp. 18-20) has been obtained by applying s e v e r a l , r a t h e r t ed ious 
and inconvenient , manipulations with t h e ' g e n e r a l Reynolds t r a n s p o r t 
theorem (Truesdel l and Toupin, 1960, p . 3^7). La te r , Gray and Lee (1977) 
have presented a d i f fe ren t proof of (3 .1 .12) based, t o some e x t e n t , on 
the theory of general ized func t ions . In Appendix A, an a l t e r n a t i v e , l e s s 
verbose, proof of (3 .1 .12) i s presented t ha t i s based on Gauss' theorem. 

To conclude t h i s sec t ion , we observe tha t upon s u b s t i t u t i n g \{J = 1 in 
( 3 . 1 . 1 2 ) , we are led to (cf. ( 3 . 1 . 6 ) ) 

3.<|>f(x) = - V 1 
i — e v. (x ' )dA. (3 .1 .13) 

x 'SI (x) 1 

— E — 

The averaging operators (3.1.9) and (3.1.10), and the property (3-1.12) 
are used in the next section. 
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3.2 . VOLUME AVERAGING OF THE PORE-SCALE EQUATIONS 

In t h i s sec t ion i t i s shown how the equations governing the flow of 
groundwater on a macroscopic s c a l e a r i s e from the volume averaging over 
the r e p r e s e n t a t i v e elementary domain D of the pore - sca le equations for 
creeping flow. 

As argued in Sect ion 2.1), the isothermal flow in the i n t e r s t i c e s of a 
wa te r - sa tu ra t ed s o i l can, for most cases met in p r a c t i c e , be accura te ly 
descr ibed by the equat ions for quas i - s teady , incompressible , viscous 
f l u i d flow. The r e l e v a n t equat ions a re r e c a p i t u l a t e d below (cf. ( 2 . 1 . 2 2 ) , 
(2.11.12), (2.1.1)) , ( 2 . 1 . 2 3 ) , and ( 2 . 1 . 6 ) ) : 

3 ^ . = 0, ( 3 .2 .1 ) 

Bj-^j + pgj = 0, (3 .2 .2) 

T i j ' - P ^ j + oiy (3 .2 .3) 

where 

o i j = 2nd i d (3 .2 .4) 

and 

d = ( 1 / 2 ) O i V + 3 j V . ) . ( 3 .2 .5 ) 

We s t a r t the averaging procedure by applying the volume averaging 
opera to r as defined in (3 .1 .9) t o (3 .2 .1) - ( 3 . 2 . 5 ) . In view of the 
assumption t ha t p and g. in (3 .2 .2) and n in (3 .2 .4) can be taken to be 

f 1 

cons tan t over D , and observing the property ( 3 . 1 . 1 2 ) , we then obtain 
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3 .<v .> = - V_1 I v . v . d A , 
1 X E J x ' 6 Z £ ( x ) l l 

( 3 . 2 . 6 ) 

3 j < T i j > + * f p g i = - V~1 v . T . .dA, 
x ' 6 1 (x) J 1 J 

— e — 

(3 .2 .7 ) 

<T. .> = " <P>6. . + < 0 . . > , 
IJ I J 1J 

<o. .> = 2n<d, .> , 
i j 1J 

( 3 . 2 . 8 ) 

( 3 . 2 . 9 ) 

and 

<d. .> = (1 / 2 ) ( 3 . < v . > + 3 .<v.>) 
i j i J J i 

• L . x'6Ee(x_) 
(1 /2 ) ( v . v . + v .v . )dA, 

i J J i 
(3 .2 .10 ) 

where the second terra on the l e f t -hand side of (3 .2 .7 ) has been obtained 
with the a id of (3 .1 .4 ) and ( 3 - 1 . 6 ) . In i n t e r p r e t i n g the d i f f e r en t 
surface i n t e g r a l s over the f l u i d / s o l i d i n t e r f a c e ( s ) I in ( 3 . 2 . 6 ) , 
(3 .2 .7 ) and ( 3 . 2 . 1 0 ) , we f i r s t r e c a l l tha t the s o l i d matrix of the porous 
system was assumed to be r i g i d and immovable. Then, with the a id of the-
boundary condi t ions l i s t e d in Table 2 . 1 , we have upon approaching E from 
f e 

D (see Figure 3.1) 

v. = 0 l at I (3.2.11) 

and, as an immediate consequence, the surface integrals over I in the 
right-hand sides of (3.2.6) and (3.2.10) vanish identically. Hence, 
(3.2.6) and (3.2.10) reduce to 

W 0, (3.2.12) 

and 
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<dj..> = ( 1 / 2 ) O i < v > + 3 .<v.>) , (3-2.13) 

r e s p e c t i v e l y . This leaves us with the task of i n t e r p r e t i n g the remaining 
i n t e g r a l at the r igh t -hand s ide of ( 3 . 2 . 7 ) . At t h i s s tage in our 
a n a l y s i s , i t should be emphasized tha t the averaged equat ions (3 .2 .6) -
(3 .2 .10) and (3 .2 .12) - (3-2.13) a re exact within the approximations that 
have already been made. However, without a fur ther r e l a t i o n s h i p between 
the remaining surface i n t e g r a l in (3 .2 .7) and some averaged, macroscopic, 
f i e l d quan t i t y , the equat ions are not yet fu l ly on the macroscopic s c a l e . 
C lea r ly , the r e l evan t i n t e g r a l r ep resen t s the volume dens i ty of the t o t a l 
force tha t the f l u i d via the f l u i d / s o l i d i n t e r f a c e ( s ) E exerts on the 

e 
r i g i d s o l i d m a t e r i a l . To get some idea of what the f l u i d / s o l i d 
i n t e r a c t i o n i n t e g r a l amounts t o , we apply the volume averaging procedure 
to the simpler pore - sca le equat ion for hyd ros t a t i c equi l ib r ium. 

For a f l u i d in h y d r o s t a t i c equ i l ib r ium, (3 .2 .2 ) reduces to 

- 3.p + p g i = 0, (3 .2 .11) 

from which we have 

p = p g . x . + p , (3 .2 .15) 

where p i s an a r b i t r a r y cons tant p r e s su re . Upon applying the volume 
averaging operator (3-1-9) to (3.2.11) we a r r ive with the aid of (3.1.12) 
and (3 .1 .6 ) at 

- 3.<p> + (J>fpg. - V_1 pv.dA = 0. (3.2.16) 
1 x e J l e v I 1 1 

x' Bt (x) — e — 

To obta in a macroscopic value for the surface i n t e g r a l in ( 3 . 2 . 1 6 ) , which 
r e p r e s e n t s the volume densi ty of force t ha t the f l u id , in equi l ibr ium, 
e x e r t s on the r i g i d s o l i d ma te r i a l in D , we fur ther apply the i n t r i n s i c 



CHAPTER 3 : BASIC RELATIONS OF GROUNDWATER FLOW -47-

volume averaging operator as defined in (3.1.10) to (3.2.15). The result 
can be written as 

<p>f(x) = pgixi + pgi(<x^>f(x) - x.) + p o, (3.2.17) 

f 
in which (<x'.> (x) - x . ) r ep re sen t s the v e c t o r i a l d i s tance between the 

1 1 f pos i t i on vector of the barycenter of the subdomain D of D and the .e e 
pos i t i on vector of the barycenter of D i t s e l f (cf. ( 3 . 1 . 2 ) ) . However, 
the d i f ference between these two pos i t i on vec tors i s of the order of 
magnitude of the microscopic length s c a l e L of the porous medium under 
cons idera t ion ; on the sca le d the term averages out ( t h i s condi t ion i s 
inherent t o the assumption tha t the volume "averages introduced a r e , 
within c e r t a i n l i m i t s , i n sens i t i ve to the choice of d ) . Upon 
d i f f e r e n t i a t i n g both s ides of (3 .2 .17) with r e spec t t o x . , we then have 
(cf. ( 3 . 1 . D ) 

3.<p> f = pg i [ l + 0rder (L < /L > ) ] = p g ^ (3 .2 .18) 

Now, upon u t i l i z i n g (3.2.18) in (3 .2 .16) i t i s with the fur ther aid of 
(3 .1 .11) e a s i l y ve r i f i ed tha t the following express ion for the sur face 
i n t e g r a l in (3 .2 .16) r e s u l t s : 

V-1 pv.dA = - <p>f3.<t>f. (3 .2 .19) 
e 'x'Gl ( x ) 1 1 

— E — 

The macroscopic picture associated with (3.2.19) can be elucidated as 
follows. Due to the fact that the solid phase in D is', in general, not 
completely surrounded by the fluid phase (see Figure 3.1) the volume 
density of force which the fluid, under hydrostatic conditions, exerts on 
the solid material in D differs from -41 pg. and is, as (3.2.19) shows, 
balanced by the product of the intrinsically averaged hydrostatic fluid 
pressure and the gradient of the volumetric porosity. Finally, upon 

f identifying <p> with the macroscopic pressure that one usually observes 
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and measures in practice (see Subsection 3.2.2), (3.2.18) constitutes the 
equation for hydrostatic equilibrium at the macroscopic scale. 

Now, let us return to the analysis of the fluid/solid interaction 
integral in (3.2.7). Since rigidity and immovability of the porous 
material have been preassumed, it is obvious that its hydrodynamic part 
(its hydrostatic part led to (3.2.19)) can be seen as the volume density 

f of resultant resistance or drag force that the fluid in D experiences 
when it permeates through the interconnected interstices of the porous 
substance. In general, these resistance or drag forces depend on the 
statistical properties of the interface Z and on the physical properties 
of the fluid under consideration. For instance, the latter forces vanish 
if there is either no fluid motion, or no viscosity, or no solid phase at 
all. In principle, we could via methods of statistical physics arrive at 
the macroscopic value of these forces. This, however, is beyond the scope 
of the present analysis. On the other hand, it is well known that an 
isolated, rigid and immovable, spherical solid particle of radius r, 
immersed in an unbounded, uniform, steady fluid flow at a small Reynolds 

00 

number, whose ve loc i ty a t a l a rge dis tance from the p a r t i c l e i s v . , 
exper iences a hydrodynamic surface force F. given by ( see , e . g . , Landau 
and L i f s h i t z , 1966, p . 66, or Batchelor , 1983, pp. 230-235) 

F1? - 6Trnrv°\ (3.2.20) 

which i s known as S tokes ' formula and which c o n s t i t u t e s a l i nea r 
h °° 

r e l a t i o n s h i p between F. and v . . Now, Brenner (1963) has shown tha t for an 
ob jec t of a r b i t r a r y shape, the d i r e c t i o n of the hydrodynamic surface 
fo r ce i s not n e c e s s a r i l y the same as the one of the "ve loc i ty at a large 
d i s t ance" and has derived the following l i nea r r e l a t i o n s h i p between F. 

00 

and v . : 
l 

FJ = na^vj, (3.2.21) 
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where a is a symmetric and positive definite tensor that only reflects 
the intrinsic properties of the solid particle, viz. its geometrical 

GO 

shape and dimensions. Now, upon identifying v. with the averaged velocity 
<v.>, i t seems fair to assume that on the macroscopic scale the net part 
of the hydrodynamic surface force in (3.2.7) (produced by the fluid 
motion) is also l inearly related to <v.> and is a fraction of the value 
that would hold for the isolated solid part icles considered above. 
Accordingly, with the further aid of the resul ts obtained from the 
hydrostatic case we now postulate the following linear expression for the 
relevant interaction integral on the right-hand side of (3.2.7): 

V " 1 

e 
V . T . .dA = - <f)fR. .<v.> + < p > f 3 . é f . ( 3 . 2 . 2 2 ) 

x '6E (x) J 1 J 1 J J l 

Equation (3.2.22) const i tutes , within the realm of a linear theory, the 
most general relationship that exists between the fluid/solid interaction 
integral and the averaged macroscopic field quanti t ies . In (3.2.22), R.. 
i s denoted as the tensorial r e s i s t iv i ty of the f luid-f i l led porous medium 
and incorporates the topological properties of the rigid solid material 
in D as well as the viscous properties of the fluid. By analogy with a. . 

i j 
in (3.2.21), we assume R.. to be symmetric and positive definite. The 

f inclusion of the factor <)> in the flow resistance term in (3.2.22) 
accounts for the fact that in the absence of a fluid phase the concept of 
a flow resistance is no longer meaningful. Relations similar to (3.2.22), 
but based on other arguments, have also been formulated by, for example, 
Lehner (1979) and Hassanizadeh and Gray (1980). In the work of 
Hassanizadeh and Gray (1980), the right-hand side of (3.2.22) only arises 
after a strong reduction of their general set of macroscopic constitutive 
equations, viz. after applying a linearization procedure, neglecting 
inertia and thermal effects, etc. Lehner (1979) ends up with (3.2.22) as 
an immediate result of a reciprocity relation that involves the volume 
averaged stress and the volume averaged fluid velocity. However, in 
deriving this reciprocity theorem by averaging an approximated form of 
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the mechanical energy balance for f l u i d flow at the po re - sca l e , he 
d i r e c t l y l i n k s the volume average of the product of two microscopic f lu id 
q u a n t i t i e s t o the product of the volume average of each of the two 
q u a n t i t i e s , without proving t h a t such r e l a t i o n s h i p a p p l i e s . The 
r e c i p r o c i t y theorem a r r ived a t shows t h a t , in f a c t , the symmetry of R.. 
has been preassumed in the onset of the procedure. 

A s t ra ightforward dimensional ana lys i s shows tha t we can wr i te 

R ^ = nRt j , (3 .2.23) 

where R! . i s the so - ca l l ed i n t r i n s i c r e s i s t i v i t y of the porous medium. 
The inverse of R' can be i d e n t i f i e d with the t e n s o r i a l ( i n t r i n s i c ) 
permeabi l i ty t ha t one i s accustomed t o use in p r a c t i c a l groundwater flow 
problems. Henceforth, we s h a l l use R. . as the fundamental c o n s t i t u t i v e 
parameter t h a t i s r e p r e s e n t a t i v e of the r e s i s t a n c e tha t the flow 
encounte rs . 

Returning to ( 3 . 2 . 7 ) , with (3 .2 .22) now s u b s t i t u t e d in i t , and using 
(3 .1 .11) and ( 3 . 2 . 8 ) , we are led to the following equation of motion: 

- 4>f8.<p>f + 3 j <o i J > - <)>fRij<vJ> = - / p g . , (3 .2 .24) 

which has to be supplemented by ( 3 . 2 . 9 ) , ( 3 . 2 . 1 3 ) , and ( 3 . 2 . 1 2 ) . The 
macroscopic p i c tu r e assoc ia ted with these equat ions i s t ha t the f lu id and 
the so l id phases are fu l ly mixed and simultaneously present in some 
domain in space, while t h e i r i n t e r a c t i o n i s incorporated in the 
coe f f i c i en t R . . . Henceforth, the averaged q u a n t i t i e s occurring in the 
l a t t e r equations are i d e n t i f i e d with the assoc ia ted macroscopic 
q u a n t i t i e s and the r e l evan t equat ions are considered as the macroscopic 
equat ions for f l u i d flow in porous media, app l i cab le under the condi t ions 
and assumptions ou t l ined above. Upon examining ( 3 . 2 . 2 4 ) , one can now say 
t h a t the macroscopic behavior of the f l u id (water) flow in a porous 
substance i s con t ro l led by the macroscopic pressure fo rces , the 
macroscopic viscous s t r e s s f o r c e s , the r e s i s t a n c e forces due to the 
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presence of the matrix ma te r i a l , and by the e a r t h ' s g rav i ty . I t should 
fur ther be not iced t ha t in the absence of f l u i d motion, (3 .2 .24) d i r e c t l y 
reduces to the macroscopic equat ion for h y d r o s t a t i c equi l ibr ium as given 
in ( 3 . 2 . 1 8 ) . 

With a view to the app l i ca t ion to common groundwater flow problems, 
we examine in (3 .2 .24) in some more d e t a i l the r e l a t i v e importance of the 
macroscopic viscous s t r e s s term 3 .<o. .> as compared with the macroscopic 

ƒ• J i J 

r e s i s t ance term <f> R..<v.>. To t h i s end, we use s ca l ing arguments s imi la r 
to the ones discussed in Sect ion 2 .4 . Let L (cf . ( 3 . 1 . 1 ) ) denote the 
c h a r a c t e r i s t i c l i n e a r dimension of the groundwater flow problem under 

2 cons idera t ion and l e t a t y p i c a l value of L be 10 m. Then, if in 
(3 .2 .23 ) , as we suggested e a r l i e r , R'. . i s of the same order of magnitude 
as the inverse of the usual permeabi l i ty of s u b s o i l s , which for i s o t r o p i c 

_ i c p i n ? 

s o i l s var ies from = 1 0 m for peat t o = 10 m for coarse sands, i t 
r ead i ly follows tha t the r a t i o of the orders of magnitude of macroscopic 
viscous s t r e s s and the macroscopic r e s i s t i v i t y ( i . e . , the (second 

-1 9 t e r m ) / ( t h i r d term) in (3 .2 .24)) w i l l be in the range of = 10 to -14 = 10 . C lear ly , in common groundwater flow problems one can the re fo re 
neglect the inf luence of the macroscopic viscous s t r e s s forces with 
respect t o the macroscopic r e s i s t a n c e f o r c e s , and accordingly approximate 
(3.2.24) by 

- <|>f3.<p>f - <(>fR. .<v.> = - / p g . , ( 3 . 2 . 2 5 ) 
l i j J i 

which i s equivalent t o 

- 3.<p>f - R..<v.> = - pg . . (3 .2 .26) 

Equation (3.2.26) i s e s s e n t i a l l y Darcy 's law. I t expresses t ha t in common 
groundwater flows, for example, seepage through dams and a q u i f e r s , e t c . , 
the flow phenomena involved are predominantly governed by the p ressure 
fo rces , the r e s i s t i v i t y of the porous mass, and the forces due t o the 
e a r t h ' s g r a v i t y . 
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With reference t o ( 3 . 2 . 2 4 ) , we remark tha t the term 3.<a. .> i s often 
denoted as the Brinkman c o r r e c t i o n term, a f t e r Brinkman (1947) who r a t h e r 
h e u r i s t i c a l l y proposed t h i s ex t r a term in Darcy 's law in order to deal 
with some spec ia l s i t u a t i o n s . In p a r t i c u l a r , he added t h i s term t o 
develop boundary cond i t ions d i f f e ren t from the ones tha t comply with 
(3 .2 .12 ) and (3 .2 .26) (see Sect ion 3-3) for problems of f l u id flow 
through common porous substances with low permeabi l i ty and adjoining 
media with a very high permeabi l i ty , i . e . , a very low s o l i d p a r t i c l e 
d e n s i t y . Scal ing arguments s imi l a r t o the ones discussed above to j u s t i f y 
the neg lec t of the macroscopic viscous forces in ( 3 . 2 . 2 4 ) , have a l so been 
used by S l a t t e r y (1969). Lehner (1979) confirms, upon using d i f f e ren t 
arguments, the r e l a t i v e unimportance of the Brinkman cor rec t ion term in 
(3 .2 .24) for most s i t u a t i o n s met in p r a c t i c e . 

F i n a l l y , we note t h a t Darcy ' s formula only has to be supplemented by 
the macroscopic con t inu i ty equation as given in (3.2.12) t o complete the 

f f 
se t of equations in the f low-f i e ld q u a n t i t i e s <p> and <v.> ($ , p, g . , 
and R. ., and/or n and R!. , a re assumed to be known). 

i j i j 

3 . 2 . 1 . INTRODUCTION OF MACROSCOPIC SOURCES 

In many problems concerned with f l u id flow in porous media we encounter 
the presence of sources , for ins tance sources that e i t he r in jec t i n t o or 
a b s t r a c t f l u i d from the f l u i d - s o l i d composite. In view of t h i s , we 
d i s c u s s in presen t subsec t ion t he in t roduc t ion of macroscopic sources in 
the macroscopic f l u i d flow equat ions . 

Since the de ta i l ed physical behavior of the sources i s e i ther 
i r r e l e v a n t t o or beyond the scope of the present a n a l y s i s , i t su f f ices 
here t o incorpora te the a c t i o n of the sources in a manner tha t i s 
compatible with the s t r u c t u r e of the bas ic equat ions discussed in the 
previous s e c t i o n . Consider a f l u i d - s a t u r a t e d porous medium present in 
some bounded domain D and l e t the macroscopic sources be located in some 
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bounded subdomain D_D_ of D. The closed boundary sur face of D o n . i s onU bKL 

denoted by 3DcRp a n d t n e u n i t vector along the normal to 3D„Rr po in t ing 
away from D by v . . The pa r t of 3D„Rr t ha t i s occupied by the f l u i d SRC SRC 
phase i s denoted by 9Dc;Rr' a n d t n e P a r t o f ^D<?Rf t h a t i s 0 0 0 U P i e d by t h e 

sol id phase by 3D„D„ (see Figure 3 -2 ) . The two types of sources tha t a re 

F ig . 3.2. The bounded source domain D i n t e r i o r t o the closed 
T s boundary surface 3D„D„ = 8D„D„ U 3D ( schemat ica l ly ) . btiL oriO onC 

compatible with the s t r u c t u r e of the macroscopic equat ions (3 .2 .12) and 
( 3 . 2 . 2 1 ) , and hence ( 3 . 2 . 2 5 ) , are those t h a t e i t h e r i n j ec t (or a b s t r a c t ) 

f 
a c e r t a i n net volume across 3D „ or exer t a c e r t a i n net force across 

oKC 
3DSRC' 

F i r s t , l e t us consider the presence of a volume i n j e c t i o n source in 
f 

D , and l e t Q represent the net time r a t e of outward flow across 3D 

produced by t h i s source, i . e . , 
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Q = v v dA, (3.2.27) 
^' 6 8 DSRC 

where Q is positive for volume injection and negative for volume 
abstraction. To arrive at the local form of (3.2.27), we extrapolate this 
equation to the level of the representative elementary domain D , 
centered at the position x_. Accordingly, we have 

-1 <q> = V 
e 

v.v.dA, (3-2.28) 
x'es1^) L x 
— E — 

where <q> i s the loca l equivalent time r a t e of volume source densi ty of 
f 

volume in j ec t i on ( abs t r ac t i on ) and S denotes the pa r t of 3D that i s 
occupied by the f lu id phase. Accordingly, the macroscopic con t inu i ty 
equat ion (3 .2 .12) i s t o be extended to 

3 i<v1> = <q>. (3 .2 .29) 

Secondly, we consider a force source to be present in D . Let F. 
onU „ 1 

denote the net surface force t r ansmi t t ed by t h i s source across SD.,^., onto 
the surrounding f l u i d , i . e . , 

F. = . V .T . .dA. (3 .2 .30) 
1 V^SRC J ^ 

To a r r i v e a t the loca l form of ( 3 . 2 . 3 0 ) , we e x t r a p o l a t e t h i s equation to 
the l e v e l of the r e p r e s e n t a t i v e elementary domain as wel l . Accordingly, 
we have 

<f.> = V-1 „ V .T . .dA, ( 3 . 2 . 3 D 
E J x-6S f (x ) J 1 J 

— e — 

where <f.> is the equivalent volume source density of force. Accordingly, 
Equation (3.2.2*0 is to be extended to 



CHAPTER 3 : BASIC RELATIONS OF GROUNDWATER FLOW -55-

- 4>f 3. <p>f + 3.<o. .> - 4>fR. .<v.> = - <f>fpg. - <f .> . (3 .2 .32) 
l J l j 1J J l i 

Now, upon applying t o (3.2.32) s imi l a r arguments as t ha t have l e d us from 
(3 .2 .21) to Darcy's law ( 3 . 2 . 2 6 ) , i t r e ad i l y follows tha t (of. ( 3 . 1 . 1 1 ) ) : 

- 3 i<p> f - R i j<v J> - - pg i - < f \ > f . (3 .2 .33) 

Note t h a t in a souroe-f ree domain D, i . e . , a domain throughout which both 
<q> = 0 and <f.> = 0, ( 3 . 2 . 2 9 ) , ( 3 -2 .32 ) , and (3 .2 .33) reduce t o 
( 3 . 2 . 1 2 ) , ( 3 -2 .24 ) , and (3 .2 .26 ) , r e s p e c t i v e l y . In the theory of 
groundwater flow a source a b s t r a c t i n g water from the subso i l i s often 
r e fe r r ed to as a "s ink"; fu r ther , in most p r a c t i c a l s i t u a t i o n s <f.> = 0. 
For reasons of symmetry in the equat ions , however, the l a t t e r source term 
has been r e t a ined which wil l prove t o be helpful in the course of our 
fu r ther ana lys i s in Chapter 4. 

At t h i s point i t i s remarked t h a t , through the ac t ion of ex t e rna l 
sources , we can introduce a time dependence in the flow problem, i . e . , 
<q> and <f.> can be funct ions of both space and t ime. This time 
dependence induces a corresponding time dependence in <p> and <v.>. 

Equations (3 .2 .29) and (3-2.33) wil l serve as the bas ic f i e l d 
equations for groundwater flow and in order to fu l l y specify a 
groundwater flow problem they only have to be supplemented by appropr i a t e 
boundary cond i t i ons . The l a t t e r condi t ions are discussed in Sec t ion 3-3. 

3 .2 .2 . PRACTICAL PRESSURE-GAUGE MEASUREMENT IN GROUNDWATER FLOW 

In t h i s subsect ion i t i s argued t h a t the quant i ty t ha t one observes in a 
p r a c t i c a l measurement of the (macroscopic) p res su re in a wa te r - sa tu ra t ed 

f 
subsoi l corresponds to the i n t r i n s i c f lu id averaged pressure <p> tha t 
has been introduced in Section 3 .2 . 
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In a p r a c t i c a l pressure-gauge measurement in groundwater flow, the 
pressure-gauge probe ( a l so known as a piezometer) usual ly c o n s i s t s of a 
tube in jec ted i n t o the subsoi l up to the depth where one wants t o measure 
the loca l macroscopic p re s su re . The endface of a pressure-gauge probe, 
i n s e r t e d i n t o the s u b s o i l , i s schemat ical ly shown in Figure 3 .3 . Now, l e t 
us assume tha t the c r o s s - s e c t i o n a l surface of the probe coincides with a 
r e p r e s e n t a t i v e elementary surface A , located around the pos i t ion _x. The 

Fig. 3 . 3 . Schematic d e t a i l of the endface of a pressure-gauge probe 

in jec ted in the wa te r - sa tu ra t ed s u b s o i l . 

p a r t of A that i s occupied by the f l u i d i s r e fe r red to as A ; the part 
g 

of A that i s occupied by the s o l i d as A . Hence, 

Af U AS. e e (3.2.31) 

f s f s The areas of A , A and A are denoted as A , A and A , respectively. E e e e E e 
The probe is considered to be an ideal one: it does not influence the 
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fluid flow in the subsoil and all capillary effects that might occur 
inside the tube are neglected. 

Let us consider a situation where the groundwater has reached a level 
h above the endface of the probe, at which level it is at rest (see 
Figure 3.3). Then, the pressure P at the endface of the probe will be 
related to the height h by 

P = pgh, (3.2.35) 

where g i s the constant s ca l a r a c c e l e r a t i o n of f r ee f a l l at the e a r t h ' s 
sur face , or near to i t , and where we have used the f a c t that i n 
groundwater flow the v e c t o r i a l a c c e l e r a t i o n of f ree f a l l i s d i r e c t e d 
along -i_ (see Figure 2 . 1 ) . Note t ha t P in (3.2.35) i s to be taken zero 
a t the height h in the tube . Now, the force F ac t ing on the water j u s t 
beneath the endface of the probe i s given by 

F = PA^. , (3 .2 .36) 

Since, however, the groundwater in the probe i s assumed to be at r e s t , F 
a lso equals 

F = f p(x ' )dA. (3 .2 .37) 
J x ' S A ( x ) 
— e — 

Then, on the assumption t ha t (for arguments that support t h i s assumption 
for predominantly c a p i l l a r y flow we r e f e r t o Whitaker (1969), and Bear 
and Bachmat (1983)) , 

[ A f ( x ) ] _ 1 [ p ( x ' ) dA 
J x '6A ( x ) 

= [ V f ( x ) ] - 1 f p(x*)dV = < p > f ( x ) , ( 3 .2 .38 ) 
e J x ' 6 D ( x ) 
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we arrive from (3.2.36) and (3.2.37) at the following interrelation 
f between P and <p> : 

P = <p>f. (3.2.39) 

For the water l eve l h t h a t i s measured in a p r a c t i c a l pressure-gauge 
measurement, we then ob ta in from (3 .2 .35) and (3 .2 .39) 

h = (pg)" 1 <p> f . (3 .2 .40) 

Equation (3.2.40) d i r e c t l y r e l a t e s h t o the i n t r i n s i c a l l y f lu id-averaged, 
f 

macroscopic, pressure <p> . 
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3 . 3 . MACROSCOPIC BOUNDARY CONDITIONS 

In f l u i d - s a t u r a t e d porous media con f igu ra t i ons , one often encounters 
regions where (some of) the c o n s t i t u t i v e parameters ( the volumetric 
poros i ty , the r e s i s t a n c e of the f l u i d - s a t u r a t e d porous medium, and/or the 
volume densi ty of f l u id mass) experience rapid changes within a d is tance 
of the order of the c h a r a c t e r i s t i c l i n e a r dimension of the r e l e v a n t 
r e p r e s e n t a t i v e elementary domain. From a macroscopic point of view the 
re levant c o n s t i t u t i v e parameters suf fer jump d i s c o n t i n u i t i e s and in view 
of the macroscopic theory developed s o f a r , i t seems na tu ra l t o t r e a t 
these regions macroscopically as sur faces of d i s con t inu i ty in ma te r i a l 
p r o p e r t i e s . For any type of these sur faces ( i n t e r f a c e s ) we assume t h a t 
the f lu ids at e i t h e r s ide of i t ne i the r mix nor move away from i t . 

Since across a d i scon t inu i ty surface ( i n t e r f ace ) the c o n s t i t u t i v e 
parameters show abrupt changes, a l s o (some of) the dependent f i e l d 
q u a n t i t i e s w i l l , in genera l , show a discont inuous behavior, where, 
s imi lar t o the case of a s ing le -phase continuum (see Section 2 . 2 ) , on 
physical grounds only jumps by f i n i t e amounts are admiss ible . Now, due to 
these jump d i s c o n t i n u i t i e s tha t a r i s e in (some of) the f i e l d q u a n t i t i e s , 
the l a t t e r q u a n t i t i e s are no longer cont inuously d i f f e r e n t i a b l e 
throughout a domain tha t contains (par t of) a d i scon t inu i ty surface and 
hence the p a r t i a l d i f f e r e n t i a l equat ions t ha t govern the r e l evan t 
f lu id-f low phenomena cease t o hold in the immediate v i c i n i t y of these 
sur faces . Therefore, the l a t t e r equat ions have to be supplemented by a 
ce r t a in se t of boundary condi t ions t ha t i n t e r r e l a t e the f low-f ie ld 
q u a n t i t i e s a t e i t h e r s ide of the sur face of d i s c o n t i n u i t y . 

For groundwater flow, the bas ic equat ions are (3.2.29) and ( 3 . 2 . 3 3 ) . 
Now, to in terconnect the so lu t ions to (3 .2 .29) and (3 .2 .33) a t e i t he r 
s ide of a surface of d i scon t inu i ty in medium ( f lu id and/or s o l i d ) 
p r o p e r t i e s , we apply the same method as ou t l i ned in Section 2.2 : we 
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l o c a l l y rep lace the flow equat ions (3 .2 .29) and (3 .2 .33) by another 
system that contains no s p a t i a l d i f f e r e n t i a t i o n s across the r e l evan t 
d i s c o n t i n u i t y sur face , but t h a t for continuously varying medium 
p rope r t i e s i s equivalent t o the system (3.2 .29) and (3 -2 .33 ) . Let S 
denote a smooth surface of d i s c o n t i n u i t y t ha t i n t e r s e c t s a bounded domain 
D, conta in ing a f l u i d - s a t u r a t e d porous medium; S divides D in to the 
subdomains D and D_, r e s p e c t i v e l y . The uni t vector v. along the normal 
to S i s point ing i n to D . Now, l e t _x be the p o s i t i o n vector of some point 
on S. Then, t o circumvent the problem of the d i f f e r e n t i a t i o n along v. in 
(3 .2 .29) and (3 -2 .33) , we i n t e g r a t e these equations along a s t r a i g h t l i n e 
j o i n i n g a point with p o s i t i o n vector j< — Ivv (with h > 0) located i n D to 
a poin t with pos i t ion vector x + h_v located in D (see Figure 3 . 4 ) . 

x + hv 

x-hv 

F i g . 3-4. Configurat ion employed for the de r iva t ion of the boundary 
condi t ions a t the i n t e r f a c e S. 

Applying t h i s procedure t o ( 3 . 2 . 3 3 ) , we obtain 
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S—h 

h 

s=-h 

3.<p> ( x + s v ) d s 

p(x_+sv)g .ds 

s=-h 
R. . ( x+sv )<v .>(2<+s\))ds 

s=-h 
<f .> ( x + s y ) d s = 0 . ( 3 .3 -1 ) 

As a next s t e p , we use (2 .2 .2) in (3 .3 .1) and take i n t o account t ha t a l l 
components of the in tegrands in (3-3-1 ) p a r a l l e l t o S remain bounded; 
hence, t h e i r con t r ibu t ion vanishes as h + 0. The same remarks apply to 
the components along _v of the in tegrands of the l a s t th ree terms in the 
le f t -hand side of ( 3 . 3 . 1 ) . As a consequence, i f h tends to zero in 
( 3 . 3 . 1 ) , we are led to (cf. (3 .3-1) and ( 2 . 2 . 2 ) ) 

lim 
h+0 

h fh f 
3.<p> (jx + sv)ds = lim N. 3 <p> (x+s_v)ds 

s=-h X h+0 Js=-h 1 S S 

= l i m v . [<p> f (x+h\>) - <p> f( .x-lTv)] = 0, 
h+0 1 

( 3 . 3 . 2 ) 

1<P> J 1 J 2 - 0 at S, ( 3 . 3 . 3 ) 

where N. i s defined in ( 2 . 2 . 3 ) . Equation (3-3.3) expresses t h a t the 
i n t r i n s i c a l l y f lu id-averaged, i . e . , the macroscopic, p ressure i s to be 
continuous across a s.urface of d i scon t inu i ty in mate r ia l p r o p e r t i e s . In 
der iv ing (3-3.3) we have assumed tha t no surface sources are concentra ted 
on S. Upon applying a s imi la r procedure to the con t inu i ty equat ion as 
given in (3 -2 .29) , i t i s ea s i l y v e r i f i e d tha t in the absence of any 
sources ac t ing on S we a r r i v e at 

v 1 [ < v i > ] 1 > 2 = 0 at S; ( 3 . 3 -4 ) 
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the component of the f lu id -averaged , i . e . , the macroscopic, f l u id 
v e l o c i t y t h a t i s normal t o the i n t e r f a c e i s t o be continuous ac ross the 
i n t e r f a c e . 

F i n a l l y , we mention the e x p l i c i t boundary condi t ions that have to be 
prescr ibed on boundaries of a s p e c i f i c type . F i r s t of a l l , for an 
immovable and f lu id - impene t rab le body immersed in a f l u i d - s a t u r a t e d 
porous substance , we have v.<v.> ■* 0 upon approaching the body's boundary 
surface via the i n t e r i o r of the porous medium. For t h i s s i t u a t i o n , <p> 
remains unspecif ied on the r e l e v a n t boundary. In groundwater flow, t h i s 
boundary condi t ion appl ies for ins tance at an impervious base of some 
w a t e r - s a t u r a t e d subterranean format ion. Secondly, we mention the 

f 
occurrence of p ressure - f ree s u r f a c e s , for which we have <p> ■» 0 upon 
approaching them. On t h i s type of sur face , v.<v.> remains unspeci f ied . 

In groundwater flow we are a l s o often confronted with the s i t u a t i o n 

where the l o c a t i o n of a pa r t of an i n t e r f ace i s unknown beforehand, but 
must be determined from other cons ide ra t ions in the groundwater flow 
problem. As an example, we f i r s t mention the flow of groundwater i n a 
dam, where the pos i t ion of the w a t e r / a i r i n t e r f a c e in the porous medium 
has to determined. Now, the boundary cond i t ions at such an i n t e r f ace are: 

f <p> ■* P .. and v.<v.> ■* 0, in which p . r ep r e sen t s the atmospheric ■ F *atm l l H a tm K F 

p r e s s u r e . Secondly, we mention the problem of the determination of the 
p o s i t i o n of f r e s h - w a t e r / s a l t - w a t e r i n t e r f a c e s occurr ing, for example, in 
s u b s o i l s loca ted in the v i c i n i t y of s eas . Here, the pos i t i on of t h e 
i n t e r f a c e s follows from the requirement tha t both boundary condi t ions 
(3 .3 -3 ) and (3-3.4) are s imultaneously s a t i s f i e d . 

Henceforth, for reasons of convenience in the subsequent chap te r s , we 
f f 

denote the q u a n t i t i e s <p> , <v.>, <q>, and <f.> , as p, v . , q, and f., 
r e s p e c t i v e l y . In addi t ion to t h i s we s h a l l denote v. as the ve loc i t y 
i n s t e a d of the (averaged) flow v e l o c i t y . Adopting t h i s nomenclature in 
( 3 . 2 . 2 9 ) , ( 3 . 2 . 3 3 ) , and in (3 .3 -3) and ( 3 - 3 - 4 ) , we are l ed to 

3 ^ . - q, (3-3-5) 

3.p + R i j V j = pg. + f., (3-3-6) 
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and 

[ P ] 1 J 2 = 0 a t S, ( 3 . 3 . 7 ) 

V J V J l , 2 = ° a t S' (3 .3 .8 ) 

r e spec t ive ly . In our a p p l i c a t i o n s , (3-3-5) - (3-3-8) a r e r e f e r r e d to as 
the basic (macroscopic) r e l a t i o n s for flow of groundwater. 
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3-4. UNIQUENESS THEOREM FOR GROUNDWATER FLOW, 

BASED ON ENERGY CONSIDERATIONS 

The purpose of the present s ec t ion i s to i n v e s t i g a t e the uniqueness of 
the s o l u t i o n of those groundwater flow problems tha t can mathematically 
be formulated as boundary-value problems. 

Quite a number of groundwater flow problems can mathematically be 
formulated as boundary-value problems. In problems of t h i s kind, we have 
to c o n s t r u c t , in a c e r t a i n bounded domain D t h a t i s e i t he r a bounded 
subdomain of the ac tua l flow conf igura t ion or contains the e n t i r e ac tua l 
flow conf igura t ion , so lu t i ons to the bas ic groundwater flow equations 
(3-3 .5) - ( 3 . 3 - 6 ) , t h a t s a t i s f y c e r t a i n add i t iona l condit ions at the 
boundary surface 3D of D. As such we mention the flow of groundwater in 
bounded subterranean formations l i k e confined aqu i f e r s . From a physical 
point of view, a unique flow f i e l d e x i s t s in these flow conf igura t ions , 
and hence, the question a r i s e s what boundary condi t ions do represent the 
phys ica l s i t u a t i o n such tha t uniqueness r e s u l t s . In t h i s respec t , i t i s 
known from t h e theory of p a r t i a l d i f f e r e n t i a l equat ions t ha t three types 
of admiss ib le , l o c a l , boundary cond i t ions deserve a t t e n t i o n . They may 
apply t o d i f f e ren t p a r t s of 3D and t h e r e f o r e , we assume 3D to be the 
union of t h r e e par t s (see Figure 3-5) : 

3D = 3D1 U 3D2 U 3D (3-4.1) 

where at l e a s t one of the par t s i s not the n u l l s e t . Consider again the 
bas i c equat ions for flow of groundwater (cf. (3-3-5) and (3-3-6)) 

3 .v . = q when xGD, (3 .4 .2 ) 

and 
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9 . p + R. . v . = p g . + f. when xGD. ( 3 . 4 . 3 ) 
i i j J i i 

For the f i r s t boundary-value problem ( D i r i c h l e t problem) we have 

p = i> when xG3D ; (3 .4 .4 ) 

for the second boundary-value problem (Neumann problem) 

v .v . = i> when xGdD , (3-4 .5) 

and for the t h i r d boundary-value problem (Robin problem) 

- oVjV. + Bp = iK when x63D . (3 .4 .6 ) 

Here, ty , i>-, and ty denote prescr ibed surface source d i s t r i b u t i o n s on 3D 
(see Figure 3 . 5 ) , while the known q u a n t i t i e s a and 6 incorpora te the 
re levant physical p roper t i es of the boundary surface 3D ( s e e , e . g . , Aziz 
and S e t t a r i , 1983, p . 73) . The boundary condi t ion on 3D i s pass ive : a 
and (3 have pos i t i ve values and, hence, an excess pressure i n D leads to 
an outward normal flow across 3D . To complete the boundary-value problem 
posed by (3 .4 .2) - (3 .4 .6) we note t h a t upon i n t e g r a t i n g (3 .4 .2 ) over D 
and applying Gauss' theorem, the fol lowing compa t ib i l i ty r e l a t i o n 
r e s u l t s : 

v v dA = q dV, (3-4 .7) 
Jx63D JxBD 

in which v. denotes the unit vector along the normal to 3D pointing away 
from D and where the contributions from the (possible) interfaces present 
in D have cancelled in view of the continuity condition (3.3-8). 

Before we shall prove that the relations (3.4.2) - (3.4.7) uniquely 
determine the flow field {p, v.} in D, we give some physical explanation 
of the different conditions (3.4.4) - (3.4.6). First of all, the boundary 
condition (3.4.1)) applies whenever the porous flow domain D is adjacent 
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to a (porous) fluid continuum body of relatively large size. Then, any 
fluid flow between the fluid continuum body and D will not appreciably 
alter the (known) pressure distribution in the relevant continuum body 
and hence G.'t.'O can be used on the boundary surface of D. In 
groundwater flow, this situation occurs, for example, at the interface 
between a saturated subsoil and a water reservoir of sufficiently large 
size (e.g., a relatively large lake). A special case of (3.4.1) occurs if 
p = p in which p is a given constant on 3D,. In this case, 3D, is an o o 1 1 
equipressure surface. 

The boundary condition (3.^.5) applies whenever we want to specify 

■av,v, +pp=i|)3 V,V, = (J)2 

F i g . 3 .5 . Domain D with closed boundary surface 3D = 3D U 3D U 3D , 
3' 

for which the uniqueness theorem i s der ived. 

the normal outflow (inflow) ac ross the boundary surface of a porous flow 
dorfcain in to (from) some adjacent aqui fer or r e s e r v o i r . A spec ia l case of 
(3 .1 .5 ) i s the occurrence of an impermeable surface bounding (part of) 
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the porous flow domain D, for which we have i|i = 0 everywhere on the 
r e l e v a n t sur face . 

F i n a l l y , the more general type of boundary condi t ion (3 .4 .6 ) a p p l i e s 
whenever the normal flow across (par t of) the boundary su r face of a 
porous-medium domain D i s r e l a t e d to the pressure d i f ference across tha t 
s u r f a c e . In porous-media flow t h i s occurs i f the re l evan t porous flow 
domain i s separated from an adjacent f lu id continuum or another porous 
flow domain by some r e l a t i v e l y t h i n semipermeable l a y e r . For example, in 
p r a c t i c a l groundwater flow con f igu ra t i ons , (pa r t of) the r e l evan t subso i l 
may be separa ted from the open a i r by a r e l a t i v e l y t h i n semipervious clay 
l a y e r . Upon approaching such an i n t e r f a c e via the subso i l we then have 
(cf. ( 3 . 1 . 6 ) ) - ( a / S ) v . v . + p = p . on the r e l evan t s u r f a c e , where the l i atm 
quant i ty a/B, with a/B > 0, expresses the r e s i s t i v i t y of the t h i n l a y e r , 
and p i s the atmospheric pressure at the l e v e l of the i n t e r f a c e . I t i s 
observed tha t upon comparing (3 .4 .6 ) with (3 .4 .4 ) and ( 3 . 4 . 5 ) , one can 
say t ha t a = 0 and g = 1 on 3D (with \\i = iK ) , while a = 1 and B = 0 on 
3D2 ( w i t h i|j = - * 2 ) . 

Returning t o the uniqueness proof i t s e l f , we sha l l presuppose the 
ex i s t ence of a t l e a s t one s o l u t i o n t o the groundwater flow problem posed 
by (3 .4 .2 ) - ( 3 . 4 . 7 ) . Obviously, t h i s assumption, too , needs a 
mathematical proof; t h i s , however, i s beyond the scope of the present 

(1) (1) (2) (2) 
monograph. Let {p , v. } and {p , v. } be two non- iden t i ca l 
s o l u t i o n s of the boundary-value problem posed by (3 .4 .2) - ( 3 . 4 . 7 ) . Then, 
the flow f i e l d defined by 

IP. v i } = ( p ( 1 ) - P
( 2 ) , V l

( 1 ) - v < 2 ) } . (3 .4 .8 ) 

wi l l s a t i s f y (3-4.2) - (3 .4 .7 ) in which the r igh t -hand s i de s are replaced 
by zero , i . e . , 

3 i v 1 = 0 when xGD, (3 .4 .9 ) 

3.p + R. .v. = 0 when xGD, (3 .4 .10) 
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p = 0 when >cG3D , ( 3 . 4 . 11 ) 

Vj^v. = 0 .. when-xS3D 2 , ( 3 . 4 . 1 2 ) 

- a v . v . + Bp = 0 when xG3D , ( 3 . 4 . 1 3 ) 

and 

JxG3D 
v .v .dA = 0 . ( 3 . 4 . 1 4 ) 

l i 

Now, upon success ive ly mul t ip ly ing (3-4 .9) by p, (3 .4 .10) by v . , 
combining the r e s u l t s , i n t e g r a t i n g the r e s u l t over the domain D, and 
applying Gauss' theorem, we a r r i v e a t 

pv.v.dA + v.R. .v.dV = 0, (3 .4.15) 
JxG3D 1 l JxGD x 1 J J 

where the con t r ibu t ions from the (poss ib le ) i n t e r f a c e s in the i n t e r i o r of 
D have cancel led in view of the con t inu i ty condi t ions (3 .3 .7 ) and 
( 3 . 3 . 8 ) . Obviously, the par t in the l e f t -hand s ide of (3 .4.15) over 3D 
vanishes i n view of (3 .4 .11) ; s i m i l a r l y , the par t over 3D vanishes in 
view of ( 3 . 4 . 1 2 ) . On 3D we use (3 .4 .13) and end up with e i t h e r 

(a /6) (v .v . ) 2 dA + v.R..v.dV = 0, (3 .4 .16) 

J2(G3D x x JxSD 1 1 J J 

or 

(BAx)(p)2dA + v . R . . v . d V = 0 . ( 3 - 4 . 1 7 ) 
xG3D JxGD 1 1 J J 

Now, R. . i s pos i t i ve de f in i t e as a r e s u l t of the d i s s i p a t i v i t y of the 
viscous f l u i d flow (cf. Sect ion 3 . 2 ) . Consequently, the l a s t terra on the 
l e f t - h a n d s i de s of (3.4.16) and (3 .4 .17) i s p o s i t i v e for any 
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non - iden t i c a l l y vanishing v . . Fur ther , s ince a/6 > 0 and 3/a > 0, the 
f i r s t term on the le f t -hand s i d e s of (3 .1 .16) and (3 .1 .17) i s p o s i t i v e , 
t o o , for any non - iden t i ca l l y vanishing v.v. or p on 3D . Hence, a 
con t r ad ic t ion in both (3 .1 .16) and (3-1.17) a r i s e s , un less v .v . and p a re 
i d e n t i c a l l y zero on 3D and v. i s i d e n t i c a l l y zero in D. Reusing 
(3 .1 -10) , i t then follows tha t 3.p = 0 in D and, hence, p i s constant 
throughout D. However, in view of (3 .1 .17) t h i s constant must be zero on 
3D-, and, hence, p = 0 throughout D. Consequently, the assumption t ha t 
the problem posed by (3 .1 .2) - (3 .1 .7) admits more than one s i n g l e 
so lu t ion has been con t rad ic t ed : the d i f fe rence of the two s o l u t i o n s 
{p , v. } and {p , v. } proves to be i d e n t i c a l l y the n u l l s o l u t i o n 
throughout D. Hence, a t most a s i n g l e s o l u t i o n r e s u l t s , provided t ha t a t 
l e a s t one so lu t i on to (3 .1 .2) - (3 .1 .7) e x i s t s . 

If the part 3D of 3D i s the nu l l se t and 3D i s not present e i t h e r , 
(3 .1 .16) leads to v. = 0 throughout D, which in view of (3 .1 .10) e n t a i l s 
p i s constant throughout D. Since 3D i s absent , t h i s constant now 
remains unspeci f ied , and hence, upon tak ing i n t o account ( 3 . 1 . 8 ) , the 
re levant boundary-value problem admits a s i n g l e s o l u t i o n up t o an 
a r b i t r a r y add i t ive cons tan t . 



CHAPTER 4 

GENERAL CONSIDERATIONS ON THE BOUNDARY-INTEGRAL-EQUATION 
FORMULATION OF STEADY GROUNDWATER FLOW PROBLEMS 

This chapter deals with the general aspects of the boundary- in tegra l -
equat ion formulation of problems concerned with t he steady flow of 
groundwater. 

The in t eg ra l - equa t ion method has proved i t s usefulness in a wide 
v a r i e t y of engineering problems. We mention the f i e l d s of 
e lec t rocardiography ( see , e . g . , Barr et a l . , 1966), gravimetry ( see , 
e . g . , De Jong, 1981), quas i -magnetos ta t ics ( see , e . g . , Lindholm, 1980, 
Van Herk, 1981, and De Hoop, 1982), e lec t romagnet ic s c a t t e r i n g and 
d i f f r a c t i o n (see , e . g . , De Hoop, 1977), e l a s t o s t a t i c s ( see , e . g . , Cruse, 
1969, and Rizzo and Shippy, 1977), s c a t t e r i n g and d i f f r a c t i o n of acous t i c 
and e l a s t i c waves ( see , e . g . , Tan, 1975a,b, and Herman, 1981 a , b , 1982), 
and flow in porous media ( see , e . g . , L igge t t and Liu , 1983, and Van der 
Weiden and De Hoop, 1988). Evident ly , t h i s l i s t i s far from exhaus t ive , 
and for recent developments the reader is referred to the proceedings of 
the conferences on integral-equation methods and the references cited 
therein. In part icular, as far as the boundary-integral-equation method 
applied in solid and fluid mechanics is concerned, we refer to Cruse 
(1988). 

The main advantage of the integral-equation method l ies in i t s 
f lexibi l i ty as regards shape, size and physical composition of the 
different geometrical constituents that together form the configurations 
that can be analyzed with i t . Also, i t s implementation on a computer 
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offers no extreme diff icul t ies and the main limitations are put by the 
speed and the storage capacity of the computer system at one's disposal. 

The f i r s t step in the integral-equation method consists of acquiring 
appropriate integral representations for the field quantit ies involved. 
These representations follow, in their turn, from a suitable reciprocity 
theorem that in te r re la tes , in a specific manner, the field quantities 
associated with two possible, but different, physical states that can 
occur in one and the same domain in space. The reciprocity theorem needed 
in our analysis i s derived from the basic equations of groundwater flow 
given in Section 1.1; i t can be regarded as a basic theorem, both 
mathematically and physically, from which many properties of groundwater 
flow f ields follow. For example, in Section 1.2 i t is used to 
reinvestigate the uniqueness of the solution of those groundwater flow 
problems that can mathematically be formulated as boundary-value 
problems. In Section 4 .3 , the reciprocity theorem for groundwater flow 
serves as a point of departure in the derivation of the integral 
representations for the two field quantities that characterize the flow 
s ta te of groundwater, viz. the pressure and the velocity. In this 
derivation, one of the two s ta tes occurring in the reciprocity theorem i s 
identified with the actual flow s t a t e , while the remaining one is 
identified with an auxiliary (Green's) flow s ta te generated by, 
successively, a point injection source and a point force source. The 
source-type integral representations that resul t from this procedure 
express the relevant flow quantit ies in the interior of some bounded 
domain in space in terms of related quantities at the boundary surface of 
th is domain. 

In the l i t e ra tu re on boundary-integral-equation formulations for 
groundwater flow problems, most formulations are based on the source-type 
integral representation for the pressure only (see, e .g. , Liggett and 
Liu, 1983, p. 22). A survey of the several types of 
boundary-integral-equation formulations that follow from employing the 
source representations for both the pressure and the velocity is given in 
Section 4.1. In Section 4.5, the solution to the auxiliary point-source 
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excitation s t a t e s , i . e . , the Green's functions, occurring in the integral 
representations are determined expl ic i t ly for the case of a homogeneous 
and reciprocal medium of infini te extent. Further, suitable scalar and 
vector potentials are introduced in the above representations; they are 
employed to arrive at a standard form of the source-type integral 
representations for the pressure and the velocity and apply to an 
arbitrary, bounded, domain in a f luid-saturated, homogeneous and 
reciprocal porous medium. 
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1 . 1 . RECIPROCITY THEOREM FOR GROUNDWATER FLOW 

S t a r t i n g from the bas ic equat ions for the steady flow of groundwater, 
v i z . the con t inu i ty equation and Darcy 's law, we der ive in the present 
s e c t i o n a r e c i p r o c i t y theorem in the two f i e l d q u a n t i t i e s , p res su re and 
v e l o c i t y , t h a t cha r ac t e r i z e the flow of groundwater. The r e c i p r o c i t y 
theorem appl ies to two admiss ib le , but non- iden t ica l groundwater flow 
s t a t e s that can occur in one and the same bounded domain in some 
f l u i d - s a t u r a t e d porous medium. I t serves as a point of departure for the 
de r iva t ion of the source- type i n t e g r a l r ep re sen t a t i ons for the ve loc i ty 
and the pressure . The l a t t e r w i l l play a v i t a l r o l e in a r r iv ing a t the 

boundary- in tegra l -equa t ion formulat ion of a groundwater flow problem. 
3 

We consider a bounded domain D in three-dimensional space R , in 

which two non- iden t ica l groundwater flow s t a t e s can occur . The closed 
3 

boundary surface of D i s denoted by 3D and the complement of D U 3D in R 
by D ' . The u n i t vector along the normal to 3D, po in t ing away from D, i s 
denoted by v . . The two flow s t a t e s in D are marked as S ta tes A and B, 
r e spec t ive ly (see Figure 1 .1) . The q u a n t i t i e s assoc ia ted with each of the 

two S t a t e s A and B are denoted by t h e i r corresponding symbol to which the 
s u p e r s c r i p t s A and B, r e s p e c t i v e l y , a re a t t ached . 

A A S ta t e A i s charac te r ized by the flow f i e l d (p , v . } , the ex te rna l 
A A * A A 

source d i s t r i b u t i o n s {q , f .} and the c o n s t i t u t i v e parameters {p , R . . } . 
The basic groundwater flow equat ions pe r t a in ing to t h i s s t a t e are given 
by (cf . ( 3 . 3 . 5 ) ) 

3 ^ = q \ (1.1.1) 

and (cf. ( 3 . 3 . 6 ) ) 

3.pA + RjjvJ = pA
g i + f j . (1.1.2) 
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Similarly, State B is characterized by the flow field {p , v.}, the 
R R 

ex te rna l source d i s t r i b u t i o n s {q , f .} and the c o n s t i t u t i v e parameters 

State A State B 

Fig . 1 .1 . Bounded domain D with closed boundary surface 3D and 
two non- iden t ica l groundwater flow s t a t e s (Sta tes A 
and B) t o which the r e c i p r o c i t y theorem a p p l i e s . 

R R 
{p , R. . } . The bas ic groundwater flow equations pe r t a in ing t o t h i s s t a t e 
are ( c f . (1 .1 .1 ) and (4.1 . 2 ) ) 

r. B B 
3 . v . = q , 

l i 
( 1 . 1 . 3 ) 

and 

» B QB B B „B 3.p + R. . v . = p g. + f . . 
r ij j v B i l ( 1 . 1 . t ) 
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To a r r i v e a t the r e c i p r o c i t y theorem, we consider the following 

fundamental i n t e r a c t i o n quant i ty between the two s t a t e s : 

. . A B B A, B. A ^ A. B A. B B^ A , „ , ,., 
91(p v i - p v t ) = v i 3 i p + p 3 i v i - V..3.P - p 3 i V i . (4 .1 .5 ) 

Upon mul t ip ly ing (4 .1 .1 ) by p B , (4 .1 .2 ) by vB , (4 .1 .3 ) by pA and (4 .1 .4 ) 
by v . , and using the r e s u l t i n g r e l a t i o n s in ( 4 . 1 . 5 ) , we are led t o 

„ , A B B A, ,_B DA . A B , A B B A, 
31(p v i - p V i ) = ( R i j - R J i ) v i v j + (p V i - p v . ) g i 

J\ B „B A A B B A . „ , , . 
+ f i v i - f i v 1 - q p + q p . (4 .1 .6 ) 

Equation (4 .1 .6) i s the loca l (or d i f f e r e n t i a l ) form of the r e c i p r o c i t y 
theorem for groundwater flow. The corresponding global (or i n t e g r a l ) form 
of the r e c i p r o c i t y theorem i s obtained by the i n t e g r a t i o n of (4 .1 .6 ) over 
the bounded domain D, followed by the use of Gauss' theorem. This y i e ld s 

f ( p \ B - P V ) v . d A - f (RB. -RA . )vAvBdV 

, I r ^ A B B A i ^ P A B «.B A A B ^ B A. i . . . ... . „ 
+ L(p v - p v )g + f v - f v - q p + q p )JdV, (4 .1 .7 

J v C n 1 1 1 1 1 1 

) 
xGD 

where the l e f t -hand side of (4 .1 .6 ) has been assumed to be continuously 
d i f f e r e n t i a b l e . Note tha t on account of the boundary condit ions a t a 
surface of d i scon t inu i ty in ma t t e r , v i z . the cont inu i ty of the p ressure 
and the con t inu i ty of the normal component of the v e l o c i t y , in S t a t e A as 
well as in S t a t e B, we can extend the v a l i d i t y of (4 .1 .7) to regions in 
which the f i e l d q u a n t i t i e s , together with t h e i r f i r s t - o r d e r d e r i v a t i v e s , 
a r e only piecewise cont inuous. 

As regards the loca l and global forms of the r e c i p r o c i t y theorem, i t 
should be noted tha t the f i r s t term on the r ight -hand s ides of (4 .1 .6 ) 
and (4 .1 .7 ) i s c h a r a c t e r i s t i c for the d i f fe rence in r e s i s t i v i t y of the 
media present in the S t a t e s A and B, while the remaining part r ep resen t s 



CHAPTER 4 : BOUNDARY-INTEGRAL-EQUATION FORMULATION -77 -

the i n t e r a c t i o n between the sources and the accompanying f lu id- f low 
s t a t e s . Fur ther , we observe t ha t the f i r s t terms on the r igh t -hand s ides 
of (4 .1 .6 ) and (4 .1 .7 ) vanish in case the media in the two s t a t e s are 
chosen such tha t 

RA. = RB. (4 .1 .8 ) 

for a l l xBD. Under t h i s condi t ion , the i n t e r a c t i o n between the two s t a t e s 
i s only r e l a t e d to the externa l influences ac t ing on the flow in the two 
s t a t e s . If (4 .1 .8 ) ho lds , the medium in S t a t e B i s denoted as t h e medium 
adjoint t o the one in S t a t e A, and vice ve r sa . In p a r t i c u l a r , ( 4 . 1 . 8 ) can 
hold for one and the same medium; the r e l e v a n t medium i s then denoted as 
s e l f - ad jo in t or r e c i p r o c a l . For a r ec ip roca l medium, R. . must t he r e fo re 
be a symmetrical tensor everywhere in D. A spec ia l case of the l a t t e r 
a r i s e s for i s o t r o p i c media, for which we have 

Rt. = R6.J, (4 .1 .9 ) 

in which R i s the s ca l a r r e s i s t a n c e . Obviously, an i s o t r o p i c medium i s 
always r e c i p r o c a l . 

The r e c i p r o c i t y theorem as given in (4 .1 .6) or ( 4 . 1 . 7 ) , can, both 
physica l ly and mathematically, be regarded as one of the most fundamental 
theorems of applied groundwater flow theory . Phys i ca l l y , i t descr ibes the 
i n t e r a c t i o n between two groundwater flow s t a t e s , a f e a t u r e t h a t i s 
c h a r a c t e r i s t i c for any type of measurement s i t u a t i o n . In the l a t t e r , one 
s t a t e can be i d e n t i f i e d as the one to be probed, t h e other as t h e one 
that i s probing ( i . e . , the one tha t i s handled by the observer who 
c a r r i e s out the measurement). Mathematically, the global form of the 
r e c i p r o c i t y theorem wi l l serve t o const ruct the source- type i n t e g r a l 
r ep r e se n t a t i ons for both the pressure and the v e l o c i t y , which, in t h e i r 
tu rn , a re employed to a r r ive at the des i red boundary- in tegra l -equa t ion 
formulation of a groundwater flow problem. This procedure i s d iscussed in 
the Sec t ions 4.3 and 4 . 4 . Furthermore, as we s h a l l see in the next 
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s e c t i o n , the r e c i p r o c i t y theorem as given in (4 .1 .7 ) enables us to 
r e i n v e s t i g a t e the uniqueness of those groundwater flow problems that can 
mathematical ly be formulated as boundary-value problems (cf. Section 
3 . 4 ) . 
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4 .2 . UNIQUENESS THEOREM FOR GROUNDWATER FLOW, 
BASED ON RECIPROCITY 

In the present s ec t ion we i n v e s t i g a t e again the uniqueness of the 
so lu t ion of those groundwater flow problems tha t can mathematical ly be 
formulated as boundary-value problems. In d i s t i n c t i o n t o the uniqueness 
theorem derived in the Sect ion 3 .4 , the one to be presented he re i s based 
on the r e c i p r o c i t y theorem developed in Sect ion 4 . 1 . 

Similar t o Sect ion 3.4, we s t a r t . f ran the boundary-value problem 
posed by the r e l a t i o n s (3.4.2) - (3 .4 .7 ) tha t appl ies to a bounded domain 
D tha t i s e i t he r a bounded subdomain of the ac tua l flow conf igura t ion or 
contains the e n t i r e ac tua l flow conf igura t ion . The boundary su r face of D 
i s denoted by 3D; i t i s the union of three p a r t s : 3D , 3D , and 3D , 
r e s p e c t i v e l y , where a t l e a s t one of them i s not the n u l l set (cf. 
( 3 . 4 . 1 ) ) . The un i t vector v. along the normal to 3D i s poin t ing away from 
D. For convenience, the re levan t boundary-value problem i s r e c a p i t u l a t e d 
below and schemat ical ly v i sua l i zed in Figure 4 . 2 . We have 

3.v. = q when 2c6D, (4 .2 .1 ) 

3.p + R. .v . = pg. + f. when xGD, . (4 .2 .2 ) 

when x&W (D i r i ch le t problem), (4 .2 .3 ) 

when xëdD (Neumann problem), (4 .2 .4 ) 

- av .v . + Bp = <J), when ^63D (Robin problem), (4 .2 .5 ) 

and 

P = i|J. 

v. v. 
l l = *, 
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v.v.dA = q dV (compa t ib i l i t y r e l a t i o n ) , ( 4 .2 .6 ) 
JxG3D X 1 JxSD 

where ty , \\> , and ty , a re the prescr ibed surface source d i s t r i b u t i o n s on 
3D. For a physical explanation of the d i f f e ren t boundary condi t ions 
(4 .2 .3 ) - (4 .4 .5 ) we re fe r t o Sect ion 3-4. Fur ther , as in Section 3 .4 , we 
s h a l l presuppose the ex is tence of a t l e a s t one s o l u t i o n of the problem 
posed by (4 .2 .1) - ( 4 . 2 . 6 ) . 

v, v, = ij)2 

F i g . 4 . 2 . Domain D with closed boundary surface 3D = 3D U 3D U 3D , 
for which the uniqueness theorem i s der ived. 

From (4 .2 .1) - (4 .2 .2) i t i s apparent t h a t the r e c i p r o c i t y theorem of 
(1) *["} and ( P

( 2 ) , Sec t ion 4.1 app l i e s t o the domain D. Let now {p 
(2) v. } be two non- ident ica l so lu t ions of the boundary-value problem 

(4 .2 .1 ) - ( 4 . 2 . 6 ) . Then, i t r ead i ly follows that the flow f i e l d defined 
as S t a t e A through 

, A A. . (1) .(2) . « » - . « » . . ( 4 . 2 . 7 ) 
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wi l l s a t i s fy (4 .2 .1) - (4 .2 .6) in which the r igh t -hand s ides are replaced 
by zero , i . e . , 

3.vA = 0 when xGD, (4 .2 .8 ) 

3.pA + RA.vA = 0 when xSD, (4 .2 .9 ) 
l i j J -
A 

p = 0 when xG3D , (4 .2 .10) 

v vA = 0 when x63D , (4 .2 .11) 

- a v ^ J + BpA = 0 when x63D , (4 .2 .12) 

and 
v.vAdA = 0. (4 .2 .13) 

xS3D x x 

As a next s t e p , we iden t i fy S t a t e B through the following r e l a t i o n s : 

3.vB = qB when x6D, (4 .2 .14) 

3.pB + RB.vB = pBg. + fB when x6D, (4 .2 .15) 

pB =■ 0 when xG3D , (4 .2 .16) 

v ^ 8 = 0 when x&dD2, (4 .2 .17) 

and 

- av .v B + SpB = 0 when xS3D . (4 .2 .18) 
i i - 3 

Note tha t (4.2.14) e n t a i l s a compa t ib i l i ty r e l a t i o n of the type ( 4 . 2 . 6 ) . 
If , in add i t ion t o the above c o n s i d e r a t i o n s , we choose the medium in 
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S t a t e B to be the ad jo in t of the one in S t a t e A, i t follows from ( 4 . 1 . 7 ) 
tha t 

0 = [ pBg.vAdV + f (fBvA - qBpA)dV. (4 .2 .19) 
Jx6D X 1 JxSD 1 1 

This equat ion must hold i r r e s p e c t i v e of the sofar a r b i t r a r y values of q 
R B R A R and f.. In (4.2.19) we now choose f. t o be equal to -p g. - c.v. and q 
1 ^ 1 1 1 1 

to be equal to c_p , in which c. and c ? denote a r b i t r a r y but pos i t i ve 
c o n s t a n t s . Then, the r e s u l t i n g r igh t -hand s ide only vanishes if both p 

A 
and v. vanish i d e n t i c a l l y throughout D. In view of ( 4 . 2 . 7 ) , t h i s implies 

1 (1) (1) (2) (2) 
t ha t {p , v. } = {p , v : } throughout D. Consequently, the 
boundary-value problem posed by the bas ic groundwater flow equations 
(4 .2 .1 ) - ( 4 . 2 . 2 ) , together with the boundary condi t ions (4.2.3) -
( 4 . 2 . 5 ) and the compat ib i l i ty r e l a t i o n ( 4 . 2 . 6 ) , has a s ing le so lu t ion a t 
most, provided, of course, t h a t at l e a s t one s o l u t i o n of (4 .2 .1) -
( 4 . 2 . 6 ) e x i s t s . 

I f ne i ther 3D nor 3D i s p r e sen t , only 3D remains and (4.2.14) and 
(4 .2 .17) a r e con t rad ic to ry , which implies tha t S t a t e B does not e x i s t . In 

p 
t ha t case we take q = 0 throughout D, and (4 .2 .19) i s replaced by 

pBg.vAdV + f fBvAdV. (4 .2 .20) 
•xGD 1 1 JxGD x l 

Again, t h i s equation must hold i r r e s p e c t i v e of the sofar a r b i t r a r y value 
of f.. Now, choosing in (4.2.20) f. . to be equal t o -p g. - c . v . , in which 
c denotes an a r b i t r a r y non-zero cons tan t , the r e s u l t i n g r ight -hand s ide 

' A 
only vanishes i f v. vanishes i d e n t i c a l l y throughout D. In view of 

A 1 

( 4 . 2 . 9 ) , p then has a constant value throughout D. The l a t t e r constant 
remains unspeci f ied , and as a r e s u l t of t h i s , the r e l evan t boundary-value 
problem admits a s ing l e so lu t ion up to an a r b i t r a r y add i t i ve constant 
( c f . ( 4 . 2 . 7 ) ) . 
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Finally, i t is emphasized that the uniqueness theorem presented in 
the current section puts less res t r ic t ions on the values of R. ., a and B 

ij' 
than the one proved in Section 3.4. 
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4 . 3 . SOURCE-TYPE INTEGRAL REPRESENTATIONS FOR THE GROUNDWATER FLOW FIELD 

In t he present s ec t ion i t i s ou t l ined how the r e c i p r o c i t y theorem fo r the 
flow of groundwater in i t s global form (4 .1 .7) leads to source-type 
in t eg ra l ' r e p r e s e n t a t i o n s for the two flow q u a n t i t i e s tha t cha rac t e r i ze 
the flow s t a t e of groundwater, v i z . the pressure and v e l o c i t y . 

S t a t e A i s chosen as the ac tua l flow f i e l d for which the i n t eg ra l 
r e p r e s e n t a t i o n s are to be obtained; i t s a t i s f i e s the bas ic groundwater 
flow equat ions (4 .2 .1 ) and (4 .2 .2 ) throughout the bounded subdomains of D 
where the c o n s t i t u t i v e c o e f f i c i e n t s change continuously with pos i t i on , 
and t h e supplementing boundary condi t ions ( 3 . 3 . 7 ) and (3 .3 .8 ) at the 
i n t e r f a c e s . The closed boundary surface of D i s denoted by 3D, the domain 
e x t e r i o r to 3D by D' , and the u n i t vector along the normal to 3D, 

F i g . 4 . 3 . Configuration to which the source-type i n t e g r a l 
r e p r e sen t a t i ons for the pressure f i e l d and the 
ve loc i ty f i e l d apply . 
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poin t ing away from D, by v. (see F igure 4 . 3 ) . Accordingly, we w r i t e 

(PA , vA} = {p. v . } , ( ' t .3 -D 

{qA, fA} - {q, f . } , (4 .3 .2 ) 

and 

{ p \ RAj} - {p, R . j } . ( 1 .3 .3 ) 

Next, the flow s t a t e B in (4 .1 .7) i s chosen such t h a t (4 .1 .7) l e ads to 
the values of {p, v.} at any point in space . Inspec t ion of the r igh t -hand 
side of (4 .1 .7) r e v e a l s that t h i s i s accomplished by making app rop r i a t e 
choices with respec t t o the ex te rna l source d i s t r i b u t i o n s {q , f .} 
present in D: if a r ep re sen t a t i on for the pressure f i e l d i s wanted, we 

R R 
choose q to be a poin t source of volume in j ec t ion and take f. to be 

R 
equal to a source distribution that compensates the gravity term -p g., 
while if a representation for the velocity field is wanted, we take q to 

□ be equal to zero and f. to be equal to a point source of force in 
R 

addi t ion to the compensating d i s t r i b u t i o n -p g . . 
Accordingly, we f i r s t take 

{qB, fj) = {aó(x - x ' ) , - P ^ h (4 .3 .4 ) 

where a denotes an a r b i t r a r y constant and 6(x - x ' ) i s the 
three-dimensional s p a t i a l un i t pulse ( d e l t a funct ion) opera t ive a t the 
point x = x ' . where x' may be loca ted anywhere in space . As a next s t e p , 
we take the medium in S t a t e B the adjoint of the one in the ac tua l 
conf igura t ion and denote t he flow f i e l d generated by the source 
d i s t r i b u t i o n s as given in (4 .3 .4) as 

(P B , vB.) - {pG q , v ° q } ( x , x ' ) . ( 4 .3 .5 ) 
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For the choice ( 4 . 3 . 5 ) , S t a t e B i s denoted as an in j ec t ion - source Green 's 
s t a t e . The bas i c flow equations pe r t a in ing t o such a Green 's s t a t e 
r e a d i l y follow from (4 .1 .3 ) and ( 4 . 1 . 4 ) as 

3 .vG q = aS(x - x ' ) , (4 .3 .6 ) 

and 

3 .p G q + R. .vG q = 0, (4 .3 .7) 

while t h i s Green ' s s t a t e , too , s a t i s f i e s the i n t e r f ace condi t ions (3 .3 .7) 
and ( 3 . 3 . 8 ) . No e x p l i c i t boundary condi t ions on 3D a re imposed on the 
G r e e n ' s s t a t e (4 .3 .6) - ( 4 . 3 . 7 ) . Now, upon using (4 .3 .1) - (4 .3.5) in 
( 4 . 1 . 7 ) and employing the i n t e g r a l property of the d e l t a funct ion, i . e . , 

JxGD 
p(x)6(x - x*)dV = x D ( x ' ) p ( x * ) , (4 .3 .8) 

where 

XD(x') = {1,1/2,0} when x*6{ D,3D,D'}, (4 .3-9) 

i s the c h a r a c t e r i s t i c funct ion of the domain D, (4 .1 .7 ) leads to 

[ (pvGq - p G V ) v . d A - [ [ (pg . ♦ f . ) v G q - qpGq]dV 
Jx63D JxGD 

= a x D ( x ' ) p ( x ' ) . (4 .3 .10) 

In ( 4 . 3 . 1 0 ) , the r e s u l t s for ^'SD and x'GD' a re c l e a r , while from a 
d e t a i l e d a n a l y s i s i t follows t h a t the r e s u l t for JC'G3D holds at poin ts 
where 3D has a unique tangent p lane . For the l a t t e r case , the 
aforementioned ana lys i s fu r ther r evea l s tha t the surface i n t eg ra l 
occur r ing in (4.3.10) has to be i n t e r p r e t e d a Cauchy p r inc ipa l value, 
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i . e . , the r e l evan t i n t e g r a l i s , when necessary , ca l cu la t ed by a l i m i t i n g 
procedure tha t excludes a s i n g u l a r i t y of the in tegrand i n a symmetrical 
manner. In Appendix B the d e r i v a t i o n of (4 .3 .10) i s presented in more 
a n a l y t i c a l d e t a i l in case the r e l evan t medium i n D i s homogeneous. There, 
i t a l so shows up tha t for both >£'€3D and x'Gh, the volume i n t e g r a l in 
(4.3-10) i s to be understood as a convergent improper i n t e g r a l . F i n a l l y , 
from (4 .3 .10) an i n t e g r a l r e l a t i o n for the pressure i t s e l f follows by 
taking in to account tha t both p and v. a re l i n e a r l y r e l a t e d t o the 
constant a (cf. (4 .3 .6 ) - ( 4 . 3 . 7 ) ) . Expressing t h i s dependence by 
in t roducing the q u a n t i t i e s {G , r . } as 

{pG q , v ^ K x . x ' ) = a(Gq , - r q } ( x ' , x ) , (4 .3 .11) 

where G and r. a re denoted as the in j ec t ion - source s c a l a r and vector 
Green 's func t ions , r e s p e c t i v e l y , and r e c a l l i n g t h a t (4 .3 .10) has t o hold 
for a r b i t r a r y values of a, we end up with 

[ G q ( x ' , x ) v . ( x ) + r q ( x \ x ) p ( x ) ] v . ( x ) d A + p e x t ( x ' ) 
xG3D - l i l 

= X D ( x ' ) p ( x ' ) , ( 4 .3 .12 ) 

ext in which p i s the pressure due t o the volume source d i s t r i b u t i o n s 
present in D and i s given by 

ex 
P 

l ( x ' ) = { G q ( x \ x ) q ( x ) + r q ( x ' , x ) [ p ( x ) g . + f . (x)]}dV. (4 .3 .13) 
;x6D 

Equation (4.3.12) i s the desired source- type i n t e g r a l r e l a t i o n for the 
pressure f i e l d . Note, t ha t if x'GD, (4 .3 .12) c o n s t i t u t e s an i n t e g r a l 
r e p r e s e n t a t i o n . 

Comparing, in (4 .3 .12 ) , the s t r u c t u r e of the surface i n t e g r a l with 
the one of the volume i n t e g r a l , we conclude tha t -v. v. can be regarded as 
the densi ty of equivalent surface i n j e c t i o n r a t e , while -v .p can be 
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regarded as the dens i ty of equiva len t sur face fo rce . Hence, when £'GD, 
(4 .3 .12) expresses the value of the pressure in the point x = x' as the 
sum of the c o n t r i b u t i o n s from the volume sources present in D and the 
equivalent surface sources present on 3D. 

Secondly, to a r r i v e a t the i n t e g r a l r e p r e s e n t a t i o n for the ve loc i ty 
f i e l d , we take in (4 .1 .7 ) the ex te rna l source d i s t r i b u t i o n s pe r ta in ing t o 
S t a t e B as 

{qB, f®} = {0, b .6(x - x ' ) - p B g . ) , (4 .3 .14) 

where b. denotes an a r b i t r a r y cons tant vec to r . As before , the medium in 
S t a t e B i s taken t o be the adjoint of the one in the ac tual configurat ion 
in D. The flow f i e l d generated by the source d i s t r i b u t i o n s as given in 
(4 .3 .14) i s now denoted as 

(PB , v^} = ( p G f , v G f } ( x , x ' ) . (4 .3 .15) 

For the choice ( 4 . 3 . 1 5 ) , S t a t e B i s denoted as a force-source Green 's 
s t a t e . As regards the bas ic flow equat ions pe r t a in ing t o such a s t a t e , 
these r e s u l t from (4 .1 .3 ) and (4 .1 .4 ) as 

3.vGf = 0, (4 .3 .16) 
l l 

and 

3.pG f + R . .v G f .= b .6(x - x ' ) . (4 .3.17) 
i Ji J i - -

This Green 's s t a t e , t oo , i s taken t o s a t i s f y the in t e r f ace condi t ions 
(3-3.7) and ( 3 . 3 . 8 ) , while no e x p l i c i t boundary condi t ions on 3D a re 
imposed on (4.3.16) - ( 4 . 3 . 1 7 ) . As a next s t e p , we use (4.3.14) -

(4 .3 .15) in ( 4 . 1 . 7 ) , employ ( 4 . 3 . 8 ) , i n which we rep lace p by b , v . , and 
a r r i v e at 
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x63D 

, G f Gf , .. 
(pv . - p v . )v.dA xGD 

[ ( p g i + f x ) v ^ f - qpGf]dV 

b . x D ( x ' ) v . ( x ' ) . (1 .3 .18) 

As regards the r e s u l t i n (4.3-18) the same remarks apply as have been 
made with regard to (4 .3 .12 ) ; for a more d e t a i l e d a n a l y t i c a l a n a l y s i s 
pe r t a in ing to (4 .3 .18) for the case of a homogeneous medium, we r e f e r to 
Appendix B. F i n a l l y , from (4 .3 .18) the des i red i n t e g r a l r e l a t i o n for the 
v e l o c i t y f i e l d i t s e l f i s obtained by expressing the l i n e a r dependence of 

C f Cf 
p and v. on b. (cf. (4 .3 .16) and (4 .3 .17) ) as 

l v ° f , p G f } ( x , x ' ) = b j to j j . , - f j H x ' . x ) , (4 .3 .19) 

f f 
where the quan t i t i e s G. . and r. a re denoted as the force-source t enso r 

U i 
Green 's function of rank two and the force-source vector Green 's 
func t ion , r e s p e c t i v e l y . Now, using (4 .3 .19) in (4 .3 .18 ) ) and r e c a l l i n g 
tha t (4.3.18) has to hold for a r b i t r a r y values of b. , we end up with 

xG3D 
[ r f ( x ' , x ) v . ( x ) + Gf . ( x ' , x ) p ( x ) ] v . ( x ) d A + v e x t ( x ' ) 

- X D ( x ' ) v . ( x ' ) , ( 4 .3 .20 ) 

ex t i n which v. i s the ve loc i ty due t o the volume source d i s t r i b u t i o n s 
l J 

present i n D and i s given by 

v®X t(x ' ) = [ { / ( x \ x ) q ( x ) + Ĝ  ( x \ x ) [ p ( x ) g + f (x )]}dV. 

(4 .3 .21 ) 

Equation (4.3.20) i s the des i red source- type i n t e g r a l r e l a t i o n for the 
ve loc i t y f i e l d . If x/GD, (4 .3 .20) c o n s t i t u t e s an i n t e g r a l r ep re sen t a t i on 
for the ve loc i ty f i e l d . I t expresses the value of the ve loc i ty a t the 
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po in t x = x' as the sum of the con t r ibu t ions from the volume sources 
p resen t in D and the equivalent surface sources present on 3D. 

At this stage in the analysis, i t is emphasized that the construction of 
the different Green's tensor functions i s , in general, complicated for 
inhomogeneous media, but i s rather straightforward for homogeneous media. 
In Section 4.5, the Green's functions G , r?, G. . and r. will be 

i i j i 

calculated expl ici t ly for a homogeneous and reciprocal medium of inf ini te 
extent. 
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4 . 4 . BOUNDARY-INTEGRAL-EQUATION FORMULATIONS OF GROUNDWATER FLOW PROBLEMS 

In t h i s sec t ion we present several types of boundary- in tegra l -equa t ion 
formulat ions tha t apply to problems of the steady flow of groundwater. 
These i n t e g r a l - e q u a t i o n formulations enable us to determine, i n 
p r i n c i p l e , the flow f i e l d s in given conf igura t ions if on t h e i r boundary 
surfaces appropr ia te boundary values are p rescr ibed . 

3 
In R we consider a bounded domain D with closed boundary sur face 3D. 

The domain ex te r io r t o 3D i s denoted by D' and the un i t vector along the 
normal to 3D, poin t ing away from D, by v. (see Figure 4 . 2 ) . D i s assumed 
t o be occupied by a given f l u i d - s a t u r a t e d porous medium. As regards the 
boundary condi t ions t ha t hold on the outer boundary su r face , we r e f e r to 
the Sect ions 3.4 and 4 .2 , where we have seen tha t a flow f i e l d in D i s 

Table 4 . 1 . Summary of the boundary condi t ions toge ther with the 
unknown f i e l d q u a n t i t i e s on the d i f f e r en t pa r t s of the 
closed boundary surface 3D bounding the domain D. 

par t of 3D prescr ibed quant i ty unknown q u a n t i t y 

3D1 
3D2 

3D3 

P = *1 

Vi = *2 
- a v . v . + Sp = <l<3 

v. v . 
l l 

P 
p or v.v 

The boundary surface 3D cons i s t s of three p a r t s : 3D , 3D , and 3D , 
that together form 3D; at l e a s t one of them i s not the nul l s e t . 



CHAPTER 4 : BOUNDARY-INTEGRAL-EQUATION FORMULATION -92-

uniquely determined if on 3D e i t h e r the p re s su re , or the normal component 
of the v e l o c i t y , or a l i n e a r combination of these q u a n t i t i e s i s 
p resc r ibed (see Figure 4 . 2 ) . The boundary cond i t i ons , with t h e i r 
accompanying unknown f i e l d q u a n t i t i e s on 3D, are summarized in Table 4 . 1 , 
where we have adopted the nomenclature tha t has been introduced in 
Sec t ion 3.4 (cf. (3 .4 .4) - ( 3 . 4 . 6 ) ) . I t i s noted tha t i n a p r a c t i c a l 
conf igura t ion not a l l th ree p a r t s of 3D need be present ; however, a t 
l e a s t one of them i s not the n u l l s e t . 

In view of the cons idera t ions made in the previous s e c t i o n , i t i s 
apparent t h a t the two i n t e g r a l r e l a t i o n s (4 .3 .12) and (4 .3 .20) both 
app ly . As regards the Green 's ( s c a l a r , v e c t o r , and t ensor ) funct ions that 
occur in them, these are considered as known funct ions ; they are 
determined e x p l i c i t l y in Sec t ion 4.5 for an unbounded, homogeneous and 
r e c i p r o c a l medium. 

To formulate the boundary- in tegra l -equa t ion method, we f i r s t employ 
the i n t e g r a l r e l a t i o n ( 4 . 3 . 1 2 ) . By taking in i t the point of observat ion 
on 3D, we a re led to 

x63D 
[ G q ( x ' , x ) v . ( x ) + r q ( x \ x ) p ( x ) ] v . ( x ) d A + p ( x ' ) 

( 1 / 2 ) p ( x ' ) where x'63D. (4 .4 .1 ) 

As a next s t e p , we decompose t he surface i n t e g r a l i n to i t s con t r ibu t ions 
over 3D , 3D and 3D , r e s p e c t i v e l y , take success ive ly x,'63D , x_' 63D 
and X/G3D , and rearrange the r e s u l t i n g equat ions such t ha t a l l unknown 
q u a n t i t i e s appear on the l e f t -hand s ides and a l l known q u a n t i t i e s on the 
r igh t -hand s i d e s . In t h i s way, we obta in 

xG3D 
GMv.v.dA 

l l x63D2 

T.v.pdA -
l V xG3D 

[(e/a)GQ + v.rq]pdA 

( 1 / 2 ) ^ ( x ' ) + rQv ii dA + Gqi> dA -
xG3D JxS3D J2te3D 

Gq(^3/a)dA 
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e x t . , . - p ( x ' ) where x'€8D , (4 .4 .2) 

Gqv.v.dA - ( 1 / 2 ) p ( x ' ) 
xS8D1 xG3D, 

T%. pdA l r 

[ (g /a )G q + v.rq]pdA 
JxG3D X X 

f rqv.i|> dA + f G% dA - [ Gq(i|) /a)dA - p e X t ( x ' ) 
J^ein 1 1 ' ' v e in JvCin J 'xG3D xS3D2 j£S3D 

where x ' 6 3 D 2 > ( 4 . 4 . 3 ) 

and 

G q v.v .dA 
xG3D1 

l l x63D2 

Tqv.pdA - ( 1 / 2 ) p ( x ' ) 

f [ ( g / a ) G q + v r q ]pdA 
'xG3D 3 

r?v.ip dA + Gqijj dA 
)£63D1

 1 1 J xS3D 2 xG3D 
G q ( i i y a ) d A - p e x t ( x ' ) 

where 2<'63D . ( 4 . 4 . 4 ) 

E q u a t i o n s ( 4 . 4 . 2 ) , ( 4 . 4 . 3 ) and ( 4 . 4 . 4 ) c o n s t i t u t e a s y s t e m of t h r e e 

simultaneous boundary i n t eg ra l equa t ions , from which, in p r i n c i p l e , the 
unknown f i e l d d i s t r i b u t i o n s v. v. on 3D , p on 3D , and p on 3D. can be 
determined (cf. Table 4 . 1 ) . If in an equation of t h i s system the unknown 
quant i ty , i . e . , p or v . v . , only occurs under the i n t e g r a l s ign , the 
re levant equation i s an i n t e g r a l equation of the f i r s t kind in t ha t 
quant i ty , while if the unknown quant i ty a lso occurs ou t s ide the i n t e g r a l 
s ign, the r e l evan t i n t e g r a l equation i s an i n t e g r a l equat ion of the 
second kind. Hence, the above system of boundary i n t e g r a l equat ions i s , 
as far as the unknown f i e l d d i s t r i b u t i o n s p on 3D„ and p on SD .̂ are 
concerned, a system of the second kind, while as far as the unknown f i e l d 
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distribution v.v. on 3D, is concerned, it is of the first kind. On the l l 1 
whole, in accordance with common usage, the system is denoted as a system 
of the mixed kind. At this point it should be noted that, since on 3D, 
the Robin condition (3.4.6) applies, p could be eliminated at each point 
on 3D in (4.4.2) - (4.4.4) by means of (3.4.6). Clearly, (4.4.4) would 
then amount to a boundary integral equation of the second kind in v.v.. 

The integral relation (4.3.20) for the velocity field leads to a 
system of boundary integral equations as well from which, in principle, 
the unknown field distributions of p and v.v. on 3D can be determined. To 

l i 

t h i s end , we app ly ( 4 . 3 . 2 0 ) t o t h e c o n f i g u r a t i o n shown i n F i g u r e 4 . 2 , 

t a k e t h e p o i n t of o b s e r v a t i o n on 3D, and a r r i v e a t 

x63D 
[ r f ( x ' , x ) v . ( x _ ) + G [ . ( x ' , x ) p ( x ) ] v . ( x ) d A + v ® x t ( x ' ) 

= ( 1 / 2 ) v . ( x ' ) where x '63D. ( 4 . 4 . 5 ) 

As a n e x t s t e p , we m u l t i p l y ( 4 . 4 . 5 ) on b o t h s i d e s by v . ( > c ' ) , and 

decompose t h e s u r f a c e i n t e g r a l i n t o i t s c o n t r i b u t i o n s over 3D , 3D and 

3 D , , r e s p e c t i v e l y . Then, upon t a k i n g s u c c e s s i v e l y x '63D, , ;c'G3D? a n d x' S 

3D , and r e a r r a n g i n g t h e r e s u l t i n g e q u a t i o n s such t h a t a l l unknown 

q u a n t i t i e s a p p e a r on t h e l e f t - h a n d s i d e s and a l l known q u a n t i t i e s on the 

r i g h t - h a n d s i d e s , we a r r i v e a t 

- ( 1 / 2 ) v . ( x ' ) v . U ' ) - v . ( x ' ) r . v . v .dA - v . ( x ' ) 
•xG3D1

 l J J L xG3D„ 
G. .v.pdA 

U J 

v . ( x ' ) ] [ ( S / a ) r f + Gf .v . j pdA 
' x63D i i j J" 

v . ( x ' ) 
xS3D 

G. .v .ü/,dA + 
i j J 1 

v . ( x * ) j 
x&3D 

rJ*2dA 

v . ( x ' ) r f(i(/ / a )dA - v. ( x ' ) v e x t ( x ' ) where x ' € 3 D , ( 4 . 4 . 6 ) 
1 J^ean i 3 l l 1 'xG3D 
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- v . ( x ' ) 
xG3D 

T f v .v .dA - v. ( x ' ) G f . v . 
i J J i - J v C . n i j J 

pdA 
xG3D 

v ^ x ' ) ] [ ( B / a ) r f + of .v . ]pdA 
'xG3D l I J J" 

= ( 1 / 2 H ( x ' ) + v ( x ' ) G^ v Ji dA + v. ( x ' ) f rfiKdA 
'xG3D xG3D 

- v ( x ' ) | r . ( * /a)dA - v . ( x ' ) v ( x ' ) where x'63D ( 4 . 4 . 7 ) 
JxS3D ■* ^ 

and 

v . ( x ' ) 
xG3D, 

r f v . v . d A - v . ( x ' ) G f . v . p d A - ( 6 / 2 a ) p ( x ' ) 
1 J J x - L e a n ' J J xG3D 

- v ^ x ' ) ! [ ( 6 / a ) r f + G f , v . ] p d A 
'xG3D l I J J" 

G . . v . ij), dA + v ( 1 / 2 a ) i(« ( x ' ) + v. U , , - „ . , , -
J X JxG3D 1 J J 

( x ' ) ( i(2i*)f 
xS3D 

r[*2dA 

v . ( x ' ) 
xG3D 

f ext 
r . ( i | j /a)dA - v . ( x ' ) v i ( x ' ) w h e r e x'63D ( 4 . 4 . 8 ) 

E q u a t i o n s ( 4 . 4 . 6 ) , ( 4 . 4 . 7 ) and ( 4 . 4 . 8 ) c o n s t i t u t e a g a i n a s y s t e m of 

s i m u l t a n e o u s boundary i n t e g r a l e q u a t i o n s t h a t i s of t h e mixed k i n d . As 

f a r a s t h e unknown f i e l d d i s t r i b u t i o n s v. v. on 3D. and p on 3D_ a r e 
l i 1 v 3 

concerned (cf. Table 4.1), i t is of the second kind, while as far as the 

unknown distributions p on 3D is concerned, i t i s of the f i r s t kind. At 

this point i t i s noted again that at each point on 3D- in (4.4.6), 

(4.4.7) and (4.4.8), p could, with the aid of the Robin condition 

(3.4.6), be rewritten in terms of v.v. and iK. Equation (4.4.8) would 

then amount to an integral equation of the second kind in v .v . . 
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I t i s c l ea r tha t in a r r i v i n g a t a boundary- in tegra l -equat ion 
formulat ion s u i t a b l e for determining the unknown f i e l d d i s t r i b u t i o n s on 
3D, we can e i t h e r use the system of equations (4 .4 .2) - ( 4 . 4 . 4 ) , or the 
system (4 .4 .6) - ( 4 . 4 . 8 ) , or a proper combination of these two systems. 
When solving (systems of) i n t e g r a l equations with the aid of i t e r a t i v e 
methods, preference i s usua l ly given t o equations of the second kind, the 
l a t t e r having b e t t e r convergence p rope r t i e s than (systems of) i n t eg ra l 
equat ions of the f i r s t kind. As an example, we wr i t e down a system that 
i s c o n s i s t e n t l y of the second kind; i t c o n s i s t s of ( 4 . 4 . 6 ) , (4 .4 .3 ) and 
( 4 . 4 . 4 ) , i . e . , 

( 1 / 2 ) v l ( x ' ) v . ( x ' ) v . ( x ' ) T.v.v.dA 
xG3D1

 X J J 
v . ( x ' ) j 

X&3D, 
G. .v.pdA 

i j J 

v . ( x ' ) 

= v . ( x ' ) 

x63D 

xG3D, 

[ ( 6 / a ) r i + G v ]pdA 

V.I)J dA + 
i j \ T 1 Vs')[ x63D2 

r[<l<2dA 

v . ( x ' ) j r f ( i ( ) 3 / a )dA - v . ( x ' ) v e X t ( x ' ) where x'63D ( 4 . 4 . 9 ) 
xG3D„ 

x63D1 

G^v.v.dA 
l l 

( 1 / 2 ) p ( x ' ) 
xS3D 

r.v.pdA l v 

xS3D. 
[ ( B / a ) G Q + v ^ ü p d A 

xG3D1 
l i r 1 xG3D 

G%2<XA 
xG3D 

Gq(4. /a )dA - p ext ( x ' ) 

where 2i 'e3D2 , (4 .4 .10 ) 

and 



CHAPTER 4 : BOUNDARY-INTEGRAL-EQUATION FORMULATION -97-

xG3D. 
G H v .v .dA -

l l 
_xG3D 

r ? v i p d A - ( 1 / 2 ) p ( x ' ) 

xG3D 
[ ( 6 / a ) G q + M r J ] p d A 

T% i|> dA + c V d A -
'xG8D Jx68D2

 c JxG3D 
Gq(i|) /<x)dA - p e x t ( x ' ) 

where x'GSD . (4 .4 .11) 

For r e f e rence , we have l i s t e d the p r o p e r t i e s of each of the i n t e g r a l 
equat ions t ha t a r i s e from (4 .4 .1 ) and ( 4 . 4 . 5 ) i n Table 4 . 2 . 

Table 4 .2 . P roper t i es of the i n t e g r a l equat ions r e s u l t i n g from 
the i n t e g r a l r e l a t i o n s (4 .4 .1 ) and ( 4 . 4 . 5 ) . 

pa r t of 3D rep resen ta t ion for unknown f i e l d r e s u l t i n g i n t e g r a l 
the f i e l d quant i ty quant i ty equat ion 

3 D 1 
3D, 

3D, 

3D~ 

3 D ; 
3D, 
3D, 
3D~ 

v. v . 
l l 

V. V. 
1 1 

V. V. 
1 1 

V. V. 
1 1 

V. V. 
1 1 

p 

p " 
V. V. 

1 1 
\). V . 

1 1 

V. V. 
1 1 

1st kind in v .v . 
l l 

2nd kind in p 

2nd kind in p 
1st kind in v .v . 

l l 
2nd kind in v .v . 

l l 
1st kind in p 

1st kind in p 
2nd kind in v .v . 

l l 

At t h i s point in the ana lys i s i t i s r e c a l l e d t ha t the c o n s t r u c t i o n of 
the d i f f e r e n t Green 's funct ions i s , in gene ra l , for inhoraogeneous media 
an unfeas ib le t a sk . For a homogeneous and r e c i p r o c a l media, however, they 
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can be obtained in a s t r a igh t fo rward manner (cf. Sect ion 4 . 5 ) . In view of 
t h i s , the use of the boundary- in tegra l -equa t ion method i s , in p r a c t i c e , 
r e s t r i c t e d to piecewise homogeneous domains. In conf igura t ions of t h i s 
k ind , the i n t e g r a l r e l a t i o n s (4 .3 .12) and (4 .3 .20) a r e appl ied t o each 
homogeneous subdomain out of which the . re levant flow conf igura t ion i s 
assumed to be composed. Let D denote the domain tha t i s occupied by the 
given piecewise homogeneous flow conf igura t ion and assume D to be the 
union of N homogeneous subdomains {D ; n=1, . . . ,N} (see Figure 4 . 4 ) . Let, 
f u r t h e r , 3D be the boundary surface of D . We now apply e i t h e r 

F i g . 4 .4 . Example of conf igura t ion with piecewise homogeneous 
subdomains. D = D U D U D and 3D i s the outer 
boundary surface of D. 

(4 .3 .12) or (4 .3 .20) to each homogeneous subdomain D . In t h i s , the 
Green ' s functions pe r t a in ing t o each of the subdomains are taken t o be 
t he ones t ha t apply to the " i n f i n i t e medium" with the ad jo in t p rope r t i e s 
of the actual homogeneous medium. Then, by taking in e i t he r (4 .3 .12) or 
(4 .3 .20) the point of observat ion on 3D for each n=1 , . . .N , e i t h e r 
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(4.3 .12) or (4 .3 .20) l eads to a number of boundary i n t e g r a l equa t ions . At 
the i n t e r f aces between adjacent subdomains, the con t inu i t y requirements 
for the pressure and the normal component of the ve loc i t y are used to 
introduce these q u a n t i t i e s as (unique) unknowns in the i n t e g r a l 
equat ions . In a d d i t i o n , a t the outer boundary 3D of D, the non-prescr ibed 
f i e l d q u a n t i t i e s (see Table 4.1) occur as unknowns in the boundary 
in tegra l equa t ions . 

Obviously, s ince for each subdomain we can e i t h e r s t a r t from the 
source-type i n t e g r a l r e l a t i o n for the p r e s s u r e , i . e . , ( 4 . 3 . 1 2 ) , or from 
the one for the v e l o c i t y , i . e . , ( 4 . 3 . 2 0 ) , t h e r e i s a freedom in choice of 
the boundary i n t e g r a l equations to be employed in the actual formula t ion . 
Since for near ly a l l conf igura t ions met in p r a c t i c e , a l l the above 
boundary i n t e g r a l equations have t o be solved with the aid of numerical 
techniques , i t i s , at the present s t a g e , r a t h e r d i f f i c u l t t o make a 
proper s e l e c t i o n which i n t e g r a l equations a re t o be used. A fu l l 
d iscuss ion of the numerical aspects of so lv ing the boundary i n t e g r a l 
equations i s postponed t o Chapter 5, while in Chapter 6 the r e s u l t s of 
some numerical experiments c a r r i e d out on t e s t conf igura t ions are 
repor ted . 

F ina l l y , i t i s noted tha t once the unknown f i e l d d i s t r i b u t i o n s p 
and/or v .v . on 3D, and on the pos s ib l e i n t e r f a c e s in the i n t e r i o r of D, 
have been determined, the values of the flow f i e l d {p, v.} a t any point 
in D s t ra igh t fo rward ly follow upon reus ing the i n t e g r a l r e p r e s e n t a t i o n s 
(4 .3 .12) and ( 4 . 3 . 2 0 ) . 
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1 . 5 . CALCULATION OF THE GREEN'S SOLUTIONS PERTAINING TO A 

HOMOGENEOUS AND RECIPROCAL MEDIUM OF INFINITE EXTENT 

In the present s ec t ion the Green 's s t a t e s pe r t a in ing t o the flow f i e l d s 
generated by a point source of volume i n j e c t i o n and a point source of 
volume fo rce , present in a homogeneous and r ec ip roca l medium of i n f i n i t e 
e x t e n t , are determined. In Subsect ion 4 . 5 . 1 , we a l s o introduce for t h i s 
case the i n j e c t i o n - r a t e s c a l a r and force vector p o t e n t i a l s and r e w r i t e 
the two source- type i n t e g r a l r e l a t i o n s developed in Sect ion 4.3 in terms 
of these pore-flow p o t e n t i a l s . Their e x p l i c i t forms in case the 
r e c i p r o c a l medium i s i s o t r o p i c are presented as w e l l . 

To evalua te the i n j ec t ion - sou rce Green 's flow s t a t e per ta in ing t o a 
homogeneous and rec ip roca l medium of i n f i n i t e extent we f i r s t mul t iply 
(4 .3 .7 ) on both s ides by t h e , symmetric and p o s i t i v e d e f i n i t e , inverse 
K. . of R, . . We then have 

K. . 3 j P
G q * vGq = 0 . (4 .5 .1) 

Now, upon applying t o both s i d e s of (4 .5 .1) the operator 8. and using 

( 4 . 3 . 6 ) , i t follows t h a t 

K. . 3 . 8 . p G q = - aó(x - x ' ) . (4 .5 .2 ) 
i j i J - -

To determine the so lu t i on of (4 .5 .2) we subject x. - x'. to an orthogonal 
t ransformat ion such t h a t the f i r s t term on the l e f t -hand s ide i s 
transformed on t o i t s p r inc ipa l axes . Let 

y = a ™ ( x „ " O (4 .5 .3) 
P pq q q 
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be the r e l evan t t ransformat ion , then the columns of the matr ix (a ) a re 
pq 

the normalized r i g h t eigenvectors of (K. . ) corresponding to the p- th 
( n ) XJ 

eigenvalue t v of ( K . . ) . We then have 

K. .3 .3 .p G q - t ( p ) 3 3 p G q , (4.5. i t) 
u i j p y p y p

p 

where 3 denotes d i f f e r e n t i a t i o n with r e spec t t o y . Since (a ) i s 

or thogonal , we have det(a ) = 1 and, hence 
pq 

6(x - x ' ) = 6(y_). (4 .5 .5 ) 

Next, we introduce the var iab les z through 

Z p - ( t ( p ) r 1 / 2 y p , C4.5.6) 

then 

t ( p ) 3 3 P
G q - 3 3 p G q , (4 .5 .7 ) 

y y z z 
P P P P 

and 

6(y) = [ t ( l ) t ( 2 , t ( 3 ) r 1 / 2 M z ) = A 1 / 2 6 ( z ) , (4 .5 .8 ) 

where 

A = d e t ( R . . ) . (4 .5 .9 ) 

With the aid of (4 .5 .3) - ( 4 . 5 . 8 ) , (4 .5 .2 ) t ransforms i n t o 

3Z 3 z pG q = - a A 1 / 2 6 ( z ) . (4 .5 .10) 
. P P 
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Equation (4 .5 .10) i s nothing but Po i s son ' s equat ion for a point source 
1 /2 with s t r e n g t h aA ( see , e . g . , Kellogg, 1954, p . 156) and i t s s o l u t i o n 

that i s regular at inf ini ty , i . e . , vanishes as \z\ ■* », uniformly in al l 
direct ions, i s given by 

p G q = aG, (4 .5 .11 ) 

where G i s given by 

G = A 1 / 2 / ( 4 n | z | ) . ( 4 .5 .12 ) 

However, p q i s needed in terms of the o r i g i n a l coord ina tes . Now, us ing 

( 4 . 5 . 6 ) and ( 4 . 5 . 3 ) , we obtain 

| z | = [ a p i a p . ( t ( p ) ) " 1 ( x i - x ' ) ( x . - x ' ) ] 1 / 2 . (4 .5 .13) 

Now, R .K. .a . = R . t^q a ., or, since R .K. . = 6 ., a = R . t(q a , for pi lj qj pi qi' pi lj pj' qp pi qi 
any q. With this we have 

a .a .(t ( p )r 1 = a ,R. a = R. 6. = R.. = R... (4.5.14) 
pi pj1- ; pi jr pr jr ir - ji lj 

Using (4.5.14) in (4.5.13), the following expression for p q in the 
{x ,x ,x } coordinate system is obtained (cf. (4.5.12) and (4.5.11)) 

p G q = aG(x - x'), (4.5.15) 

i n which G i s given by 

G(x - x ' ) = A 1 / 2 / ( 4 T T D ) , (4 .5 .16) 

and D by 

D = [R 1 J (x 1 - x ' ) ( X j - x j ) ] 1 / 2 . (4 .5 .17) 
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The quant i ty D can be considered as the geodet ica l d i s t ance from x' t o x 
with the r e s i s t i v i t y as the met r i c t e n s o r . From ( 4 . 5 . 1 ) i t f u r t h e r 
follows tha t 

vGq = - aK. .3 G(x - x ' ) . ' (4 .5 .18) 

Comparing (4.3.11) with p q and v ^ as given in (4 .5 .15) and ( 4 . 5 . 1 8 ) , 
r e s p e c t i v e l y , i t follows tha t t he in jec t ion-source Green 's t ensor 
funct ions (of ranks zero and one, r e s p e c t i v e l y ) pe r t a in ing to a 
homogeneous and r ec ip roca l medium of i n f i n i t e extent are given by 

Gq = G(x - x ' ) , (4 .5 .19) 

and 

r q = K. .3.G(x - x ' ) . (4 .5 .20) 

To a r r i v e at the force-source Green 's flow s t a t e p e r t a i n i n g to a 
Dgeneous medium c 

(4 .3 .17) and obta in 
homogeneous medium of i n f i n i t e e x t e n t , we apply K. . t o both s i d e s of 

K. . 3 .p G f + vG f = K. .b.6(x - x ' ) . (4 .5 .21) 

Next, we apply the operator 3. to both sides of this equation. Taking 
(4.3.16) into account, it then follows that 

K. .3.3.pGf = 3.K. .b.6(x - x'). (4.5.22) 
ij i J i IJ J - -

In view of the fac t tha t (cf. ( 4 . 5 . 1 5 ) , (4 .5 .2) and ( 4 . 5 . 8 ) ) 

K ^ S ^ G(x - x ' ) = - S(x - x ' ) , ( 4 .5 .23 ) 

C f p can be expressed in terms of G through 
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p G f = - K . b j S j G U - x ' ) . ( 4 . 5 . 2 4 ) 

Gf 
F i n a l l y , frcm ( 4 . 5 . 2 1 ) and ( 4 . 5 . 2 4 ) t h e e x p r e s s i o n f o r v. f o l l o w s as 

c f 
v = K. b.K .3 3 G(x - x ' ) + K. . b . 6 ( x - x ' ) . ( 4 . 5 . 2 5 ) 

i i q J PJ Q P - - i j J - -

Compar ing ( 4 . 3 . 1 9 ) w i t h p G f i n ( 4 . 5 . 2 4 ) and v G f i n ( 4 . 5 . 2 5 ) , i t f o l l o w s 

t h a t t h e f o r c e - s o u r c e G r e e n ' s f u n c t i o n s (of r a n k s two and o n e , 

r e s p e c t i v e l y ) p e r t a i n i n g t o a homogeneous and r e c i p r o c a l medium of 

i n f i n i t e e x t e n t a r e g i v e n by 

G f . = K . K . 3 3 G(x - x ' ) + K . . 6 ( x - x ' ) , ( 4 . 5 . 2 6 ) 
1J JP Qi P q - - J i - -

and 

r [ - K . . 3 . G ( x - x ' ) . ( 4 . 5 . 2 7 ) 

To c o m p l e t e t h e a n a l y s i s on t h e G r e e n ' s f u n c t i o n s we o b s e r v e t h a t G only 
d e p e n d s on x and x ' t h rough t h e t e rm R . . ( x . - x ! ) ( x . - x'.) ( c f . 

a 1 a X f J J f ( 4 . 5 . 1 7 ) ) . Hence , t h e G r e e n ' s f u n c t i o n s G , v., G . . , and r . can a l s o be 

w r i t t e n as ( c f . ( 4 . 5 . 1 9 ) , ( 4 . 5 . 2 0 ) , ( 4 . 5 . 2 6 ) and ( 4 . 5 . 2 7 ) ) 

Gq = G(x' - x ) , ( 4 . 5 . 2 8 ) 

r ? - - K 3' .G(x' - x ) , ( 4 . 5 . 2 9 ) 

G f . = K. K . 3 ' 3 ' G ( x ' - x) + K . . 6 ( x ' - x) , ( 4 . 5 . 3 0 ) 
i j JP q i P q ~ J i ~ 

and 

r [ = - K^a^GCx1 - x ) , ( 4 . 5 . 3 D 
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r e s p e c t i v e l y , where 8! denotes s p a t i a l d i f f e r e n t i a t i o n with respect t o 
the coordinate x! . 

1 .5 .1 . THE PORE-FLOW SCALAR AND VECTOR POTENTIALS 

To account for the spec ia l s t r u c t u r e of the Green ' s funct ions evaluated 
above, we introduce in t h i s subsect ion the s o - c a l l e d pore-flow sca l a r and 
vector p o t e n t i a l s tha t are assoc ia ted with the pore-flow from d i s t r i b u t e d 
sources in an unbounded, homogeneous, r e c i p r o c a l medium. 

Consider the source- type i n t e g r a l r e p r e s e n t a t i o n s (4.3.12) and 
(4.3.20) and apply them to a bounded domain D with boundary surface 3D 
present in a homogeneous and r ec ip roca l medium. Obviously, the Green 's 
functions Gq, r^, G*\, and r [ , as given in ( 4 . 5 . 2 8 ) , ( 4 . 5 . 2 9 ) , (4 .5 .30) 
and ( 4 . 5 . 3 D , r e s p e c t i v e l y , apply t o (4.3.12) and ( 4 . 3 . 2 0 ) . I t should be 
noted t h a t for the express ions of the Green 's funct ions we have chosen 
the ones in which the s p a t i a l d i f f e r e n t i a t i o n s are ca r r i ed out with 
respect to the observat ion-point coordina tes _x' • We now in t roduce the 
following q u a n t i t i e s : 

{AD, FD}(x ' ) = f G(x' - x) (q, pg + f }(x)dV, (4 .5 .32) 
Jx6D 

In (4 .5 .30 ) , A i s denoted as the pore-flow sca la r p o t e n t i a l a s soc ia ted 
with the d i s t r i b u t i o n of volume i n j e c t i o n present in D and F. i s denoted 
as the pore-flow vector po t en t i a l a ssoc ia ted with the d i s t r i b u t i o n of the 

3D volume force present in D. S i m i l a r l y , we int roduce the q u a n t i t i e s A and 
3D F. defined as 
l 

{A 3 D , F 8 D } ( x ' ) = - f G(x ' - x) {v v . , v . p } ( x ) d A , ( 4 . 5 . 3 3 ) 
1 Jx68D 1 1 
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as the pore-flow sca l a r and vector p o t e n t i a l s assoc ia ted with the 
d i s t r i b u t i o n of equiva len t su r face source d e n s i t i e s of i n j ec t ion r a t e and 
f o r c e , r e s p e c t i v e l y , present on 3D. Now, with the aid of (1.5.28) -
( 4 . 5 . 3 1 ) , (4 .5 .32) and ( 4 . 5 . 3 3 ) . the source- type i n t e g r a l r e l a t i o n s 
(4 .3 .12 ) and (4 .3 .20) can be w r i t t e n as 

A - K.J3^.F i = x D ( x ' ) p ( x ' ) (4 .5.34) 

and 

" K j i 9 J A + V q i W j " X D ( x ' ) ( v . ( x - ) - K . . [pg . ♦ f . ( x ' ) ] } , 

(4 .5 .35) 

r e s p e c t i v e l y , i n which A i s given by 

A - A8D + AD, (4 .5 .36) 

and F. by 

F. = F3D + F° . (4 .5 .37) 

Equat ions (4 .5 .34) - (4 .5 .37) serve as the s tandard source- type i n t e g r a l 
r e p r e s e n t a t i o n s for the groundwater flow f i e l d in a bounded subdomain of 
a homogeneous and r e c i p r o c a l , f l u i d - s a t u r a t e d porous medium. 

With the aid of ( 4 . 1 . 9 ) , i t i s e a s i l y v e r i f i e d t h a t for a homogeneous 
and i s o t r o p i c medium the s tandard source- type r e p r e s e n t a t i o n s (4.5.34) 
and (4 .5 .35) are given by 

A - R _ 1 3 tF i = x D ( x ' ) p ( x ' ) (4 .5.38) 

and 

- R-13^A + R " 2 3 - 3 ^ j = X D ( x ' H v . ( x ' ) - R~1[pg. + f ^ x ' ) ] } , (4 .5 .39) 
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r e s p e c t i v e l y , t o which ( 4 . 5 . 3 2 ) , ( 4 . 5 . 3 3 ) , (4 .5 .36) and (4 .5 .37 ) apply, 
with G(j{' - x) now given by 

G(x' - x) = R/4TT|X' - x | - (4 .5 .40) 



CHAPTER 5 

NUMERICAL ASPECTS IN SOLVING THE BOUNDARY INTEGRAL EQUATIONS 

FOR GROUNDWATER FLOW IN PIECEWISE HOMOGENEOUS CONFIGURATIONS 

Except for the very few configurations where analytical techniques are 
applicable, all boundary integral equations discussed in the previous 
chapter have to be solved with the aid of numerical techniques. In the 
present chapter an efficient and straightforward method to solve the 
systems of integral equations that apply to groundwater flow 
configurations with piecewise homogeneous media i s discussed. Like in 
most numerical methods for solving integral equations, the relevant 
equations are replaced by a system of l inear , algebraic equations. To 
obtain representative numerical resul ts for practical s i tuat ions, a l l 
steps involved must be implemented on a high-speed, large-capacity, 
digital computer. 

For the ease of discussing the numerical aspects in solving the 
boundary integral equations, they are assumed to apply to a flow 
configuration in a domain that i s occupied by a single homogeneous and 
reciprocal medium. The extension to configurations composed out of a 
f in i te number of homogeneous subdomains i s discussed la te r on. 

In Section 5.1 we discuss the geometrical discretization of the 
boundary surface of the domain of computation. In th is process, the 
planar tr iangle is employed as the fundamental surface element. In 
Subsection 5.1.1, we introduce the barycentric coordinates of the 
position of observation-in the tr iangle. These serve, in Subsection 
5.1.2, to construct a local interpolation function that varies l inearly 
with position in the interior and on the boundary of each tr iangle. In 
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Section 5.2 th i s l inear interpolation function i s used to represent 
locally, i . e . , on each planar t r iangle , both the known and the unknown 
surface distr ibutions of the pressure and the normal component of the 
velocity. In t h i s manner, the continuity of these two flow quantities 
across the common edges of adjacent t r iangles i s automatically sa t isf ied. 
The structure of the global field representations follows 
straightforwardly from the local representations; they are presented in 
Section 5.3. In Subsection 5 .^ .1 , the triangulation scheme and the global 
field representations are substituted in the source-type integral 
relat ions developed in Section 4.4 for the pressure and the velocity 
f ie lds . Once a particular choice as regards which boundary integral 
equations to use has been made, we employ the method of collocation (or 
point matching) in the relevant discretized system of boundary integral 
equations in order to arrive at the square system of l inear , algebraic 
equations that will replace i t . The choice of the sequence of collocation 
points is discussed in Subsection 5.4.2. After applying the collocation 
scheme of Subsection 5.4.2, we are led to the final approximate versions 
of the selected system of boundary integral equations. To conclude 
Section 5.4, we show in Subsection 5.4.3 how to evaluate analytically the 
(singular) surface integrals over the planar triangles that occur in the 
discretized versions of the integral equations. Finally, in Section 5.5, 
the problem i s addressed of how to incorporate in the resulting system of 
l inear , algebraic equations the (discretized) version of the 
compatibility relat ion that pertains to the basic equations for the 
steady flow of groundwater. 
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5 . 1 . THE DISCRETIZATION OF THE GEOMETRY 

In the present s e c t i o n , we discuss the f i r s t s t e p s towards the 
d i s c r e t i z a t i o n of any of the systems of boundary i n t e g r a l equa t ions 
developed in Sec t ion 4 . 1 . We s t a r t with the geometr ical d i s c r e t i z a t i o n of 
the surface bounding the domain of computation. For t h i s p rocess , the 

2 
planar t r i a n g l e (simplex in R ) i s used as the elementary sur face 
element. We then in t roduce on each t r i a n g l e a l o c a l r e f e r ence frame and 
employ t h i s to cons t ruc t a l o c a l , l i n e a r i n t e r p o l a t i o n func t ion . This 
i n t e r p o l a t i o n funct ion wil l be u t i l i z e d t o r e p r e s e n t , on each t r i a n g l e , 
the pe r t a in ing flow f i e l d d i s t r i b u t i o n s . 

Let D denote the computational domain, i . e . , the domain occupied by 
the homogeneous flow conf igura t ion of i n t e r e s t , and l e t 3D be i t s closed 
boundary su r face . We f i r s t subdivide or approximate 3D by a f i n i t e number 
of elementary sur face elements, the maximum diameter of which i s so small 
tha t express ions of a simple n a t u r e , in fact l i n e a r expansions, su f f i ce 
t o represen t the v a r i a t i o n s of the pe r t a in ing flow f i e l d q u a n t i t i e s over 
i t . Considerat ions in a lgebra ic topology ( see , e . g . , Naber, 1980, p . 149) 
l e a rn t ha t the simplex (the point in R , the l i n e segment i n R , the 

2 3 
t r i a n g l e in R , and the t e t rahedron in R ) i s the most fundamental shape. 
For these reasons (and some o the r s as w e l l ) , we d i s c r e t i z e 3D i n t o 
p lanar , t r i a n g u l a r surface elements . Let {S_(N); N=1 NT} be t h e 
c o l l e c t i o n of planar t r i a n g l e s t ha t toge ther (approximately) span 3D; we 
then have 

NT 3D = U^=1 ST(N), (5 .1 .1 ) 

NT being the total number of triangles. Obviously, for polyhedral domains 
the subdivision (5.1.1) can be made exact. The oriented boundary curve of 
each planar triangle S„(N) is denoted by C_(N). We take the orientation 
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such that the direction of circulation along C_(N) and the unit vector 
along the outward normal to S (N) form a right-handed system. As regards 
the error introduced by approximating the, in general, curved surface 3D, 
i t i s fortunately so that in the geometrical modeling of commonly 
encountered groundwater flow configurations (confined aquifers, and the 
l i k e ) , i t often suffices to model the possible interfaces and the outer 
boundary surface of the relevant flow configuration by a relat ively small 
number of relat ively large f la t surfaces. Hence, the actual surfaces met 
in practice are usually well represented by u t i l iz ing planar tr iangles. 
Henceforth, in our analysis we only consider computational domains that 
are in ter iors of polyhedral surfaces (e .g . , brick-like domains) for which 
the subdivision (5.1.1) can be made exact. 

The subdivision (5.1.1) is arranged in such a manner that the 
tr iangles a l l have vertices and edges in common. In practice, the 
representation of 3D by NT planar, triangular elements i s obtained by 
choosing a f in i t e number NP points on 3D and connecting the la t te r points 
by straight l ine segments such that a network (grid) of NT triangles 
r e su l t s . Since in (5.1.1) i t i s assumed that the triangles al l have 
vertices and edges in common, we r e s t r i c t in th is procedure every point 
chosen on 3D to be vertex of a l l ' triangles meeting at that point. Then, 
for a closed surface, we have a unique relationship between the number of 
surface or nodal points NP and the number of triangles NT, viz. 

NT = 2NP - 1J. ( 5 . 1 . 2 ) 

Hence, for a closed surface subdivided into a large number of planar 
t r iangles, the number of triangles is about twice as large as the number 
of nodal points. 

In the subsequent analysis we need several geometrical quantities 
associated with the t r iangles . For each triangle S these are, f i r s t of 
a l l , the position vectors of i t s vertices with respect to the common 
background Cartesian reference frame (see Figure 2.1) and, secondly, i t s 
oriented edges. In their turn, these quantities enable us to determine 
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other necessary geometrical q u a n t i t i e s pe r t a in ing to each t r i a n g l e , such 
as , for example, i t s vec to r i a l a r e a , i t s s c a l a r a r ea , i t s u n i t vector 
along the normal. To t h i s end, we f i r s t in t roduce a l o c a l numbering of 
the v e r t i c e s of S„. In t h i s numbering, the v e r t i c e s carry the l a b e l s 
{1,2,3} and a re denoted by {P ,P_ ,P_} . From a lgebra ic topology i t follows 

0 that each simplex (apar t from the point in R ) can have two o r i e n t a t i o n s . 

Since the computations can only be ca r r i ed out for a p a r t i c u l a r 
o r i e n t a t i o n , we have t o s e l e c t one; the one t ha t i s chosen here i s 
ind ica ted in Figure 5 .1a . I t i s such tha t the o r i e n t a t i o n s of the edges 
P P , P P and P P , induce a d i r e c t i o n of c i r c u l a t i o n along C„ tha t 
forms a r ight -handed system with t he u n i t vector along the normal t o the 
( d i s c r e t i z e d ) boundary surface 3D, t h i s normal po in t ing away from the 
domain D (see Figure 4 . 3 ) . In view of l a t e r c o n s i d e r a t i o n s , we fu r the r 
denote the edges of each t r i a n g l e S„ by the l a b e l s {1,2,31 according t o 

the r u l e t h a t each edge c a r r i e s the l abe l of the ver tex o p p o s i t e t o i t . 
These edges a re r e f e r r e d to as {C (1) ,C (2),C (3)} (see Figure 5 . 1 a ) . Let 
{x (1) ,x (2) ,x (3)} denote the pos i t i on vectors with r e spec t t o the 
o r ig in of the chosen background reference frame shown in F igure 2.1 of 
the v e r t i c e s {P. . ,P ? ,P,} of S_, then the v e c t o r i a l edges {a ( 1 ) , a ( 2 ) , 
a (3)} follow as (see Figure 5.1b) 

a (I) = x (K) - x (J) : P.P.. with {I, J,K}=cycl{1, 2 , 3 ) , (5 .1 .3 ) 
p p p 0 is. 

being the v e c t o r i a l edge or ien ted from P, to Pv> and "cycl" being shor t 
for "cyc l i c permutation of" (note , t h a t I , J and K are d i f f e r e n t from 
each o t h e r ) . For example, i f 1=1 in ( 5 . 1 . 3 ) . we have J=2 and K=3, while 
if 1=2, we have J=3 and K=1. The l eng ths { a ( 1 ) , a ( 2 ) , a ( 3 ) 3 of t h e 
respect ive edges tC T (1) ,C T (2) ,C T (3)} of ST follow as (cf . ( 5 . 1 . 3 ) ) 

a ( I ) = [ a p ( I ) a p ( I ) ] 1 / 2 with I6{1 , 2 , 3 } . (5 .1 .1 ) 

The v e c t o r i a l area of S„, t o be denoted by A., forms with the edges 

{C (1) ,C„(2) ,C (3 )} , in the indica ted o rder , a r igh t -handed system and 
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CT(2) 

/ 

/ 

'xO) 
CT(3| 

»C T {1 

(a) 

x(2) 

P l a(1) 

F i g . 5 . 1 . Nomenclature of the ( g e o m e t r i c a l ) ' q u a n t i t i e s assoc ia ted 
with the t r i a n g l e S„: (a) s p a t i a l view of S_, (b) 
perpendicular view on S„. 
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can be expressed in terms of the vectorial edges through (cf. (5.1.3)) 

A. = (1/2)cijk[xj(I) - x (K)][xk(J) - xk(I)] 

= (1 /2 )e , ,. a , ( J ) a . (K) with ( I , J ,K}=cycl{1 ,2 , 3} , (5 .1 .5 ) 
1J K J K 

or in the symmetrical form 

A t = ( 1 / 2 ) e i j k [ x J ( 1 ) k ( 2 ) + X j ( 2 ) x k ( 3 ) + x j ( 3 ) x ) < ( 1 ) ] , ( 5 . 1 . 6 ) 

where e. i s the completely antisymmetric u n i t tensor of rank th ree 
(Levi-Civi ta t e n s o r ) : 

+ 1 if { i , j , k } i s an even permutation of {1 , 2 , 3 ) , 

e. . = - 1 if U , j ,k} i s an odd permutation of { 1 , 2 , 3 ) , (5 .1 .7 ) 
l j k 

0 if not a l l s u b s c r i p t s a re d i f f e r e n t . 

Now, the un i t vector v. along the normal to S_ follows from 
v. = A. /A, (5 .1 .8 ) 

where A denotes the s c a l a r area of S_ which i s given by (cf. ( 5 .1 .5 ) or 

(5 .1 .6 ) ) 

A = [ A . A . ] 1 / 2 . (5 .1 .9 ) 

Note that v. has a constant value on S_. In our subsequent analysis we 
further need the vectors {L (1),L (2),L (3)} that are oriented along the 
outward normals to the respective edges {C (1) ,C_(2) ,C_(3)} in the plane 
of S (n), each of them having a magnitude that equals the length of the 
relevant edge. We have (see Figure 5.1b), 

L (I) = e...a.(I)v. with 16(1,2,3}. (5.1.10) 
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With the aid of (5 .1 .10) and (5 .1 .3 ) i t r e a d i l y follows tha t 

I^ = 1 L . ( I ) = 0, (5 .1 .11) 

and 

L ( I ) a ( I ) = 0 , L ( I ) a (J) = - 2A, 

L ( I ) a (K) - + 2A, with { I , J , K } = c y c l { l , 2 , 3 ) . (5 .1 .12) 

The above geometrical q u a n t i t i e s together wi th seme of t h e i r p roper t i e s 
wi l l be used in the next ( sub ) sec t ions . 

5 . 1 . 1 . THE BARYCENTRIC COORDINATES 

To a r r i v e a t the des i red loca l r e p r e s e n t a t i o n s of the flow f i e ld 
q u a n t i t i e s in the i n t e r i o r and on the boundary of each planar t r i a n g l e , 
i t i s advantageous t o employ the so - ca l l ed ba rycen t r i c coordinates of the 
p o s i t i o n of observa t ion in the t r i a n g l e . 

Let S be the t r i a n g l e under cons ide ra t ion t o which the geometrical 
q u a n t i t i e s int roduced in Sect ion 5.1 apply and l e t {X( 1) ,X(2) ,X(3)} 
denote the b a r y c e n t r i c coordinates p e r t a i n i n g t o S . Then, the pos i t ion 
of observat ion x in the i n t e r i o r and on the boundary of S_ can be 
spec i f i ed by the ba rycen t r i c coordinates through the r e l a t i o n (see , e . g . , 
McConnell, 1957, pp. 52-54) 

* = I j = 1 MDx ( I ) , where 0SX(I)£1 with l^ X(D = 1 f or xGST, 

( 5 .1 .13 ) 

where {x (1) ,x (2) ,x (3)} a re the pos i t ion vec tors of the r e spec t ive 
v e r t i c e s {P ,P ,P } of S^.. Equation (5.1.13) y i e l d s the value of x fc 
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given values of {A(1) ,A(2) ,X(3)}. However, we would a l s o l i k e to have an 
expression t ha t y ie lds the values of {X( 1) ,X(2) , A(3)} for a given value 
of x GS_. This problem can be addressed as fo l lows . 

Selec t one of the v e r t i c e s of S„ as the p re fe r red one and e l imina te 
the ba rycen t r i c coordinate tha t has the value one at tha t ve r t ex . . As an 
example, we take in (5 .1 .13) P. t o be the prefer red ver tex , and 
accordingly e l imina te X(1). This y i e l d s (cf. ( 5 .1 .13 ) ) 

x (1) = l\=2 A(I)[x ( I ) - x ( 1 ) ] . (5 .1 .14) x 

Next, with the aid of (5 .1 .12) and ( 5 . 1 . 3 ) , i t i s e a s i l y v e r i f i e d t ha t 
(cf . ( 5 .1 .11 ) ) 

[x ( I ) - x (1)]L (J) = - 2A6(I,J) with I6{2,3} and J6{2 ,3} , (5 .1 .15) 
P P P 

where 6 ( I , J ) i s the " two-subscr ip t" Kronecker symbol 

1 i f I = J , 
6 (1 , J ) = (5 .1 .16) 

0 if I \ J . 

Equation (5.1.15) implies that at the vertex P the vectors {x (2) -
x (1),x (3) - x (1)} and the vectors {-L (2)/2A,-L (3)/2A) form a 
P P P P P 
reciprocal system. Furthermore, upon applying (5.1.15) to (5.1.14), we 
conclude that 

[x - x (1)]L (J) = - 2AX(J) with J6{2,3). (5.1.17) 
P P P 

Adding the results for J=2 and J=3i and using the fact that (cf. 
(5.1.11)) 

L (1) = - L (2) - L (3), (5.1.18) 
P P P 

we obtain 
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X " x ( 1 ) ] L (1) = 2A[X(2) + X ( 3 ) ] = - 2AX(1). (5 .1 .19 ) 
P P P 

Using in (5.1.11) the express ions for X(2) and X(3) t h a t r e s u l t from 
( 5 . 1 . 1 7 ) , and the one for X(1) t h a t r e s u l t s from (5 .1 .19 ) , i t r e ad i l y 
fol lows that 

x p - x (1) = - (2A)_1;>3=i { [ X q - x q (1 ) ]L q ( I )}x ( I ) . (5 .1 .20) 

Resu l t s s imi l a r t o (5 .1 .20) hold when x (1) i s replaced by x (2) and 
P P 

x ( 3 ) , r e s p e c t i v e l y . Upon adding the r e l evan t r e s u l t s , we end up with the 
symmetrical express ion 

-1v3 x p - bp - - ( 2 A ) - ' ^ = 1 [ ( x q - b q ) L q ( I ) ] x p ( I ) . (5 .1.21) 

in which 

b = ( 1 / 3 ) [ x M ) + x (2) + x (3) ] (5.1.22) 
P P P P 

i s the pos i t ion vector of the barycenter of S_. Upon comparing the 
s t r u c t u r e of (5.1.21) with the one of ( 5 .1 .13 ) , we conclude that 

X(I) = 1/3 - (2A)"1(x - b )L ( I ) with 1 6 ( 1 , 2 , 3 } . (5.1.23) 
Q q q 

Equation (5.1.23) y i e l d s the values of the ba rycen t r i c coordinates of the 
p o s i t i o n of observa t ion in S_ whose pos i t ion vector i s x , which was the 
express ion t h a t we were a f t e r . 

5 . 1 . 2 . THE LINEAR, SCALAR, LOCAL INTERPOLATION FUNCTION 

Inspec t ion of (5 .1 .23) and (5 .1 .13) r evea l s t ha t the barycent r ic 
coordinates perform, in the i n t e r i o r and on the boundary C„ of S„, a 
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linear interpolation between the values of the expanded function (i.e., 
x in (5.1.13)) at the vertices of S_. We further observe that this P T 
interpolation function takes on the value one at one of the vertices and 
the value zero at the remaining vertices. When stressing this aspect of 
the barycentric coordinates, we shall write 4>(I,x_) instead of X(I), i.e., 
(5.1.23) is rewritten as 

4>(I,x) = 1/3 - (2A)"1(xq - bq)Lq(I) with I6{1,2,3}, (5.1.21)) 

with the property 

4.(1,x(J)) = 6(1,J) with 16(1,2,3} and J6{1,2.3J, (5.1.25) 

that is easily verified with the aid of (5.1.22), (5.1.10), (5.1.8), and 
(5.1.9), respectively. In our computations we also need the spatial 
derivatives of 0(1,x). Upon differentiating both sides of (5.1.24) with 
respect to x., it follows that 

3 0(1,x) = - (2A)"1Li(I) with 160,2,3}. (5.1.26) 

""In.Section 5.2, the funct ion 0 ( I , J O and some of i t s p rope r t i e s w i l l be 
used to represen t l o c a l l y , i . e . , on each planar t r i a n g l e S , both the 
p ressure and the normal component of the v e l o c i t y . 
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5.2. THE LOCAL FIELD REPRESENTATIONS 

In this section we discuss the structure of the local representations of 
the groundwater field quantities at an elementary surface element (i.e., 
a planar triangle) of the discretized surfaces. 

The easiest, but at the same time coarsest, way to approximate the 
field distributions is to represent them by a constant value over S„. The 
value of this constant can then be attributed to the value of the 
relevant quantity at some point of S , e.g., its barycenter. The next, 
more advanced, manner to represent the field quantities locally, is to 
employ interpolation formulas that vary linearly with position in the 
interior and on the boundary of each triangle. In our analysis, we have 
chosen this last approach, i.e., both the pressure and the normal 
component of the velocity are expanded in functions that vary linearly 
between the values of these quantities attributed to the vertices of the 
triangle. The reasons for using this type of local expansion function are 
discussed in Section 5.3. 

In view of the results of Subsection 5.1.2, it is clear that the 
linear, scalar, local interpolation function <f>(I,x_) defined by (5.1.24) 
can serve directly to arrive at the desired local expansions for the flow 
field quantities. For the distribution of the pressure on S we have 

P(i) = Ij = 1 p(D*(I,x) with xGST. (5.2.1) 

In view of the proper ty ( 5 . 1 . 2 5 ) , p ( I ) i s the value of p(x_) a t x =x ( I ) , 
approaching t h i s ver tex v ia the i n t e r i o r of S„. S i m i l a r l y , for the l oca l 
expansion of the normal component of the ve loc i ty on S we wri te 

v 1 (x )v 1 (x ) - l\ v . U ^ U H U . x ) with xGST, (5 .2 .2 ) 
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where v.(I)v.(I) is the value of v.()Ov.(x_) at x =x (I), approaching this 
vertex via the interior of S_. Note that since v.(x,) has a constant value 
for all xGS , v. (I) has the same (constant) value (5.1.8) for all 16 
{1,2,3). 

The local field representations (5.2.1) and (5.2.2) will serve to 
construct the global field representations over the discretized boundary 
surface 3D; this will be discussed in the next section. 
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5 . 3 . THE GLOBAL FIELD REPRESENTATIONS 

In t h i s s ec t i on we d iscuss the s t r u c t u r e of the global r ep re sen t a t i ons of 
t he flow f i e l d q u a n t i t i e s over the d i s c r e t i zed boundary surface of the 
homogeneous domain under cons ide ra t ion . They r e s u l t upon using the l o c a l 
r e p r e s e n t a t i o n s of Sect ion 5.2 on each p lana r , t r i a n g u l a r surface element 
of the d i s c r e t i z e d surface and put t ing these expansions properly 
t o g e t h e r . We a l so summarize the major computational advantages of the 
r e p r e s e n t a t i o n s of the flow f i e l d q u a n t i t i e s employed he re , as compared 
t o o ther , s impler , r e p r e s e n t a t i o n s . 

The global f i e l d r e p r e s e n t a t i o n s of the flow f i e l d quan t i t i e s for a l l 
MT 

xGdD, where 3D = I S (N), a r e wr i t t en as (cf. (5 .2 .1) and (5 .2 .2) ) 

P(x) " ZjJI, I i_ , p(N,I)«(N,I.x) (5.3.D 

and 

v . ( x ) v . ( x ) = ^ i\^ v . ( N , I ) v 1 ( N , I ) $ ( N , I , x ) , (5 .3 .2 ) 

where <t>(N,I,x_) i s given by (cf . (5 .1 .24) ) 

<KN,I,x) = 1/3 - [2A(N)]"1[xq - b (N)]L ( N . I ) , (5 .3-3) 

in which A(N) i s the sca l a r a rea of S (N), b (N) the pos i t ion vector of 
the barycenter of ST(N) and {L (N,1),L (N,2),L (N,3)l a r e the vectors 
normal to the r e spec t i ve edges {C (N,1),C (N,2),C (N,3)} in the plane of 
S_(N) (cf. ( 5 . 1 . 1 0 ) ) . In these q u a n t i t i e s we have incorporated the 
ord ina l number N to i n d i c a t e t h a t they belong to the t r i a n g l e S_(N). 

The r e p r e s e n t a t i o n s (5 .3 .1) and (5 .3 .2) wi l l be employed in the 
d i s c r e t i z a t i o n of any of the boundary i n t e g r a l equat ions discussed in 
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Section 4.4 both for the known and unknown surface d i s t r i b u t i o n s . In t h i s 
manner, both (5 .3 .1) and (5 .3 .2) provide us with 3*NT vertex expansion 
c o e f f i c i e n t s . Not a l l of these a r e , however, a l so global expansion 
c o e f f i c i e n t s . In t h i s respect a d i s t i n c t i o n must be made between nodal 
poin ts t h a t a re loca ted on the f l a t p a r t s of the d i s c r e t i z e d geometry and 
a t which a unique un i t normal i s defined, and nodal po in t s tha t a re 
loca ted on edges or in corners of the d i s c r e t i z e d geometry where the un i t 
normal i s not uniquely defined. At the nodal po in t s of the f i r s t category 
( the so - ca l l ed simple nodes) , p and v.v . a re continuous and hence the 
values of p(N,I) and v . ( N , I ) v . ( N , I ) a t the v e r t i c e s t ha t meet a t tha t 
nodal point a r e equal . This condi t ion could be enforced a f t e r s e t t i n g up 
the system of l i n e a r a lgebra ic equat ions t h a t r e s u l t s from applying the 
method of co l loca t ion (cf. Section 5 . 4 ) . However, enforcing t ha t 
condi t ion before s e t t i n g up the system of equat ions l eads to a much more 
e f f i c i e n t handling of the computer 's s to rage capac i ty . Hence, we s h a l l 
introduce the re levan t vertex values as s i n g l e global knowns and unknowns 
and correspondingly l e t the support of t h e i r global expansion funct ions 
be the union of the t r i a n g l e s to a ver tex of which the cons ide ra t ions 
apply. The corresponding var iab les w i l l be denoted as nodal v a r i a b l e s . At 
those nodal po in t s tha t do not have a uniquely defined un i t normal (the 
so - ca l l ed mu l t i p l e nodes) we r e t a i n (5.3-1) and (5 .3 .2) 'as they s tand; 
the re levant v a r i a b l e s wil l be denoted as ver tex v a r i a b l e s and they wi l l 
be used as the global ones. Hence, the number of global expansion 
c o e f f i c i e n t s NG i s smaller than or equal to 2x(3*NT) and g r e a t e r than 
2xNP = 2x[(NT+4)/2] (cf . (5 .1 .1) and ( 5 . 1 . 2 ) ) . As we have s t i p u l a t e d in 
Sect ion 5 . 1 , however, the sur face(s ) tha t have to be subdivided i n to 
planar t r i a n g l e s , usua l ly involve r e l a t i v e l y l a rge f l a t par t s ( b r i c k - l i k e 
geometries) and the number of mu l t i p l e nodes (a t which the un i t normals 
a re not uniquely defined) i s , in genera l , r e l a t i v e l y sma l l . 

Apart form the discuss ion on the nodal poin ts a t which the uni t 
normals are not uniquely defined, we have in fac t in the cons idera t ions 
made above already h ighl ighted i m p l i c i t l y some of the major advantages of 
our piecewise l i n e a r i n t e r p o l a t i o n scheme as compared t o the piecewise 
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constant one as suggested by, e . g . , Jawson and Symm (1977, p . 233) . In 
the l a t t e r , the f i e l d q u a n t i t i e s a r e , on each surface element, 
approximated by a cons tan t , whose value i s a t t r i b u t e d to the f i e l d value 
a t a p a r t i c u l a r point ( e . g . , the barycenter) of the re levant surface 
element. These values a re subsequently taken as the expansion 
c o e f f i c i e n t s . Doing t h i s for a domain with a closed boundary surface tha t 
has been subdivided i n t o NT planar t r i a n g l e s , we end up with NT unknowns. 
I f , l i k e in our s i t u a t i o n s , the re levant boundary surface i s composed out 
of a r e l a t i v e l y small number of r e l a t i v e l y l a r g e f l a t p a r t s , we have to 
compare t h i s number of unknowns with the somewhat more than (NT+i))/2 ones 
r e s u l t i n g from the piecewise l i n e a r i n t e r p o l a t i o n scheme. Hence, whenever 
in the d i s c r e t i z a t i o n of a boundary i n t eg ra l equation a r e l a t i v e l y large 
number of t r i a n g l e s i s needed and a piecewise l i n e a r i n t e r p o l a t i o n scheme 
i s used ins t ead of a piecewise constant one, the f i n a l number of unknowns 
w i l l be reduced by a f ac to r of about two. In a d d i t i o n t o t h i s , i t i s 
evident t h a t in a piecewise constant approximation more surface elements 
a r e , in gene ra l , needed to follow the f i e l d v a r i a t i o n s over the elements, 
than in a piecewise l i n e a r one. The piecewise constant i n t e r p o l a t i o n 
scheme a l so leads to (unphysical) d i s c o n t i n u i t i e s in the f i e l d values 
across the common edges of adjacent t r i a n g l e s , whereas in the l i n e a r 
i n t e r p o l a t i o n scheme con t inu i ty i s au tomat ica l ly guaranteed (except, of 
course , for the values of the pressure and the normal component of the 
v e l o c i t y a t those l o c a t i o n s where these q u a n t i t i e s do jump indeed) . 

These cons ide ra t ions have motivated u s ' t o use the l i n e a r f i e l d 
r e p r e s e n t a t i o n s ( 5 . 3 . 1 ) and (5 .3 .2 ) in the d i s c r e t i z a t i o n of any of the 
boundary i n t e g r a l equations of Sect ion H.H. 
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5 . 4 . THE METHOD OF COLLOCATION 

As out l ined in the in t roduc t ion t o t h i s chapter , our aim i s t o r ep lace 
any of t he systems of boundary i n t e g r a l equat ions developed i n Sect ion 
4.4 to forms amenable t o numerical so lu t i on . To t h i s end, we employ, in 
add i t i on t o the d i s c r e t i z a t i o n procedure discussed in the previous 
s e c t i o n s , the method of co l loca t ion (a l so denoted as the method of point 
matching) ( see , e . g . , Kantorovich and Krylov, 1964, pp. 97-110) . This 
method can be seen as a specia l case of the method of moments ( see , e . g . , 
Harr ington , 1968, pp. 5-21) . 

The d i s c r e t i z e d forms of the boundary i n t e g r a l r e l a t i o n s fo r both the 
pressure and the v e l o c i t y tha t r e s u l t a f t e r applying t h e t r i a n g u l a t i o n 
scheme of Sect ion 5.1 and using the global f i e l d r e p r e s e n t a t i o n s of 
Sect ion 5 . 3 , a re presented in Subsection 5 . 4 . 1 . In Subsection 5 . 4 . 2 , the 
choice of the sequence of co l loca t ion poin ts i s d iscussed. In t h i s 
subsec t ion i t i s fur ther out l ined how the square system of l i n e a r , 
a lgeb ra i c equat ions i s obtained. The l a t t e r r ep laces (approximately) the 
system of boundary i n t e g r a l equations under cons ide r a t i on . In Subsect ion 
5 . 4 . 3 , we o u t l i n e how the ( s ingu la r ) i n t e g r a l s over p lanar t r i a n g l e s tha t 
a r i s e from the d i s c r e t i z a t i o n procedure and the co l l oca t i on method a r e 
eva lua ted a n a l y t i c a l l y . These i n t e g r a l s occur as c o e f f i c i e n t s in the 
square system of l i n e a r , a lgebra ic equa t ions . 

5 . 4 . 1 . THE DISCRETIZED BOUNDARY INTEGRAL RELATIONS 

In t h i s subsect ion we present the d i s c r e t i z e d forms of the boundary 
i n t e g r a l r e l a t i o n s for both the pressure f i e l d and the ve loc i t y f i e ld 
t ha t r e s u l t a f t e r applying the t r i a n g u l a t i o n scheme of Sect ion 5.1 and 
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a f t e r i n s e r t i o n of the global f i e l d r e p r e s e n t a t i o n s (5 .3 .1) and ( 5 . 3 . 2 ) . 
We f u r t h e r l i s t the ( s ingu la r ) i n t e g r a l s over p lanar t r i a n g l e s t h a t occur 
in the two d i s c r e t i z e d i n t e g r a l r e l a t i o n s . 

I n s e r t i n g the global f i e l d r e p r e s e n t a t i o n s (5 .3 .1 ) and (5 .3 .2 ) in 
( 4 . 4 . 1 ) and (4.11.5) (a f t e r mul t ip ly ing both s ides by the un i t normal 
vector at x.') and taking in to account ( 5 . 1 . 1 ) , we end up with the 
approximate equat ions 

" 1^=1 ^1 = 1 ^ . . ( N , I ) v . ( N , I ) I G q ( N , I , x ' ) + p ( N , I ) I r q ( N , I , x ' ) ] 

+ p e x t ( x ' ) = ( 1 / 2 ) p ( x ' ) when x'€3D, (5.4.1) 

and 

V x ' H - i j ^ I i = 1 [ V j C N . U V j d J . D l r J u . I . x ' ) + P ( N , I ) I G [ ( N I I , X ' ) ] 

+ v ® x t ( x ' ) } = ( 1 / 2 ) v i ( x , ) v (x1) when x'63D, (5.4.2) 

in which 

I G q ( N , I , x ' ) = <( l(N,I,x)Gq(x',x)dA, (5.4.3) 
Jx6ST(N) 

I r q ( N , I , x ' ) = * ( N , I , x ) r q ( x ' , x ) v . ( N ) d A , (5 .4 .4) 
JxGST(N) 1 1 

l r [ ( N , I , x ' ) = « K N . I . x J r f u * , x )dA, ( 5 . 4 . 5 ) 
1 J x G S

T ( N ) 

I G f ( N , I , x ' ) = cj>(N,I,x)G f , ( x ' , x ) v . ( N ) d A , ( 5 . 4 . 6 ) 
1 Jx6ST(N) 1 J J 

with ((>( N, I,2£) defined by ( 5 . 3 . 3 ) . and where v. has the constant value 
v i(N) for a l l xGST(N). In (5 .4 .3) - (5 .4 .6) the Green 's func t ions Gq, r q , 
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r . and G. . are known (cf. ( 4 . 5 . 1 9 ) , ( 4 . 5 . 2 0 ) , (4 .5 .27) and ( 4 . 5 . 2 6 ) ) . I t 
i s emphasized t ha t a l l i n t e g r a l s in (5 .4 .3) - (5 .4 .6) . can be eva lua ted 
a n a l y t i c a l l y ; t h i s wi l l be discussed in Subsection 5 . 4 . 3 and Appendix C. 
In Subsection 5 . 4 . 3 , i t i s a l so ou t l ined how to deal with the (known) 
source funct ions p and v. occurr ing in (5.4.1) and ( 5 . 4 . 2 ) , 
r e s p e c t i v e l y . 

5 .4 .2 . THE SEQUENCE OF COLLOCATION POINTS 

In the present subsec t ion the choice- of the' sequence of c o l l o c a t i o n 
points on the t r i a n g u l a t e d boundary surface 3D i s d i scussed . 

In applying the c o l l o c a t i o n method to ( 5 . 4 . 1 ) , ( 5 . 4 . 2 ) , or some 
su i t ab l e combination of these (cf. Sect ion 4 . 4 ) , one has to take ca re 
that the ind ica ted (approximate) equa l i t y only holds a t poin ts of the 
d i s c r e t i zed boundary surface where the un i t normal i s uniquely def ined . 
In our c o l l o c a t i o n scheme we sha l l s t r i c t l y adhere to t h i s c o n d i t i o n . 

In view of t h i s , in choosing the sequence of co l l oca t i on p o i n t s , we 
must d i s t i n g u i s h between simple nodal p o i n t s , i . e . , nodal po in t s having a 
unique un i t normal, and mul t i p l e ones, i . e . , nodal po in t s a t which planar 
t r i a n g l e s with d i f f e r en t (cons tan t ) uni t normal vec to r s meet. At a simple 
nodal po in t , ( 5 . 4 . 1 ) , ( 5 . 4 . 2 ) , or some s u i t a b l e combination of them (cf. 
Section 4 . 4 ) , a re s t r a igh t fo rward ly used. At a m u l t i p l e node, ( 5 . 4 . 1 ) , 
( 5 . 4 . 2 ) , or some s u i t a b l e combination of them are used a t the v e r t i c e s 
t h a t meet a t tha t node (each with i t s own un i t normal). In Figure 5.2 we 
have schemat ica l ly v i s u a l i z e d the choice of c o l l o c a t i o n po in t s for the 
d i f f e ren t s i t u a t i o n s . 

After applying the above co l l oca t i on scheme and car ry ing out the 
appropr ia te rearrangements we end up with a square system of l i nea r ' , 
a lgebra ic equat ions for the unknown (vertex and nodal) expansion 
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F ig . 5 . 2 . The sequence of co l loca t ion po in t s in d i f fe ren t s i t u a t i o n s : 

(a) simple node; unique un i t normal, (b) mul t ip le node on 

edge; two un i t normals, and (c) mu l t i p l e node in corner; 

th ree un i t normals. 
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coefficients that can be written as 

1 ^ a b = c for iS{1 NG}, (5.4.7) 
J ~ ' 11J J i 

where NG denotes the t o t a l number of global unknown (ver tex and nodal) 
expansion c o e f f i c i e n t s on 3D (cf. Section 5 . 3 ) . In ( 5 . 1 . 7 ) , the known 
coe f f i c i en t s {a. .; iS{1, . . . ,NG} and jG{1, . . . ,NG}} r e s u l t from th e 

( ana ly t i c ) eva lua t ion of IGq(N,I,x_') and l r q ( N , I ,x_ ') , and/or i r f ( N , I , x _ ' ) 
f 1 

and IG.(N,I,x_') for the pe r t a in ing values of N and I . The c o e f f i c i e n t s 
{ c . ; . i S { 1 , ,NG}} conta in the con t r i bu t i ons frcm the p resc r ibed surface 

ext ext 
d i s t r i b u t i o n s and the known source terms p and/or v. ( c f . ( 5 . 4 . 1 ) 
and ( 5 . 4 . 2 ) ) . 

The global r e p r e s e n t a t i o n scheme discussed in Sec t ion 5 . 3 , toge ther 
with the co l loca t ion procedure ou t l ined above, has been t e s t e d for a 
mathematical t e s t flow, v i z . , a uniform flow with l i n e a r l y vary ing 
pressure and constant flow ve loc i t y in a homogeneous, cube- l ike domain. 
Obviously, in t h i s case a l so at the mu l t i p l e nodes t h e r e must e x i s t a 
unique p re s su re . This i s confirmed by the numerical experiment tha t shows 
equal values of a l l p ressures a t the v e r t i c e s t h a t meet at t h e common 
nodal po in t s loca ted on the edges and in the corners of the t r i a n g u l a t e d 
boundary of the computational domain. This and other numerical 
experiments a re discussed in d e t a i l in Chapter 6. 

5 . 4 . 3 . ANALYTIC EVALUATION OF THE SURFACE INTEGRALS OCCURRING 
IN THE DISCRETIZED BOUNDARY INTEGRAL EQUATIONS 

In t h i s subsect ion i t i s ou t l ined how the i n t e g r a l s IG , I r , IT. and IG. 
(cf. (5 .4 .3 ) - ( 5 .4 .6 ) ) can be evaluated a n a l y t i c a l l y . They a r e i n fac t 
the p o t e n t i a l s due t o c e r t a i n s i n g l e - , double- , and t r i p l e - l a y e r 
d i s t r i b u t i o n s on a t r i a n g u l a r disk in an an i so t rop i c medium. 
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In the l i t e r a t u r e , surface potentials for constant surface densities 
on polygonal disks have been treated analytically by, e .g. , Bir t les , Mayo 
and Bennett (1973), Rao et a l . (1979), Waldvogel (1979), and Herman 
(1981, pp. 171-176). Analytic expressions for surface potentials with 
l inear ly varying surface densities on polygonal disks are given by, e.g. , 
Van Herk (1980, pp. 157-166) and Wilton et a l . (1981). All these authors 
consider only surface potentials due to single- and double-layer 
dis tr ibut ions in isotropic media. We shall derive analytic expressions 
for a l l integrals (5.1.3) - (5.1.6) both for isotropic and anisotropic 
media. 

The main tool to evaluate the above integrals i s to rewrite their 
integrands in such a form that Stokes' theorem can be employed. 
Subsequent use of this theorem replaces the surface integrals by l ine 
integrals along the boundary curve of the disk. Each boundary curve of 
the triangular disk is the union of three s t ra ight l ine segments and i t 
can easily be shown that the resulting l ine integrals along these 
s t ra ight l ine segments can be expressed in terms of elementary functions. 
Obviously, th is method i s not res t r ic ted to planar t r iangles , but can be 
applied to any polygonal surface element as well. 

For the isotropic case the method indicated above can be employed 
straightforwardly. For the anisotropic case, however, we f i r s t apply to 
the relevant integrals an orthogonal transformation, followed by a 
stretching procedure of the (transformed) coordinates. In th is manner, 
the "anisotropic" integrals will acquire an "isotropic" structure, and 
hence, we can reuse the techniques applicable to the l a t t e r . 

As an intermediate step in transforming the surface integrals to 
forms amenable to the application of Stokes' theorem, we come across a 
part icular integral that cannot be handled in th i s manner. Since the 
relevant integral also has a geometrical interpretation (viz., the solid 
angle at which the relevant t r iangle is observed from the point of 
observation), a closed-form expression can be obtained from the theory of 
spherical trigonometry. On the other hand, analytic evaluation i s s t i l l 
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poss ib le by an a l t e r n a t i v e method; for completeness, the l a t t e r method i s 
d iscussed in some d e t a i l , t o o . 

Since the actual computations are r a t h e r lengthy and t e d i o u s , they 
are c o l l e c t e d in Appendix C. The f i n a l express ions obtained a r e f a i r l y 
compact; they have been used t o a r r i v e at the numerical r e s u l t s discussed 
in Chapter 6. 

In the d i s c r e t i z e d i n t e g r a l r e l a t i o n s (5 .4 .1 ) and ( 5 . 1 . 2 ) , and hence, 
in the f i n a l square system of l i n e a r , a l geb ra i c equa t ions , t h e 

Sxfc GXt 

c o n t r i b u t i o n s from the known source terms p and/or v. (c f . (4 .3 .13) 
and (4 .3 .21 ) ) a re s t i l l to be considered. 

F i r s t of a l l , the pa r t s in t h e s e domain i n t e g r a l s tha t a r e assoc ia ted 
with g r av i t y are reduced to surface i n t e g r a l s over the boundary surface 
3D of each homogeneous (sub)domain D. For t h i s purpose, we t ake i n t o 
account t ha t the Green 's funct ions Gq and v. a r e i n t e r r e l a t e d through 
(cf. (4 .5 .19) and (4 .5 .20) ) 

r ^ ( x ' , x ) = K i .S.G q(x ' ,x_) , (5 .4 .8 ) 

f f 
and, s i m i l a r l y , the Green 's funct ions r. and G. . through (cf. (4 .5 .26) 
and ( 4 . 5 . 2 7 ) ) , 

Gf . ( x ' , x ) = K. 3 r f ( x ' , x ) + K..6(x - x ' ) . (5 .4 .9 ) 
i j - - jp p l - ' - Ji - -

Furthermore, s ince p has a constant „value throughout D, i t fo l lows with 
the aid of Gauss' theorem, and in (4 .3 .21) a l s o with the aid of the 

ext i n t e g r a l property of the three-dimensional d e l t a func t ion , t h a t p and 
v. can be wr i t t en as (cf. (4 .3 .13) ) 

l 

p 6 X t ( x ' ) = pg K I v (x)Gq(x ' ,x)dA 
1 J ;xG3D J 

f [ G q ( x ' , x ) q ( x ) + r q ( x ' , x ) f ( x ) ] d V , ( 5 . 4 . 1 0 ) 
1 x6D L 
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and (cf . (4 .3 .21) and ( 4 . 3 . 8 ) ) 

v ; X t < 2 ' > = X D ( x t ) P g j K J i + P 6 J K J p J 
v (x ) r f (x ' , x )dA 

xG3D P 1 

[ r [ ( x ' , x ) q ( x ) + Gf ( x ' , x ) f ( x ) ]dV , (5 .4 .11) 
xGD J J 

r e s p e c t i v e l y . After applying t o the surface i n t e g r a l s on the r ight-hand 
s ides of (5 .4 .10) and (5 .4 .11) the d i s c r e t i z a t i o n scheme ou t l ined in the 
p resen t chapter , i t r e ad i l y follows tha t they a r e t o be rep laced by (cf. 
( 5 . 1 . 1 ) , ( 5 . 3 . 1 ) and (5 .3 .2 ) ) 

.K v . (x)G q (x ' ,x)dA = pg.K llT_. v . (N) IG q (N ,x ' ) , (5 .4.12) Pg 
'XSSD 

and 

pg K v (x ) r f (x ' ,x )dA = pg K i j " v ( N ) i r f ( N . x ' ) , (5 .4 .13) 
xSHD J J K '̂  ~ ' P ! 

where IG q (N,x ' ) and l r . ( N , x ' ) a r e given in (5 .4 .3) and ( 5 . 4 . 5 ) , 
r e s p e c t i v e l y , with 4>(N,I,)c) replaced by u n i t y , and, accordingly , the 
order ing of the v e r t i c e s has been omitted. 

F i n a l l y , once the d i s t r i b u t i o n s of the i n j e c t i o n and force sources 
a c t i n g in D have been spec i f i ed , we can evaluate t h e i r con t r i bu t i ons to 
p and v^ (cf. (5 .4 .10) and ( 5 . 4 . 1 1 ) ) . In genera l , the r e l evan t 
domain i n t e g r a l s have t o be computed with the aid of numerical 
i n t e g r a t i o n r u l e s . To t h i s end, we subdivide the p a r t ( s ) of D in which q 
and f. d i f f e r from zero i n t o a number of t e t r ahedra and approximate in 
each t e t rahedron q and f. by a constant va lue . Hence, in the domain 
i n t e g r a l s over each te t rahedron q and f. can be put in f ron t of the 
r e l evan t i n t e g r a l s and we are l e f t with the i n t e g r a t i o n s of the Green 's 
funct ions Gq , r q , r . and G. . over the t e t r a h e d r a . Obviously, with the aid 
of ( 5 . 4 . 8 ) , ( 5 . 4 . 9 ) , and the r e l a t i o n (cf. (4 .5 .20) and (4 .5 .27) ) 
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r ^ ( x ' . x ) = r ^ ( x ' , x ) , (5 .4 .14) 

in which we have taken i n t o account the symmetry of K. . , the i n t e g r a l s 
i J. f f 

over the t e t r a h e d r a conta ining the Green 's funct ions T., r . and G. . can 
l l i j 

with the fu r the r a p p l i c a t i o n of Gauss' theorem be replaced by sur face 
i n t e g r a l s over the t r i a n g u l a r faces of the t e t r a h e d r a . The a n a l y t i c 
eva lua t ion of the l a t t e r surface i n t e g r a l s proceeds along s i m i l a r l i n e s 
as the ones out l ined in the beginning of t h i s subsec t ion . With t h i s , the 
a n a l y t i c eva lua t ion of the domain i n t e g r a l s conta in ing r . , r . and G. . has 
been s e t t l e d , and hence, only the domain i n t e g r a t i o n over the t e t r a h e d r a 
of Gq remains to be considered. To t h i s end, we f i r s t observe tha t (cf. 
(4 .5 .19)) 

G q (x ' , x ) = (1 /2 ) [de t (R . . ) ] 1 / 2 K. .3.3 .[R (x ' - x ) (x ' - x ) ] 1 / 2 , — '— i j i j l j mn m m n n 
(5 .4 .15 ) 

when x_Ax' , which i s v e r i f i e d by car ry ing out the d i f f e r e n t i a t i o n s . Now, 
upon i n t e g r a t i n g (5 .4 .15) over each t e t r ahedron and using Gauss' theorem 
in the r e s u l t i n g i n t e g r a l s on the r igh t -hand s i d e , the r e l evan t domain 
i n t e g r a l s a re replaced by surface i n t e g r a l s over the faces of the 
t e t r ahed ra . The in tegrands of the l a t t e r are of the form 

1 /2 v.K. .3.[R ( x ' - x ) ( x ' - x )] , where v. denotes the outwardly d i r e c t e d , l i j j mn m tn n n l J 

constant , u n i t normal vector on each f a c e . These i n t e g r a l s , t o o , can be 
evaluated a n a l y t i c a l l y upon employing the procedures ou t l i ned in the 
f i r s t par t of the present subsec t ion . 

Through these procedures , piecewise constant values of q and f. l e ad 
ext ext 

t o con t r i bu t i ons to p and v. i n (5 .4 .10) and (5 .4 .11) t h a t can be 
expressed in terms of elementary a n a l y t i c f u n c t i o n s . 

As a l ready remarked in Subsection 3 - 2 . 1 , most flow conf igura t ions met 
in p r a c t i c e deal with in j ec t ion ( a b s t r a c t i o n ) sources only, and hence, 
f.=0 throughout the domain of i n t e r e s t . In reg iona l ( l a r g e - s c a l e ) 
groundwater flow problems these ( i n j e c t i o n ) sources a re commonly 
represented as point sources ( see , e . g . , L igge t t and Liu, 1983, p . 4 ) . 
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Taking into account the integral property of three-dimensional delta 
function, th is implies that their contributions to p x in (5.4.10) and 
to v. in (5.^.11) reduce to simple multiplications of the source 
strength of the relevant point source by the corresponding Green's 
function, in which now the distance from the location of the relevant 
sources to the point of observation occurs. 
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5 . 5 . THE INCORPORATION OF THE COMPATIBILITY RELATION 

In t h i s sec t ion a method i s presented t o incorpora te the compa t ib i l i ty 
r e l a t i o n (3 .1 .7 ) in the numerical procedure. 

The compa t ib i l i ty r e l a t i o n (3 .1 .7) expresses that the o u t - ( i n - ) f lux 
across the closed boundary surface 3D of the bounded flow domain D of 
i n t e r e s t must be equal t o the r a t e a t which the sources in jec t ( a b s t r a c t ) 
a ce r t a in net volume in to (out of) D. In gene ra l , i t i s conjectured t ha t 
the d i sc re t i zed vers ion of (3 .1 .7 ) wi l l not be s a t i s f i e d by t h e s o l u t i o n s 
of the d i s c r e t i z e d systems of boundary i n t e g r a l equa t ions . The degree of 
t h i s v i o l a t i o n i s r e l a t e d to the r a t i o of the p a r t ( s ) of the boundary 
surface 3D on which the normal component of the ve loc i t y i s unknown and 
the p a r t ( s ) on 3D on which i t has a known prescr ibed va lue . We s h a l l now 
discuss a method t o incorpora te the d i s c r e t i z e d form of the compa t ib i l i t y 
r e l a t i o n i n any of the square systems of l i n e a r , a lgeb ra i c equa t ions by 
which the boundary i n t eg ra l equat ions have been r ep l aced . 

F i r s t of a l l , we apply the t r i a n g u l a t i o n scheme of Sect ion 5.1 t o 
(3 .1 .7) and i n s e r t i n the r e s u l t i n g le f t -hand s ide the f i e l d 
r ep resen ta t ion ( 5 . 3 . 2 ) . In t h i s , by taking in to account t ha t in each 
planar t r i a n g l e S (N) the expansion funct ion <f>(N,I,x_) i s nothing but the 

ba rycen t r i c coordinate A(I) on S~(N), each i n t e g r a l over S„(N) i s e a s i l y 
S evaluated and leads to a net outward f lux q (N) on S (N) 

qS(N) = (1/3)A(N) l\ = ] v . ( N , I ) v . ( N , I ) , (5 .5 .1) 

in which A(N) is the scalar area of S„(N) and v. (N, I)v. (N,I) is the value 
of the normal component of the velocity at the I-th vertex of S_(N). 
Taking into account that 3D is subdivided into NT planar triangles, the 
discretized version of (3.1.7) can be written as 
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(1/3) l"3i A ( N )^i=1 v i ( N ' I ) v
i

( N - I ) = Q' (5 .5 .2 ) 

where Q denotes the value t ha t r e s u l t s a f t e r the i n t e g r a t i o n over the 
domain D of the ex te rna l i n j e c t i o n ( abs t r ac t i on ) sources ac t ing in D. 
Now, f ran Sec t ion 5.3 i t i s known tha t the 3"NT expansion coe f f i c i en t s 
for the normal component of the ve loc i ty tha t (5 .5 .2 ) would suggest at 
f i r s t s i g h t , correspond t o NG global (vertex and nodal) expansion 
c o e f f i c i e n t s with (NT+D/2 < NG S 3*NT. Some of t h e i r values are known, 
v i z . , the va r i ab l e s that correspond t o points on 3D on which the normal 
component of the v e l o c i t y has a given prescr ibed value (cf. Table 1.1) , 
while the values of the remaining ones, v i z . , the ones t ha t correspond t o 
po in t s on 9D on which the pressure has a known value (cf. Table 1.1) a r e , 
of course , unknown. Now, the f i r s t s t e p t o incorpora te (5 .5 .2 ) i n t o the 
system of l i n e a r , a l g e b r a i c equat ions (5 .1 .7) i s t o rearrange (5 .5 .2) 
such that on i t s l e f t - h a n d s ide a l l unknown global expansion var iab les 
for the normal component of the ve loc i ty with t h e i r corresponding 
c o e f f i c i e n t s ( i . e . , (1/3)A(N) in (5 .5 .2 ) ) occur and on the r ight -hand 
s i d e , in add i t i on t o Q, the known ones with t h e i r corresponding 
c o e f f i c i e n t s . Next, the s t r u c t u r e of the vector of unknowns that occurs 
in t h i s system wi l l be matched t o the one in ( 5 . 1 . 7 ) . The l a t t e r vector 

of unknowns, i . e . , b . with iS{ 1 NG}, does not only conta in the 
unknown global (ver tex and nodal) expansion va r i ab l e s for the normal 
component of the v e l o c i t y , but a l so the unknown global (vertex and nodal) 
expansion va r i ab l e s for the p re s su re . However, in (5 .5 .2) we can ea s i l y 
r e p l a c e the vector of unknown global expansion v a r i a b l e s for the normal 
component of the v e l o c i t y by the vector {b.; iS{ 1 , . . . ,NG}} of (5 .1 .7) 
provided t h a t we take the coe f f i c i en t s mul t ip lying the unknown global 
pressure expansion v a r i a b l e s occurr ing in {b. ; iG{1, . . . ,NG}} equal to 
zero . In t h i s way, ( 5 . 5 . 2 ) i s replaced by 

V N G A K 
Xi-1 d i b i = h ' ( 5 .5 .3 ) 
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in which the coe f f i c i en t s d. t ha t correspond to (unknown) p ressure 
va r i ab l e s a re put equal to ze ro . The known s c a l a r quan t i ty h on the 
r ight -hand s ide of (5.5..3) c o n t a i n s , apar t from Q, a l l known values of 
the global expansion v a r i a b l e s for the normal component of the v e l o c i t y 
and t h e i r mul t ip ly ing c o e f f i c i e n t s . The s t r u c t u r e of the d i s c r e t i z e d 
vers ion of the compat ib i l i ty r e l a t i o n as given in ( 5 . 5 . 3 ) now matches the 
one of ( 5 . 4 . 7 ) . To s a t i s f y (5 .1 .7) and (5 .5 .3) s imul taneous ly , we now 
minimize the fol lowing squared e r ro r : 

ERROR = X™ [I™, a i ( J b . - c j 2
 + £ [ 1 ^ d . b . _ hf, (5.5.2,) 

in which £, i s a pos i t i ve parameter. The minimum of ERROR i s a t t a i n e d when 
{b ; m6{1, . . . ,NG}} s a t i s f i e s the system of l i n e a r , a lgeb ra i c equat ions 

> . , I ) . - a. a. . + £d.d lb. = ) . , a. c. + £d h, (5 .5 .5 ) 
'• j-l LZ-i=1 l ,m i , j j mJ j /-i=1 i,m I ^ m * 

for a l l mG{1 NG}. By varying the parameter £ in ( 5 . 5 . 5 ) , one 
inf luences the r e l a t i v e importance of taking i n t o account the 
( d i s c r e t i z e d ) compat ib i l i ty r e l a t i o n in t h i s system. For £,=0, the square 
system (5 .5 .5 ) has the same form as the o r i g i n a l one in ( 5 . 4 . 7 ) , be i t 
that i t i s mul t ip l i ed on both s ides by the t ranspose of the mat r ix of 
c o e f f i c i e n t s . 

The only remaining ques t ion i s the choice of a s u i t a b l e value for the 
parameter £,. This value must be e s t ab l i shed by t r i a l and e r r o r . 



CHAPTER 6 

NUMERICAL RESULTS FOR TEST FLOWS 

In the present chapter some numerical experiments a re c a r r i e d out in 
order to t e s t the performance of the boundary- in tegra l -equa t ion method 
for analyzing s teady groundwater flow problems as i t has been developed 
in the previous c h a p t e r s . The t e s t flow taken for t h i s purpose i s a 
uniform source- f ree one; i t i s considered in a cube as the computational 
domain of i n t e r e s t . The cube i s f i l l e d with a homogeneous medium, e i t h e r 
i s o t r o p i c or a n i s o t r o p i c (but r e c i p r o c a l ) ; both cases are cons idered . 
Then the flow ve loc i ty i s an, a r b i t r a r i l y o r i en t ed , vector of constant 
magnitude, and the accompanying pressure var ies l i n e a r l y with p o s i t i o n . 
The boundary sur face of the cube i s d i s c r e t i z e d i n t o t r i a n g l e s ; examples 
of t h i s a re shown in Figure 6.1 in Sect ion 6 . 1 . The cube-shaped domain D 
under cons ide ra t ion i s defined by 

D = { xGR 3 ; 0<x < 1 , 0 < x < 1 , 0 < x < 1 } . ( 6 . 0 . 1 ) 

The closed boundary surface of D i s denoted by 3D. The un i t vector along 
the normal to 3D, po in t ing away from D, i s denoted by _v. 3D i s the union 
of two s e t s , 3D and 3D , r e s p e c t i v e l y . On 3D the pressure w i l l be 
prescr ibed and on 3D the normal component of the flow ve loc i t y (cf. 
Table 4 . 1 ) . Throughout the computational domain under cons ide ra t ion the 
vec to r i a l a c c e l e r a t i on of f ree f a l l i s taken t o be £=-gio (see Figure 6.1 
in Section 6 . 1 ) , where g denotes the (constant) s ca l a r a c c e l e r a t i o n of 
free f a l l . 
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In Section 6.1 we analyze the boundary integral equations that are 
obtained upon using the source-type integral relation for the pressure 
field. In discretizing these integral equations the flow field quantities 
are, on each triangle, as is customary done in the literature (see, e.g., 
Jawson and Symm, 1977, p. 233), approximated by constants. The values of 
the latter are attributed to the field values at the barycenters of the 
relevant triangles. Subsequently, collocation is applied at the 
barycenters of all triangles involved. The errors in the results obtained 
in this way are typically related to the geometrical discretization of 
the faces of the cube. Numerical experiments are carried out to 
investigate the effects of incorporating the compatibility relation for 
the velocity in the discretized system of boundary integral equations in 
the manner discussed in Section 5.5. 

In Section 6.2, the numerical experiments of Section 6.1 are 
repeated, but now with the piecewise linear interpolation scheme 
discussed in Section 5.3, in combination with the collocation method of 
Section 5.1. Since the piecewise linear expansion functions comply 
exactly with the structure of the test flow field, the results obtained 
are expected to be exact in the number of digits that is used to 
represent the numbers in the computer code. This expectation is 
confirmed. Also, the performance of the system of boundary integral 
equations resulting from the integral relation for the velocity field is 
tested, and the performance of mixtures of the two systems. In 
discretizing these systems, we only employ the piecewise linear field 
representations of Section 5.3, together with the collocation method of 
Section 5.1. Since, in all these cases, the field, representations 
employed match the structures of the test flows exactly, all solutions 
turn out to be, as expected, exact within the computational accuracy 
employed. This confirmation is regarded as an important test on the 
correctness of the computer code developed. 

Conclusions about the above numerical experiments are drawn in 
Section 6.3-
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The algori thms have been implemented in the Fortran 77 language. All 
computations have been performed on an IBM PC/AT (opera t ing a t 6 MHz) 
with f l o a t i n g point processor , while the Ryan-McFarland For t ran 77 V 2.00 
compiler has been used. 
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6 . 1 . NUMERICAL RESULTS; PIECEWISE CONSTANT INTERPOLATION 

In the present s e c t i o n we i n v e s t i g a t e some of the numerical fea tu res of 
the boundary- in tegra l -equa t ion method, when i t i s applied in i t s s imples t 
ve rs ion , i . e . , when the i n t e g r a l r e l a t i o n for the pressure and the 
piecewise constant approximation for the flow f i e l d q u a n t i t i e s a re used. 

Inspec t ion of the express ions for the Green's funct ions pe r t a in ing t o 
a homogeneous and r e c i p r o c a l medium of i n f i n i t e extent r evea l s tha t the 
ones per ta in ing t o a point i n j e c t i o n source , i . e . , G^ defined by (4 .5 .19) 
and r? defined by ( 4 . 5 . 2 0 ) , have the s imples t s t r u c t u r e . Since the l a t t e r 
ones apply to the i n t e g r a l r e l a t i o n for the pressure f i e l d , we 
i n v e s t i g a t e the system of boundary i n t e g r a l equat ions t h a t follows from 
i t f i r s t . In i t s most general form the re levant system i s given by 
(4 .4 .2 ) - ( 4 . 4 . 4 ) , t o which (4 .5 .19) and (4.5.20) now apply. In a f i r s t 
numerical study the system i s appl ied to a homogeneous and i s o t r o p i c 
medium ins ide the cube-shaped computational domain D, defined by ( 6 . 0 . 1 ) . 
In D we consider the following mathematical t e s t flow: 

v - 3 " 1 / 2 ( i 1 + i 2 + i 3 ) (6.1.1) 

and 

p - - 3"1 /2R(x1 + x2 + x ) - pg(x3 - 1) + 31 /2R, (6.1.2) 

i . e . , a uniform flow with constant diagonal flow ve loc i t y from x=0_ t o 
jc= (_!. +iP

+i_c,) and with a l i n e a r l y varying pressure . Note t h a t a t 
1/2 x » ( i . + i_+_i_), we have taken p=0 ; at x=p_ we then have p=pg+3 R. C l e a r l y , 

(6 .1 .1 ) - (6 .1 .2) s a t i s f y the bas ic groundwater flow equations (3.3-5) 
and (3-3.6) with q=0, f=0, R ^ R S and g=-gi 3-
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Now, (4 .4 .2 ) - (4.1).3) serve as the system of boundary i n t e g r a l 
equat ions . As a consequence of the assumed i so t ropy of the homogenous 
medium, R. . occurr ing in the expressions (4 .5 .19) and (4 .5 .20) for the 
Green 's funct ions G and r . , r e s p e c t i v e l y , i s t o be replaced by R6. . (cf . 
(B.1.1) and ( B . 1 . 2 ) ) . Since 3D in (4 .4 .2) - (4 .4 .3 ) i s the boundary 
surface of the un i t cube, i t i s c l ea r t ha t 3D can be r ep resen ted in an 
exact manner by the planar t r i a n g l e s of Chapter 5 (cf. ( 5 . 1 . 1 ) ) . Each 
face of the cube i s , in an i d e n t i c a l manner, subdivided i n t o NT/6 
t r i a n g l e s , where NT=24 (see Figure 6 .1a ) , NT=48 (see Figure 6 .1b ) , NT=96 
(see Figure 6.1c) and NT=144 (see Figure 6 .1d ) , r e s p e c t i v e l y . As regards 
the d i s c r e t i z a t i o n p a t t e r n s tha t a re used, i t i s obvious t h a t t h e one 
depicted in Figure 6.1a i s the almost s imples t one we can employ. 
Clear ly , the one shown in Figure 6.1b i s j u s t a s t r a igh t fo rward extension 
of the one in Figure 6 .1a. With regard t o the p a t t e r n s of F igures 6.1c 
and 6.1d i t i s observed tha t the one shown in Figure 6 . Id i s s i m i l a r to 
the one in Figure 6 .1c , except for a f i n e r d i s c r e t i z a t i o n around the 
corners of the cube. The l a t t e r two have been chosen to analyze the 
ef fec ts of such a p a r t i a l l y f iner d i s c r e t i z a t i o n . 

On each t r i a n g l e , both the known and the unknown f i e l d d i s t r i b u t i o n s 
of the p res su re and the normal component of the flow ve loc i ty a r e 
approximated by a cons t an t , whose value i s a t t r i b u t e d to the f i e l d value 
at the barycenter of the re levant t r i a n g l e . Subsequently, NT out of the 
r e s u l t i n g 2xNT known and unknown f i e l d values are taken as the global 
expansion c o e f f i c i e n t s , and co l loca t ion i s appl ied a t the ba rycen te r s of 
a l l t r i a n g l e s . The r e s u l t i n g system of l i n e a r , a l geb ra i c equa t ions 
contains in i t s c o e f f i c i e n t s the surface i n t e g r a l s IG and IV as defined 
by (5 .4 .3 ) and ( 5 . 4 . 4 ) , r e s p e c t i v e l y , in which, as a consequence of the 
piecewise cons tant i n t e r p o l a t i o n , the l i n e a r i n t e r p o l a t i o n func t ion $ 
(cf. ( 5 . 3 . 3 ) ) i s rep laced by un i ty . For these sur face i n t e g r a l s the 
a n a l y t i c express ions derived in Appendix C (cf. Sec t ion C.1) a r e used. 
F i n a l l y , each system of l i n e a r , a lgeb ra i c equat ions i s solved by a d i r e c t 
procedure, v i z . , e i t h e r a Gaussian e l iminat ion or a Gauss-Jordan 
e l imina t ion . 
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(b) 
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. g 

Fig 6 . 1 . The u n i t cube D as the computational domain of i n t e r e s t . 
The boundary sur face 3D of D i s the union of 3D and 3D_. 
On 3D , p i s p resc r ibed and on 3D , v . v . . 3D i s r ep resen ted 
by: (a) NT=24 t r i a n g l e s , (b) NT=H8 t r i a n g l e s , (c) NT=96 
t r i a n g l e s , and (d) NT=144 t r i a n g l e s . 
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The system (4.4.2) - ( 4 . 4 . 3 ) , d i s c r e t i z e d in the ind ica ted manner, 
has been t e s t e d for the t e s t flow (6 .1 .1) - ( 6 . 1 . 2 ) , with p=1 , R=>1 and 
g=-1 , for the following t h r e e cases : 

( i ) 3D = {xGR3; x =0,0<x2<1,0<x <1} and 

3D2 = 3D\3D , 

( i i ) 3D = {xGR3; x =0,0<x <1,0<x <1} U 
{xGR3; 0<x1<1,x2=1,0<x3<1} U 
{xGR3; 0<x <1,0<x2<1,x =1 } and 

3D2 = 3D\3D , 

(6.1.3) 

(6.1.4) 

and 

(iii) 3D2 = {xGR3; x =1,0<x <1,0<x <1} and 

3D = 3D\3D2, 
(6.1.5) 

where on 3D the f i e l d d i s t r i b u t i o n of the pressure i s prescr ibed and the 
one of the normal component of the flow ve loc i t y i s unknown, while on 3D 
the f i e l d d i s t r i b u t i o n of the pressure i s unknown and the one of the 
normal component of the flow ve loc i ty i s p resc r ibed . The d i f fe ren t 
boundary condi t ions ( 6 . 1 . 3 ) , (6 .1 .4 ) and (6 .1 .5 ) a re schematical ly 
v i s u a l i z e d in Figures 6.2a, 6.1b and 6 .1c , r e s p e c t i v e l y . 

In order t o quantify the e r r o r of a p a r t i c u l a r so lu t i on of the 

boundary value problems two e r ro r c r i t e r i a a re used, v i z . , a local one 
and a global root-mean-square one. Let p denote the exact f i e l d value 
of the pressure at the barycenter of a p a r t i c u l a r t r i a n g l e on 3D and l e t 
p be the computed value a t t ha t po in t . Then the loca l e r ro r ERR(p) in 
Kcomp 



CHAPTER 5 : NUMERICAL RESULTS 

Fig 5.2. Schematic visualization of the different boundary conditions 
that have been chosen to apply to the boundary surface 3D: 
(a) the boundary condition (6.1.3), (b) the boundary 
condition (6.1.4), and (c) the boundary condition (6.1.5). 
3D has been discretized into 24 triangles (cf. Figure 6.1a). 
The dots indicate the barycenters of the triangles at which 
the local errors in p and v.v. have been computed (cf. 
Tables 6.2a, 6.2b, and 6.2c, for NT=24). 
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the pressure a t the r e l evan t point i s taken to be 

ERR(p) = |p - p | /max( |p . I ) , (6 .1 .6 ) 
1 comp ' e x ' M K e x , b a r y ' 

where maxflp . I) denotes the maximum of the absolute values of p 
M * e x , b a r y ' ' *ex 

at the barycenters of the t r i a n g l e s spanning 3D. S imi la r ly , the l o c a l 
e r r o r ERR(v.v.) in the normal component of the flow ve loc i ty a t the 
barycenter of a p a r t i c u l a r t r i a n g l e on 3D i s defined by 

ERR(v.v.) = v .v . - v .v . , (6 .1 .7 ) 
l i ' l i.eomp i i , ex ' 

where v.v. i s the computed value of the normal flow ve loc i ty and 
l i,comp 

v .v . i s i t s exact va lue , and where i t has been taken i n to account tha t 
i i , e x 

for our t e s t flow max(|;v | )=1 (cf . ( 6 . 1 . 1 ) ) . Fur ther , the global 

root-mean-square e r ro r RMSE(p) in the computed pressure i s defined by 
RMSE(p) = [ lp - p |2dA/ 

L L | lcomp *ex' 
|p | 2 d A ] 1 / 2 , ( 6 .1 .8 ) 

3D2 

and, s i m i l a r l y , the global root-mean-square e r ror RMSE(v.v.) in the 

computed normal flow ve loc i ty i s taken to be 

RMSE(v.v.) = [ Iv.v. - v . v . |2dA/ Iv.v. | 2 d A ] 1 / 2 . 
l l L n ' l i.eomp l i , e x ' J _n ' l i , e x ' ' 3D 3D1 

(6 .1 .9 ) 

A summary of the global root-mean-square e r ro r s obtained for the 
t h r e e cases (6 .1 .3 ) - (6 .1 .5) with NT=24, NT=18, NT=96 andNT=111, 
r e s p e c t i v e l y , i s presented in Table 6 . 1 . Typical values of the l o c a l 
e r r o r s in p and v.v . a t the barycenters of some t r i a n g l e s spanning 3D are 
l i s t e d in Tables 6.2a, 6.2b and 6 .2c . A f i r s t inspect ion of Table 6.1 
shows t h a t , as we would expect , both the value of RMSE(p) and RMSEtv.v.) 
decrease as the number of t r i a n g l e s employed inc rea se s . A fur ther 
in spec t ion l e a r n s tha t the r e s u l t s obtained for the pressure are more 
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accura te than the ones obtained for the normal component of the v e l o c i t y . 
Perhaps t h i s has to do with the fac t tha t p i s solved from an i n t e g r a l 
equation of the second kind, while v .v . i s solved from an i n t e g r a l 

Table 6 . 1 . Global root-mean-square e r r o r s in p and v . v . . 

t e s t NT=24 NT=48 NT=96 NT=144 
case RMSE(p) RMSE(p) RMSE(p) RMSE(p) 

( i ) 0.0512 0.0336 0.0201 0.0172 
( i i ) 0.0328 0.0229 0.0120 0.0103 
( i i i ) 0.0143 0.0110 0.0056 0.0055 

t e s t 
case RMSE(v.v.) RMSE(v.v.) RMSE(v.v.) RMSE(v.v.) 

i i i i i i i i 

( i ) 0.3103 0.2153 0.1386 0.1209 
( i i ) 0.2903 0.2120 0.1541 0.1448 
( i i i ) 0.2521 0.1972 0.1527 0.1501 

equation of the f i r s t kind (cf. Section 4.4) . As a consequence, the part 
of the system of l inear , algebraic equations that corresponds to the 
unknown pressures might be somewhat better conditioned than the part that 
corresponds to the unknown normal flow veloci t ies . Finally, Table 6.1 
i l lus t ra tes that for all discretizations that have been used, the value 
of RMSE(p) decreases if we consider in succession the test cases ( i ) , 
( i i ) and ( i i i ) . This behavior can be understood upon recall ing that in 
each of the discretization patterns used, the number of points 
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Table 6 .2a . Test case ( i ) ; loca l e r ro r s in p and v. v. a t the 
barycenters of some t r i a n g l e s spanning 3D. 

ERR(p) 

at 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

( 1 , 1 / 3 , 5 / 6 ) 

( 1 , 2 / 3 , 5 / 6 ) 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 3 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

( 1 , 1 / 2 , 2 / 3 ) 

ERR(v.v.) 

a t 

NT=24 

0.0196 

0.0524 

NT=24 

NT=48 

0.0234 

0.0381 

NT=48 

NT=96 

0.0076 

0.0071 

0.0169 

0.0123 

NT=96 

NT=144 

0.0065 

0.0062 

0.0139 

0.0102 

NT=144 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 2 / 3 , 5 / 6 ) 

( 0 , 1 / 3 , 5 / 6 ) 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 2 / 3 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 1 / 2 , 2 / 3 ) 

0 

0 

.0871 

.2379 

0.1400 

0.1064 

0.0182 

0.0368 

0.0391 

0.0487 

0.0154 

0.0340 

0.0373 

0.0456 
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Table 6 .2b. Test oase ( i i ) ; l oca l e r r o r s i n p and v. v. a t the 
baryoenters of some t r i a n g l e s spanning 3D. 

ERR(p) 

at 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

( 1 , 1 / 3 , 5 / 6 ) 

( 1 , 2 / 3 , 5 / 6 ) 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 3 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

( 1 , 1 / 2 , 2 / 3 ) 

ERR(v.v.) 

at 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 2 / 3 , 5 / 6 ) 

( 0 , 1 / 3 , 5 / 6 ) 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 2 / 3 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 1 / 2 , 2 / 3 ) 

NT=24 

0 

0 

0163 

0030 

NT=24 

0 

0 

0913 

0877 

NT=48 

0.0026 

0.0015 

NT=48 

0.0570 

0.1120 

NT=96 

0.0040 

0.0012 

0.0015 

0.0024 

NT=96 

0.0505 

0.0129 

0.0767 

0.0123 

NT=144 

0.0032 

0.0036 

0.0013 

0.0020 

NT=144 

0.0470 

0.0085 

0.0664 

0.0063 
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Table 6 .2c . Test case ( i i i ) ; loca l e r r o r s in p and v.v . a t the 

barycenters of some t r i a n g l e s spanning 3D. 

ERR(p) NT=24 NT=48 NT=96 OT=144 

at 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

(1 . -1 /3 ,5 /6) 

( 1 , 2 / 3 , 5 / 6 ) 

( 1 , 1 / 6 , 1 / 2 ) 

( 1 , 1 / 3 , 1 / 2 ) 

( 1 , 1 / 2 , 5 / 6 ) 

( 1 , 1 / 2 , 2 / 3 ) 

ERR(V iv. ) 

a t 

0. 

0 

0070 

0069 

NT=2 4 ' 

0.0063 

0.0033 

NT=48 

0.0030 

0.0016 

0.0001 

0.0005 

NT=96 

0.0028 

0.0014 

0.0001 

0.0001 

NT=144 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 2 / 3 , 5 / 6 ) 

( 0 , 1 / 3 , 5 / 6 ) 

( 0 , 5 / 6 , 1 / 2 ) 

( 0 , 2 / 3 , 1 / 2 ) 

( 0 , 1 / 2 , 5 / 6 ) 

( 0 , 1 / 2 , 2 / 3 ) 

0 

0 

0747 

.0750 

0.0510 

0.1022 

0.0442 

0.0018 

0.0713 

0.0006 

0.0408 

0.0042 

0.0614 

0.0049 
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(barycenters) at which the pressure is calculated decreases in this 
succession (of. Figure 6.2). A similar behavior was expected to hold for 
the values for RMSE(v.v.). However, only when 3D is discretized into a 
relatively large number of triangles (NT=144) such a behavior, although 
less pronounced, manifests itself. When 3D is discretized into less 
elements, the values of RMSE(v.v.) are, as compared to the corresponding 
variations in the values of RMSE(p), rather constant. The results shown 
in the Tables 6.2a, 6.2b and 6.2c again indicate that the results for p 
are more accurate than the ones for v.v., i.e., the local errors follow 

i l 
in this respect the same pattern as the global errors. Inspection of 
these tables, in particular the columns for NT=96 and NT=144, further 
learns that a finer discretization around the corners of the cube (cf. 
Figures 6.1c and 6.1d) leads to smaller local errors in the pressure and 
in the normal flow velocity at points (barycenters) located around the 
center of each face of the cube, i.e., farther away from the corners. We 
also observe that, except for the results obtained when 3D was 
discretized in only 24 or 48 triangles, ERR(p) decreases if p needs 
computation in fewer points on 3D (cf. Figures 6.2a, 6.2b and 6.2c). 
Finally, the numerical data in Table 6.2 illustrate that for the method 
under consideration local errors in the computed pressure of less than 
one per cent and in the normal flow velocity of only a few per cents are 
arrived at, upon using only a relatively small number of triangles 
(NTS96). 

The computation time to calculate the pressure and the normal flow 
velocity at the barycenters of 24 triangles spanning the boundary surface 
3D of the unit cube D (cf. Figure 6.1a) was approximately 35 s. This 
computation time includes the time needed to solve the system of linear, 
algebraic equations not only with the aid of a Gaussian elimination, but 
(in order to verify the results from the latter) with the aid of a Gauss-
Jordan elimination as well. Using successively 48, 96 and 144 triangles 
to solve each boundary value problem, both elimination procedures being 
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Table 6 .3a . Global root-mean-square e r r o r s obtained with the aid of 

(5 .5 .5 ) for some t y p i c a l values of the parameter g; 3D 

has been subdivided in to 24 t r i a n g l e s . 

value ( i ) ( i i ) ( i i i ) 

of £ RMSE(p) RMSE(v.v.) RMSE(p) RMSE(v.v.) RMSE(p) RMSE(v.v.) 

0 

0. 

0. 

0. 

0. 

0. 

,001 

.020 

OHO 

.110 

,180 

0.05121 

0.05078 

0.014388 

0.0*1163 

0.09520 

0.23003' 

0.31031 

0.31036 

0.32982 

0.39031 

0.87784 

1.81530 

0.03279 

0.03260 

0.02882 

0.02463 

0.01577 

0.04763 

0.29033 

0.29009 

0.28801 

0.29205 

0.38732 

0.68214 

0.01428 

0.01 419 

0.01225 

0.00997 

0.00069 

0.01888 

0.25213 

0.25207 

0.25178 

0.25391 

0.29556 

0.44087 

Table 6 .3b. Global root-mean-square e r r o r s obtained with the aid of 

(5 .5 .5 ) for some typ ica l values of the parameter g; 3D 

has been subdivided in to 48 t r i a n g l e s . 

value ( i ) ( i i ) ( i i i ) 

of £ RMSE(p) RMSE(v.v.) RMSE(p) RMSE(v.v.) RMSE(p) RMSE(v.v.) 

0 

0. 

0. 

0. 

0. 

0. 

,001 

.020 

,050 

.160 

,240 

0.03662 

0.03638 

0.03247 

0.02930 

0.06372 

0.11832 

0.21534 

0.21536 

0.22233 

0.25922 

0.58967 

0.97839 

0.02287 

0.02278 

0.02091 

0.01788 

0.01043 

0.02073 

0.21189 

0.21178 

0.21041 

0.21203 

0.27267 

0.38343 

0.01104 

0.01099 

0.01013 

0.00870 

0.00341 

0.00663 

0. 

0. 

0. 

0, 

0. 

0, 

.19717 

.19715 

.19699 

.19810 

.22313 

.27281 
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employed, the computation times were approximately 2.5 m., 10m., and 25 
m., respectively. Clearly, doubling the number of triangles employed, 
induces a multiplication by a factor of four of the computation time 
consumed. 

In Table 6.3a the results of taking into account the compatibility 
relation for the velocity via the method of Section 5.5 (cf. (5.5.5)) for 
some typical values of the parameter g are shown for the case that 3D has 
been discretized into 24 triangles. Table 6.3b contains the results of 
the latter numerical experiment with 3D discretized into 48 triangles. 
First of all, the results shown in Tables 6.3a and 6.3b clearly 
demonstrate the strong influence of the parameter 5 on the values of 
RMSE(p) and RMSE(v.v.). Inspection of these tables further shows that in 
all test cases considered and for both discretizations employed the 
global errors in the computed pressure can considerably be reduced by the 
implementation of the compatibility relation for the velocity field in 
the discretized system of integral equations. The results for the normal 
flow velocity, however, can hardly be improved. For the values of 5 that 
correspond to the improved results for the pressure, an increase in 
errors in the computed normal velocity is obtained, i.e., the values of £ 
for which the improved results for v.v are obtained do not match the 

l i 

values of g for which the (most) improved resul ts for p are arrived a t . 
To conclude, since the improved resul ts for p and v.v. can only be 
obtained after a tedious t r i a l and error procedure, the use of the 
incorporation of the compatibility relat ion for the velocity f ield with 
the method discussed in Section 5.5 i s , especially for large systems of 
linear, algebraic equations, debatable. 

A next choice to t es t the numerical features of the 
boundary-integral-equation method, i s to apply the above numerical 
experiments to the system of integral equations that follows from the 
integral relation for the velocity f ield. For the flow configuration at 
hand the relevant system is given by (1.4.6) - (4.4.7), where the Green's 
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functions r. and G. . are defined by (1.5.27) and (it.5.26), respectively, 
in which R.. is to be replaced by R5.. (cf. (B.2.1) and (B.2.2)). In 
order to make a fair comparison between the two systems, the system 
('t.4.6) - (4.4.7) is to be treated in the same manner as the previous 
one, i.e., the flow field quantities are to be represented again by 
constants on each triangle. However, as we have seen in Appendix B, 
Section B.2, the integral relation for the velocity field and, hence, the 
relevant integral equations are arrived at on the assumption that the 
pressure is continuously differentiable in the neighborhood of a point of 
observation on 3D. Now, upon approximating on each triangle the pressure 
(as well as the normal component of the velocity) by a constant, jumps in 
the approximated field values occur across the common edges of two 
adjacent triangles which upon taking the derivative lead to delta 
functions along the edges. Hence, if the system (4.4.6) - (4.4.7) is 
implemented in this manner and subsequently solved, the results obtained 
will, in general, show large errors. This is confirmed by the following 
numerical experiments. First of all, we have tested the corresponding 
integral representation (4.4.5) at several observation points located in 
the interior of the unit cube D, filled by the homogeneous and isotropic 
medium used before. The flow field quantities from (6.1.1) - (6.1.2) were 
sampled at the barycenters of the triangulated boundary surface and 
subsequently used as the piecewise constant representations at this 
surface in the integral representation (4.4.5). At all observation points 
considered the computed values of the flow velocity field were 
(completely) incorrect and no appreciable improvements were obtained when 
using 96 or 144 triangles instead of 24. Secondly, similar numerical 
experiments have been carried out to test (4.4.5) for the point of 
observation located at the barycenters of the triangles spanning 3D. 
Again, totally incorrect values for the velocity field were obtained, 
irrespective of whether we used 24, 96 or 144 triangles to represent 9D. 
From these experiments we conclude that implementation of the actual 
system (4.4.6) - (4.4.7) when using a piecewise constant interpolation 
scheme, is just a waste of time. With the integral representation for the 
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velocity and, hence, from the result ing boundary integral equations, 
re l iable resul ts can therefore only be obtained if at leas t l inear 
interpolation between the vertices i s employed to represent the relevant 
flow field quantities on each t r iangle . The results of the corresponding 
scheme will be discussed in Section 6.2. 
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6 . 2 . NUMERICAL RESULTS; PIECEWISE LINEAR INTERPOLATION 

In t h i s s ec t ion , we i n v e s t i g a t e sane of the numerical fea tures of the 
boundary- in tegra l -equa t ion method in case the piecewise l i n e a r 
i n t e r p o l a t i o n scheme of Sect ion 5 . 3 , in combination with the co l loca t ion 
method of Sect ion 5 . 1 , i s employed. Not only the system of boundary 
i n t e g r a l equat ions r e s u l t i n g from the i n t e g r a l r e l a t i o n for the pressure 
f i e l d i s considered, but a l s o t h e one following from the i n t e g r a l 
r e l a t i o n for the ve loc i ty f i e l d , and mixtures of the two in teg ra l 
r e l a t i o n s . The i n t e g r a l equat ions a re applied to t e s t flows in both 
i s o t r o p i c and an i so t rop ic (but r e c i p r o c a l ) media. 

Throughout t h i s sec t ion the source- f ree un i t cube D, defined by 
( 6 . 0 . 1 ) (cf. Figure 6 . 1 ) , wi l l serve again as the computational domain of 
i n t e r e s t . If D i s f i l l e d by a homogeneous and i s o t r o p i c medium, the 
uniform flow defined by (6 .1 .1) - (6 .1 .2 ) i s again taken as the 
mathematical t e s t flow. I f D i s f i l l e d by a homogeneous and a n i s o t r o p i c , 
but r e c i p r o c a l , medium the fol lowing mathematical t e s t flow i s employed: 

v = 3~UZ[^ + ±2
 + i 3 ) ib.2A) 

and 

, - 1 / 2 p = - 3 ( x l R l 1 + x . R . 2 + x . R . 3 ) - p g ( x 3 - 1.) 

+ 3~U2l3 J 3 , R . . . ( 6 .2 .2 ) 
i - I^J=1 i j 

where (R. . ) i s a symmetrical and p o s i t i v e d e f i n i t e tensor of rank two. 
C l e a r l y , (6 .2 .1 ) and (6 .2 .2 ) c o n s t i t u t e a uniform flow with a constant 
diagonal flow ve loc i ty from x=0 to x~(.L +!p+j .n) ar>d with a l i n e a r l y 
varying p ressu re . Note t h a t a t x_=(_i +_i_+L,) , we have taken p=0; a t x=0 we 

I 



CHAPTER 6 : NUMERICAL RESULTS -159-

then have p=pg+3_1 /2)?- , I 3 _ , R- • • Obviously, (6 .2 .1 ) - (6 .2 .2 ) s a t i s f y the 
bas ic groundwater flow equat ions (3 .3 .5) and (3 .3 .6) with q=0, f_=0_ and 
£=-gi.3 . 

In d i s c r e t i z i n g any of the boundary i n t e g r a l equa t ions , the r e s u l t i n g 
system of l i n e a r , a lgeb ra i c equat ions w i l l , both for the i s o t r o p i c and 
the an i so t rop ic case , conta in i n i t s coe f f i c i en t s the sur face i n t e g r a l s 

IGq and I r ? , as defined by (5 .1 .3) and (5.^.^), r e s p e c t i v e l y , and/or IT. 
f 1 1 

and IG. , as defined by (5 .4 .5) and ( 5 . 1 . 6 ) , r e s p e c t i v e l y . For these 
i n t e g r a l s the a n a l y t i c express ions derived in Appendix C are used. In 
view of the fac t t ha t t he r e l evan t express ions are r a t h e r l e n g t h y , i t i s 
c l ea r t ha t i n implementing them e r r o r s in the software can e a s i l y occur . 
Hence, before we a c t u a l l y t e s t e d any of the systems of boundary i n t e g r a l 
equations for the mathematical t e s t flows (6 .1 .1) - (6 .1 .1) or (6 .2 .1) -
( 6 . 2 . 2 ) , we have followed a procedure s imi l a r to the one ou t l i ned at the 
end of Sect ion 6 . 1 , i . e . , we have f i r s t ex tens ive ly t e s t e d the i n t e g r a l 
r ep re sen t a t i ons for the pressure and the ve loc i ty f i e l d s . Both 
r ep re sen ta t ions were appl ied t o the un i t cube D and were t e s t e d for 
observat ion po in t s loca ted in the i n t e r i o r of D as well as for po in t s 
located on the boundary surface 3D of D. As regards the l a t t e r po in t s two 
ca tegor ies were d i s t inguished (cf. Figure 6 . 1 ) , v i z . (a) nodes in the 
i n t e r i o r of a face of the cube, and (b) non-nodal po in t s in the i n t e r i o r 
of some t r i a n g l e on 3D. The non-nodal po in t s in a t r i a n g l e S have, t o 
r e t a i n symmetry, been spec i f i ed through the t h ree r e l a t i o n s 

- o b ( 1 ) = ( 1 " 2<5)-1 + 6 -2 + 5 - 3 f o r 0 < 6 < 1 ' ( 6 .2 .3a ) 

x A2) = Sx. + (1 - 2S)x„ + fix., for 0<6<1, (6 .2 .3b) 
—ob —1 —2 —3 

and 

* o b ( 3 ) = 6*1 + &*2 + ( 1 " 26)>£3 for 0<6<1, (6 .2 .3c ) 
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where x , (1), x w(2) and x . (3) denote the three (non-nodal) observation —ob —ob —ob 
points in S , while x , x and x are the position vectors of the 

^ -1 -4 
vertices of S_. For 6, values varying from 6=10 to 6=10 have been 
chosen, causing the observation points to move close to one of the 
vertices of the triangle under consideration. In the testing of the 
integral representations (4.4.1) and (1.4,5) for the pressure field and 
the velocity field, respectively, the flow field data needed on the 
triangulated boundary surface 3D, i.e., the values of p and v.v. at the 
vertices of the triangles spanning 3D, were, in the isotropic case, 
obtained from (6.1.1) - (6.1.2) with p=1, R=1 and g=-1. Similarly, in the 
anisotropic case, the data needed on the discretized boundary surface 3D 
were obtained from (6.2.1) - (6.2.2) with p=l , g=-1, while for (R..) we 
have taken 

( R i J ) = 

( R 4 J ) -

- (3 

2 
1 
1 

1 
1/2 

0 

1 
2 
1 

) / 2 

1 
1 
2 

- ( 3 1 / 2 ) / 2 

2 
0 

• 

0 

0 
3 

(6.2.4a) 

(6.2.4b) 

and 

R. . ) = 
4 
1 
2 

1 
5 
3 

2 
3 
6 

(6.2.4c) 

respectively; these tensors are symmetric and positive definite. The 
tests on the integral representations have been performed for 3D 
discretized into 24, 96, 144 triangles (cf. Figures 6.1a, 6.1c and 6.Id, 
respectively). Since the local piecewise linear field representations 
comply exactly with the structure of the isotropic and anisotropic test 
flows under consideration, the computed values of the pressure and the 
flow velocity must be exact, within the computational accuracy employed, 
at all observation points at hand. Typical values of the absolute errors 
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i n the computed values of p and v. a t observa t ion p o i n t s l o c a t e d in the 
i n t e r i o r of D and a t the nodes in the i n t e r i o r of a face of the cube a re 

-11 -9 
of the order of 10 when 24 t r i a n g l e s span 3D and of the order of 10 
when 1 -44 t r i a n g l e s span 3D (cf. Figures 6.1a and 6 .1d ) . The occur r ing 
l o s s in accuracy i s ascr ibed to the accumulation of round-off e r r o r s in 
the a r i t hme t i c opera t ions ca r r i ed out on the numbers used i n the computer 
code. Fur ther , t y p i c a l values of the abso lu te e r r o r s in the computed 
values of p and v. a t non-nodal po in t s in the i n t e r i o r of some t r i a n g l e 
on 3D a r e , 3D being subdivided i n t o 24 t r i a n g l e s (cf. Figure 6 . 1 a ) , of 
the order of 10~ for 6=10~ and of the order of 10~ for 6=10~ . The 
l a t t e r l o s s in p rec i s ion can be understood by tak ing in to account t ha t 
the values for the express ions for the surface i n t e g r a l s IGq and IT?. 

f f and/or i r . and IG. wi l l become l e s s accura te i f the d i s t ance between the 
l l 

point of observat ion and a ver tex of a t r i a n g l e becomes very small (which 
-H 

happens, e . g . , for 6=10 ) . 
In add i t ion to the above t e s t s the i n t e g r a l r e p r e s e n t a t i o n for the 

pressure f i e l d has a l so been t e s t e d for two other ca t ego r i e s of 
observat ion poin ts on 3D, v i z . nodes on the edges of D and nodes at i t s 
corners . These t e s t s have been c a r r i e d out for the un i t cube D f i l l e d by 
a homogeneous and i s o t r o p i c medium with the t e s t flow (6 .1 .1) - ( 6 .1 .2 ) 
with p=1 , R=1 and g=-1, as well as for D f i l l e d by a homogeneous and 
a n i s o t r o p i c (but r e c i p r o c a l ) medium with the t e s t flow (6 .2 .1 ) - (6 .2 .2 ) 
with p=1, g=-1 and ( R . . ) given by ( 6 . 2 . 1 a ) , ( 6 . 2 . 4 b ) , ( 6 . 2 . 4 c ) , 
r e s p e c t i v e l y . Now, from Appendix B, Section"B. 1.2, we have l ea rned t h a t 
when the point of observat ion x' i s l oca ted on the boundary su r face 3D of 
a homogeneous and i s o t r o p i c medium D, the i n t e g r a l r e p r e s e n t a t i o n for the 
pressure f i e l d a t x', as given by (B .1 .16 ) , holds on the assumption t h a t 
around x' 3D i s l o c a l l y f l a t . To prove t h i s we have followed the 
procedure of excluding from D a semi-ba l l with _x' as c e n t e r , and 
subsequently l e t t i n g the rad ius of t h i s semi-bal l go t o ze ro . If the 
point of observat ion x/ co inc ides with a node on an edge of the 
homogeneous and i s o t r o p i c u n i t cube D, we can repea t t h i s procedure by 
now excluding from D, symmetrically around x', a quar te r of a b a l l , and 
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again letting its radius tend to zero. We then arrive at the integral 
representation for p as given by (B.1.16), but with the factor of 1/2 
replaced by 1/1. Furthermore, when the observation point is located at a 
corner of the homogeneous and isotropic unit cube D, one eighth of the 
above ball is excluded from D. The procedure of letting the radius of the 
ball go to zero leads again to the integral representation for p as given 
in (B.1.16), but with the factor of 1/2 replaced by 1/8. The factors of 
1/2, 1/1, and 1/8 are nothing but the fractions of the total solid angle 
at which the cube-shaped domain D is seen from the corresponding 
observation points. The occurrence of the factors of 1/1 and 1/8, as well 
as the factor of 1/2 previously, were confirmed numerically. 

The testing of the integral representation for the pressure field at 
edges and corners of the cube D has for the test flows considered before 
also been carried out in case D was filled by a homogeneous and 
anisotropic, but reciprocal, medium. In this respect it is observed that 
the value of the soli-d angle needed at the point of observation on edges 
or in corners are, for the isotropic case, obtained by taking for the 
boundary surface of the domain excluded around the singularity (point of 
observation) a sphere. (Note that in the actual evaluation of the solid 
angle the shape of the surface over which the relevant surface integral 
is calculated is immaterial.) For the anisotropic case it proves to be 
easiest to take as the surface used to calculate the "affine" solid angle 
the boundary surface of a tetrahedral/polyhedral domain excluding the 
singularity. For this, we put the analytic results of Appendix C, Section 
C.2, judiciously together and obtain the analytic expressions for the 
"affine" solid angles needed for observation points located on edges or 
in corners of the cube D. Using this procedure, the integral 
representation for the pressure field has been tested at the same points 
of observation and for the same discretizations that have been considered 
in the isotropic case. Since in all cases considered the local piecewise 
linear interpolation scheme again matches the structure of the test flows 
in D, exact results, within the computational accuracy employed, were 
obtained.•These additional numerical experiments are a test on the 
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correctness of the implementation of the analytic expressions derived in 
Appendix C for the integrals IGq and ir°, both for the anisotropic case. 

After the integral representations (1.4.1) and (1.4.5) had been 
tested in the manners indicated above, we have implemented the systems of 
boundary integral equations resulting from (4.4.1), (4.4.5), as well as 
their combinations (cf. Section 4.4). They have been applied to the 
isotropic test flow used before. In their discretization we have, 
together with the piecewise linear field representations of Section 5.3, 
employed the method of collocation discussed in Section 5.4. In the 
computer code developed, all nodal points on 3D at which collocation was 
to be applied were, for reasons of simplicity in implementing the codes, 
treated as multiple nodes (cf. Section -5. 4).- Also, instead of applying 
collocation at the vertices of the triangles, collocation was applied in 
the immediate vicinity of the vertices for which, to retain symmetry, the 
collocation points (6.2.3a) - (6.2.3c) were chosen. A code that 
automatically distinguishes between simple and multiple nodes is under 
development. The systems were tested for the given boundary values 
according to (6.1.3), (6.1.4) and (6.1.5), respectively. The boundary 
surface 3D was subdivided into 24 triangles. The computation time for 
each test case was approximately 20 m. As was to be expected, all results 
were exact within the computational accuracy employed. Using 24 triangles 
to represent 3D and taking 6=10 to locate the collocation points in the 
vicinity of the vertices of the triangles, the absolute errors in the 
computed values of the pressure and the normal velocity at the 
collocation points are of the order of 10 

The above numerical experiments are to be considered as essential 
tests on the correctness of the computer code developed. The outcome of 
the tests gives confidence to apply the code to actual steady groundwater 
flow problems met in practice. For this, a larger computer system than 
the IBM PC/AT must be employed. 
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6 . 3 . CONCLUSIONS 

The numerical experiments discussed in t h i s chapter are a f i r s t 
i n v e s t i g a t i o n in to the performance of the boundary- in tegra l -equa t ion 
method as i t has been developed in the previous c h a p t e r s . 

In Sect ion 6.1 we have i nves t i ga t ed some of the numerical f ea tu res of 
the boundary- in tegra l -equa t ion method when i t was appl ied in i t s s imples t 
ve r s ion , i . e . , when a piecewise cons tant approximation fo r the flow f i e l d 
q u a n t i t i e s i s used. The r e s u l t i n g systems of boundary i n t e g r a l equations 
have been appl ied to a cube as the computational domain of i n t e r e s t . The 
cube was f i l l e d by a homogeneous and i s o t r o p i c medium. In t h i s cube a 
uniform source-f ree flow served as the mathematical t e s t flow. Three 
d i f f e r e n t mixtures o f -D i r i ch l e t and Neumann condi t ions were appl ied to 
the boundary surface of the cube. 

As regards the i n t e g r a l equations r e s u l t i n g form the r e p r e s e n t a t i o n 
for the pressure f i e l d the e r r o r s in the computed pressure and the normal 
component of the flow ve loc i ty a r e t y p i c a l l y r e l a t e d to the geometrical 
d i s c r e t i z a t i o n of the boundary sur face of the cube. The r e s u l t s obtained 
for the pressure were, for each d i s c r e t i z a t i o n used and for each of the 
boundary condi t ions considered, more accu ra t e than the ones obtained for 
the normal flow v e l o c i t y . The numerical experiments a l so learned t h a t , 
for a fixed number of t r i a n g l e s used in the subdiv is ion of the faces of 
the cube, the e r r o r s in the computed p ressure decrease if the numbers of 
po in t s a t which t h i s quant i ty remains to be ca lcu la t ed decreases . Only 
for a r e l a t i v e l y f i n e d i s c r e t i z a t i o n of the faces of the cube a s imi l a r 
behavior , although l e s s pronounced, was found to hold for the e r r o r s in 
the computed normal flow v e l o c i t i e s . We fur ther observed tha t a f i n e r 
p a r t i a l d i s c r e t i z a t i o n around edges e n t a i l s a decrease in the e r r o r s of 
the computed pressure and normal flow ve loc i ty a t l o c a t i o n s that were not 
par t of t h i s f i ne r d i s c r e t i z a t i o n . Furthermore, implementation of the 
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compatibility relat ion for the velocity in the discretized system of 
integral equations shows that , doing t h i s , more accurate resu l t s can 
indeed be obtained. The improved resul ts are, however, only arrived at 
after a tedious t r i a l and error procedure; therefore, i t s use in 
practice, especially when large systems of l inear , algebraic equations 
are needed, i s debatable. 

As regards the integral equations resulting f ran the integral 
representation for the velocity f ield large errors in the computed 
pressure and normal velocity occurred, irrespective of whether we used 
finer discretizations on the boundary surface of the cube or not. In view 
of the higher s ingulari t ies in the kernels of the relevant integral 
representation (equations) , with which a piecewise constant approximation 
is not compatible, th i s can be understood. From the system of boundary 
integral equations result ing from the integral re la t ion for the velocity 
field re l iab le resu l t s can therefore only be obtained if at l eas t l inear 
local expansion of the flow field quantit ies i s employed. 

In Section 6.2 we have investigated seme of the numerical features of 
the boundary integral equations in case the piecewise linear 
interpolation scheme of Section 5.3, together with the collocation method 
of Section 5.4, were employed. To th is end, we have f i r s t extensively 
tested, in a systematic manner, both the integral representation for the 
pressure f ie ld and the one for the velocity f ie ld . Again the unit cube 
was taken as the computational domain of interest ; i t was f i l l ed by a 
homogeneous isotropic or anisotropic medium. Uniform source-free flows 
served as the mathematical t e s t flows. The two integral representations 
and their corresponding integral equations have been tested for points of 
observation located in the in ter ior of the cube as well as for 
observation points located at the inter ior nodes of the triangulated 
faces of the cube and at in ter ior points in the tr iangles spanning the 
boundary surface of the cube. Since the local piecewise l inear 
interpolations for the flow field quantities on the discretized faces of 
the cube match the structure of the isotropic and anisotropic tes t flows 



CHAPTER 6 : NUMERICAL RESULTS - 1 6 6 -

exactly, the resul ts obtained were a l l exact within the computational 
accuracy employed. 

In al l the numerical experiments considered sofar, field evaluation 
has been carried out at points that were located on a f la t part of the 
boundary. In order to investigate what happens when an observation point 
i s located on an edge or in a corner we have, both analytically and 
numerically, investigated the integral representation for the pressure 
f ie ld at such points of observation. I t i s noted that this investigation 
is only meaningful if the quantity that i s to be considered i s a 
continuous one. For both the isotropic and the anlsotropic case agreement 
was reached within the computational accuracy employed. 

The outcome of a l l tes ts show the correctness of the computer code 
developed; th is gives the confidence that the boundary integral equations 
developed in this thesis can successfully be employed to solve actual 
three-dimensional steady groundwater flow problems. 



APPENDIX A 

THE AVERAGING THEOREM 

In t h i s appendix, a theorem i s derived t ha t r e l a t e s the f l u i d phase 
average of the s p a t i a l d e r i v a t i v e of an a r b i t r a r y f l u i d quan t i ty ty ( t may 
be a s ca l a r or a Car tes ian component of a vector or tensor of a r b i t r a r y 
rank) , t o the s p a t i a l de r iva t i ve of the f l u i d phase average of <i> and an 
add i t iona l term. 

Consider the r e p r e s e n t a t i v e elementary domain D as i t has been 
f e 

introduced in Sect ion 3 . 1 , where D denotes the subdomain of D t h a t e e 
contains the f l u i d phase and D the subdomain of D where the s o l i d 

e e f s 
mater ia l i s p re sen t . The closed boundary surfaces of D , D , and D a re 

f s e ' e ' e 
denoted by 3D , 3D , and 3D , r e s p e c t i v e l y . The i n t e r s e c t i o n s of 3D and 

f e £ s e f s e 

3D and of 3D and 3D are denoted by S and S , r e s p e c t i v e l y , while the 
e e f e s e e 

i n t e r s e c t i o n of 3D and 3D i s denoted by I (see F igure A.1) . The u n i t 
f f 

vector along the normal to 3D i s d i r ec ted away from D and i s denoted by f s e E f s v . . F i n a l l y , V , V , and V , denote the volumes of D , D , and D , l •" e' e ' e' e e e 
r e s p e c t i v e l y . 

Let the f l u i d phase average of ty, designated as <<p>, be defined by 

(cf. ( 3 . 1 . 9 ) ) 

<i|i>(x,t) = V_1 i j i (x\ t)dV. (A.1) 
e Jx'6D (x) 

Now, upon taking the s p a t i a l d e r i v a t i v e of <ip> and employing the 
d e f i n i t i o n of d e r i v a t i v e , i t follows tha t (see Figure A.2) 
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h i 3 i < ^ > ( x , t ) = V~1[ \|)(x' , t ) d V 
x'6D (x+h) 
— e 

i K x \ t ) d V ] , 
J x ' 6 D (x) 

(A.2) 

SjW 

f s Fig. A.1. Bounded averaging domain (schemat ical ly) D = D U D E f I i n t e r i o r to the closed boundary surface 3D = S US 
f s e e e 

The closed boundary surfaces of D and D are denoted f f s s £ e 
by 3D = S U Z and 3D = S U E , r e s p e c t i v e l y , where e e e e e e 
E represen t s the f l u i d - s o l i d i n t e r f a c e ( s ) in D . The 

Q 

s o l i d mate r i a l p resen t in D i s assumed to be r ig id and 
immovable. 

f f 
where D (£+h) r e s u l t s from the t r a n s l a t i o n of D (x), and hence D (x) , 
over the small v e c t o r i a l d i s tance h (see Figure A. 2 ) . Inspec t ion of the 
r igh t -hand s ide of (A.2) r e v e a l s tha t the elementary volumes that remain 

f f 
a f t e r the sub t r ac t i on of the volumes of D (̂ c+h) and D (JC) can, as h. 
tends to zero , be w r i t t e n as v.h.dA, where dA i s an elementary area of S 

1 1 £ 
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(see Figure A.2) . Hence, the r igh t -hand s ide of (A.2) l e a d s , i n l i m i t 
h. -> 0, t o 

V~ 1[ | i | /(x\t)dV " I f <Kx*,t)dV] 
6 J x ' 6 D (x+h) Jx'GDx(x) 

- V-1 l „ h . v . ( x ' ) i K x ' , t ) d A . 
e J x ' 6 S f ( x ) X x ~ ~ 

— E — 

(A.3) 

F ig . A.2. Dl (x^h) r e s u l t s upon t r a n s l a t i n g D over a small 
v e c t o r i a l d is tance h. 

Now, 

L h.v.i| i dA 
x'6S (x) l 1 'x'Sdtf (x) 
— e — — E — 

h .v . i|) dA 

x'ei (x) 
— e — 

h.v.ip dA. (A.3) 

Upon applying Gauss' theorem to the f i r s t i n t e g r a l on the r igh t -hand 
s i de , i . e . , using 
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h v.ip dA = h W dA, 
J x '63D I (x ) 1 1 J x '6D r (x ) 

(A .H ) 

— e — 

where 3! denotes p a r t i a l d i f f e r e n t i a t i o n with respec t t o x! , and 

c o l l e c t i n g the r e s u l t s , i t follows that 

h 3.<i|)>(x,t) = h .O! i | ;> (x , t ) - h . v . ( x ' ) * ( x ' , t ) d A . (A.5) 
1 L 1 J x '6E (x) 1 x 

— e — 

Equation (A.5) holds for any h . . As a consequence, we have 

3.<<|i>(x,t) = <3'.<|i>(x_,t) - v.(x_')iK>c' , t )dA. 
1 l J x '6E (x) X-

(A.6) 

Equation (A.6) i s r e f e r r e d to as the averaging theorem and i s used in 
Chapter 3 . 



APPENDIX B 

DETAILED DERIVATION OF THE SOURCE-TYPE INTEGRAL RELATIONS 
PERTAINING TO A HOMOGENEOUS AND RECIPROCAL MEDIUM 

In present appendix the de r iva t ion of the source-type i n t e g r a l r e l a t i o n s 
for the p ressure f i e l d and the v e l o c i t y f i e l d p e r t a i n i n g to a bounded 
domain occupied by a homogeneous and r e c i p r o c a l medium i s d iscussed in 
more d e t a i l . 

The Green 's so lu t ions of Sect ion 1.5 for the flow f i e l d in 
homogeneous and r ec ip roca l media of i n f i n i t e extent a l l are r egu la r 
throughout the three-dimensional space R except at a s i n g l e p o i n t , the 
source po in t , where they are s i n g u l a r . As a consequence of t h i s p roper ty , 
the Green 's so lu t i ons cannot be d i r e c t l y used in the global form of the 
r e c i p r o c i t y theorem given in the main t e x t in ( 1 . 1 . 7 ) , if the source 
point i s s i t u a t e d e i t h e r in the i n t e r i o r of the domain of a p p l i c a t i o n of 
the r e c i p r o c i t y theorem, or on i t s boundary. 

The purpose of the present appendix i s to discuss the d e r i v a t i o n s of 
the source- type i n t e g r a l r e l a t i o n s for the pressure and v e l o c i t y f i e l d s 
for these cases with the aid of a d e t a i l e d l i m i t i n g procedure. In Sec t ion 
B.1 t h i s ana lys i s i s c a r r i e d out for the source-type i n t e g r a l r e l a t i o n 
for the pressure f i e l d when the r e l e v a n t homogeneous medium i s i s o t r o p i c . 
In Sect ion B.2 the ana ly s i s i s c a r r i ed out for the source- type i n t e g r a l 
r e l a t i o n for the ve loc i ty f i e l d pe r t a in ing t o such a medium. The 
extension of the a n a l y s i s t o the case of a homogeneous and a n i s o t r o p i c , 
but r e c i p r o c a l , medium i s discussed in Sect ion B.3. 
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B . 1 . SOURCE-TYPE INTEGRAL RELATION FOR THE PRESSURE FIELD 

(ISOTROPIC CASE) 

In t h i s s ec t ion we derive the source- type i n t e g r a l r e l a t i o n for the 
p res su re f i e l d pe r t a in ing to a bounded domain D occupied by a homogeneous 
and i s o t r o p i c medium. 

As a s t a r t i n g po in t , we r e c a p i t u l a t e the in j ec t ion - source ( sca la r and 

vec to r ) Green ' s func t ions for a homogeneous and i s o t r o p i c medium of 

i n f i n i t e ex t en t , i . e . , (cf. ( 4 . 5 . 1 9 ) , ( 4 . 5 . 2 0 ) , ( 4 . 5 . 1 6 ) , (4 .5 .17) and 

( 4 . 1 . 9 ) ) 

Gq = (R/4 i r ) |x - x ' | " 1 (B. 1.1) 

and 

r<j> = ( 4 T O " 1 3 . | X - x ' l " 1 , (B .1 .2 ) 

where R i s the constant s c a l a r r e s i s t i v i t y of the medium under 
c o n s i d e r a t i o n . From (B. 1.1) and (B.1.2) i t i s apparent t h a t Gq and r? 
both a r e s ingu la r a t the source point 5t=5c_'. In Subsections B . 1 . 1 , B.1.2 
and B . 1 . 3 . the de r iva t ion of t he i n t e g r a l r e l a t i o n for the pressure f i e l d 
i s discussed in case t h i s source point i s loca ted in the i n t e r i o r of D, 
on i t s boundary surface 3D, or outs ide D U 3D, i . e . , in D' , r e s p e c t i v e l y . 

B . 1 . 1 . PRESSURE FIELD; THE CASE x'GD 
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In t h i s subsect ion we consider the case where the source point with 
pos i t ion vector _x' i s an i n t e r i o r point of D. To handle t h i s s i t u a t i o n 
the r e c i p r o c i t y theorem (4 .1 .7 ) i s appl ied to the domain D\B. (x ' ) where 

o — 

B (x_' ) = {x6R3; 0<|x - x' |<6 with <S>0} . (B. 1.3) 

The boundary surface of the b a l l B . ( x ' ) i s the sphere 3 B . ( x ' ) ; the 
o — o — 

ex te r io r of B . ( x ' ) i s denoted by B ' ( x ' ) . The b a l l ' s rad ius 6 i s assumed o — o — 
to be so small (eventua l ly we s h a l l consider the l i m i t 6-*0) t h a t 3B.(x_') 
i s completely i n t e r i o r t o the boundary surface 3D of D (see F igure B.1) . 

F ig . B.1 . The b a l l B (x_') around x=x' with boundary sur face 
3B_(x') and rad ius 6 i s excluded from the domain o — 
to which the r ec ip roc i t y ' t heo rem (4 .1 .7 ) a p p l i e s . 
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In applying the r e c i p r o c i t y theorem t o the domain D \BAx ' ) , S t a t e A i s 
i d e n t i f i e d with the ac tua l flow s t a t e . The a u x i l i a r y flow S t a t e B i s 
i d e n t i f i e d with the Green 's flow s t a t e generated by a p o i n t - i n j e c t i o n 
source at x=x' in an unbounded, homogeneous and i s o t r o p i c medium with the 
same c o n s t i t u t i v e p rope r t i e s as the ones in the ac tua l flow s t a t e . The 
Green ' s funct ions Gq and r q defined by (B.1.1) and (B.1 .2) , r e s p e c t i v e l y , 
apply t o the l a t t e r a u x i l i a r y s t a t e . Since the point source generat ing 
these f i e l d s i s loca ted ou t s ide the domain of a p p l i c a t i o n , we have (cf. 
( 4 . 1 . 7 ) , (1 .3 .2 ) - ( 4 . 3 . 7 ) , and (1 .3 .11)) 

[ ( G V + r%KdA - f [Gqq ♦ r?(Pg, ♦ f,)]dv 
J x G 3 B 6 ( x ' ) J x G D \ B 6 ( x ' ) 

(G qv. + r ? p ) v . d A . ( B . 1 . 1 ) 
xG3D X 1 X 

We f i r s t examine the - su r face i n t e g r a l over 9B, (x ' ) in some more d e t a i l . 
On 3B r (x ' ) we have (see Figure B.1) 

0 — 

v . = - ( x . - x ' . ) / | x - x ' l when xG3B. (x*) , ( B . 1 . 5 ) 
1 1 1 ' — — ' — o — 

and hence ( c f . ( B . 1 . 2 ) ) 

v . r ? - ( 1 i r ) ~ 1 | x - x ' l " 2 = ( I T T S 2 ) " 1 when xG3B, (x*) . ( B . 1 . 6 ) 
l l '— — — ö — 

On the assumption t ha t p i s continuous at x ^ ' » w e n a v e ^ c f - ( B - 1 . 1 ) ) 

T%.pdA = ( I T T Ó 2 ) " 1 pdA = p ( x ' ) + o(1) as &-*0. 
xGZBAx') X 1 J x G 3 B . ( x ' ) 
— 6 — — o — 

(B. 1-7) 

On the fur ther assumption tha t v. i s bounded on 3B.(x.') i t i s ea s i l y 
v e r i f i e d t h a t the remaining i n t e g r a l on the l e f t -hand s ide of (B.1.1) 
l e ads to (cf. (B.1.1)) 
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4ir6)"1 f 
* v 

G q v . v . d A = R(4ir6) ' I v . v . d A = O(S) a s 6-»0. 
'xG3B f x ' ) X 1 J x G 3 B f x ' ) 1 1 

— 6 — — 0 — 

(B.1.8) 

Fur ther , in the l i m i t 6+0, the volume i n t e g r a l in (B.1.4) l e ads to 

[Gqq + r q ( p g . + f )]dV 
xGD\B.(x') — o — 

- I [G q q + r q ( p g + f . ) ] d V + 0 ( 6 ) a s 6+0, ( B . 1 . 9 ) 
Jx6D 1 l 

where the i n t e g r a l on the r igh t -hand s ide i s to be understood as a 
convergent improper i n t e g r a l . Upon c o l l e c t i n g the r e s u l t s (B.1 .4) and 
(B.1.7) - (B .1 .9 ) , we have, in the l i m i t 6-K), 

p ( x ' ) - - ( (Gqv, + rqp)v.dA + f [Gqq + r q ( p g . + f . ) ]dV 
Jx63D l l JxBD 1 

when x'GD, (B.1 .10) 

which complies with (4 .3 .12) when x'SD, in case the l a t t e r i s app l ied t o 
a homogeneous and i s o t r o p i c medium. 

B.1.2. PRESSURE FIELD; THE CASE x'G3D 

For the source point loca ted on the boundary surface 3D of D, we exclude 
from the domain of a p p l i c a t i o n of the r e c i p r o c i t y theorem ( 4 . 1 . 7 ) the 
part D A B r ( x ' ) of the ba l l B . ( x ' ) defined by (B.1.3) t ha t i n t e r s e c t s D. o — o — 

Now, 3B.(x ' ) i s the part of the boundary surface of B . (x ' ) t h a t 
0 — 6 — 

i n t e r s e c t s D and E,. denotes the par t of 3D tha t l i e s ins ide B ( x ' ) ( see o o — 
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F i g . B.2. The domain D A B . ( x ' ) i s excluded from the domain 
o — 

to which the reciprocity theorem (4.1.7) applies. 

Figure B.2). Upon applying now (4.1.7) to D A Bi(x') and taking the 
o — 

S t a t e s A and B as before , we obta in 

lxS3B(5(x*) 
( G V + r?p)v.dA 

x S D A B ' ( x ' ) 
[Gqq + r ^ ( p g i + f 1 ) ] d V 

1x63D\E 
(Gqv + r?p)v.dA, (B.1.11) 

t o which (B.1.1) and (B.1.2) apply and where, from now on, i t i s assumed 
t h a t 3D has a unique tangent plane at x=x'. In the l e f t -hand s ide of 
(B.1.11) we have, on the assumption t h a t v. i s bounded on 8 B , ( x ' ) , 

l o — 
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xS3B . ( x l ) — o — 

Gqv.v.dA = R(4TT6) 1 

xG3B ( x ' ) 
v ^ d A - 0(6) as 6-+0. 

(B .1 .12) 

On the fu r the r assumption t h a t p i s continuous at x=x' , followed by the 
use of (B .1 .6 ) , we now have 

x63B f i(x') 
f V p d A = (4ir62)"1 

x69B f i(x') 
pdA = ( 1 / 2 ) p ( x ' ) + o(1) as 6-K). 

(B. 1.13) 

Similar to (B .1 .9 ) , the volume i n t e g r a l in (B.1.11) l eads to 

[Gqq + r q ( p g . + f . ) ] d V 
x G D A B ! ( x ' ) 

o ^~ 

[G qq + r q ( p g . + f . ) ] d V + 0 ( 6 ) a s 6+0, 
x6D i l l 

(B .1 .14) 

where the r e s u l t i n g i n t e g r a l on the r igh t -hand s ide i s to be understood 
as a convergent improper i n t e g r a l . F i n a l l y , for the surface i n t e g r a l on 
the r igh t -hand s ide of (B.1.11) we have i n t h e i l i m i t 6-K) 

xG3D\I 
(Gqv. + r q p)v dA = j (Gqv. + rqp)v.dA + 0(6) as 5-K), 

1 1 J v e i n i l l 1 xG3D 
(B .1 .15) 

where denotes tha t the r e l evan t i n t e g r a l i s i n t e r p r e t e d as a Cauchy 
p r inc ipa l value , i . e . , the s i n g u l a r i t y of the in tegrand i s excluded in a 
symmetrical manner. After t h i s i n t e r p r e t a t i o n i t can for the case a t hand 
be shown tha t the i n t e g r a l i s an improper convergent one. C o l l e c t i n g the 
r e s u l t s and taking the l i m i t <5-K), (B.1.11) - (B.1.15) lead t o 

1 /2)p(x ' ) = - { (Gqv + Tqp)v dA 
1 xG3D 
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/ 

+ [Gqq + r ? (pg . + f.)]dV when £'G3D. (B. 1 .16) 
Jx6D X X 1 

This source-type i n t e g r a l r e l a t i o n for the pressure at x=x_', with >c'G3D, 
i s i d e n t i c a l to the one in (1 .3 .12) when >('€8D, in case the l a t t e r i s 
app l i ed to a homogeneous and i s o t r o p i c medium. 

B . 1 . 3 . PRESSURE FIELD; THE CASE x/GD' 

In the case x.'6D', i . e . , the source point i s l oca ted ou t s ide D U 3D, i t 
i s obvious t h a t Gq and V. a re both regu la r throughout D. Hence, in t h i s 
case the r e c i p r o c i t y theorem (4 .1 .7 ) can be used d i r e c t l y . Taking in 
( 4 . 1 . 7 ) the S t a t e s A and B as before , i t immediately follows tha t for x' 6 
D' , t he source-type i n t e g r a l r e l a t i o n for the pressure f i e l d in a 
homogeneous and i s o t r o p i c medium i s a r r i ved a t by d i r e c t l y employing 
(B.1.1) and (B .1 .2 ) . The r e s u l t i n g i n t e g r a l r e l a t i o n i s i d e n t i c a l to the 
one in (4 .3 .12) when .x' SD', in case the l a t t e r i s appl ied to a 
homogeneous and i s o t r o p i c medium. 

To conclude t h i s sec t ion i t should be noted tha t with the 
i n t roduc t ion of the c h a r a c t e r i s t i c domain funct ion Xn(2L') > defined by 
( 4 . 3 . 9 ) , the r e s u l t s for the pressure f i e l d obtained in the Subsections 
B . 1 . 1 , B.1.2 and the present one, can convenient ly be combined to the one 
p r e s e n t e d i n ( 4 . 3 . 1 2 ) . 
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B.2. SOURCE-TYPE INTEGRAL RELATION FOR THE VELOCITY FIELD 
(ISOTROPIC CASE) 

In t h i s sec t ion we derive the source- type i n t e g r a l r e l a t i o n for the 
ve loc i ty f i e l d pe r t a in ing to a bounded domain D occupied by a homogeneous 
and i s o t r o p i c medium. 

As a s t a r t i n g po in t , we r e c a p i t u l a t e the force-source (vector and 
tensor) Green 's funct ions pe r t a in ing to a homogenous and i s o t r o p i c medium 
of i n f i n i t e ex ten t , i . e . , (cf . ( 4 . 5 . 2 6 ) , ( 4 . 5 . 2 7 ) , ( 4 . 5 . 1 6 ) , (4 .5 .17) and 
(4 .1 .9 ) ) 

G J . = (4TiR)~13 i3.|x - x ' | ~ 1 + R~16 6(x - x ' ) (B.2.1) 

and 

r f = ( 4 T T ) - 1 3 . |X - x'\~] , (B.2.2) 

where R i s the constant s ca l a r r e s i s t i v i t y of the medium under 
f f 

cons idera t ion . From (B.2.1) and (B.2.2) i t i s apparent tha t G.. and r. 
both are s ingular a t the source point x_=x'. In Subsections B . 2 . 1 , B.2.2 
and B . 2 . 3 , the de r iva t ion of the i n t e g r a l r e l a t i o n for the v e l o c i t y f i e l d 
i s discussed in case t h i s source point i s l oca ted in the i n t e r i o r of D, 
on i t s boundary surface 3D, or outs ide D U 3D, i . e . , in D' , r e s p e c t i v e l y . 

B.2 .1 . VELOCITY FIELD; THE CASE x'6D 

In t h i s subsect ion we consider the oase where the source point with 
pos i t ion vector x' i s an i n t e r i o r point of D. S imi la r to the "pressure 
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case" discussed in Subsection B . 1 . 1 , the r e c i p r o c i t y theorem (4 .1 .7 ) i s 
appl ied to the domain D\B_(x') where the ba l l B . ( x ' ) i s defined by 

o — o -
(B.1.3) (see Figure B.1) . In applying the r e c i p r o c i t y theorem (4 .1 .7) to 
the domain D\B_(x') we again iden t i fy S t a t e A with the ac tua l flow s t a t e . 
The flow S t a t e B i s now i d e n t i f i e d with the one tha t i s generated by a 
po in t - force source a t x=x', in add i t ion t o a source d i s t r i b u t i o n t h a t 
compensates g rav i ty (cf . ( 4 . 3 . 1 4 ) ) . These source d i s t r i b u t i o n s apply t o 
an unbounded, homogeneous and i s o t r o p i c medium with the same c o n s t i t u t i v e 
p rope r t i e s as the ones in the ac tua l flow s t a t e . The Green 's funct ions 

f f 
G. . and r. defined by (B.2.1) and (B .2 .2 ) , r e s p e c t i v e l y , apply to t h i s 
a u x i l i a r y s t a t e . Since the point source generat ing these f i e l d s i s 
l oca ted ou t s ide the domain of a p p l i c a t i o n , we have (cf. ( 4 . 1 . 7 ) , ( 4 .3 .2 ) 
- ( 4 . 3 . 3 ) , ( 4 . 3 .14 ) - ( 4 . 3 . 1 7 ) , and ( 4 . 3 . 1 9 ) ) 

(rjv + of P)v <IA = f [rfq + ar (pg + f )]dv 
»33B ( x ' ) J J J JxGD\B6(x_') x J J J 

( r f v . + G f . p ) v . d A . ( B . 2 . 3 ) 
JxG3D x J ^ J 

We f i r s t examine the surface i n t e g r a l on the l e f t -hand s ide of (B.2.3) in 
some more d e t a i l . On the assumption t h a t v. i s continuous a t x~x' we have 
(cf. (B.2.2) and (B .1 .5 ) ) 

U 6 2 ) " 1 ) T.v .v .dA = (4ir6'") ' I v . v . v . d A 
J x G 8 B r ( x ' ) X J J J xG3B. ( x ' ) 1 J J 

— 6 — — 0 — 

= ( 1 / 3 ) v . ( x ' ) + o(1) as S->0, (B .2 .4 ) 

which i s ea s i l y v e r i f i e d by ca r ry ing out the re levan t i n t eg ra t i on with 
the a id of spher i ca l coordinates around x=x' as va r i ab les of i n t e g r a t i o n . 
To evaluate the remaining pa r t of the i n t e g r a l on the le f t -hand s ide in 
(B.2.3) we assume tha t the pressure i s continuously d i f f e r en t i ab l e a t 
x=x' and wr i t e 
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p(x) = p ( x ' ) + (xm - x ' ) 3 ' p ( x ' ) + 0(6) as 6->0 for x63B . (x ' ) , (B.2.5) 

where 3 ' denotes d i f f e r e n t i a t i o n 'with respec t t o x ' . Using (B.2.5) and m m 
(B.2.1) in the r e l evan t i n t e g r a l , we then have 

G f .v.pdA 
x 6 3 B r ( x ' ) 1 J J 

= ( 4 T T R ) " 1 [p (x ' ) + (x - x ' ) 3 ' p ( x ' ) ] v . 3 . 3 . |x - x ' | " 1 dA 
xG3B r(x') " m m m " J J ' ~ 

+ o(1) as Ó+0. (B.2.6) 

Since with aid of Gauss' theorem it follows that (see Figure B.1) 

v dA = 0, (B.2.7) 

JxG3B6(x') 

the f i r s t par t of the i n t e g r a l on the r igh t -hand side of (B.2.6) l eads to 

p ( x ' ) v . 3 . 3 . |x - x ' | - 1 d A 
xG3B x (x ' ) J J 1 

— 0 — 
= 2p(x ' )6~ 3 v.dA = 0 for 6>0, (B.2.8) J x 6 3 B A x ' ) ' — o ~ 

while for the remaining part we ob ta in 

(x - x ' ) 3 ' p ( x ' ) v . 3 . 3 . |x - x ' | " 1 dA 
x63B,(x ') n, m m p - j j i l - - I 

- 2&~2\ v.v [3 ' p (x ' ) ]dA = - ( 8 n / 3 ) 3 ! p ( x ' ) . (B.2.9) 
J xG3 B l (x ' ) l m m * i " 
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This r e s u l t e a s i l y i s ve r i f i ed by car ry ing out the r e l evan t i n t e g r a t i o n 
with the aid of spher ica l coord ina tes around x=x' as va r i ab les of 
i n t e g r a t i o n . Using (B.2.8) and (B.2 .9) in (B.2.6) we have 

Gf.v.pdA = - ( 2 / 3 ) R - 1 3 ! p ( x ' ) + o(1) as fi-K). (B.2.10) 
JxS3B 6 (x ' ) 1 J J X 

Next, i t r ead i ly follows tha t for the f i r s t pa r t of the volume I n t e g r a l 
in (B.2 .3) we have (cf . (B .2 .2 ) ) 

rfqdV = TfqdV + 0(a) as 6->0, (B.2.11) 
1xGD\Br(x') X J x 8 D 1 

where the i n t e g r a l on the r igh t -hand s ide i s as a convergent improper 
i n t e g r a l . As regards the remaining pa r t of the volume i n t e g r a l in (B.2.3) 

f 
we success ive ly take in to account the expression (B.2.1) for G. . , use the 
f a c t t ha t t h i s expression i s r egu l a r throughout D\B_(x') , and r e w r i t e the 

o -
relevant integral, assuming that f. is continuously differentiable, as 

6 ^ xGDXBJx') 1J J J 

= (IIFR) 1 ( f a i f p g , + f Ja jx - x'l Mdv 
^ B 6 ( x ' ) J J J 

> (pg + f j ) ] 3 j x - x ' | - 1 d V ] . (B.2.12) 
x6D\B.(x') J J J 
— t> — 

With the aid of Gauss' theorem the f i r s t i n t e g r a l on the r igh t -hand s ide 
can be r e w r i t t e n as (see Figure B.1) 

f U ( p g ' + f j 3 , | x - x ' f M c l v 
J x6D\B 6 (x ' ) J J J x 

= ( v ( p g + f ) 3 . | x - x ' | " 1 d A 
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v (pg + f )3 |x - x ' T ^ A , 
xG3B x (x ' ) J J J 

— o — 

(B .2 .13) 

where, s imi l a r to (B .2 .4 ) , i t i s e a s i l y v e r i f i e d tha t 

v . ( p g . + f )3 |x - x ' | "1dA = ( i ) u /3 ) (pg , + f , ( x ' ) ) + o(1) 
xG3B r (x ' ) J J J 

6 -
as 6+0. (B.2.11) 

For the remaining volume i n t e g r a l on the r ight -hand s ide of (B.2.12) we 
have 

xGD\B Ax') — 6 — 
3 . ( p g . + f . ) ] 3 . |x - x ' T ' d V 

Jx6D J 
pg . + f .) Ja. |x - x* | dV + 0(6) as 6+0, (B.2 .15) 

where the volume i n t e g r a l on the r igh t -hand s ide i s a convergent improper 
i n t e g r a l . Hence, upon using (B.2.13) - (B.2 .15) , together with (B .2 .2 ) , 
in (B.2.1 2) , we have 

G (pg + f JdV 
' xGD\B , ( x ' ) J J J 

( 1 /3 )R _ 1 ( p g i + f ^ x ' ) ) + R_1l 
xS3D 

r . f pg . + f Jv .dA 

r 3 . ( p g . + f . ) d V ) + o(1) as 6+0. 
x6D i J J J 

(B .2 .16) 

Collec t ing the r e s u l t s , i t follows t h a t , in the l i m i t 6+0, (B.2 .3) l eads 
to 

( 1 / 3 ) v . ( x ' ) - (2/3)R V p ( x ' ) - ( 1 / 3 ) R " 1 ( p g . + f . ( x ' ) ) 
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[rf.v. + G p)v.dA + R~1 T . (pg. + f .)v.dA 
xGdD 1 J J J ' xGW 1 J J J 

+ r f [ q - R~13.(pg. + f .)]dV when x'6D. (B.2.17) 
JxGD x J J J 

In (B.2.17) we fur ther take i n t o account the equation of motion ( 3 . 3 . 6 ) , 
i n which we replace R. . by RS. . , 5t by x', and 3. by 3 ! . Then we a r r i v e a t 

v . ( x ' ) = R _ 1 (pg . + f ^ x ' ) ) 

r . (pg • + f Jv.dA 
X&3D 1 J J J 

( r f v . + G f .p]v.dA + R" 
53D x J 1 J J 

+ r f [ q - R _ 1 3 . (pg . + f .) ldV when x'€D, (B.2.18) 

which i s the source-type i n t e g r a l r ep re sen t a t i ons for the ve loc i ty f i e l d 
when the source point i s an i n t e r i o r point of D. Note t h a t a l l i n t e g r a l s 
in (B.2.18) are convergent (improper) i n t e g r a l s . 

I t remains to be shown tha t (B.2.18) i s i d e n t i c a l to the i n t e g r a l 
r e p r e s e n t a t i o n (iJ.3.20) when x:'GD, in case the l a t t e r i s applied to a 
homogeneous and i s o t r o p i c medium. To t h i s end we success ive ly d i r e c t l y 
employ (B.2.1) and (B.2.2) in ( 4 . 3 . 2 0 ) , t ake in (1 .3 .21) fu r the r in to 

account the r e l a t i o n G. . = R ( 3 . r . + 6. . ó ( x - x ' ) ) , and use the property of 
i j J i i j 

the d e l t a funct ion as shown in ( 1 . 3 . 8 ) . Then we a r r i v e a t 

v . ( x ' ) - R 1 (pg f + f . ( x ' ) ) - (rfv + of p)v.dA 
xS3D 

r f [ q + R~1(pg. + f . ) 3 . r f ] d V when x'6D. (B.2.19) 
x6D X J J J 1 

Obviously, the second par t of the volume i n t e g r a l in (B.2.19) i s 
d ivergent . The de t a i l ed a n a l y s i s l ead ing to (B.2.18) l e a r n s how t h i s pa r t 
i s t o be i n t e r p r e t e d , v i z . as the combination of the second surface 
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i n t e g r a l on the r igh t -hand s ide of (B.2 .18) , together with the second 

par t of the volume i n t e g r a l in (B .2 .18 ) . 

B.2.2. VELOCITY FIELD; THE CASE x'G3D 

For the source point loca ted on the boundary surface 3D of D, we exclude 
from the domain of a p p l i c a t i o n of the r e c i p r o c i t y theorem ( 4 . 1 . 7 ) the 
common par t D A B, (x ' ) of D and the ba l l B . ( x ' ) defined by (B.1.3) (see o — o — 
Figure B .2 ) . Upon applying (4 .1 .7 ) t o the domain D A B'Oc') and taking 
the S ta tes A and B as before , we obta in 

I ( r . v . + G: .p )v .dA 
x G 3 B r ( x ' ) U ( 3 D \ r ) l J 1 J J 

- o — o 

I [ r*q + G* (pg + f ) ]dV, ( B . 2 . 2 0 ) 
x G D A B ' ( x ' ) J J J 

— o -

where 3B.(x ' ) i s the pa r t of the boundary surface of B . ( x ' ) t ha t o — o — 

i n t e r s e c t s D, and Z. denotes the pa r t of 3D that l i e s ins ide B . (x ' ) (see o o — 
Figure B.2) . From now on, i t i s assumed tha t 3D has a unique tangent 

f f 
plane at x=x_'. In (B.2 .20) , G.. and r. a r e given by (B.2.1) and ( B . 2 . 2 ) , 
r e spec t i ve ly . Since the poin t source genera t ing these f i e l d s i s l oca t ed 
outside the domain of a p p l i c a t i o n , we have 

Gf . = R - 1 3 . r f . (B.2.21) 
1J J i 

With the aid of the i d e n t i t y 

e. en, .= 6 , 5 . - 6 .6 . , (B.2.22) 
lmn l k i mk m mi nk 

it is further easily verified that 
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v . 3 . r f = E . . , e . v 3 rf when x^x ' , (B.2.23) 
j j l i l k lmn m n k 

and hence we have 

pv.3 . r f = e., , e. v 3 (prf) - e . . , e. v (3 p)r, when x*x' . (B.2.24) 
J j l i l k lmn m n K k i l k lmn m rf k 

Now, upon using (B .2 .21) , together with (B.2 .24) , in the le f t -hand s ide 
of (B.2.20) , we obtain 

(f fv . + Gf .pjv.dA 
xG8B.(x')UOD\i:x) * J 1 J J 

— o — o 

= R~1 £ . , , e. v 3 (prf)dA 
J n-\a I i M i / ^ n v v N i l k 1 m n m n k 

' xG3B.(x' )U(3D\I ) — o — o 

f r f v . v . - R - 1 E. n , e, v (3 p)rf)dA. (B.2.25) 
XG3B r x ' ) U ( 3 D \ I J l J J i l k lmn m n» k̂  
— o — o 

The f i r s t i n t e g r a l on the r igh t -hand s ide vanishes . This follows by 
r e c a l l i n g t ha t 3B x (x ' )U(3D\E.) i s a closed surface (see Figure B.2) , o — o 
which can always be wr i t t en as the union of two open su r faces , 
[3B ( x ' ) U ( 3 D \ I J ] ( 1 ) and [ 3 B A x ' ) U ( 3 D \ £ ) ] ( 2 ) for example, and applying 

o — o o — o 
S tokes ' theorem to the i n t e g r a l s over these open su r faces . The r e s u l t i n g 
l i n e i n t e g r a l s along the closed boundary curve of [3B _(x')U(3D\Z.)] 

~(2) 6 

and along the closed boundary curve of [3B _(x' )U(3D\£ . ) ] cancel in 
o — o 

view of t h e i r opposi te d i r e c t i o n s of c i r c u l a t i o n . To handle the remaining 
sur face i n t e g r a l on the r igh t -hand s ide of (B.2.25) we s t a r t by employing 
the equat ion of motion ( 3 . 3 . 6 ) , in which we rep lace R. . by R6. . , and 
r e w r i t i n g v. as 

v . = R ~ 1 ( - 3 . p + pg. + f . ) . ( B . 2 . 2 6 ) 
J J J J 

Fur the r , we take i n t o account t h a t (of. (B.2.22)) 
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e i l k W m ( 3 n p ) r k " ( V > V k " V i ( 3 k p ) r k - ^'2-21) 

We then ob ta in 

( r f v . + Gf .pjv.dA 
xG3B p ( x ' )U(3D\ r x ) 1 J 1 J J 

— 6 — o 

R-1 

R-1 

[ T f (pg. + f . jv .dA 
JxG3B fx')U(3D\I J l ° J J 

— o - o 

f [ r j v o p) + (3 P)v vr - v (3 P)rJ]dA. 
' x G S B . U ' W S D U J — o — o 

(B.2.28) 

In t h i s equation we f i r s t examine the surface i n t e g r a l over 3 B . ( x ' ) in 
o — 

the second i n t e g r a l on the r ight -hand s i d e . For >c on 3B (x_') we have (of. 
(B.1.6) and (B .2 .2 ) , and Figure B.2) 

r f = ( 4 T T 6 2 ) " 1 V . when xG3Br, (B.2.29) 
l l — o 

and hence 

v.T f = ( 1 T T 6 2 ) - 1 when xG3Br. (B.2.30) 
l i — o 

On the assumption tha t 3.p i s continuous at x=xJ we then have 

(3.p)v r^jdA = (i)Tr62)-1 (3 p)dA 
J xG3B. (x ' ) K K J x S 3 B . ( x ' ) 
— o — *- o ~ 

= (1 /2)3 ' .p (x ' ) + o(1) as 6+0, (B.2.31) 

while with the aid of (B.2.29) i t follows t ha t 

[ rfv (3 p) - v (3 p)r£]dA 
x63Bfx ' ) X J J i K K 
— o — 
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( 1 i r « 2 ) " 1 [ v . v . O . p ) - v .v . ( 3 . p ) ] d A = 0 f o r 6>0, ( B . 2 . 3 2 ) 
J x G 3 B r ( x ' ) 1 J J l k K 

— o — 

s ince the in tegrand vanishes . In the l i m i t 6-0, we fu r the r have (cf. 

(B.2 .28)) 

L ™ , [ r ^ ( 3 j p ) + (3ip)vk
f - w ) r > 'xS3D\E 

xG3D 
[ r [ v ( 3 j p ) + ( 3 . p ) v k r ^ - v i ( 3 k p ) r ^ ] d A as 6 - 0 , ( B . 2 . 3 3 ) 

where + d e n o t e s t h a t t h i s i n t e g r a l i s t o be i n t e r p r e t e d a s a Cauchy 

p r i n c i p a l v a l u e , i . e . , t h e s i n g u l a r i t y of t h e i n t e g r a n d i s exc luded i n a 

s y m m e t r i c a l manner . A f t e r t h i s i n t e r p r e t a t i o n i t can f o r t h e c a s e a t hand 

be shown t h a t t h e i n t e g r a l i s an imprope r c o n v e r g e n t o n e . C o l l e c t i n g t h e 

r e s u l t s we o b t a i n 

' x 6 3 B . ( x ' ) U ( 3 D \ j : J 
— o ~ o 

( r f v . + G f . p ) v . 6A 

"1 xG3B ( x ' ) U ( 3 D \ Z j 
— 6 — 6 

r . [ p g - + f . v . d A 
i J J J 

R " 1 a 9 n [ r f V J ( 3 J P ) + ( 3 i P ) V ^ " V i ( ^ P ) r k f ] d A 
'xG3D 

(1 /2 )R 3 ' . p ( x ' ) + o(1) a s 6 - 0 . (B.2 .34) 

Subsequently, we i n v e s t i g a t e the r ight -hand s ide of (B.2 .20) . Here, we 

have (cf. (B.2.11)) 

' xGDAB^ (x ' ) 
r .qdV -

xGD 
r .qdV + 0 ( 6 ) a s 6 - 0 , (B .2 .35) 
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where the volume i n t e g r a l on the r i g h t - h a n d side i s a convergent improper 
one. As regards the remaining part we success ive ly take i n t o account 
(B.2 .21) , assume tha t f. i s cont inuously di f f e r e n t i a b l e , and observe t ha t 

G L ( p g j + V ■ R " 1 i a j l r f ( M j + V ] " rÏVpgj + V 1 - (B-2-36) 

Using t h i s in the volume i n t e g r a l in (B.2.20) we have 

Gf . (pg . + f JdV 
J x G D A B ' ( x ' ) 1 J J J 

— o -

1 [ rf(pg. + f J v dA 
;xG3B fx ' )U(3D\EJ J J J 

— o - o 

r f 8 . ( p g . + f JdV, (B.2.37) 
J x6DABl(x ' ) X J J J 

— o ~ 

R 

R-1 

where the surface i n t e g r a l r e s u l t s from a d i rec t a p p l i c a t i o n of Gauss' 
theorem. Fur ther , in the l i m i t 6+0, we have 

r [ 3 . ( p g . + f JdV = 1^3.(pg. + f JdV + 0(5) as 6+0, 
J YGn/\R ' fvn x J J J •'vcn x J J J ' x 6 D A B I ( x ' ) J J J ;xGD 
~ o ~ ~ 

(B .2 .38) 

where the volume i n t e g r a l on the r i g h t - h a n d s ide i s a convergent improper 
one. Co l l ec t ing the r e s u l t s ( B . 2 . 3 ^ ) , (B .2 .35) , (B.2.37) and (B.2.38) in 
(B.2 .20) , i t follows t h a t , i n the l i m i t 6+0, we a r r ive at 

- 0/2)R~Vp(x') - R"1 | [rJvjOjp) + OiP)vkr^ - v.okp)r[jdA 

r f [ q - R~13.(pg. + f J]dV when x'63D. (B.2.39) 
xBD 1 J J J 

F ina l l y , upon using in (B.2.39) the equat ion of motion ( 3 - 3 . 6 ) , in which 
we replace R. . by R6 . ., x by _x', and 3 . by 3! , we end up with 
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( 1 / 2 ) v . ( x ' ) = ( 1 / 2 ) R _ 1 ( p g . + f . ( x ' ) ) 

+ R " 1 L 8 D
[ r i v J ( 3 J p ) + ( 3 i P ) V k f ■ v i ( 3 k p ) r k ] d A 

+ f^[q - R~13.(pg. + f.)]dV when x'63D, (B.2.40) 
Jx6D J J J 

which i s the des i red source- type i n t e g r a l r e l a t i o n for the ve loc i ty f i e l d 
when the source point i s l oca t ed on t h e boundary surface of D. Note tha t 
i n the surface i n t e g r a l we can always replace Q . p ) , and/or (3.p) and 
O p ) , by the expression t h a t follows upon using the equation of motion. 

The i n t e g r a l r e l a t i o n for the ve loc i t y f i e l d for 2£'63D that i s 
obtained upon d i r e c t l y employing (B.2.1) and (B.2.2) in (4 .3 .20) and 
using the property of the d e l t a funct ion as shown in ( 4 . 3 . 8 ) , contains 
d ivergent i n t e g r a l s . The above d e t a i l e d de r iva t ion shows how these 
i n t e g r a l s a re t o be i n t e r p r e t e d . 

B . 2 . 3 . VELOCITY FIELD; THE CASE x'6D' 

In the case x,'€D', i . e . , when the source point i s loca ted outs ide D U 3D, 
f f 

i t i s obvious tha t G. . and r. a r e both regu la r throughout D. Hence, in 
t h i s case the r e c i p r o c i t y theorem (4 .1 .7 ) can be used d i r e c t l y . Taking in 
( 4 . 1 . 7 ) the S t a t e s A and B as before, i t immediately follows t ha t for JC'6 
D' the source- type i n t e g r a l r e l a t i o n i n a homogeneous and i s o t r o p i c 
medium i s a r r ived a t by d i r e c t l y employing (B.2 .1) and (B .2 .2 ) . The 
r e s u l t i n g i n t eg ra l r e l a t i o n i s i d e n t i c a l to the one in (4.3.20) when >c'G 
D' , in case the l a t t e r i s app l ied to a homogeneous and i s o t r o p i c medium. 
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B.3. SOURCE-TYPE INTEGRAL RELATIONS FOR THE GROUNDWATER FLOW FIELD IN 
THE CASE OF A HOMOGENEOUS AND ANISOTROPIC, BUT RECIPROCAL, MEDIUM 

For the case of a homogeneous and a n i s o t r o p i c , but r e c i p r o c a l , medium the 
technique of excluding the s i n g u l a r i t y can be most e a s i l y ca r r i ed out by 
int roducing success ive ly the coord ina te t ransformat ions used in Appendix 
C (Section C.2) , i . e . , the ones defined by (C.2.8) and (C .2 .9 ) , 
r e s p e c t i v e l y . In t h i s manner, the r e l e v a n t ana lys i s i s reduced to the one 
of an i s o t r o p i c medium in the coord ina te system defined by (C .2 .11) . 



APPENDIX C 

CALCULATION OF THE SURFACE INTEGRALS OCCURRING 
IN THE DISCRETIZED BOUNDARY INTEGRAL EQUATIONS 

In t h i s appendix we der ive a n a l y t i c express ions for the s u r f a c e i n t e g r a l s 
IGq , i r q , IT f and IG f , tha t are given in (5 .4 .3 ) - (5 .4 .6) and occur in 
the app l i ca t ion of the boundary- in tegra l -equa t ion method. The technique 
wil l be discussed for the t r i a n g l e S . The i n t e g r a l s to be eva lua ted are 
r ecap i tu l a t ed below (cf. (5 .4 .3 ) - ( 5 . 4 . 6 ) ) : 

I G q ( I , x ' ) = [ <j)(I,x)Gq(x',x)dA, 
Jx6ST 

l r q ( I , x ' ) = j <J>(I,x)rq(x',x.)v.dA, 
'x6ST 

i r ' . d . x ' ) 
x6Sn 

< t > ( l , x ) r [ ( x ' , x ) d A , 

( C D 

( C 2 ) 

(C.3) 

ic' .d.xD = 
x6ST 

<|>(I,x)G. . ( x / ,>Ov.dA, (C4) 

where I 6 { 1 , 2 , 3 ) , <(>(I,x) i s defined in (5.1.24) and the Green ' s func t ions 
Gq r q , r f and G f . are given in ( 4 . 5 . 1 9 ) , ( 4 . 5 . 2 0 ) , (4 .5 .27) and 

(4 .5 .26 ) . Note t h a t i n (C.2) and (C.4) the u n i t vector v. along the 
normal t o S has a constant value for a l l xBS . Henceforth, i t assumed 
tha t , in (C. 1) - (C.4) the point of observat ion with p o s i t i o n vector x' i s 
nei ther a point of S nor of i t s boundary C . 
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In the analytic evaluation of the integrals in (C.1) - (C.4) i t will 
prove to be advantageous to t reat the case where they apply to isotropic 
media separately from the general case where they apply to anisotropic 
media; in Section C.1 the isotropic case i s discussed and in Section C.2 
the anisotropic case. 

Although the analysis presented in th is appendix is applied to a 
planar t r iangle , i t applies to an arbi trary, planar, polygonal disk as 
well. 
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C.1. ANALYTIC EVALUATION OF THE SURFACE INTEGRALS (ISOTROPIC CASE) 

In t h i s sec t ion we derive the a n a l y t i c expressions for the i n t e g r a l s in 
(C.1) - (C.4) in case they apply t o i s o t r o p i c media. With the a id of 
( 1 . 5 . 1 9 ) , ( 1 . 5 . 2 0 ) , ( 4 . 5 . 2 6 ) , ( 4 . 5 . 2 7 ) , (4 .1 .9 ) and (4 .5 .40) i t fol lows 
that for an i s o t r o p i c medium (C.1) - (C.4) a re given by 

I G q ( I , x ' ) = (R/4TI) <(>(I,x)|x - x' | ~1 dA, 
'xSST 

(C.1 .1) 

l r q ( I , x ' ) = (4TT) 1 

x 6 S T 

<t>{I,x)\>.d. |x - x' | dA, (C .1 .2 ) 

I r [ ( I , x ' ) = (4TT) 1 

x 6 S T 

<t>( I ,x )3 . | x - x ' | ~ 1 d A , (C .1 .3 ) 

I G f ( I , x ' ) = (4ITR) 1 <t>(I ,x)v.3.8. \X - x ' | 1dA, 
1 J x e s

T
 J J X 

(C .1 .4 ) 

where R i s the constant r e s i s t iv i ty of the medium under consideration. As 
we have argued in Subsection 5.4.3, the main tool in the analytic 
evaluation of the above integrals i s Stokes' theorem that enables us to 
rewrite the integrals over S_ to integrals along i t s boundary C_. The 
details of this procedure are outlined in Subsection C.1.1; in Subsection 
C.1.2 we show that the resulting l ine integrals along each edge of the 
boundary curve C_ of S_ are expressible in terms of elementary analytic 
functions. In the procedure discussed in Subsection C.1.1, we shal l 
encounter one surface integral that cannot be cast into a form amenable 
to an application of Stokes' theorem. This integral i s , apart from a 
constant, nothing but the solid angle at which the relevant t r iangle is 
observed from the point of observation. I t s value i s in Subsection C.1.3 
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determined by applying geometrical cons ide ra t ions , where a purely 

a n a l y t i c determinat ion i s given as we l l . 

C . 1 . 1 . REDUCTION OF THE SURFACE INTEGRALS TO CONTOUR INTEGRALS 

In t h i s subsect ion we reduce each of the surface i n t e g r a l s (C.1.1) -
( 0 . 1 . 4 ) to one or more l i n e i n t e g r a l s along the boundary curve C_ of S_ 
p lus a surface i n t e g r a l whose eva lua t ion wi l l be discussed in d e t a i l in 
Subsection C .1 .3 . The f i r s t r e l a t i o n t h a t we use in (C.1.1) i s 

<|>(I,x)|x - x ' f = - [3 .4 . (1 ,x ) ]3 1 | x - x ' | 

+ (1 /2 )3 l 3 l [ ( | ) ( I , x ) | x - x ' | L (C.1.5) 

where <f>(I,x_) and the constant 3 . $ ( I , J C ) a re given in (5.1.21) and 
( 5 . 1 . 2 6 ) , r e s p e c t i v e l y . Equation (C.1.5) i s eas i ly v e r i f i e d by ca r ry ing 
out t he d i f f e r e n t i a t i o n s at the r igh t -hand s ide and tak ing i n t o t h a t 
3.i)i(I,x) i s a cons tan t . Since 3.<j>(I,x) l i e s in the plane of S„, we have 

v 3 i«|)( I ,x) = 0. (C .1 .6 ) 

As a next s tep towards the replacement of IG (I,x_') by a t o contour 
i n t e g r a l we t ake in to account t h a t 

3 . = v . v . 3 , = e. ,v 3, e. . \> + v . v . 3 . , (C.1.7) 
l j j i lmk m k l p i p i J J 

where e, , i s the Levi -Civ i ta tensor defined in ( 5 . 1 . 7 ) . In (C .1 .7 ) , we lmk 
have used the f ac t t h a t v . v . = 1 , and the e-6 i d e n t i t y 

J J 

e, , e, , = 6 6, . - 6 .6, . (C.1.8) 
lmk lp i mp ki mi kp 



APPENDIX C : ANALYTIC EVALUATION -199-

Employing (C.1.7) in (C .1 .5 ) , we ob ta in the expression 

» ( I , x ) | x - x ' T 1 - - C 3 1 # ( I . x ) ] C e l B k v m 3 k E l p l v p ♦ V j 3 . ] | x - x / | 

+ ( 1 / 2 ) e l m k V k E l p i V i [ * ( I ' ^ - i ' | ] 

+ ( 1 / 2 ) v i v J 3 J 9 i [ * ( I , x ) | x - x ' | ] . (C .1 .9 ) 

With the fu r the r aid of (C.1.6) and the r e l a t i o n 

v . v j 3 j 3 . [ < | > ( I , x ) | x - x ' | ] = <j>(I,x)[1 + v . ( x . - x p V j 3 j ] | x - x | _ 1 , 

(C.1.10) 

i t follows from (C.1.9) tha t 

♦ ( I , x ) | x - x ' f 1 - - 2 [ V ( I ^ ) ] e l m k V k e l p i V p l * - x ' | 

+ e. ,v 3, e, .v 3. [$( I ,x) Ix - x ' M lmk m k l p i p l T ' - ' < — - i J 

+ * ( I , x ) v . ( x 1 - x p v 9 |x - x ' l " 1 . (C.1 .11) 

Taking i n t o account t h a t 3.<fi(I,x.) has a constant value on S , the surface 
i n t eg ra l over S of the f i r s t term on the r ight -hand s ide of (C.1.11) can 
be reduced to a contour i n t e g r a l along the boundary curve C_ of S_ by 
applying Stokes ' theorem. Also the sur face i n t e g r a l over S_ of the second 
term on the r ight-hand s ide of (C.1.11) can be handled in t h i s way. 
Fur ther , in view of the fact t ha t v . ( x . - x ! ) , i . e . , the (signed) d i s t ance 
from x' to the plane S , i s constant for a l l xGS , i t i s apparent t h a t 
the surface i n t e g r a l over S_ of the l a s t term on the r igh t -hand s ide of 
(C.1.11) equals 4irv. (x .-x'.) xirQ( I,x_' ) (cf. ( C . 1 . 2 ) ) . Hence, upon 
s u b s t i t u t i n g (C.1.11) in (C.1.1) and using Stokes ' theorem, we are l ed t o 
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ds I G q ( I , x ' ) = ( R / 4 T T ) | - 2 [3 < K I f x ) ] | T e .v |x - x ' 
JxGC l p l p 

+ ( T l e l p i V l C * ( I , - ) | - " ^ ' l ] d s f 

+ Rv i (x i - x p i r Q ( I , x ) , (C.1.12) 

where T, i s the un i t tangent along C„ in the d i r e c t i o n of c i r c u l a t i o n 
tha t forms a r ight -hand system with v, . Since C„ i s the union of three 
s t r a i g h t edges {C (1) ,C (2) ,C (3)} the uni t tangent vector T. (J) wil l 
have a constant value along C_(J) . Upon using t h i s property in (C.1.12) 
and car ry ing out the d i f f e r e n t i a t i o n in the in tegrand of the second l i n e 
i n t e g r a l , i t follows tha t 

I G q ( I , x ' ) = ( R / 1 T T ) ( - [ 3 . * ( I , X ) ] ^ = 1 e . l p T l ( J ) v p L 1 ( J , x ' ) 

+ l] . L 2 ( I , J , x ' ) } + Rv.(x. - x ! ) l r q ( l , x ) , (C.1.13) 
j — i — i l l — 

in which L 1 ( J , x ' ) and L 2 ( I , J , x ' ) a re defined as 

J ,x ' ) = |x_ - x' |ds 
J ver ri\ 

L 1 ( J , x ' ) = |x - x ' | d s (C.1.14) 
JxGCT(J) 

and 

L 2 ( I , J , x ' ) = ( ) ) ( I ,X)T (J )e .v (x. - x ! ) | x - x ' | 1 ds , (C .1 .15 ) 
xSCT(J) J-Pi P i i 

r e s p e c t i v e l y . In Subsection C.1.2 these l i n e i n t e g r a l s are evaluated 
a n a l y t i c a l l y . In (C.1.13) we are l e f t with the eva lua t ion of IT ( I , x ' ) . 
Now, from (C.1.2) and (C.1.3) i t i s c l e a r t ha t 

i r q ( I , x ' ) „ v i r ^ I . x ' ) . (C.1.16) 
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f 
Therefore, we discuss the evalua t ion of I r . ( I , x _ ' ) , which i s needed 
anyway, f i r s t , and use the r e s u l t in (C .1 .16) . To t h i s end, we r e w r i t e 
the integrand of l r f ( I , x ' ) as (cf. (C.1 .3) ) 

<f>(I,x)3.|x - x ' l " 1 = 3. [< j>( I ,x) |x - x ' l " 1 ] - [ 3 l ( | > ( I , x ) ] | x - x ' l ' 1 , 

(C.1 .17) 

where i n the l a s t term we fur ther employ t he r e l a t i o n 

|x - x ' l - 1 = e, , v 3, e. .v 3 . |x - x ' l + v . (x . - x ' . )v .3 . |x - x ' l - 1 , 
' - ~ ' lmk m k l p i p l 1 - - ' 1 1 1 j j 1 — - > ' 

(C.1.18) 

that follows from (C.1.11) with <|>(I,x_) replaced by u n i t y . Using (C.1.7) 
and (C.1.6) in the f i r s t term on the r igh t -hand s ide of (C.1 .17) , i t then 
follows tha t 

$ ( I , x ) 3 . | x - x ' f 1 = e l m k v m 3 k e l p l v p [ * ( I t x ) | x " x' | _ 1 ] 

+ $( I,x_)v .v .3 . |x̂  - x_! | 
■*■ j J 

- [3.<|>(I,x)][e., ,v 3, e., .v 3 . |x - x ' l r ' - L lmk m k l p j p j >— - ' 

+ v . ( x . - x ' .)v, 3, Ix - x ' l ~ 1 ] . (C.1 .19) 

Subs t i tu t ing (C.1.19) in (C.1.3) and using Stokes ' theorem, toge ther with 
the constancy of v . (x . -x ' . ) during the i n t e g r a t i o n over S_, and the f ac t 
that the uni t tangents along the ( s t r a i g h t ) edges of S are c o n s t a n t s , we 
end up with 

I r f ( I . x ' ) = v . l r q ( I , x ) + (4n ) " 1 ( I ^ , e . , T . ( J ) V L 3 ( I , J , x ' ) l — i — o — i i x p x p 

- [ 3 , < ( > ( I , x ) ] [ ^ . L H ( J . x ' ) - v . ( x . - x ' ) f l ( x ' ) ] ) , ( C . 1 . 2 0 ) 
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i n which L 3 ( I , J , x ' ) , L M J . J C ' ) and fl(x/) a r e defined as 

L 3 ( I , J , x ' ) = f ((i(I,x)|x - x' | ~ 1 d s , (C.1.21) 
JxSCT(J) 

w t „ l J ; 

and 

fl(x') = V J * ~ x'|~1dA, (C.1.23) 
xGST

 K K 

r e s p e c t i v e l y . n(x_') equals the s o l i d angle subtended by the t r i a n g l e S 
a t the point of observat ion with pos i t ion vector x' ( see , e . g . , Spiegel , 
1974, p . 12*0; i t s value i s , both geometr ica l ly and a n a l y t i c a l l y , 
determined in Subsection C. 1.3- The a n a l y t i c eva lua t ion of the l i n e 
i n t e g r a l s L3(I,J ,2«') and L4(J,2£*) i s discussed in the next subsect ion. I t 
should be noted t ha t upon mul t ip ly ing (C.1.20) on both s ides by v . , and 
using (C.1.6) and the fac t t h a t v . e ^ T, (J)v =0, the r ight-hand s i d e 
reduces to I r ( I , x_ ' ) . 

To evaluate IT ( I , x / ) , we f i r s t extend through (5 .1 .24) the domain of 
3 

$(I,x_) to the e n t i r e R and r ewr i t e <(>(I,x_) as 

(J>(I,x) = $ ( I , x ' ) + [3 .<j>(I,x)](x • - x'.) (where x.'6R3), (C.1.21) 

and use t h i s to r e w r i t e the in tegrand of i r q ( I , x _ ' ) as (cf. (C.1.2)) 

<t>(I,x)v.3. |x - x' | - 1 = <t>(I,x')v.3. |x - x' |~1 

+ V x i " x! ) [3 4,(I ,x)]3 |x - x ' | ~ 1 - ( C 1 . 2 5 ) 

Further, we have on account of (C.1.7) and (C.1.6) 
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[ a . M I . x ^ j l x " 2£'!"1 " C 3 i * ( I ' £ ) ] e l m k v
m

8 k £ l p i V p l - " i ' l " 1 , ( C - 1 - 2 6 ) 

Using t h i s r e s u l t in (C.1 .25) , (C.1.2) can upon applying Stokes ' theorem 
be r e w r i t t e n as 

l r q ( I , x ' ) - (41r)~1{v1(x. - x' .)I^ [S H , ( i > x ) ] e T ( j ) v L 5 ( J , x ' ) 

- 4> ( I , x ' ) n (x ' ) } , (C.1.27) 

where for x. in v . (x . -x ' . ) we can take any point in S_ ( e . g . , a ve r t ex ) 
and where L 5 ( J , x ' ) i s defined as 

J,x') = j L5(J,x*) = | |JC - 2L' I 1 d s - (C.1.28) 
x6CT(J) 

The evalua t ion of (C.1.28) i s discussed in the next subsec t ion . 
F i n a l l y , t o reduce the surface i n t e g r a l I G . d . j c ' ) (cf . ( 0 . 1 . 4 ) ) t o 

l i n e i n t e g r a l s along the boundary curve C_ and an add i t iona l surface 
i n t eg ra l that can be i d e n t i f i e d with Q(3<'), we f i r s t consider the 
r e l a t i o n 

4 ( I , x ) v . 3 . 3 . | x - x ' T 1 = e l m k v m 3 k e i p i 3 p [ # ( I . x ' ) | x - x / f 1 ] 

- 1 -+ v.3 .3 .[<|.(I,x)|x - x' | " ] 

- [ 3 .< t> ( I , x ) ] v . 3 . | x - x ' I " 1 , ( C 1 . 2 9 ) 

which i s ve r i f i ed by using i d e n t i t y (C.1.8) and taking in to account 
( C . 1 . 6 ) . Recall ing t h a t (tir|x_-x' | ) i s the Green 's funct ion of P o i s s o n ' s 
equation and using (C.1.7) and (C .1 .6 ) , i t i s e a s i l y v e r i f i e d t h a t the 
second term on the r ight-hand side of (C.1.29) can be wr i t t en as 

v . 3 . 3 . U U , x ) | x - x ' f 1 ] - 2 v . [ 3 . 4 ( I , x ) ] e i m k v m 3 k e i p . v p | x - x' f 1 
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when xjoc'. (C.1 .30) 

Using (C.1.30) in (C.1.29) and s u b s t i t u t i n g the r e s u l t in (C .1 .4 ) , we 

a r r i v e a f t e r applying Stokes ' theorem at 

I G ^ ( I . x ' ) = (ItTTR)"1!!^ , £ „ T . C J H B J > ( I , x ) ] L 5 ( J , x ' ) 

+ 2v I3 [8 < ( . ( I ( X ) ] E T , ( J ) V L 5 ( J , x ' ) 
l «J-i J — J ip i p — 

- l3
J=] L 6 . ( I , J , x ' ) + [ 3 . < | > ( I , x ) M x ' ) } , (C .1 .3D 

where L 5 ( J , x ' ) i s given by (C.1 .28) , fi(x) by (C.1.23) and L 6 . ( I , J , x ' ) i s 
defined as 

L6 , ( I , J , x ' ) = f <t(I,x)E, .. T , ( J ) ( X . - x ' ) | x - x ' l 3 d s . (C.1.32) 
1 Kar ^ .TI iJK J K K 'xSCT(J) 

The eva lua t ion of (C.1.32) i s discussed in the next subsec t ion . 

C .1 .2 . EVALUATION OF THE LINE INTEGRALS 

In the present subsect ion we discuss the evalua t ion of the l i n e i n t e g r a l s 

L 1 ( J , x ' ) , L 2 ( I , J , x ' ) , L 3 ( I , J , x ' ) , L i ) ( J ,x ' ) , L5 ( J ,x ' ) and L 6 . ( I , J , x ' ) t h a t 

have been in t roduced in Subsect ion C . 1 . 1 . 

In spec t ion of (C.1.15) and (C.1.22) r evea l s t h a t H ) ( J , x ' ) r e s u l t s 

from L2(I ,J ,x_ ' ) by rep lac ing $(I,x_) by the value one. S imi la r ly , 

inspec t ion of (C.1.21) and (C.1.28) r evea l s that L5(J ,x / ) i s obtained 

from L3( I , J , ){ ' ) by rep lac ing <f>(I,20 by the value oiie. Hence, we only have 

to i n v e s t i g a t e the eva lua t ion of L1(J,x_'), L2( I , J ,x_ ' ) , L 3 ( I , J , x / ) and 

L6 ( I . J . x ' ) . 
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For t h i s purpose we consider the s t r a i g h t l i n e segment (edge) C ( J ) 
with JG{1,2,3) ; i t i s i nd i ca t ed in Figure C . 1 . Along C_(J) we have 

T . ( J ) = a i ( J ) / a ( J ) with J 6 { 1 , 2 , 3 ) , (C.1.33) 

where a . ( J ) i s the v e c t o r i a l l eng th and a ( J ) the s ca l a r length of C„(J) . 
Taking in to account the chosen o r i e n t a t i o n of C_(J) (cf. Sec t ion 5 . 1 ) , i t 

pU-1) 

Fig . C .1 . Configurat ion employed in the a n a l y t i c eva lua t ion 
of the l i n e i n t e g r a l s . 
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is apparent that the starting point and the end point of C„(J) are the 
vertices Pv and PT of triangle S , respectively, where {I,J,K} = 
cycl{1,2,3}. In the subsequent analysis we also employ the vectorial 
distances from the point of observation to the starting point and the end 
point of C (J). These are introduced as (see Figure C.1) 

p.(J+1) = x.(J+1) - xj with J€{1,2,3J, (0.1.34) 

and 

p^J+2) = x.(J+2) - x! with J6{1,2,3}, (C.1.35) 

respectively, where x.(J+1) is the position vector of the starting point 
of C (J) and x.(J+2) the position vector of the end point of C (J) and 
hence a. (J)=x. (J+2) - x.(J+1). In (C.1.3*0 and (C.1.35) the convention 
applies that pi(4)=p (1), x.(4)=x.(1), pi(5)=Pi(2) and x.. (5)=xi (2) . Upon 
comparing (C.1.34) and (C.1.35) with the notation introduced in Section 
5.1 for the vertices of S„, it is apparent that x.(J+1) is the position 
vector of vertex P„ and x.(J+2) the position vector of vertex PT of S„, 

K 1 1 1 
with {I ,J ,K}=cycl{1,2,3) • Fur ther , the corresponding length p(J) of p , ( J ) 

i s given by 

p(J) = [ p i ( J ) p l ( J ) ] 1 / 2 with J 6 { 1 , 2 , 3 1 . (C.1.36) 

Along C_(J) we now have (see Figure C.1) 

x. - x! = p.(J+1) + Xa.(J) with 0 i X <1 and J€{ 1 , 2 , 3 } , (C.1.37) 

and 

ds = a(J)dX with J6(1 , 2 , 3 ) . (C.1.38) 

From (C.1.24) and (C.1.37) we fu r the r have 
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; i , x ) = * ( I , x ' ) + [ 3 i < j > ( I , x ) ] [ p . ( J + 1 ) + A a . ( J ) ] when x S C T ( J ) , 

w i t h 1 6 ( 1 , 2 , 3 } and J 6 { 1 , 2 , 3 ) , ( C 1 . 3 9 ) 

where i n view of ( 5 . 1 . 2 6 ) and ( 5 . 1 . 1 2 ) i t i s c l e a r t h a t [3 (f>(I ,x)]a ( J ) 

e q u a l s 0 , - 1 , o r + 1 , d e p e n d i n g on t h e a c t u a l v a l u e s of I and J . 

With t h e a i d of (C .1 . 37 ) - (C . 1 . 3 9 ) t h e i n t e g r a l s L 1 ( J , x ' ) . 

L 2 ( I , J , x ' ) , L 3 ( I , J , x ' ) and L 6 i ( I , J ,x_ ' ) can be r e w r i t t e n as ( c f . ( C . 1 . 1 4 ) , 

(C. 1 .15) , (C.1.21) and (C .1 .32 ) ) 

L 1 ( J , x ' ) = a ( J ) D(A)dA, 
JX=0 

(C.1 .40) 

L 2 ( I , J , x ' ) - a . ( J ) e . v . p . (J+1 ) L [3 J>( I , x ) ] a ( J ) X[D(A)] 'dA, 
l l J K j K tn m ' 1 =0 

) ( X[D( 

+ {<j>(I,x ') + [3 <J>(I,x)]p (J+1)} [D(X) ] ' d X j , (C.1 .41) 
X=0 

L 3 ( I , J , x ' ) = a ( J ) { [ < t > ( I , x ' ) + [ 3 . 0 ( 1 , x ) ] p ( J + 1 ) ] f [ 0 ( A ) ] 1dA 
' X =0 

+ [ 3 . < f . ( I , x ) ] a . ( J ) X[D(X)] 1 d X } , (C .1 .42) 
X=0 

L 6 . ( I , J , x ' ) = e . ., a . ( J ) p , ( J+1 ) [ 3 ct>(I ,x)]a ( J ) X[D(A)] JdX 
l — i j k j k m — - m ' 

) f X[D( 

+ [<*>(!,x') + [ 3 m < | > ( I , x ) ] p m ( J + 1 ) ] [ D ( X ) ] " 3 d x } , ( C . 1 . 4 3 ) 
A=0 

where ( c f . ( 4 . 5 . 2 3 ) , ( 4 . 5 . 2 5 ) , ( 4 . 5 . 5 6 ) and ( C . 1 . 3 7 ) ) 

D(A) = [ p . ( J + 1 ) p . ( J + 1 ) + 2Xa ( J ) p i ( J + 1 ) + A 2a. ( J ) a . ( J ) ] 1 / 2 . ( C . 1 . 4 4 ) 
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The remaining s c a l a r i n t e g r a l s a re elementary ( see , e . g . , Gradshteyn and 

Ryzhik, 1980, pp. 81-83); they a r e given by 

1 . A ( J . x ' ) , 
[D(X)]~ 'dX = 

X=0 A S ( J . x ' ) i f a . ( J ) p ( J+1) = - a ( J ) p ( J + 1 ) 

and a i ( J ) p i ( J + 2 ) = - a ( J ) p ( J + 2 ) , 

(C.1 .45) 

X[D(A)] 1dX = [ a ( J ) ] 2 [ p ( J + 2 ) - p (J+1) 
X=0 

a i ( J ) p . ( J + 1 ) [D(X)] 1 d X ] , (C.1 .46) 
X=0 

X=0 
D(X)dX = ( 1 / 2 ) [ a ( J ) ] 2 { a 1 ( J ) [ p . ( J + 2 ) p ( J + 2 ) - p (J+1 )p ( J+1) ] 

+ = ( J , x ' ) [ D ( X ) ] " 1 d x ) , (C.1.1)7) 
X=0 

X=0 

X=0 

T ( J . x ' ) , 

[D(X)]~3dX = T S 1 ( J , x ' ) i f a . ( J ) p . ( J + 1 ) = a ( J ) p ( J + 1 ) , ( C . 1 . 4 8 ) 

T S 2 ( J , x ' . ) i f a . ( J ) p . ( J + 1 ) = - a ( J ) p ( J + 1 ) , 

A ( J . x ' ) , 

X[D(X)]"3dX = A S 1 ( J , x ' ) i f a . ( J ) p . ( J + 1 ) - a ( J ) p ( J + 1 ) , (C.1.119) 

A S 2 ( J , x ' ) i f a i ( J ) p ( J+1 ) = - a ( J ) p ( J + 1 ) , 

where A(J,x'), AS(J,x'), 5(J,x'), T(J,x'), TS1(J,X'), TS2(J,x'), A(J.x'), 
AS1(J,x') and AS2(J,x'), are defined as 

A(J,x') = [a(J)]"1ln 
a.(J)p.(J+2) + a(J)p(J+2) 
a.(J)p.(J+1) + a(J)p(J+1) 

AS(J.x') = [a(J)] 11 I p(J+2) J' 

(C.1.50) 

(C.1.51 ) 
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= ( J , x ' ) = [ a ( J ) p ( J + 1 ) ] 2 - [ a . ( J ) p . ( J + 1 ) ] 2 , (C.1 .52) 

T ( J , x ' ) = [ H ( J , x ' ) ] -1 a . ( J ) p . ( J + 2 ) a . ( J ) p . ( J + 1 ) 

p (J+2) p (J+1) 

T S K J . x ' ) = C 2 a ( J ) ] 1 { [ p ( J + D ] " 2 " [ p ( J + 2 ) ] ~ 2 } , 

T S 2 ( J , x ' ) - [ 2 a ( J ) ] 1 { [ p ( J + 2 ) ] 2 - [p( J+1) ] ~ 2 } , 

(C.1 .53) 

(C.1.5H) 

(C.1 .55) 

L ( J , x ' ) = [ S ( J , x ' ) ] -1 
p(J+1) 

p . ( J + 1 ) p . ( J + 2 ) 

p ( J+2 ) (C.1 .56) 

,-2 - 2 i A S H J . x ' ) = ( 1 / 2 ) [ a ( J ) ] * { [ p ( J + 1 ) ] - [ 2 a ( J ) + p ( J + 1 ) ] [ p ( J + 2 ) ] }, 

(C.1 .57) 

A S 2 ( J , x ' ) = ( 1 / 2 ) [ a ( J ) ] " 2 { [ p ( J + 1 ) ] _ l - [ p ( J + 2 ) - 2 a ( J ) ] [ p ( J+2) ] " 2 } . 

(C.1 .58) 

With t h e a i d of t h e s e s t a n d a r d i n t e g r a l s t h e f i n a l e x p r e s s i o n s f o r t h e 

l i n e i n t e g r a l s a r e o b t a i n e d a s 

L K J . x ' ) - [ 2 a ( J ) ] ~ 1 { a . ( J ) [ p i ( J + 2 ) p ( J + 2 ) - p . ( J+1 ) p( J+1 ) ] 

+ E ( J , x ' ) A ( J , x ' ) } , ( C . 1 . 5 9 ) 

L 2 ( I , J , x ' ) = a ( J ) e v p ( J + D { [ a ( J ) ] [3<)>( I , x ) ] a ( J ) 
J. 1 J K J K U l ^ m 

x [ p ( J + 2 ) - p ( J+1) - a ( J ) p ( J + 1 ) A ( J . x ' ) ] 

+ U ( I , x ' ) + [ 3 t n < t > ( I , x ) ] p r n ( J + 1 ) ] A ( J , x ' ) } I ( C . 1 . 6 0 ) 

L 3 ( I , J , x ' ) = a ( J ) f [ < J > ( I , x ' ) + [ 3 i * ( I , x ) ] p l ( J + 1 ) ] A ( J , x ' ) + [ a ( J ) ] " 2 

[ 3 . < ( ) ( I , x ) ] a i ( J ) [ p ( J + 2 ) - p ( J+1) - a ( J ) p ( J + 1 ) A ( J , x ' ) ] } , 
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(C.1 .61) 

LU(J .x ' ) = a i ( J ) e l j k v J p k ( J + 1 - ) A ( J , x ' - ) , ' (C.1.62) 

L 5 ( J , x ' ) = a ( J ) A ( J , x ' ) , (C.1.63) 

and 

L Ó ^ I . J . x ' ) = e i j k a j ( J ) p k ( J + 1 ) { [ 9 m * ( I , x ) ] a m ( J ) A ( J , x ' ) 

+ U ( I , x ' ) + [ a ^ C I . x J D p ^ J + D j T C J . x ' ) } , (C.1.64) 

where A(J,x_') i s t o be replaced by AS(J,x_') if e i t h e r a . ( J )p . ( J+1) = 
- a ( J )p ( J+1) or a i ( J ) p i ( J + 2 ) = - a ( J ) p ( J + 2 ) , T ( J , x ' ) by TSI ( J . x ' ) and 
A ( J , x ' ) by A S K J . x ' ) i f a . ( J ) p . ( J + 1 ) = a ( J )p ( J+1) , and, f i n a l l y , T ( J , x ' ) 
by TS2( J ,x ' ) and A(J ,x ' ) by AS2(J ,x ' ) i f a i ( J ) p l ( J + 1 ) = - a ( J ) p ( J + 1 ) . With 
t h i s , the a n a l y t i c eva lua t ion of the l i n e i n t e g r a l s has been completed. 

C .1 .2 . EVALUATION OF THE SOLID ANGLE SUBTENDED BY A PLANAR TRIANGLE 

In the p resen t subsec t ion we determine from geometrical cons idera t ions as 
well as with the aid of an a n a l y t i c method d i f f e r en t from the one 
employed in Subsection C . 1 . 1 , t he value of the surface i n t e g r a l Q defined 
by (C .1 .23 ) . 

As we have seen in Subsect ion C . 1 . 1 , the surface i n t e g r a l n occurs as 
a secondary r e s u l t in the a n a l y t i c eva lua t ion of the i n t e g r a l s IG , i r , 

f f I r . and IG. , and cannot be evaluated with a s t ra igh t forward u t i l i z a t i o n 
1 1 

of S tokes ' theorem. Since , however, Q(x_') r ep re sen t s the s o l i d angle at 
which the t r i a n g l e S_ i s observed from a point of observat ion with 
p o s i t i o n vector x ' , i t s value can be determined with the aid of the 
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theory of spher i ca l geometry. To t h i s end, i t i s r e c a l l e d t h a t the 
(numerical) value of the s o l i d angle n ( x ' ) subtended by a planar t r i a n g l e 
S at a point x' equals the area of the sphe r i ca l t r i a n g l e t h a t r e s u l t s 
upon p ro j ec t i ng S_ on a sphere with un i t rad ius and cen te r at x' ( s e e , 
e .g . , Sp i ege l , 1974, p . 124). Now, expressions for the a rea of a 
spher ica l t r i a n g l e can be found in (old) textbooks on s p h e r i c a l 
t r igonometry. In our ana ly s i s we have used the fol lowing one ( see , 
Todhunter and Leathern, 1901, p . 103): 

fl(x_') = 2 s i g n [ v . p . (1) ]arccos 
1 + I3 c o s ( a ( J ) ; LJ=1 

in3. . c o s ( ( 1 / 2 ) a ( J ) ' 
(C.1 .65) 

in which cos ( a ( J ) ) i s defined by 

p (J+1)p.(J+2) 
c o s ( a ( J ) ) = - p ^ f j - ^ r with J 6 { 1 , 2 , 3 1 , (C .1.66) 

and where v. i s the (cons tan t ) u n i t vector along the normal t o S_ and 
p.(J+1) and p(J+1) the vec to r i a l and s ca l a r d i s tances from _x' to the 
(J+1)-th ver tex of S , r e spec t ive ly (cf. (C.1.3*0 and ( C . 1 . 3 6 ) ) . For a 
geometrical i n t e r p r e t a t i o n of o(J) we re fe r t o Todhunter and Leathern 
(1901). Another, s l i g h t l y more compact, express ion for n(x_') r e s u l t i n g 
from the one given in (C.1.65) i s presented by Van Oosterom and Strackee 
(1983). 

As noted in the i n t roduc t ion t o t h i s subsec t ion , an express ion for 
n(x ' ) i n terms of elementary funct ions can a l so be obta ined in a purely 
ana ly t i c manner. To t h i s end, we f i r s t decompose in the in tegrand of 
(C.1.23) the v e c t o r i a l d i s tance between the point of obse rva t ion x' and 
the point of i n t e g r a t i o n x i n S„ i n to a par t t h a t i s normal t o S„ and a 
part t ha t i s p a r a l l e l t o i t , i . e . , 

x. 
1 

X'. = C.V . 
1 * 1 

with xGS , (C.1 .67) 
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where x, i s given by 

C = v (x . - x'.) with xSST, (C .1 .68) 

and has a cons tant value for a l l x6S„. Since y i s a vector i n the plane 
of S we can represen t t h i s vector with respec t to some l o c a l , 
two-dimensional orthogonal Car tes ian re fe rence frame in t h i s plane. Let 
y with a=1 ,2 denote the Car tes ian coordinates in t h i s reference frame, a 
where for repea ted Greek subsc r ip t s the summation convention applies to 
the range a=1 , 2, and l e t p a r t i a l d i f f e r e n t i a t i o n with respec t to y be 
denoted by 9 . Then, upon employing (C. 1.67) in (C.1 .23) , taking i n to 
account t h a t _v and _y_ a r e mutually perpendicular , and adopting the above 
no ta t ion in the r e s u l t , we have 

S1(C) 
IGS 

cU 2 + y„y j 3 /2dA. (C1.69) 
a a 

When t = 0 and y_$S , a = 0; when c + 0 and c + 0, and X 6 S T> geometrical 
cons ide ra t i ons l e a r n t h a t fi -» 2n and fi ■+ -2TT, r e s p e c t i v e l y . Henceforth, 
we assume c to be unequal to zero , i . e . , x' i s not ly ing in the plane of 
S . As a next s t ep in our a n a l y s i s , we d i f f e r e n t i a t e (C. 1.69) on both 
s ides with r e spec t t o c and apply in the r e s u l t i n g r igh t -hand side the 
r e l a t i o n 

2 . .. „ 1-3/2 . , , 2 f . 2 ^ ., .. , - 5 / 2 _ _ , r „ {2. x „ „ ^,-3/2-j_ 

(C.1 .70) 
(< + V J ~ ^ - 3c<V ♦ y a y a ) - s ^ - - *ahaU' ♦ yRy 

This leads to 

B'(C) - - f 3„[y„(c2 + yRyJ"3 / 2 ]dA. (c.1.71) 
J I 6 S T

 a a B S 

where Q'(c) denotes the de r iva t ive of fi(;) with respec t t o t;. Now, with 
the aid of the two-dimensional form of Gauss' theorem, the surface 
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i n t e g r a l over S„ in (C.1.71) can be replaced by a contour i n t e g r a l along 
i t s boundary curve C . In t h i s , t ak ing i n t o account t h a t C i s the union 
of t h r ee s t r a i g h t l i n e segments {C„(1) ,C„(2) ,C_(3)} , where t h e outwardly 
d i rec ted uni t vector along the normal to C ( J ) , with J 6 { 1 , 2 , 3 } ( in the 
plane of S„ i s given by [ a ( J ) ] _L(J) (cf. ( 5 . 1 . 1 0 ) ) , and r e w r i t i n g the 
r e s u l t with respect t o the o r i g i n a l reference frame, we end up with (cf. 
(C.1.71)) 

" ' U ) = - I3, - [ a ( J ) ] " 1 L . ( J ) | y . ( c 2 '+ y . y . ) " 3 / 2 d s . (C.1.72) 
J = 1 1 Jy&CT(J) 1 J J 

To solve a(0> and hence fi(x/), from (C.1.72) i t i s advantageous to f i r s t 
i n t e g r a t e both s ides of i t with respec t t o t,. In t h i s , the app rop r i a t e 
end point of the i n t e r v a l of i n t e g r a t i o n i s obtained upon t ak ing i n to 
account t h a t n(c) tends to zero as ? + » (cf. ( C . 1 . 6 9 ) . We then have 

Q(C) - I3
T , [ a ( J ) ] _ 1 L . ( J ) ( y 

y_GCT(J) 
[l2 - ykykr3 / 2dc]ds 

= I3 [ a ( J ) ] _ 1 L (J) f y ^ y J ^ t i - c ( c 2 + y .v . ] ~ 1 / 2 ] d s 
J- i i J

z e c T ( j ) 1 J J K k . 

= I 3
 = 1 [ W ( J , c ) - L 8 ( J . c ) ] , (C.1.73) 

where L 7 ( J , t ) and L 8 ( J , ; ) a re defined by 

L7CJ .0 = [ a ( J ) ] _ 1 L . ( J ) f y . ( y H y j " 1 d s (C.1.74) 

and 

1 Jy_&C (J ) x J J 

L8(J , s ) - C [ a ( J ) ] 1 L 1 ( J ) f vAv.yJ \r? + y „ y j 1 / 2 d s . 
1 Jy_GCT(J) x J J K K 

(C.1.75) 
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To express L7(J ,c) and L8(J,£;) in terms of elementary a n a l y t i c func t ions , 
wè f i r s t apply (C .1 .37) , toge ther with (C.1.67) and ( C . I . 3 8 ) , to (,C.:.Ti) 
and (C .1 .75) , and take i n t o account t h a t L . ( J ) and v . , and L (J) and 
a . ( J ) a re mutually perpendicular (see F ig . 5 . 1 ) . We then have (cf. 
(C.1 .71)) 

L7(J ,c) = L ( J )p , ( J+1) f [D1(A,t)]~2dX (C.1.76) 
JA=0 

and (cf . (C.1.75)) 

L8(J,C) = CL (J)p (J+1) | [D(A)] 1[D1(A,c)]"2dX, (C.1.77) 
JA=0 

3 ( J + 1 ) ( 
' 1 : 

where D1(A,e) i s defined by 

D1(A,c) = [ -c 2 + p . ( J+1) P i ( J+1) + 2Aa l ( J )p l ( J+1) + A2a. ( J )a . ( J ) ] 1 / 2 , 
(C.1.78) 

and D(A) by (C.1.H1). The i n t e g r a l on the r igh t -hand s ide of (C.1.76) i s 

elementary ( see , e . g . , Gradshteyn and Ryzhik, 1980, p . 68 ) ; i t i s given 

by 

[ [D1(A,c)]~2dA = | L . ( J ) p . ( J + 1 ) | _ 1 a r c t a n ( e i ( J ) ) , (C.1.79) 
JA=0 1 1 

where we have used the addi t ion r u l e for two a rc tan- func t ions and 91 (J) 
i s defined by 

| L . ( J ) p . ( J + 1 ) | a ( J ) [p , ( J+2) - p , ( J+1) ] 
e K J ) = p— . C.1.80) 

| L . ( J ) P i ( J + l ) p + a i ( J ) p . ( J + 1 ) a (J)p (J+2) 

To eva lua te the remaining i n t e g r a l on the r ight -hand s ide of (C.1 .77) , we 
f i r s t reduce i t to a more convenient form by applying success ive ly the 
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following two a lgebra ic s u b s t i t u t i o n s ( see , e . g . , Gradstheyn and Ryzhik, 
1980, pp. 80-81) : 

X = t - a i ( J ) p l ( J + 1 ) / [ a j ( J ) a J ( J ) ] , (C.1 .81) 

and 

2 p i ( J .+Dp 1 ( J+ l )a (J )a (J) - [ a i ( J ) p i ( J + l ] 
-1/2 

w. (C.1 .82) 

Then, a f t e r a tedious but s t ra igh t fo rward ana ly s i s we end up with 

f [D(X)]"1[D1(X,c)]"2dX = C | C | | L (J )p ( J + 1 ) | ) " 1 a r c t a n ( 6 2 ( J ) ) , 

( C . l . 8 3 ) 

where we used the addi t ion r u l e for two a rc tan- f unct ions and e2(J) i s 
defined by 

62(J) 
c | L 1 ( J ) p 1 ( J + l ) | [ a j ( J ) p j ( J + 2 ) p ( J + l ) - a j ( J ) p (J+1)p(J+2)] 

C 2 a . ( J ) p . ( J + l ) a (J)p (J+2) + p ( J + 1 ) p ( J + 2 ) | L . ( J ) P i ( J + 1 ) | 2 

C.1.84) 

Using (C.1.79) in (C.1.76) and (C.1.83) in (C .1 .77) , i t r e a d i l y follows 
that n(^) i s given by 

a U ) = I j = 1 s i g n ( L l ( J ) p . ( J + 1 ) ) a r c t a n ( e i ( J ) ) 

s i g n ( c ) I j = 1 s i g n ( L . ( J ) p . ( J + 1 ) ) a r c t a n ( e 2 ( J ) ) . (C.1.85) 

Equation (C.1.85) c o n s t i t u t e s , upon taking i n t o account (C .1 .68 ) , the 
a n a l y t i c expression for f l (x ' ) . 



APPENDIX C : ANALYTIC EVALUATION - 216 -

Haitjema (1987) a l so presented , by a d i f f e r e n t method, a completely 
a n a l y t i c manner to a r r i v e a t an express ion for the s o l i d angle subtended 
by a planar d i sk . 

Obviously, the a n a l y t i c method discussed in the present subsect ion i s 
not l im i t ed i n applying i t to the eva lua t ion of fi()c'); in f a c t , i t can be 
d i r e c t l y employed for the eva lua t ion of (C .1.1) - (C.1.4) as wel l . This 
procedure has been followed by Van der Weiden and De Hoop (1988). 

In the numerical experiments discussed in Chapter 6 both the 
geometr ical express ion for fi(x_') and the one r e s u l t i n g from the purely 
a n a l y t i c eva lua t ion have been employed. Na tu ra l ly , no differences in the 
numerical values of ft(x.') r e s u l t i n g from e i t he r (C. 1.65) or (C. 1.85 ) 
occur red . 
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C.2. ANALYTIC EVALUATION OF THE SURFACE INTEGRALS (ANISOTROPIC CASE) 

In present s ec t i on we der ive the a n a l y t i c express ions for the i n t e g r a l s 
(C.1) - (C.4) in case they apply t o an i so t rop i c media 

With the aid of ( 4 . 5 . 1 9 ) , ( 4 . 5 . 2 0 ) , (4 .5 .26) and (4 .5 .27) i t follows 
that for an an i so t rop ic medium (C.1) - (C.4) a re given by 

I G q ( I , x ' ) = ( 4 T T ) " 1 A 1 / 2 ( c( .(I ,x)[D(x,x ')]"1dA, (C.2.1) 
JxGST 

l r q ( I , x ' ) = ( 4 T T ) ' 1 A 1 / 2 <t>(I,x)v.K. . 3 . [ D ( x , x ' ) ] 1 dA, ( C . 2 . 2 ) 
xGST

 1 1 J J 

l r f ( l , x ' ) = (4TT) 1 A 1 / 2 f < t > ( I , x ) K . . 3 . [ D ( x , x ' ) ] 1dA, (C.2 .3) 
1 J x6S T

 J 1 J 

I G f ( I , x ' ) = ( 4 I T R ) " 1 A 1 / 2 <))(I,x)v.K. K .3 9 [D(x ,x ' ) ]~1dA, 
i Jx6S J JP Q1 P Q 

(C.2.4) 

where A and D(x,x ' ) a re defined as (cf. (4 .5 .9 ) and (4 .5 .16) ) 

A = det(R. . ) , (C.2.5) 

D(x,x ' ) = [ R i j ( x i - x ! ) ( X j - x ^ ) ] 1 / 2 , (C.2.6) 

and K. . i s the symmetric and pos i t i ve d e f i n i t e inve r se of the constant 
r e s i s t i v i t y R. . (=R..) of the medium under cons idera t ion . 

To evaluate (C.2.1) - (C.2.4) a n a l y t i c a l l y , we f i r s t sub jec t the 
i n t e g r a l s to a coordinate t ransformat ion s imi la r t o the one used in 
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Sect ion H.5. Then, in the new coordinate system, the i n t e g r a l s wil l 
acqu i re an " i s o t r o p i c " form and we can employ the techniques of Sect ion 
C . 1 . After the re levant expressions in the new coordinate system have 
been obta ined , they are transformed back t o the o r i g i n a l coordinate 
system. The d e t a i l s of the t ransformat ion procedure appl ied to (C.2.1) -
(C.2.4) are discussed in Subsection C . 2 . 1 , while in Subsection C.2.2 we 
d i scuss the eva lua t ion of those l i n e i n t e g r a l s tha t have not already been 
t r e a t e d in Sect ion C .1 . 

C . 2 . 1 . TRANSFORMATION OF THE "ANISOTROPIC" SURFACE INTEGRALS 
TO AN "ISOTROPIC" FORM 

In t h i s subsect ion the surface i n t e g r a l s (C.2.1) - (C.2.1) a re subjected 
to a coord ina te t ransformat ion such t ha t they wi l l acqui re t h e i r 
" i s o t r o p i c " form. In the new coordina te system we evalua te the 
transformed surface i n t e g r a l s with a id of the techniques ou t l ined in 
Subsect ion C . 1 . 1 . In t h i s procedure seme not yet encountered l i n e 
i n t e g r a l s will show up. Their a n a l y t i c eva lua t ion i s discussed in d e t a i l 
in Subsect ion C.2 .2 . 

In (C.2.1) we f i r s t apply (C .1 .24 ) . This y i e ld s 

$ ( I , x ) [ D ( x , x ' ) if1 dA = <t>(I,x')[ [D(x,x ' ) ]" 1dA 
2cSST £ e s x 

+ [ 3 ^ ( 1 , 5 0 ] (x. - x ; ) [ D ( x , x ' ) ] 1dA. (C.2.7) 
xGST 

Now, in the i n t e g r a l s on the r igh t -hand s ide of (C.2.7) we employ the 
fol lowing orthogonal t ransformation 

X P = 6 P q V (C .2 .8 ) 
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where the columns of the matr ix (6 ) a r e the normalized r i g h t 
e igenvectors of (R. .) corresponding to the q-th eigenvalue s q of (R. .) 
(of. ( 4 . 5 . 3 ) ) . This orthogonal t ransformat ion i s followed by the 
i n t roduc t i on of the the va r i ab l e s z through 

q 

zq - ( s ( q ) ) 1 / 2 y q , (C.2.9) 

and, hence, we have 

*P ■ « w » ( q , r , / 2
v <c-2-io> 

and inverse ly 

z - ( s ( q ) ) l / 2 B " 1 x . (C.2.11) 
p *• pq q 

Taking i n t o account tha t 

B. R. .6 . = s ( p ) 6 , (C.2.12) 
p i p i j p j q p q ' 

i t i s c l ea r tha t D(x_,x') t ransforms i n t o D(z_,z_') given by (cf. (C.2 .6) ) 

D(z,z_') = |z - z ' | , (C.2.13) 

while the i n t e g r a l s on the r igh t -hand s ide of (C.2.7) transform i n t o 

[ [ D ( x , x ' ) ] ~ 1 d A = ( A / A * ) f * | z - z ' r 1 d A (C.2.14) 
J x6S T

 J^GST 

and 

(x . - x ' . ) [ D ( x , x ' ) ] 1dA 
Jx6ST

 x 1 
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= ( A / A * ) g . ( s ( p ) ) " 1 / 2
 x 3 |z - z ' | d A , ( C . 2 . 1 5 ) 

1 P jzGS* z p ' - " ' 

* * 
where S , with s c a l a r area A , denotes the transformed planar t r i a n g l e ST 

i n the { z . , z ? , z ^ } coord ina te system, 8 denotes d i f f e r e n t i a t i o n with 
P 

r e spec t t o z , and where we have taken i n t o account that the elementary 
a reas on the two s ides of both (C.2.14) and (C.2.15) a re propor t iona l to 
t he t o t a l a reas of the t r i a n g l e s in the two d i f fe ren t coordinate systems. 

* 
The p o s i t i o n vectors of the v e r t i c e s of S_ in the {z ,z ,z } coordinate 
system fol low from (C.2.11) , while t he s ca l a r area A of S_, expressed 

i n terms of geometrical q u a n t i t i e s in the o r i g i n a l {x , x . , x , } coordinate 

system, i s given by (cf. ( 5 . 1 . 9 ) , ( 5 . 1 . 5 ) , (C .2 .11) , (C.1.8) and (5 .1 .3 ) ) 

A* = [A*A*] 1 / 2 = { ( 1 / 2 ) e . j k [ z J ( I ) - z (K)][Z | <(J) - z k ( I ) ] 

* ( 1 / 2 ) e i m n [ z m ( I ) " Z m ( K ^ [ z n ( J ) " V 1 » 1 ^ 

= ( 1 / 2 ) { t x . ( I ) - x . ( K ) ] R . p [ x p ( I ) - x (K)] 

x [ x . ( J ) - x . ( I ) ] R . [ x n ( J ) - x ( I ) ] 

- ( [ x . ( I ) - x . ( K ) ] R . p [ x p ( J ) - x p ( I ) ] ) 2 } 1 / 2 

= ( 1 / 2 ) ( a . ( J ) R . a (J )a . (K)R. a (K) 
1 IP P J Jq q 

- [ a . ( J )R . a ( K ) ] 2 } 1 / 2 with {I , J,K}=cycl{1 ,2 , 3 ) . (C.2.16) 
i IP P 

Now, to eva lua te the surface i n t e g r a l s on the r ight -hand s ides of 
(C.2.14) and (C .2 .15) , we r e w r i t e t h e i r in tegrands t o such forms t h a t 
S tokes ' theorem in the {z ,z ,z } coord ina te system can be used. To t h i s 
end, we employ in (C.2.11) a r e l a t i o n s imi l a r to the one given in 
(C.1.11) in which $(1,20 i s replaced by uni ty and the d i f f e r e n t i a t i o n s 
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are ca r r i ed out with r e spec t t o z . . Then a f t e r u t i l i z a t i o n of S tokes ' 
theorem, i t i s e a s i l y v e r i f i e d tha t (C.2.1U) l eads to 

[D(x,x ')]~1dA = (A/A*)(( * T*E. .v*3 | z - z ' | d s 

* ( z . - z ' .)[ l i l ] 

'xGST •'^6CT 

+ v*(z. - z ' . ) | * v*8 |z - z ' | " 1 d A } , (C.2.17) 
zesT

 J z j 

where T, i s the uni t tangent vector along the boundary curve C„ of S_ in 

the d i r e c t i o n of c i r c u l a t i o n t ha t forms a r ight -handed system with v . , 
the constant u n i t vector along the normal to S given by (of. ( 5 .1 .8 ) and 
(C.2.16)) 

v* = A./A . (C.2.18) 

In (C.2 .17) , s imi l a r t o the i s o t r o p i c case , we have taken i n t o account 
tha t v . ( z . - z ' . ) has a constant value for a l l ^SS_. The surface i n t e g r a l on 

i l l l j , 
the r ight -hand s ide of (C.2.17) equals minus the s o l i d angle Q ( z / ) a t 

* 
which the t r i a n g l e S_ i s observed from the point of observat ion z', i . e . 

( c f . ( C . 1 . 2 3 ) ) , 

S M z ' ) = * v*3 |z - z ' | 1dA. (C.2.19) 
z6ST

 J Zj 

For i t s value we can use the expressions presented in Subsect ion C.1.3 
(cf. (C. 1 .65) and (C .1 .85) ) . Obviously, the geometrical q u a n t i t i e s 
occurr ing in these expressions now refer to the {z ,z ,z_} coord ina te 
system. With the aid of the inverse t ransformation (C.2.11) they can be 
expressed again in terms of the geometrical q u a n t i t i e s pe r t a in ing t o the 
o r i g i n a l {x ,x ,x ) coord ina te system (cf. (C .2 .16) ) . In the numerical 
experiments discussed in Chapter 6 we have followed t h i s procedure to 
handle the "an i so t rop ic s o l i d angle" . 
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R e t u r n i n g t o ( C . 2 . 1 5 ) , we s u c c e s s i v e l y employ i n i t s r i g h t - h a n d s i d e 

( C . 1 . 7 ) , where t h e d i f f e r e n t i a t i o n s a r e now c a r r i e d ou t w i t h r e s p e c t t o 

z . , u s e S t o k e s ' t h e o r e m , and a r e l e d t o 

I x 6 S ? 

( x . - x p [ D ( x , x ' ) ] 'dA 

U / A * ) B i p ( s ^ r 1 / 2 l | . V l m p v ; | z - z ' | d 3 , 

+ v v (z - z ' ) , | z - z ' | - 1 d A } . 

p q q q J , C Q * i - - i 
' z 6 S T 

(C.2.20) 

Using ( C . 2 . 1 4 ) and ( C . 2 . 1 7 ) i n t h e ' s u r f a c e i n t e g r a l on t h e r i g h t - h a n d 

s i d e of ( C . 2 . 2 0 ) , and u s i n g t h e r e s u l t i n g e x p r e s s i o n f o r ( C . 2 . 2 0 ) , 

t o g e t h e r w i t h ( C . 2 . 1 7 ) and ( C . 2 . 1 9 ) , i n ( C . 2 . 7 ) , and s u b s t i t u t i n g t h i s i n 

( C . 2 . 1 ) , i t f o l l o w s t h a t I G q ( I , x ' ) can be w r i t t e n a s 

I G q ( I , x ' ) = ( i |Tr )" 1 A 1 / 2 (A/A i t ){<j>(I ,x ' ) [ * * i i 

* T , e , . v 3 z - z ' d s 
zGC* X l p l P z i ' " " ' 

v * ( z . - z p f ! * ( z ' ) ] + [3 .< t>( I ,x ) ]B. ( s ( p ) - ! - 1 / 2 

* * i i 

- i . e . v z - z ' ds 
zee; n " P i L - ' 

» * 
+ v v (z - z ' ) 

P q q q 
( ft X 

. T , e . v 3 |z - z 1 Ids * 1 l m n m z ^ - - I 

v*(z - z ' ) f i * ( z ' ) ) ] } . 
m m m - " J l 

(C.2.21 ) 

T a k i n g i n t o a c c o u n t t h a t C i s t h e u n i o n of t h e e d g e s {C ( 1 ) , C ( 2 ) , C (3 )} 

where e a c h e d g e i s a s t r a i g h t l i n e s e g m e n t , i t i s a p p a r e n t t h a t a l o n g 

each C ( J ) w i t h J 6 { 1 , 2 , 3 } , t h e c o r r e s p o n d i n g u n i t t a n g e n t v e c t o r T , ( J ) 
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has a constant va lue . Using these p r o p e r t i e s of C in (C .2 .21) , i t 
read i ly follows tha t (C.2.21) can be expressed as 

I G q ( I , x ' ) = (4TT)"V /2(A/A*){[<f>(I,x') + 

+ [ a ^ a . x n e . p f s ^ r ^ v V U q - z ' ) ] l J = 1 A L 2 ( J , z ' ) 

♦ [ 3 . $ ( I , x ) ] B . p ( s ( P ) ) - 1 / 2 [ I J
3

= i e p l r a T i * ( J ) v y i ( J , z ' ) 

V p [ v q ( z q " z q ^ 2 « * ^ ' ) ] - * ( ! , x ' )v* (z. - z p n * ( z ' ) } , 
(C.2.22) 

in which AL1(J ,z ' ) and AL2(J ,z ' ) are defined by 

AL1(J ,z ' ) 
JzBC*(J) 

|z - z ' l d s (C.2.23) 

and 

* * AL2(J,z ' ) = , i . e . .v (z. - z ! ) | z - z*I ds . (C.2.24) 
'zGCT(J) 1 lp i p i i 

Upon comparing the s t r u c t u r e of the l i n e i n t e g r a l AL1(J,^ ' ) with the one 
of L1(J,x_') in (C .1 .14) , i t i s apparent t h a t the r e s u l t s of the a n a l y t i c 
evaluat ion of L1(J,>c') , as discussed in Subsect ion C. 1 .2, can 
s t ra ight forwardly be used in the eva lua t ion of A L 1 ( J , ^ ' ) . In t h i s , we 
only have to transform the r e s u l t s obtained in the {z , z ? , z } coord ina te 
system back to the o r i g i n a l {x. ,x ,x } coord ina te system. S i m i l a r l y , in 
the a n a l y t i c eva lua t ion of AL2(J,z/) we use the r e s u l t s obta ined in the 
evaluat ion of L2(I,J ,x_') (cf. (C.1 .15)) in which we rep lace cj>(I,x_') by 
un i ty . Again, the inverse t ransformat ion i s appl ied to the r e s u l t s 
obtained in the transformed coord ina te system. To complete the eva lua t ion 
of IG^CI ,^ 1 ) , we a l so apply the inverse t ransformat ion t o the q u a n t i t i e s 

* * 
v . T, ( J ) , (z - z ' ) and t h e i r combinations. Since the eva lua t ion of AL1 
P 1 q q 
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and AL2, and the application of the inverse transformation (C.2.11) 
contain no new ingredients and are straightforward procedures, they are 
not worked out in detail. 

Similar to the isotropic case, inspection of (C.2.2) and (C.2.3) 
reveals that (note that K. .=K..) 

irM(I,x') = vJr.U.x'). (C.2.25) 

Hence, we f i r s t d iscuss the eva lua t ion of (C.2.3) and apply (C.2.25) in 
the r e s u l t i n g express ion t o a r r ive at the express ion for IT ( I , ^ ' ) . To 
t h i s end, we f i r s t use (C.1.24) in the i n t e g r a l on the r ight -hand s i d e of 
(C.2.3) and observe t h a t 

<j)(I ,x)K^3 ;[D(x,x. ' )] 1dA = - <j)(I 
'x6ST 

Ji J 
, .x ' ) j (x,. - x ; ) [ D ( x , x ' ) ] 3dA 

'x6ST 

[3.<t(I ,x)]f (x - - x ' . H x . - x ! ) [ D ( x , x ' ) ] 3dA. (C.2.26) 
J Jx6ST

 J J 1 

Now, upon applying the t ransformat ion (C.2.10) t o the surface i n t e g r a l s 

on the r ight -hand s ide of (C.2.24) and taking (C.2.12) i n t o account, i t 

i s e a s i l y v e r i f i e d tha t we have 

x6ST 

(x. - x'. ) [ D ( x , x ' ) ] 3dA 

( A / A * ) B i p ( s ^ ) - 1 / 2 3 |z - z' |~1dA (C.2.27) 
zesT p 

and 

x6S, 
( X j - x^)(x. - x p [ D ( x , x ' ) ] JdA 
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- ( A / A * ) g . p ( S
( p ) r 1 / 2 B i q ( s ( q ) r 1 / 2 { j , 8Z C(zp - z p ) | z - z ' | " 1 ] d A 

^6S_ q 

- 6 
pqj 

* \L ~ z ' I 1 < 1 A 1 - ( C . 2 . 2 8 ) 
z6ST 

Upon using in the r ight -hand s ide of (C.2.27) a r e l a t i o n s i m i l a r t o the 
one in (C.1.19) in which we rep lace <t>(I,>c') by un i ty and ca r ry ing out the 
d i f f e r e n t i a t i o n s with respec t t o z . , the surface i n t e g r a l over S can, 
with the fur ther u t i l i z a t i o n of Stokes ' theorem, be replaced by a contour 
i n t e g r a l along C and an add i t iona l surface i n t e g r a l that can be 
i d e n t i f i e d with f l* (z ' ) . We have (cf. (C .2 .25 ) , C.1.19) and (C.2.19)) 

(x - x ' .)[D(x,x')]~3dA 
x6ST 

tA/A*)s i p(s^r1 / 2<( . v * _ i * * 
e. v | z - z ' | d s - v n ( z ' ) } . 

zGCT - l m p m ~ P _ 

(C.2.29) 

To eva lua te the f i r s t surface i n t e g r a l on the r ight -hand s i d e of (C.2.28) 
we f i r s t r e w r i t e i t s integrand as 

3 [ (z - z ' ) | z - z ' l " 1 ] = e, , v*3 e. v*(z - z ' ) | z - z ' l - 1 
z p p ' - - ' Imk m z lnq n p p '— — ' 

* * i i - 1 + v v z - z ' 
p q 1 - - ' 
* # * * _1 

+ v v . ( z . - z ' . ) [ e , , v 3 e. v z - z ' 
Q J J J lmk m z lnp n 1 - - ' 

v v ,3 |z - z ' I " 1 ] , (C.2 .30) 
p 1 zx'- -

which can be ve r i f i ed with the aid of the i d e n t i t y (C.1.8) and by 
car ry ing out the re levan t d i f f e r e n t i a t i o n s . Then, with the aid of S tokes ' 



APPENDIX C : ANALYTIC EVALUATION -226-

theorem, the fact that v.(z.-z'.) has a constant value for all ̂ GS , and 
the further aid of (0.2.14), (C.2.17) and (C.2.19), the relevant integral 
yields 

( * \ C ( z p " z p > l l " z ' | " 1 ]dA 
^6S_ q 

* ! , £ . V ( Z - Z ' ) Z - Z ' d S + VI V I - V (Z - Z ' ) ! 2 ( z ' ) 
* 1 lnq n p p ' - - ' p qL m m m - ' 

ƒ X X _1 X X X X 

+ J z 6 C * T l e lmn v m ( z n " z n } l ^ " * ' l ~ d s l + v q v. (z . - z ' ) [ - vpfi ( z ' ) 

f • V l n p ^ - * ' ! " 1 * » ] . ( C-2-3 1 ) 

+ 
'zee 

With the aid of ( C 2 . 1 t ) , (C.2.17) and (C.2.19) i t fu r ther follows tha t 
the remaining surface i n t e g r a l on the r ight -hand s ide of (C.2.28) can be 
w r i t t e n as 

, |z - z ' |~1dA = • T*en v*(z - z ' ) | z - z ' | - 1 d s 
Jz6S* - - JzGC* l l B » " n I - - I 

- v*(z - z * ) n * ( z ' ) . (C.2.32) 
m m m — 

* 
Now, tak ing i n t o account t h a t C i s the union of the edges 

# * * 
{C (1),C (2),C (3 ) ) , where the un i t tangent along each edge has a 
constant va lue , and c o l l e c t i n g the res .ul ts (C.2.27) - (C.2.32) in 
(C .2 .26 ) , ' i t follows tha t i r f ( I , x ' ) can be wr i t t en as (cf. (C.2.24)) 

i r j ( l . x ' ) - ( ^ ) - Y / 2 ( A / A * ) U ( I , x ' ) 8 i p ( s ( p ) r 1 / 2 

x . [ S - 1 e p l m T I ( J ) v » A L 3 ( J ^ , ) " V * < z ' ) ] 

* [ a i » ( I 1 « ) : B j 3 ( p ) r 1 / \ f s ( ' ) r 1 / 2 [ v V l 3 , 1 A L 2 ( J , 1 ' ) 
j jp iq p q J - I — 

http://C2.1t
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" W J - 1 A L 2 ( J * ' ) + V m ( Z m " zi^J-1 epln TI ( J )V L 3 ( J^ , ) 

+ ^-1eqlnVJ)VLl,p(J^,) " 2 W m ( Z m " ^ « V ' 

+ wl(z
m-z*)a*iz-)]]' (c-2-33) 

in which AL3(J,z_') and ALU (J,z/) are defined by 

AL3(J,z') = x | z - ^ ' r 1 d s (C.2.34) 
JzGCT(J) 

and 

,z') - f , (z - z')|z - z' AL4 (J,z') = j 3 (z - z')|z. - z'|-1ds. (C.2.35) 
P JzSCT(J) 

Comparison of the structure of AL3(J,z_') with the one of L5(J,£') in 
(C.1.28) reveals that we can use the analytic expressions obtained for 
L5(J,x_') where the relevant results now apply to the {z. ,zp,z,} 
coordinate system and have to be transformed back to the original 
tx ,x ,x } coordinate system with the aid of (C.2.11). Since this 
procedure contains no new aspects it is not worked out in detail. The 
structure of AL4 (J,z/), however, is different from the ones of the line 
integrals that occurred in the isotropic case, and, therefore, its 
evaluation is discussed in Subsection C.2.2. Finally, to arrive at the 

f expression for Ir.(l,x/) in (C.2.33) with respect to the original 
{x.,x ,x } coordinate system, we also apply the inverse transformation 
(C.2.11) to the quantities v , T,(J), (z -z'). and their combinations. 

Now, to arrive at the analytic expression for IT (I,x_') (cf. 
(C.2.25)), we simply multiply (C.2.33) on both sides by v., i.e., the 
unit vector along the normal to the (non-transformed) triangle S_. 

Finally, we discuss the analytic evaluation of (C.2.1!). To this end, 
we proceed along lines similar to the ones discussed in the evaluation of 
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(C.2 .1) and (C .2 .3 ) , i . e . , we success ive ly apply to (C .2 .4 ) , (C .1 .24) , 
the t ransformat ion (C.2 .10) , and take (C.2.12) in to account. We then have 

I G ^ ( I . x ' ) 

= ( lT t ) _ 1 A 1 / 2 (A/A*) l* ( I ,x ' ) [ - v j K j l j * |z - z ' |~3dA 

3v.6. ( 8 « « » r l / 2 B l n ( - ( p ) r 1 / 2 

J JQ i p 

z6ST 

» (z - z ' ) ( z - z* ) | z - z ' |~5dA] 

- [8 < |>( I ,x ) ] [v .K. .B ( s ( p ) ] " 1 / 2 , (z - z ' ) | z - z ' l 3dA 
nT' ' - J L j j i p mp^ ' J z e s * p p ' 1 - - I 

- 'y«j - .; v" , )""V'c , ,>" , / 8 

x f „ (z - z ' ) ( z - z ' ) | z - z ' l " 5 d A ] } . (C.2 .36) 
Jz6S* p p q q ' - - ' 

* With the aid of (C.2.19) and using the fact that \).(z.-z\) has a constant x i l l 
value for a l l ^GS_, i t i s c lear t h a t the f i r s t surface i n t e g r a l on the 
r igh t -hand s ide (C.2.36) can be w r i t t e n as 

[ * i s - z - r 3 dA = [v*(z - z ' ) ] " 1 n * ( z ' ) . (C.2.37) tn m m -
zbi>„ 

Fur the r , from (C.2.27) and (C .2 .29) , i t follows d i r e c t l y t ha t for the 
t h i r d surface i n t e g r a l on the r igh t -hand s ide of (C.2.36) we have 

1 6 S
T 

* (zp - z ' ) | z - z - r 3 d A - - I j = 1 e p l n T*(J )v*AL3(J , z ' ) ♦ v Y ( z ' ) . 

(C.2.38) 
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where AL3(J,^ ' ) i s defined in (C .2 .34 ) . C lea r ly , t h i s leaves only the 
second and the l a s t surface i n t e g r a l on the r igh t -hand s ide of (0 .2 .3^) 
to be evaluated. To t h i s end we f i r s t observe the following r e l a t i o n 

3(z - z ' ) ( z - z ' ) | z - z ' l " 5 

* * i i - 1 * * I i - 1 = E . „ . v 3 e. v 8 z - z ' + V.E, , v 3 e. 3 z - z ' lmk m z, lnq n z •— — ' q Irak m z, lnp z ' — — ■ k M p k n 

+ v*v*3 3 |z - z ' l - 1 + 6 |z - z ' l " 3 , (C.2.39) 
p q zk z k ' - - I pq 1 - - ' 

which can be e a s i l y v e r i f i e d with the a id of the i d e n t i t y (C.1.8) and 
upon carrying out the r e l evan t d i f f e r e n t i a t i o n s . Now, upon i n t e g r a t i n g 
(C.2.39) on both s i d e s over the t r i a n g l e S - and using Stokes ' theorem in 
the f i r s t and second r e s u l t i n g surface i n t e g r a l on the r igh t -hand s i d e , 
we have 

, (z - z ' ) ( z - z ' ) | z - z' |~5dA 
zes! p P i q ' - - ' 

* i i - 3 
, e . v (z - z ' ) z - z ' Jds 

'zSC l l n q n P P '~ " ' 
- T 
* * i i - 3 - v * T , E , (z - z ' ) z - z ' ds q J ^ » 1 lnp n n I - - I 

+ v*v* . 3 3 |z - z ' l " 1 d A + 6 „ Iz - z ' l " 3 d A . (C.2 .40) 

* * * 
Now, taking in to account t h a t C_ i s the union of the edges {C„(1),C ( 2 ) , 
CT(3))i and using the fac t t h a t ^ z ' , i t i s with the fu r the r a id of 
(C.2.37) e a s i l y v e r i f i e d t h a t (C.2.40) can be wr i t t en as 

3 f , (z - z ' ) ( z - z ' ) | z - z'|""5dA 
* 'zesT 

p P q q 
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" £-1 W > V % < J * , ) " v$-1A L 6p ( J* , ) 

+ 6 p q [ v n ( z n " z n ) ] B < £ ' > ' (C.2.41) 

where AL5 (J,z_') and AL6 ( J , z / ) a r e defined by 

AL5 p ( J , z ' ) = j » (z - z ' ) | z - z ' | " 3 d s 
z6C*(J) P P '~ " 

(C.2.42) 

and 

AL6 ( J , z ' ) 
P -

* 

z6C*T(J) P l n l 
z ' ) z - z' n '— - ' d s . (C.2.43) 

r e s p e c t i v e l y . Upon comparing the s t r u c t u r e of AL6 ( J , ^ ' ) with the one of 
L6 (.l,J,x') in (C.1 .32) , i t i s c l ea r t ha t if in (C. 1.32) <|>(I,x) i s 
rep laced by u n i t y , t h e i r s t r u c t u r e s a re the same. Hence, in the a n a l y t i c 
eva lua t ion of AL6 (J,z^') we can employ the r e s u l t s obtained for 
L6 (I,J,x_'), where in the r e s u l t i n g express ions we use the inverse 
t ransformat ion (C.2.11) in order t o obtain them in terms of geometrical 
q u a n t i t i e s r e f e r r i n g t o the o r i g i n a l {x. , x ? , x , } coordinate system. Since 

the s t r u c t u r e of AL5 (J,z^') d i f f e r s from ones we have seen so fa r , t h i s 
i n t e g r a l i s evaluated a n a l y t i c a l l y in the next subsec t ion . F ina l l y , upon 
using (C .2 .37 ) , (C .2 .38) , (C.2.39) and (C.2.41) in (C.2 .36) , i t follows 

f 
that I G . C I . J C ' ) can be expressed as 

I G ^ ( I . x ' ) = ( lJT,r 1 A 1 / 2 (A/A*)(4 , ( I ,x ' ) [ - v j K j . [ v * ( z k - zj.) ] " 1 fl*(z ' ) 

' J B J q ( . ( q ) r , / 2 B l p ( . ( p ) r 1 / 2 ( z J
3 . i e q l n T ; ( j ) v > W p ( J . z . 

+ ^ 3 J = I A L 6
P

( J ^ ' ) - W V z n - ^ r V u - j ; 

+ [ 3 m * ( I , x ) ] [ v J K . . 6 r n p ( s ( P ) r 1 / 2 
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x ^J=1 £ pln T l ( J ) v n A L 3 ( J , ^' ) " V ( ^' ) ' "Pi 

- v . ( x . - x ' . ) B ( 3 { P > r 1 / 2 B . ( S ( P ) ) " 1 / 2 

J J J mpv ; M iq l -1 

x (Y3 , e n T, (J)v AL5 ( J , z ' ) + v £3 . AL6 ( J , z ' ) ^ J=1 qln 1 n p '— qLJ=1 p — 

- 6 [v*(z - z ' ) ] ~ V ( z ' ) ) ] l . (C.2.41J) 
pq n n n — ' J 

f 
To obtain the express ion for IG.(I,x_') in terms of q u a n t i t i e s r e f e r r i n g 

to the o r i g i n a l {x ,x ,x ,} coord ina te system we apply again (C.2.11) t o 
* ] ^ *J 

the q u a n t i t i e s x ( J ) , v , ( z . - z ! ) and t h e i r combinations. With t h i s and 
1 n i^ 1 

the fu r the r expressions for Q , AL3, AL5 and AL6 in terms of elementary 

funct ions in the { x . , x ? , x , } coordinate system, the eva lua t ion of (C.1.4) 

has been completed. 

C.2.2. EVALUATION OF THE LINE INTEGRALS 

In the present subsect ion the l i n e i n t e g r a l s ALM (J , JC ' ) and AL5 ( I , J , x ' ) ( 

defined by (C.2.35) and (C.2 .42) , r e s p e c t i v e l y , are evaluated 

a n a l y t i c a l l y s ince t h e i r s t r u c t u r e s do not d i r e c t l y comply with the ones 

discussed in Subsection C.1.2. They are expressed in terms of elementary 

ana ly t i c funct ions pe r t a in ing t o the o r i g i n a l {x . , x_ ,x ,} coord ina te 

system. 

In (C.2.35) and (C.2.42) we consider in the {z ,z_ ,z } coord ina t e 
* 1 2 3 

system the s t r a i g h t l i n e segment (edge) C_(J) with J 6 { 1 , 2 , 3 J . Similar t o 
the i s o t r o p i c case we introduce in t h i s coordinate system the v e c t o r i a l 
d i s tance from the point of observat ion with pos i t ion vector z! t o the 

x 
s t a r t i n g point of C (J) with p o s i t i o n vector z (J+1) as (cf. (C. l .3 1 ) ) ) 

p*(J+1) = z (J+1) - z! with J€{1 , 2 , 3 ) , (C.2.15) 
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and from the z'. to the end point of C (J) with position vector z.(J+2) as 
(cf. (C.1.35)) 

p.(J+2) = z.(J+2) - z* with J6{1,2,3). (C.2.46) 

In (C.2.45) and (C.2.46) the convention applies that p.(4)=p.(i), 
z.(4)=z (1), p.(5)=p.(2) and z (5)=z.(2). The corresponding length p (J) 
of p. (J) is given by 

P*(J) = [p*(J)p*(J)J1/2 with J6{1,2,3}. (C.2.47) 

Along C (J) we have (cf. Figure C.1) 

z. - z! = p.(J+1) + Aa*(J) with 0 < A <1 and J6{1,2,3}, (C.2.48) 

and 

ds(z) = a*(J)dA with J6{1,2,3). (C.2.49) 

where a.(J) is the vectorial length of C„(J) and a (J) its scalar length. 
With the aid of (C.2.45) - (C.2.49) the integrals AL4 (J,z_') and 
AL5 (J,z') yield (cf. (C.2.35)) 

AL4 (J,z') = a*(J)[p*(J+1)[ [D*(A)]~1dA + a*(J)( A[D*(A)] 1dA], 
'A=0 r JA=0 

(C.2.50) 

and (cf. (C.2.42)) 

AL5 (J,z') = a*(J)[p*(J+1)f [D*(A)]~3dA + a*(J) A[D*(A)] 3dA], 
P P JA=0 P JA=0 

(C.2.51) 

where (cf. (C.1.44)) 
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D*U) = [ p * ( J + 1 ) p * ( J + D + 2 A a * ( J ) p * ( J + 1 ) + A 2 a * ( J ) a * ( J ) ] 1 / 2 . ( C . 2 . 5 2 ) 

The i n t e g r a l s on t h e r i g h t - h a n d s i d e s of ( C . 2 . 5 0 ) and ( C . 2 . 5 1 ) a r e 

e l e m e n t a r y and have t h e same s t r u c t u r e as t h e o n e s i n ( C . 1 . ^ 5 ) , ( C . 1 . 4 6 ) , 

( C . 1 . t 8 ) and ( C . 1 . 4 9 ) . For c o m p l e t e n e s s , t h e e x p r e s s i o n s f o r ( C . 2 . 5 0 ) and 

( C . 2 . 5 2 ) a r e g i v e n e x p l i c i t l y i n t e r m s of t h e q u a n t i t i e s r e f e r r i n g t o t h e 

o r i g i n a l c o o r d i n a t e s y s t e m . Taking i n t o a c c o u n t t h e r e s u l t s of S u b s e c t i o n 

C . 1 . 2 and u t i l i z i n g t h e i n v e r s e t r a n s f o r m a t i o n ( C . 2 . 1 1 ) , i t can be 

v e r i f i e d t h a t t h e i n t e g r a l s on t h e r i g h t - h a n d s i d e s of ( C . 2 . 5 0 ) and 

( C . 2 . 5 1 ) a r e e x p r e s s i b l e as 

f1 * . A A ( J , x ' ) , 
[D U ) ] ~ ' d X = ( C . 2 . 5 3 ) 

JA=0 A A S ( J . x ' ) i f a . ( J ) R . .p .(J+1 ) = -Aa( J )Ap(J+1 ) 

and a . ( J ) R . . p . ( J + 2 ) = - A a ( J ) A p ( J + 2 ) , 

f A[D*(A)]" 1 d \ = [Aa ( J ) ]~ 2 [ .Ap( J+2 ) - Ap(J+1) 
JA=0 

- a . ( J ) R . . p . ( J + 1 ) [ [ D * ( A ) ] ~ 1 d A ] , ( C . 2 . 5 1 ) 
1 1 J J J A = 0 

1 A T ( J . x ' ) , 

[D*(A)]~3dA = A T S K J . x ' ) i f a . (J)H p . ( J + 1 ) - Aa(J) Ap( J+1) , 
X = 0 A T S 2 ( J , x ' ) i f a (J)R p . ( J + 1 ) = -Aa(J )Ap(J+1 ) , 

( C . 2 . 5 5 ) 

A A ( J . x ' ) , 

A[D (A)] 3dA - A A S 1 ( J , x ' ) i f a . ( J ) R p (J+1) = A a ( J ) A p ( J + 1 ) , 
A = 0 AAS2(J ,x ' ) i f a i ( J ) R . . p . ( J + 1 ) = - A a ( J ) A p ( J + 1 ) 

( C . 2 . 5 6 ) 

where A A ( J , x ' ) , A A S ( J , x ' ) , A T ( J , x ' ) , A T S 1 ( J , x ' ) , A T S 2 ( J , x ' ) , A A ( J . x ' ) , 

A A S 1 ( J , x ' ) , A A S 2 ( J , x ' ) , Aa(J) and Ap(J) a r e d e f i n e d by 
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-1 . A A ( J , x ' ) = [ A a ( J ) ] I n 

A A S ( J . x ' ) = [ A a ( J ) ] " 1 l n | ' - J e [ ^ 

a . ( J ) R . . p . ( J + 2 ) + Aa(J )Ap(J+2) 

a . ( J ) R . . p . ( J + 1 ) + A a ( J ) A p ( J + D (C.2.57) 

(C.2.58) 

A T ( J . x ' ) = [ A E ( J , x ' ) ] -1 | " a i ( J ) R i / j ( J + 2 ) 

L Ap(J+2T 
a . ( J ) R . . p . ( J+1 ) 

~"Ap7j+1)"~~ 
( C . 2 . 5 9 ) 

A T S K J . x ' ) = [ 2 A a ( J ) ] 1 {[Ap( J+1 ) ] ~ 2 - [ A p ( J + 2 ) ] 2 \ , 

A T S 2 ( J , x ' ) = [ 2 A a ( J ) ] " 1 ( [ A p ( J + 2 ) ] 2 - [ A p ( J + 1 ) ] ~ 2 } , 

A A ( J . x ' ) = [ A E ( J , x ' ) ] ~ Ap(J+1) 
p . ( J + 1 ) R l j P j ( J + 2 ) 

Ap(J+2) -]■ 
A A S K J . x ' ) = ( 1 / 2 ) [ A a ( J ) ] 2 { [ A p ( J + 1 ) ] 1 

( C . 2 . 6 0 ) 

( C . 2 . 6 1 ) 

(C.2.62) 

[2Aa(J ) + A p ( J + 1 ) ] [ A p ( J + 2 ) ] f, ( C . 2 . 6 3 ) 

A A S 2 ( J , x ' ) = ( 1 / 2 ) [ A a ( J ) ] 2 { [ A p ( J + 1 ) ] 1 

Aa(J ) = [ a . ( J ) R . . a . ( J ) ] , 

[Ap(J+2) - 2 A a ( J ) ] [ A p ( J + 2 ) ] }, 

,1/2 

( C . 2 . 6 4 ) 

( C . 2 . 6 5 ) 

and 

Ap(J) = [ p . ( J ) R . J p j ( J ) ] 1 / 2 , (C.2.66) 

and where A H ( J , x ' ) i s d e f i n e d by 

A 5 ( J , x ' ) - [ A a ( J ) A p ( J + 1 ) ] 2 - [ a . ( J ) R . j P j ( J + 1 ) ] 2 , (C.2.67) 
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With the aid of these s tandard i n t e g r a l s the f ina l express ions for the 
l i n e i n t e g r a l s ALU ( J , x ' ) and AL5 ( J , x ' ) a r e obtained as (cf . (C .2 .11) , 
(C.1.31) and (C.1.35)) 

ALU ( J . z ' ) = Aa ( J ) ( s ( p ) ) 1 / 2 Bp^{p q ( J+1 )AA(J ,x ' ) + a (J) [Aa(J) ] " 2 

x [Ap(J+2) - Ap(J+1) - am (J)Rm np n (J+1)AA(J,x ' ) ]} 
(C.2.68) 

and 

AL5 ( J . z ' ) - A a ( J ) ( s ( p ) ) 1 / 2 6 p ^ [ p q ( J + D T ( J , x ' ) + a (J)AA(J.x ' ) ] , 
(C.2.69) 

respectively, where AA(J,x.') is to be replaced by AAS(J,x/) if either 
a.(J)R. .p.(J+1) = -Aa(J)Ap(J+1) or a.(J)R. .p . (J+2) = -Aa(J)Ap(J+2), 
AT(J,x_') by ATS1(J,x') and AA(J,x_') by AAS1(J,x') if a. (J)R . .p .(J+1 ) -
Aa(J)Ap(J+1), and, finally, AT(J.x') by ATS2(J,x') and AA(J,x') by 
AAS2(J,x') if a.(J)R. .p .(J+1) = -Aa(J)Ap(J+1). With this, the analytic 
evaluation of the line integrals ALi|p(J,x/) and AL5p(J,x') has been 
completed. 
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SAMENVATTING 

In d i t p roe f sch r i f t wordt onderzoek v e r r i c h t aan het berekenen van 
dr iedimensionale s t a t i o n a i r e grondwaterstromingsproblemen met behulp van 
de r andin tegraa l vergel i jkingsmethode. 

Grondwater s p e e l t een be langr i jke ro l in veel problemen die met het 
i ng r i jpen van de mens op z i jn omgeving verband houden. Als voorbeeld 
wordt genoemd het ontwerpen en r e a l i s e r e n van a l l e r l e i c i v i e l t e c h n i s c h e 
cons t ruc t i e s zoals d i jken, dammen, wegen, funderingen en d e r g e l i j k e , 
waarbij de grond a l s cons t ruc t ie -e lement wordt gebru ik t . Ook b i j het 
beheer van ondergrondse wa te r rese rvo i r s ten d i ens t e van de dr inkwater­
voorziening en/of voor agrar i sche doeleinden i s kennis omtrent de 
stroming van het grondwater onon tbee r l i j k . 

In het algemeen i s het doel van ieder onderzoek aan de stroming van 
grondwater het verkr i jgen van i nz i ch t in het gemiddelde, zogenaamde 
macroscopische, gedrag van die stroming in een bepaald gedee l te van de 
ondergrond. Oplossingen voor d i t soo r t problemen z i j n in het algemeen 
gebaseerd op het beginsel van het behoud van massa en op g e n e r a l i s a t i e s 
van een experimenteel opgestelde bewegingsvergel i jk ing: de wet van Darcy. 
Alhoewel met deze wet vele p rak t i sche grondwaterstromingsproblemen kunnen 
worden opge los t , b e s t a a t de behoefte aan een meer t h e o r e t i s c h e ondergrond 
ervoor. In het e e r s t e gedeel te van d i t p r o e f s c h r i f t i s daar toe onderzocht 
op welke wijze de macroscopische bewegingsvergel i jking voor de stroming 
van grondwater kan worden afgele id u i t de fundamentele wetten van de 
vloei stofmechanica, wanneer deze wetten worden toegepast op het poreuze 
medium dat a l s model voor de met water verzadigde ondergrond d i en t . De 
overweging d ie h i e r i n wordt gevolgd i s , dat de macroscopische 
verge l i jk ingen worden verkregen door het r u i m t e l i j k middelen van de 
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basisvergelijkingen op de schaal van de afmetingen van de poriën, de 
zogenaamde microscopische schaal. Dit middelen vindt plaats over een 
zogenaamd representatief elementair middelingsgebied. De macroscopische 
basisvergelijkingen die op deze wijze worden verkregen - een 
macroscopische continuïteitsvergelijking en een generaliseerde vorm van 
de wet van Darcy - worden vervolgens aangevuld met (macroscopische) 
randvoorwaarden en tenslotte gebruikt om stationaire grondwaterstromings-
problemen te formuleren als (mathematische) randwaardeproblemen. 

Als methode van oplossing van deze randwaardeproblemen is gekozen 
voor het gebruik van randintegraalvergelijkingen. De randintegraal-
vergelij kingen volgen uit geschikte integraal voorstellingen voor de 
fundamentele stromingsgrootheden, te weten de macroscopische druk en de 
macroscopische stromingssnelheid; zij drukken deze grootheden uit in 
gerelateerde grootheden op het randoppervlak van de van belang zijnde 
stromingsconfiguratie. Op hun beurt worden de integraal voorstellingen 
verkregen uit een reciprociteitsrelatie. Deze reciprociteitsrelatie wordt 
uit de basisvergelijkingen afgeleid en legt op een bepaalde wijze een 
verband tussen de grootheden optredende in twee mogelijke, doch onderling 
verschillende, grondwaterstromingstoestanden. De ene stromingstoestand 
wordt geïdentificeerd met de werkelijke stromingstoestand van het 
grondwater, terwijl voor de andere toestand geschikte "hulptoestanden" 
worden gekozen. Voor deze laatste worden zogenaamde Greense toestanden 
gekozen, die achtereenvolgens behoren bij een injectiepuntbron en een 
mechanische puntkracht. Dit proces leidt tot de gewenste 
integraal voorstellingen. Alle bevatten zij singuliere kernfuncties van 
het Greense type. Zodra deze laatste bekend zijn, worden de verschillende 
randintegraal vergelijkingsformuleringen verkregen door in de 
integraalvoorstellingen het waarnemingspunt op het randoppervlak van de 
stromingsconfiguratie te kiezen. Aangezien in het algemeen alleen voor 
onbegrensde, homogene en reciproke media de Greense kernfuncties 
expliciet kunnen worden bepaald, worden de randintegraal vergelijkingen in 
praktische toepassingen alleen gebruikt voor stuksgewijs homogene en 
anisotrope, doch reciproke, media. 
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Vervolgens worden de r and in t eg raa lve rge l i j k ingen numeriek opge los t . 
Hier toe i s een eenvoudige en e f f i c i ë n t e methode ontwikkeld. De 
ontwikkelde methode i s ge t e s t op een aanta l eenvoudige i s o t r o p e en 
an i so t rope , doch r ec ip roke , s t romingsconf igu ra t i e s . Opgemerkt wordt, dat 
de ingewikkeldheid van in de p r a k t i j k t e behandelen c o n f i g u r a t i e s s l e ch t s 
wordt beperkt door de geheugencapaci te i t en de sne lhe id van de 
beschikbare rekenmachine. 

Hieronder volgt een wat meer g e d e t a i l l e e r d e samenvatt ing van de 
ve r sch i l l ende hoofdstukken. 

In Hoofdstuk 2 wordt een overz icht gegeven van de b a s i s v e r g e l i j k i n g e n 
voor de isotherme stroming van viskeuze v loe i s to f f en . Bij beschouwing van 
de stroming van grondwater a l s de stroming van water door een poreus 
medium beschr i jven deze vergel i jk ingen de stroming op de schaal van de 
afmetingen van de poriën (de microscopische s c h a a l ) . Er wordt aangetoond, 
dat voor veel p rak t i s che s i t u a t i e s de samendrukbaarheid van de v loe i s to f 
met voldoende nauwkeurigheid kan worden verwaarloosd en dat de 
n i e t - s t a t i o n a i r e en n i e t - l i n e a i r e bewegingsvergeli jking eveneens met 
voldoende nauwkeurigheid door een s t a t i o n a i r e en l i n e a i r e v e r g e l i j k i n g 
kan worden benaderd. 

Met de vereenvoudigde microscopische bas i sve rge l i jk ingen u i t 
Hoofdstuk 2 a l s uitgangspunt worden in Hoofdstuk 3 de macroscopische 
bas i sve rge l i jk ingen voor de s t a t i o n a i r e stroming van grondwater a fge l e id . 
Hier toe wordt middeling over het r e p r e s e n t a t i v e e lementai re 
middelingsgebied u i tgevoerd . De uitdrukkingen d ie na d i t "volume-
middelen" worden verkregen, hebben a l l e een goed gedef in iee rde fys i sche 
be tekenis en kunnen op een eenvoudige wijze worden g e r e l a t e e r d aan de 
macroscopische stromingsgrootheden die in de p r a k t i j k van belang z i j n . 

In Hoofdstuk 4 worden de i n t e g r a a l voor s t e l l i ngen voor de druk en de 
s t romingssnelheid van het grondwater a fge le id . Er wordt een overz ich t 
gegeven van de ve rsch i l l ende r and in teg raa l vergel i jk ingsformuler ingen die 
u i t déze i n t e g r a a l voors te l l ingen volgen. Tevens worden de Greense 
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func t i e s voor een onbegrensd homogeen en an i so t roop , doch rec iprook, 
medium bepaald. 

In'Hoofdstuk 5 wordt een numerieke methode besproken waarmee de 
verkregen r and in t eg raa lve rge l i j k ingen kunnen worden opgelos t . Deze 
methode berus t op het benaderen van het betreffende randoppervlak door 
een e indig aanta l vlakke dr iehoekige elementen. Vervolgens worden op 
ieder element de druk en de normale component van de s t romingssnelheid 
ontwikkeld in polynomen van de graad èèn. Hierna wordt op de 
g e d i s c r e t i s e e r d e r and in teg raa lve rge l i jk ingen de col locat iemethode ("point 
matching") toegepas t . Eën en ander r e s u l t e e r t i n een (e indig) s t e l s e l 
l i n e a i r e , a lgebra ïsche ve rge l i jk ingen , dat v ia een d i r e c t e methode wordt 
opge los t . In de d i s c r e t i s a t i e p r o c e d u r e worden a l l e oppe rv lak te - in t eg ra l en 
over de vlakke dr iehoekige elementen ana ly t i sch bepaald. 

Om de ontwikkelde programmatuur t e t e s t e n , worden in Hoofdstuk 6 een 
aan ta l numerieke experimenten ui tgevoerd. Eenvoudige tes ts t romingen in 
met homogene, i s o t r o p e en an i so t rope , doch r ec ip roke , media gevulde 
rechthoekige blokken worden behandeld. Voor die tes ts t romingen waarvan de 
druk en de s t romingssnelheid 'exact door polynomen van ten hoogste de 
graad èèn kunnen worden weergegeven, b l i j ken de r e s u l t a t e n exact t e z i jn 
in het aan ta l c i j f e r s dat b i j de r e p r e s e n t a t i e van de g e t a l l e n in het 
rekenmachineprogramma i s gebru ik t . Voor algemenere con f igu ra t i e s hangt de 
nauwkeurigheid af van de gebruikte verdel ing van het randoppervlak in 
vlakke dr iehoekige elementen. 

Het ontwikkelde programma kan dienen a l s bestanddeel b i j het 
analyseren van n i e t - s t a t i o n a i r e grondwaterstromingsproblemen 
(bi jvoorbeeld het bepalen van het bewegende grensvlak tussen zoet en zout 
grondwater, a l s gevolg van het toevoegen of onttrekken van w a t e r ) . 

Al le ontwikkelde programmatuur i s geschreven in For t ran 77 en 
geïmplementeerd op een IBM PC/AT. 
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