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Introduction

The United Nations Humanitarian Air Service (UNHAS) is a branch of the World Food Programme
(WFP) aviation department and currently the largest humanitarian air operator in the world. With
a fleet of 90 aircraft and helicopters in 2019, UNHAS can be compared to a large commercial airline
with the exception that it does not strive to maximise profit, but to accomplish it’s humanitarian
mandate: "to provide safe, reliable, cost-efficient and effective passenger and light cargo transport
for the humanitarian community". This contrast makes it difficult for UNHAS to use the traditional
optimisation models developed for commercial airlines and their planning cycle. Currently, predominant
planning stages such as network design, fleet planning and aircraft routing and scheduling are created
from experience and most often manually, with little decision support tools available. UNHAS has
much to gain in developing mathematical optimisation models, tailored to the unique requirements
of humanitarian stakeholders, which can help improve its air operations and processes. This study
fits within a larger research framework made up of 4 main pillars with the overall objective to improve
humanitarian air operations and create data driven decision support tools for humanitarian air operators
and their users. The 4 pillars are:

1. Humanitarian Value Quantification

2. Humanitarian Air Operations Value Optimisation

3. Humanitarian Fleet Optimisation

4. Humanitarian Flight Routing and Scheduling Optimisation

While humanitarian daily flight routing and scheduling optimisation has already been explored by 2
previous research papers from authors S.P. Niemansburg (2019) and Y. Mekking (2020), the research
presented in this report will take a step back and investigate fleet planning and weekly flight scheduling
[43][45]. In consultation with UNHAS expert flight planners and the 2019 French Cour des Comptes au-
dit of WFP aviation and UNHAS, the following main shortcomings have been identified [14]. Firstly, no
optimisation model exists to help WFP contracting officers in selecting the best air assets for a mission,
nor to preemptively analyse the effects of fleeting decisions on aircraft routing and scheduling, network
design and operational costs. Secondly, UNHAS manually creates weekly preliminary flight schedules
which drive the humanitarian booking requests without the use of decision support tools to optimise
aircraft routing. There is therefore an opportunity for UNHAS to create mathematical optimisation
models which can help improve it’s fleet planning and weekly scheduling processes. This is expected
to increase the effectiveness (demand satisfaction) and efficiency (costs minimisation) of it’s overall air
operations. Implementing such a decision support tool would help UNHAS and other humanitarian air
operators to decrease their aircraft operational and contracting costs while increasing user satisfaction
by providing a fleet more adapted to humanitarian missions. This would also benefit all stakeholders
by increasing the accountability on the decisions taken by contracting officers and flight planners and
on operational performance, an important consideration when reporting back to donors, stakeholders
and the wider humanitarian community.

This thesis report is organized as follows. In Part I, the scientific paper is presented. Part II contains
the Literature Study carried out at the start of the project which explored the background, context
and technical aspects related to the problem at hand. Finally, in Part III, additional supporting work
is presented.

xi
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Humanitarian Fleet Planning and Weekly Scheduling Optimisation

Thomas Billet ∗, P.C. Roling †, W-J.C.D Van Goethem ‡, S.P. Niemansburg

Delft University of Technology, Delft, The Netherlands

Abstract

Fleet planning is a complex problem which consists of selecting an optimal fleet of vehicles at the right mo-
ment in time to serve a specific demand while subject to different operational constraints. While Operations
Research (OR) has mainly focused on long-term strategical fleet planning optimisation, certain operators
such as humanitarian air services must make shorter-term decisions due to their operating environments and
mission specifications. This research proposes a novel methodology for combining fleet planning and flight
scheduling on a tactical time frame, weeks to months, using the United Nations Humanitarian Service’s
(UNHAS) South Sudan mission as a case study. The scientific approach consists of using two different lin-
ear programming models sequentially to divide the decision making process and reduce the computational
complexity of the problem at hand. A multi-commodity network flow model is first used to size an initial
fleet and investigate the transshipment of passengers throughout a network. The outputs are then used
by a Fleet Size and Mix Vehicle Routing Problem (FSMVRP) model to further increase the accuracy of
vehicle routes and passenger operations. The main results show that the methodology proposed can reduce
the weekly routing costs by 40% compared to expert flight planners who schedule and route humanitarian
requests on a daily basis, and reduce the fleet size by 60% from 14 air assets to 6. The research demon-
strates that the developed optimisation framework can effectively be used as a decision support tool for both
aircraft contracting, and flight routing and scheduling with the main objective to increase the efficiency and
effectiveness of humanitarian air operations.

1 Introduction

Logistics and transportation have a direct impact on the effectiveness and efficiency of humanitarian missions,
amounting to the second largest expenditure for international humanitarian organisations (Van Wassenhove and
Pedraza Martinez, 2012). However, Operations Research (OR) is rarely applied in the Humanitarian sector,
mostly due to the unpredictable, last-minute and dangerous aspects of its operations. With humanitarian crises
on the rise and funding for humanitarian operations stagnating, there is an increasing need for improvements in
effectiveness (demand satisfaction) and efficiency (cost minimisation) of humanitarian air operations (OCHA,
2019). In 2019, the United Nations Humanitarian Air Service (UNHAS) transported approximately 412, 000
passengers to and from areas affected by crises. In South Sudan alone, UNHAS operated its biggest fleet with 10
passenger aircraft and 4 helicopters (WFP, 2019). Despite this, most planning processes from fleet planning to
the creation of weekly flight schedules and daily routings are still created manually based on previous missions
and UNHAS staff experience. There is an opportunity for UNHAS and other humanitarian operators to imple-
ment more data-driven decision support tools which could help in improving the effectiveness and efficiency of
their overall air operations and planning processes.

Fleet planning is a common problem addressed in industry and academia for all transportation modes. It
consists of selecting an optimal fleet of vehicles by addressing the following three questions (1) Which type of
vehicle should I buy? (2) how many of each do I need? and (3) When should I acquire them? Multi-Commodity
Network Flow (MCNF) models and general Mixed-Integer Linear Programming (MILP) formulations are most
commonly used to solve this class of optimisation problems (Díaz-Parra et al., 2014; Hoff et al., 2010). However,
most applications of fleet planning and weekly scheduling models focus on multi-year strategical time horizons.
The types of decisions and the level of detail incorporated are limited by a significant amount of uncertainty
such as demand fluctuations, evolution of the aviation industry and the availability of newer, more efficient
aircraft. This paper proposes a novel methodology to approach fleet planning and scheduling for humanitar-
ian missions on a shorter tactical time-frame, from weeks to months. The difficulty lies in incorporating the

∗Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
†Aerospace Engineering Faculty, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands; p.c.roling@

tudelft.nl
‡Aviation Decision Sciences; wj@goethem.be
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amount of detail necessary to simulate weekly humanitarian air operations and fleeting decisions, while keeping
the size of the optimisation problem solvable in a reasonable amount of time. The decision making process is
divided into two stages. A MCNF model is first created to investigate the network effects and transshipment of
passengers for humanitarian missions. The outputs are then used in a FSMVRP model to further increase the
accuracy of the routing, scheduling and fleet sizing decisions. The objective of the research lies in contributing
to the improved accountability and optimisation of the humanitarian planning cycle by creating a fleet sizing
and weekly flight scheduling decision support tool which can help flight planners increase the efficiency and
effectiveness of humanitarian air operation on a tactical time-frame.

The research paper is structured as followed: Section 2 will cover humanitarian air operations, fleet planning in
literature and the main motivation for the research. This is followed by Section 3 which contains the scientific
approach and the mathematical formulations used for the study. The results of the South Sudan UNHAS
mission case study are then presented in Section 4, followed by Section 5 which covers the verification and
validation of the models and a discussion of the results. Finally, Section 6 closes the report by summarising the
main conclusions and recommendations for future research.

2 Literature Review

2.1 UNHAS and humanitarian air operations

The World Food Programme (WFP) is the largest humanitarian organization in the world actively fighting
malnutrition and undernourishment. WFP aviation plays a crucial role in this mission, facilitating access to
remote areas not accessible by other means of transport. UNHAS is the branch of the WFP aviation service
focusing exclusively on passenger and light cargo transport. Their goal is to provide “safe, efficient, respon-

sive, and cost-effective” air transport for the wider humanitarian community (WFP, 2020). This mandate
and the context in which UNHAS operates sets it apart from the traditional commercial airlines. Minimiz-
ing costs and maximizing demand satisfaction is substituted to profit maximisation. Instead of the seasonal
cycles, humanitarian crises lead to unexpected demand peaks, requiring air operators to be flexible and able
to adapt rapidly to different operating environments. Humanitarian fleets are consequently mostly operated
under monthly wet lease contracts in comparison with traditional airlines which purchase their fleets years in
advance. The planning cycle for humanitarian operations also takes place on a much shorter time-frame than
its commercial counterpart, with aircraft contracting happening a few weeks to 3 months before the deployment
of an air asset. Choosing the best vehicles to serve a specific demand and network therefore becomes a crucial
decision which directly impacts the effectiveness and efficiency of weekly and daily air trasnport operations. In
2019, the average load factor on a UNHAS flight leg was 50% compared to 82.5% for commercial airlines (IATA
(2020) ; Cour des Comptes France (2019)). The same sources reveal that the cost per passenger per km are on
average 1.40 USD for WFP aviation, considerably expensive compared to 0.13 USD for other commercial airlines.

In 2019, the French Cour des Comptes audited WFP aviation and UNHAS, revealing several shortcomings and
processes in need of improvement (Cour des Comptes France, 2019). The audit document states that requests
for UNHAS services have risen in the years 2017 to 2019. The number of countries in which UNHAS operates
has risen by a factor 4, and passengers transported by 26.4%, implying that there is an increasing need for its
services. This contrasts with the fact that the WFP aviation’s contracted fleet is ageing. In a fleet made up
of 90 air assets, the production for 6 of the aircraft types used has been discontinued (accounting for 45% of
all chartered air assets, put in service circa 1980’s). This implies that UNHAS will need to re-evaluate their
fleet capabilities in the near future. UNHAS has access to backward looking data driven decision support tools
such as the Performance Monitoring Tool (PMT) which helps in evaluating the impact on the effectiveness and
efficiency of historical fleet / scheduling decisions. However to our knowledge, it has limited if any forward
looking decision support power to proactively improve future aircraft contracting and scheduling decisions. The
auditors also observed that contract durations are poorly justified. Aircraft are contracted under Minimum
Guaranteed Hours (MGH) agreements representing the amount of block hours that are expected to be flown
by an asset at the corresponding monthly leasing price. These are often miscalculated, leading to higher costs
due to an underestimation or overestimation of hours to be flown. Specifically to the case of South Sudan, two
of the contracted aircraft flew 19% and 35% less than their originally agreed MGH (Cour des Comptes France,
2019).

2.2 Fleet planning and weekly scheduling

Mathematical programming is an optimisation technique which attempts to translate complex real-world prob-
lems into mathematical formulations. In order to analyse fleet planning and weekly scheduling for UNHAS,
it is essential to translate the service, the humanitarian context and its users into a model that can simulate
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accurately real-world operations. Fleet planning is an optimisation problem commonly addressed in the trans-
port industry and in Operations Research (OR) (Bielli et al., 2011). It consists of selecting an optimal fleet
for an operator/mission by choosing the best type and corresponding amount of vehicles needed to satisfy a
number of requirements, and the timing of their acquisition. Although this study focuses on aircraft fleets,
many parallels exist between the fleet planning of different transportation modes, from road and rail to mar-
itime and air (Baykasoğlu et al., 2018). Fleet planning has a significant impact on most of the decisions taken
further down the planning cycle and therefore is usually combined with other processes in order to increase the
consistency and reliability of its output. A common approach is to combine fleet planning with the design of
transportation networks. A scenario similar to the “who came first, the chicken or the egg? ” dilemma, deciding
which routes to operate and assigning them a service frequency depends on the type of fleet available, and
vice-versa. The modelling of such networks can be achieved through the use of Minimum Cost Flow Problem
(MCFP) formulations, usually combined with a route-frequency dependent term. The general objective lies in
designing an optimal network and aircraft routing policy which minimizes costs and maximises demand satisfac-
tion, given an Origin-Destination (OD) demand matrix and operational constraints. Crainic (2000) presents a
review on tactical freight transportation and service network design where the author classifies existing models
based on their functionality instead of the transportation mode, providing a more comprehensive view on their
applications. Marsten and Muller (1980) created a deterministic MILP model in the form of a minimum cost
network flow problem for air cargo fleet planning while Jaillet et al. (1996) tackle a capacitated network design
problem for airlines and draw parallels with existing Hub Location Problems (HLP). The formulation uses frac-
tional flows as decision variables to represent direct or transfer passengers and correlates them to aircraft flows.
Similarly, Sa et al. (2019) formulate an integer linear programming optimisation model using fractional flows to
simulate passenger transfers at hubs. They combine fleet planning and quantitative demand forecasting by first
using an econometric model and Monte Carlo simulations to reproduce demand fluctuations over time. The
results are used as inputs to their optimisation model which allocates aircraft types and corresponding flight fre-
quencies to OD pairs with the objective to maximize the overall profit of an airline and satisfy the total demand.

While the aforementioned authors approached fleet planning decisions on a strategical (long-term) time horizon,
the humanitarian aviation planning cycle happens on a much shorter time frame. Since aircraft contracting
typically happens weeks to 3 month before flight departure, much more information is available to help WFP
decision makers in choosing the most suited air assets for a mission. Aspects such as vehicle routing and pas-
senger pick-up and deliveries should therefore also be taken into account, a consideration which is difficult to
implement in long term fleet planning and network design models due to high levels of uncertainty in predicting
future demand. Fleet planning models combined with routing formulations are therefore mainly used in tactical
and operational time-horizons to simultaneously size an optimal fleet and find an optimal set of routes, while
satisfying a number of supply, demand and operational constraints. Hoff et al. (2010) presents an extensive
literature review on fleet composition and routing problems in maritime and road transport. He chooses the
Fleet Size and Mix Vehicle Routing Problem (FSMVRP) as the most representative mathematical formulation
for this class of problem. First introduced by Golden et al. (1984), the FSMVRP differs from the Heterogeneous
Fleet VRP by considering an unlimited number of vehicles with fixed acquisition costs, as opposed to a fixed
fleet. Hoff et al. (2010) state in their review that out of 95 papers analysed, over 50% of the FSMVRP do not
target a specific transportation mode. This highlights the fact that this mathematical formulation is flexible
and can be adapted to a humanitarian airline routing problem. More recently, Koç et al. (2014) solved the FSM
pollution-routing problem, a VRP which combines CO2 emissions and vehicle acquisition. Hiermann et al.
(2016) combine FSMVRP and time windows with recharging stations for electric vehicles. Pasha et al. (2016)
tackle the Multi-period FSMVRP and develop a heuristic which allows to determine an optimal fleet for two
different periods with stochastic demand.

The FSMVRP is an extension of the VRP, an NP hard, combinatorial optimisation problem extensively covered
in OR. They are a generalisation of the Travelling Salesman Problem (TSP), but with multiple vehicles and
capacity constraints. Eksioglu et al. (2009) provide a state-of-the-art taxonomic review of VRP problems and
their applications for different transportation modes. VRP’s have previously been used to tackle humanitarian
routing problems. Two research papers have explored humanitarian passenger flight routing and scheduling
for the South Sudan UNHAS mission. Niemansburg (2019) created the Humanitarian Flight Optimization
Model (HFOM), an adaptation of the heterogeneous pickup and delivery problem with time windows. The
problem is formulated as a three-index MILP model with objective to minimize the sum of the routing costs
and maximize demand satisfaction. The HFOM is able to produce routings with reduced costs between 2.2%
and 7.8% compared to expert planners, and up to 5 times faster. Building upon this, Mekking (2020) extends
the HFOM by modifying the node generation and allocation formulation in order to reduce the problem size.
Another significant addition lies in the calculation of MGH which are an important consideration for UNHAS
monthly operations. The author investigates how to distribute the aircraft utilisation and routing amongst each
asset over a month to best match the MGH contracted. The model achieves up to 10.5% in cost savings when
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compared to expert flight planner solutions and improved passenger request satisfactions by 1.2%. Both papers
do not consider fleeting decisions or weekly routing in their formulations.

2.3 Literature gap and motivation for research

The humanitarian sector is in a need of more data-driven decision support tools in order to help optimise
aviation planning processes. With a shorter planning horizon for humanitarian missions, there is a greater
opportunity to evaluate how different steps of the planning process impact each other. As aircraft contracting
happens from several weeks to 3 months prior to the deployment of an air asset, choosing the best fleet to
serve the humanitarian demand for a specific mission can lead to a immediate impact in effectiveness (demand
satisfaction) and efficiency (cost minimisation) of weekly and daily air operations. While Mekking (2020) and
Niemansburg (2019) investigated the optimisation of daily routing and scheduling of humanitarian air opera-
tions, it is important to take a step back and look at a longer time frame. A different paradigm is approached
where instead of optimising air operations on a daily basis, a detailed weekly schedule can be created to satisfy
the humanitarian demand for that week and size an aircraft fleet accordingly. Assuming the weekly humanitar-
ian flight requests do not vary significantly over a month, fixing a detailed weekly flight schedule would increase
the accountability and optimisation of air operations. This would in turn provide UNHAS contracting officers
valuable insight on the best air assets suited to a mission as well as corresponding future operational data (block
hours, MGH, load factors, fuel requirements etc.).

Fleet planning combined with network design models mostly tackle long-term time horizons and do not in-
corporate the level of detail needed to represent humanitarian passenger flows and operations. Considerations
such as correlating passenger flows with aircraft flows and modelling pick-up and delivery operations are of
utmost importance when building a weekly schedule for humanitarian operators. On the other hand, while
VRP formulations can incorporate such a high level of detail, they are NP hard. Large instances cannot be
solved in a reasonable amount of time without dividing the problem into smaller manageable ones, or through
the use of heuristics and meta-heuristics. For VRPs, the amount of variables and the size of the problem not
only depends on the amount of nodes, commodities and vehicles used, but also on the types of choices that
are enabled. For example, splitting passenger requests or the use of time windows. This research proposes the
combination of the aforementioned models in a sequential approach in order to reduce the amount of possible
decisions the FSMVRP model will need to incorporate, leading to savings in computational complexity and
time. The models will focus on a uni-modal, heterogeneous aircraft fleet with passengers as commodities.

The following questions are addressed in this research:

1. To what extent can a minimum-cost, multi-commodity network flow model simulate human-
itarian flight networks and passenger flows based on a forecasted demand and corresponding
origin and destination pairs?

2. Can such a model be combined with an FSMVRP model to further increase the accuracy
of aircraft routing and scheduling?

3. To what extent can this combination be used to simultaneously size an aircraft fleet and
determine a feasible weekly preliminary flight schedule for humanitarian air operations?

4. Can such a model be used as a decision support tool to help flight planners improve the
efficiency and effectiveness of humanitarian air operations and aircraft contracting?

3 Methodology

3.1 Problem definition

The previous sections have revealed that humanitarian air transport operations can be modelled using linear
programming. A FSMVRP model was considered most appropriate and accurate to simulate the complexity
of UNHAS missions, the intricacies of weekly aircraft routing and scheduling, and fleet sizing decisions on a
tactical time frame. From now on, the model will be referenced as the Humanitarian FSMVRP (HFSMVRP).
The following main attributes characterize its mathematical formulation :

1. Split Load: Passenger requests can be split over multiple routes and different aircraft

2. Simultaneous Pick-up and Delivery: Passengers can be picked-up and delivered simultaneously as
long as the associated nodes correspond to their origin or final destination
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3. Multi-Depot: Vehicles are assigned to different depot nodes and must start and end their routes at that
exact location

4. Multi-trip: Individual vehicles are able to leave and return to a depot multiple times as long as the total
range and block hour constraints are not violated

Although Split Loads and Simultaneous Pick-up and Delivery are enabled, the possibility of transferring pas-
sengers between different aircraft and nodes after their departure is not implemented in the formulation. This
decision was taken based on the anticipation that such a model would lead to much longer solving times. Adding
passenger transshipment implies the use of time-windows and therefore an exponential increase in decision vari-
ables and computational complexity. This aspect however remains a crucial part of humanitarian passenger air
operations, mainly due to aircraft limitations such as range and runway requirements. In order to take into
account passenger transshipment, a multi-commodity, minimum-cost network flow formulation is used prior to
the HFSMVRP optimisation model. Fleet planning has often been approached using multi-commodity flows in
order to represent the movement of passengers across a network, subject to multiple constraints such as vehicle
capacity, range, operational time and more. Passenger transfers can be simulated by the use of fractional flows
as decision variables. The model is given the freedom to route passengers through different nodes of the network,
as long as this minimizes overall system costs and passengers reach their final destination. A multi-commodity
network flow (MCNF) formulation contains fewer variables than an FSMVRP model and should be able to be
solved optimally within several minutes. Within the scope of this research, the objective of using a MCNF model
is to modify the original O-D demand matrix by splitting requests between direct flows and transshipment flows
through major hubs. The modified passenger requests are then used as input to the HFSMVRP model. The
multi-commodity network flow problem is limited to simulating hub-and-spoke flights while the HFSMVRP is
tasked to create detailed routings between the spokes and output detailed flight paths.

For large humanitarian missions such as the UNHAS one in South Sudan, the amount of weekly flight requests
to and from different destinations can easily surpass 100. This makes the problem impossible to solve with an
exact VRP formulation in a reasonable amount of time. It was therefore decided to divide the problem into
smaller sub-problems based on the aircraft flows resulting from the MCNF model. Each sub-problem consists
of the modified requests serviced by the corresponding aircraft type. Each instance is run with all the available
vehicle types available at the corresponding hub. In this manner, the choice of switching aircraft types is still
available depending on the additional routing considerations the HFSMVRP can take into account. Although
this division reduces the size of the problem significantly, some sub-problems may still be too large to solve at
once. An intra-airport, distance based clustering algorithm is used to separate requests into different regions,
where aircraft routings are most probable to happen. In order to find an optimal fleet and weekly schedule
for humanitarian air operations, a sequential approach is therefore taken, which is presented in more detail in
Figure 1. Section 3.2 presents the FSMVRP formulation, followed by section 3.3 describing the MCNF problem
and finally section 3.4 goes over the K-Means Clustering algorithm.
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Figure 1: Humanitarian fleet and weekly scheduling optimisation methodology flowchart
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3.2 A novel FSMVRP formulation

3.2.1 HFSMVRP formulation

A novel formulation for the Fleet Size and Mix VRP is proposed, described by Equations 1a till 1p. A short
description of the formulation is provided below, followed by a more extensive analysis of each component in Ap-
pendix C where the verification of each constraint is performed. The objective function of the linear program is
described by Equation 1a. The first term describes the fixed leasing costs which must be taken into account when
starting a new lease or the acquisition of a vehicle. The fixed costs include painting, positioning/repositioning,
war insurance, aircraft maintenance and safety factors. They can be found accumulated under the lease cost
row in Appendix A, Table 17. The second term represents the variable routing costs which occur when a vehicle
k uses the leg between nodes i and j. Equation 1b and Equation 1c ensure all vehicles start and end their routes
at their corresponding depots. Equation 1d is the flow conservation constraint, stating that each vehicle arriving
at a node must leave that same node. Equation 1e ensures multi-trip consistency between the previous three
constraints . Equation 1f allows vehicles to visit a node more than once, allowing passengers from one request
to be picked-up and delivered over different paths. Equation 1g and Equation 1h are the loading and unloading
conservation constraints. The request coefficient ↵r

j is equal to 1 if node j is the pick-up node of request r, �1

if it is the delivery node of latter, and 0 otherwise. Equation 1i and Equation 1j ensure that all the passengers
from each requests are picked up and delivered to their final destination. Equation 1k is the capacity constraint,
limiting the amount of passengers per flight leg to the maximum amount of seats of a vehicle k. Equation 1l
prevents vehicles visiting nodes where passengers are not delivered or picked-up. Equation 1m and Equation 1n
ensure that each aircraft does not surpass its weekly and daily maximum operational time. Equation 1o ensures
that each aircraft path is not longer than its maximum range. The second term in the left-hand side accounts
for increased range after an aircraft chooses to refuel. Finally, Equation 1p is added in order to limit the amount
of refueling stops each aircraft make in a path to 1.

Table 1: Nomenclature for the HFSMVRP model

Sets Parameters

N Set of airports ckij Cost of arc ij for vehicle k
R Set of requests Ck

lease Lease cost of vehicle k
K Set of vehicle types nk Max. number of trips for vehicle k
P Set of paths per vehicle types dij Distance of arc ij
Dk Set of depots available to aircraft k, Dk 2 N Qk Amount of seats on vehicle k
F Set of airports available for refueling, F 2 N ↵r

i Request coefficient
P r
j Total pax of request r to be picked-up at node j

Decision variables Dr
j Total pax of request r to be delivered at node j

TAT k Turn-around-time of vehicle k
xkp
ij 1 if arc ij is used by vehicle k on path p, 0 otherwise BT k

weekly Weekly block hours of vehicle k

qkrpi Amount of pax of request r picked-up/delivered at i by vehicle k on path p BT k
daily Daily block hours of vehicle k

ukrp
ij Amount of pax of request r on arc ij in vehicle k on path p rangekmax Range of vehicle k

ack Amount of aircrafts of type k spk Cruise speed of vehicle k

minimize
X

k2K

Ck
leaseac

k
+

X

p2P

X

k2K

X

i2N

X

j2N

ckijx
k
ijp (1a)

subject to :

X

j2N\{dk}

X

p2P

xkp
dkj  nkack 8k 2 K (1b)

X

j2N\{dk}

X

p2P

xkp
jdk  nkack 8k 2 K (1c)

X

i2N

xkp
ij �

X

i2N

xkp
ji = 0 8k 2 K, 8p 2 P, 8j 2 N (1d)

X

i2N

X

j2N

xkp
ij � (

X

j2N\{dk}

xkp
dkj) ⇤M = 0 8k 2 K, p 2 P (1e)

X

i2N

X

k2K

X

p2P

xkp
ij � 1 8j 2 N (1f)

X

i2N

ukrp
ij + qkrpj ↵r

j �
X

i2N

ukrp
ji �Qk

X

i2N

xkp
ij � �Qk 8j 2 N, r 2 R, k 2 K, p 2 P (1g)

X

i2N

ukrp
ij + qkrpj ↵r

j �
X

i2N

ukrp
ji +Qk

X

i2N

xkp
ij  Qk 8j 2 N, r 2 R, k 2 K, p 2 P (1h)
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X

k2K

X

p2P

qkrpj = P r
j 8j 2 N, r 2 R (1i)

X

k2K

X

p2P

qkrpj = Dr
j 8j 2 N, r 2 R (1j)

X

r2R

ukrp
ij  Qkxk

ij 8i 2 N, j 2 N, k 2 K, p 2 P (1k)

Qk
X

i2N

xkp
ij � qkrpj 8j 2 N, r 2 R, k 2 K, p 2 P (1l)

X

i2N

X

j2N

X

p2P

xkp
ij (

dij
spk

+ TAT k
)  ackBT k

weekly 8k 2 K (1m)

X

i2N

X

j2N

xkp
ij (

dij
spk

+ TAT k
)  BT k

daily 8k 2 K, p 2 P (1n)

X

i2N

X

j2N

(xkp
ij dij �

X

f2F

xkp
fj(range

k
max))  rangekmax 8k 2 K, p 2 P (1o)

X

f2F

X

j2N

xkp
fj  2 8k 2 K, p 2 P (1p)

In order to reduce the amount of variables that the model must take into account, all redundant and unfeasible
variables are deleted in a pre-processing step. Per aircraft, the following arcs and associated decision variables
are filtered from the search space:

1. Arcs between nodes of which the distance is larger than the aircraft’s maximum range
2. Arcs between nodes of which one of the runway lengths is smaller than the aircraft’s required runway
3. Arcs between nodes of which no passenger operations are required and no refueling is possible
4. Arcs between the same nodes
5. Loading variables ukrp

ij if request r is to be delivered at node i

6. Loading variables ukrp
ij if request r is to be pick-up at node j

7. Variables qkrpi if request r is does not originate or terminate at node i

3.2.2 Lazy constraints

The choice of not implementing time windows or servicing constraints implied that Subtour Elimination Con-
straints (SEC) needed to be added. Because of the significant size of the problem at hand, it was decided to
implement them through a lazy constraint approach. Lazy constraints remain inactive until a feasible solution
is found by the solver’s branch-and-bound tree. This solution is then cross-checked with all lazy constraints.
If one of the constraints is violated, the solution is removed and that specific constraint pulled into the active
model. This incremental approach allows to reduce the order-of-magnitude of the constraints needed, speeding
up model run time and reducing memory requirements. Implementing this is done through the use of Callback

functions which allow the solver to inspect and query a feasible solution while the optimisation is still running,
and modify the state of the optimisation. Lazy constraints were added to the model for two different uses, SEC
and refuelling.

Subtour Elimination Constraint

For a VRP solution to be valid, all routes employed by different vehicles must start and end at the same node,
namely its assigned depot, and all nodes within that route must be connected by an arc. If SECs are not
added to the model formulation, certain solutions may contain sub-tours: multiple paths within an aircraft
route which are not connected with each other. Preventing such solutions from being accepted as feasible was
achieved by implementing the lazy constraint in Equation 2 for each aircraft route in the solution. In the
following constraint, set T contains all the xkp

ij variables forming the entire solution found by the solver, ordered
from the first visited node to the last, per route p and aircraft k. Set S contains the solutions of a single path
p within the T Set.

X

i,j,k,p2S

xkp
ij  |S|� 1 8S 2 T (2)

Refuelling-Range Constraint
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The FSMVRP formulation allows aircraft to refuel at specific hubs within a route to extend their range if it can
reduce the objective function value. In order to implement refuelling stops, fictitious refueling nodes are created
at the same coordinates as the desired refuelling hubs. In this way, an aircraft can choose to visit a location
for normal operations, for refuelling, or both, without having to increase its flight time or distance. However
refuelling should only take place at a specific point in time within a route, when the aircraft has used most of
its fuel and needs to fulfill the last requests and return to base. Without adding a constraint related to this
property, the model can choose to refuel the aircraft at the start of the route, increasing its total range, without
taking into account that fuel tanks can only take in a maximum amount of fuel. In order to prevent this and
taking into account that adding a constraint for each possible path would be inefficient, the lazy constraints in
Equation 3 and Equation 4 are implemented. The sets R1 and R2 refer to the arcs ij used by aircraft k on path
p during the flight segment before after refuelling respectively.

X

i,j,k,p2R1

xkp
ij dij  rangekmax 8S 2 T (3)

X

i,j,k,p2R2

xkp
ij dij  rangekmax 8S 2 T (4)

3.3 Multi-commodity network flow model

A linear multi-commodity network flow model is used to simulate passenger transfers throughout the network
before using its results as input to the FSMVRP model in the form of a modified demand matrix. Two different
types of passenger movements are allowed: direct flows between a request’s origin and destination, or a transfer
flow which is divided into an Origin-Hub and Hub-Destination flow. Passengers are only allowed to make one
stop, and can transfer only at major hubs. This decision is taken based on the fact that a multi-commodity
network flow formulation is unable to simulate accurately aircraft routing decisions as aircraft flows are not
correlated with each other and only define capacity per flight leg. According to flight planner experts and
the South Sudan humanitarian demand matrix, humanitarian flight requests usually replicate a hub and spoke
pattern, as passengers mostly arrive and depart from international hubs to local destinations and back, rarely
traveling between spokes. The network created is therefore similar to a hub and spoke model with connections
only between main hubs.

The mathematical formulation for the multi commodity network flow is presented from Equation 5a to Equa-
tion 5h. The objective function in Equation 5a is made up of a first term accounting for fixed aircraft lease costs,
and a second term accounting for variable routing costs. The first constraint in Equation 5b ensures that all
flows departing from an airport are either transfer passengers flows towards a hub, or direct flows. Equation 5c
ensures all flows arriving at an airport is either a direct flow or a transfer passenger flow from a hub to a spoke
airport. Equation 5d is the arc capacity constraint and Equation 5e is a passenger flow conservation constraint
ensuring consistency between the first and second leg of passengers transferring at a hub. Equation 5f ensures
outbound aircraft flows are matched with inbound flows. Finally, Equation 5g ensures that if passengers are
transferred at hubs without any aircraft, that an additional arc is added to the solution accounting for the fact
that another aircraft must fly to that hub to pick up the passengers. Finally, Equation 5h ensures the weekly
utilisation of aircraft are not exceeded.

Table 2: Nomenclature for the multi-commodity network flow model

Sets Parameters

N Set of airports ckij Cost of arc ij for vehicle k
H Set of hubs, H 2 N dij Distance of arc ij
K Set of vehicle types Pi Amount of pax to be picked up at node i
O Set of hubs which are not aircraft depots, O 2 H Dij Amount of pax wishing to travel from i to j
Dk Set of depots for aircraft k, D 2 H Seatsk Amount of seats on vehicle k

spk Speed of vehicle k
Decision variables Ck

lease Lease cost of vehicle k
BT k

week Weekly block hours of vehicle k
xij Direct passenger flow from i to j TAT k Turn-around-time of vehicle k
yij Transfer passenger flow from origin i to j
wi

mj Transfer passenger flow from m to j, originating from i
zkij Route frequency between i and j with aircraft k
ack Amount of aircraft of type k
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minimize
X

k2K

Ck
leaseac

k
+

X

k2K

X

i2N

X

j2N

ckijz
k
ij (5a)

subject to :

X

j2N

xij +

X

h2H

yih = Pi 8i 2 N (5b)

xij +

X

h2H

wi
hj = Dij 8i, j 2 N (5c)

xij + yih +

X

h2H

wh
ij  zkijSeats

k 8i, j 2 N (5d)

yih =

X

j2N

wi
hj 8i 2 N, h 2 H (5e)

X

j2N

zkij =
X

j2N

zkji 8i 2 N, 8k 2 K (5f)

X

j2N

zkoj �
X

h2Dk

zkho  0 8k 2 K, 8o 2 O (5g)

X

i2N

X

j2N

zkij(
dij
spk

+ TAT k
)  BT k

weekac
k 8k 2 K, (5h)

3.4 K-Means Clustering

3.4.1 K-Means clustering algorithm

A K-means clustering algorithm was used to subdivide larger sub-problems (more than 25 requests) into smaller
manageable ones. K-Means clustering is an unsupervised machine learning algorithm which partitions a data
set into k clusters by assigning each sample to the cluster with the nearest mean (centroid). The algorithm can
be applied to a data set made up of geographical coordinates, resulting in k clusters made up of airports closest
to each other. Each cluster is then used as its own sub-problem and solved with the FSMVRP formulation.
The reasoning behind this decision is the assumption that aircraft routing will most probably happen between
airports which are in vicinity of each other. The algorithm is described below in Algorithm 1.

Algorithm 1 K-Means Clustering Algorithm
1: Input Airport coordinates (x,y) number of clusters k, number of iterations x
2: Initialise k random centroids
3: Repeat
4: Assignment step: Assign each airport to the closest cluster centroid (euclidean distance)
5: Update step : Compute and update new cluster centroid coordinates based on intra-cluster airport

mean distance
6: Until cluster centroid coordinates do not change for x iterations
7: Output k clusters, k cluster centroid coordinates, list of airports per cluster

3.4.2 Elbow method heuristic

The K-Means clustering algorithm by itself does not indicate to the user how many clusters a specific data-set
should be divided into. Choosing the optimal amount of clusters to partition a set can be done through the
Elbow method. This heuristic allows to find the point of "diminishing return" by plotting the average Within-
Cluster Sum of Squared Errors (WCSSE) for each cluster with respect to their cluster mean, versus a number
k of clusters. The WCSSE is a measure of the variability of the observations within each of their respective
clusters. The optimal number of clusters lies at the inflection point where the WCSSE starts decreasing linearly
with respect to the amount of clusters and tends towards 0. This "elbow point" or point of "diminishing return"
indicates the lowest amount of clusters needed before a change in the quality of the clustering is not improved by
a significant amount. This heuristic is used every time a clustering is needed to reduce the size of the problem
in order to decide in how many different clusters the airports in question must be divided into.
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4 South Sudan UNHAS mission: Fleet sizing and Weekly scheduling

- Results

4.1 Multi-commodity Network flow results

The multi-commodity Network Flow model was applied to the South Sudan UNHAS mission for the weekly
demand of the the 30/09/2019 to 04/10/2019. UNHAS flight planners schedule humanitarian flights on a daily
basis, therefore only daily request data is known, presented in Appendix A, Table 18. In order to obtain the
weekly demand, all requests to and from the same destinations over the week were combined and incorporated
into a single demand matrix as can be seen in Appendix A, Table 19. The airport and fleet data are presented
in Appendix A, Table 16 and Table 17 respectively. Figure 2 illustrates the results of the MCNF in the form of
passenger flows throughout the South Sudan network, split up into direct and transfer passenger flows. A more
detailed breakdown of the passenger and aircraft flows can be found in Appendix B, in Figures 10 to 18. The
Hub and Spoke effect emerges clearly from these figures, with passenger transfers occurring in the main hubs
of Rumbek, Juba, Wau and Bor. Table 3 presents the data related to passenger flows.

Figure 2: Passenger flows for the South Sudan UNHAS weekly demand (30/09/2019-04/10/2019)

Table 3: Passenger flows results for the South Sudan UNHAS weekly demand (30/09/2019 - 04/10/2019)

Amount of passengers
Total direct passengers 1,115
Total transfer passengers 495
Passengers transfering through Rumbek 267
Passengers transfering through Wau 183
Passengers transfering through Bor 30
Passengers transfering through Juba 15

Table 4 summarizes the main fleet and routing results from the MCNF model. While "block hours" refer
to the actual flight time of each aircraft on a weekly basis, the "operational hours" include flight times and
the turn-around-times of 30 minutes per stop, assumed fixed in the model to realistically model humanitarian
operations. In order to replicate current humanitarian operations, daily aircraft operational time is limited to
8.5 hours, and a week is considered to be 5 days (42.5 hours), leaving the week-ends for special flights such as
emergency and special flights. According to the MCNF model, the entire weekly demand of Table 19 can be
transported using six air assets and a total routing cost of 325,810 US$. The passenger flow data is extracted
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from the outputs and used to recreate a new demand matrix, presented in Table 20. This is done splitting the
original "non-direct" requests into two, one from the origin to the transfer hub and the other from the transfer
hub to the passengers final destination.

Table 4: Results of the MCNF model for the South Sudan UNHAS weekly demand (30/09/2019-04/10/2019)

DCH8-3 Cessna 208B Cessna 208B Cessna 208B MI8-T MI8-T
Number of aircraft 1 1 1 1 1 1
Aircraft base Juba Juba Rumbek Wau Juba Rumbek
Weekly block hours [h] 24.4 26.8 27.6 27.9 23.3 27.8
Weekly operational hours [h] 39.4 42.3 42.1 41.9 34.3 41.8
Weekly distance flown [km] 12,962 9,228 9,494 9,630 5,170 6,174
Weekly load factor [%] 76.39 61.43 58.66 53.23 38.12 34.78
Weekly routing costs [$] 80,735.6 33,520.3 34,487.5 31,031.9 66,556.2 79,479.2
Total weekly routing costs [$] 325,810
Total monthly lease costs [$] 719,717

4.2 Multi-commodity network flow combined with the HFSMVRP

Using the modified weekly demand matrix containing the new transfer passenger data, the requests are split up
into separate sub-problems as can be seen in Table 5. Each sub-problem is made up of the requests associated
to the different aircraft selected by the MCNF model. The HFSMVRP is run for each sub-problem with all the
aircraft available at the corresponding hub.

Table 5: Sub-problem division for combined MCNF and FSMVRP problem

Sub-problems Requests Airports Passengers
Sub-problem 1: MI8 - Juba 13 9 165
Sub-problem 2: MI8 - Rumbek 18 14 154
Sub-problem 3: Cessna 208B - Juba 22 15 249
Sub-problem 4: Cessna 208B - Rumbek 15 11 154
Sub-problem 5: Cessna 208B - Wau 17 11 183
Sub-problem 6: DCH8 106 - Juba 14 8 1,140
Total problem 101 61 2,045

Each sub-problem, highlighted in red in Figure 3 is first solved individually. The solutions of the ones sharing
the same hub are then combined and used as warm start in order to improve the quality of the solution. Finally,
the solutions are combined and the entire problem is solved. The routing costs and objective function values
can be found in Table 6 along with the corresponding improvements obtained after the warm starts. When
using a warm-start on the entire problem, no improvements are found due to the instance being extremely large
and the average performance of the processor used.

Figure 3: Sub-problem combinations using warm start
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Table 6: Results for sub-problems in Figure 3 before and after using warm starts

Objective function [-] Routing costs [$] Decrease in
objective function

Decrease in
routing costs

Sub-problem 1: MI8 - Juba 289,425 42,115.5 - -
Sub-problem 2: MI8 - Rumbek 303,085 40,808.2 - -
Sub-problem 3: Cessna 208B - Juba 91,126 28,545.5 - -
Sub-problem 4: Cessna 208B - Rumbek 85,893 23,312.4 - -
Sub-problem 5: Cessna 208B - Wau 83,693 21,112.0 - -
Sub-problem 6: DCH8 3 - Juba 151,132 75,678.9 - -
Sub-problem 7 : Warm start - Juba 518,423 139,428.6 2.5 % 5 %
Sub-problem 8 : Warm start - Rumbek 384,316 59,457.6 1.2 % 7.2 %
Entire problem : Warm start 986,432 219,998.2 0 % 0 %

The results for the modified weekly demand after having run the HFSMVRP can be found in Table 7. Figure 4
compares the routing costs before and after applying the HFSMVRP to the MCNF solution. The improvements
show a 29.5% decrease of the total routing costs while keeping the same fleet. The main cost reduction can
be attributed to the routing of the MI8-T helicopters, accounting for 70 % of all cost savings. This can be
explained by the fact that helicopters have the highest operational costs compared to other air assets. Unlike
the MCNF problem, the HFSMVRP allows the MI8s to combine small requests and different airfields together,
providing a much more realistic modelling of their operations and resulting in much cheaper routing costs. The
routing and combining of multiple different requests and airports also explains why load factors are higher for
each aircraft, especially for the MI8-T’s with a 30% to 45% increase. A full schedule of the resulting flight paths
is shown in Appendix E, Table 30.

Table 7: Results of the combined MCNF and HFSMVRP models for the South Sudan UNHAS weekly demand
(30/09/2019 - 04/10/2019)

DCH8-3 Cessna 208B Cessna 208B Cessna 208B MI8-T MI8-T
Number of aircraft 1 1 1 1 1 1
Aircraft base Juba Juba Rumbek Wau Juba Rumbek
Weekly block hours [h] 22.9 24.3 19.3 19.0 11.7 12.4
Weekly operational hours [h] 36.9 42.3 34.8 31.5 18.7 23.4
Weekly distance flown [km] 12,150 8,357 6,637 6,552 2,594 2,746
Weekly load factor [%] 86.91 76.53 76.05 75.92 80.04 65.51
Weekly routing costs [$] 75,678.9 30,358.6 24,109.2 21,112.0 33,391.1 35,348.4
Total weekly routing costs [$] 219,998.2
Total monthly lease costs [$] 719,717

Figure 4: Routing cost comparison between the MCNF model and the MCNF & FSMVRP combination
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4.3 HFSMVRP

In order to understand the added value of using the MCNF model to simulate transfer passengers throughout
the network, the HFSMVRP model was run by itself with the original demand matrix. As the entire problem
is too large to solve in one instance, it was divided into three separate sub-problems as can be seen in Table 8.
The logic remains almost the same as the one presented in the flow chart in Figure 1, with the exception that
the MCNF model is not used as a pre-processing step for the original demand matrix, and the sub-problem
division is based on runway lengths and not aircraft flows.

Table 8: Sub-problem division for the HFSMVRP for South Sudan UNHAS weekly demand (30/09/2019 -
04/10/2019

Sub-problems Requests Airports Passengers Available aircraft types
Sub-problem 1 : Helipad airports 25 19 191 - MI8 (Juba, Rumbek)

Sub-problem 2 : 1000m runways 61 41 714

- Cessna 208B (Juba, Rumbek, Wau)
- Dornier (Juba, Rumbek)
- LET(Juba)
- MI8 (Rumbek, Juba)

Sub-problem 3 : � 2000m runways 14 9 1140

- Fokker 50 (Juba), DCH8Q-400 (Juba)
- DCH8-202 (Juba), DCH8-106 ( Juba)
- Cessna 208B (Juba, Rumbek, Wau)
- Dornier (Juba, Rumbek)
- LET (Juba)
- MI8 (Rumbek, Juba)

Total problem 100 69 2045

- Fokker 50 (Juba), DCHQ-400 (Juba)
- DCH8-2 (Juba), DCH8-3 (Juba)
- Cessna 208B (Juba, Rumbek, Wau)
- Dornier (Juba, Rumbek)
- LET (Juba)
- MI8 (Rumbek, Juba)

Sub-problem 2 contains too many requests to be solved at once by the FSMVRP model within a reasonable
amount of time. The clustering algorithm is used to partition the airports into separate regions based on their
distance to each other and therefore most probable routing areas. Figure 5(a) displays the result of the clustering
algorithm applied to all 1000m runway airports, divided into 6 clusters, with the star symbols representing the
cluster centroids. The associated Elbow graph is presented in 5(b). 6 clusters were chosen based on the trade-off
between cluster sizes, which affect the solve time (amount of requests and airports per cluster), and amount of
clusters, which affects how global each solution is compared to the entire sub-problem.

(a) Clustering algorithm applied to airports with 1000m runways (b) "Elbow" graph for the clustering of sub-problem 2 in Table 8

Figure 5: Clustering algorithm applied to sub-problem 2 in Table 8 for the South Sudan UNHAS mission

The results of the HFSMVRP model can be found in Table 9. The aircraft types selected are the same as
the ones when passenger transfers were enabled in section 4.2, however this time the aircraft are all based out
of the Juba hub as this is where the majority of requests originate from. A decrease in routing costs can be
observed for the DCH8-3 due to the fact that no additional demand needs to be transshipped at other hubs.
The opposite is seen for the MI8 helicopters and the Cessna-208Bs which now must travel longer distances to
reach passenger destinations. A full schedule of the resulting flight paths is shown in Appendix E, Table 29.
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Table 9: Results of the HFSMVRP model for the South Sudan UNHAS weekly demand (30/09/2019-
04/10/2019)

DCH8-3 Cessna 208B MI8T
Number of aircraft 1 3 2
Aircraft base Juba Juba Juba
Weekly block hours [h] 18.9 79.9 30.3
Weekly operational hours [h] 31.4 126.4 47.3
Weekly distance flown [km] 10,059 27,521 6,741
Weekly load factor [%] 81.73 84.18 59.65
Weekly routing costs [$] 62,654.0 99,966.8 86,775.5
Total weekly routing costs [$] 249,396.3
Total monthy lease costs [$] 719,717

Table 10 compares the routing and leasing costs for the three different models, each having been run with
the same inputs. The combination of the MCNF and HFSMVRP models outputs the best results in terms of
routing costs. Although all 3 models find the same leasing costs and select the same aircraft types, the base of
the vehicles vary depending on whether passenger transshipment is enabled or not. The HFSMVRP model by
itself must route all requests from their origin to destination without transferring them in different locations or
transshipping them onto other aircraft. Since most requests originate or have as destination the Juba hub, all
aircraft selected are stationed at that depot. The MCNF formulation, on the other hand, provides the option
to transship passengers onto different vehicle at different hubs in the network. In this case, Cessna 208B’s in
Wau and Rumbek are selected as well as an MI8 in Rumbek.

Table 10: Comparison of the routing and leasing costs of the different models for the South Sudan UNHAS
mission

Model Routing costs [$] Leasing costs [$] Total costs [$]
Multi-commodity network flow 325,810.7 719,717 1,041,263.7
HFSMVRP 249,396.3 719,717 969,113.3
Multi-commodity network flow & HFSMVRP 219,998.2 719,717 939,715.2

5 Verification & Validation

5.1 Verification

The verification of the linear programming optimisation model can be found in Appendix C along with a more
in depth explanation of the formulation.

5.1.1 Clustering algorithm sensitivity analysis

A sensitivity analysis was performed on the clustering algorithm in order to understand how dividing the problem
into smaller instances based on intra-cluster distance affected the final solutions. The sensitivity analysis was
performed on the Cessna 208B sub-problem of the HFSMVRP optimisation run presented in Table 8, as it
is the largest in terms of requests and airports. For every iteration of the sensitivity analysis, the amount of
clusters is increased, from 4 to 11. For each problem, all clusters are first run by themselves, the solutions are
then saved and merged to be used as warm start. The entire sub-problem is finally run for three hours and
the resulting final routing cost is saved. Figure 6 presents the evolution of routing costs as a function of the
number of clusters before and after the warm-starts. The geographical division of the clusters can be found in
Appendix D, Figures 25(a) to 25(h).
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Figure 6: Effects of increasing number of clusters k on routing costs before and after warm starts

While dividing the airports of the sub-problem in 6 different clusters offers the best results, the improvements
in routing costs between 4 and 7 clusters remain relatively insignificant, with a decrease in routing costs of less
than 3%, as can be seen in Figure 6. As the number of clusters increases above 7, a deterioration of the solution
can be observed. This is explained by the fact that certain airports such as Renk, Tambura and Kapoeta are
assigned to their own cluster without being combined with other airports as can be seen in Appendix D, Figures
25(d) to 25(h). Figure 6 also illustrates the effects of using a warm-start with the separate cluster solutions. A
reduction in total routing costs can be observed as well as a decrease in cost difference between each run. It is
expected that if the warm-starts are allowed to run for an extended amount of time, the same solutions would
be found in each case. Because each warm-start is only run for three hours, the solver is not able to reconstruct
the best routes and re-combine the different clusters in the available time.

5.2 Warm start procedure verification

The warm start procedure was verified by using a simple real-world case study based on the same UNHAS
South Sudan mission. The objective is to first run two separate problems, then combine them into one and use
a warm start in order to observe whether the procedure is able to modify and improve the aircraft selection
and routings. The verification case is presented in Table 11, where the airports Bor and Yirol are accessible by
both a Cessna 208B and an MI8-T, whereas Mingkaman is a helicopter only airport. When run separately, it is
expected that Sub-problem A will use the Cessna 208B to pick-up and deliver request r0, whereas Sub-problem
B will use an MI8 to deliver request, r1. When both solutions are combined and used as a warm start for the
entire problem, it is expected that the best solution is to use the helicopter to service both requests. This is
due to the airports’ proximity and the cost savings of using only one air asset instead of two. The results of the
verification are presented in Table 12 and the flight paths in Figures 7(a) to 7(c).

Table 11: Warm start verification scenario

Instance Request From To Pax Available aircraft

Entire problem r0
r1

Juba
Bor

Yirol
Migkaman

1
1

Cessna 208B (Juba)
MI8-T (Juba)

Sub-problem A r0 Juba Yirol 1 Cessna 208B (Juba)
MI8-T (Juba)

Sub-problem B r1 Bor Mingkaman 1 Cessna 208B (Juba)
MI8-T(Juba)
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Table 12: Results for the warm start verification case

Instance Aircraft Leg From To Pick-up Delivery Pax Leg dist. [km] Leg cost [$]

1 Juba Yirol r0(1) r0(1) 1 227.4 826Sub-problem A Cessna 208B 2 Yirol Juba - - 0 227.4 826
Objective function cost 64233

1 Jub Bor - - 0 151.48 1950
2 Bor Mingkaman r1(1) r1(1) 1 10.47 135Sub-problem B MI8-T
3 Mingkaman Juba - - 0 142.37 1833

Objective function cost 232177

1 Jub Yirol r0(1) r0(1) 1 227.4 2927
2 Yirol Bor - - 0 118.29 1523
3 Bor Migkaman r1(1) r1(1) 1 10.47 135Entire problem (post warm start) MI8-T

4 Mingkaman Juba - - 0 142.37 1833
Objective function cost 234677

(a) Fight path of Cessna 208B for Sub-problem A (b) Fight path of MI8-T for Sub-problem B

(c) Fight path of MI8-T for the entire case study post- warm
start

Figure 7: Warm start verification path results
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5.3 Validation

5.3.1 Expert validation of the weekly schedules for the South Sudan demand (30/09/2019-
04/10/2019)

The weekly schedules in Appendix E, Table 29 and Table 30, were validated by a UNHAS expert flight planner
and were reported as feasible. Figure 8 displays the main inputs, outputs and decisions modeled during the
optimisation framework. While all the schedules and flight paths are reported correct, the model is unable to
simulate evry considerations that flight planners and contracting officers must take into account. The main
characteristics that were left out are highlighted in brown in the breakdown tree. The reason for them not being
modelled are either because they were not acknowledged at the start of the modeling exercise (1,5), because
they were considered outside of the scope (2,3,8,9) or because they were assumed not to impact the objective
function significantly (4,6,7).

Figure 8: Breakdown tree of the inputs, outputs and main decisions contributing to the efficiency and effective-
ness of humanitarian air operations

Furthermore, some comments were made regarding choices made by the models which, in reality, either never
or rarely occur in the real-world mission. The following points take into account the flight planner’s comments
and provide an explanation based on the model’s behaviour.

1. Out of the 18 helicopter flight paths, 3 of them choose to refuel in the Malakal hub. This does not happen
in real-world operations due to the fact that the cost of fuel in Malakal is 8 times more expensive than
in other locations. Although this price difference is incorporated in the model, the MI8s choose to refuel
in Malakal because it is their only feasible option to reach certain destinations due to their maximum
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range constraint of 750 kilometers. An example of this is the Monday MI8 flight path in Table 29 where
the destination Mathiang is serviced by a refuel stop in Malakal. In practice, flight planners would
refuel the helicopter in Bor twice, once on the way to Mathiang and once on the way back, as follows:
Juba � Bor(refuel) � Mathiang � Bor(refuel) � Juba. The model isn’t able to reproduce this as the
back and forth between Bor and Mathiang is 766 kilometers.

2. Helicopters choose to service certain destinations which are accessible by other aircraft such as Cessna
208Bs and other cheaper turbo-prop aircraft. This can be observed in the MI8-Juba flight paths on
Monday and Tuesday in Table 30, where the Torit and Pibor airports both have a runway of 1000m but
are serviced by an MI8. While routing a helicopter through these destinations is very expensive and would
most likely not happen in practice, this choice is a good example of the trade-off the model makes between
routing costs, aircraft utilisation and fleet sizing. It can be observed in Table 7 that the operational
hours used by the Cessna 208B in Juba is of 42.25 hours, very close to the maximum amount of weekly
operational time of 42.5 hours. The model therefore chooses to use the MI8s with spare block hours to
route passengers to those destinations instead of adding a new aircraft to the fleet.

3. Out of 102 flight paths, 3% of them have more than 6 stops. Having 7 stops in one route rarely happens in
practice and should be avoided. However when looking at the schedules into more detail, the routes with
this many stops are between destinations which are very close to each other, sometimes within 10 minutes
flight time such as Jiech - Buot (4 min), Ajuong Thok - Yida (5 min), Padeah - Leer (4 min), Ulang
- Mandeng (8 min), etc. In the real world mission, these destinations are combined into one, therefore
reducing the amount of stops within a route. The same simplifications could be incorporated in the model
without impacting the routing costs by implementing a hard constraint on the number of stops per route
or combining certain destinations as one.

4. The model does not take into account a maximum amount of rotations per day. On certain days, an
aircraft will return to its hub 3 times to pick up and drop off passengers. According to flight planners, two
rotations a day is more realistic. However because the flight paths are modular and interchangeable, both
of these issues can easily be remedied by switching flight paths around during the week while respecting
the daily operational time of 8.5 hours.

5. The model does not incorporate a maximum monthly flight time per aircraft. In practice, this is limited
to 100 block hours per month. However according to the operational results presented in Tables 7 and
9, all aircraft respect this limitation. This is an aspect that can easily be incorporated in the model by
setting a maximum constraint on the monthly block time.

6. The model does not take into account crew duty times. These are governed by EASA, ICAO or the
aircraft’s country of registration regulatory body. Incorporating crew duty times could affect the aircraft
selection, routing and scheduling over the weekly and monthly planning horizon as UNHAS and other
operators must make time for crew rest periods and rotations. A solution could also be to hire more crew
members, however this would also come at an additional cost.

7. While the model is able to route all passengers with a fleet of six aircraft, this is an idealised scenario. It
does not take into account the fact that certain assets may need to go through maintenance or that on
certain days unexpected emergency situations such as medical / security evacuations may require more
aircraft to be available. It is therefore noted that additional aircraft should be contracted to take these
considerations into account. While adding reserve aircraft to the model would increase the leasing costs,
it may decrease the operational costs because more air assets would be available to transport passengers,
increasing the routing possibilities.

5.3.2 Comparison with previous models

One of the advantages of the HFSMVRP model is that it can adapt to any time frame, whether it be a day,
a week or a month. Five different variations of the model were run for the daily demands of the South Sudan
UNHAS mission from the 30/09/2019 to the 04/10/2019 presented in Table 13. The results can be compared
with the results of Humanitarian Flight Optimisation Model (HFOM) created by Mekking (2020), and the daily
schedules created by expert flight planners. The exact same aircraft types, demand and airport inputs are used
in order to ensure consistency when comparing results between each other. When run with the "Fixed fleet"
variation, only the fleet used by UNHAS in South Sudan is allowed to be selected, the model is not allowed to
add additional aircraft to the fleet. The "Variable fleet" variation does not have a limitation on the amount of
aircraft of each type is allowed. Finally, the "Fixed fleet (no leasing)" variation is the same as the "Fixed fleet"
variation but the cost associated to aircraft leasing are not taken into account.
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Table 13: Overview of the test cases for the daily routing optimisation

HFSMVRP MCNF & HFSMVRP combination Fixed fleet Variable fleet Fixed fleet (no leasing)

Test cases

Test case 1 x x
Test case 2 x x
Test case 3 x x
Test case 4 x x
Test case 5 x x

While the HFSMVRP model by itself does not investigate transshipment of passengers and therefore passenger
connections and corresponding time windows, this consideration must be taken into account when combining
it with the multi-commodity network flow for the daily cases. In order to ensure all passengers can connect
within the same day, a trunk route is implemented when needed between the hubs Juba, Rumbek and Wau,
and taken into account in the routing and objective function costs. The DashQ-400 is the aircraft with the
highest capacity (71 seats) in the fleet. It is responsible for flying connecting passengers in the morning before
all connecting flights depart, as well as in the evening after all connecting flights have returned. This decision
is validated by UNHAS expert flight planners and can also be observed in published UNHAS schedules as seen
in Appendix G, Figure 27. The results for the daily demands are presented in section F.1, Tables 31 to 35. All
model runs are cut off one hour after the start of the optimisation in order to use the same run time as Mekking
(2020).

Figure 9: Routing cost comparison between different days and model variants

Figure 9 presents the daily routing cost results from running the MCNF & HFSMVRP model variations. They
outperform both the human flight planner and the HFOM model four days out of five. The combined models
are able to improve the routing costs between 2% to 26%, while in some cases, also reducing the fleet size by
up to three air assets. The HFOM uses time windows and does not incorporate fleet planning elements in its
formulation. It can be assumed that by not taking into account time windows and splitting the decision making
process in two steps (transshipment and routing), the MCNF & HFSMVRP combination is able to find better
results by reducing the computational complexity and search space of the problem. The results of test cases 1
and 2 are presented in section F.1, Tables 31 to 35. These two cases are run only with the HFSMVRP model
and do not consider passenger transshipments. They display higher routing costs than all other models. It can
be concluded that transferring passengers in the main hubs of the network is an essential part of the decision
process and allows a much greater reduction in routing costs.
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Table 14: Operational results for Test case 5 compared to the HFOM and flight planner

Days Model Routing costs [$] Load factor [%] Number of aircraft Trunk route

HFOM 55,085.3 47.34 10 -
Flight planner 54,700.8 53.63 - -30/Sep
Test case 5 47,222.6 57.23 8 No

HFOM 61,077.2 59.54 9 -
Flight planner 57,900.6 57.75 - -01/Oct
Test case 5 54,732.6 66.41 9 DashQ-400

HFOM 95,531.1 58.64 12 -
Flight planner 95,600.7 61.10 - -02/Oct
MTest case 5 85,427.7 62.18 9 DashQ-400

HFOM 69,466.5 57.40 9 -
Flight planner 60,200.9 61.31 - -03/Oct
Test case 5 57,613.2 65.89 7 DashQ-400

HFOM 91,766.8 65.78 10 -
Flight planner 90,500.3 60.00 - -04/Oct
Test case 5 65,189.7 70.46 9 Dash8-2

Finally, Table 14 presents the results for Test case 5 ( MCNF and HFSMVRP combination with fixed
fleet and no leasing costs taken into account). It can be seen that the load factors found by the optimisation
framework throughout the week are all higher than for the HFOM and the flight planner. This increase can be
attributed to the fact that passenger requests are merged at two different points in the optimisation framework:
firstly during the merging of daily demands into weekly demands, and secondly during the MCNF optimisation
when passenger flows are consolidated on certain arcs. A trunk route needed to be implemented four out of
the five days in order to ensure passenger could make their transfers within the same day. The corresponding
precise daily schedules can be found in section F.2, Table 36 to 40.

5.4 Discussion

This study demonstrates that mathematical optimisation models are able to realistically simulate humanitarian
air operations at various levels of detail, from a high-level network perspective to the routing of individual
aircraft and passenger requests. The contrast in the different levels of detail is precisely what allows the models
to make fleet planning and weekly scheduling decisions tailored to the humanitarian operating environment.
As previously mentioned, the humanitarian aviation planning cycle spans from a day to a few months before
the deployment of the fleet/air assets. The high inter-dependency between the decisions defining the different
planning stages implies that a large amount of choices and variables must be taken into account. The method-
ology proposed in this study was able to solve a large instance by dividing the decision making process in two
steps. Table 15 presents a comparison between the different models applied in the research and the routing
created by a UNHAS flight planner. It can be seen that by using the proposed optimisation framework, weekly
routing costs can be reduced by up to 40% compared to flight planners, who only consider daily routing and
scheduling of humanitarian passengers and use a predetermined fleet by the contracting unit. The decision
support tool is also able to solve the problem by reducing the fleet size by more than half, from 14 air assets to
only 6. This highlights the fact that while contracting officers and flight planners tackle the fleet selection and
routing problem separately, the MCNF and FSMVRP models combine both, resulting in better solutions for
both planning stages in terms of lower routing cost, higher load factors and smaller fleet sizes. This is partly
attributed to the fact that the optimisation model is able to take into account many decisions and variables at
the same time, but also to the paradigm shift introduced in the study which aims to combine daily requests into
a weekly demand matrix and create a detailed weekly schedule and routing. While the best results are obtained
by the combination of the MCNF and the HFSMVRP models, these can be used separately in a consistent
fashion as decision support tools depending on the information available to the operator, the size of the problem
or the time horizon under consideration. A cost comparison between the models presented in this study is made
in Table 15. Although the results of the research are promising, certain limitations related to each formulation
must be acknowledged. They are explored in the rest of the discussion.
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Table 15: Comparison of the routing costs of different models for the weekly demand of the South Sudan
UNHAS mission (30/09/2019 - 04/10/2019)

Model Weekly routing costs [$] Avg. load factor [%] Air assets

HFOM (combined daily results, (Mekking, 2020)) 372,925 57.22 14
Expert UNHAS flight planner (combined daily results) 359,200 59.77 14
MCNF (weekly demand) 325,810 60.56 6
HFSMVRP (weekly demand) 249,396 75.18 6
MCNF & HFSMVRP (weekly demand) 219,998 76.82 6

5.4.1 MCNF

The MCNF model was able to accurately replicate the South Sudan UNHAS hub-and-spoke network based on
humanitarian O-D request pairs and decide how to divide the weekly demand into direct and transfer passengers
flows. The fleet chosen by the model based on a trade-off between aircraft routing and leasing costs was the
same as the one chosen by the HFSMVRP. This implies that using a network flow model is consistent enough to
use as a stand alone decision support tool for aircraft contracting processes. However, as routing between spokes
is not allowed, passengers wishing to travel between secondary destinations are always transshipped through a
hub even though it might be cheaper to fly them directly between spokes. This not only affects the network
structure, but also the fleeting and routing decisions. Fortunately, as a majority of the humanitarian requests
involve a main hubs, this limitation does not significantly affect the final solutions.

The fact that routing is not taken into account in the MCNF model also influences the block hours flown
by vehicles and their operational performance. The choice of aircraft type and corresponding amount is there-
fore also affected. As requests are often smaller than the capacity of a vehicle, the aforementioned metrics are
mostly overestimated. The MCNF model is however still able to predict the same fleet as the other models
while using a simplified and faster formulation which leads to the conclusion that it can be used realistically to
size an initial fleet.

Time windows are not taken into account with respect to passenger transshipment. This implies certain passen-
gers may not be able to transfer on the same day between their first and second flight leg and have to layover
for a few days or over the week-end. Assuming weekly schedules are periodic and repeat over a month, this does
not pose an issue with respect to the integrity and feasibility of the solution, as enough capacity is provided for
each request. It does however make the model unfeasible for daily routing and scheduling. A remedy to this
problem is to add an aircraft to the fleet and implement a trunk route between the main transfer hubs, with
a rotation in the morning and in the evening. Adding this additional aircraft and route still results in cheaper
routing than the HFOM and the flight planners as was shown in Table 14.

5.4.2 HFSMVRP

With respect to the HFSMVRP model, limitations are also observed. Passenger transshipments are not taken
into account, which does not accurately represent the real world situation. Transferring passengers at the main
hubs is a common strategy used to transport requests with larger and cheaper aircraft as close to their final
destination as possible, and finish off their route with smaller but more appropriate aircraft. This also has an
impact on the positioning of the aircraft. As most humanitarian requests originate or terminate in the inter-
national hub of a certain country, the fleet chosen when not considering passenger transfers is almost always
based at the corresponding airport.

Choosing not to model passenger transfers, however, eliminates the need for time windows and trunk routes.
All passengers who leave their their origin will reach their final destination within the same aircraft route. For
the South Sudan case, the HFSMVRP chooses the same aircraft types as the MCNF, however they are all posi-
tioned in Juba. The results for weekly routing are still 23.4% cheaper than when using the MCNF by itself but
12% more expensive than when combining both models and considering transfer passengers. This confirms the
expectation that modelling passenger transshipments and network structure can significantly decrease routing
costs while representing real-world operations. Finally, an important consideration to take into account is the
fact that the HFSMVRP formulation is NP hard and the computational complexity increases exponentially as
requests and aircraft are added. The solvers used cannot find an optimal solution within a reasonable amount of
time as the problem size increases, but do find feasible, sub-optimal solutions with varying MIP gaps depending
on the amount of variables considered.
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5.4.3 MCNF & HFSMVRP

Using the MCNF & HFSMVRP problem sequentially produced the best results in terms of weekly routing
costs when using the same fleet as when both models were run separately. The combination of both models
allowed for decreased routing costs of 32% and 11% with respect to the MCNF and HFSMVRP. These cost
savings can be attributed to the fact that both models are able to complement each other by taking up different
parts of the decision process and avoiding the exponential increase in computational complexity. It is however
important to note that once the modified passenger transfer matrix has been created, the HFSMVRP is unable
to modify it and cancel transfers if it would prove beneficial to the final solution. The sequential nature of the
methodology implies that certain parts of the solution space are deleted and a truly optimal solution can never
be found. However, this does not take away from the fact that better solutions are still found when running the
combination of the MCNF and HFSMVRP model for daily demands in section 5.3.2 compared to the previous
humanitarian oriented VRP models of Mekking (2020) and Niemansburg (2019). Using the same exact case
study, inputs and run time, a decrease in routing costs between 2% and 26% can be observed as well as a
decrease in the number of aircraft used. It is assumed that by splitting up the decision making process in two
steps and therefore reducing the amount of variables needed, the computational complexity is reduced and the
models are able to find better solutions faster. Another reason lies in the fact that less sub-problems are used
to divide the search space and therefore larger instances can be solved at once, leading to a more global solution.

A novel way of dividing a geographical network into sub-regions with the aim of creating "most-probable"
routing areas was analysed in the study. This was implemented due to the fact the HFSMVRP formulation
struggles to find feasible solutions to an instance with more than 25 requests and 8 aircraft types within a rea-
sonable amount of time. The clustering algorithm in combination with the Elbow graph heuristic allowed for a
more structured way to divide the geographical area into "most probable" routing regions instead of only using
flight planner experience. This implies that this technique can be used when setting up new missions where no
previous expertise is available. The algorithm and the elbow graph heuristic is however, slightly sensitive to
outliers. When comparing the Elbow graphs of the 1000m runway airports in 5(b) and the one of the helipads
in 26(b), the latter shows a much clearer inflection point for the optimal "point of diminishing return". This
must be kept in mind when selecting the optimal amount of clusters. Finally, it must be noted that although
grouping destinations in clusters based on geographical distance is a good approximation on how flight planners
usually combine pick-up and delivery operations, en-route airports should also be taken into account.

Passenger requests are merged at two separate moments in the optimisation framework. Firstly in the pre-
processing step where daily passenger requests are merged into weekly requests, and secondly after running the
MCNF model when certain requests are merged into transfer requests between hubs. While this effect has clear
benefits on the routing costs and fleet sizing by consolidating passenger flows on certain arcs, it must be noted
that this modelling perspective strays from what happens in the real-world. It implies that certain destinations
are visited less often, in some cases once a week, and that therefore humanitarian passengers will need to stay a
longer period of time in that location. Secondly, it also implies that the models try to maximize the load factors
of certain flight legs, sometimes to 100% full capacity. Based on flight planner input, this is rarely the case and
aircraft flight legs are usually associated with load factors around 63%. Although not taken into account in
this study as the aim was to create a model applicable to general humanitarian and short-term fleet planning
applications, these two limitations can easily be remedied by slight modifications of the HFSMVRP formula-
tion. Load factors can be taken into account by multiplying the right hand side of the loading constraints in
Equation 1g and Equation 1h by a factor between 0 and 1. Furthermore, increasing the right hand side of the
split request constraint in Equation 1f from 1 to 2 would force the vehicles to visit each destination at least
twice a week.

The models approximate real-life operations and do not incorporate all the details that flight planners and
contracting officers must consider when making decisions. The aircraft and their operations must respect UN-
HAS and WFP guidelines as well as regulations from the country of registration. Considerations such as crew
duty times and rotations are not incorporated. Requirements regarding additional fuel for holding time or flight
to alternate airport are not integrated in the models. In South Sudan, UNHAS operates a partial cost recovery
scheme taking the form of ticket sales to humanitarian passengers at a fixed price (Cour des Comptes France,
2019). This aspect is not taken into account in the cost section of the model, however it could influence the
outcome of the fleet selection and weekly routing costs by favoring the use of aircraft with a higher amount of
seats. Aircraft range is a fixed parameter and does not vary based on the amount of passengers taken on board.
Payload-range diagrams should be used to realistically model the effects of aircraft load factors on range.

23



6 Conclusions

6.1 Research

The study has revealed that a MCNF model and an FSMVRP model can be combined sequentially to be used
as a tactical decision support tool for aircraft fleet planning and weekly flight scheduling. The MCNF model is
able to accurately re-create a humanitarian Hub and Spoke network while optimising passenger transshipment
flows and sizing an initial fleet. The HFSMVRP uses the outputs of the MCNF to further increase the accu-
racy of aircraft routing and passenger operations, while finalising the fleeting choices. This produced the best
results in terms of weekly routing costs while selecting the same fleet when both models were run separately.
The combination of both models allowed decreased routing costs of 32% and 11% compared to the MCNF and
HFSMVRP respectively. It achieves up to 40% cost savings compared to the cumulative costs of the daily flight
schedules created by expert planners for the same week, and uses only 6 aircraft instead of 14. For the South
Sudan UNHAS mission, the models suggests that the best fleet to route all weekly requests is composed of one
Dash8-3 (Juba), three Cessna 208Bs (Juba, Rumbek, Wau) and two MI8s (Juba, Rumbek). The flight paths
resulting from the optimisation are modular/interchangeable and can be used to create precise weekly schedules,
providing enough capacity to route all passengers from their desired origin to destination.

This research has proposed a novel methodology which can be used as a decision support tool for humani-
tarian air operators. Not only does it provide the humanitarian community with more information and power
to plan trips in advance, but it also increases the robustness of the humanitarian fleet contracting process. The
results of such a model can be used to inform humanitarian air operators on the air assets most adapted to a
certain mission and give them an estimate of the amount of MGH needed per aircraft, as well as corresponding
operational data. The MGH are an essential aspect of humanitarian aircraft contracting as it affects the future
utilisation and costs of the asset. In turn this increases the accountability in their planning cycle, an impor-
tant consideration when reporting to users, donors and other stakeholders. Although the research focused on
humanitarian passengers, the model can also be applied to a variety of short-term tactical missions, including
cargo operations. The research also showed that a clustering algorithm can successfully be used to segregate a
humanitarian flight network into "most probable" routing areas. This allows for a more reliable and automated
way to divide a large humanitarian routing optimisation problem into smaller solvable instances. This would
be all the more useful when starting new missions where flight planners and contracting officers do not yet have
information on previous fleet, routing and scheduling operations.

6.2 Recommendations

The following recommendations are made in order to encourage future work to further improve the methodology
proposed in the research and the general humanitarian planning cycle.

• Tabu search algorithm: Heuristics or meta-heuristics were not implemented in the research. Using a
Tabu Search heuristic could be beneficial in order to explore the solution space more effectively than the
current exact formulation of the HFSMVRP proposed.

• Fleet Assignment Model: In order to increase the accuracy and feasibility of the MCNF and HFSMVRP
models, using a Fleet Assignment Model once the preliminary schedules are created would allow the
optimisation of passenger connections and reduce layovers while re-evaluating fleeting choices.

• Multi-period fleet planning: Fleet planning on a larger time horizon and subject to demand uncertainty
has not been covered in this report. It would be of interest to analyse the robustness of humanitarian
fleets over multiple years / seasons, while taking into account demand evaluations.

• Hub Location Problem: While the current model is able to choose between aircraft at different air-
ports, the hubs are fixed and increasing the number of depots will increase the computational complexity
exponentially. Combining humanitarian fleet planning and a Hub Location Problem would be beneficial
to decision makers when planning new humanitarian missions.

• Clustering algorithm: The clustering algorithm only takes into account intra-cluster distance between
airports. It would be interesting to analyse the effects of including other metrics such as amount of
passengers travelling to and from a cluster. It would also be interesting to take into account en-route
airports between the clusters and aircraft hubs.
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Appendices
Table 16 presents the airport data used in the South Sudan mission. The runway lengths are approximations
and rounded values are used to separate airports accessible by different aircraft types. Runways of 100m are
only accessible by helicopters while runways of 3000m are accessible by all aircraft types. Table 17 presents the
aircraft types available and Table 19 the weekly South Sudan demand for the week of the 30/09/2019.

A Appendix 1 - South Sudan UNHAS mission input data

Table 16: South Sudan airport data (⇤ indicate runways only accessible by helicopter during rainy season )

Airport Lat [�] Long [�] Runway [m] Airport Lat [�] Long [�] Runway [m]

Juba 4,91 31,69 3000 Kurwai 9,35 31,24 100
Rumbek 6,95 29,69 3000 labrab 6,79 34,11 100
Wau 7,70 28,00 3000 Maban 10,03 33,76 2000
Bor 6,27 31,61 1000 Mabior 7,30 31,50 1000⇤
Malakal 9,70 31,69 3000 Mandeng 8,56 33,18 1000⇤
Ajuong Thok 10,07 30,34 1000 Mankien 9,19 29,22 1000
Torit 4,40 32,58 1000 Maridi 4,94 29,54 1000
Kapoeta 4,80 33,73 1000 Maruw 6,20 34,05 1000
Keew 9,41 30,73 1000⇤ Mathiang 9,13 33,56 100
Lankien 8,64 32,00 100 Mayendit 8,28 30,10 1000⇤
Mingkaman 6,19 31,66 100 Mogok 8,55 31,48 1000⇤
Padeah 8,50 30,21 1000 Motot 8,28 32,15 1000⇤
Yambio 4,57 28,49 2000 Mundri 5,49 30,44 1000
Yida 10,22 30,13 1000 New Fankgak 9,39 31,15 1000⇤
Leer 8,38 30,14 100 Nimule 3,73 32,11 1000
Dindin 8,34 30,36 1000⇤ Nyal 7,83 30,37 100
Agok 9,46 28,59 1000 Old Fangak 9,15 30,99 1000⇤
Alek 8,81 28,19 1000 Pagil 8,86 31,41 100
Aweil 8,88 27,45 3000 Palouny 8,25 31,56 100
Boma 6,29 34,46 1000 Pibor 6,89 33,25 1000⇤
Buot 8,27 31,14 100 Pieri 8,09 32,15 1000⇤
Ganyiel 7,54 30,52 100 Pochalla 7,29 34,22 1000⇤
Gorwai 8,18 31,28 100 Raja 8,60 25,80 1000
Haat 8,57 30,76 100 Rubkona 9,38 29,83 2000
Akobo 7,89 33,03 1000⇤ Tambura 5,63 27,58 1000
Paloich 10,66 32,54 2000 Touch Riak 8,22 30,31 100
Renk 11,67 32,88 1000 Udier 9,30 33,82 1000⇤
Jiech 8,40 31,16 100 Ulang 8,81 32,88 1000⇤
Jikmir 8,54 33,23 1000⇤ Wai 8,39 31,35 100
Karam 8,32 31,88 1000 Wiechjol 8,23 32,28 100
Karmoun 8,37 31,26 100 Wanding 8,19 33,11 1000
Kajo Keji 3,90 31,74 1000 Walgal 8,31 32,38 1000⇤
Koch 8,68 30,10 100 Yei 4,23 30,77 2000
Kuajok 8,37 28,08 1000 Yirol 6,65 30,61 1000
Kuron 5,70 35,52 1000
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Table 17: South Sudan UNHAS aircraft fleet composition

Aircraft DCH8-
Q

DCH8-
3

DCH8-
2

Fokker-
50

Cessna-
208B

Cessna-
208B

Cessna-
208B

Dornier-
D228

LET-
410 MI8T MI8T

Depot Juba Juba Juba Juba Juba Rumbek Wau Juba Juba Juba Rumbek
Speed [kmh ] 555,6 531,5 535,2 530,0 344,5 344,5 344,5 314,8 314,8 222,2 222,2
Seats 71 49 37 50 12 12 12 18 17 19 19
TAT [hr] 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Range [km] 2037 1711 2084 2000 1982 1982 1982 1111 769 750 750
Runway [m] 2500 1500 1500 1500 500 500 500 500 500 50 50
Lease costs [$] 65910 75454 97350 116250 62581 62581 62581 59305 96831 228260 228260
Operational costs [ $

km ] 12,36 6,23 5,13 6,50 3,63 3,63 3,22 7,54 7,21 12,88 12,88
Daily block time [hr] 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5
Weekly block time [hr] 42,5 42,5 42,5 42,5 42,5 42,5 42,5 42,5 42,5 42,5 42,5
Fuel burn [ L

hr ] 860 480 540 640 234 234 234 340 400 700 700
Fuel cost [ $

km ] 2,48 1,44 1,61 1,93 1,09 1,22 1,22 1,73 2,03 5,04 5,67
Amount available 1 1 1 1 1 1 1 2 2 2 2

Table 18: Daily request data for the UNHAS South Sudan mission from the 30/09 - 04/10

30-09 01-10 02-10 03-10 04-10

From To Pax From To Pax From To Pax From To Pax From To Pax

AJUON JUB 13 AGOK JUB 8 AJUON JUB 12 AGOK JUB 3 AJUON JUB 17
BOR JUB 15 BOMA JUB 3 BOR JUB 9 BOR JUB 5 BOR JUB 8
HSTR JUB 7 BOR MABR 2 GORWA HAAT 17 HSAK JUB 4 BOR LABR 6
JUB AJUON 12 BUOT JUB 3 HSAK JUB 11 HSPA JUB 2 BOR MARUW 6
JUB BOR 20 BUOT KARMO 15 HSRN JUB 10 HSRN JUB 9 JUB AJUON 12
JUB HSTR 12 GANY JUB 4 JUB AJUON 11 HSTR JUB 19 JUB BOR 16
JUB KAPO 11 HSPA JUB 1 JUB BOR 15 JIKMI JUB 5 JUB JUB 71
JUB KEEW 3 HSRN JUB 6 JUB HSAK 6 JUB AGOK 10 JUB MA BAN 28
JUB LKEN 12 HSTR JUB 3 JUB HSRN 10 JUB BOR 3 JUB MAK 13
JUB MAK 29 JCH JUB 1 JUB KURWA 1 JUB DINDI 9 JUB MATHI 3
JUB MINGK 8 JUB AGOK 10 JUB MABAN 63 JUB HSAK 4 JUB MINGK 1
JUB PADEA 6 JUB BOMA 1 JUB MAK 17 JUB HSPA 3 JUB PALON 10
JUB RUM 24 JUB GANY 5 JUB MINGK 3 JUB HSRN 4 JUB PIBR 19
JUB WAU 22 JUB HSPA 4 JUB MOTO 3 JUB HSTR 6 JUB RUB 18
JUB YAM 29 JUB HSRN 6 JUB NEWFG 8 JUB JIKMI 11 JUB UDR 1
JUB YIDA 4 JUB HSTR 6 JUB NIMU 1 JUB KJK 5 JUB YAM 10
KAPO JUB 6 JUB JCH 5 JUB NYAL 4 JUB KOCH 8 JUB YIM 7
LER DINDI 9 JUB KUAJK 9 JUB OLDFG 10 JUB KUAJK 3 MABAN JUB 20
LKEN JUB 4 JUB MABR 5 JUB RUB 46 JUB MANK 7 MAK JUB 25
MAK JUB 13 JUB MARID 4 JUB RUM 4 JUB MATHI 9 MANDE JUB 8
MINGK JUB 2 JUB MOGOK 1 JUB TAMBU 3 JUB NIMU 5 MINGK JUB 3
RUM JUB 8 JUB MUNDR 1 JUB UI-ANG 20 JUB RUM 7 PIBR JUB 12
WAU JUB 17 JUB NYAL 2 JUB WAU 7 JUB WAU 6 RUB JUB 28
YAM JUB 15 JUB PAGL 1 JUB YAM 19 JUB WGK 18 WAU JUB 9
YIDA JUB 1 JUB PIBR 14 JUB YEI 1 JUB YEI 5 WCHJL JUB 3

JUB POCAL 7 JUB YIM 3 JUB VIROL 3 YAM JUB 12
JUB RUM 24 MABAN JUB 32 KJK JUB 1 YEI JUB 4
JUB WAU 13 MAK JUB 19 KOCH JUB 6 YIDA JUB 9
JUB YET 16 MINGK BOR 1 KUAJK JUB 11
KUAJK JUB 12 MINGK JUB 1 MANK JUB 7
MABR BOR 1 MOTO JUB 3 MATHI JUB 2
MABR JUB 7 NEWFG JUB 10 NIMU JUB 3
MARD JUB 2 NYAL JUB 2 RUM JUB 15
NYAL JUB 4 OLDFG JUB 1 WAU JUB 13
PAGL JUB 1 RUB JUB 29 YEI JUB 15
PIBR BOR 8 RUM JUB 6 YIROL JUB 5
PIBR JUB 10 TAMBU JUB 2
POCAL BOR 1 ULANG JUB 10
POCAL JUB 2 WAU JUB 7
RUM JUB 7 YAM JUB 9
WAU JUB 16 YEI JUB 1
YEI JUB 8 YIDA JUB 3
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Table 19: Original weekly demand matrix for South Sudan UNHAS mission from the 30/09/2019 - 04/10/2019

From To Pax From To Pax From To Pax

Rumbek Juba 36 Pochalla Juba 2 Juba Koch 8
Wau Juba 63 Rubkona Juba 57 Juba Kuajok 12
Bor Juba 37 Tambura Juba 6 Juba Kurwai 1
Malakal Juba 57 Ulang Juba 10 Juba Maban 91
Ajuong Thok Juba 42 Wiechjol LZ Juba 3 Juba Mabior 5
Torit Juba 29 Yei Juba 28 Juba Mankien 7
Kapoeta Juba 6 Yirol Juba 5 Juba Maridi 4
Lankien Juba 4 Juba Rumbek 60 Juba Mogok 1
Mingkaman Juba 6 Juba Wau 48 Juba Motot 3
Yambio Juba 36 Juba Bor 54 Juba Nimule 6
Yida Juba 13 Juba Malakal 59 Juba Pagil 1
Agok Juba 11 Juba Ajuong Thok 35 Juba Yirol 3
Boma Juba 3 Juba Torit 24 Juba Palouny 10
BUOT Juba 3 Juba Kapoeta 11 Juba Pibor 33
Ganyiel Juba 4 Juba Keew 3 Juba Rubkona 64
Akobo Juba 15 Juba Lankien 12 Juba Tambura 3
Paloich Juba 3 Juba Mingkaman 12 Juba Udier 1
Renk Juba 25 Juba Padeah 6 Juba Ulang 20
Jiech Juba 1 Juba Yambio 58 Juba Walgal 18
Jikmir Juba 5 Juba Yida 14 Juba Yei 22
Kajo Keji Juba 1 Juba Dindin 18 Rumbek Mathiang 12
Koch Juba 6 Juba Agok 20 Mathiang Rumbek 2
Kuajok Juba 23 Juba Mundri 1 Bor Mabior 1
Maban Juba 52 Juba Nyal 6 Bor Akobo 1
Mabior Juba 7 Juba Old Fangak 10 Bor Labrab 6
Mandeng Juba 8 Juba Ganyiel 5 Bor Maruw 6
Mankien Juba 7 Juba Mundri 1 Akobo Bor 2
Maridi Juba 2 Juba New Fankgak 8 Mabior Bor 1
Motot Juba 3 Juba Boma 1 Motot Bor 1
New Fankgak Juba 10 Juba Akobo 10 Pibor Bor 8
Nimule Juba 3 Juba Paloich 7 Pochalla Bor 1
Nyal Juba 6 Juba Renk 20 Mingkaman Bor 1
Old Fangak Juba 1 Juba Jiech 5 Leer Dindin 9
Pagil Juba 1 Juba Jikmir 11 Gorwai Haat 17
Pibor Juba 22 Juba Kajo Keji 5 Buot Karmoun 15

B Appendix 2 - Multi-commodity network flow results

B.1 Multi-commodity aircraft flows

Weekly passenger flows for the South Sudan UNHAS mission can be found in Figures 10 to 12 and the related
aircraft flows are presented in Figures 13 to 18. They illustrate how a Hub and Spoke model can be used to
transfer passengers throughout the network. Certain airports are very close together (ex. Yida and Ajuong
Thok) but are modelled as two different spokes. Servicing requests to these destinations without considering
routing between them is far from real-world operations, which entails the use of a more precise routing model.
Because the Multi-commodity network flow model cannot take refueling into account, the range of MI8 heli-
copters were fictitiously increased in order to account for helipad only destinations which can only be reached
with a fuel stop.
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Figure 10: Direct passenger flows for South Sudan UNHAS weekly demand (30/09/2019 - 04/10/2019)

Figure 11: 1st leg transfer Passenger flows for South Sudan UNHAS weekly demand (30/09/2019 - 04/10/2019)
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Figure 12: 2nd leg transfer Passenger flows for South Sudan UNHAS weekly demand (30/09/2019 - 04/10/2019)

Figure 13: Cessna 208B-Juba weekly vehicle flows
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Figure 14: Cessna 208B-Rumbek weekly vehicle flows

Figure 15: Cessna 208B-Wau weekly vehicle flows
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Figure 16: DCH8-3 - Juba weekly vehicle flows

Figure 17: MI8-Juba weekly vehicle flows
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Figure 18: MI8-Rumbek weekly vehicle flows
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From To Pax From To Pax From To Pax

Juba Rumbek 181 Rumbek Mabior 5 Pochalla Juba 3
Juba Wau 144 Rumbek Mathiang 12 Rubkona Juba 57
Juba Bor 84 Rumbek Mogok 1 Torit Juba 29
Juba Malakal 49 Rumbek Motot 3 Ulang Juba 10
Juba Torit 24 Rumbek New Fankgak 8 Wau Juba 147
Juba Kapoeta 11 Rumbek Nyal 6 Wiechjol LZ Juba 3
Juba Lankien 12 Rumbek Pagil 1 Yambio Juba 36
Juba Mingkaman 12 Rumbek Yirol 3 Yei Juba 28
Juba Yambio 58 Rumebk Walgal 6 Ajuong Thok Rumbek 36
Juba Boma 1 Wau Ajuong Thok 12 BUOT Rumbek 18
Juba Akobo 11 Wau Keew 3 Ganyiel Rumbek 4
Juba Jikmir 11 Wau Yida 14 Gorwai Rumbek 17
Juba Kajo Keji 5 Wau Agok 20 Jiech Rumbek 1
Juba Maban 91 Wau Paloich 7 Koch Rumbek 6
Juba Maridi 4 Wau Renk 8 Leer Rumbek 9
Juba Mundri 1 Wau Kuajok 12 Mabior Rumbek 8
Juba Nimule 6 Wau Mankien 7 Malakal Rumbek 8
Juba Pibor 33 Wau Old Fangak 10 Mandeng Rumbek 8
Juba Rubkona 64 Wau Tambura 3 Mathiang Rumbek 2
Juba Udier 1 Bor Juba 38 Motot Rumbek 4
Juba Ulang 12 Bor labrab 6 New Fankgak Rumbek 10
Juba Walgal 12 Bor Maruw 6 Nyal Rumbek 6
Juba Yei 22 Bor Palouny 10 Pagil Rumbek 1
Rumbek Juba 145 Bor Ulang 8 Renk Rumbek 11
Rumbek Bor 2 Akobo Juba 17 Yirol Rumbek 5
Rumbek Malakal 10 Boma Juba 3 Agok Wau 11
Rumbek Ajuong Thok 23 Jikmir Juba 5 Ajuong Thok Wau 6
Rumbek Padeah 6 Kajo Keji Juba 1 Kuajok Wau 23
Rumbek Dindin 27 Kapoeta Juba 6 Mankien Wau 7
Rumbek Ganyiel 5 Lankien Juba 4 Old Fangak Wau 1
Rumbek Haat 17 Maban Juba 52 Paloich Wau 3
Rumbek Renk 12 Malakal Juba 49 Renk Wau 14
Rumbek Jiech 5 Maridi Juba 2 Tambura Wau 6
Rumbek Karmoun 15 Mingkaman Juba 7 Yida Wau 13
Rumbek Koch 8 Nimule Juba 3
Rumbek Kurwai 1 Pibor Juba 30

Table 20: Modified weekly demand for South Sudan UNHAS mission from the 30/09/2019 - 04/10/2019

C Appendix 3 - Verification

C.1 Verification of the HFSMVRP model

Verifying the models was done through the use of a straightforward and simple case study with the objective
being to ensure the constraints behave according to expectations. In order to verify the HFSMVRP model, the
unit-less input data is used presented in Table 21 and Table 22. The different scenarios that are tested along
with the aspects of the model they verify are shown in Table 23.

Table 21: Airport data for the verification case

Airport Index Depot Latitude Longitude Runway [m] Refuel coefficient

A 0 0 0 0 1000 0
B 1 1 0 3 1000 0
C 2 0 4 0 1000 0

Fuel 3 0 0,5 1 1000 2
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Table 23: Verification scenarios

Scenario Constraint verification Eq. Aircraft Max. trips per ac Request To From Pax

1 Multi-trip
Flow conservation 1d AC 2, AC 3 2 0

1
A
B

C
C

2
2

2 Multi-depot
Objective function

1b, 1c, 1e
1a AC 1, AC 2 2 0

1
A
B

C
C

2
3

3
Split requests
Capacity
Request satisfaction

1f
1k
1j, 1i

AC 1, AC 2 2 0 A C 5

4 Loading and unloading 1g,1h,1l AC 2 1

0
1
2
3

B
B
A
C

C
A
C
B

2
1
2
3

5 Daily utilisation
Weekly utilisation

1n
1m AC 1, AC 2 10 0 A C 0-25

6 Range
Refueling

1o
1p, 3,4 AC 1 1 0 B C 2

Table 22: Aircraft data for the verification case

Aircraft Depot Speed Seats Operational
costs

Lease
costs Range Block

time day
Block

time week TAT Runway
requirement

Fuel
cost

AC 1 A 1 2 4 1 10 15 30 0,5 100 1
AC 2 B 1 3 3 2 12 20 30 0,5 100 1
AC 3 A 1 3 1 1 12 15 30 0,5 3000 1

Multi-depot, Multi-trip constraints
Equation 1b, Equation 1c and Equation 1e represent the multi-depot aspect of the formulation and constrain
all vehicles to start and end their trips at their corresponding base. While the first two limit the amount of
trips allowed per aircraft from their respective depots and bound the ack decision variable (amount of aircraft
per types), the third constraint ensures that each trip ends and begins at the aircraft type’s hub. Finally, these
3 constraints must be combined with the aircraft flow conservation constraint in Equation 1d in order to create
a fully consistent multi-depot, multi-trip formulation.

Scenario 1 is used to verify the Multi-trip property of the model and the flow conservation constraint. Two
requests are created which in total have more passengers the maximum capacity of Aircraft 2 or 3. In this way
it is expected that two trips will have to be made, leaving and ending at the vehicle’s depot B. Due to the fact
Request 1 originates in A and ends in C, the aircraft will have to first fly empty to A and pick up passengers,
then fly to C to deliver them, and finally fly back to the depot empty. Although Aircraft 3 is available and
cheaper to operate in every aspect, it is not chosen as its runway requirements are not met. 19(a) and 19(b)
presents the aircraft flows and verify that multiple trips by the same vehicle are possible, and that the vehicle
flow conservation is ensured.

(a) Aircraft 2, trip 1 (b) Aircraft 2, trip 2

Figure 19: Verification of Scenario 1, Aircraft flows
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Table 24: Results for the verification of Scenario 1

Aircraft Trip Leg From To Pick-up Delivery Pax Leg dist. Leg cost

AC 2

1 1 B C r1(1) r1(1) 1 5 15
2 C B - - 0 5 15

2
1 B A r1(1) - 1 3 9
2 A C r2(2) r1(1), r2(2) 3 4 12
3 C B - - 0 5 15

Aircraft lease costs 2
Routing costs 66
Objective function 68

Scenario 2 is used to verify the Multi-depot property of the model and the objective function. Two aircraft are
available at two different depots and the model is prompted to choose the best fleet to serve two different re-
quests. It is expected that the trade off between aircraft leasing costs and routing costs results in a combination
of both vehicles, satisfying the requests originating from their respective depots. This is confirmed as can be
seen in 20(a) and 20(b).

(a) Aircraft 1, trip 1 (b) Aircraft 2, trip 1

Figure 20: Verification of Scenario 2, Aircraft flows

Table 25: Results for the verification of Scenario 2

Aircraft Trip Leg From To Pick-up Delivery Pax Leg dist. Leg cost

AC 1 1 1 A C r0(2) r0(2) 2 4 16
2 C A - - 0 4 16

AC 2 1 1 B C r1(2) r1(2) 2 5 15
2 C B - - 0 5 15

Aircraft lease costs 3
Routing costs 62
Objective function 65

Split request, request satisfaction and capacity constraint
Splitting requests between different aircraft and trips is ensured by Equation 1f. Requests can be split between
different aircraft and different trips. This is ensured by allowing vehicles to visit nodes more than once. Further-
more, the constraints in Equation 1j and Equation 1i are needed to specify that the sum of all passengers from
a request over all vehicle trips must be equal to the total amount of passengers to be picked-up and delivered
from the respective request. Finally, Equation 1k ensures that the amount of passengers on a flight leg does not
surpass the amount of seats.
These three constraints are verified by scenario 3 where a request of 5 passengers is made, larger than both
aircraft capacities. As expected, the passengers are split up between different paths and vehicles, and the total
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request is satisfied. This is illustrated by 21(a) and 21(b).

(a) Aircraft 1, trip 1 (b) Aircraft 2, trip 1

Figure 21: Verification of Scenario 3, Aircraft flows

Table 26: Results for the verification of Scenario 3

Aircraft Trip Leg From To Pick-up Delivery Pax Leg dist. Leg cost

AC 1 1 1 A C r0(2) r0(2) 2 4 16
2 C A - - 0 4 16

AC 2 1
1 B A - - 0 3 9
2 A C r2(3) r2(3) 3 4 12
3 C B - - 0 5 15

Aircraft lease costs 3
Routing costs 68
Objective function 71

Loading constraints
Equation 1g and Equation 1h account for the simultaneous pick up and delivery of passengers while ensuring
the loading on a flight leg is lower than the maximum amount of seats on the selected aircraft type. Both
constraints originate from Equation 6, but were linearised in order to be used consistently in the formulation.
The equation states that if a node j is visited by an aircraft, the loading on the flight leg before and after the
visit must be balanced out by the amount of passengers picked-up or delivered at that same node. The term ↵r

j

is either equal to �1 if passengers from request r are dropped off at node j, equal to 1 if passengers are picked
up, or 0 if no passenger movement is made.

xkp
ij (u

krp
ij + qkrpj ↵r

j � ukrp
ji ) = 0 8i 2 N, j 2 N, r 2 R, k 2 K, p 2 P (6)

Equation 6 is the product of the binary variable xkp
ij and an expression made up of continuous variables (ukrp

ij +

qkrpj ↵r
j � ukrp

ji ). It is therefore a non-linear, non-convex constraint of the form z = x · y with y having a lower
bound of �Qk and an upper bound of +Qk, the capacity of the vehicle in question. McCormick Envelopes can
thus be used to recreate a convex set of constraints by the following four expressions in Equations 7, 8, 9 and
10.

z � yLx+ yxL � yLxL (7)

z  yUx+ yxL � yUxL (8)

z � yUx+ yxU � yUxU (9)

z � yUx+ yxL � yLxU (10)
(11)
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The results of the convex relaxation and the new loading constraints can be seen in Equations 12, 13,14 and
15.

0 � �Qkxkp
ij 8i 2 N, j 2 N, k 2 K, p 2 P (12)

0  Qkxkp
ij 8i 2 N, j 2 N, k 2 K, p 2 P (13)

0 � (ukrp
ij + qkrpj ↵r

j � ukrp
ji ) + xkp

ij Q
k �Qk 8i 2 N, j 2 N, r 2 R, k 2 K, p 2 P (14)

0  (ukrp
ij + qkrpj ↵r

j � ukrp
ji )� xkp

ij Q
k �Qk 8i 2 N, j 2 N, r 2 R, k 2 K, p 2 P (15)

Equation 12 and Equation 13 are redundant and therefore left aside. The loading and unloading constraints
must be combined with Equation 1l to ensure that passenger pick-up and deliveries can only made if an aircraft
visits that airport. The loading constraints are verified using scenario 4 where different requests are to be picked
up and delivered at different nodes of the network. Aircraft 2 is selected as it has enough capacity to mix and
match all different requests using one single route.

Figure 22: Verification of Scenario 4, Aircraft flows

Table 27: Results for the verification of Scenario 4

Aircraft Trip Leg From To Pick-up Delivery Pax Leg dist. Leg cost

AC 2 1
1 B A r0(2), r1(1) r0(2) 3 3 9
2 A C r2(2) r2(2), r1(1) 3 4 12
3 C B r3(3) r3(3) 3 5 15

Aircraft lease costs 2
Routing costs 36
Objective function 38

Utilisation constraints
Equation 1m and Equation 1n ensure that individual aircraft do not fly more than they are allowed to on a daily
and weekly basis. The weekly utilisation constraint ensures that the total amount of flight and turn-around time
over different days and trips per aircraft does not surpass 42.5 hours. If this is the case, the decision variable ack

is increased to account for adding an additional aircraft to the fleet. The daily utilisation constraint ensures the
aircraft utilisation per day does not surpass 8.5 hours over all trips. Scenario 5 is used to to verify the utilisation
constraints. An increasing demand is created iteratively, from 0 passengers to 25, all originating from A and
terminating at C. When Aircraft 2 surpasses its weekly utilisation, the decision variable ack increases by one
indicating that another aircraft is needed to carry out the requests. Figure 23 shows the interaction between
passenger requests, block hours and aircraft selection. As the number of passenger increases, so do the required
block hours and therefore the number of Aircraft 2 needed to transport the total demand withing the weekly
time frame. Aircraft 1 is also chosen for certain passenger numbers as the model trades off between leg costs
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and aircraft leasing costs.

Figure 23: Verification of Scenario 5, Evolution of the amount of aircraft needed per type and block hours in
function of passengers transported

Range and refueling constraints
Range and refuelling are taken into account in Equation 1o and Equation 1p, in combination with the lazy
constraints in section 3.2.2. The choice of refuelling is added to the range constraint by extending the aircraft’s
maximum range by two in a specific trip if the vehicle visits a refueling airport. Depending on the cost of fuel,
the objective function is increased accordingly in order to penalize refueling stops. The costs of each arcs leaving
a refuelling node includes the costs of that specific arc and an extra-term associated to the cost of refuelling.
The cost of refuelling is approximated by multiplying half the maximum range of an aircraft k by its cost of fuel
per km, and a coefficient associated to the price of fuel at the specific airport. The lazy constraints in Equation 3
and Equation 4 ensure that an aircraft refuels at an appropriate point in its route. Scenario 6A and 6B are used
to verify these constraints. Aircraft 1 having only a range of 10 units and the path A-B-C-A having a length of
12 units, if refueling is not used, the requests cannot be satisfied. Once the option of refueling is added, Aircraft
1 is able to fulfill the requests. The verification scenario 6a is first run without the lazy constraint. The result
can be seen in 24(a). Although Aircraft 1 has refueled and its total range has been increased, the length of the
path between the refuel stop and the depot is 11,5 units, still larger than its maximum range. Once the lazy
constraint is implemented in scenario 6b, the correct path can be observed in 24(b).

(a) Aircraft 1, trip 1, (infeasible refuelling) (b) Aircraft 1, trip 1 (feasible refuelling)

Figure 24: Verification of Scenario 6, Aircraft flows
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Table 28: Results for the verification of Scenario 6 (feasible refuelling

Aircraft Trip Leg From To Pick-up Delivery Pax Leg dist. Leg cost

AC 1 1

1 A Fuel - - 0 1,12 4,48
2 Fuel B - - 0 2.06 8.24
3 B C r0(2) r0(2) 2 5 20
4 C A - - 0 4 16

Aircraft lease costs 1
Routing costs 48.72
Refueling costs 21
Objective function 69.72

D Appendix 4 - Clustering Algorithm results

D.1 Appendix 4 - Clustering Algorithm sensitivity analysis

(a) 1000m runway airport clustering (k=4) (b) 1000m runway airport clustering (k=5) flows

(c) 1000m runway airport clustering (k=6) (d) 1000m runway airport clustering (k=7)

7
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(e) 1000m runway airport clustering (k=8) (f) 1000m runway airport clustering (k=9)

(g) 1000m runway airport clustering (k=10) (h) 1000m runway airport clustering (k=11)

Figure 25: 1000m runway airport clustering for k clusters between 4 and 11

D.2 Appendix 4 - Clustering Algorithm for helipads in South Sudan during the

rainy season

(a) Clustering algorithm results for helicopter accessible airports
during the rainy season

(b) "Elbow" graph corresponding to the clustering of Figure
26(a)

Figure 26: Clustering algorithm applied to helipads in South Sudan during the rainy season

E Appendix 5 - Weekly schedules
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F Appendix 6 - Daily scheduling

F.1 Results for the daily test cases

Table 31: Results for the daily demand of the 30/10/2019

Model variant Routing costs [$] Obj. Aircraft Fleet

HFOM 55,085.3 - 10 DQ(1),D81(1),D82(1),Le(2),MI8J(1),MI8R(2),CR(1),CW(1)
Flight planner 54,700.8 - - -
HFSMVRP (fixed) 65,987.2 809,756 6 DQ(1), D8(1), CJ(1),CR(1), Do(1) MI8_R(1)
HFSMVRP (variable) 63,632.1 783,783 6 D8(1), Do(3), MI8J(1), MI8R(1)
MCNF & HFSMVRP (fixed) 55,746.7 612,913 6 DQ(1), D8(1), CJ(1),CR(1), CW(1), MI8_R(1)
MCNF & HFSMVRP (variable) 60,813.3 614,905 6 DQ(1), D8(1), Do(1), CR(1), CW(1), MI8_R(1)
MCNF & HFSMVRP (fixed/No lease costs) 47,222.6 47,222.6 10 DQ(1),D83(1),D82(1), CJ(1),CR(1),CW(1),Le(1),MI8_J(1),MI8_R(1),

Table 32: Results for the daily demand of the 01/10/2019

Model variant Routing costs [$] Obj. Aircraft Fleet

HFOM 61,077.2 - 9 DQ(1),D81(1),D82(1),Do(1),Le(2),CJ(1),CR(1),MI8R(1),
Flight planner 57,900.6 - - -
HFSMVRP (fixed ) 69,733.3 882,280 7 D8(1), CJ(1), Do(2), Le(1), MI8J(2)
HFSMVRP (variable ) 61,851.5 843,424 7 D8(1), CJ(3), Do(1), MI8J(2)
MCNF & HFSMVRP (fixed ) 57,528.0 827,331 7 DQ(1), CR(1), CW(1), Do(2), MI8R(2)
MCNF & HFSMVRP (variable ) 54,211.3 827,291 7 DQ(1), CJ(2), CR(1), Do(1), MI8R(2)
MCNF & HFSMVRP (fixed / No lease costs) 54,732.6 54,732.6 8 DQ(1),D82(1),CJ(1),CR(1),CW(1),Do(1),MI8R(2)

Table 33: Results for the daily demand of the 02/10/2019

Model variant Routing costs[$] Obj. Aircraft Fleet

HFOM 95,531.1 - 12 DQ(1),D81(1),D82(1),CJ(1),CW(1),Do(2),Le(1),MI8J(2),MI8R(2)
Flight planner 95,600.7 - - -
HFSMVRP (fixed ) 102,897 1,167,394 10 DQ(1), D8(1),D82(1),CJ(1),Do(2),CR(1),Le(2),MI8J(1), MI8R(1)
HFSMVRP (Variable ) 99,897 1,130,786 9 D81(2), CJ(4), Do(1), MI8J(2)
MCNF & HFSMVRP (fixed ) 93,496.9 1,080,896 9 DQ(1),D81(1),D82(1),CJ(1),CR(1),CW(1),MI8J(1), MI8R(1)
MCNF & HFSMVRP (variable ) 91,184.5 1,078,658 9 D8(2), CR(3), CW(1),Do(1), MI8R(2)
MCNF & HFSMVRP (fixed / No lease costs) 85,427.4 118,549 10 DQ(1),D83(1),D82(1),CJ(1),CR(1),CW(1), Do(1), Le(1),MI8R(1),MI8J(1)

Table 34: Results for the daily demand of the 03/10/2019

Model variant Routing costs [$] Obj. Aircraft Fleet

HFOM 69,466.5 - 9 DQ(1),D81(1),CJ(1),CR(1),CW(1),Do(1),Le(1),MI8R(1),MI8J(1)
Flight planner 60,200.9 - -
HFSMVRP (fixed ) 82,289.3 869,037 8 D8(1),CJ(1),Do(2),CR(1),Le(2),MI8J(1)
HFSMVRP(Variable ) 66,087.6 709,668 7 D8(1), CJ(4), Do(1), MI8J(1)
MCNF & HFSMVRP (fixed ) 58,617.2 696,114 7 DQ(1), CJ(1), CR(1), CW(1), Do(2), MI8R(1)
MCNF & HFSMVRP (variable ) 59,173.5 697,314 7 DQ(1), CR(1), CW(2), Do(2), MI8R(1)
MCNF & HFSMVRP (fixed / No lease costs) 57,613.7 91,701 7 DQ(1),D82(1), CJ(1),CR(1), CW(1), Do(1), Le(1), MI8R(1)

Table 35: Results for the daily demand of the 04/10/2019

Model variant Routing costs [$] Obj. Aircraft Fleet

HFOM 91,766.8 - 10 DQ(1),D81(1),D82(1), Le(1),Do(2), MI8J(2),MI8R(1), CW(1)
Flight planner 90,500.3 - - -
HFSMVRP (fixed ) 88,976.6 915,608 7 DQ(1), D8(1), CJ(1), CR(1), Do(1), MI8J(2)
HFSMVRP(Variable ) 67,000.4 899,394 7 D8(2), CJ(2), Do(1), MI8J(2)
MCF & HFSMVRP (fixed ) 67,939.0 984,906 8 DQ(1), D81(1), D82(1) CJ(1), CR(1), Do(1), MI8J(1), MI8R(1)
MCF & HFSMVRP (variable ) 66,089.1 892,861 7 DQ(1), D8(1), CR(2), Do(1), MI8J(1), MI8R(1)
MCF & HFSMVRP (fixed / No lease costs) 65,189.7 101,255 9 D83(1),D82(1),F50(1),CJ(1),CR(1),CW(1),Do(1),MI8J(1),MI8R(1)

F.2 Daily schedules for the MCF & HFSMVRP combination for a fixed fleet

without leasing costs
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G Appendix 8 - Published South Sudan UNHAS documents

G.1 UNHAS weekly schedule

Figure 27: Published UNHAS flight schedule for South Sudan, effective 01/11/2020) UNHAS, (2020)
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1
Introduction

1.1. Background
Logistics and transportation have a direct impact on the effectiveness and efficiency of humanitarian
missions, amounting to the second largest expenditure for international humanitarian organisations
[59]. Yet, Operations Research (OR) has hardly been applied to the humanitarian sector compared to
the commercial one, mostly due to the unpredictable, last-minute and dangerous nature of it’s opera-
tions. With humanitarian crises on the rise and NGO funding stagnating, there is an increasing need
for improvements in effectiveness and efficiency of humanitarian air operations [49]. In 2019, UNHAS
transported approximately 412,000 passengers to and from areas affected by crises. In South Sudan
alone, UNHAS operated it’s biggest fleet with 10 passenger aircraft and 4 helicopters [61]. Despite
this, most planning processes such as the creation of weekly flight schedules and daily routings are
still carried out manually. An audit document released by the World Food Program (WFP) in 2020
revealed several downfalls regarding UNHAS’s ageing fleet, it’s aircraft contracting process and the lack
of automation and accountability in their operations [14]. It brought to light the need for UNHAS
to implement data-driven decision support tools to help increase the effectiveness and efficiency of it’s
overall air operations. Following in the footsteps of [43] and [45] on the optimisation of daily routing and
scheduling for humanitarian air operations, the proposed study will focus on optimising the UNHAS
fleet planning process by finding an optimal fleet and an optimal weekly flight schedule.

Fleet planning is a common problem addressed in industry and academia for all transportation modes.
It consists of selecting an optimal fleet by addressing the following 3 questions: Which type of vehicle
should I buy? How many of each do I need? When should I acquire them? Minimum-cost, multi-
commodity network flow models and Mixed-Integer Linear Programming (MILP) models are most
commonly used to solve these optimisation problems [18]. However in order to take into account rout-
ing considerations and the intricacies of the problem at hand, a VRP was deemed most appropriate.
VRPs and their variants are NP-hard, combinatorial optimisation and integer programming problems,
extensively studied over the past decades in the field of OR. The novelty of the proposed research
problem lies in the fact that no such formulation or model have been created to tackle simultaneously
aircraft fleet planning and weekly scheduling, in the humanitarian sector.

1.2. Research Objective and Context
The main objective of this study is to “Contribute to improving accountability and automation
in humanitarian fleet planning by creating a fleet sizing and weekly flight scheduling
decision support tool which can increase the efficiency and effectiveness of humanitarian
air operation.” The context of this thesis will focus on UNHAS passenger transport operations, using
South Sudan as cases study. The 2020 audit of the WFP aviation and UNHAS has revealed the need
for more accountability and automation in it’s fleet planning process and weekly flight scheduling.
There is an opportunity to create a data-driven decision support tool which can help in determining
an optimal fleet and weekly schedules for humanitarian air operations. This could highly benefit the
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58 1. Introduction

service and it’s users in the long term by reducing costs and increasing demand satisfaction. Fleet
planning combined with network design or stochastic models cannot capture in enough detail complex
air operations on a tactical to operational time-frame. They focus on the long-term planning horizon
where less information is know and make fleeting decisions based flight leg frequency per aircraft type,
without taking into account detailed routing considerations. A FSMVRP formulation such as the
one presented by [28] incorporating Multi-depot, Split loads and Simultaneous Pick up and Delivery
is deemed to be the most appropriate model to tackle fleet planning and weekly humanitarian air
operations. This is because it can easily correlate passenger flows with individual aircraft flows, giving
much more flexibility in modelling the specifics of humanitarian operations. Possibilities like splitting
passenger requests and keeping track of individual aircraft paths are easily implemented and will allow
a more comprehensive understanding of the operations. In order to take into account South Sudan’s
changing seasons and corresponding operational challenges, different strategies will be created to find
an optimal fleet for both the dry and rainy seasons, similarly to [53]. The size of the problem will most
likely lead to the implementation of heuristics or meta-heuristics such as a Tabu Search algorithm to
find sub-optimal solutions.

1.3. Research Questions
To which extent can a FSMVRP model determine an optimal fleet size and composition for
weekly humanitarian air operations using as input a forecasted demand and corresponding
origin and destination pairs?

1. To which extent can the Multi-Depot, Split Load and Simultaneous Delivery and
Pick-Up VRP variants be combined with the FSMVRP formulation to create a con-
sistent MILP model? A novel formulation based on [28] FSMVRP will need to be created
combining different VRP variants. This implies that the original objective functions, decision
variables and constraints might not be consistent with each other and adaptations/additions will
be needed

2. Can such a model be used to simultaneously size an aircraft fleet and determine
a feasible weekly preliminary flight schedule? The UNHAS weekly preliminary schedule
drives the humanitarian community’s flight bookings. Weekly schedules repeat for multiple months
without changes. Determining an optimal fleet for UNHAS operations can be assumed to be
equivalent to determining the optimal fleet for 1 week of operations.

3. To which extent can the model improve the efficiency and effectiveness of humani-
tarian air operations? Unlike traditional airlines, humanitarian aviation efficiency is mostly
defined by minimizing operational and vehicle acquisition costs. Effectiveness is mainly defined
by maximizing the humanitarian demand satisfaction. Both of these parameters can be compared
to current operations and indicate whether a better flight schedule and fleet can be found, along
with accounting for different performance indicators. One must still determine to which extent
the assumptions and modeling simplifications limit the real-life case.

4. Can such a model determine an optimal fleet adapted to at least 2 periods with
different operational constraints? South Sudan experiences 2 different seasons over the year:
the dry season and the wet season. During the wet season, certain airports are only accessible with
specific aircraft. During a UNHAS mission, the fleet reviewed every 3 to 6 months: finding an
optimal fleet suited to both seasons would greatly affect UNHAS’s contracting and asset renewal
decision. Similarly to [53], different strategies will need to be developed in order to find a multi-
period optimal fleet.

1.4. Report Structure
In chapter 2, the field of humanitarian aviation is explored. The predominant stakeholders are presented
along with their operating environments. A detailed comparison is made between the traditional airline
and humanitarian planning processes. Finally, the main operational and organisational challenges that
face UNHAS and it’s users are defined, based on an audit of the 2020 World Food Program (WFP)
Finance Committee. In chapter 3, an overview of common optimisation techniques used in Operations
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Research is given. The chapter focuses on network flow problems along with their linear programming
formulations and applications. Chapter 4 dives into fleet planning by reviewing mathematical models
for different applications related to network design, demand uncertainty and routing. Aircraft routing
and scheduling is covered in chapter 5 by comparing the traditional commercial airline methods to the
humanitarian ones.





2
Humanitarian air operations

This chapter provides an overview of the different aspects of humanitarian aviation and defines the
operating environment and challenges it is faced with. Firstly, the main operators and users are defined
in Section 2.1. In Section 2.2, a comparison is made between the humanitarian and commercial aviation
planning process. The South Sudan UNHAS mission is then analysed in Section 2.3.

2.1. Humanitarian aviation services
Humanitarian aviation is divided in two groups, peacekeeping air services related to military interven-
tions, and humanitarian relief services. This literature study will focus on the latter. In Subsection
2.1.1 and 2.1.2, UNHAS and Non-Governmental Organisations (NGO) are defined respectively.

2.1.1. United Nations Humanitarian Air Services
At the time of writing, 1 in 9 people on Earth are malnourished. The WFP is the largest humanitarian
organization in the world actively addressing the issue of malnutrition and has taken on the difficult
mandate of ending world hunger by 2030 [62]. The WFP strives to accomplish this goal by providing
food-related emergency assistance to affected communities all over the world. The WFP’s aviation
service is a crucial part of this process, facilitating access to remote areas that others cannot reach.
When trucks, boats and other transportation means are not available, humanitarian cargo is delivered
in the form of airfreight, airlifts and airdrops by a fleet of around 90 aircraft and helicopters. The WFP
aviation service also facilitates the transportation of essential emergency staff. In January 2004, the
UNHAS was created and became the WFP’s passenger and light cargo transport service. It’s mandate
is to provide “safe, efficient, responsive and cost-effective” air transport for the United Nation’s staff,
Non-Governmental Organisation (NGOs) and the wider humanitarian community. The WFP aviation
distinguishes 3 different types of services:

1. UNHAS: light cargo and passengers transport to areas not accessible by other transportation
means;

2. Exceptional aviation services : airdrops and medical evacuations when no other service is available;

3. Aviation services for external clients: transport of diplomats, donors, special cargo.

The research presented will focus on passenger transport and therefore UNHAS operations. In 2019,
UNHAS operated in more than 20 countries as can be seen in Figure 2.1, transporting approximately
404,000 passengers and 3,200 Mt of cargo to and from areas affected by crises. With the intention of
providing equal access to aviation services to as many humanitarian actors as possible, its passengers
are on average made up of 55% NGO workers, 41% UN staff and 4 % other [61].
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62 2. Humanitarian air operations

Figure 2.1: World map of UNHAS interventions [61]

2.1.2. Non-Governmental Organisations
NGO passengers are UNHAS’s largest user group. In the broadest terms, NGOs are non-profit, self-
funded associations functioning independently from governments. They act according to a specified
mandate centered around improving development, aid and philanthropy at a community, national or
international level. Different types of NGOs exists, however the focus will be on Operational NGOs.
These organisations design, implement and coordinate projects with the goal of providing relief directly
to endangered populations through logistical help, access to food, healthcare and more. NGOs are more
than half of the passengers transported by UNHAS and drive a big part of network design. The primary
use of air transport for NGOs is to provide quick and safe access for their staff to remote areas not
reachable by other means. Aviation is also used to transport high value items such as cash in order to
avoid targeting and theft risks. Certain NGOs have specialised themselves in Air Transport and provide
an alternative to UNHAS when it is unavailable or when it cannot satisfy all the humanitarian demand.
This is the case for Aviation Without Borders (ASF) whose mission is to:

"[...] provide aeronautical expertise and resources to the humanitarian aid sector and sustainable
development. Neutral, independent and not in competition with local stakeholders, ASF-International

goes where others do not (or no longer go) to allow aid and development stakeholders to access
isolated groups in need [1]."

Based on publications made available by ASF-Belgium, a significant discrepancy has been identified
between the needs of the humanitarian community in terms of air transport, and what is being pro-
vided by UNHAS or other established operators. Using Mali and Burkina Faso as a case studies, and
in close collaboration with the international NGOs operating in the respective countries, ASF Belgium
performed a critical analysis of the air transport services offered by UNHAS and ECHO-Flight [2][3].
The analysis highlighted that throughout their report that in dangerous environments, NGOs are not
offered enough air transport flexibility by humanitarian common services such as UNHAS and ECHO-
Flight to allow their international staff to travel to and from the destinations safely. More specifically,
the dangerous climate in these countries requires NGOs to be able to perform Remote Control missions.
These missions should allow staff to visit certain risky destinations for a limited amount of time, ideally
enabling return trips within the same day. However, the current flight rotation cycles are insufficient or
badly distributed throughout the monthly schedule, making remote monitoring impossible and leaving
NGO staff stranded for multiple days in locations where their safety is compromised. This in turn limits
the help that NGOs can provide to affected populations, which reflects badly on donors and institutions
who fund considerable amounts of these missions.

2.2. Humanitarian vs. Airline planning process
The humanitarian planning process is significantly different to the commercial airline planning process.
Minimizing costs and maximizing demand satisfaction is substituted in place of profit maximisation.
Humanitarian demand satisfaction drives the decision making process and network design instead of
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commercial revenue management. Unexpected disasters lead to unexpected demand peaks and require
a high level of flexibility from the WFP aviation services. This contrasts with the cyclical / seasonal
markets which drive commercial aviation. The UNHAS fleet is mostly operated under monthly wet
lease contracts whereas most legacy commercial airlines purchase their fleets and operate them for
multiple years. Average load factor for UNHAS flights is around 50% compared to an average of 82.5%
for commercial airlines in 2020, according to IATA statistics [29]. Cost per available seat kilometer
(CASK) are of around 1.43 USD, considerably high compared to commercial airlines who keep their
CASK between 0.09 and 0.13 USD [14]. In Figure 2.2, a general overview of the commercial airline
planning process is presented, the same is done afterwards in Figure 2.3 for the humanitarian planning
cycle. A description of the main decisions made for each block is described below [8].

Figure 2.2: General airline planning process

• Network and route planning: Determines the type of network to be operated (hub & spoke /
point-to-point / hybrid) and which routes to fly in order to maximize profitability. This step relies
heavily on passenger forecasting and network flow models which try to simulate the behaviour of
future clients and account for changes in the aviation industry.

• Fleet planning: Determines the amount and type of aircraft to be operated by the airline for a
defined period in the future. Decisions such as aircraft acquisition and leasing over time are also
incorporated in this step, which is highly correlated with the previous planning step as acquiring
new aircraft may lead to new profitable routes and vice versa.

• Frequency planning & timetable development: Determines the amount of times a route is
flown. Increasing frequency increases an airlines market share and the amount of passengers it can
capture. This in turn improves it’s competitive power and passenger convenience. A timetable is
created to match frequencies with peak departure times and maximize aircraft utilisation.

• Fleet assignment: Assigns a aircraft type to a flight leg, often with the aim to minimize oper-
ational costs, maximize revenue or aircraft utilisation. The inputs to this step are a fleet plan, a
departure schedule and multiple operational constraint. Time-space networks are most commonly
used to simulate feasible aircraft paths for all schedule and fleet combinations .

• Aircraft routing and maintenance : Assigns a tail number to a flight leg. This block goes one
step further by considering individual aircraft instead of aircraft types. Integrating it with other
blocks of the planning process such as fleet assignment and timetable development is becoming
increasingly popular in order to simulate more accurately the airline decision making process.

• Crew scheduling: Assigns a cockpit and cabin crew to specific flight leg or route. The objective
is often to minimizes the crew costs while maximizing their satisfaction and taking into account
operational constraints and legalities relating to rest times, qualifications, licensing etc.

In contrast to the long-term commercial airline planning process, humanitarian flight planning relies
on medium to short-term planning decisions as shown in Figure 2.3. A description of the main opera-
tional planning decision steps can be found below based on the WFP Aviation Air Transport Manual
[63].
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Figure 2.3: General humanitarian planning process

• Mission and requirement analysis: In this first step, the Chief of the Aviation Services
(OSCA) determines if the use of WFP Aviation Services is possible and if so, absolutely necessary,
depending on the crisis and type of mission [65]. International, regional and last mile air transport
is taken into consideration and selected if no other transportation means are available.

• Budget and financial feasibility analysis: OSCA’s Budget Unit investigates whether the
air asset part of the special operation under consideration is financially feasible. It must take
into account factors such as donor contributions, funding campaigns, operational budgets, future
unexpected expenses etc. This step determines the total amount of money that can be allocated
to air related assets and mission elements and most importantly, the available budget for aircraft
leasing and operational costs.

• Air Operation Concept design (AOC): Determines the type of network that will be operated
by the aviation services within or close to the affected area in question. The creation of the AOC is
mainly based on the affected country’s or region’s geographical characteristics, the humanitarian
need, available infrastructure and gravity/urgency of the emergency. This step is performed by
the chief of OSCA and the Chief Air Transport Officer (CATO) appointed to the mission. The
CATO is able to provide input and insight obtained from the field in order to help steer decisions
such as which types of aircraft and helicopters are best suited for the mission, which airports and
airfields are available, whether airdrops are needed and more.

• Aircraft contracting: The Procurement Office of the WFP Supply Chain Division and OSCA’s
Air Transport Unit are responsible for aircraft contracting once the AOC has been defined or when
an air charter Request For Offer (RFO) is issued by a CATO / County Office for an on-going
mission. Two types of contracts exists: Air Freight Service Agreements (AFAs) and Air Charter
Agreements (ACAs). AFAs only deal with contracting cargo space on pre-existing flights whereas
ACAs deal with the contracting of entire aircraft in the form of ad-hoc air charter for passengers
or cargo. A diagram of the main considerations taken by the WFp and UNHAS when selecting
appropriate aircraft fleets can be found in Figure 1.2.

• Preliminary weekly scheduling: Every month, a User Group meeting is held at respective
field offices [58]. Users of UNHAS in the affected county establish a monthly forecasted amount
of passengers and their associated origin and destination pairs. New operational constraints and
their consequences are discussed such as road closures, unavailable airstrips, increased insecurity
levels etc. These inputs are used to created weekly preliminary schedules which drive passenger
bookings. These schedules are usually drafted by hand from experience. The aim is to provide
transport to as many passengers as possible while keeping operational costs reasonably low.

• Daily routing and scheduling On a daily basis, the schedule is revised and modified based
on the bookings that have been made by the humanitarian community. Flights with little or no
bookings are canceled before a detailed routing is created for the daily operations. The aim is to
transport all passengers while minimizing the transportation costs.

2.3. South Sudan UNHAS mission
The Republic of South Sudan is the country with the largest UNHAS mission in the world, currently
more than two-thirds of the population is in critical need of humanitarian assistance. UNHAS started
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operating in South Sudan in 2011, the year North and South Sudan officially became separate na-
tions. Since 2005, South Sudan’s population has witnessed a bloody civil war, violent inter-community
clashes, heavy seasonal flooding leading to displacements, extreme famine and more recently risks of
disease outbreaks [61]. This environment also creates significant challenges for humanitarian operations.
The poor infrastructure and growing insecurity limits the use of road networks, which is even more re-
stricted during the rainy season when flooding deprives access to more than half all roads in the country.

UNHAS operates a hub and spoke network in South Sudan, similar to the diagram depicted in Fig-
ure 2.4. An Airport of Entry is designated to receive and concentrate all flows of supplies, passengers
and flights coming into the affected country. This airport is usually the capital international airport
as it often has the largest and most convenient facilities necessary for air transport operations, easy
access to critical resources like fuel and food, and provides international connections for incoming hu-
manitarian staff. This humanitarian hub is then connected to other smaller secondary regional hubs or
directly to delivery airfields. This network influences the fleet that is used and considerations such as
providing helicopter flights to areas where only helipads can be used and not runways. This is often
the case during the rainy season in South Sudan where floods damage roads and runways and render
them unusable by ground transport or aircraft.

Figure 2.4: Example of the Hub & Spoke AOC model

2.4. Gap analysis
Request for UNHAS services have seen a significant rise in the years 2017 to 2019. The countries in
which UNHAS operates has risen by 4, and the passengers transported has increased by 26.4%. This
implies that the service needs to be able to scale rapidly in all domains and remain flexible, from aircraft
contracting and funding to field operations and accountability. According to discussions with experts
on the matter and a WFP audit document, the following areas of improvement have been identified [14].

Accountability and funding
The external audit recognises a lack of accountability when reporting on UNHAS operations. Donors
and the wider humanitarian community would appreciate more transparency on how funding is used by
UNHAS in the context of air operations. A motivation for this is the fact that UNHAS expenditures
are often lower than the predicted budget for specific missions and donor funding is sometime used as
cumulative carry-over. This comes as a surprise to the humanitarian community because UNHAS still
charges NGOs for flight tickets in a "cost-recovery" scheme. By the end of 2019, missions in South Sudan
and Somalia were already funded for 2020. Furthermore, this cost-recovery scheme is rigid and does not
account for differences in the services provided by UNHAS, for example whether local or international
NGOs are being transported. The 2020 WFP audit recommends that the WFP should investigate how
the cost-recovery mechanism could be more suited to the users of the service by diversifying rates and
taking ticket sales into account when creating budgets and incorporating funding expenditure decisions.
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Performance management
Performance management is related to accountability and is crucial when making decisions for future
improvements. The Performance Management Tool (PMT) is available to the UNHAS staff. It uses
TakeFlite data (the Electronic Flight Management Application allowing online passenger bookings) to
track the overall performance of the UNHAS fleet. The PMT evaluates performance based on multi-
ple Key Performance Indicators (KPIs) such as aircraft occupancy rate, number of passengers served,
contracted hours against hours flown, number of requests not filled, etc. It is however mostly used for
monitoring and real-time assessment of operations. A data driven tool to support tactical and opera-
tional decisions has not yet been developed to our knowledge.

Aircraft contracting
Chartered air assets are often contracted under very short notice compared to commercial aviation due
to the fact that UNHAS and the WFP must be flexible and able to respond to emergency situations
rapidly. Aircraft procurement happen around 3 months prior to the assets deployment on the field.
Renewal of air chartered contracts can happens on an even shorter time frame, sometimes up to 2 days
before the expiry of the air charter agreement. No data driven decision support tool is available for
aircraft chartering and contract renewal procedures which is usually based on the UN staff and CATO’s
field experience. The external audit also observed that the whole process is poorly documented and
contract duration/extension poorly justified. Aircraft are contracted under a minimum guaranteed
hours (MGH) agreement which represent the amount of block hours that are expected to be own by
an aircraft and the corresponding price, paid monthly to the lessor. Unfortunately, these are often
miscalculated and each hour under the MGH is lost or each hour own above the MGH is billed at a
higher cost. Specifically to the case of South Sudan, two of the contracted aircraft flew 19% and 35%
less than their originally agreed MGH, leading to questions regarding the robustness of the contracting
process and the estimation of block hours needed to fly each asset. In other UNHAS mission (Yemen,
Nigeria and Democratic Republic of Congo), the initial contracted flying hours were surpassed by at
least 30 hours leading to high costs.

Ageing fleet and environmental impact
The WFP aviation fleet is ageing. Out of a fleet of approximately 90 different models of aircraft in
2019, production has been discontinued in 6. This account for 45% of all chartered aircraft (put in
service circa 1980’s) implying that the WFP and UNHAS will need to re-evaluate their chartered air
assets in the near future. The external auditors recommend that the WFP must look 5 to 10 years in
the future and try to anticipate how many and which type of air assets will be needed. Furthermore,
the use of older aircraft coupled with the increase of WFP’s aviation related activities in the last few
years has not proven to be environmentally friendly. In Figure 2.5, it can be seen that emissions have
increased drastically since 2013. These are due to the recent implication of UNHAS and WFP Avia-
tion in larger humanitarian missions such as South Sudan and Democratic Republic of Congo, which
rely heavily on air transport. The reporting on the environmental impact lacks detail, for example it
does not distinguish between WFP aviation or UNHAS activities, cargo or passenger transport. When
deciding to renew it’s fleet, UNHAS and the WFP are incentivised to consider aircraft that are more
environmentally friendly.
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Figure 2.5: Evolution of WFP CO2 emissions per year and per sector [14]

2.5. Research focus
The focus of this thesis will lie on UNHAS passenger transport operations, using South Sudan as case
study. Therefore, the network that will be under consideration is a Hub & Spoke network centered
around the capital Juba and secondary hubs Wau, Rumbek and Bor. Although the whole humanitarian
community will be taken into account, NGO needs will be mostly considered as they are the primary
users of the service. Subsection 2.1.2 outlined the fact that NGO’s need a more flexible schedule with
more weekly aircraft rotations, providing opportunities for shorter stays in dangerous destinations. Sec-
tion 2.2 highlights the main differences between the commercial and humanitarian planning processes,
where minimizing costs and maximising demand satisfaction is a central objective. In Section 2.4, the
2020 Finance Committee audit of UNHAS has revealed the need for more accountability, transparency
and automation in it’s planning processes. It also highlights the fact that the UNHAS fleet is ageing and
it should be incentivised to renew its air assets while taking into account their environmental impact.
This first chapter therefore reveals the need for the creation of data-driven tactical and operational de-
cision support tools which can increase robustness of humanitarian Fleet Planning processes. Applying
this to aircraft contracting and fleet renewal decisions could highly benefit UNHAS and it’s users in the
long term by reducing costs, increasing demand satisfaction and reducing it’s CO2 emissions.
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Optimisation techniques applied to

Operations Research
Mathematical optimisation is a discipline which allows to translate complex real-life problems into
mathematical models in a way which they can be solved to find optimal or sub-optimal solutions in a
reasonable amount of time. In this chapter, a general overview on Network Flow problems and their
most common mathematical formulations is given. This is followed by a detailed description of Vehicle
Routing Problems and it’s applications to Operations Research.

3.1. Network flow problems
Network flow problems are a special application of graph theory widely used in logistical and trans-
portation problems. They consist of a number of nodes (vertices) linked together by capacitated and
directed arcs (edges), which together form a network (directed graph). The aim is to allocate flows
to arcs in order to achieve a certain goal, all the while respecting restrictions such as arc capacity,
directions and connections. Flows are measurable quantities which usually represent units of a chosen
commodity such as number of passengers or tons of freight. A diagram representing a directed graph
G = (V,E) can be seen in Figure 3.1 with the set V containing all nodes and set E all arcs. Nodes can
be further divided into sink (A) and source (E) nodes where flow can either only originate or disappear
respectively. Supply nodes (B) allow higher output of flows than they receive, while demand nodes (C)
allow a greater input flow than it outputs. Finally transshipment nodes have equal input and output
flows. When considering arcs, they can either be uni-directional or bi-directional. They are allocated
weights which quantify the amount of flow/commodity that can be transported through them.

Figure 3.1: Example of a network flow diagram G=(V,E)

Although general formulations exist such as the ones enumerated in Section 3.3, network flow prob-
lems vary depending on the objectives, constraints and field they are applied to. Network flow problems

69
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can be formulated as Linear Optimization Problems (LP). This allows to solve large scale problems which
are normally infeasible by hand.

3.2. Linear programming
Linear programming is a mathematical programming technique widely used in operations research to
obtain optimal solutions to problems with many variables, and in industry to make processes more
efficient or to serve as a quantitative decision support tool. As can be seen in Figure 3.2, it belongs to
the category of deterministic optimisation techniques where historical data is accurately known. Within
this category, one can differentiate between convex and non-convex optimisation. A convex optimisation
problem refers to a problem in which the mathematical formulation is made up of a convex objective
function and convex constraints. This implies that the feasible solution set is also a convex set and that
a local extremum (maximum or minimum) is also a global extremum.

Figure 3.2: High-level classification of optimisation techniques

The aim of a linear programming model is to find an optimal value for a linear objective function
by varying decision variables over their feasible and pre-determined range. The objective function
is bounded by various equality or inequality constraints. All linear program formulations share the
following same elements :

1. Decision variables: These variables define the decisions that need to be made. They are often
represented as resources, quantities or levels of activity that need to be determined to solve a
linear programming problem. Initially unknown, they are defined over a range of numerical value
which the program iterates over. Once an optimal value for each of the variables is found, the
linear problem is considered solved. Their algebraic representation is usually in the following
format : x1, x2, ..., xn where the subscript defines the nth variable. In network flow problems, it
is convenient to to use xij to represent flows between 2 nodes i and j. These decision variables
can be binary, integer, or a mix of both depending on the application.

2. Constraints: A constraint is a linear equation in the form of an equality or inequality which
limits the range of the decision variables and therefore the feasible region for the solution of
the problem. Two main different types of constraints can be identified: functional constraints
and non-negativity constraints. While the first one is related to the operational aspect of the
problem at hand, the second ensures that decision variables do not take values smaller than zero
for coherence. The format of a functional constraint is usually represented in the following way,
with aij a coefficient and bi a numerical value which imposes the limitation:
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aijxj
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3. Objective functions: An objective function is a linear equation made up of fixed parameters,
coefficients and decision variables. It must be minimized or maximized, depending on problem
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that needs to be solved. This is done by exploring the solution space, the combination of all
possible decision variables bounded by constraints, and finding an optimal numerical value for the
linear equation. It’s algebraic representation can be generalised to the following expression with
ci a coefficient:

Minimize or Maximize z = c1x1 + ...+ cnxn =

nX

j=1

cixi (3.2)

During the second world war, George B. Dantzig developed the first solution method for solving large
scale linear programming problems: the simplex method. The method consists of testing iteratively
adjacent vertices of a bonded polygonal region, called the feasible region, defined by constraint functions
and finding which vertices produce optimal or sub-optimal values for a specific objective function. These
vertices are called corner point feasible solutions (CFP). The best CFP solution is the optimal solution
to an optimisation problem. The simplex method and derivatives of it’s algorithm are extensively used
to solve network flow problems in research or in industry. Commercial mathematical programming
solvers using simplex and exact algorithms are available such as GUROBI and CPLEX which facilitate
solving large scale linear programming problems and provide interfaces tailored to optimisation problems
[26][30].

3.3. Common network flow problem formulations
In this section, an general overview of common network flow problem formulations is given, along with
their objective functions and constraints. These are used in research and industry as building blocks
which are then expanded to suit a specific field or application. The nomenclature for the formulations
in Section 3.3 can be found in Table 3.1.

Sets Parameters

A set of nodes (i, j, k 2 A) cij cost of travelling from i to j
v maximum amount flow in the network

Decision variables uij arc i,j upper capacity limit
lij arc i,j lower capacity limit

xij flow of commodities from i to j bi demand requirement for node i

xb
ij

binary decision variable equal to 1 if solution,
0 otherwise ai available commodities at node i

Table 3.1: Nomenclature for the formulations in section 3.3

3.3.1. Maximum flow problems
The maximum flow problem has for objective to find a feasible flow pattern that allow as much com-
modity as possible to move between a specific source to a specific sink in a capacitated network. The
first instances of this problem appear in literature as early as 1930, but it is formally introduced by
R.Fulkerson and G. Dantzig (1955) [16]. Two main constraints are considered in the general formula-
tion of the maximum flow problem in 3.3. The first constraint is the flow conservation constraint which
forces the sum of flows arriving at a node to be equal to the sum of flows leaving that node, apart from
at the sink and source. The second constraint is the called the capacity constraint and forces the flows
through an arc to be bounded, in this case by an upper limit uij .

maximize v

s.t
X

j

xij �
X

k

xki =

8
><

>:

v if i is a source
0 otherwise
�v if i is a sink

0  xij  uij (i = 1, ..., n; j = 1, ..., n)

(3.3)

3.3.2. Minimum cost flow problems
In min-cost-flow problems, the objective is to minimize the total cost of a flow pattern within a network.
The most general formulation of this application is found in Section 3.4. Common industry adaptations
and extensions of this problem can be found in Subsections 3.3.3, 3.3.4, 3.3.5, and 3.4. The objective
function minimizes the sum of all the transport costs of commodities on arcs ij multiplied by the amount
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of flow on these arcs. It is subject to 2 main constraints, the first being a flow balance constraint
which ensures that the incoming and outgoing flows at a node satisfy the node’s supply and demand
requirements bi. The second constraint is the capacity constraint which in this case ensures that the
flows stay bounded with respect to arc capacities, lij being the lower bound and uij the upper bound.

minimize
X

i

X

j

cijxij

s.t
X

i

xij �
X

k

xki = bi, i = 1, ..., n

lij  xij  uij , j = 1, ...,m

(3.4)

3.3.3. Shortest path
The shortest path problem has for objective to find the shortest/cheapest/fastest combination of arcs
from an origin node to a destination node. The objective function in formulation 3.5 is the same as for
the minimum cost flow problem, however the constraints differ. The first constraint ensures that there
is a net supply of one unit at the source, and a net demand of one unit at the sink, without any net
inflow/outflow at all other nodes. Shortest path problem has been extensively covered in literature and
multiple techniques have been developed to increase solving time such as Dijkstra’s algorithm and the
A* search algorithm. Shortest path problems can often be found in geo- and web-mapping applications
such as Google Maps, in the creation of road networks, and in routing and layout problems [33] [56].
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0 otherwise
�1 if i is a sink
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(3.5)

3.3.4. Transportation problem
The transportation problem has for objective to minimize the cost of distributing a commodity from
multiple origins to multiple destination. The first two constraints in formulation 3.6 ensure that the
flows respect availability and demand requirements, ai and bj respectively. O. Díaz-Parra et al. (2014)
published a comprehensive review on transportation problems [18]. They present a range of mathe-
matical models for different transportation modes (land, sea, air) which include variants of the well
known vehicle routing problem but also loading, dispatching and inventory problems. Transshipment
problems are also considered to be extensions of the transportation problem. While transportation
problems only allow direct flows between sink and source, transshipment problems allow flows to go
thought intermediary nodes.

minimize
mX

i

nX

j

cijxij

s.t
nX

j

xij = ai, (i = 1, ...,m)

mX

i

xij = bj , (j = 1, ..., n)

xij � 0 (i = 1, ...,m; j = 1, ..., n)

(3.6)

3.3.5. Assignment problem
Assignment problems are an extension of the transportation problem where the decision variable xij is
binary and takes a value of 1 if i is assigned to j, and 0 otherwise. The first 2 constraints in formulation
3.7 indicate that all i’s must be assigned exactly to one j, and vice versa. This is possible because the
amount of i’s is equal to the amount of j’s. The Assignment problem is an integer program and can be
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solved efficiently through the Hungarian Algorithm [32]. It’s applications are numerous, for example in
the airline industry where it is often used to optimise the assignment of aircraft tail numbers and crew
members to specific flights.

minimize
nX

i=1

nX

j=1

cijxij

s.t
nX

j=1

xb
ij = 1 (i = 1, ..., n)

mX

i=1

xb
ij = 1, (j = 1, ..., n)

xb
ij = 0 or 1 (i = 1, ..., n; j = 1, ..., n)

(3.7)

3.4. Vehicle routing problems
Vehicle Routing Problems (VRP) are extensively covered in operations research. Originally developed
in 1959 by G. Dantzig and J. Ramser who applied it to petrol truck deliveries, they are a generalisation
of the Travelling Salesman Problem (TSP), only with multiple vehicles and the fact that a vehicle
must return to the starting position after a certain amount of locations have been visited. It’s overall
objective is to find an optimal set of routes for a fleet of vehicles who need to visit a number of
destinations to deliver or collect commodities. Finding an optimal routing for a fleet implies either
minimizing the amount of time needed, the costs involved, the length of each journey, fuel consumption
or more depending on the application. VRPs can be differentiated according to 3 different aspects:
their modeling approach, their mathematical formulation and their solution methods.

VRP modeling approaches
There are 3 main ways to model a VRP problems based on the type of decisions and variables used.
Vehicle Flow models are integer linear programming models where the decision variables model vehicle
flows over a network, usually in the form of binary decision variables. Another type of modelling
approach consists of creating a set-partitioning-based model where the decision variables represent the
set of feasible routes. The advantage of using such a model is that it facilitates the implementation
of difficult route-based constraints such as time windows [47]. Finally,the commodity flow formulation
models the flow of goods as-well as vehicles as decision variables. This often implies that a mixed-integer
linear programming (MILP) formulation needs to be used.

VRP mathematical formulations
Many different VRP mathematical formulations exist depending on the field it is applied to and the
characteristics of the problem at hand. For the purpose of this study, the multi-commodity flow for-
mulation of the Classical VRP (CVRP) with a homogeneous fleet is presented below along wit hthe
nomenclature in Table 3.2 [36][41].

Sets Parameters

A set of nodes (i, j, k 2 A) cij cost of travelling from i to j
m number of vehicles

Decision variables K vehicle capacity
dk demand at node k

xij =

(
1

0

if a vehicle travels directly from i to j
0 otherwise

yk
ij flow of commodities from i to j, destined for k

Table 3.2: Nomenclature for the CVRP commodity flow based problem
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Homogeneous CVRP commodity flow based formulation

minimize
nX

i=0

nX

j=0

cijxij (3.8)

s.t.
nX

i=0

xij = 1 (j = 1, ..., n) (3.9)

nX

j=0

xij = 1 (i = 1, ..., n) (3.10)

nX

j=1

x0j  m (3.11)

nX
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(
dk if j=k
0 if j 6= 0 or j 6= k

8j, k (3.12)

X

k=1

ykij  Kxij i 6= j = 0, ..., n (3.13)

ykij � 0, 8i, j, k (3.14)
xij = 0 or 1 8i, j (3.15)

In the above formulation, Equation 3.8 is the objective function which has for goal to minimize
the total routing costs. Equation 3.9 and 3.10 represent the continuity constraints, allowing exactly
one vehicle to enter and leave each node. In Equation 3.11, the inequality constraint defines the total
amount of vehicles available and Equation 3.12, the flow balance constraint, ensures that the demand
in each node is satisfied. Equation 3.13 imposes a constraint on commodity flows based on vehicle
capacities. Finally Equation 3.14 and 3.15 ensure that the decision variable ykij is always non-negative
and that xij remains binary. Applying this model to a heterogeneous fleet is easily done by modifying
the decision variable xij to xk

ij which indicates the type of vehicle k travelling on a certain arc from
i to j. Equation 3.9, 3.10 and 3.11 must be modified accordingly and the vehicle capacity constraint
inEquation 3.11 must be replicated as many times as vehicle types are included. The VRP problem has
been extended to suit multiple different applications and problem characteristics. Amongst the most
well-known extensions of the CVRP are the VRP with Time Windows (VRPTW), VRP with Pickup
and Delivery (VRPPD) and the Multi-Depot VRP (MDVRP).

VRP solution methods
The VRP is a combinatorial optimisation problem, more specifically NP-hard, which implies that the
set of feasible solutions is extremely large and that the computational power needed to solve the problem
increases exponentially with it’s size. Small or moderate instances of VRP can be solved using exact
algorithms to find global optimal solutions within a limited amount of time, however these models
might be over-simplified or not generalisable to larger applications. The most popular exact algorithms
for VRP are Branch and Bound, Branch and Cut, other Spanning Tree techniques and Dynamic pro-
gramming [21] [35]. When exact algorithms cannot be used to find an optimal solutions to a problem,
heuristics and meta-heuristics can be used. Heuristics can be compared to shortcuts: practical methods
used to solve NP-hard problems which do not guarantee optimal solutions but help in finding sub-
optimal, satisfactory solutions by exploring a limited part of the feasible solution set in a finite amount
of time. G. Laporte et al. (2000) provide an extensive review on classical and modern heuristics used
for VRPs [34]. Most common found heuristics in literature are Savings and Sweep algorithms, Cluster
First Route Second, and Route Improvement Methods. Finally, meta-heuristics have become recently
a common method to approach large NP-hard problems. They are not problem specific, but help guide
the search for optimal solutions by introducing a set of guidelines to explore more efficiently the solution
space. Two main strategies are usually used: intensification and diversification. While diversification
explores the search space on a global level, intensification segregates the solution space based on aggre-
gated experience into regions with high probability of containing local or potentially global optimums
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[10]. Usually, a balance between both strategies is necessary, allowing the algorithms to leave local op-
timums in search of better ones. In VRP, meta-heuristics can be divided into Local Search algorithms
(ex. Tabu Search), Population Search (ex. Genetic algorithms) and Learning Mechanism (ex. Neural
networks, Ant colony optimisation)[57].

3.5. Research Focus
This chapter has focused on how real-world problems can be translated into mathematical formulations
and then solved optimally or sub-optimally. The movement of commodities and vehicles through a
network can be conveniently reproduced using Network Flow formulations and models. In order to
analyse the UNHAS South Sudan mission, it is necessary to translate the service, the context and its
users into a mathematical model that can simulate accurately, and in a reasonable amount of time, the
real-world operations. Two main objectives are highlighted in Chapter 2, namely minimizing costs and
maximizing demand satisfaction. Minimizing transportation cost can be represented by a Min-Cost
Multi-Commodity Network Flow Problem where different commodities are different passenger classes
or types. Maximizing demand satisfaction is equivalent to minimizing a certain penalty associated to
demand spillage. This implies that at least two objective functions need to be optimised simultaneously,
and therefore results will most likely be presented in the form of trade-offs (for example Pareto fronts).
Having identified a general direction for the type of model that will be created, the following chapters will
focus on literature covering the applications of these techniques to fleet planning and the humanitarian
context.





4
Fleet planning

Fleet planning is a common problem addressed in the transport industry. It consists of selecting an
optimal fleet by addressing the following 3 main questions: Which type of aircraft should I buy? How
many of each do I need? When should I acquire them? In this chapter, first the main fleet planning
characteristics will be presented, followed by a comparison between airline and humanitarian fleet plan-
ning. Finally, 3 subsections are dedicated to fleet planning methods combined with network design,
stochastic demand evolution and routing.

4.1. Fleet planning characteristics
Although the scope of this study focuses on aircraft fleets, many parallels exist between the fleet planning
of different transportation modes, whether they address road, rail or maritime fleets. The high-level
decisions and objectives remain similar: one searches for an optimal amount of vehicles of a specific
type for a defined period in time, usually with the aim of maximizing profit or minimizing costs. The
differences appear when considering specific scenarios and their operational constraints. The following
subsections present the most common characteristics of fleet planning models by first reviewing the
different time horizons on which it can take place. This is followed by comparing homogeneous to
heterogeneous fleet planning, uni- to multi-modal fleet planning and finally single to multi-commodity
fleet planning.

Fleet planning horizons
Fleet planning can be implemented at multiple different stages of the network and operational design
cycle. The time frame under consideration determines which types of decisions are made and there-
fore which methodologies are most appropriate. Three main planning horizons are considered in fleet
planning problems: strategic (long-term), tactical (medium-term) and operational (short-term) [15][7].
Despite their differences, these 3 stages are usually highly interdependent and the outputs of one are
often used as input for the others.

• Strategic fleet planning takes place 2 to 5 years before the employment of an aircraft. It is often
confronted to challenges related to high uncertainty and lack of robustness. This is mainly due
to the difficulties in forecasting revenue, demand and operating costs so far in the future, all
of which are closely inter-related. These effects can be mitigated through revenue management
models, aircraft leasing schemes, network analysis (hub & spoke, point-to-point, hybrid), risk
sharing etc. The primary aim is often to increase the flexibility and resilience of the airline to
changes in its operating environment for the years to come. Decisions such as fleet size and fleet
mix are central to this planning stage.

• Tactical fleet planning is considered to take place between a year to a few months before the
start of operations. Because the time horizon has decreased, more parameters and operational
constraints are known. This allows more realistic fleet planning models which deal not only
with fleet composition, but integrate decisions such as vehicle allocation to routes, freight and

77
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passenger allocation to vehicles, schedule design, fleet deployment and more. This time-frame
allows decisions to be made on whether vehicles need to be added to or removed from a fleet.

• Operational fleet planning usually takes place between a month and a day before departure, more
detailed and precise models are used to optimise daily operations where only very few uncertainties
exist. Common problems involve empty vehicle re-positioning, inventory management, detailed
daily routing and timetabling.

Homogeneous vs. heterogeneous fleet planning
More often than not, an operator’s fleet consists of a same transportation mode, but of multiple dif-
ferent vehicle types. This allows a fleet to be more versatile, flexible and enable a range of different
opportunities that a homogeneous fleet could not. Hoff et al. [28] distinguishes 3 different aspects
defining heterogeneous fleets: physical dimensions, compatibility constraints, and costs. While physical
dimensions often determine the possible capacity that can be offered ( amount of passenger seats, size
of a cargo hold), it also affects an entire range of characteristics such as vehicle weight, range, speed and
fuel consumption. Size also determines which locations a vehicle can access, for example ship operators
must take into account canal width and depths, airlines must take into account runway specifications
and handling equipment at airports. When considering compatibility constraints, operators must be
wary of the wider environment in which they evolve. For example, the fleet must respect environmental
guidelines, and noise and emission restrictions. When transporting valuable or dangerous goods, cer-
tificates are needed and only specific types of vehicles are allowed to be used. Finally, operating costs
must be taken into account. These play an important role when considering transportation frequencies
between destinations. Determining an ideal fleet type for a network is closely linked to frequency and
timetabling. It becomes equivalent to answering whether flying once a day with a 400 seat aircraft is
better than flying 4 times a day with only a 100 seats.

Uni- vs. multi-modal fleet planning
Fleet planning can also be applied to uni- or multi-modal transportation problems. Multi-modal trans-
portation networks address the complexities related to modelling multiple different types of transporta-
tion modes together, often in an international logistic context, for example a combination of rail and
road services. Baykasoğlu et al. [7] provide an extensive review on existing fleet planning in uni- and
multi-mode transportation problems and their characteristics. In Figure 4.1, the authors classified the
most common sub-problems in inter-modal fleet planning and illustrated their relationships in time.

Figure 4.1: Strategic, tactical and operational level decisions on inter-modal fleet planning [7]

Single- vs multi-commodity fleet planning
Instead of considering a problem where only one type of good is being transported, it is common to model
networks where multiple different commodities with distinct characteristics are being distributed from
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sources to destinations. Multi-commodity network flow problems (MCNF) are common in feet planning
and network design problems as they allow a more realistic representation of logistical problems. Each
commodity is characterised by an origin, a destination, a total demand and a flow cost. For example
in maritime fleet planning problems, multi-commodity flows are used to model the transportation of
different container sizes which need to be loaded or unloaded at ports with different infrastructures [37].
In commercial aviation fleet planning, commodities can represent, amongst others, different passenger
classes or passengers with a different number of airport connections in their trip [55].

4.2. Airline vs. Humanitarian fleet planning
Airline fleet planning is a long-term strategical decision which significantly impacts airline operations
and finances. P. Clark in his book "Buying the big jets, fleet planning for airlines" describes fleet
planning as :

"the process by which an airline acquires and manages appropriate aircraft capacity in order to serve
anticipated markets over a variety of defined periods of time with a view to maximising corporate

wealth [12]."

Although fleet planning is one of the first steps in the airline planing process, it’s implications define
the airline’s strategy for the decades to come. When creating a fleet plan, one must take into account
factors such as the pre-existing fleet, the number and type of new aircraft to be acquired or to be dis-
posed of, fleet age and commonality, aircraft depreciation costs, potential future demand, competition
and market shares etc. These factors evolve throughout time while remaining significantly inter-related
which makes it difficult to change one aspect of the process without affecting others. Another major
difficulty lies in predicting what the aviation industry will look like in the next 10 to 20 years. The high
uncertainty related to these decisions limits the design of strategical optimisation models and decision
support tools which are much more reliable when considering tactical and operational problems. In-
deed, Fleet Assignment Models (FAM), Revenue Management Models (RVM), VRPs and other tactical
scheduling and routing problems are found extensively in Operation Research literature. They often
stem from a baseline model which is then adapted to different specific scenarios, integrated with other
stages of the planning process, or modified to account for new state-of-the-art computational techniques
and heuristics. However, long-term fleet planning models vary significantly from one another due to the
large differences in applications, time periods and factors taken into account.

4.3. Fleet planning and network design
Strategic and tactical fleet planning is often combined with network design due to their high interdepen-
dence. Deciding which routes to operate and assigning them a service frequency depends on the type of
fleet an operator has available. Vice-versa, choosing a fleet size and composition depends on the type
of network that is being operated. In 1980, authors R. Marsten and M. Muller created a deterministic
mixed-integer programming model for air cargo fleet planning [42]. They explore the design of a service
network and a corresponding fleet composition for the cargo-airline Flying Tiger Line. The aim is to
maximize the profits of the airline while taking into account fuel, demand and capacity constraints per
city pairs and analysing day and night operations.

T. Crainic (2000) presents a review on tactical freight transportation and service network design
along with a general mathematical formulation and it’s extensions [15]. The author classifies the models
based their functionality instead of the transportation mode which provides more comprehensive view
on their applications. The modelling of such networks is similar to the minimum cost flow problem
formulations seen in formulation 3.4, with the exception that a frequency dependent term is present.
The authors outline the main considerations that must be approached when designing such a model :

1. Service selection: route selection along with frequency and scheduling characteristics

2. Traffic distribution: defining service levels, facilities and types of operations for each itinerary and
demand type
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3. Terminal policies: constraints applied to specific terminals (hubs) along with consolidation strate-
gies and allocation of tasks

4. Empty balancing strategies: repositioning policies to meet the needs of the next planning period

Jaillet et al. (1996) tackle a capacitated network design problem for airlines and draw parallels with
existing Hub Location Problems (HLP) [31]. The objective is to design an optimal network and aircraft
routing policy which minimizes costs and maximises demand satisfaction, given a fixed fleet with known
operational costs and an OD demand matrix. The authors formulate 3 linear integer programming
models where the novelty lies in the use of fractional flows as decision variables to represent passenger
movements. Because no initial network is fixed, and only passenger origin and destinations are know,
the models are given the freedom to route passengers through different nodes of the network, as long
as this minimizes system costs and passengers reach their final destination. All 3 linear programming
models differ in the amount of stops a passenger can make before reaching it’s final destination: one-
stop, two-stop, or all-stops. The nomenclature in Table 4.1 is used for the one-stop and two-stop models,
and the mathematical formulation for the two-stop model is presented in Equation 4.1, 4.2 and 4.3.

Sets Decision variables

N Set of airports One-stop model
K Set of aircraft types xilj Passenger flow from airport i to j, commuting through l
Fij Set of passenger flows fij from airport i to j ykij Number of aircraft k used on link i to j

Parameters Two-stop model
xilj Passenger flow from airport i to j, commuting through l

dij Distance. from airport i to j xiltj Passenger flow from airport i to j, commuting through l and t
ck Cost per mile of flying aircraft k ykij Number of aircraft K used on link i to j
bk Capacity of aircraft k

Table 4.1: Nomenclature for the one-stop and two-stop model [31]

Two-stop model formulation

minimize
X

i 6=j

X

k2K

dijcky
k
ij (4.1)
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ij 8i 6= j

(4.2)

X

t 6=i,j

xitj +

X

l,t 6=i,j

xiltj  1 8i 6= t 6= j (4.3)

xitj  0 8i 6= j (4.4)
xiltj  0 8i 6= j 6= l 6= t (4.5)

ykij  0 8i 6= j, k 2 K (4.6)

The objective function in Equation 4.1 is a general cost minimization equation and is identical for
both models. Equation 4.2 is the capacity constraint and ensures that the flow between two city pairs is
smaller than the capacity provided by the aircraft operating on that link. The first term represent the
direct passengers flow between i and j, the second term represents the one-stop fractional passenger flows
between i and j and the third term the two-stop fractional passenger flows between i and j. Equation 4.3
ensures that fractional flows are always smaller than 1. Finally, Equations 4.4, 4.5 and 4.6 are the non-
negativity constraint. The output of the model is a set of passenger flows associated to airport pairs and
specific aircraft types. When the network is analysed, one can notice concentration effects on certain
links. This outlines the presence of airports more suited as hubs than others. The authors however note
that the difference between all 3 policies is small. The emergent proprieties of the models remain similar
for a one-stop, two-stop or all-stop policy when only considering minimizing transportation costs. The
research could be furthered by considering different objectives such as maximizing passenger revenues
and profit.
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4.4. Fleet planning and stochastic models
Fleet planning combined with stochastic processes has become a trend for long-term fleet and network
planning. Linear programming and uncertainty has also been a significant area of research since 1955
[16]. In the airline industry, forecasting future demand and trends is a crucial part of the planning
process when considering robustness and resilience.

4.4.1. Fleet planning and demand forecasting
In research and industry, qualitative and quantitative demand forecasting methods are used in order to
account for uncertainties linked to demand evolution, and used as input to optimisation models. Three
traditional quantitative methods are most commonly used to forecast future aviation demand: time
series, market share and econometric forecasting [50]. While time series are widely used by airlines,
they only project into the future the trends of the past and rely heavily on historical data. The multi-
dimensional character of aviation demand is best exploited by econometric/causal models which rely on a
whole range of social, political, economical and supply factors (ie. Isard’s Gravity Model [48], Regression
analysis, machine learning techniques) [19]. These are usually much more computationally intensive
than the other methods, in the order of months instead of days, but provides insight on scenarios where
historical data is scarce, for example when evaluating new routes and long haul demand forecasting. A
high-level classification of demand forecasting methods is shown in Figure 4.2.

Figure 4.2: Preliminary classification of demand forecasting methods

An application of fleet planning combined with quantitative demand forecasting can be found in the
paper by C.A. Sa, B.F. Santos, and J.P.B. Clarke (2019) [55]. In a first instance, the authors create a
stochastic demand forecasting model using a mean-reverting Ornstein-Uhlenbeck process. The econo-
metric model’s main assumption is that variations in demand are cyclical/seasonal and correlated to
GDP variations. Applying this to forecast future aviation demand growth rates and levels between dif-
ferent OD pairs, the authors perform Monte Carlo simulations to evaluate the possible evolution of this
demand over multiple years. The Monte Carlo runs are then grouped and sampled yielding averaged OD
demand matrices per year. This demand is then used as input to a fleet planning optimisation model.
The authors formulate an integer linear programming optimisation model which allocates aircraft types
and corresponding flight frequencies to OD pairs, with the objective to maximize the overall profit of an
airline. The nomenclature for the model can be found in Table 4.2 and the mathematical formulation
below. The objective function in Equation 4.7 has the aim to maximize profits through 4 different
terms : operating revenue from direct and connecting passengers, ownership costs and operating costs.
Equation 4.8 is the demand verification constraint, ensuring passenger flows do not exceed the demand
for a particular OD pair. Equations 4.9, 4.10 and 4.11 are the capacity constraint, limiting the amount
of passenger flow per flight by the capacity of the aircraft of type k used on that arc. The aircraft
continuity constraint in Equation 4.12 ensures that the amount of aircraft arriving at an airport is
equal to the amount leaving that same node. Equation 4.13 and 4.14 guarantee that aircraft utilisation
is not exceeded and maximum range requirements are respected.
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Sets Parameters

N Set of airports Qo,d demand between airport o and d
K Set of aircraft types Do,d distance between airport o and d
H Set of hub airports (subset of N) yieldo,d yield per route for direct arcs

yieldh
o,d yield per route for connections at h

Decision variables ACk number of aircraft of aircraft type k
Ck

fix aircraft ownership cost per aircraft type k
xo,d Direct passenger flow between origin o and destination d sk number of seats per aircraft type k

wh
o,d

Connecting passenger flow between origin o
and destination d via hub h Ck

var
aircraft operating cost per aircraft type k
(i.e. CASM)

zki,j Flight frequency on arc (i,j) with aircraft type k vck cruise speed per aircraft type k

Uk aircraft maximum utilization per week for
asset of type k

Tdep
i taxi time per departure airport

Tarr
j taxi time per arrival airport

Rk range per aircraft type k

Table 4.2: Nomenclature for the airline fleet planning under stochastic demand model

Airline fleet planning formulation [55]
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zki,j = 0 8i, j 2 N, i 6= j, k 2 K if Rk < Dij (4.14)

x0,d 2 Z+, wh
0,d 2 Z+, zki,j 2 Z+ (4.15)

Similar to the mathematical formulation of the service design network by P. Jaillet (1996), passengers
are not grouped into a single commodity. The weekly passenger flows are divided into non-stop and
connecting passengers. These 2 different flows are used as decision variables. This allows the model to
simulate more accurately the effects of a hub & spoke network by allowing the choice to either fly direct
flights between an origin-destination pair, or fly a connecting flight through a hub. This also allows
the possibility for an airline to operate less profitable routes if it means the overall network profits are
maximized. A third decision variable, flight frequency per aircraft type per OD pair, is used. The
objective function is made up of 4 terms which according to the authors encompass the most significant
aspects of long term fleet planning: operating revenue from non-stop and connecting passenger flows,
ownership costs and aircraft operating costs. The set of constraints can be divided in two categories,
the first being traditional capacity and continuity constraints found in Equation 3.4, adapted to suit
the set of decision variables. The second are specifically related to the aviation industry and aircraft
operations.
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4.4.2. Multi-stage fleet planning
Multi-stage stochastic programming is a sequential decision-making process under uncertainty, where
information is progressively revealed over a number of time stages. Multi-period fleet planing is used to
help operators make fleet changes over-time, increase the robustness of their fleet plans or mitigate the
impacts of uncertainty on fleet size and composition decisions [39]. G. Barbarosoglu and Y. Arda develop
a scenario-based stochastic programming model which aims to model the transportation of emergency
commodities in a urban setting, after an earthquake has happened [4]. Two main stages are modelled
where the first stage can take the form of 3 different scenarios, each representing the "early response".
Each of these can then evolve in 3 sub-scenarios representing the coordinated response. Uncertainty is
represented by a random allocation of capacities, supply and demand to the network at both stages. The
authors create a multi-modal, multi-commodity network flow mathematical formulation, the objective
being to transport as much commodities from an origin to a destination while minimizing costs. G.
Pantuso, K. Fagerholt, and S.W. Wallace (2016) developed a solution technique for a specific type
of MSP, Hierarchical Stochastic Programming (HSP), and applied this to the Maritime Fleet Renewal
Problem (MFRP) where the goal is to make decisions on when to dispose or purchase a ship of a specific
type to serve future demand [52]. M.G. Repko and B.F. Santos (2017) focused on long-term airline
fleet planning decisions by developing a multi-period scenario tree model taking into account demand
uncertainty and fluctuations over time. Each scenario is characterised by a set of 3 decision nodes, each
anchored at 3 different points in time [54]. The decision tree therefore allows 3 different fleeting changes
to happen over the planning horizon. Each decision node is connected to 3 other nodes by branches
as can be seen in Figure 4.3. These branches represent the potential demand evolution from one stage
to another, characterized by 3 possible demand changes (Low, High and Medium) and the associated
probability of occurrence (20%, 50%, 30% respectively).

Figure 4.3: Different fleeting scenarios over 3 time periods

A mixed-integer linear programming model is then created to determine the optimal fleet for each
scenario. Five decision variables are available, each fixed in time and corresponding to a specific sce-
nario. The objective function aims to maximize profit while taking into account aircraft operational,
leasing, disposal and acquisition costs. Constraints are divided in two different categories, the first one
related to usual operational constraints, the second related to multi-period planning. This modeling
approach addresses the issues of uncertainty in long-term airline fleet planning by allowing planners to
make educated and data driven decisions on fleet sizes and compositions at multiple periods in time in
order to best serve a forecasted demand.
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4.5. Fleet planning and routing models
Fleet planning models combined with routing formulations are mainly used in tactical and operational
time-horizons to simultaneously solve the dilemma between finding an optimal fleet size and mix, and an
optimal set of routes while satisfying a number supply, demand and operational constraints. M. Bielli, A.
Bielli and R.Rossi (2011) identified relevant applications of fleet management for different transportation
modes and the mathematical models and computation algorithms best suited to represent them [9].
Hoff et al. (2010) presented an extensive literature review on fleet composition and routing problems
in maritime and road transport [28]. He chooses the Fleet Size and Mix Vehicle Routing Problem
(FSMVRP) as the most representative mathematical formulation for this class of problem. This model
was first introduced by Golden et al. (1984) where the arc flow mathematical formulation is an extension
of the VRP found in section 3.4 with a heterogeneous fleet of vehicles and their acquisitions costs [23].
Although heuristics are often needed to solve this formulation, the nomenclature of the problem in
Table 4.3 and the mathematical formulation are presented below.

Sets Parameters

N Set of customers n number of customers
A Set of possible travel arcs K number of vehicles of types
V Set of vehicle types Qk capacity of vehicle type k (Q1 < Q2 < ... < QK)

fk acquisition cost for vehicle k (f1 < ... < fK)

Decision variables qj demand of customer j
cij cost of travelling from i to j

yij flow of goods from i to j Mijk very small constant
xk
ij = 1 if vehicle of type k travels from i to j

Table 4.3: Nomenclature for the FSMVRP

FSMVRP arc flow formulation [28]
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The objection function in Equation 4.16 is split in two terms, the first one related to the fixed
and acquisition costs of vehicles and the second to their operating costs. The first constraint in Equa-
tion 4.17 ensures that customers are visited exactly once. Equation 4.18 is the continuity constraint.
Equation 4.19 ensures that all commodity flows satisfy the demand requirements and constraint 4.20
ensures that vehicle capacities are respected. In Equation 4.21, the inequality ensures no commodities
flow on arcs without vehicles by using the variable Mijk as a very small number. Finally Equations
4.22 and 4.23 are the decision variable non-negativity and binary constraints.

Hoff et al. (2010) state in their review that out of 95 papers analysed, over 50% of the FSMVRP
do not target a specific transportation mode. This highlights the fact that this mathematical formu-
lation is flexible and could be adapted to a cargo or even humanitarian airline routing problem. The
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rest of the reviewed paper are divided between maritime and road applications. The authors also give
their critical opinion on research in fleet composition and routing problems by identifying that most
of the applications are idealized and far from representing real world cases. Furthermore, uncertainty
and stochasticity are not often treated and should be included in order to create more robust and risk
averse models.

G. Pantuso, K. Fagerholt and L.M. Hvattum (2014) will provide another in depth survey focused
solely on the Maritime Fleet Size and Mix Problem (MFSMP) and it’s variants [51]. Originally developed
by Evrett et al.(1972), this model uses a similar objective function as can be seen in Equation 4.24. In
the formulation, V is the set containing all available ship types and Rv the set of routes r appropriate
for a ship of type v [22]. The first term CF

v is a fixed cost associated to adding a type v ship to the
fleet. It is multiplied by the decision variable yv which relates to the total amount of ships of type v
needed. The second term incorporates the cost coefficient CV

vr which relates to the cost of allocating a
ship type to a route r, multiplied by the decision variable xvr representing the sailing frequency.

minimize
X

v2V

CF
v yv +

X

v2V

X

r2Rv

CV
vrxvr (4.24)

The objective function above is then complemented by operational constraints specific to ship op-
erations and the operating environment.

4.6. Research focus
In Section 2.2, humanitarian fleet planning is found to take place on a tactical time-frame, 6-3 months
before the deployment of the aircraft. According to Section 4.1, the overview of different fleet planning
characteristics has enabled to identify the general type of fleet planning problem that will be approached.
The time-horizon will be tactical due to the humanitarian context and UNHAS flight requests and
schedules which are assumed to repeat on a monthly basis. The focus being on air transport operations,
the model created will consider a uni-modal, heterogeneous fleet with passengers as the commodities.
The fleet planning model will be combined with aspects of Network Design as presented in Section
4.3. Although all the nodes of the network are fixed and the flight requests deterministic, it would
be valuable for UNHAS to analyse how they could direct their passengers within the network more
effectively and efficiently and how this would affects their fleet. Useful trade-offs can be obtained from
such a model such as the effect of different fleet types on flight frequencies, operating and acquisition
costs, demand spillage, CO2 emissions and more. In order to capture passenger routing possibilities, the
commodities will represent passengers with different amounts of possible airport connections, similarly
to the formulations created by [31], [54] and [55]. The decision variables will therefore represent the
amount of direct passengers, one-stop passengers and two-stop passengers which are routed on an arc.
These connections can only be made at one of the 4 hubs: Juba, Rumbek, Bor and Wau. Stochastic
and multi-stage fleet planning will not be considered due to the fact that most UNHAS missions do not
last more than 10 years and forecasting humanitarian demand is difficult. There is however interest in
analysing the fleet changes due to seasonality. In the 10 years that UNHAS has been operating in South
Sudan, it has had to adapt to changes between the dry and rainy season, a change which significantly
affects it’s fleet and costs.





5
Aircraft routing and scheduling

This chapter will cover the last stages of the airline and humanitarian air operations planning cycle.
In Section 5.1 the traditional commercial routing and scheduling techniques are presented, followed
by Section 5.2, which explores the same process but applied to the humanitarian setting. The main
divergences lie in the objectives and types of mathematical models used to represent the two different
realities.

5.1. Commercial routing and scheduling
In this section, the Fleet Assignment and the Aircraft Routing stages of the airline planning process
are reviewed. They follow the Frequency Planning and Timetable Development steps which are created
on a yearly basis before flight departures. The latter two are not explored in detail due to the fact that
no mathematical model can yet fully capture the complexity of the problem due to its size and many
variables [25]. Furthermore, this stage is very airline specific and generalising it is difficult due to the
airline’s varying operating environments, competition aspects, airport regulations and more. Today, this
problem is often solved by using previously existing schedules and implementing incremental changes
to it over time.

5.1.1. Fleet assignment
Fleet assignment models are often used by airlines once an initial schedule has been created and the
final fleet of aircraft is known. The objective is to assign aircraft types to scheduled flights in order to
minimize costs and spillage or maximize profit while respecting operational constraints. It is a tactical
decision made between 6 months and a year before the fights take place. Due to the fact that the
fleet assignment model has both a temporal and spatial component, the problem is often represented
by a time-space network. Instead of having a static formulation of the problem such as the ones in
fleet planning, each node is characterised by a location and an instant in time. Time-space networks
try to represent as accurately as possible a flight schedule by using 2 different types of arcs. A flight
arc is a connection between 2 nodes and is characterised by an origin, a destination, a departure time
and a arrival time, potentially including turn around time. Ground arcs represent aircraft that need
to stay put at an airport for a limited period of time in order to be able to service another flight arc.
According to the authors of The global airline industry, "finding a feasible fleet assignment is analogous
to selecting a path through the time-space network for each aircraft type"[8]. Hane et al. presented
a fleet assignment problem formulation called the Basic Fleet Assignment Model (FAM) which can be
found in the formulation below with the nomenclature in Table 5.1 [27].

87
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Sets Parameters

F set of flight legs n number of nodes
K set of fleet types n+ ground arc originating at node n
Nk set of nodes for fleet k n� ground arc terminating at node n
Gk set of ground arcs for fleet k cki cost of assigning a/c type k to flight leg f
O(k,n) set of flight legs origination from node n for fleet k Mk number of aircraft of type k
I (k,n) set of flight legs ending at node n for fleet k
CL(k) set of flight legs for fleet k
CG(k) set of ground arcs for fleet k

Decision variables

yk
a number of aircraft of type k on ground arc a

fki =

(
1,

0,

if flight leg f is assigned to fleet k
othewise

Table 5.1: Nomenclature for the Fleet Assignment model

Basic Fleet Assignment Model
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X
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X
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i (5.1)

s.t.
X

k2K

fk
i = 1, 8i 2 F (5.2)

ykn+ +

X
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fk
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X

i2I(k,n)

fk
i = 0, 8n 2 Nk, 8k 2 K (5.3)

X

a2CG(k)

yka +

X

i2CL(k)

fk
i  Mk, 8k 2 K (5.4)

fk
i 2 {0, 1}, 8i 2 F, 8k 2 K (5.5)

yka � 0, 8a 2 Gk, 8k 2 K (5.6)
(5.7)

The Basic FAM is therefore an integer, multi-commodity network flow problem. Fleet assignment
happens on a tactical time frame which means that the objective is more often linked to minimizing
costs than maximizing revenues and potential profit, factors which have already been taken into account
during the fleet planning, frequency planning and timetable development. The objective function in
Equation 5.1 minimizes the sum of the operating costs of assigning an aircraft of type k to a flight leg.
Equation 5.2 ensures that each flight leg is assigned to an aircraft type. Equation 5.3 represents the
balance constraint and ensures that the same number of aircraft of the same type arrive and depart
from an airport. The constraint in Equation 5.4 imposes a limit on the amount of aircraft of each
type assigned based on the maximum amount available in the fleet. Finally, Equation 5.5 ensures that
the decision variable fk

i remains binary and Equation 5.6 is the non-negativity constraint imposed on yka .

The Basic FAM has been extended to incorporate multiple different types of operational constraints
such as noise restrictions, maintenance and airport specific requirements and more. However several
limitations still exist such as the fact that spillage and passenger recapture is not considered. Barnhart
et al. (2002) created the Itinerary-based Fleet Assignment Model (IFAM) which incorporated the
Passenger Mix Flow model (PMF) with the Basic FAM which extended the latter to include spillage
and passenger recapture rates [6]. The objective function of the IFAM can be found in Equation 5.8
where the first term is the FAM component found in Equation 5.1. The second term represents the
negative of the passenger revenues which must be minimized by spilling passengers that are either low
fare, or that can be recaptured on alternative itineraries. The set P represents the total set of passenger
itineraries, and Pp the set of itineraries which can recapture passengers from itinerary p. The parameter
farer represents the price of travelling on itinerary r, trp the expected number of passengers wanting to
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travel on itinerary p but spilled to itinerary r and bpr the recapture rates.

minimize
X

i2F

X

k2K

cki f
k
i �

X

p2P

X

r2P

farerb
r
pt

r
p (5.8)

5.1.2. Aircraft rotation planning
The aircraft rotation or routing problem deals with assigning specific aircraft tail numbers with flight
legs. This step comes after the fleet assignment problem when each flight leg has been associated with
an aircraft type, assuming an initial schedule and fleet is known. The objective is usually to minimize
costs while determining an optimal sequence of flight legs for each aircraft in the fleet. The main con-
siderations taken into account when creating an aircraft routing problem can vary significantly from
airline to airline depending on the network they operate, the fleet types available and their revenue
sources. Factors such as service level, maintenance opportunities, aircraft utilisation, flight coverage
must be balanced based on the type of operations in question (passenger transport, cargo, military) and
on the operators priorities. A common problem cited in literature is the Aircraft Maintenance Routing
Problem (AMRP) and its derivatives [24][38]. The goal is to assign aircraft to flights and routes while
minimizing operating and maintenance costs or maximizing through-revenues. Maintenance checks at
fixed intervals are an obligation for most airlines who must incorporate them in their regular schedule.
For example, regulators in the USA require operators to perform routine checks every 3 to 5 days which
significantly impacts aircraft operations and schedules [8]. Aircraft routing and maintenance problems
need to incorporate 2 new aspects of airline operations, the first being aircraft can only undergo main-
tenance at specific locations where maintenance crews and facilities are available, and the second being
that this needs to be performed cyclically on a weekly, monthly or yearly basis.

Another important consideration in the commercial aircraft rotation planning is the crew assign-
ment problem which is subdivided into crew pairing and crew assignment. The main aim is to assign
a cabin crew and pilots to each flight while minimizing crew costs, or maximizing personnel prefer-
ences, and respecting labor rules. To achieve this, first the crew pairing problem is solved where one
searches for an optimal sequence of flights and layovers which begin and end at a same crew base and
is covered exactly once. Typical constraints are maximum number of days away from base, balanced
work distribution between crews, maximum number of duties, minimum and maximum layover time.
Another consideration to take into account is the fact that cockpit and cabin crews are usually bound
to specific aircraft families based on the licenses they posses and their training. Once the crew pairing
has been solved, the crew assignment, also called crew rostering, consists of allocating schedules to
crew members or crew types in order to maximize their preferences and minimize the number of crew
needed. Crew types are separated by rank (Captain, first officer, flight engineer etc.) and by aircraft
family. Creating a crew scheduling model is a significantly difficult task due to the fact that the problem
size is extremely large, safety and work regulations are complex and vary between countries, and costs
involved are non-liner and difficult to represent mathematically. Similarly to frequency planning and
timetable development, a common technique used for solving the crew paring and assignment problem is
to start from previous schedules and apply incremental changes over time. Integer programming models
are also used to improve solutions by generating or enumerating subsets of feasible pairings and using
heuristics and relaxation algorithms such as column generation to solve reduced versions of the problem.

Recent research has focused on integrating the different parts of the schedule development to create
more comprehensive models, closer to reality. A. Mercier and F. Soumis (2005) create a mathematical
formulation for the "integrated aircraft routing, crew scheduling and flight re-timing model". They
develop a solving technique using Benders decomposition method with dynamic constraint generation
[44]. C, Barnhart et al. (1998) develop a solving technique and mathematical model to approach
simultaneously fleet assignment and aircraft routing problems [5]. A.M. Cohn and C. Barnhart (2003)
noticed that crew costs are the second most expensive costs for an airline, and that crew scheduling
possibilities are limited by the decisions made earlier in the planning process. They integrate the crew
pairing problem and aircraft maintenance routing problem in order to provide as many maintenance-
feasible crew pairings as possible, giving more flexibility to decision makers and reducing overall costs
[13]. Because integrated models are larger and more computationally intensive than the single problem
formulations, an opportunity lies in developing methods to efficiently solve them in a finite amount
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time.

5.2. Humanitarian routing and scheduling
Operations research and optimisation is not commonly applied to the humanitarian context although
logistics plays a crucial role in its effectiveness. While decision support tools have significantly elevated
the performance of private sectors by reducing costs and increasing efficiency, the humanitarian sector is
still lagging behind in this field [60]. A.M. Caunhye, X. Nie and S. Pokharel (2012) provide an extensive
review on optimisation models applied to emergency logistics [11]. The authors breakdown literature in
3 main groups : Facility location problems, relief distribution and casualty transportation, and other. E.
Nikbakhsh and R.Z. Farahani (2011) provide an overview on common mathematical formulation for the
location problem, inventory problem, VRP, the transportation and distribution problem, but adapted
to humanitarian operation [46]. V. De Angelis et al. (2007) tackle the air delivery optimisation problem
for the WFP mission in Angola [17]. The goal is to create a routing and schedule which maximizes
demand satisfaction subject to availability and operational constraints. They extend the VRP to create
the Vehicle Routing Variable Depot Full Load (VRVDFL) model, an Integer Linear Programming (ILP)
model which deals with the weekly routing and scheduling of a homogeneous fleet of cargo planes be-
tween multiple depots and clients. G.Barbarosoglu and Y. Arda (2004) propose a two-stage stochastic
model for emergency transportation planning where the time horizon is split between Early-response
and Response after a disaster has struck. They create a multi-commodity, multi-modal network flow
mathematical formulation which models the movement of aid in an urban setting while taking into
account different scenarios characterised by random allocation of supply quantities, arc capacities and
demand [4]. In the same effort to avoid deterministic models, S.J. Rennemo et al. (2014) create a three-
stage stochastic facility routing model where they integrate the facility location problem and VRP [20].

More recently, two research papers have explored humanitarian passenger flight routing and schedul-
ing using as case study the South Sudan UNHAS mission. S.P. Niemansburg (2019) created the Hu-
manitarian Flight Optimization Model (HFOM), an adaptation of the multi-depot heterogeneous pickup
and delivery problem with time windows [45]. The problem is formulated as three-index Mixed-Integer
Linear Programming model with objective to minimize the sum of the routing costs subject to demand
satisfaction, flow conservation, availability, capacity and operational constraints. Due to the size of the
problem and the high number of nodes needed to represent accurately potential routings, a division
heuristic is used to sub-divide the problem into smaller instances which are solved sequentially: South
Sudan is divided in 6 different regions, each associated with specific daily passenger request data. Due
to the multi-objective dimension of the model, the outputs are Pareto Fronts, allowing one to trade-off
between costs and demand satisfaction. The model is validated by an expert flight planner who is asked
to produce the routing as if in a real case scenario. This is compared to the results of the model and
the author concludes that the HFOM is able to produce routings with reduced costs between 2.2%
and 7.8% and output a result up to 5 times faster. Building upon this research, Y. Mekking (2020)
extends the HFOM by modifying the node generation and allocation formulation in order to reduce
the problem size [43]. Another significant addition lies in the incorporation of the concept of minimum
guaranteed hours (mgh) which are an important benchmark for UNHAS monthly operations. A fleet
order constraint is added to the formulation and dynamic pricing is used in order to model the evolution
of flight hours per aircraft and keep utilisation of each asset as close to the mgh as possible, avoiding
over-time costs. The author develops a similar division heuristic where dynamic elements are used to
solve each sub-problem according to a region prioritisation scheme of which the results are illustrated
by a map in ??. Unnecessary decision variables are then removed and auxiliary constraints added, en-
suring that the problem is bounded, converging in a finite amount of time. The model achieves between
1% and 20% in cost savings when compared to expert flight planner solutions and improved passenger
request satisfactions by 1.2%. For practical reasons, multiple Pareto fronts are once again created and
can be used as decision support tools for flight planners when trading off between costs and demand
satisfaction.

5.3. Research focus
H. De Vries (2017) clearly identifies the need for more automation in humanitarian planning and rout-
ing applications in his review on "Evidence-based optimisation for humanitarian logistics" [60], stating
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that research on humanitarian schedule development and routing has been lagging behind compared
to the commercial sector. Routing and scheduling models created for humanitarian aid and emergency
response are usually found to be extensions of the VRP formulations, mostly due to the fact that the
objective revolves around minimizing costs and maximizing demand satisfaction. Daily operations are
also often considered due to the difficulty in predicting requests and changes in the operating environ-
ment which happen on a last-minute basis. It is however important to take a step back and attempt
to increase robustness of humanitarian operations on a longer time frame. As previously mentioned in
chapter 2, daily routings and schedules are created based on humanitarian requests submitted 72 hours
before departure, which in turn are driven by a preliminary weekly schedule drafted by UNHAS. This
preliminary weekly schedule has the aim to concentrate OD demand efficiently throughout the week in
order to provide humanitarian staff the opportunity to travel to as many destinations as possible while
keeping costs low and respecting operational constraints. Until now, no research has been found on op-
timising this schedule. Apart from Y. Mekking’s research paper, models taking into account minimum
guaranteed hours is also not present in literature [43]. Incorporating this aspect at the tactical instead
of operational level would allow a decision makers to tailor a fleet and preliminary schedules to reduce
costly over-time hours and balance aircraft utilisation.
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Appendix 1

This appendix provides more information on UNHAS reporting lines and the humanitarian aircraft
contracting process in order to help situate the research within the overall humanitarian context. It also
presents maps of South Sudan published by the United Nations logistics cluster during 2019 providing
more information on the operational aspect of the mission.

1.1. UNHAS reporting lines

Figure 1.1 shows the main hierarchy of the WFP aviation services and UNHAS. The main actors
concerned by this study are the Air Transport Unit, the Chief Air Transport Officers (CATO) and the
User group comity. The Air Transport Unit is partly made up of contracting officers responsible for the
chartering of air assets. They are in direct contact with CATOs on the field and jointly make decisions
on which air assets are most suited to a specific mission as well as when they should be contracted, based
on available aircraft types, leasing costs, operational costs, and the need in the country of designation.
Every month, a User Group meeting is held where the main users of UNHAS discuss air transport with
the CATOs and the establish a monthly forecasted amount of passengers. These inputs are used to
created weekly preliminary schedules which drive the passenger bookings and may lead to the conclusion
that more or less air assets are needed. This is communicated back to the contracting officers in at
headquarters.
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Figure 1.1: Diagram of UNHAS reporting lines (links of interest for this study in red)
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1.2. UNHAS aircraft selection processes

Figure 1.2: Diagram of main steps taken by the WFP aviation services and UNHAS in selecting appropriate aircraft
fleets

1.3. South Sudan Road access maps
The following road access maps in Figure 1.3 and 1.4 both present the state of the transportation
network in South Sudan during the dry and rainy season respectively. It can be observed that during
the rainy season, a number of destinations can no longer be accessed due to flooding and multiple roads
are closed off to humanitarian aid convoys. The need for air transportation is increased during this
period, specially for MI8 helicopters who are able to access remote locations that small trubo-prop
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aircraft such as Cessna 208s can no longer use due to flooding and runway damage.

Figure 1.3: South Sudan access constraint map during the dry season (November - April) [40]

Figure 1.4: South Sudan access constraint map during the rainy season (May-October) [40]

1.4. South Sudan UNHAS routes
Figure 1.5 is a schematic representation of the destinations served by UNHAS. A hub and spoke pattern
clearly emerges form the figure and supports the modelling choices made in the research paper.
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Figure 1.5: UNHAS flight destinations and connections map for April 2019 [40]





2

Appendix 2

The MCNF & HFSMVRP model were run for the South Sudan rainy season in order to observe how
the fleet would change from season to season according to the changing operating.

2.1. South Sudan rainy season

South Sudan is subject to 2 different seasons, the tropical/rainy season starting end of April and lasting
until October, followed by the dry season. During the rainy season, heavy floods occur, damaging roads
and runways and rendering them unusable by ground transport or aircraft. The maps in Figure 1.3 and
Figure 1.4 illustrate the state of the road network during these 2 different season, also taking into account
road closures due to increased risks of insecurity on these links (armed conflict/explosives/kidnappings
etc.). It is therefore important to evaluate if a different fleet is needed during the rainy season than
the dry one. It is assumed that the demand to and from airports does not change, however certain
airfields can no longer be accessed by turboprop aircraft and must be reached by helicopter. According
to UNHAS expert planners and for the purpose of the case study, the airports marked with a ⇤ in the
research paper’s Appendix A, Table 18, are considered only accessible by MI8 helicopters during the
rainy season. The MCNF model is first used to model passenger transshipment. The results can be
found in Table 2.1. The fleet selected is the same one as for the dry season with the exception that 2
MI8s are needed in Rumbek instead of 1. Routing costs are also much higher for the helicopters as they
must reach destinations now inaccessible to the cheaper turboprop aircraft.

Table 2.1: Multi-commodity network flow model results for South Sudan weekly demand (30/09/2019-04/10/2019)
during rainy season

DCH8-3 Cessna 208B Cessna 208B Cessna 208B MI8T MI8T
Number of aircraft 1 1 1 1 1 2
Aircraft base Juba Juba Rumbek Wau Juba Rumbek
Weekly block hours [h] 20.3 24.0 24.0 11.2 31.6 59.8
Weekly operational hours [h] 33.3 40.5 37.0 18.2 42.1 84.8
Weekly distance flown [km] 10,781 8,265 8,268 3,848 7,029 13,287
Weekly routing costs [$] 67,151.4 30,024.9 30,033.5 12,399.2 90,490.5 17,1045.4
Total weekly routing costs [$] 401,144.5
Total monthly lease costs [$] 947,977
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Table 2.2: Sub-problem division as a result of the Multi-commodity network flow model for South Sudan rainy season

Sub-problems Requests Airports Passengers
Sub-problem 1: MI8 - Juba 14 10 190
Sub-problem 2: MI8 - Rumbek 35 23 245
Sub-problem 3 :DCH8 106 - Juba 14 8 1,115
Sub-problem 4: Cessna 208B - Juba 16 9 237
Sub-problem 5: Cessna 208B - Rumbek 22 12 202
Sub-problem 6: Cessna 208B - Wau 9 11 85
Total problem 110 61 2,074

The sub-problem division resulting form the MCNF problem displayed in Table 2.2 shows that
sub-problem 2 contains more than 25 requests. The clustering algorithm is therefore used to divide
the region into 4 different clusters as can be seen in 2.1(a), based on the "Elbow graph" in 2.1(b).
Each cluster is first run separately using the HFSMVRP model. Their individual solutions are then
combined and used as a warm start for the entire sub-problem 2. Prior to the warm start, the results
of all individual clusters indicate that 2 MI8’s would still needed, with a total routing cost of 72295.97
$. Once the warm start is used, the HFSMVRP model is able to find a better solution, reducing the
MI8 helicopters to 1 and reducing the routing costs by 11.46 %. A summary of the main results can be
found in Table 2.3.

(a) Clustering algorithm applied to sub-problem 2 (b) "Elbow" graph for the clustering of sub-problem 2

Figure 2.1: Clustering algorithm applied to helipads in South Sudan during the rainy season

Table 2.3: HFSMVRP results for sub-problem 2 for the South Sudan weekly demand (30/09/2019-04/10/2019) during
the rainy season

MI8T
Region 0

MI8T
Region 1

MI8T
Region 2

MI8T
Region 3

MI8T
All Regions

MI8T
All Regions (Final)

Amount 1 1 1 1 2 1
Aircraft base Rumbek Rumbek Rumbek Rumbek Rumbek Rumbek
Weekly block hours [h] 7.9 6.6 5.8 5.1 25.2 22.4
Weekly operational hours [h] 15.4 12.1 9.2 7.5 44.1 41.9
Weekly distance flown [km] 1,750 1,464 1,262 1,139 5,616 4,972
Weekly load factor [%] 72,05 52.52 47.63 48.42 55.14 68.52
Weekly routing costs [$] 22,532.5 18,847.9 16251.5 14,665.0 72,296.0 64004.1
Weekly routing costs decrease after warm start 11.46 %
Monthly lease costs decrease after warm start 50 %

The final results for the entire weekly demand during the rainy season can be found in Table 2.4.
The HFSMVRP is able to reduce the total routing costs by 33 % by refining the routing of the aircraft.
It also reduces the fleet leasing costs by exchanging the Cessna 208B in Juba by a Dornier 228.
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Table 2.4: MCNF & HFSMVRP model results for South Sudan weekly demand (30/09/2019-04/10/2019) during rainy
season

DCH8-106 Cessna 208B Cessna 208B Dornier 228 MI8T MI8T
Number of aircraft 1 1 1 1 1 1
Aircraft base Juba Rumbek Wau Juba Juba Rumbek
Weekly block hours [h] 21.2 22.8 8.5 13.8 22.4 22.4
Weekly operational hours [h] 34.7 36.8 15.5 25.3 32.9 41.9
Weekly distance flown [km] 11,266 7,840 2,939 4,338 4,990 4,972
Weekly load factor [%] 87.20 72.63 67.50 79.13 67.70 68.52
Weekly routing costs [$] 70,173.7 28,479.0 9,471.1 32,689.4 64,242.2 64,004,0
Total weekly routing costs [$] 269,059.5
Total monthly lease costs [$] 716,441
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