
Item-Item Collaborative Filtering via Graph Regularization

Melle Koper
Supervisor(s): Maosheng Yang, Elvin Isufi

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
A recommendation algorithm aims to predict the
quality of a user’s future interaction with certain
items based on their previous interactions. As re-
search progresses, these algorithms are becoming
increasingly more complicated with the use of ma-
chine learning and neural networks. This paper
looks into a more simple solution. The recommen-
dation domain can be represented as a graph, mean-
ing different graph regularization techniques can be
used to solve the same problem. After running ex-
periments comparing the Item-Item Tikhonov Reg-
ularizer and the Sobolev Regularizer to a base-
line, the item-item standard Collaborative Filter-
ing method, it is clear that the Graph Regulariza-
tion techniques outperform the baseline. Given that
it has been shown that Collaborative Filtering is a
relatively competitive method in this field, outper-
forming it means that Graph Regularizers are a vi-
able and potentially competitive method for solving
the recommender problem.

1 Introduction
A recommendation algorithm analyses the previous interac-
tions between users and items, these interactions are good
indicators of future choices. This allows an algorithm to pre-
dict or recommend future items to a user. [1] The purpose
of a recommender system is to filter information for specific
users to avoid an information overload, an increasingly im-
portant task as the internet grows with more information.[2]
Consider a simple example, watching a movie on Netflix. In
order to select a movie, one does not look at all the movies
in the catalog. Netflix filters these movies based on the users
preferences in order to make the seemingly trivial task of se-
lecting what to watch easier. Selecting a movie is an easy
task when selecting from a handful. However, as the catalog
increases the task becomes increasingly monumental. Rec-
ommender systems aim to make tasks like these easier for the
user and can be applied to more than just movies.

In an effort to improve the accuracy and precision of these
recommender systems, researchers are drifting to increas-
ingly more complex solutions, which may be the wrong di-
rection. [2] Previous research leans towards that simpler rec-
ommendation techniques seem to outperform more complex
ones. [3] Large companies like Netflix are major researchers
in this field and have therefore published many articles on the
subject. In an effort to increase the performance of these rec-
ommender systems, Netflix specifically is implementing and
testing deep learning techniques with good results. [4] They
however conclude that the benefits are very limited, and the
classic baselines perform surprisingly well in comparison. [4]
Netflix therefore recognizes that deep learning is not neces-
sarily the future for recommendation systems, leading them
to conduct research into various other simple algorithms that
don’t include hidden layers. [5] In the past, research has been
focused on the deep learning aspect of recommender systems,
however more recent research is showing that simple tech-
niques could be the way forward.

Another field in which relatively simple techniques are
used is graph signal processing. Research in this field mainly
focuses on the application of these techniques, which include
but are not limited to transportation, sensor and neuronal net-
works. [6] Graph signal processing techniques allow for the
ability to denoising and filtering data. [6] Graph regulariza-
tion techniques have more recently been used to estimate the
amount of new coronavirus cases in 2019. [7] In this case, the
domain of the problem was structured as a graph allowing for
graph signal processing to be applied. [7]

Inspired by previous research suggesting that simple rec-
ommendation techniques can outperform more complex ones,
this paper aims to analyze the performance of Item-Item
graph regularization techniques when compared to a standard
baseline. The main experiment will focus on the comparison
of the Tikhonov Regularizer and a standard Item-Item Collab-
orative Filter. [6] [1] This paper is split into 6 parts, the first
of which being the introduction. The second part of the paper
describes the methodology by which the algorithms will be
compared. Part three gives a detailed explanation of the three
algorithms implemented. Part four discusses the training of
each method and final results of the experiment. In part 5,
the discussion, compares the results to an other paper from
within the research team, draws conclusions, as well as dis-
cusses any future work that is of interest. Finally the last sec-
tion discusses the responsibility of this research paper, with a
focus on the reproducibility of the results.

2 Methodology
To compare the item-item Tikhonov Recommender to the ba-
sic Collaborative Filtering method, we will conduct various
experiments. This section will elaborate on the domain in
which the two methods are compared. As well as the metrics
used to evaluate the algorithms.

2.1 Experimental Setup
In the experiment, we compare Item-Item Tikhonov Regu-
larization and Item-Item Sobolev Regularization to the Item-
Item Collaborative Filter as a baseline. Each recommender
is run using gridsearch on a random 80-20 train test split
for 5 rounds. The data on which the recommenders are
trained is the MovieLens100K data set. The algorithms are
analysed on seven metrics, Root Mean Squared Error, Pre-
cision@5, Precision@10, Recall@5, Recall@10, NDCG@5
and NDCG@10. These metrics are collected each round and
the algorithms are compared on their best average of all pos-
sible hyper parameter combinations.

2.2 Data set
Following the article mentioned above, the experiments will
take place using the MovieLens 100K data set [8]. This data
set was released in 1998. It consists of 100,000 ratings rang-
ing from 1 to 5 from 943 users on 1682 movies. [8] The
data set ensures that each user has rated at least 20 movies.
These features allow the MovieLens 100K data set to be a
stable benchmark to test recommender systems. The Movie-
Lens data set is also advantageous as not much pre-processing

is necessary to conduct experiments. [9] This allows for re-
sults to be more easily compared across papers, as less data
pre-prossesing means more similar data sets.

For the purpose of this experiment, the data set has been al-
tered slightly. The data set ensures that each user has rated at
least 5 items, however, it does not ensure each item has been
rated at least 5 times. [8] Since these experiments are about
item-item collaborative filtering techniques, we decided to re-
move any item rated less than five times in an effort to have
relatively similar results when compared to user-user algo-
rithms.

2.3 Metrics
The article Are we really making much progress? only takes
into account classification and ranking metrics. The metrics
used are Precision and Recall. In addition to these rankings,
the experiments in this paper will also take into account Root
Mean Squared Error and Hit Rate.

Precision, Recall and Hit Rate analyse the top n recom-
mendation problem, where a recommender system suggests
the top n items that a user might like. Root Mean Squared
Error however, is used to analyse the numerical value of the
ratings themselves.

Precision and Recall
Precision is the percentage of relevant movies recommended
by the algorithm. While Recall is the percentage of ground
truths recommended as positive.

Precision(n) = 100 ∗ |S(n) ∩G|
|S(n)|

(1)

Recall(n) = 100 ∗ |S(n) ∩G|
|G|

(2)

Where S(n) is the set of recommended items, and G is the set
of actual top n items. [1]

Normalized Discounted Cumulative Gain (NDCG)
NDCG is the ratio of the discounted cumulative gain (DCG)
relative to the ideal discounted cumulative gain (IDCG).[1]

DCG =
1

m

m∑
u=1

∑
j∈Iu

guj
log2(vj + 1)

(3)

In this equation gui is the utility of user u watching item j.

3 Base Line and Tikhonov Recommender
This paper compares two algorithms, the item-item Tikhonov
Recommender, and the item-item Collaborative filtering
method. Both of which need a similarity matrix.

3.1 Similarity Matrix
A similarity matrix for item item collaborative filtering and
the Tikhonov recommender is a matrix containing the simi-
larity measure between each item pair. The similarity matrix
for both methods is constructed using the Pearson Correlation
Coefficient. The equation below is the Pearson Correlation
between two items i and j.

w(i, j) =

∑
u∈Uij

(rui− r̄i)(ruj − r̄j)√∑
u∈Uij

(rui− r̄i)2
∑

u∈Uij
(ruj − r̄j)2

(4)

[10]
Where Uij is the set of users that have rated both item i and

item j. The two methods differ in how they use this matrix.

3.2 Standard Collaborative Filtering
The baseline used in these experiments is a basic version
of the K Nearest Neighbors Collaborative Filtering method.
Once the similarity matrix above is created, the algorithm
only keeps the k largest similarities in each column. Thus
creating a matrix containing only the highest similarities per
item. With this new similarity matrix, the ratings for missing
values are estimated. Each rating is estimated by taking the
weighted average of the sum of all ratings most similar to the
item in question.

r̂ui =

∑
j∈Nu(i)

wijruj∑
j∈Nu(i)

|wij |
(5)

[10]
Where Nu(i) is the set of items rated by user u that are in

the neighborhood of item i. The wij represents the Pearson
similarity for items i and j.

In the case an item has no similar items, the average rating
of the user is assigned as the predicted rating for that item.

3.3 Tikhonov Collaborative Filtering
The Tikhonov Collaborative Filtering is very similar to the
standard version, however after constructing the neighbor-
hood, Tikhonov uses various matrix multiplication techniques
to infer the missing data.

The Optimization Problem
In essence, the Tikhonov regularizer is an optimization prob-
lem. [6] In the case of Item-Item Tikhonov Regularization it
would take the form of the following equation.

minX∈RUxI ||Y −X||2F + µtr(XTLX) (6)

Where L is the Laplacian matrix, X ∈ RUxI is full ratings
matrix and ||.||F is the Frobenius norm.

For the purposes of the recommender problem, this equa-
tion is more suitable in its discrete matrix form:

X∗ = (I + µL)−1Y (7)
[11]

Where X∗ is the predictions matrix, I is the identity matrix,
µ is a hyper parameter, L is the Laplacian matrix and Y is the
original utility matrix.

Similarity Matrix as a Graph
In order for the Tikhonov Regularization to work on the do-
main of the recommendation algorithm, it is necessary to
transfer the domain into a graph processing one. Luckily this
is very possible as the similarity matrix itself can be seen as a

graph. Take for example this graph from the paper Graph Fil-
ters for Processing and Learning from Network Data below
[11]:

Figure 1: Undirected Weighted graph where the values around the
links are the edge weights

This Graph is represented by the following weighted ma-
trix.

W =

0 0 0 .4 0 0
0 0 .9 .3 .8 0
0 .9 0 0 0 .2
.4 .3 0 0 0 0
0 .8 0 0 0 .1
0 0 .2 0 .1 0

In this case the similarity matrix would simply represent

the weighted matrix. This means each similarity value be-
tween two items would act as the edge connecting the two. In
the case of using the similarity matrix in the Tikhonov regu-
larizer, it would have to be symmetric.

Constructing the Laplacian Matrix
The Laplacian matrix is defined as:

L = D −A (8)

Where D is the degree matrix and A is the adjacency matrix
(similarity matrix). [11].

In order for the Laplacian to be constructed properly, a
symmetric adjacency matrix is required. To achieve this,
when constructing the neighborhoods, if item j is in i’s neigh-
borhood, item i must be in j’s. This means that not all neigh-
borhoods are constructed with the top k most similar items,
but it does ensure that the adjacency matrix is symmetric.

As the adjacency matrix is symmetric, it is undirected.
Meaning the degree matrix is a the diagonal matrix where:

du =

N∑
v=1

Auv (9)

Where du is the u-th element on the diagonal, and rep-
resents the degree of node u. The degree of a node is the
weights of all connected edges to said node. [11]

The Pipeline
The Tikhonov Recommender takes as input a matrix of user-
item ratings, which to get optimum results are then centered
around the mean. The ratings are centered based on their
respective item means, so for each rating, the item mean is
subtracted.[1] The next step is to create a similarity matrix
for each item-item pair in the ratings matrix. From this sim-
ilarity matrix, the symmetric adjacency matrix is constructed
as described previously, from which the Laplacian is formed.

Once the Laplacian is found, the actual Tikhonov regular-
ization can occur. All ratings are then predicted using the
regularizer. After being left with the predicted ratings, their
respective item means are added back in order to counter act
the earlier mean centering.

Much like the baseline recommender, in the case an item
cannot be given a rating for a specific user, that rating is the
assigned the user average rating.

3.4 Sobolev regularizer
A variation of the Tikhonov Regularizer, is the Sobolev reg-
ulizer. Much like Tikhonov, the Sobolev regularizer is an-
other graph signal regularization technique that can be used
to solve the recommendation problem. The Sobolev norm is
defined as:

||x||β,ϵ = ||(L+ ϵI)
β
2 x||2 (10)

[7]
It is then possible to find a vector form when the Laplacian

is symmetric:

||x||2β,ϵ = xT (L+ ϵI)βx (11)

[7]
From the vector form, one can produce the matrix form

used in this recommender system:

X∗ = (I + µ ∗ (L+ ϵ ∗ I)β)−1Y (12)

The construction of this recommender is fairly similar to
the Tikhonov, as the Laplacian is built in the same manner, the
large difference is that the Sobolev regularizer has three hyper
parameters, the size of the neighborhoods, ϵ and β. Just like
the Base line recommender and the Tikhonov Recommender,
if the Sobolev Recommender is unable to predict a rating for
a user-item pair, the algorithm will give the predicted rating
the value of the avererage user rating.

4 Training and Results
This section covers the training of the algorithms as well as
the final best results for each respective algorithm.

4.1 Training
The results of the training have been split up per metric. Each
of the three methods have been trained on 5 random train
test splits and are analyzed based on RMSE, Precision, and
NDCG.

Base Line CF
First we looked at the standard Collaborative Filtering
Method. The Baseline was tested with neighborhood sizes
ranging from 5 to 40 with a step size of 5. No other parame-
ters were tested as the amount of neighbours is the sole hyper
parameter.

Figure 2: RMSE scores for Collaborative Filtering

Figure 2 displays the RMSE value for all rounds conducted
in the experiment, as well as the mean results of the five
rounds. When optimizing for RMSE, it is clear that the stan-
dard Collaborative filtering performs best at 15 neighbours,
with the average RMSE of 1.066.

Figure 3: Mean Recall@10 scores for Collaborative Filtering.

The highest mean recall@10 score achieved when training
the base line algorithm is 0.683, which is achieved when K
is equal to 40. From figure 3 it seems like the mean value
is reaching a plateau. This is also evident in the figures for
mean precision and mean NDCG.

The precision curve is very similar to that of the recall one,
however the values are slightly lower. But much like recall,

the best results for Precision@10 are achieved when k is 40.
The highest value achieved is 0.579.

Figure 4: Mean Precision@10 scores for Collaborative Filtering

The NDCG training curve follows the same pattern as the
others, with its peak being at k = 40, resulting in a mean
NDCG@10 of 0.869.

Figure 5: Mean NDCG@10 scores for Collaborative Filtering

It is evident that when solely focusing on RMSE the ideal
value for k is 15, however this is not the case when optimizing
for the other metrics. One would assume that a low RMSE
would result in a more positive score in the other metrics,
however the other metrics do not neceserally rely on how ac-
curately a rating is predicted, but lean more towards if the
predictions are correctly labeled as positive or negative.

Tikhonov Recommender
The Tikhonov Regularizer was tested with values for µ rang-
ing from 0 to 1 with a step size of .01. Each value for mu was
subsequently tested with each different neighborhood sizes
(k). The values of k tested ranged from 5 to 40 with a step
size of 5.

The Tikhonov recommender seemed to have a smooth
RMSE training curve when looking at just one round, how-
ever this was not the case when taking the average of five
rounds.

Figure 6: RMSE training curve in round 4 of the experiments

From figure 6, the training curve is smooth and predictable,
however this is not the case every round. Tikhonov seems
to be somewhat unpredictable when testing combinations be-
tween mu and k on different train test splits. This results in
the graph of the mean values to look like this:

Figure 7: Mean RMSE per k of 5 rounds, with mu ranging from 0 to
1 with step sizes of 0.01

As can be seen, there are a lot of spikes in the data, these
however are the result of a bad prediction in a specific round.
It is my belief that if one increases the amount of rounds these
spikes will be less noticeable. It is however important to re-
mark the inconsistent nature of the training curve.

It is also apparent that the lowest RMSE values achieved
are when µ approaches 1. The reason we did not test µ values
greater than one is because this curve levels out and the more
desirable RMSE score will only differ slightly than what is

achieved here. When disregarding the spikes, the largest
RMSE value at the start of the curve is 1.0226 and the low-
est RMSE value achieved is 1.0043. One could continue the
curve, but the gains in RMSE would be minimal.

What is also interesting to point out is that for all values
of K, the mean RMSE scores seem to converge, meaning that
the initial similarity matrix does not have as large of an im-
pact on the results as µ increases. The amount of neighbours
does however have an impact on how fast the RMSE values
plateau.

Much like the RMSE training curves, the curve for Re-
call@10 is also very volatile.

Figure 8: Mean Recall@10 per k of 5 rounds, with mu ranging from
0 to 1 with step sizes of 0.01

Even though the data is very volatile and it is hard to see a
pattern, suspect that if more rounds are conducted the learn-
ing curve will become more smooth and the results should
move towards some upper bound asymptotically, much like
can be seen with the RMSE and its lower bound.

The training curve for Precision@10 is also unstable, but
relatively more predictable than recall:

Figure 9: Mean Precision@10 per k of 5 rounds, with mu ranging
from 0 to 1 with step sizes of 0.01

Much like recall, the training curve should average out
when conducting experiments with more rounds. However
currently, the results are too reliant on the random train test
splits creating various spikes in the data.

Even though both these plots seem rather unstable, it is not
necessarily the fault of the recommender, but also the nature
of the precision and recall metric. Unlike RMSE, the pun-
ishment and reward for recommendations are higher for pre-
cision and recall. Let’s say the recommender recommends a
list of 10 movies of which only 5 are relevant, it’s precision
will be 50% but if 6 are relevant the precision jumps from
50% to 60% making the curve far less smooth.

Figure 10: Mean NDCG@10 per k of 5 rounds, with mu ranging
from 0 to 1 with step sizes of 0.01

Much like precision and recall, the NDCG training curve
contains multiple spikes, the scale in which the NDCG values
change however is incredibly small, meaning that changing
the value for K or µ does not affect the score by a significant
amount.

Sobolev Recommender
Finally, the Sobolev Regularizer was tested on values of µ
ranging from 0 to 1 with a step size of 0.1. In addition,
Sobolev was tested with the ϵ values of [0, 0.25, 0.5, .75,
1.0] and values β of [1, 1.5, 2]. Just like the baseline and the
Tikhonov Regularizer, Sobolev was tested for the neighbor-
hood sizes from 5 to 40 with a step size of 5.

Due to the fact that Sobolev has many hyper parameters, a
plot would become very difficult to read, therefore table 1 is
an attempt at representing the training curve based on the size
of the neighborhood.

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30 k = 35 k= 40
RMSE 1.010 1.007 1.006 1.006 1.006 1.006 1.006 1.006

Precision@5 .688 .688 .688 .688 .688 .688 .688 .688
Precision@10 .635 .635 .635 .635 .635 .635 .635 .634

Recall@5 .520 .520 .520 .520 .520 . .520 .520 .520
Recall@10 .713 .713 .713 .713 .713 .713 .713 .713
NDCG@5 .889 .889 .889 .889 .889 .889 .889 .889

NDCG@10 .910 .910 .910 .911 .910 .910 .910 .910

Table 1: Optimal Metrics based on Neighbors in Sobolev

As can be seen, the size of the neighborhoods does not
seem to have a large affect on the resulting metrics, which
only differ past the fourth and fifth decimals. This means
that the other hyper parameters create the scenario for which
regardless of k, the metrics converge to the same value, much
like in the Tikhonov Regularizer.

4.2 Final Results
After running grid search on 5 random 80-20 train test split,
the average of each metric was taken.

RMSE Precision@5 Precision@10 Recall@5 Recall@10 NDCG@5 NDCG@10
Item-Item CF 1.066 0.600 0.580 0.480 0.683 0.834 0.869
Item-Item TK 1.006 0.688 0.635 0.521 0.713 0.889 0.910

Item-Item Sobolev 1.006 0.688 0.635 0.520 0.713 0.889 0.911

Table 2: Final highest performing metric for each algorithm rounded
to the nearest thousanth.

Comparing Tikhonov to CF
When solely comparing the two based on which one scores
the lowest RMSE, it is obvious that Tikhonov wins out. 1.005
is less than 1.065, this simple comparison however does not
do justice to the nuances of both algorithms. Even though
Tikhonov performs better in its extreme cases, from the re-
sults gathered it also shows that Tikhonov is fairly unpre-
dictable. Meaning that if one has unfavorable data the result-
ing predictions will be considerably off the mark. This means
that the answer to which algorithm performs more accurately
is not straight forward.

When comparing the algorithms in Precision@10 and Re-
call@10, the results are a little more straightforward. Just
like RMSE the values for Tikhonov are very volatile, how-
ever the worst scores achieved by Tikhonov are better than the
best achieved by the baseline. This means that even though
Tikhonov is less predictable, from these experiments it shows
that it was more favorable when compared to standard Col-
laborative Filtering.

Comparing Sobolev
The Sobolev Recommender performs very similarly to
Tikhonov. In fact when comparing results, the metrics only
differ starting at the 4th decimal place. Take for example
Precision@10, for Tikhonov it is 0.6247, Sobolev performs
slightly better with a precision of 0.6349. The similarity be-
tween the results can be explained by the similarity of the
methods themselves. It is also of note to mention that Sobolev
can be further optimized for this problem domain, as the grid
search performed in this experiment did not cover all hyper
parameter possibilities.

5 Discussion
The research conducted aimed to compare the performance
of graph regularizers when used for item-item collaborative
filtering. To achieve this, we ran a series of experiments. We
completed 5 rounds where the data was split up into random
train test splits. From these 5 rounds the average metrics were
taken for RMSE, Precision, Recall and NDCG.

From the experiments performed in this paper, it is clear
that the graph regularizers outperform the standard Collabo-
rative Filtering method in all metrics.

When comparing Item-Item Tikhonov to Item-Item Col-
laborative Filtering, it is clear that Tikhonov wins out on all
metrics tested in this experiment. This trend is not present
when comparing User-User Tikhonov to User-User Collab-
orative Filtering as done by another member of the research
team. [12]

Figure 11: Serenic Monte’s results from his experiments

As can be seen in table 11, User-User Tikhonov and
Sobolev do not outright outperform User-User Collaborative
Filtering. The only metric in which graph regularizers signif-
icantly outperform CF is in RMSE. When directly comparing
Item-Item Tikhonov to User-User Tikhonov, it is evident that
the two perform very similarly. The main difference in the
results is the performance of the respective baselines.

In conclusion, this paper has shown that graph regularizers,
more specifically the Tikhonov Regularizer and Sobolev Reg-
ularizer, are viable options for solving the recommendation
problem as they both outperformed the proven Item-Item Col-
laborative Filtering method. In the future the unpredictable
nature of Tikhonov can be researched. Future research can
also be done analysing the performance of graph regulariz-
ers with more sophisticated techniques for constructing the k
nearest neighbors similarity matrix. In addition, in order to
improve this research one can run an experiment with more
rounds and optimizing the algorithm for time efficiency. The
results of running experiments with more rounds will most
likely smooth the Tikhonov Training curve and make it sim-
pler to draw conclusions. Finally, this paper lightly touched
on the Sobolev Regularizer, a similar concept to Tikhonov,
however it allows for more variables to be tuned. It would be
interesting to see the performance of this algorithm when the
time and resources are invested in more thoroughly training
this algorithm.

6 Responsible Research
As the recommendation problem is arguably not in an ethical
gray area, the main responsibility as a researcher is to ensure
the results achieved in this experiment are reproducible. Ac-
cording to Monya Baker, as written in her article Is there a
Reproducibility Crisis? the two main factors leading to unre-
producble results is pressure to publish and selective report-
ing. [13]

The first pitfall is hard to avoid as there is a hard dead-
line on this paper as it is written for the CSE 3000 Research
Project course given by the TU Delft. The second major fac-
tor however has been taken into account. In an effort to re-
duce selective reporting all relevant data is included in this
paper and all code used to collect said data will be submitted
along side this report. This avoids the need to hide any nega-
tive results. Negative results also don’t affect our reporting in

this paper, as there are no outside pressure, financial or other-
wise, on us as researchers for this algorithm to perform as a
recommender system.

In addition to sharing the code itself, all experiments run
are described in detail, such that any one attempting to re-
produce the research done here knows what metrics, hyper
parameter values and databases were used. The choice in the
MovieLens 100k database is also an attempt at making re-
producibility easier, as this is a robust and very frequently
used database. It is therefore unlikely for this database to
lose support in the foreseeable future, enabling anyone whom
enquires to use it.

References
[1] C. C. Aggarwal, Recommender Systems - The Textbook.

Springer, 2016.
[2] F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommen-

dation systems: Principles, methods and evaluation,”
Egyptian Informatics Journal, vol. 16, no. 3, pp. 261–
273, 2015.

[3] M. Ferrari Dacrema, P. Cremonesi, and D. Jannach,
“Are we really making much progress? a worrying anal-
ysis of recent neural recommendation approaches,” 09
2019.

[4] H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond,
and J. Basilico, “Deep learning for recommender sys-
tems: A netflix case study,” AI Magazine, vol. 42, pp. 7–
18, Nov. 2021.

[5] H. Steck, “Embarrassingly shallow autoencoders for
sparse data,” CoRR, vol. abs/1905.03375, 2019.

[6] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega,
and P. Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE
Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[7] J. H. Giraldo, A. Mahmood, B. Garcia-Garcia,
D. Thanou, and T. Bouwmans, “Reconstruction of time-
varying graph signals via sobolev smoothness,” IEEE
Transactions on Signal and Information Processing
over Networks, vol. 8, pp. 201–214, 2022.

[8] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” ACM Transactions on
Interactive Intelligent Systems (TiiS), vol. 5, December
2015.

[9] A. Tousch, “How robust is movielens? A dataset
analysis for recommender systems,” CoRR,
vol. abs/1909.12799, 2019.

[10] A. N. Nikolakopoulos, X. Ning, C. Desrosiers, and
G. Karypis, “Trust your neighbors: A comprehen-
sive survey of neighborhood-based methods for recom-
mender systems,” 09 2021.

[11] E. Isufi, B. Das, A. Natali, M. Sabbaqi, and M. Yang,
“Graph filters for processing and learning from network
data,” tech. rep., Delft University of Technology, 2021.

[12] S. Monté, “Tikhonov and sobolev regularisers compared
to user-based knn collaborative filtering.” unpublished.

[13] M. Baker, “Is there a reproducibility crisis?,” Nature,
vol. 533, pp. 452–454, 05 2016.

	Introduction
	Methodology
	Experimental Setup
	Data set
	Metrics
	Precision and Recall
	Normalized Discounted Cumulative Gain (NDCG)

	Base Line and Tikhonov Recommender
	Similarity Matrix
	Standard Collaborative Filtering
	Tikhonov Collaborative Filtering
	The Optimization Problem
	Similarity Matrix as a Graph
	Constructing the Laplacian Matrix
	The Pipeline

	Sobolev regularizer

	Training and Results
	Training
	Base Line CF
	Tikhonov Recommender
	Sobolev Recommender

	Final Results
	Comparing Tikhonov to CF
	Comparing Sobolev

	Discussion
	Responsible Research

