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Abstract

In this thesis a vision assisted system is developed for manipulation of a robotic arm which
is to be used in unconstrained environments with service robots. The vision module com-
prises of segmentation and object tracking that allows the user to select the object they want
to grasp. It is shown that GrabCut segmentation improves the efficiency of the Tracking-
Learning-Detection (TLD) tracker. The Moveit! platform for solving motion planning prob-
lems is used in this thesis. Apart from the default Open Motion Planning Library (OMPL)
in Moveit!, Stochastic Trajectory Optimization for Motion Planing (STOMP) and Search-
Based Planning Library (SBPL) have also been explored to solve motion planning problems.
Inverse kinematics based genetic search is used for generation of waypoints in challenging
manipulation tasks and has been incorporated into the Moveit! framework. The waypoints
generated through genetic search have shown to be valid. Additionally an analysis is done
to evaluate the performance of different motion planning libraries to find implementable so-
lutions in cases of varying relative position to arm and clearances to nearby obstacles. It is
shown that certain motion planning libraries have superior performance for varying clearance
and position of goal. A contextual awareness module is developed that determines the best
planning algorithm for the clearance from obstacles and relative position of the target pose to
the arm. A flexible framework is created that incorporates the vision module, genetic search,
contextual awareness and allows for switching between the three motion planning libraries.
The system is also tested on the robotic arm at Robot Care Systems.
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Chapter 1

Introduction

Robots are becoming a part of our everyday lives. From the room cleaning Roomba [1]
to PARO [2] the robotic seal that is used for comforting people, robots have integrated
themselves into our lives. Service robots have found more implementation in recent years
due to development of faster systems that are more intuitive to use and can be operated by
anyone.

In this thesis robotic manipulation for service robots is addressed by considering the require-
ments of the users, the challenges of an unconstrained environment. A system is developed
with modules to increase the success of motion planning tasks.

Robot Care Systems has developed a robotic stroller Lean Elderly Assistant (LEA) aimed to
help elderly users walk and exercise. The users often have difficulty in reaching for objects on
the floor or on a high shelf. The manipulator mounted on LEA can be of great assistance in
these situations. LEA can also navigate from one room to another, combined with the ability
to grasp objects it can be used to retrieve objects in the event that the user is unable to do so
themselves. The objective of LEA is to assist the elderly in carrying out day to day tasks with
ease and save time on the involvement of care takers for the elderly. A robotic arm would
empower the user to pick and place objects, combined with the navigational capabilities of
LEA it also opens the possibility of remote grasping.

For safe and successful grasping of objects it is important that the motion planning is accu-
rate, avoids obstacles, has smooth and power economic movements. Aspects of vision and
motion planning are examined to develop a system that incorporates all the aforementioned
attributes. In the first chapter state of the art service robots are examined, the use cases
for users interacting with the manipulator are created and the aspects of vision and motion
planning required for the thesis are reviewed. Following chapters provide an insight into the
framework of the system developed in the thesis followed by vision and motion planning in
detail.
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2 Introduction

Figure 1-1: Pepper Figure 1-2: Buddy Figure 1-3: Paro

1-1 Service Robotics

Industrial robotics primarily focuses on precision, speed and efficiency whereas service robotics
is more concerned with safe robot-human interaction and navigation with the uncontrolled
environment.
As per the International Federation of Robotics [3] :

• A service robot performs useful tasks for humans excluding industrial automation ap-
plication.
• A personal service robot or a service robot for personal use is a service robot used for
health care tasks, usually by untrained people. Examples are domestic servant robot,
automated wheelchair, personal mobility assist robot, and pet exercising robot.
• A professional service robot or a service robot for professional use is a service robot
used for a commercial task, usually operated by a properly trained operator. Examples
are cleaning robot for public places, delivery robot in offices or hospitals, fire-fighting
robot, rehabilitation robot and surgery robot in hospitals. In this context an operator
is a person designated to start, monitor and stop the intended operation of a robot or
a robot system.

The service industry of robots aims at aiding and assisting people to do everyday tasks with
ease. Robots such as Pepper [4] and Buddy [5] have revolutionized the role of robots in human
lives. Capable of voice recognition the robots are aimed at making lives more comfortable
for the users. It can read emotions of humans and act accordingly. Buddy is developed
as a companion robot capable of home security, control of smart devices in a house, social
interaction such as telepresence, fall detection and unusual activity detection.
In [6] a wheelchair-based rehabilitation robotic system for the disabled is described. The
developed system is titled KAIST Rehabilitation Engineering Service System II (KARES II)
and has two main components: robotic arm and user interfaces. To compensate for different
levels of disability they made interfaces through movement of eyes, shoulders as an input for
the system. University of Bremen have developed care providing robot FRIEND [7] which
has a wheelchair and a robotic arm capable of picking and placing objects for the user.
Areas of research such as cognition, image processing, artificial intelligence, motion planning,
stable and robust control are all tied into completing tasks in service robotics. There has
been focus on developing algorithms that achieve higher efficiency in setting where robots are
expected to be used such as indoors.

Aashish Vatsyayan Master of Science Thesis



1-2 Recent Developments 3

Figure 1-4: FRIEND

1-2 Recent Developments

There has been significant progress in the area of service robotics. Willow Garage, a former
software company made several developments in motion planning, obstacle avoidance and
their integration onto a single platform. Rice university has developed some cutting edge
motion planning algorithms such as the KPIECE [8]. In [9] an architecture is presented that
integrates creation of 3D maps for collision detection and real time motion planning for the
PR2 robot. The PR2 robot can be seen in Figure: 1-5

Figure 1-5: The PR2 robot

In [10] pick and place operations on the PR2 with 91 % accuracy in 6.7 seconds are presented.
Such a pick and place application can be of significant interest in service robotics. In [11]
presented perception and planning in cluttered and unstructured environments using a com-
bination of 2D and 3D visual processing, tactile and proprioceptive sensor data, fast motion

Master of Science Thesis Aashish Vatsyayan



4 Introduction

planning and reactive control. This application was again on the PR2 robot.

1-3 Use cases

A service robot such as LEA (shown in Figure: 1-6) has to constantly interact with elderly
users. In order to develop a system for manipulation it is first important to understand the
needs and requirements of these users. For a service robot it is important to identify intended
users and the desired behaviour towards them.

A short use case analysis is done recognizing the primary, secondary and tertiary users for
the robotic arm and observing their requirements. The roles are described in priority of use.
The things that the user has to be able to do is mentioned as available choices. The needs or
expectations of the user from the system are discussed in ’Needs’ and the safety precautions
are discussed as precautions.

Figure 1-6: LEA

Primary user The elderly person using the stroller is the primary user.

Available Choices:

• Manual end effector control.
• Select object to pick up.
• Pick and place object from one location to another.
• Emergency freeze in case of malfunction.

Needs:

• A simple and intuitive interface for the user.
• Notification when there is an error.
• Sophisticated vision system for separating selected object from background.
• Motion planning to generate trajectories for grasping actions.

Aashish Vatsyayan Master of Science Thesis



1-3 Use cases 5

• Good controller design for motors to ensure smooth motion.

• Notification when an object is out of range or a place is unsuitable to place an object.

In order to meet the requirements of the primary user the system needs to have three crucial
components : computer vision, motion planning and controller design. All other functional-
ities can be built on top of these main concepts. These concepts will be looked in detail in
the following chapters.

Precautions:

• Movement must be constrained, collisions must be avoided.

• Verification from user if the correct object is isolated in the video from the user selection.

• Check if the object weighs less than the maximum weight the arm can lift and notify
user if it isn’t.

Secondary user The care giver or family member that is responsible for the care of the
elderly user is the secondary user.

Available Choices:

• Handing and receiving objects to and from the arm

Needs:

• Avoiding collision and not overshooting when handing objects.

• Detection of hands while handing object over.

Precautions:

• Checking if the object has been successfully handed or picked

The use cases specify the requirements from the robotic arm and were considered while
developing the system and selecting the appropriate algorithms. The main requirements that
emerged were: safety, ease of use, obstacle avoidance and accuracy. This thesis aims at
targeting the vision and motion plannings aspects of the points determined.

Now that the use cases for users have been identified the tools required for development of a
system that can implement the requirements will be examined. First the vision aspect of the
system will be examined and then the motion planning module will be looked into.

Master of Science Thesis Aashish Vatsyayan



6 Introduction

1-4 Vision

This section explores the tools needed for interacting with the user, keeping a track of a
selected object and how it can be improved in a cluttered environment. The vision system
can be used for keeping a track on the movement of the desired object. Vision can also be
used to compensate for poor joint encoders to estimate the position of the end effector.

A house is a highly unconstrained environment, things may be moved intentionally or by
accident. The thesis aims at developing a system that can accommodate this uncertainty.
The first task however is to allow the user to select the object they want to grasp. In the
literature review several tracking algorithms were examined and TLD tracker [12] was selected
due to its ability to handle change in poses, user interaction and its 3 layered structure that
allows for tracking, learning and detection.

TLD tracker allows users to generate the bounding boxes for objects they want to grasp. This
allows for user interaction but at the same time allows for accumulation of noise that will be
tracked due to addition of extra areas in the bounding box apart from the object they want to
grasp. The user may not always be able to accurately select the object they want to grasp in a
cluttered environment. This can be rectified by using a segmentation algorithm in conjugation
with the tracking. Through research conducted in the literature review GrabCut [13] was
selected due to its superior performance in the presence of background clutter. Figure: 1-7
from [13] shows the performance of GrabCut in comparison with Magic Wand (Adobe Systems
Incorp. 2002), Intelligent Scissors [14], Bayes matting [15], Knockout 2 (Corel Corporation
2002) and Graph cut [16].

Figure 1-7: GrabCut algorithm in comparison with other segmentation algorithms

The superior performance in comparison with other state of the art segmentation algorithms
can be seen. The integration of segmentation and tracking and its implementation are ex-
plored in Chapter : 3. The tracked coordinates of the target object can be used to estimate
motion of the object. In the event that the object moves the trajectory execution is paused.
In the event there is no movement of the target object the 3D coordinates of the goal are
passed to the state machine (discussed in Chapter: 2 ) to generate a motion plan.
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1-5 Motion Planning 7

Table 1-1: Comparison of motion planning planning libraries

Planning Library Advantages Disadvantages

OMPL

-Fast, versatile
-Sampling based algorithms
are effective for obstacle avoidance
-Tried and tested

-Random trajectories are possible
-Poor orientation constraint handling

SBPL
-Consistent movements
-Objective function minimized
-Uses motion primitives

-Poor obstacle avoidance and
constraint handling
-Higher planning time

STOMP

-Stochastic trajectory optimization
-Good constraint handling
-Local planner
-Smooth trajectories

-High planning time
-Difficult to solve global path
planning problems
in realistic time

1-5 Motion Planning

This section explores state of the art motion planning methodologies that may be utilized
in the thesis. The motion planning research conducted in the literature review presented
strengths and weakness of some motion planning libraries. This section evaluates 3 motion
planning methodologies and identify their strengths and weaknesses at the same time reflect-
ing their applicability in the thesis considering the requirements discussed earlier.

The libraries considered are: Open Motion Planning Library (OMPL) [17], Search-Based
Planning Library (SBPL) [18] and Stochastic Trajectory Optimization for Motion Planing
(STOMP) [19] .

A short introduction into the underling principles of these motion planning libraries are
presented in this section. A detailed insight can be found in the appendix.

OMPL: Has sampling, combinatorial, graph based, optimization and control based motion
planning algorithms. It is one of the largest motion planning libraries.

SBPL: Relies on generating motion primitives, search algorithms and a graph based discriti-
zation of the environment to solve a motion planning problem.

STOMP: Uses stochastic trajectory optimization technique. Generates a simple trajectory
between 2 points and then several noisy ones in order to optimize a cost function.

Each of these motion planning libraries have their strengths and weaknesses, particularly in
the context of the thesis. Some strengths and weakness for the motion planning libraries are
discussed in Table: 1-1

For the thesis each motion planning library will be explored and the strength of each will be
used to boost the planning success rate. This is examined in Chapter: 4. It is not possible
to say which motion planning library can solve the motion planning tasks in uncontrolled,
cluttered environments. This thesis aims to apply the strengths of each planner in an attempt
to boost the success rate.
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1-6 Discussion

In this chapter the motivation for the thesis was examined, use cases for the indented users
was discussed. The aspects of vision and motion planning were evaluated. TLD tracker and
GrabCut segmentation was decided upon. For motion planning the benefits and drawbacks
of each motion planning library were discussed. Since the robotic arm and the simulation
have the same kinematics most of the experiments performed in the thesis are in simulation.
Once proven to be safe and stable, the results from simulations are tested on the robotic arm.

The remainder of the thesis is structured as follows: Chapter: 2 looks at the overall framework
for the system designed in the thesis and explores each building block. Chapter: 3 shows the
implementation of tracking and segmentation algorithm and finally Chapter: 4 examines the
implementation of each motion planning algorithm in the system, measures to improve the
success rate are discussed and evaluated.
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Chapter 2

Framework

In the previous chapter the motivation of the thesis was presented along with the choices for
the vision and motion planning modules. Robotic manipulation in the service industry offers
many challenges, in order to prepare a safe and modular solution having a good framework
is important. The overall transfer of information is presented and each building block is
examined. The framework also takes into account real world factors such as noise and unpre-
dictable environmental changes. There are certain key factors kept in mind while designing
the architecture of the thesis:

• Modular: All modules work independently and can be replaced, changed if needed.

• Adaptable: If there are changes in modules, the system must still work.

• Safe: There must be fail safes built in the framework in case of emergencies.

The entire system was developed in ROS [20] on Linux operating system. All the code is
written in C++. For motion planning Moveit! [21] platform was used and for vision ROS
package for TLD was used and modified to meet the requirements of thesis. Before testing the
motion planning on the actual robot the system was developed and tested in simulation. V-rep
[22] was used as a replacement for the real world robot. The following sections will describe
the developed framework. This chapter focuses on the overview of the system developed in
the course of the thesis followed by an explanation of the building blocks involved.

2-1 Overview

Figure: 2-1 shows the overall framework of the system developed in this thesis. The infor-
mation received from the 3D camera consists of RGB (Red Green Blue) data and Pointcloud
messages. Pointcloud data contains the depth information of points in an image. This infor-
mation is then sent to the TLD tracker and displayed to the user.
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Figure 2-1: Overall framework

Here, the user selects the object they want to grasp. Before the coordinates are sent to the
state machine three crucial functions are performed. First is the tracking initialization, second
is the segmentation of selected object from the background and continuation of tracking. The
final function performed is the motion check. This module examines the position of the
selected bounding box and if the position of the object changes more than a certain threshold
it is considered as moved. If the object is moved a command is sent to the state machine
that stops the execution of trajectory. This module adds a dynamic element to the developed
system.

The state machine is where all the essential decision making is done. Here all the information
from different sources is processed and request for motion planning is made. The decision
making is done via a state machine architecture. From this block both simulation and robot
arm hardware can be accessed. The main output of this block is the generated trajectory
for the motion planning problem. If the simulation is being run then V-rep environment is
launched which mimics the real world settings. This is useful for testing algorithms and study
their execution before testing it on the real robot arm.

In order to operate the robotic arm the driver sends the joint positions to the motors on
the manipulator. The local Proportional Integral Differential (PID) controllers ensure the
execution of joint position commands sent by the driver. The communication takes places
through a Controller Area Network (CAN) bus. The CAN messages are explained in this
chapter. Execution of trajectories on the robotic arm is demonstrated in Chapter: 4.
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2-2 Building Blocks 11

2-2 Building Blocks

An insight into the building blocks of the framework described is explained.

ROS

This section explains the concepts that overlap for the framework used in simulation and the
actual robot. There are many ways to communicate with different packages in ROS. This
can be done in the form of services, messages, publishers/subscribers, parameter server etc.
More information about ROS framework can be found in [23]. In ROS the communication
between different packages takes place in the form of messages that are published on topics.
In order to transmit a message a publisher has to be initialized that broadcasts a message of
a specific data type on a topic.
Figure : 2-2, shows the mechanism of ROS publishers and subscribers for communication
between two nodes. In the thesis communication takes place via publisher-subscriber from
the vision module to the state machine and then to V-rep or robotic arm driver subsequently.
Joint states from the robot driver or V-rep are also communicated to the state machine via
publisher-subscriber.

Figure 2-2: ROS communication

ROS was developed primarily for robotics (as the name suggest). The node based com-
munication allows for different nodes to be called when they are needed. To bring this into
perspective, a motion planning node will begin to process information received from the vision
node when the data transmitted.
In order to initialize a package and launch a desired node the roslaunch file is used. It is a tool
for launching ROS nodes and setting ROS parameters. More information for the roslaunch
package can be found in [24]. This chapter deals only with the way the information is passed
from one package/node to another. The details of what happens inside the vision and motion
planning modules are presented in chapters 3 and 4 respectively. The video feed is provided
from the 3D camera that is initialized by the openni2 package [25], which is launched on
start up. The openni2 package essentially sets the calibration parameters for the camera and
makes RGB and depth information available. The depth information is present in the form
of ordered arrays. In order to extract the x, y and z information of a point in the video it has
to be isolated using the x and y coordinates.
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Once the RGB and depth data stream is initialized by the openni2 package tld_gui package
is called. This package starts a Graphical User Interface (GUI) which has the option to select
the points that define the required object. The selected points are published on a topic which
has a subscriber in tld_tracker node. The PointCloud2 information is also taken by the
tld_tracker package via a subscriber. Using the point coordinates and the depth information
a 3D point that represents the desired object is generated, however this information cannot
be used as is. The generated 3D point is with respect to the camera frame of reference,
whereas for motion planning it should be from the frame of reference of the base link of the
robot. In order to transform the coordinates from one frame of reference to another the ROS
transformation package [26] is used.

The package takes the joint position of each joint, the robot description and generates in-
formation about the position of each link and joint when there is motion. If the camera is
placed statically then the transform will be constant, however if the camera is placed on a
moving link of the robot arm then the dynamic transforms are generated. For this to happen
the move_group node has to be active. This node in turn is activated when the user_client
node is activated. The tld_tracker node waits for this information to be published on the
tf topic. Once a transform is present between the camera and the base link, coordinates are
published on a topic which the user_client node subscribes to.

Here the user_client node has to make the decision to send the 3D coordinates to begin mo-
tion planning. The communication between user_client and user_server is done through
an action server [27]. An action server allows for a request from the client to the server to
perform a task in a way that there is feedback and a possibility to stop the task in case there
is a change in goal. An overview of this can be seen in Figure: 2-3

Figure 2-3: Client-Server interaction

The main aspects of client-server communication in ROS are:

• Goal: This is a user defined message that containing the x,y and z coordinated for
motion planning.
• Feedback: The incremental progress in the server side, this is user defined as well. For

this thesis it can be the status of solving the motion planning problem.
• Result: This feedback is sent exactly once in contrast to the Feedback for other pro-

cesses. This might contain the final pose of the robot after execution motion planning.
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In the thesis the user_server is the state machine as shown in Figure: 2-1. It is interfaced
using a client-server architecture where the user_client receives the coordinates from the
vision module. In the user_client motion detection is performed. Once there is no motion
detected the coordinates are sent to user_server. Hence the module that performs tracking,
segmentation and motion detection as shown in Figure: 2-1 consists of a package publishing
the coordinates which is received by the user_client where motion detection is performed.
This structure has been adopted keeping in mind that finally the user should be able to see
the video on a tablet constantly for selection of object and once they are satisfied with the
selection start the motion planning task.
The action-server communication adds to the modularity of the framework used in the thesis.
The motion planning request to a certain point in 3D space is received in the user_client
node which is the client in the action server and the request is sent to user_server node, which
is the server in the form of a goal. Once the server is initialized the motion planning begins.
Inside the user_server node the motion planning request is analyzed and an appropriate
motion planning library is selected for initializing the move_group node which is the main
node for communication with Moveit!. Inside the user_server a state machine architecture is
used, which streamlines the motion planning process and gives feedback to the user_action
node which in turn can relay messages to the user regarding the progress.

State Machine

The supervisory state machine is responsible for interfacing with all the sources of data and
processing a suitable action. Figure: 2-4 shows the flowchart of the states

• Unfold: Initially docked in a folded position the arm postures itself in order to prepare
for executing motion planning trajectories. This can be done using pre-determined joint
state commands, motion planning is not required for this state. independently and can
be replaced, changed if needed.
• Pre-Grasp Pose: Here the coordinates for motion planning are received and if possible
a motion plan to the pre-grasp pose is generated. The target coordinates are first
passed through genetic search that computes closest reachable point to the target. This
coordinate is then examined via the contextual awareness module which examines the
clearance of target, its position relative to the robot and produces the most suitable
motion planner for the task. With the updated target coordinates and planner, a motion
plan is requested. In the event that the target pose is not reachable the closest point
generated by the genetic search is fixed as a way point. Once this is reached a local
planner or conventional controller can be used to navigate through confided spaces. In
the event that the coordinate generated by genetic search is within a threshold of the
target pose a direct motion planning is attempted to it.
• Grasp: State to navigate arm to grasp the target object. If a successful grasp is achieved
the next state is Place, else a new pre-grasp pose is attempted.
• Place: In the event of a successful grasp the target to place the object is examined and
a valid point is selected to place the object.
• Fold: As indicative by its name, once the motion planning request is completed the arm
is folded in the absence of a new motion planning command.
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Figure 2-4: State machine overview

The thesis is focused on pre-grasping pose generation and trajectory execution for the robotic
arm. Grasping pose generation for unknown shaped objects is not addressed in this thesis as
it is a separate field of research from motion planning and it depends on the choice of gripper
which has not been decided yet for the robotic manipulator RCS. The genetic search and
contextual awareness modules are explained in detail in Motion Planning chapter. In essence
the state machine supervises the motion planning from one state to another. The proposed
system does not respond to dynamic obstacles. The environment is analyzed only in the
beginning of the motion planning task and ignored during the execution of the trajectory. In
order to make the system respond to dynamic obstacles the octomap has to be constantly
monitored, however this will be addressed in future research.
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Simulation

Once the building blocks are in place the algorithm and the system can be tested in simulation
before being used on the actual setup. This established a good testbed to vary parameters and
see their performance without damaging the robot. The simulation software has to be ROS
compatible and it should be possible to import the robot description into its environment,
furthermore it must be possible to add obstacles, daily household items and sensors in the
simulation environment. A software is ROS compatible when communication in the form of
publishers and subscribers can be established. V-rep [28] satisfies all these requirements as
does Gazebo [29]. Due to ease of adding custom shaped objects in V-rep [30], it is selected for
the thesis. ROS compatible messages can be broadcasted from inside of V-rep environment.
After importing the robot description in the from of a Universal Robot Description Format
(URDF) file a non-threaded child script is added to the robot. This child script is called
recursively and is divided into different parts. Figure: 2-5 shows the robotic arm simulation
in V-rep environment.

Figure 2-5: Robot arm in simulation Figure 2-6: Robotic arm at RCS

Inside the section that is called recursively, the publishers and subscribers have to be initial-
ized. Here the Joint state information is published on the Joint_State topic and position
commands are received for each joint in the form of Joint_State messages. A 3D camera
is present in the V-rep library and can be used to publish the PointCloud2 depth messages
that are compatible with ROS. For working in simulation the joint states are taken from the
simulation environment. For the actual robot however a Joint state publisher is created.

Robotic Arm

For interfacing with the hardware a few changes need to be made from the simulated environ-
ment framework. In order to communicate with the robotic arm a driver has to be developed.
CAN protocol is used to interface with the joint controllers in the arm. The hardware used at
RCS is a custom arm developed in accordance with the needs of the robot. The manipulator
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has 6 Degrees Of Freedom (DOF). The hardware was developed with Common Place Robotics
[31] and the specifications for the arm can be found in [32]. Since the experiments for this
thesis were performed with prototypes of the manipulator there were certain challenges that
resulted in streamlining the development of future design of the arm. Figure 2-6 shows the
robotic arm being used at RCS. The arm was designed to make it usable with service robots.
The specifications of use are:

• Kinematics: Serial six axis standard kinematic
• Payload: 1.0 kg at half reach, 750 g fully extended
• Reach: 850 mm
• Weight: approx. 6.0 kg
• Communication: Internal CAN, external via Ethernet
• Supply Voltage: 24V

CAN protocol

This section details the CAN protocol that is used to communicate with the boards on the
robotic arm. Each joint has a controller board that listens to a specific CAN ID. Figure: 2-7
shows the PCAN-USB adapter used to interface between the robot and a CPU.

Figure 2-7: PCAN-USB PEAK adapter

The exact CAN protocol can be found in the appendix.

2-3 Discussion

This chapter explored the framework and its individual modules used in the thesis. ROS,
V-rep, the state machine, robotic arm hardware and the CAN protocol were examined. The
proposed system for the thesis has several modules that are intended to improve the per-
formance of the system. A drawback of the proposed system is that it cannot respond to
dynamic obstacles. This can be addressed in future research. The next chapter explains the
components of vision system incorporated in the system and the impact on performance.
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Chapter 3

Vision

This chapter describes the components of the vision module used in the thesis. In order to
implement efficient grasping and obstacle avoidance, awareness of the environment is neces-
sary. This chapter will cover the implementation of each component in the vision module.
First the TLD and Grabcut algorithms are implemented following which their integration
will be implemented. It is demonstrated that by using the combination of segmentation and
tracking algorithms the overall efficiency of the vision tracking system improves.

3-1 Segmentation

An average house will have several objects that may be stacked on top of each other or placed
in the presence of other objects. Even if a cup is placed on a table for the purposes of
manipulation it is important to know the exact position of the cup in a 3D space. In order
to separate the cup from its background image segmentation algorithms will be used. An
implementation of GrabCut algorithm is present in the Point Cloud Library (PCL) [33]. PCL
offers a variety of image segmentation algorithms that can be used and tuned according to the
application. An off-the-shelf version of the algorithm is used in the thesis, however it remains
possible to fine tune the parameters in order to achieve sharper segmentation. Segmentation
is performed on a static image to separate the foreground from the background. The aim of
performing segmentation is isolate the desired object to be grasped from surrounding clutter.
From the point of view of the user, which will be either the elderly or people suffering from
muscular impairments, the amount of user involvement for selecting the object to be grasped
has to be minimal. In GrabCut the user has to select 2 diagonally opposite points with the
desired object encapsulated in the bounding box created by the 2 points. This allows for
easy interaction between the user and the system which is an important consideration behind
the system design. In the system developed for this thesis image segmentation needs to be
performed only when an object is being selected for grasping.

For the system developed in this thesis the aim is to make the selection of objects easy for the
user. Since it is difficult for the user to pinpoint exactly the object they want, the segmentation
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Figure 3-1: Bounding box selected in interface

algorithm is indented to make it simpler. From the perspective of motion planning it is desired
to have an exact target for generating a trajectory.

In order to determine the target coordinates for motion planning the x,y and z coordinates
are required. From the RGB image it is possible to find the x and y coordinates, a simple
transformation from the camera frame of reference to the base frame of reference of the
manipulator. In order to find the depth information the center of the bounding box is taken.
This is achieved by using the x and y coordinates of the center of the bounding box to extract
the depth information from the point cloud data. Figure: 3-1 shows the interface with of
the tracking algorithm window. The user can select a bounding box around the object they
want to grasp. Figure: 3-1 shows a sphere being selected by the user, on the right side the
tracker confidence can be seen along with available options. It can be seen that the tracker
confidence is not very high and that a lot of ambient area is selected to be tracked by the
user, this can cause accumulation of errors and mar the performance of the tracker.

Figure 3-2 shows the segmentation algorithm working in the presence of a textured background
object. The sphere in front is separated from its background object, this can make the
difference between using the tracking algorithm to identify the object to be grasped by the
manipulator. If the background is not segmented from the foreground the depth information
received from the depth camera may be misleading.

Figure: 3-1 shows the reduced bounding box after segmentation is performed. It can be seen
that the bounding box is the smallest possible for contour of the selected object. The tracker
confidence is higher in comparison with Figure: 3-3. Segmentation can be difficult in the
presence of background objects, Figure : 3-2 shows the performance of GrabCut algorithm
for such a case. The performance of GrabCut is satisfactory and it improves the tracker
confidence as well, next it’s impact on tracking is investigated.
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Figure 3-2: Minimized bounding box after
segmentation

Figure 3-3: Segmentation in presence of
background texture

3-2 Tracking

Keeping a track on the desired target object in the manipulation task is important due to the
dynamic nature of the environment. It is possible that the object is occluded or moved during
the manipulation action. Keeping a track on the position of the desired object adds to the
dynamic nature of the robotic system as it allows for replanning or canceling the manipulation
motion.
After a rigorous literature study of available state of the art tracking algorithms Tracking-
Learning-Detection (TLD) [12] algorithm was selected. The basic algorithm can be used
off-the-shelf. For the thesis, the parameters are not changed.

3-2-1 Testing

For testing the implementation and efficiency of the tracking algorithm a simulated environ-
ment was created in V-rep. Most of the simulation experiments are conducted in V-rep [22]
, however it is explained in detail in later sections. The Robotic Operating System (ROS)
implementation of TLD can be found in [34]. TLD can be used off-the-shelf, however by
including segmentation as an additional step the performance may be improved.

3-2-2 Results

In Figure: 3-4 the layout of the experiment can be seen. The green ball is moved slowly to
the location of the red ball, the obstacle is to challenge the tracking algorithm. It can be seen
that by including the segmentation module in the tracking algorithm the performance can be
improved.
Figure: 3-5 shows that without segmentation the tracker fails as the object changes its posi-
tion. This can be attributed to the bounding box drawn around the green ball initially. The
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Figure 3-4: Experiment for testing impact of segmentation

Figure 3-5: Tracker results

bounding box contains some background information, which in a cluttered environment will
make it difficult to separate the desired object from the background. During the motion of
the ball from its initial position to the red ball the tracker is lost, it is eventually regained
once the ball is moved further away from the obstacle after 12 seconds. It can be seen that
the tracker fails to follow the object to its final position. Figure: 3-6 shows the tracker is lost
when near the obstacle.

Figure: 3-5 also shows the impact of segmentation in the tracking algorithm. The tracker
follows the change in position of the object to the final position. From time step 15 to 20
the performance is low due to the presence of the obstacle in the background, however the
tracker locates the object again and follows it to the goal position. It can be seen in Figure:
3-7 the bounding box is present even near the obstacle.
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Figure 3-6: Tracker lost without segmen-
tation

Figure 3-7: Tracker present with segmen-
tation

3-2-3 Additional Changes

In order to facilitate the user to determine where the object is to be placed a bounding box
for the desired location of placement can also be selected by the user. Although it gives the
3D coordinates of the bounding box for that moment, validity of the point can be checked in
future work. In the images shown in this chapter the place bounding box is the small blue
box, it is not used in motion planning experiments for those cases.

3-3 Discussion

In this chapter GrabCut segmentation algorithm was inspected and its impact on tracking was
evaluated. It was observed that addition of segmentation improves the tracking performance.
Tracking tends to fail in cluttered spaces and there is heavy reliance on the user to draw
the bounding box accurately. In order to make the system more usable and improve the
performance an additional segmentation function was added which proved to improve the
tracking. Chapter: 4 looks into the motion planning module, as shown in the overview
(Figure: 2-1) the coordinates selected from the vision system are passed to the state machine.
The next chapter will look into the modules present in the state machine and how they impact
the over all success of motion planning task.
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Chapter 4

Motion Planning

In the previous chapter the components of the vision module were examined and the results
were documented. In this chapter the motion planning module will be examined. It was
seen that segmentation assisted tracking has advantages. Motion planning constitutes of
formulating a path to the intended target pose while following predetermined constraints
and avoiding obstacles in the environment. The robotic system is intended to be used in a
domestic setting which is highly unconstrained. As mentioned in the use cases in chapter
1, the user should be able to pick and place objects placed in the environment. To achieve
this a collision free path needs to be generated that follows the constraints imposed upon the
path trajectory. The constraints can be simple requirements such as not spilling the contents
of the object being manipulated, however in the context of motion planning this requires
generation of a trajectory with an orientation on the end effector. Furthermore, the planned
trajectory must be smooth and not erratic. These additional considerations along with the
dynamic environment make it a challenging task to find a trajectory. This chapter looks
into creating a simulated environment that recreates the dynamic nature of the environment
and acts as a testbed for motion planning algorithms. In order to determine the usability of
motion planning algorithms benchmarking experiments are performed with different setups
that resemble the conditions in which the robotic system is intended to be used. Different
motion planning libraries were explored that contain several algorithms that solve the motion
planning problem. Combination of motion planning algorithms from different libraries are
also tested to extract the benefits of different methodologies.

4-1 Representation of The Robot

In order to recreate the dynamic nature of a user’s home V-rep software is used. There are
several options for simulation software such as Gazebo [29], however according to [35] , there
are certain inherent advantages of using V-rep such as compatibility with ROS, ease of adding
environment objects such as glass, cabinet, sensors etc. A bare-bone version of the robotic
arm is created by creating a simple Universal Robot Description Format (URDF) file. This
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allows to import the model into V-rep environment. The model is built in accordance with
the dimensions of the real hardware, the exact contours are replaced by cuboids. The cuboids
are slightly bigger than the actual dimensions of the hardware, this is useful in having a higher
clearance with the obstacles during motion planning for the actual arm. For experiments this
version of the robotic arm is sufficient as it mimics the kinematics of the actual hardware and
also provides greater clearance from obstacles.

4-2 Motion Planning using Moveit!

Moveit! [21] is an open source platform designed for development of solutions for motion
planning problems. The architecture of Moveit! can be seen in Figure:4-1

Figure 4-1: Move group

The move_group node is the primary node that acts as a base for retrieval and transmission
of data to axillary nodes. The user can execute actions or services by interacting with the
move_group node. This node can be interfaced by the user interfacing via C++, python or
GUI.

The robot description is stored in the URDF file format. It contains information about the
links and joints. The Semantic Robot Description Format (SRDF) file describes which joints
are part of the planning group, it specifies the end effector link and contains information
about the kinematic chain formed by the links. All this information is uploaded into ROS
parameter server which move_group node accesses.

In order to communicate with the robot for motion planning the following information is
needed:
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• Joint State Information: The current position of each joint. In case of more than one
planning group multiple joint state publishers can be used.
• Transform Information: This allows for updating the position of each link using the
joint state information and the robot description in URDF.
• Planning Scene: This prepares the scene for motion planning by adding information
from the sensors. Information about the environment and the robot is updated here.

Moveit! communicates with motion planners using a plugin interface. This allows for different
motion planning libraries to be uploaded and used. While generating the trajectory collision
and constraints are checked. Moveit! allows for setting kinematic constraints:

• Position constraints : Restrict the position of a link to lie within a region of space.
• Orientation constraints : Restrict the orientation of a link to lie within specified roll,
pitch or yaw limits.
• Visibility constraints : Restrict a point on a link to lie within the visibility cone for a
particular sensor.
• Joint constraints : Restrict a joint to lie between two values.
• User-specified constraints : Custom constraints with a user-defined callback.

The trajectory that is generated by the move_group node utilizes the joint limits mentioned in
the URDF file. From the motion planning request to the response planning request adaptors
are utilized. The adaptors are used for pre and post processing of the request and response
respectively. The default motion planning adaptors are as follows:

• FixStartStateBounds: This sets the joint position to be in the allowable bounds in case
they are out of bounds in the starting state. This is useful in case the robot joints are
slightly out of their allowed range which can happen with robotic setups.
• FixWorkSpaceBounds: A default workspace of 10m X 10m X 10m cube is set in case
the workspace is not mentioned explicitly.
• FixStartStateCollision: In case the links are in starting state are in collision this adapter
changes the positions of the links with a pre mentioned range such that there is no
collision.
• FixStartStatePathConstraints: In the event that the start pose is in violation of the
constraints imposed on the path this adapter attempts to find a path from the start
state to one that obeys the constraints.
• AddTimeParameterization: Velocity and acceleration constraints are added to gener-
ated trajectories.

The planning scene monitor takes information from the joint states, sensor information and
the inputs from the planning scene. Shown in Figure: 4-3

For inverse kinematics calculations different plugins can be used. For collision checking
Flexible Collision Library (FCL) [36] is used. Due to the plugin based architecture it is
possible to change the default plugins.
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Figure 4-2: Planning pipeline

Figure 4-3: Planning scene monitor

For reducing the computational load for internal computations the depth information is pre-
sented as octomap [37] instead of pointcloud data. Figure: 4-4 shows the scene and Figure:
4-5 shows the octomap representation that is used for internal computations. The stick figure
representation shows the transforms published between each link.

In Figure: 4-5 the octomap representation can be seen. The individual block is broken into
eight parts or leaves. If neighbouring points are occupied then the voxel is occupied. The
resolution and range of the octomap can be modified according to the application. For the
thesis the range does not have to be large, the resolution can be adjusted.

Different motion planning libraries perform obstacle avoidance differently. Inside OMPL there
are many different motion planning algorithms that perform obstacle avoidance differently.
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Figure 4-4: Representation in V-
rep

Figure 4-5: Octomap represen-
tation

Sampling based algorithms do not generate points on obstacles, combinatorial motion planners
generate a road map, search based motion planners discretize the environment and use search
based algorithms to find a collision free solution for the motion planning problem.

4-2-1 Trajectory Interpolation

The trajectories generated through Moveit! sometimes cannot be implemented directly on the
actual robot due to trajectory points being far apart. It is also desirable to have the ability
to manipulate the points in the trajectory for desirable smoothness in motion. An additional
trajectory interpolation adaptor [38] has been added into the Moveit! framework for this
thesis. The generated trajectories are re-sampled by adding a uniform time step between
trajectories. A higher order spline smoother is used in joint space to re sample the points.
For the thesis the sample duration is kept at 0.01. This low value increases the trajectory
significantly thereby making the motion smoother. The controller on the robotic arm throws
an error if the set target is beyond a certain threshold as the current controller attempts to
move to the far away target in a quick motion. This is unsafe for the user and the environment
and hence the trajectory interpolation is needed for interfacing with the hardware. Improving
the controllers on the robotic arm remains to be an area of future research and is not handled
in this thesis.

4-3 Motion Planning Libraries

A motion planning library contains the motion planning algorithm and means to interface it
with ROS. Moveit! has a modular framework that allows it to interface with many motion
planning libraries. In this thesis three motion planning libraries are explored and implemented
for the system. The planners are tuned to a satisfactory level by exploring the parameters
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empirically. The aim of the thesis is not to optimize the motion planning algorithms but
to implement the libraries in a manner that they can be used for motion planning requests.
Their performance is tested on different benchmarking cases to decide in which setting a
motion planning library would be best to use.

In order to facilitate the motion planning libraries to be usable with Moveit! they have some
files in common that are explained below:

• YAML Ain’t Markup Language (YAML) file: The configuration parameters for the plan-
ning algorithm are stored here. These parameters are uploaded in the ROS parameter
server and are accessed by Moveit!.
• Launch file: Contains a list of planning adaptors to use for the motion planning library.
Parameters are uploaded into ROS parameter server.

4-3-1 OMPL

OMPL is the default motion planning library that Moveit! uses. There are several sampling
based, combinatorial based motion planning algorithms in OMPL. An entire list of motion
planners in OMPL is present in [39]

These algorithms are a mixture of sampling based, combinatorial, optimization and control
algorithms. For the thesis however the aim will not be to obtain optimum tuning, only till
the point that they can operate satisfactorily. The parameters that can be used to vary the
performance of the motion planning algorithms are present in the YAML file. The YAML
files are generated by default by Moveit! when the Moveit! setup assistant [40] is used. For
OMPL motion planning libraries the planners come with a predefined set of configuration
parameters that are set on initialization unless the default parameters are changed. These
parameter values give satisfactory performance so that the planners can be used off the shelf.
Although the values can be optimized either by using grid based or model based optimization
it is not in the scope of this thesis. The parameters are however explored.

The main parameters of the OMPL motion planning algorithms are:

• Range: The length of motion that can be added in the motion tree. The length can
impact the planning time for the algorithm.
• Goal Bias: If the algorithm knows the goal state with some probability it can select
the goal state during sampling with greater ease. The value ranges from 0 to 1 and 0.05
is the default value selected by the developers at OMPL after rigorous experimentation.

The planners being considered are:

• Probabilistic Roadmap Method (PRM) (Probabilistic Roadmap Method): A multi
query motion planning algorithm. This is a combinatorial planner that generates
the map once that can be used for multiple queries. A road map is created that
reflects the connectivity of the state space. The parameter that can be varied is
max_nearest_neighbors. The default value is 10.
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• Expansive Space Trees (EST) (Expansive Space Trees): A tree based motion planning
algorithm that stresses on exploring the less explored parts of space. The parameter
that can be varied are range and goal_bias. The goal_bias is set to 0.05 and the
range is set by OMPL on initialization.
• Single-query Bi-directional Lazy collision checking planner (SBL) (Single-query Bi-
directional Lazy collision checking planner): It is a bi-directional planner that is the
tree starts from the starting and goal position, the lazy collision checking implies that
validity of states is not checked in the algorithm, it has to be done separately. Once
invalid path is found, it is removed. The range is set during initialization.
• Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE) (Kinematic Plan-
ning by Interior-Exterior Cell Exploration): A tree based planner in which grids are
generated at multiple levels to discritize the state space. The Bi-directional KPIECE
(BKPIECE) uses two trees instead of one and Lazy Bi-directional KPIECE (LBKPIECE)
uses a bidirectional lazy collision checking. The parameter that can be tuned is the range
and goal bias. The default value of the goal bias is 0.05.
• Rapidly-exploring Random Trees (RRT) (Rapidly-exploring Random Trees): Tree based
motion planning algorithm that uses random sampling to construct a solution. RRT
Connect (RRTConnect) is a bidirectional variation of RRT. The parameter that can be
varied is the range.

Sampling based motion planning algorithms can find a solution in a short planning time.
One of the drawbacks of sampling based algorithms is that the generated trajectory can have
random motions. There could be unexpected motions of joints which is not preferred in a
domestic setting. In order to account for randomness of sampling based motion planning
algorithms two more motion planning libraries are explored.

Constraint Handling

In many tasks it may be expected from the manipulator that it keeps the pose of the end
effector constant. Picking up a glass of water from a table is a classic example for this kind of
requirement. In such cases an orientation constraint is imposed onto the end-effector of the
manipulator. The orientation constraints limit the sampleable region for motion planning,
hence the planner tries to find a path that respects the orientation constraints imposed on
it within certain bounds. The constraints are imposed using quaternions. Experiments were
conducted simulating real world settings where such a constraint would be used. There were
two tests conducted one with an obstacle between two poses and one without, in each case
the end effector must maintain its initial pose. The tests were run three times for each case.

The experiment is shown in Figure: 4-6. The two spheres represent the two poses the end
effector must reach from an initial position shown in the figure. The motion planning can
hence be broken down into two tasks: first to reach the ball on the left and then plan a path to
avoid the obstacle in the middle and reach the second ball while maintaining the orientation
constraint. For the experiment without obstacles the results can be seen in Figure: 4-8. It
can be seen that most OMPL planners suffer from poor performance in constraint handling.
PRM, a combinatorial planner gave best performance in comparison with the other planners.
In Figure: 4-8 and 4-6 0 is success and 1 is failure in motion planning.
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Figure 4-6: Orientation constraint with obstacle

Figure 4-7: Orientation constraint with obstacle

Though some planners were successful in one of the motion planning tasks, it failed in the
other. Most planners were able to reach only the first ball, after spending extensive amounts
of time. In reality none of the planners were able to complete the motion planning tasks while
maintaining the orientation constraints. This could be due to the planner configurations that
were kept at default for the OMPL planners, but the aim of the thesis is not to tune each
planner but to evaluate them with satisfactory operating parameters.

In the case of planning with an obstacle in between the two poses all planners failed to
complete the motion planning task. The results shown in 4-7 show that all planners suffer to
perform with orientation constraints.

It can be concluded that OMPL planners do not perform to a satisfactory level in the presence
of orientation constraints for a setting that will be common in a domestic setting. This also
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Figure 4-8: Orientation constraint without obstacle

shows the need for exploring other motion planning libraries which are done in the remainder
of this chapter.

4-3-2 STOMP

The parameters of STOMP that can be altered are presented in the points below along with
the analysis of the parameters and their impact on the motion planning. The aim here is to
find a suitable value for parameters that allow STOMP to be used for regular motion planning
tasks. Table: 4-1 shows the parameters for STOMP planning library.

• Trajectory duration: The maximum size of the trajectory that is allowed. Setting a
high value for this can allow for a trajectory that avoids obstacles but also allows for a
longer path in case there is no obstacle.

• Number of roll outs per iteration: STOMP finds a suitable trajectory by considering
several noisy ones, this number sets the number of candidate noisy trajectories that will
be considered. A higher value will offer a possibility of finding a better solution but at
the cost of a higher planning time.

Tuning: By setting a low value for this parameter solving the optimization problem
becomes difficult, however setting it high will lead to a large planning time. It is prefer-
able that the planning time is less than one second and the planner is capable of solving
tougher motion planning problems as well. A simple motion planning experiment is con-
ducted where the arm is expected to reach a target without the presence of obstacles
(0.17,0.65,0.52)
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Table 4-1: STOMP parameters

Parameter Value Description

Number of time steps 50
The greater this value is the more
joint configurations will be considered
per trajectory.

Max iterations 100
Setting a higher value for this parameter
might allow for STOMP to find a solution
around obstacles and in narrow environments

Number of roll outs per iteration 100 The Number of candidate noisy
trajectories that will be considered

Noise coefficients [0.1,0.1,0.1,
0.1,0.1,0.1]

The values are used to randomize
the joint values during generation of
candidate trajectories (noisy). These
trajectories are fed into the optimization task.

Figure 4-9: Experiment for varying stdev and decay

The spread for the planning time required over 20, 50 and 100 iterations for planning
with STOMP for different values of roll outs per iteration are shown in Figure: 4-10,
Figure: 4-11 and Figure: 4-12 respectively. It can be seen that increasing the value
alters planning time proportionally. Since planning time under one second is preferable,
the value for this parameter is selected as 100.

• Noise coefficients: This consists of 2 parameters : stddev and decay. The values for
these parameters have to be specified for each joint. The values are used to randomize
the joint values during generation of candidate trajectories (noisy). These trajectories
are fed into the optimization task. The joints move rapidly if a higher value is set,
however it might also cause random motions or longer trajectories than necessary.

Tuning: These are important parameters for tuning of the STOMP planner. They
specify the standard deviation and decay for the noisy trajectories that are generated.
Since the values are set for individual joint finding an optimum value becomes very
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Figure 4-10: Rollout
iteration=20

Figure 4-11: Rollout
iteration=50

Figure 4-12: Rollout
iteration=100

Figure 4-13: stddev,
decay=0.1

Figure 4-14: stddev,
decay=1

Figure 4-15: stddev,
decay=2

problem specific. Since the robotic arm is for use in uncontrolled domestic environments
tuning becomes very difficult. Setting a large value makes the movement to be large
and not optimum since we are taking the first collision free trajectory that is generated.

For this thesis STOMP is considered as a local planner which will not require to do global
obstacle avoidance hence it is expected to be used in areas where following constraints
will be more important that planning around objects. In these cases a smaller trajectory
is preferred. Joint 2,3 and 4 are the most crucial in determining the length of the
trajectory in most motion planning problems for the 6 Degrees Of Freedom (DOF) arm
hence these joint values will be altered to examine the changes.

Figure: 4-13, 4-14 and 4-15 show the results for planning 20 times for stdev and decay
values of 0.1, 1 and 2 for joint 3, 4 and 5 respectively for the planning scene shown in
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Table 4-2: Parameters for SBPL

Parameter Value Description

Initial epsilon 10

This value determines how good the first
found trajectory should be in comparison
to the optimum value. Setting a high value
of this parameter should reduce the planning
time but at the cost of the quality of the solution.

Final epsilon 5 The extent of optimality that is required
for motion planning

Decrement epsilon 0.01
The value determines how much
better the new solution should be as
compared to the previous one

Wcell, Waction, Wsmooth [10,1,1]
The weights for the coefficients for
the cost in SBPL. Low weights
result in lower planning time.

Figure: 4-9.The green ball shows the target and the cuboids represent obstacles.

Working with constraints

In this section orientation constraint was imposed on STOMP planner to keep the end effector
position same as the start pose. The same motion planning challenge as shown in 4-6 was
used. In contrast to OMPL, STOMP was successful 100 % of the times for both scenes, with
and without an obstacle in between. This shows favourable performance in comparison to
OMPL for cases where orientation constraints have to be handled. This superior performance
can be attributed to the cost function that takes the constraints in computations. STOMP
can be used as a local planner for cases where constraint handling is important.

4-3-3 SBPL

The parameters present in the ROS package for SBPL can be seen in Table: 4-2. An insight
into their tuning is provided below.

• Epsilon: The measure of how good the current solution is in comparison to the optimum
solution. A high epsilon value indicates that a suboptimal solution will be found but in
less time. A smaller value in turn will make the planner to find a more optimal solution
at the expense of planning time. In the YAML file the initial and final values of the
epsilon can be defined along with the rate of decrement of epsilon.
• Initial epsilon: The measure of quality of solution. This value determines how good the
first found trajectory should be in comparison to the optimum value. Setting a high
value of this parameter should reduce the planning time but at the cost of the quality
of the solution.
Tuning: A high value would reduce the planning time, since the found trajectory would
be a valid one it may not be necessary to search an further. The main advantage of SBPL
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over other planning libraries is the repeatability of motion but the motion must not be
very erratic, hence a very high value of this parameter cannot be selected. Through
experiments an initial value of 10 was found to be satisfactory.
• Final epsilon: This parameter determines the extent of optimality that is required for
the motion planning. The planner will not look any further than this value of quality
of solution.
Tuning: The value can be set low, however by setting it low the planning algorithm
will spend more time trying to find a better solution. It is possible that a better solution
may be found but at the expense of planning time.
• Decrement epsilon: It determines the rate at which a better solution is searched for.
This is the value that is reduced from the epsilon value used in previous iteration that
found a successful solution.
Tuning: By setting a small value the planning time increases as the planer iterates
several times, slowly trying to find a better solution. Setting a larger value in turn will
reduce the planning time but taking bigger jumps leaves the possibility of not finding
the best solution possible in the range of epsilon set. The value being used is 0.01

Constraint Handling

The same motion planning task was tested with Anytime Repairing A* (ARA*) of SBPL,
however it was not successful in any part of the motion planning tasks shown in Figure:
4-6 . This can be attributed due to the limitations of the planner or due to the planner
configurations.

4-4 Experimental Setup

In the previous section each planning library was examined and subjected to experiments
in order to evaluate the performance under simple orientation constraints. For the thesis a
system was developed that can switch between motion planning libraries after completing a
motion planning task. The section focused on tuning the planner such that they can per-
form manipulation in everyday setups. Finding optimal parameters for a highly unregulated
environment such as a house is a daunting task and not addressed in this thesis. From the
experiments performed it can be concluded that STOMP performs best for handling orienta-
tion constraints hence STOMP can be employed for the more clustered regions in the motion
planning task. The contextual awareness section examines the performance of the planners
without constraints but in areas of varying clearances and positions.

The tuned planners are tested on the robotic arm to test their performance. Transition-
ing from simulation to real hardware required some changes. Figure: 4-16 shows the new
experimental setup. The individual components are:

• A (Teaching Pendent) : An interface that allows manual movement of the arm, it also
acts as an emergency stop.
• B (Robotic Arm) : The 6 DOF robotic arm, it is clamped to the table for stability.

Master of Science Thesis Aashish Vatsyayan



36 Motion Planning

Figure 4-16: Experimental Setup

• C (3D Camera) : The 3D camera attached on to a mount.
• D (Cup): The object that is to be grasped.
It can be noticed that the camera is placed on the table and not above the robotic arm
as shown in Figure: 2-5. The change in this position was reflected in the URDF as well
so it can be taken into account for motion planning. STOMP algorithm was selected
for solving the motion planning problem. The setup incorporates all the components
discussed in previous chapters. The vision system is used to identify the position of
the cup, the selected bounding box is segmented and the 3D coordinates are passed to
the motion planning module. On receiving the coordinates the STOMP algorithm finds
a solution and the trajectory is sent to the driver for interfacing with the hardware.
CAN protocol is used to send the joint positions and receives the joint states. There are
several sources of noise that impact the efficiency such as noise for 3D camera due to
ambient light. The exact origin of the coordinate system for the robotic arm is selected
approximately by testing, an offset of three centimetre is present.
Figure: 4-17,4-18,4-19,4-20,4-21,4-22 show the motion planning conducted using STOMP
algorithm for the robotic arm. In Figure: 4-17 the cup is selected using the vision sys-
tem as the target, in Figure: 4-18 the motion plan is computed and trajectory execution
reaches the Pre-Grasp pose for the cup. Figure: 4-19 shows the arm reaching towards
the final pose by following a simple path. Figure: 4-20 shows the Pre-Grasp pose for
a case with an obstacle present. The initial pose is not very different from the case
without an obstacle, however Figure: 4-21 shows the change in the trajectory to avoid
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Figure 4-17: No obstacle Figure 4-18: Pre-Grasp pose

Figure 4-19: Final pose Figure 4-20: One obstacle

Figure 4-21: Avoiding obstacle Figure 4-22: Final pose

the obstacle. Figure: 4-22 finally shows the final pose is successfully reached, hence
proving the capability of the system to plan around obstacles.
Despite the sources of errors for the system the performance is acceptable. The error
in position the end effector reaches is within 1-2 cm. This range of error is acceptable,
the setup shown in Figure: 4-16 is to test the working of the entire system, fixing the
position of the camera and arm will improve the efficiency. To minimize the effects of
ambient light for the 3D camera can be achieved used filters, this is however beyond the
scope of the thesis and remains to be a future area of research. Even when the position
of the camera is changed the vision system is able to track its motion and STOMP is
able to plan a path towards it. The next section explores the genetic search algorithm
implemented for the thesis.

4-5 Genetic Search

Inverse kinematic problems can be solved using genetic search as shown in [41]. The
algorithm mentioned in [41] converts the inverse kinematics problem into a minimization
problem and then employs genetic algorithm to find all the global minimums of the
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Table 4-3: The IK Algorithm

Step Description

1
Randomly Initialize the Customer Population
Randomly Initialize the Businessman Population
Initialize d min with d min start

2

Customers Raw Fitness Value Calculation
Businessmen Raw Fitness Value Calculation
Assignment of Customers to the closest Businessman
Customers Shared Fitness Value Calculation

3
Forming the customers parent pool by
Tournament Selection
Adding the fittest businessmen to the pool

4 Customer Crossover
5 Businessmen Imprint
6 Updating d min

7 If the termination criterion is not reached
return step 2

problem. The algorithm essentially attempts to find the joint angles that produce the
least position and orientation error for the end effector from the target values. In genetic
algorithms the fitness of an agent decides its potential for crossover with other agents
to form the next generation. For the case of manipulation this fitness is the measure
of error between the position of orientation of the end effector from its target value.
Essentially only the solutions with least error are selected for crossover with the next
generation.

4-5-1 Algorithm

The algorithm used can be seen in Table: 4-3. From: [42] the definitions of customer
and businessmen population can be taken as:

– Customer Population: The common population of the solution candidates, search-
ing for areas with a high fitness value through selection and recombination.

– Businessman Population: A population of solution candidates as well, though the
businessmen interact with the customer population to find those locations which
yields them the highest payoff. Their fitness function enables them to place niches
at highly fit regions of the search space

Where:

– Initialization: After the customer and businessman population are randomly ini-
tialized the dmin is calculated as a function of degree of freedom (6 for this case).

– Fitness Value Calculation: The fitness depends on the error between the orientation
and position of the end effector in comparison to the target pose. For the position
error Eucledean norm is used and for the orientation error Euler angles are used.
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The fitness function is the sum of the errors with a weight for each term. The
distance error:

Ep = ||Pdesired − Pind|| (4-1)

Orientation error:

Eo = min(||Od −

αiβi
γi

 ||, ||Od −
αi + π
−βi
γi − π

 ||) (4-2)

Where:

Od =

αdβd
γd

 (4-3)

where Od is the desired orientation in Euler angles and αi ,βi ,γi are the Euler
angles of the individual. The fitness function is hence:

F.F = wpFp + woEo (4-4)

where wp and wo are weights.
– Selection: A fixed value of individuals are selected at random from the customer

pool, the customer with the least error is transferred to the parent pool. Likewise
the businessman with the best fitness are selected and added to the parent pool.

– Customer Crossover: Generations of customers produced from the parent pool.
– Businessman imprint: The businessman population is individually compared with

random individuals in the parent pool. If the contender is an improvement over the
businessman and is dmin away from other businessmen it will replace the original.

– Updating dmin: The value is reduced after every successful iteration. The lowest
value depends on the number of maximum iterations.

In order to determine multiple solutions using inverse kinematics for a motion planning
request a genetic algorithm is used. This is desirable when an exact solution is not
possible for a motion planning problem due to obstacles or confined spaces. The genetic
search algorithm will present multiple solutions that are closest to the desired target.
The businessmen population is a population of solution candidates as well, though the
businessmen interact with the customer population to find those locations which yields
them the highest payoff. Their fitness function enables them to place niches at highly
fit regions of the search space
From the solution generated by the genetic search algorithm it is possible to switch to a
local planner such as STOMP or even a conventional local controller that can navigate
towards the target. This opens up a lot of possibilities for solving the motion planning
problem in complex cases.
This algorithm can also be used to check if the target point is within the workspace of
the robotic manipulator.
The algorithm has been added into the Moveit! framework for this thesis and hence its
parameters can be adjusted from the Application programming interface (API). The
parameters to set in genetic search is the distance function. This function determines if
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Figure 4-23: Genetic Search:
Scene 1

Figure 4-24: Genetic Search:
Scene 2

an existing state is valid or not. Currently the distance function uses a threshold value
to determine if the found solution is satisfactorily close to the target pose or not.
The aim of integrating a genetic search into the motion planning task is to have the
option of switching planners. Motivation for this was taken from [43]. Whereas only
sampling based motion planners are selected in [43] it is possible to have combination
of search based, STOMP or sampling based algorithms. In the thesis a combination of
motion planners are also explored. The task then becomes to find an appropriate global
planner and a local planner. The benchmarking results of contextual awareness can be
used to determine the best global planner. For the local planner STOMP is a strong
candidate. In [43] CHOMP is used which is also a trajectory optimization planner but
suffers from the limitation of using gradients which leaves it open to local minima. The
following section evaluates the impact of using a genetic search algorithm in the motion
planning task.

4-5-2 Experimental Results

This section explores scenarios where the target pose has obstacles in the path. In
these situations a direct motion planning approach may fail due to absence of valid
sampleable states if using an OMPL motion planner. For a local planner STOMP is
used. In future the local planner can also be replaced for a conventional controller that
performs tracking or grasping. Figure: 4-23 shows a scene that was created for testing
the genetic search algorithm. The yellow ball represents the desired goal state, this state
was not achievable due to low clearance, the goal here is to find coordinates that are
within a certain threshold of the final state that is reachable. The green balls represent
the states that were generated by the genetic search algorithm.
For the results shown in Table: 4-4 and 4-5 the values are in metres and the origin is at
the base of the manipulator. The target coordinates for scene 1 are : [0, 0.839, 0.538]
and for scene 2 are: [-0.1, 0.7, 0.55]. All the coordinates are in metres, the origin is the
base of the manipulator.
From the generated points by the genetic search algorithm there was at least one point
that was reachable. For scene 1 it was: [0.0151427, 0.685677, 0.688521] and for scene 2
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Table 4-4: Genetic Search for Scene 1, all
values are in metres

x y z
-0.14257 0.701468 0.535102
-0.0935237 0.735329 0.718481
-0.00165319 0.839955 0.538005
-0.124452 0.724404 0.535856
0.0244106 0.745429 0.693847
0.0151427 0.685677 0.688521
0.00914489 0.598753 0.718485

Table 4-5: Genetic Search for Scene 2, all
values are in metres

x y z
-0.0932508 0.787615 0.552605
-0.0276968 0.569799 0.663068
-0.144627 0.69165 0.694951
-0.0363922 0.63761 0.569216
-0.0261918 0.644098 0.760538
-0.151676 0.745983 0.559448
0.0528164 0.66238 0.508246

it was:[-0.0276968, 0.569799, 0.663068]. These points serve as waypoints for completing
the motion planning task. Though it can be seen that not all points are ideal for a mid
way point for motion planning but this can be attributed to the distance function that
is being used in the algorithm. The distance function evaluates if state generated by
the genetic search algorithm is valid or not. Currently the distance function measures
the distance of the generated state from the goal state and declares it as valid if it is
within a certain threshold of the final state. This explains why some points are behind
the goal state, however a distance function can be selected that takes into account the
relative position of the robot with the goal state. The aim of this section was to first
implement a genetic search algorithm that uses Inverse Kinematics (IK) of the robot to
generate states for a scene where the goal state is very difficult to reach and then prove
that at least one of the states is reachable using the current motion planners. For both
cases there were at least one point was reachable via a global motion planner, though
the success rate can be improved by using an advanced distance function.

4-6 Contextual Awareness

OMPL, STOMP and SBPL provide general solutions for any motion planning task.
However, the solutions may not be suitable to implement on the robotic arm. Sampling
based algorithms can generate trajectories that follow random paths, alternatively SBPL
and STOMP may take too long to find a solution. It is important to evaluate the
performance in cases that may be presented in homes offline so a quick decision can be
made in real time. It is a daunting task to predict all the situations that may emerge in
an unconstrained environment, however certain markers can be used to classify motion
planning problems. In this thesis clearance to obstacles and relative position of the
target pose from the base of the robotic arm are considered as the markers. These
markers can be extracted from the RGB and depth information which is received from
the 3D camera.

First, offline simulations were performed for different clearance in x and z direction of
the target pose and position compared to the robotic arm. Fuzzy sets were created
to classify the positions. The range of sets for clearance are shown in Table: 4-6. It
is important to determine evaluation criteria that makes one algorithm performance
more preferable over another. Success rate, trajectory length and planning time were
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Table 4-6: Sets for tests, all values are in metres

Clearance Low Medium High
X 0.1 0.3 >0.3
Z 0.1 0.3 >0.3

taken as the performance indicators. The arguments for the choice of these performance
indicators can be summarised as:

– A high success rate is an obvious sign that a planner is suitable for a motion
planning task, however it may be unsuitable if it follows a random trajectory or
has high planning time.

– the arm is to be mounted on a service robot the trajectories must use as little
power as possible, a smaller trajectory will achieve this.

– Repeatability of motion for a task makes the movement easy to predict and may
make the user more comfortable to use the system. This can be seen in the variation
of trajectory length for several executions of the same task.

– A smaller planning time ensures that the user does not have to wait for a long time
before the arm starts to move.

There are three clearance sets for x and z direction. The position relative to the arm
can be in classified as: front , left or right and the height can be either in front of the
end effector (0.5 m above ground) or above it (0.5-0.8 m above ground). The decision
to make these sets was motivated by the area viewable by the camera and expected
areas of use. The camera cannot see the floor in its current position in simulation, also
the aim here is to prove that it is possible to identify algorithms that may perform
better in situations identified by the markers. The user is expected to reach for things
in shelves, tables, counter tops etc. All those scenarios are covered under combinations
of clearance and relative position.

Through experiments it was concluded that the results for the target pose being to the
left or the right were not very different. This can be attributed to the fact that motion
planning primarily depends on the clearance to the target pose in the absence of any
constraints. Hence the results are presented only for cases where the target pose is to
the center or the right. There are other permutations that are not considered in the
experiments since the aim is not to consolidate the best planner for every situation,
which would be a daunting task due to the unregulated nature of the environment.
The aim is to establish that some planners perform better than others on the basis of
planning time, success rate and trajectory size.

Benchmarking experiments were run for all permutations of the environmental markers
discussed above and each experiment was executed 50 times. The goal here is to examine
the variation in performance that may be seen overtime. In future research the impact
of changing the position of the target depth will be explored.
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4-6-1 Evaluation of results

In this section the results of the experiments are documented and the best planner
for each experiment is selected. The criteria of selecting the planner depends on the
algorithm having high success rate, small trajectory size and low planning time. In cases
where there is confusion between planners the one with the higher success rate will be
selected as the aim of this module is to increase the success rate for motion planning
problems. Table: 4-7 shows the permutations of experiments that were conducted in
V-rep environment for different x and y clearance and position. The results are then
shown in the section after that. Finally the conclusion of the experiments are discussed.
For the success rate graphs 1 is a success and 0 is failure in motion planning.
From experiments a few planners emerge with better results as compared to others. Few
of the representative cases for the contextual awareness are presented in this section

– For case 12 we can see from Figures: 4-25, 4-27 and 4-26 RRTConnect has the
highest success rate, furthermore its trajectory size is comparable to ones found
by other algorithms. It is interesting to notice that STOMP found the smallest
trajectory but at the expense of a high planning time. For this case RRTConnect
is selected.

– For case 16 we can see from Figures: 4-28, 4-30 and 4-29 there is ambiguity for
selection of planning algorithm. PRMStar has the highest rate of success but its
planning time is high. After PRMStar RRTConnect and SBPL have the highest
success rate. RRTConnect has a small planning time but the planned trajectory has
a high variation, this is indicative of the randomness of sampling based algorithms.
SBPL however has a small and consistent trajectory. For this case SBPL is selected.

– For case 18 we can see from Figures: 4-31, 4-33 and 4-32 SBPL is preferred again
due to its smaller trajectory size and the low planning time. In this case STOMP
can be selected as well since planning time is under a second. Sampling based
algorithms perform well as well with only a few outliers. SBPL is selected for this
case.

– For case 27 we can see from Figures: 4-34, 4-36 and 4-35 All the motion planing
algorithms can be selected for this case as they all meet the requirements except
for STOMP and KPIECE.

– For case 32 we can see from Figures: 4-37, 4-39 and 4-38 STOMP is the only
algorithm that could solve the motion planning problem. Hence STOMP is selected
for this case.

Through the benchmarking experiments performed it is evident that some algorithms
perform better than others for varying clearance and position. For cases 9 and 10 that
only differ in the position of the target pose different planners perform better, same
can be seen for cases 11-12, 21-22 and 31-32. When cases 33 to 36 are examined it
can be seen that in cases of high clearances RRTConnect performed best. Hence for
cases where there is high clearance RRTConnect can be the default planner. For certain
cases where the target is top-right with high x clearance and medium z clearance. SBPL
emerged as the planner that performed best for cases of varying clearance. It does not
imply that SBPL was the only planner able to solve the motion planning challenge but
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Figure 4-25: Success for 50 trials for case 12

Figure 4-26: Planning Time for case 12

Figure 4-27: Number of points in trajectory for case 12
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Figure 4-28: Success for 50 trials for case 16

Figure 4-29: Planning time for case 16

Figure 4-30: Number of points in trajectory for case 16
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Figure 4-31: Success for 50 trials for case 18

Figure 4-32: Planning time for case 18

Figure 4-33: Number of points in trajectory for case 18
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Figure 4-34: Success for 50 trials for case 27

Figure 4-35: Planning time for case 27

Figure 4-36: Number of points in trajectory for case 27
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Figure 4-37: Success for 50 trials for case 32

Figure 4-38: Planning Time for case 32

Figure 4-39: Number of points in trajectory for case 32
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Table 4-7: Contextual Awareness Experiments

X clear Y clear where height Case Planner Selected
low low center medium Case 1 RRTConnect
low low center high Case 2 SBPL
low low right medium Case 3 RRTConnect
low low right high Case 4 SBPL
low medium center medium Case 5 SBPL
low medium center high Case 6 SBPL
low medium right medium Case 7 SBPL
low medium right high Case 8 SBPL
low high center medium Case 9 RRTConnect
low high center high Case 10 SBPL
low high right medium Case 11 SBPL
low high right high Case 12 RRTConnect

medium low center medium Case 13 SBPL
medium low center high Case 14 SBPL
medium low right medium Case 15 SBPL
medium low right high Case 16 SBPL
medium medium center medium Case 17 SBPL
medium medium center high Case 18 SBPL
medium medium right medium Case 19 SBPL
medium medium right high case 20 SBPL
medium high center medium Case 21 RRTConnect
medium high center high Case 22 SBPL
medium high right medium Case 23 SBPL
medium high right high Case 24 RRTConnect

high low center medium Case 25 SBPL
high low center high Case 26 SBPL
high low right medium Case 27 RRTConnect
high low right high Case 28 RRTConnect
high medium center medium Case 29 SBPL
high medium center high Case 30 SBPL
high medium right medium Case 31 SBPL
high medium right high Case 32 Stomp
high high center medium Case 33 RRTConnect
high high center high Case 34 RRTConnect
high high right medium Case 35 RRTConnect
high high right high Case 36 RRTConnect
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that it had low trajectory variations over 50 trials along with a planning time that was
under a second. Through the series of experiments suitable planners are determined for
situations that mimic situations that can be potentially faced in real world situations
such as cabinets, shelves, tables etc. In the state machine the appropriate planner can
be selected for a suitable situation.

Implementation in ROS

In order to extract the clearance of target pose the data from the 3D camera is used. In
Moveit! the 3D information is processed in the form of octomaps [37]. A leaf iterator can
be used to search for the closest obstacle in the surrounding voxels of the target pose.
The octomap representation is less computationally expensive than using pointclouds
since nearby points are clustered together to form a leaf of the octomap. Once the
clearance is extracted from the 3D information the table of results can be iterated
through to find the algorithm that has performed best in simulation. By having a fuzzy
selection process to determine the most suitable algorithm for a planning problem the
motion planning task can be accelerated.

4-7 Discussion

This chapter explored motion planning libraries, IK based genetic search and contex-
tual awareness modules. The main motivation for exploration of these modules was to
create a system that can take advantage of offline learning and can adapt to difficult
motion planning tasks. Genetic search enables the system to reach a waypoint towards
the target pose, a local planner can be used to complete the task. Though in this thesis
a local controller was not used to complete the task it was proven that at least one point
among the several points generated was a valid waypoint. It is important to tune the
parameters of the genetic search algorithm, however it was not within the scope of this
thesis. A simple threshold value was used to determine state validity but this can be
replaced with a more intuitive function that takes the position and orientation of the
end-effector into considerations. This remains to be a future research topic. In contex-
tual awareness module the offline learning is utilized to select the appropriate motion
planning algorithm according to the situation. The results however depend on param-
eter tuning for the algorithms in the planning libraries to a great extent. The motion
planning libraries are tuned to a satisfactory value as explained in this chapter, however
by changing the parameter values the performance will change. Keeping in accord with
the aim and scope of the thesis the planners were tuned to a satisfactory level that indi-
cates their ability to find solutions. The main aim of the contextual awareness module
was to use markers to predict motion planning tasks in unregulated environments, make
performance evaluators to rate the performance of offline learning results for planners
with a fixed tuning. Furthermore the framework created to analyse depth information
and determine the suitable planner is adaptable to changes in results of offline learning.
The overall aim of this chapter was to develop and use tools that improve the success
rate of motion planning tasks in unregulated environments by creating a flexible and
modular framework.
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Conclusion and Future Research

In this thesis a system was developed for motion planning of a robotic arm in a domestic
unconstrained setting. The arm is to be mounted on top of LEA, a robotic stroller
developed at RCS for elderly users. In order to understand the requirements of the
system use cases were developed that analyzed the potential user roles, their needs and
precautions that need to be taken. The two main aspects of the developed system are
vision and motion planning. The developed module allows the user to select the object
they want by creating a bounding box and then the system refines the selection to
extract as accurate coordinates for manipulation as possible. The module also checks
if the position of the target object is changed and stops the execution of the motion
planning task. Though grasping was not addressed in this thesis the vision system also
allows to select where the object has to be placed if a successful grasp is performed.
The motion planning module consists of genetic search, contextual awareness and mo-
tion planning blocks. The genetic search uses IK of the arm to generate points that are
close to the target pose for cases direct manipulation to the target pose is restricted. It
was proven that at least a point can be generated that can act as a way point between
the end-effector and the target pose for two scenes. The contextual awareness module
examines the depth information received from the sensor and evaluates the distance of
the closest obstacle to the target pose and the relative position of the target from the end
effector. Sets are created that capture the permutations of the position and clearance
in x and z direction. Through a series of benchmarking experiments algorithms from
three motion planning libraries are evaluated and the most suitable for a certain case is
noted. This allows for quick selection of planning algorithms in challenging cases. The
modules of genetic search and contextual awareness were developed to assist in solving
motion planning tasks The actual motion planning takes place using Moveit! software.
The entire system was tested in V-rep simulation environment and then on the robotic
arm. Before the system could be tested on the robotic arm an additional trajectory
interpolation adaptor was added to Moveit! that uniformly adds points between gen-
erated trajectory points according to a user defined resolution by utilizing higher order
spline based smoother. The motion planning task was tested on the robotic arm suc-
cessfully. A driver was developed that communicated to the motor controllers present
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in the robotic arm and read the joint positions from the encoders. The driver converted
the trajectory points into CAN messages that are sent to the motor controllers.
The developed system does not take into account dynamic obstacles, since the depth
map is only considered in the beginning of the motion planning task, this can be ac-
counted for by constant examination of the depth map during trajectory execution. To
test if a trajectory is executed properly a supervisory trajectory manager also needs to
be developed. The supervisor would take into account collision with objects during tra-
jectory execution and lags between expected and current joint states. The algorithms
used in this thesis have been tuned to a satisfactory but not optimum level, this can
be an avenue of research pursued in the future. The joint controllers on the robotic
arm operate on simple PID controllers but they can be changed to accommodate load
variations and incorporate gravity compensation. Furthermore, genetic search and the
contextual awareness modules have been developed and tested as stand alone elements.
To integrate them successfully on the real system will require work. A service robot
must be able to make energy efficient, intelligent decisions that do not startle the user.
To achieve this different motion planning libraries were examined. Haptic sensors can
be used to identify contact with the environment since a camera cannot always scan
the entire environment. The arm can cease trajectory execution in the event it comes
in contact with the environment. For grasping tasks the haptic sensors can confirm
contact with the object and can confirm that it remains grasped during the trajectory
execution.

Aashish Vatsyayan Master of Science Thesis



Appendix A

Appendix

A-1 OMPL

An insight into motion planning libraries Ompl, SBPL and STOMP is provided in this
chapter. Within OMPl motion planning algorithms can be classified into 2 main parts:

– Combinatorial planning: The free configuration space is characterized explicitly
using the connectivity of the free points in the configuration space into a graph.
A solution is found using search algorithms.

– Sampling-based planning: Incrementally search the configuration space by incor-
porating collision detection to find a solution.

There are also optimization based planners within OMPL which allow for the user to
define optimization criteria and define a custom cost function for finding the optimal
paths. Traditionally the evaluation criteria is the path length, smaller the path better
the algorithms. This however may not be applicable in the application which is being
focused on in the thesis. A safer and more constrained path may be preferred over a
shorter one.
The Control-based planners account for differential constrains. There are constraints
on the velocity of the robot as it moves between points. Since controlling the velocity
between trajectory points is not of the prime importance and can be achieved using the
motor drivers, it is not pursued deeper in the thesis.

Combinatorial planning

Discretization the continuous space for path planning is useful for analysis of free spaces
and possible paths can be taken by the robot. The Cartesian space is defined by con-
necting free points in a graph and then using search algorithms to find the solution. [44]
presents a good insight into combinatorial planning algorithms. A few of the prominent
methods are presented in this section.
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Combinatorial planning algorithms produce a road map which is a graph in the free
Cartesian space. In the graph each vertex is a configuration in the free Cartesian space
and each edge is a path without collision through the obstacle free Cartesian space.
The focus is more on representation of the free space and obstacles around the robot.
The search algorithms mentioned in [44] are used for finding the final path between
different configurations.
Combinatorial planning algorithms are known as multi-query planners. Once the roadmap
is built it can be used for multiple starting and finish states. The inherent problem is
the need to map the entire Cartesian space in the beginning of each motion planning
query in case of dynamic obstacles. This does however provide some interest for the
thesis in areas where there are no changes in the environment and hence some methods
are looked into.

Visibility Graphs One of the earlier path planning algorithms. A path is constructed
connecting the initial and final state. Each vertex is a point in the observed Carte-
sian space and each edge represents a connection between two points. A polygon line
is formed through series of interconnection between points. The shortest-path road
map[45] finds the shortest path. The first application was in [46]. Figure A-1 displays
the shortest polygon line from the initial point qI to the final point qG through the black
polygons which are the obstacles.

Figure A-1: Visibility graph

Voronoi Diagram As opposed to finding the shortest path between the goal and the
initial point Voronoi diagram based algorithms attempt to navigate in the areas of
maximum clearance of obstacles. This can be useful since the exact location of a robot
as observed by the algorithm may be influenced by noise from the sensors. The visibility
graph method would even suggest a path that just grazes and obstacle but in real world
applications that can be risky. This is also known as the maximum clearance roadmap.
As mentioned in [44]: Each point along a roadmap edge is equidistant from 2 points
on the boundary of the observed Cartesian space. Each roadmap vertex corresponds to
the intersection of 2 or more roadmap edges and is therefore equidistant from three or
more points along the boundary of the observed Cartesian space.
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Though is presents a better path planning approach in terms of dealing with uncertain-
ties in the location of the robot and the obstacles there is a very large possibility of
settling for suboptimal paths.

Exact Cell Decomposition The free Cartesian space is decomposed into cells that do
not overlap with each other. A connectivity graph is constructed between adjacent cells
and then a search algorithm is used to find the solution. A well known implementa-
tion of this method involves dividing the free Cartesian space into trapezoids and use
their centers for connecting adjacent cells. The trapezoids are made with vertical lines
through the space and shooting rays upwards and downwards from each polygon vertex.
In figure A-2 the main steps of the algorithm can bee seen.

In (a) a Cartesian space is constructed with the obstacle region isolated, in step (b)
vertical side segments by shooting rays upwards and downwards from each polygon
vertex. In step (c) the interior of each trapezoid is considered as a point on the graph
and possible paths are constructed. Finally, in (d) the optimum path is chosen.

Figure A-2: Exact cell decomposition

This method can be computationally expensive and the graph has to be built every time
an obstacle changes its location, also due the variable nature of the trapezoid shapes it
can be hard to compute the points. In approximate cell decomposition the same size
cells are used instead of a variable cell size. The approximate cell decomposition is
numerically more stable and involves simpler calculations and is easier to implement.

Sampling based planning

Sampling based algorithms use collision detection in an iterative manner to find a so-
lution to the path planning problem. Whereas combinatorial algorithms depend on
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separating the free and occupied Cartesian space, sampling based algorithms have no
need for such separation.
Sampling based algorithms have been becoming increasingly popular in robotic motion
planning tasks. A through insight can be gained into sampling based algorithms in [44].
In this section an insight into sampling based algorithms is presented and the merits
and demerits are discussed with pertinence to the thesis. A vertex is a configuration
point and an edge is a path. It is desirable that the found interconnected edges are free
of collision with obstacles. In [44] metrics to determine distance between manifolds.
Discretization of the configuration space is done using grids. However the configuration
space is a topographical graph (γ) or a manifold and the vertices (configuration points)
can be found using many algorithms such as K-nearest neighbours (Knn). The collision
points with obstacles are removed from the topographical graph. The paths are found
using search algorithms mentioned in [44].
Sampling based algorithms are probabilistically complete which means that if a solution
exists then the probability of finding it converges to 1. The downside of this is that
the algorithm may run forever in case it is unable to find a solution. For practical
applications where a certain time is given to find the solution the algorithm may be
terminated after a certain amount of time in case no solution is found and alternate
approach may be tried. This mitigates the inherent flaw in the algorithm making it
usable. In case of narrow passages sampling based algorithms have demonstrated low
performance, however they are still widely used in robotics for motion planning tasks.
Sampling based algorithms construct a roadmap without considering the qI and qG.
The generated road map is then used for any new points between which motion needs
to be planned.

Probabilistic Road Maps (PRM) The philosophy of this method is to sample the
points in the Cartesian space and use a local planner [47] to connect the points and
construct a graph. The local planner checks for collisions in line of sight. Nearby points
are found using k-nearest neighbors or similar algorithms. The map is built till it is
dense enough to find a solution.
As it can be seen in Figure : A-3 that the free Cartesian space is approximated by ran-
domly selecting points from the cartesian space and separating them in the obstructed
space (Cobs) and free space Cfree. The local planner connects the vertices and makes a
roadmap by checking if the transition from current configuration to next configuration
suffers from collision or not.
After construction of the roadmap the initial and final points for the motion planning
are given (qIandqG). This is known as the query phase. The generated roadmap can be
used for different queries. Using probabilistic roadmaps for motion planning removes the
need for construction of a Cartesian space. They can also be used for higher dimensional
problems and are probabilistically complete. PRM does not perform well for narrow
passages. The solutions that are found are not optimal or complete.
OMPL has a few implementations of PRM algorithms. In their implementation one
thread constructs a roadmap while the other checks for the existence of a path in the
roadmap.
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Figure A-3: Probabilistic road map

LazyPRM [48] is an adaption of PRM where the initial learning time taken is avoided or
reduced by using a lazy collision checking strategy. The roadmap is evaluated repeatedly
for the shortest path between the initial and the goal node and the nodes along the path
are checked for collisions. In case there is a collision the node is removed from the map
and a new shortest path is searched. In PRM∗ [49] the number of neighbors to connect
is computed based on the coverage of the space instead of a fixed value. A lazy version
of PRM∗ is also present which uses a lazy state validity checking.

Rapidly Exploring Random Trees (RRT) Rapidly exploring random trees comes under
the family of rapidly exploring dense trees. In the case of RRT [50] the search method is
random. The main aim is to aggressively generate a dense covering of the space to find a
solution. The term ’Lazy’ implies that collision detections are only done when absolutely
necessary thereby reducing the computational requirements. The combination of its
three traits makes it favorable as it is faster and can be applied to difficult motion
planning applications.

The search starts by sampling from a bounded region centered around qo which is the
starting state . Tree branches are spread in a random manner exploring the topograph-
ical graph. Then the closest vertex is found in the topographical graph using a distance
function. As mentioned earlier this has to be a predefined metric on the Cartesian
space. The closest configuration point is then found using algorithms such as knn. The
closest vertex can also be found by checking intermediate points at regular intervals and
selecting one. This point is now qnear. From qnear a random point is connected using a
local planner [47]. If there are no collisions then a new edge is added, else a new random
point is found in the observed Cartesian space and the algorithm is restarted from that
point.

A deeper insight into RRT algorithm can be found in [44]. RRT is popular in motion
planning applications for robotics as it mostly finds a solution and there is no need to
explicitly define the Cartesian space.

Path planning is performed using the RRT by selecting the new random state qrand as
the final state qgoal after a certain number of iterations. If the map is dense enough and
a solution is found then the algorithm is stopped. A depiction of the RRT algorithm
can be seen in Figure: A-4
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It may seem like a good idea to select the final state as the new random state in every
iteration in the hope that a simple solution exists, however this would restrict the
exploration of the algorithm and most of the exploration would only take place in the
observed Cartesian space.
For problems with a larger Cartesian space it is also possible to start the algorithm
from the initial and final side with the aim that they intersect and a solution is found.
This is known as bidirectional search and is demonstrated in Figure :A-5

Figure A-4: RRT Figure A-5: Bi-directional RRT

Advantages

– Easy implementation
– No need to explicitly define Cartesian space
– Randomized search allows for good exploration of the space

Disadvantages

– The distances are measured by a predefined metric and is hence sensitive to that
choice

– May take a long time to converge, in some cases may not converge at all

Stemming from the basic idea of RRT there have been variation in recent years. RRT-
connect (RRTC) [51] uses the bidirectional search using simple greedy heuristics. The
algorithm was initially used for solving the path planning problem for a 7 DOF arm but
since has been extended for path planning problems. RRT-blossom [52] uses a flood-fill
mechanism to avoid being stuck in local minima. This is targeted for high constrained
environments which can be useful in case there are many obstacles surrounding the
robot or the configuration space is narrow, this is useful since RRT algorithms do
not perform well in narrow spaces. To optimize the performance of RRT in modern
day computers PRRT [53] (Parallel RRT) algorithm is developed. EST [54] presents
a tree based planner that incrementally updates the tree while retaining information
from previous steps and biasing with a greedy exploration strategy. The comparative
study in [54] shows that EST performs better than RRT for re planning in an unknown
workspace with a non-holonomic platform. Lazy RRT [55] constructs RRTs on tangent
space approximations and constraint manifold and performs lazy projections to the
manifold when the deviation exceeds a certain threshold.RRT* algorithm[56] ensures
the convergence to an optimal solution which was a draw back in RRT, however RRT*
can prove to be slow. This problem was addressed in [57] using artificial potential fields.
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Expansive Space Trees (EST) EST is a tree based search algorithm where the less
explored areas in the space by using a grid imposed on the projection of the state space.
In place of exploring all the areas in the state space, the areas of interest are explored
and other areas are ignored. A space is considered expansive if every point in the free
Cartesian space sees a small fraction of the free space and that every point must have
a large lookout set. The lookout function is defined in Equation: A-1

LOOKOUTβ(S) = {q ∈ S|µ(ϑ(q)\S) ≥ βµ(Γ ′\S)} (A-1)

where Γ is the set of all free configurations, S is a subset of Γ , µ(ϑ(q)) is the set of all
configurations seen by a free configuration q, Γ ′ is the set of connected components in
free space and µ(S) denotes the volume of S. β is a constant in (0,1].
Let ε ,α ,β be constants in (0,1]. The free space Γ is expansive if each of its connected
components satisfies the following 2 conditions:

For every point p ∈ Γ ′ , µ(ϑ(p)) ≥ εµ(Γ ).

For any connected subset S ⊆ Γ ′ , µ(LOOKOUTβ(S)) ≥ α(S).

The basic version of the algorithms starts randomly sampling points but retains only
the nodes that are path-connected to either the starting or the goal position. This way 2
trees start growing and when there is an intersection in the visibility regions a solution
is found. The algorithm iteratively performs 2 steps: expansion and connection. A
more detailed insight can be found in [58]. One of the greatest advantages of EST is
that a solution can be found even if there is a narrow opening, the major problem being
addressed can be seen in Figure: A-7 where S1 and S2 are sets of free space on either
side of the narrow passage. The expansive exploration of the space is the key in solving
the narrow passage problem.
OMPL has Single-query Bi-directional Lazy collision checking planner (SBL)[59] which
follows the same expansion strategy. SBL is a single-query bi-directional PRM with
lazy collision checking.
According to the OMPL description EST is not as sensitive to having a good distance
measure, however this has been addressed by using a low-dimensional projection to
evaluate the exploration of the state space.

KPIECE KPIECE [8] constructs a tree in the state space where each branch represents
a motion. Each motion is attributed with a robot state, a control input and time for
completion. KPIECE has proven to perform better than most algorithms for motion
planning tasks. A multi layered grid based discretization is used to estimate the coverage
of the state space. KPIECE uses physical simulations and the multi core capabilities of
processors to boost the speed. There is no dependence on distance metrics or state space
sampling which improves the speed of the algorithm. The motion planning problem is
addressed in the form of a tuple S=(Q,U,I,F,f ) where Q is the state space, U is the
state space, I is the set of initial states and F is the set of final states. The dynamics
are represented by a forward movement scheme f : Q × U −→ TgQ. The tree of motions
µ= (S,U,t) are created iteratively . The unexplored areas of the state space are searched
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through a discretization process. A multilayered grid is constructed starting from coarse
and large cells to smaller and refined cells. Wherever the motion passes through, the
cells are refined till the point that the motion is passing through only one cell. This
helps in recognizing the large and empty parts of the grid. Figure: A-6 shows the
discretization process, the higher layer have coarse cells and as the motion passes from
the top to the bottom layer the cells get smaller. The cells in lite blue are the ones
through which the motion passes.

Figure A-6: KPIECE discretiza-
tion

Figure A-7: Narrow passage
problem

OMPL has 2 implementations of KPIECE. The first is Bi-directional KPIECE (BKPIECE)
which is the regular implementation of KPIECE but with single level of discretization,
only one grid is used. The second one is a lazy version of the Bi-directional KPIECE.

Path-Directed Subdivision Tree exploration algorithm (PDST) As explained in the
OMPL library PDST [60] is a tree-based motion planner that instead of sampling points
randomly it samples points randomly along a deterministically selected path segment.
The less explored areas are detected using binary space partitioning of the projected
state space. Large cells with fewer path segments are preferred, this translates to
exploring empty areas in the space.

Search Based Motion Planning Sampling based motion planners are time efficient
but at the expense of an optimal solution. If a sampling based motion planner is run
several times it is very likely that its motion may be different every time. This may be
a problem for certain applications where repeatability is more of a concern than time
of motion planning.
Search based motion planners try and find the solution with minimal cost and guarantees
solution sub-optimality. Motion primitives are predetermined motions a robot can make.
Search based motion planning algorithms construct motion primitive based graph and
search it for low cost solutions. The main aim is to look at the constructed graph for
the existing state of the robot and find a solution in the graph that connects it to the
final pose, position. The main steps for search based motion planning can be broken
into:
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– Construction of graph of motion primitives.
– Use a cost function to assign edge costs in graph.
– Use heuristic function to guide the graph search

A-2 STOMP

STOMP stands for Stochastic Trajectory Optimization for Motion Planning. It relies on
generating noisy trajectories to find a valid path around an initially feasible/infeasible
trajectory. The goal is to find a final valid trajectory with a lower cost. The cost
function is defined by a combination of obstacle avoidance, constraint handling and
trajectory smoothness. The goal is to minimize this cost function at every iteration.
Constraint handling, torque control and energy minimization to be efficient in terms of
battery consumption are the intent ed benefits of using a STOMP approach for motion
planning. Since the robotic arm is intended to be used on a mobile robot in this thesis
STOMP offers some strong points.
This planning library uses the STOMP algorithm for finding the trajectories. This is
a local planner that can perform better under constraints as compared to OMPL. The
drawback being that the planning time is high and it cannot solve complex motion
planning tasks in reasonable time.
noisy trajectories are simulated to estimate cost and are then used to update candidate
solution. optimization of motion torques to perform a movement. For stomp algorithm
to work it needs the starting and goal points of a trajectory. In terms of motion plan-
ning it would be the starting pose of the end effector and the target pose, both of which
are available in the beginning of the motion planning task. STOMP attempts to opti-
mize the trajectory in each iteration by considering state-dependant costs. The general
optimization problem addressed is:

min
Θ̃

E
[ N∑
i=1

q(Θ̃i) + 1
2Θ̃TRΘ̃

]
(A-2)

where:

– Θ̃: A noisy parameter vector N (Θ
∑
) with mean Θ and variance

∑
.

– q(Θ̃i): A state dependent cost function. Torques, obstacle cost and constraints
can be included.

– R: Positive semi-definite matrix, this represents the control costs.

trajectory, exploration
The STOMP algorithm as mentioned in [19] is presented below:

– Given:
∗ Start and goal positions x0 and xN
∗ An initial 1-D discretized trajectory vector Θ
∗ A state dependent cost function q(Θi)
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– Precompute:
∗ A = Finite difference matirx
∗ R−1 = (AT A )−1

∗ M = R−1, with each column scaled such that the maximum element is 1
N

∗ Create K noisy trajectories, Θ1 · · · ΘK with parameters Θ + εk, where εk =
N (0, R−1)
∗ For k = 1 · · · K, compute:
· S(Θ̃k,i ) = q (Θ̃k,i)

· P (Θ̃k,i) = e
− 1
λ
S( ˜Θk,i)∑K

l=1

[
e
− 1
λ
S( ˜Θl,1)

]
For i = 1 · · · (N-1), compute: [ ˜δΘ ]i =

∑K
k=1 P (Θ̃k,i)[εk ]i

∗ Compute δΘ = M ˜δΘ
∗ Update Θ ← Θ + δΘ
∗ Compute trajectory cost Q(Θ) =

∑N
i=1 q(θi) + 1

2 ΘT R Θ

A is a difference matrix which when multiplied by position vector Θ, produces acceler-
ation Θ̈. We get:

Θ̈ = AΘ (A-3)

Θ̈T Θ̈ = ΘT (ATA)Θ (A-4)

Hence when R = AT A it ensures that ΘT R Θ represents the sum of squared acceler-
ations along the trajectory.
Motion planning for robotic arm using STOMP involves sampling and update steps for
6 dimensions individually for each iteration. Trajectories are considered in joint states
and not Cartesian space, this reflects when using the planner in Moveit! API as well.
The cost function mentioned in Equation: A-2 is for a general case, the cost function
for the motion planning problem is as presented in Equation: A-5.

q(Θ) =
T∑
t=0

q0(Θt) + qc(Θt) + qt(Θt) (A-5)

Where qo,qc and qt represent the obstacle, torque and constraints cost.
Obstacle Cost:
A binary voxel representation is taken from the 3D date received from the camera or
laser scanner. The distance to the border of the closest obstacle is calculated using
Euclidean Distance Transform (EDT). The EDT value is negative inside the obstacle,
0 at the boundary and positive outside the obstacle. Hence information about the
penetration depth, contact and proximity are extracted from the 3D voxel map. In
Moveit! an octomap representation is used to depict the occupied voxels, this is faster
than a point cloud representation since instead of exact points , regions are depicted
as occupied or free. In STOMP algorithm the robot body (β) is represented as a set
of overlapping spheres. In order to avoid obstacles all points on the sphere have be a
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distance ε away from the closest obstacle. If the sphere has a raidus r then the constraint
becomes ε + r. The obstacle cost function is shown in A-6

qo(Θt) =
∑
b∈β

max(ε+ rb − d(xb), 0)||ẋb|| (A-6)

Where:

– rb: Radius of sphere b, b is a sphere and b ∈ β.
– t : Time computed from the kinematics model where the representation of the

body is b.
– ||ẋb|| : Magnitude of the workspace velocity of the sphere.

Torque Cost: The torque of motors are represented as a function of their joint states
and their derivatives:

τt = f(Xt, Ẋt, Ẍt) (A-7)

where Xt represents the joint state and Ẋt , Ẍt represent the velocity and acceleration
respectively. The torque cost is represented by adding the torques.

qt(Θt) =
T∑
t=0
|τt|dt (A-8)

Constraint Cost: The magnitude of violations of the constraints is used to optimize
the end effector position or orientation. The summation of the violations acts as the
constraint cost, as shown in Equation:A-6

qc(Θt) =
∑
c∈C

vc|(Θt)|, (A-9)

A-3 SBPL

SBPL has implementations of search based planners. Anytime A∗ with Provable Bounds
on Sub-Optimality (ARA∗) [61] is a heuristic search based motion planning algorithm
that finds a suboptimal solution initially using a loose bound and then refines the
bound. This is an improvement from traditional search based planners that initially
find a solution and then continue to improve it till time runs out.
Search based planning library
Search based algorithms such as ARA*, AD*, R*, D* Lite, etc together form the SBPL.
In contrast to sampling based motion planning algorithms that operate in continuous
space search based algorithms work in discrete space. Graph search methods are used
in all SBPL algorithms hence it is important to first convert the continuous space into
discrete space and then find the best solution. Sampling based algorithms are oriented
towards finding a feasible solution instead of minimizing a cost function.As mentioned in
[62] Search based motion planning algorithms aim at finding solutions with minimal cost
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which provides grantee on suboptimality of solution whereas sampling based algorithms
do not provide grantees on suboptimality and provide completeness only in the limits of
samples. Since a cost function is being minimized consistency of motion can be expected
from this motion planner.
The most apparent difference between the two methods are speed and optimality: graph-
search methods can guarantee how "efficient" a solution is (defined more later), but, in
general, does so at the expense of computation time. Sampling based planners run
fast, but can result in unusual looking and possibly erratic. When using in a domestic
setting it is important that the user is comfortable with the motions of a robot, if the
motions seem random to the user who would compare the motion of the robotic arm
with the approach they would have taken then they might think something has gone
wrong. Search based motion planners can be used for a more repeatable solution that
is not erratic’, this is explored in the benchmarking section.
The first step towards using search based motion planners is to create a representation
of the state space. This is done by discretizing all possible states for each joint of the
robotic arm. A path would be generated for the motion of the robot through adjacent
states in the state space. State validity checking is done by checking if a state is in
collision with an object or itself. Additional constraints such as joint constraints can be
imposed on the planner in which case apart from checking collision with the environment
the joint constraints would also be evaluated for state validity checking. The possible
states are used to create a graph where each cell has an identification number, search
based planners are then used to navigate through the graph in order to find the solution.
The main aspects of planning with search based algorithms as per [62] are:

– Graph Construction: A graph is represented as G = (S, E) where S denotes the
set of states in the graph and E is the set of transitions between the states.The
states S is the set of possible joint configurations. The state cab be represented as
a n+1 tuple ( Θ0, Θ1, Θ2, · · · , Θm, m) for a manipulator with n joints. Where m
represents the index of the motion primitive used to reach the state s. A motion
primitive is a vector of joint velocity, they are defined for all the joints in the
manipulator.

– Cost Function : This is the function that is to be minimized to find the smallest
path length, maximum path smoothness and maximise the distance between the
manipulator and an obstacle. The cost between 2 states s and s′ is shown in
Equation: A-10

c(s, s′) = ccell(s, s
′) + waction ∗ caction(s, s′) (A-10)

where:
∗ wsmooth and waction are weights. Setting a higher value to wsmooth increases
the smoothness of the trajectory but at the expense of optimality of solution.
∗ ccell(s

′): This cost is calculated by measuring the shortest distance between
manipulator state s′ and the closest obstacle.
∗ caction : The fixed cost applied to each motion primitive. This can be set
according to the power consumption, size of links and preference of joints that
are to be moved.
∗ csmooth(s,s

′): The cost imposed on the trajectory to reduce random motions.
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– Heuristics: Heuristics helps the search to move in a favourable direction. The
heuristic function must be admissible and consistent. The function can be de-
scribed as in Equation:

h(s) ≤ c(s, s′) + h(s′) (A-11)

where:
∗ s is the initial state and s′ is the final state
∗ c(s,s′) is the action that comes from connecting s and s′

The heuristic function should accommodate for the desired position and orientation
of the end effector. Hence the heuristic function is defined as:

h(s) = hxyz(s) + w ∗ hrpy(s)

Where:
∗ hxzy: The function is calculated by computing the cost to goal using 3D Dijk-
straÅŻ search for the voxels with the coordinates.
∗ hrpy: The function computes a cost based on the difference in the orientation
of the end-effector between the current and final state. This is equal to the
angle of rotation about a fixed axis specified by the axis-angle representation
of the rotation between the end effector orientation of state s and sgoal

– Search: ARA* search algorithm is preferred for searching through the graph for
a solution due to its size. This provides a bound (ε) on the sub optimality of the
solution at any point. The value of epsilon decays after every successful solution is
found. If the resolution of this variable is very small it can increase planning time.

By changing the epsilon value for the search algorithm it is possible to change the
optimality of the found solution. In cases where a quick reaction is required a suboptimal
solution can be found.
Search based motion planning algorithms employ a graph-based search that guarantees
the efficiency of a solution

A-4 CAN Protocol

The exact CAN protocol used for the manipulator at RCS is presented in this section.
The joint values are in hexadecimal.
Protocol: Command Velocity pos0 pos1 pos2 pos3 timeStamp digitalout
Where commands are CAN messages to connect, reset, enable the joints. Position is a
32 bit signed long position value. Here Pos3 is the least important byte, pos0 the most
important byte. TimeStamp is an arbitrary number, the module will copy this code in
the answer. As an example:
0x20 - 0x14 0x04 0x00 0x00 0x83 0xF1 0x51 0x02
Here the command sets joint 0x20 to position 0x000083F1. The second digital output
is set to high. The time stamp of the message is 0x51.
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The message ID used in the response is the message ID+1. If the message ID of a
command is 10, the response will have message ID 11. For example:
Protocol: ErrorCode pos0 pos1 pos2 pos3 timeStamp na na
This answer means that joint 0x20 is not active ’motor not enabled’ and the current
position is 33777.
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PCL Point Cloud Library
TLD Tracking-Learning-Detection
ROS Robotic Operating System
URDF Universal Robot Description Format
FCL Flexible Collision Library
CAN Controller Area Network
OMPL Open Motion Planning Library
SBPL Search-Based Planning Library
STOMP Stochastic Trajectory Optimization for Motion Planing
SRDF Semantic Robot Description Format
IK Inverse Kinematics
LEA Lean Elderly Assistant
DOF Degrees Of Freedom
ARA* Anytime Repairing A*
GUI Graphical User Interface
Knn K-nearest neighbours
PID Proportional Integral Differential
YAML YAML Ain’t Markup Language
PRM Probabilistic Roadmap Method
EST Expansive Space Trees
SBL Single-query Bi-directional Lazy collision checking planner
KPIECE Kinematic Planning by Interior-Exterior Cell Exploration
RRT Rapidly-exploring Random Trees
API Application programming interface

Master of Science Thesis Aashish Vatsyayan



72 Glossary

Aashish Vatsyayan Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Main Matter
	Introduction
	Service Robotics
	Recent Developments
	Use cases
	Vision
	Motion Planning
	Discussion

	Framework
	Overview
	Building Blocks
	Discussion

	Vision
	Segmentation
	Tracking
	Testing
	Results
	Additional Changes

	Discussion

	Motion Planning
	Representation of The Robot
	Motion Planning using Moveit!
	Trajectory Interpolation

	Motion Planning Libraries
	OMPL
	 STOMP
	SBPL

	Experimental Setup
	Genetic Search
	Algorithm
	Experimental Results

	Contextual Awareness
	Evaluation of results

	Discussion

	Conclusion and Future Research

	Appendices
	Appendix
	OMPL
	STOMP
	SBPL
	CAN Protocol


	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols



