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Abstract

Continuous Integration is a used extensively in
modern software engineering for both proprietary
and open-source projects. Many studies have stud-
ied its benefits and drawbacks, finding how it
increases development productivity and stability.
However, Cl is a set of practices from static linting
to calculating the code coverage of the underlying
test suites. In order to choose whether to make use
of that technology or to evaluate the overall per-
formance of a project’s development, practitioners
make use of certain measurements, DevOps met-
rics being one of the most significant ones. We aim
to analyse the effects of testing strategies within the
CI over a set of DevOps metrics. This is done by
collecting over 5778608 executions of GitHub CI
workflows that involve a test-running step from 476
open-source projects. We see that 69.48% of runs
happen after a pull request or a push. In the end,
we found that frequent CI test execution didn’t in-
crease the project’s DevOps metrics, indicating that
developers should try limiting the unnecessary exe-
cution of tests to save on resources. Further we see
lack of Pearson statistical significance for the cor-
relation between coverage in CI and the metrics in
the smaller set of selected projects.

1 Introduction

Continuous Integration (CI), a technique firstly explored by
Beck Kent in his work “Extreme Programming” in 2000, [2],
has seen a dramatic increase in usage given its promising ben-
efits to the development process and enabling practitioners to
deploy at a much faster rate. [17]. In 2016, Hilton M, Tun-
nell T, Huang K, et al gather over 34,544 open-source repos-
itories on GitHub based on popularity (at that time) and con-
clude that 70% of them use CI [9]. The advantages of CI
include but are not limited to improving the stability, produc-
tivity and speed of the development process [9], [17]. Un-
derstandably, the field itself has seen a lot of exploration in
terms of many academic papers, systematic literature reviews
and books [4], [17].

However, implementing a CI within a team environment
comes with technical and cognitive cost [19]. Thus, teams
have to decide if it is worth including such a tool within their
development process. Decisions like this that affect projects’
performance motivate the creation and adoption of metrics
that measure productivity. A particular example are the De-
vOps metrics which practitioners have defined and used ex-
tensively [7]. In the documentation for their CI/CD tool
TeamCity, JetBrains list several, which we have particular
interest in: Delivery Frequency, Delivery size, Lead time to
changes, Mean Time to Recovery and Defect Count [12].

Some elements of the CI usage remain unclear. In their
2022 systematic literature review , Eliezio Soares et al, sug-
gest further research on how test effort and test quality in
project influence each other. [17]. Additionally, another study
gives the idea of looking at CI as a collection of practices

and analyse their own effects on the project’s performance
[5]. Automated testing, while non-mandatory, is a commonly
used step in CI [3] and it is often suggested in early CI liter-
ature [4], [6]. Further, to the best of our knowledge, the re-
lationship between the DevOps metrics to testing within the
CI in particular have not been explored. Thus, a question re-
mains: what is the impact of testing strategies in CI on the
performance of a project? With this knowledge, we can help
practitioners improve projects’ quality and development effi-
ciency by arguing for and against inclusion and execution of
tests within CI and the implementation of such pipelines.

This study will explore whether there is a inherent con-
nection between certain performance metrics and the testing
strategies of a project. These involve the coverage rate and
the testing frequency of projects. We focus our study en-
tirely on GitHub actions as a CI provider, over alternatives
like TravisCI and Jenkins, since there has been less research
focus on it. We collect data over the span of a year in the
selected open-source projects in a time-series manner. In par-
ticular we want to answer:

RQ1 - What triggers CI workflows that execute tests in
projects?

RQ2 - How do changes in testing frequency within CI
relate to shifts in DevOp metrics?

RQ3 - What is the effect of code coverage within CI on
the DevOps metrics?

To achieve this we did a time-series analysis of 478 se-
lected open source projects by examining their DevOps met-
rics along with their CI workflows. We analyse their execu-
tions and compare their frequency against the DevOps met-
rics measurements. Finally, we analyse logs from 15 projects
for detailed analysis of code coverage over time. We find
that pushes and pull requests trigger 65.71% and 59.94% of
CI workflows that run tests respectively. However, a sub-
stantial 32.73% execute on a defined schedule. Out of the
5778608 analysed workflow runs, 80.94% were triggered by
either a PUSH or a PULL_REQUEST. We did not see statistical
significance between frequent test execution and changes in
the DevOps metrics, nor between them and high coverage in
CI workflows. We suggest limiting unnecessary executions
to preserve computational power and electricity and further
research with more complex statistical analysis.

The paper will follow this structure: first, we give a sum-
mary of the related work in this field with relevant conclu-
sions from similar academic publications. Then Section 3
presents the important background for the study. Section 4
focuses on our used methodology and project selection strat-
egy. Sections 5, 6 will show the results and discussion on their
implications respectively. Finally, sections 7 and 8 consists of
an ethical discussion, general conclusion of this paper.

We collect the data for this project using a tool we created
- Cl-tool-du. The data and the tool are available on Zen-
odo.org under 10.5281/zenodo.15711349 and 10.5281/zen-
0do.15715218



2 Related Works

As a concept, Continuous Integration refers to the practice
of executing a set of given tasks when integrating new code
into software projects. Beck Kent introduced this practice
first in "Extreme Programming” published in 2000 [2]. As
it developed, the practice could involve building the project,
running its tests and static code analysis amongst other tech-
niques. This way, a reliable quality gate for code integration
can be established with the belief that this will improve the
stability of the development process as well as allow for more
seamless integration of new features or bug fixes. The rise of
popularity reflect those beliefs, as Hilton et.al. [9] conclude
that 70% of the 35,544 top repositories on GitHub in 2016
used CI. The significance and rise its rise of popularity was
even compared to the importance of version control by Hum-
ble et. al. [10]. It’s relevance can also be seen in the private
sector. JetBrains claim that CI together with Continuous De-
velopment (CD) lead to better code quality, reduced risk and
downtime etc. [11].

Those effects indeed seem to be the case as concluded by
multiple sources - CI does have a beneficial impact of soft-
ware projects [4], [18], [9]. In 2022, Soares et al. [17] per-
formed a systematic literature review on the CI practice and
its effects providing an updated overview of the field. While
many of the 101 analysed papers argue positively about its ef-
fects, 5 papers claim that there are technical difficulties with
CI, especially to the environment within the build and what
is executed in the configured pipelines. This is of interest
to this study, as it shows the complexity of CI, further rein-
forcing the idea that it should be explored as a collection of
practices rather than a single project attribute. Another inter-
esting question this SLR poses is about the criteria used to
distinguish if CI is used in a project - they find that 42.5%
of their primary studies have not defined any. They suggest
being “more restrictive regarding those (TravisCI) logs, since
not every build log from TravisCI may come from a project
that properly employs CI”. In the Methodology section of
this paper, further details are given on how we are defining if
a project uses CI, particularly whether either of its configured
pipelines runs tests.

Sizilio et al. [16] empirically studied the relationship be-
tween adoption of CI and testing practices. Specifically, they
analysed the evolution of test ratio and coverage, as well as if
there is a relationship between the adoption of CI and those
trends. By comparing 82 projects with CI and 82 without,
they conclude that there is a trend of increasing test ratio in
40.2% of CI projects, while only this ratio for no CI projects
was only 17%. In this study however, emphasis is instead put
more on the somewhat inverse direction: does high coverage
in CI result in better project performance. Beller et al. [3]
studied effects very close to this one. Their study explored
the size and execution length of test suites in CI builds, as
well as their influence on the build results. After analysing
13,590 projects using Travis CI, they concluded that 81% run
tests in their continuous integration pipeline, on average 1433
tests are executed per build and test runs take around 1 minute
median execution time for Java projects and 10 seconds for
Ruby ones. In contrast to their research, this paper focuses

on the frequency of the CI tests execution and particularly on
CI pipelines ran in GitHub Actions as opposed to Travis CI.
Further, We explore what events trigger those builds.

3 Background

In this section, we will give information on context impor-
tant for this study. This includes the analysed CI provider on
GitHub - GitHub Actions, as well as the DevOps metrics we
measure.

3.1 GitHub Actions

GitHub is one of the most popular platforms for sharing
open-source projects. Further, it has integrated features for
collaboration - issues, pull-requests, discussions, as well as
project management ones - labels, project trackers, etc. In
2018, GitHub launched its Continuous Integration and De-
ployment automation tool called Actions. It allows projects
whose codebases are already hosted on GitHub to utilise its
own CI/CD platform.

Actions allow for various automations within a project -
from automated replies to and categorisation of issues to com-
plex pipelines for linting, building and testing projects. Sev-
eral benefits of this platform include free use for public repos-
itories, virtual machine runners on various OSes and proces-
sor architectures. Additionally, pre-made solutions for popu-
lar frameworks or languages exist on an Action marketplace
(e.g. pre-made workflow for executing JUnit tests, building
and publishing NPM packages etc.).

Actions consist of a Workflow which executes a set of Jobs.
Each Job has Steps that execute a shell command or pre-made
GitHub Action script (e.g. check-out the repository within the
environment of the Workflow so that it can access it). The
entire Action - its execution order and each sub-element -
is defined by a YAML file located is a special folder called
.github/workflows. Files there will be parsed by GitHub
upon hosting the repository on the platform.

GitHub provides with an API that allows fetching of in-
formation about those workflows. One important limitation
is the fact that the information we aim to gather is limited to
only 400 days in the past for workflow executions, duration
of each job, etc and 90 days for concrete build logs.

3.2 DevOps metrics

To evaluate the effect of running tests within the CI on the
performance of a project, we adapt the DevOps metrics from
Google’s DORA report [7] and JetBrain’s article on CI/CD
performance [12] to open source projects given their popular-
ity and usage. Aiming to have a comprehensive measurement
of projects’ performance, we focus on several metrics: De-
livery Frequency, Mean Time to Recovery and Defect Count.
These metrics rely upon two crucial definitions - that of de-
livery and that of a defect. However, applying them within
the open-source context is not trivial. We couldn’t identify
clearly what is considered “production” and what’s not be-
cause such projects are usually provided as is and information
about what code exactly do owners execute on deployment is
not easily available. Thus, we have to translate the studied
metrics in order to perform our research.



Defining delivery and defect 1In 2017, IEEE, IEC and ISO
standardised a vocabulary of terms used in Software Engi-
neering. There they define delivery as “release of a system
or component to its customer or intended user” and defect
as “imperfection or deficiency in a work product where that
work product does not meet its requirements or specifications
and needs to be either repaired or replaced” [1].

Striving be as close to them as possible, we define delivery
as a tag release and defect as an issue considered a bug. While
the former is trivial given the provided GitHub API endpoint
for tag releases, the latter becomes a relative challenge to de-
termine correctly. Upon manual evaluation of over 7000 issue
reports, Herzig et al. [8] conclude that “every third bug report
is no bug report” i.e. 33.8% of all issues are wrongfully clas-
sified as bugs. The authors suggest manual human analysis of
(significant part) of the data. Unfortunately, this is incompat-
ible with the current resource and time constraints.

To mitigate this, we have chosen a strategy used by
Vasilescu et al. [18]. First, they filtered in projects who have
used labels and issues - at least 100 issues reported and at least
75% of them have labels. After performing manual evaluation
of issue management in active (at the time) repositories, they
have made a set of words related to bugs: defect, error, bug,
issue, mistake, incorrect, fault, flaw etc. Thus, we parse the
name and description of the labels and classifies an issue as
bug if any of the said keywords appear. Further, to filter out
scenarios where any of the listed words appears in a phrase
indicating their revomal “e.g. bug fix” we do not consider
labels that also include the words “fix” or "resolve”.

Translating DevOp metrics to Open-source context Be-
low are the translations of the metrics we calculate together
with a high-level overview of the algorithm used.

Delivery frequency is calculated by measuring the total
number of tag releases within each 30 days interval.

Mean time to recovery is measured as the average time to
close defects (issues that are considered bugs as described
above). The algorithm works by listing the issues that are
defects and calculating their close time (difference between
when they were created and closed). We then assign each
issue to an interval based on when they were closed. In the
end we average out the close time per interval and determine
the MTTR.

Defect count is calculated by the number of open issues
that are considered defects for a certain period. This is done
by listing those issues and incrementing the defect count for
every 30 day interval which is fully between the created and
closed date for this defect.

Initially, we considered another popular metric - Change
Failure Rate (CFR). However, in the end we decide to ex-
clude this metric because of the difficulties related to adopt-
ing it for open source projects. CFR gives the percentage of
deployments that resulted in a failure. GitHub allows for a
deployments feature but upon manual inspection of several
repositories we found that it is often only to host project doc-
umentation websites on GitHub’s infrastructure. If we were
to consider version releases as deployments, then defining
when do we consider a version release to be a failure becomes
difficult and impractical - the existence of a ”patch version”

within the widely used Semantic Versioning system suggests
the common occurrence of minor bugs. If we consider every
new patch version within a minor release, we may be looking
at a case where every version upon the latest one has at least
one bug implying that they are failed releases.

4 Methodology

In this section we discuss our methodology for collecting and
calculating data for this research. First we describe how we
detect if a CI executes a workflow, then we give an overview
of the project selection strategy. Finally, we explain how the
code coverage and test suite evolution was performed and the
challenges related to it.

4.1 Detecting CI test execution in a project

Detecting presence of CI within project proves to be a non-
trivial issue. As previously mentioned, in their systematic
literature review Soares et. al. [17] find that 42.5% of their
primary studies did not give an explicit definition of when
a project uses CI. They argue that build logs generated by a
CI provider are insufficient to imply that a project employs
CI properly. Analogically, in the context of GitHub Actions,
simply relying on presence of workflows is not enough to
mark a project as one that uses CI. This is because there are
examples of more socially-oriented or project management
Workflows that automatically reply on newly posted issues or
label them based on an algorithm.

We only strictly consider CI pipelines that run tests in
this study. Simply parsing all YAML files within the
.github/workflows won’t be sufficient as they do not nec-
essarily define a workflow, e.g. due to bad formatting or en-
tirely different intention. Thus, we use the GitHub API to
collect the workflows and their source YAML files. After the
parsing the source files content, we specifically look at the
the executed jobs and their steps. If a step includes the word
“test” in its name or if its command runs any tests, we con-
sider this workflow to be executing tests. The latter is done by
matching the command on a regular expression, computed af-
ter manual analysis of several workflows. It is a combination
of three sub-expressions - one per considered programming
language. Each matches on a dependency manager command
(e.g. npm, pnpm, yarn, mvn, gradle, bun, dotnet, phpunit
...) and then a keyword that suggests executing a test suite
(e.g. “test”, ’verify”’). By unionising matchers on the com-
mand and the name of a step, we believe that this can reliably
identify workflows as ones that indeed execute any tests of
the software.

4.2 Project selection strategy

We aim to find projects with sufficient and relevant data, so
we filter out toy/example projects. To do this we queried pub-
lic projects that are not archives or forks and have at least
50 stars [13]. We only considered Java, JavaScript, Python,
TypeScript, C++, C# and PHP projects, being one the most
popular languages on the platform. This resulted in 6715
projects. We removed all projects that did not have any de-
fined workflows which resulted in 4097 projects. In order
to work with maintained and active projects, we analysed the



first set of 6715 projects in the number of commits for the last
year. Similar to Ray et al. [15] we filtered out projects that
fellow below the first quartile. We used the same technique to
filter out project with low number of GitHub releases, since
we use it to calculate our DevOps metrics. This left us with
1921 projects. Then, as mentioned before, filtered on project
that have a minimum of 100 issues with at least 75% of them
labelled. 670 projects of the initial set followed this criterium.
Finally, we only considered projects that run tests in their CI
with the method described above. We ended up with 478
projects and 1680 workflows for analysis.

4.3 Calculating the Test frequency, DevOps
metrics and their correlation

Using the definitions described in subsection 3.2, we calcu-
lated the selected DevOps metrics for the 478 projects that got
filtered-in. When calculating Test frequency we need all the
executions of a given workflow. We use the GitHub API to
collect each run together with when it started, what triggered
it and how it concluded (success, failure, skipped, etc.). Then,
by aggregating on the started date and time, we group execu-
tions for each month. We ignore all runs that are skipped
when calculating the frequency. The number of executions in
each month corresponds to the test frequency in that period.

We use the GitHub API for the metrics as well. To calculate
the DevOps metrics with the translated definitions above, we
need all the issues and releases in the analysed period of 12
months. After the data is stored locally, a script aggregates the
data and calculates the metrics for each month as described
in Section 3.2. The resulting measurements are stored per
month for each project.

4.4 Analysis of code coverage

Calculating test code coverage of arbitrary open source
projects is a non-trivial task, as also discussed by Sizilio et
al. [16]: failing builds, tests or missing dependencies that are
currently unavailable make the collection of this data difficult,
especially given the resource and time limitations. Initially
we tried randomly choosing 10 Maven Java projects from the
sampled set of 478, given the well-formatted and consistent
output of the Maven CLI. For each of those projects we would
collect one commit per month that represents the state of the
project at this point in time, with the intend of calculating the
coverage at that point. However, unless we match the same
test running command that is executed in the CI at this point
in time, this method would have collected the coverage for all
tests present in the repository.

Since we are interested strictly in the code coverage re-
sulting from the tests ran in the CI, we opted in for collect-
ing the coverage directly from the logs of ran CI workflows
that report coverage. This method further allows us to col-
lect data for various projects regardless of their programming
language, used frameworks or tools. Unfortunately, GitHub
limits the availability for those logs to 90 days in the past.
Thus, we analysed shorter periods of one week resulting in
12 data points per project. We sampled a successful execu-
tion of the workflows for each week. If none was present,
the last valid such was selected. We excluded projects that

miss runs for more than 4 of the weeks or that do not print
coverage data in their logs.

To find workflows that report on coverage we looked for
workflows from our set that either have the terms “coverage”
or "codecov” in their name or a name of any of their steps. For
each of their runs, we parsed the downloaded the logs and col-
lected the reported coverage by inspecting the latest of their
collected runs to analyse how the coverage is reported. By
adapting the template of the report in the logs, we automati-
cally collected the data for the rest of the runs. In some cases
projects had multiple workflows that detected coverage. They
varied in either the dependency versions or operating system
they are ran on. For this study we stick to Linux based work-
flows and choose tool version arbitrarily. If the coverage is
reported per module/part of the project and not in one general
single rate, we exclude it. In the end we collected data for 15
projects given the resource and time constraints.

5 Results

We managed to collect over 1680 workflows over the 478
filtered projects and their 5778608 runs (executions). The
project pytorch/pytorch had abnormally more test execu-
tions then the rest so we decided to filter it out.

5.1 Execution of CI Workflows with tests

In Table 1, the results can be observed. As expected, most
of the times the CI workflows with tests are executed upon a
change to a defined branch - either via a pull request or a push.
However, we see that more than half of the found workflows
execute on schedule. That is, they execute automatically on
a given time or interval. Another interesting phenomenon is
that almost 60% of the workflows do not include the “work-
flow_dispatch” trigger, i.e. they cannot be manually executed
by an operator of the repository. On the other hand, some
workflows have executions that are only from manual runs.

Observation 1: Most of the CI workflows are ran on
pushes (65.71%) or pull requests - (59.94%). 32.74%
of them run on a schedule. Surprisingly, almost half
(48.87%) of them have the option for manual execution
disabled.

We can notice a striking number for the success rate of the
ISSUE_.COMMENT runs: only 3.55% of them are success-
ful. This is because 96.29% of them were skipped. In the case
of actualbudget/actual, the project contributors use this
method to create a pseudo-command line where upon com-
menting “/update-vrt”, a set of specified set of tests would
execute. In jupyterlab/jupyterlab, the workflow would
execute normally on pushes or pull requests. For comments,
it will first check if they contain a command in the form of
a sentence - either "Documentation snapshots updated.” or
”Galata snapshots updated.” This will execute a set of docu-
mentation tests or a set of Ul regression tests from their Ul
testing framework “Galata”. In total there were 215266 runs
that were not skipped and triggered by ISSUE_COMMENTS.



Trigger Workflows Total runs  Success rate
PULL_REQUEST 1104 3249632 65.50%
PUSH 1007 765093 75.47%
WORKFLOW _DISPATCH 859 40740 82.65%
SCHEDULE 550 407199 83.91%
ISSUE_.COMMENT 73 984346 3.55%
MERGE_GROUP 55 72902 85.90%
RELEASE 40 1433 78.23%
WORKFLOW _RUN 23 184593 66.55%
Others 17 72670 35.06%
TOTAL: 1680 5778608 57.41%

Table 1: Workflows and concrete workflow runs by triggers. Data for 478 projects, 1680 configured workflows and 5778608 runs.

Observation 2: Project contributors use comments on
issues as a trigger for test-executing CI workflows via
command-like sentences.

Out of the 4794320 analysed runs that were not triggered
by an ISSUE_.COMMENT event, 69.20% were successful
(their Conclusion field was "SUCCESS”). PULL_REQUEST
event triggered 56.24% of the runs, while PUSH triggered
13.24% . However, the success rate for the former was nearly
10% lower than the latter - 65.50% vs 75.47%. Scheduled
runs enjoyed one of the highest success rates of 83.91%.

Observation 3: Almost 70% of all runs were triggered
by pull requests. At the same time, 75% of the runs trig-
gered by pushes were successful.

When it comes to the WOKRFLOW_DISPATCH option, we ob-
serve an interesting occurrence. For several workflows, we
observed how the option was not included in their original
YAML configuration file, and was only added later. For the
”Overall tests” of Avaiga/taipy, the option was only intro-
duced after a problem where the CI wasn’t ran on pull re-
quests initiated by dependabot (an automatised system for
detecting vulnerable package versions). In fact, many of the
provided pre-configured GitHub Action templates (e.g. a
default pipeline configured for NodeJS that builds and runs
tests) do not have the WORKFLOW_DISPATCH option enabled.

Upon further inspection, we see that for the 859 workflows
that enable this feature, 482 never had a single manual execu-
tion. When looking at the executions for all of them, we see
that only 6% were manual. In total contrast, 34 workflows
are solely ever executed manually. One such example is a CI
for executing Regression tests in airbytehg/airbyte. In
another case, the manual runs were actually triggered by a
bot. For Avaiga/taipy the workflow that had only manual
executions was an automated script to publish the project on
the python package index.

5.2 Frequency of test execution VS DevOp metrics

We did not find any strong Pearson correlation between the
testing frequency and the selected metrics. Figure 1 shows

box-plots with the resulting correlations from all projects. We
see that, on average, higher test execution frequency results in
more slightly more defects, deliveries and lower mean time
to recovery. However, in Figure 2 we see that this correlation
is not significant most of the times. In fact, this is the case
in only 7.6% of the projects when it comes to the effect on
Delivery Frequency. The numbers are 19.3% and 7.8% for
Defect Count and Mean Time To Recovery respectively.

Observation 4: There is no Pearson statistical signif-
icance between the frequency of test executions within
CI and the Defect Count, Delivery Frequency, and Mean
Time To Recovery metrics.

5.3 Code coverage and test suites VS DevOps
metrics

We did not find strong Pearson correlation between the cov-
erage and DevOps metrics amongst the 15 analysed projects.
Figure 3 shows the correlations while Figure 4 - the p-values.
One project bloomberg/memray further used the coverage
rate as a quality gate and required a minimum of 90%

We make an interesting observation in nodejs/node: the
project observes its coverage on different platforms: windows
and linux. We observe differences in each coverage report
with the Windows one getting 2.77% less on average between
the months compared to the Linux report. Further, we inves-
tigated the source YAML files of both workflows to see that
the exact same events trigger them. The only slight difference
was between the files which when changed on push trigger the
workflow one of which is platform dependent - Makefile vs
vcbuild.bat for compiling C++ code.

Additionally, 13 out the 15 configured workflows, upload
their coverage reports to either GitHub, Codecov or another
external tool for analysing coverage over time. In the case of
microsoft/semantic-kernel, they save the report as an
artefact on GitHub. Upon completion of the workflow that
performs this task, another one picks up the report, parses its
contents and publishes it as a comment underneath the pull
request that triggered the execution in the first place.
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Figure 1: Box plot of correlations between testing frequency and
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Figure 2: Box plot of p-values between testing frequency and De-
vOps metrics over all projects.

6 Discussion

The ’necessity’ of frequent execution As stated earlier in
Observation 1 and 2, most of the times, workflows are ran
on pull requests or pushes. 13.24% of all executions were
triggered by a push and 75.47% of them were successful. A
phenomenon that may sometimes occur is the running of tests
on pushes to branches intended for feature development or
bug fix (i.e. branches other than main or master. The results
for these runs won’t be important as only the final run before
merging will determine if this pull request is to be accepted.

For example, consider a pull request that has some commits
before it is ready for merging which were uploaded to GitHub
using n pushes. This would result in n workflow executions.
If then the developers make another m commits to fix the
pipeline (where m > 0), this will result in a maximum of n +
m executions, whilst the final one will decide if the request is
to be merged or not. If the workflow is ran only for when the
pull request is ready for merging, this will already reduce the
executions by n.

This is already the case in many of the analysed work-
flows - they execute only on pull requests or pushes to their

1.00

0.75 A
.A

0.50 1

0.25 A

0.00 A

—0.25 |

Correlation coefficient

—0.75 A

—1.00

Coverage vs. DC Coverage vs. DF Coverage vs. MTTR

Figure 3: Box plot of correlations between CI coverage and DevOps
metrics over all projects.
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Figure 4: Box plot of p-values between CI coverage and DevOps
metrics over all projects.

main branch. Thus, they isolate their CI pipelines from other
branches reducing the number of unnecessary executions. For
the project keycloak/keycloak, CI tests were even put to
run on a scheduled basis instead on each commit in order to
reduce the load on the GitHub workflow runners [14].

Implications for researchers: Further research can be
done into what are the causes behind manual CI workflow
execution (not strictly focused on CIs that execute tests). We
saw an example where the “manual” executions were done by
an automated bot, while in another case the pipeline was exe-
cuting regression tests which, perhaps, required closer human
inspection on each execution. In addition, ISSUE_COMMENT
events triggered 215266 runs that aren’t skipped. Manual
evaluation of each one of them or their source YAML files is
out of scope of this paper, but as seen on Observation 2, peo-
ple use such configuration to trigger CI workflows by com-
ments. This is de facto manual execution of workflows.

As a suggestion for collecting information for such a
study, one can follow these steps: After creating a dataset
of sampled repositories, collecting their workflows and the
triggers of the workflows is easy to implement (given that



the workflow files must follow a specific YAML format to
be considered by GitHub). One can then filter on work-
flows that have turned on the trigger for manual execution
- WORKFLOW_DISPATCH or ISSUE_COMMENT. The repository
identifier (owner and name) and the ID of the workflow is
enough to collect the workflow runs for the last 400 days in-
cluding what triggered them and their conclusion.

Another question that the current results pose is the one
of the presence of multiple platforms on which coverage
is measured. Given the difference in the coverage on the
different configurations for the nodejs/node project’s CI
workflows, it is reasonable to believe that there is benefit to
run and test projects on different architectures or host op-
erating systems. Two projects: dbt-labs/dbt-core and
modin-project/modin also on different versions of python,
while doctrine/dbal (a database abstraction layer soft-
ware) on many different database providers - MariaDB, Post-
greSQL. We suggest further research in the benefits of multi-
architectural, multi-tool, multi-version and multi-OS running
CI tools and its benefits and drawbacks. Interesting insights
can be collected on which kinds of projects see better per-
formance with different configurations (e.g. low-level paral-
lelised software may benefit more when testing on many CPU
architectures).

Further the relation between code coverage and DevOps
metrics can be analysed using more sophisticated models for
presence of non-linear correlation.

Implications for practitioners: Given the observed lack of
statistical significance between test frequency and shifts in
the selected DevOp metrics, we suggest limiting the number
of CI workflow test runs. This can save on repository/team
resources and, from an ethical stand point, limit consump-
tion of computational power and electricity. Developers can
instead choose to run the CI on GitHub only when a pull re-
quest is ready for merging and instead run their verification
scripts locally.

Threats to Validity: Detecting if a Workflow execute tests
is done by checking if any step either has a test-suggesting
keyword in its name or if it runs a command which matches
on a predefined regular expression. However, in certain
cases this may miss custom scripts that execute tests (e.g.
./unit-tests.sh) or non-standard runners.

Further, Given the human-controlled nature of issue man-
agement and the way we automatically detect issues as ones
that report bugs, there is a chance some of them are misclas-
sified. As explained in the methodology section, we classify
issues as bug reports if they include a bug-indicating keyword
in one of the issue’s labels. The mitigation strategy we used
was to filter only on projects that actively use issues and ac-
tively use labels (at least 100 issues where at least 75% are
labelled). However, this may still allow for false positives
or false negatives, e.g. a bug reporting issue left unlabelled
or incorrectly labelled, an issue wrongfully labelled as bug or
perhaps typos in the spelling of the label name or description.

7 Responsible Research

In this section we will discuss the ethics of this study and our
approach.

Reproducibility The tool for collecting the data is avail-
able on Zenodo.org under 10.5281/zenodo.15711349. The
GitHub actions runs and logs are available for 400 days
and 90 days respectively, unless configured otherwise by the
maintainers of a repository. Fundamentally, rerunning the
tool to collect data will produce a different result then the data
we have. Therefore, we also provide the datasets we used
throughout this project on Zenodo.org under 10.5281/zen-
0do.15715218.

Usage of AI LLM models Al was used in this project for
suggesting refinements to the statistical analysis of the cor-
relation between Testing frequency and the measurements in
the DevOps metrics. Further, Al was used to debug and solve
issues that arose when writing CI-tool-du, writing small-scale
scripts for organising or processing collected data (e.g. re-
moving empty lines in CSV files). Al was also used for de-
bugging LaTeX syntax when rendering. However, when it
comes to writing the paper, no Al was used for rewriting,
rephrasing, editing or generating text or punctuation. All text
written in this document is written and edited so without Al.

Positive ethical implications On another note, the result
of this project arguably have indirect positive ethical effects.
With the limitation of unnecessary CI execution, companies
can save up on computational power which in turn will result
in less electricity usage. Our observations show that having
a responsible approach does not necessarily come at the ex-
pense of project performance.

8 Conclusion

In this paper we researched the connection between test exe-
cutions in CI and open-source projects performance in terms
of DevOps metrics, as well as investigating the usage of such
GitHub CI workflows. We evaluated 476 projects, 1680 test-
executing workflows and 5778608 total runs. Our study finds
that over 69.48% of all executions were triggered by pushes
or pull requests. When it comes to manually triggering execu-
tions, 859 out of the 1680 workflows had this option enabled
and in some cases, certain workflows were entirely only ex-
ecuted manually. We did not find any statistical significance
between frequency of test executions or CI code coverage and
our analysed DevOp metrics - Defect Count, Delivery Fre-
quency and Mean Time to Recovery.

Further, we explored many interesting practices used
across the open-source community for executing tests in the
CI. Our work demonstrates that resources can be saved by
lowering the frequency of test executions on the CI, while
also not hurting a project’s performance. We suggest further
work in analysing manually triggered workflows - when they
appear and what effect does this feature have.
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