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Abstract

This work is concerned with the development of a frameworkdive shape optimization prob-
lems for transient heat conduction problems within the exindf isogeometric analysis (IGA). A
general objective functional is used to accommodate bahpeshbptimization and passive control
problems under transient conditions. An adjoint sensjti@nalysis, which accounts for possible
discontinuities in the objective functional, is perfornsthlytically and subsequently discretized
within the context of IGA. The gradient of the objective ftinoal is used in a descent algorithm
to solve optimization problems. Numerical examples arasqméed to validate and demonstrate
the capacity to manage thermal fields under transient dondit

Keywords: Shape optimization, Isogeometric analysis, Transient¢@maduction, Passive
optimal control, Adjoint method

1. introduction

Engineering devices used for thermal management in apiplicawhere the temperature
andor the heat exchanged play an important role, such as hela@egers, cooling components,
heat sinks or thermal protection layers, are typically giesd to control the maximum or min-
imum temperature that a system should be exposed to or taufeara certain heat exchange
rate. Given some performance requirements, a judiciouiselod materials and shapes is made
and the original design is subsequently optimized to imeiits/performance. This optimization
process is typically based on steady-state conditions.eftle®less, in many technologically-
relevant applications, thermal conditions fluctuate dymperation. In these cases, an active
control system is sometimes used for thermal managemetdidwback of an active control
system is its additional cost, which may hinder its usefsdnén attractive alternative is passive
control, which relies on a suitably-designed system thiega priori into account fluctuations
in the thermal fields. In particular, passive control may tigeved through a shape optimization
procedure that finds an optimal shape under transient hadtiction conditions.

Shape optimization has received renewed attention duevedajment of Isogeometric Anal-
ysis (IGA) as an alternative to the (classical) finite-elatmaethod (FEM) [1]. The main advan-
tage of IGA is that the numerical analysis is carried out wlith same shape functions used in
most commercially-available Computer-Aided Design (CAlR)grams. Consequently, the bot-
tleneck of converting a CAD-generated design into an FEltyemesh is avoided [2]. CAD
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software typically uses non-uniform rational B-splines (RRB) [3] to represent the design ge-
ometry. In fact, prior to the development of IGA, shape optimization has also relied on NURBS
for design purposes (see, e.g., Braibant and Fleury [4], Espath et al. [5] and Wang and Zhang
[6]). More recently, the integration of IGA and NURBS-based shape optimization has been ex-
ploited to improve the overallféciency and accuracy of the method, particularly in terms of an
unified design and analysis parametrization that provides an enhanced sensitivity analysis (see,
e.g., Wall et al. [7], Qian [8]).

Isogeometricshapeoptimizationhasbeenusedfor curvedbeamstructuresn Nagy et al.

[9] andNagy et al. [10], vibratingmembranesn Manh et al. [11], fluid mechanicsn Ngrtoft
and Graveser[12], pulsatileventricularassistdevicesin Long et al. [13], shellsin Nagy et al.
[14], Kiendl et al. [15] and Ha [16], photoniccrystalsin Qian and Sigmund[17], composite
fiber orientationin [18, 19], heatconductionproblemsin Yoon et al. [20], Stokesflow problems
in Parketal. [21]. Isogeometricshapeoptimizationusingboundaryelemenimethodis presented
in Li andQian[22] andLian et al. [23]. The aforementionecatontributionsillustrate the wide
rangeof applicationsof the isogeometricshapeoptimizationapproachHowever,the method
has been limited to static or steady-stateconditions. Recently, the isogeometric shape
optimization method was extendedin Wang and Turteltaub [24] to analyze quasi-static
processes with slowly-varying exterrdaids.

In the presentwork, one goal is to extendthe isogeometricapproachto carry out shape
designandpassivecontrol of problemsgovernedy a transientehavior,in particulartransient
heatconduction.Previouscontributionsrelatedto inverseshapedesignwork for transientheat
conductionwhich haverelied mostly on a classicalFEM analysiscanbe foundin Dulikravich
[25], Jarnyetal. [26], HuangandChaing[27] and Korycki [28]. Shapesensitivityanalysis
for the linear or nonlineartransientheatconductionproblemscan be found in Haftka [29],
TortorelliandHaber[30], Tortorelli etal. [31], StuzalecandKleiber[32], KleiberandSluzalec
[33], DemsandRousselef34, 35], Guetal. [36] and Korycki [37]. Shapeoptimizationwork
of thermoelastigproblemswith transienthermalfield canbe foundin Kaneetal. [38], Gaoand
Grandhi[39] and Songet al. [40]. Other relateddesignsensitivity analysismay be found in
HaftkaandGrandhi[41], Van Keulenetal. [42], Choi andKim [43] andNanthakumaetal.[44,
45].

A secondyoalin the presentvork is to extendthe designsensitivityfor situationsvherethe
objectivefunctionalis measureanly in selectecareasof the designregionandduring selected
intervalsof thedesigntime period. This modelingfeatureis usefulin casesvhereonly portions
of the designregion andor specifictime intervalsof the analysisperiod are relevantfor the
overallshapedesign.In thatcontext,the sensitivityanalysisrequiresan extendedrersionof the
transportheoremgo accounftfor discontinuitiesn the objectivefunctional.

Thestructureof the presentvork is asfollows: thegeneraformulationof the shapeoptimal
designand passivecontrol consideringthe jump conditionsin the objectivefunctionalis pre-
sentedn a continuoussettingin Sec. 2 (i.e., continuousdescriptionof the designandanalysis
spaces).By assigninga Lagrangemultiplier for the strongform of the governingequationsat
every materialpoint during the transienttime interval, the continuousadjoint sensitivity anal-
ysisis developedn Sec. 3. Necessaryetailsareincludedto treatthe discontinuitiesof the
characteristidunctionsthat representhe regions(in spaceandor time) wherethe objective
functionalis defined.Theisogeometri@analysisanddesigndiscretizations discussedbriefly in
Sec. 4. Thedesignproblemandits sensitivityaresubsequentlgiscretizedn Sec. 5 within the
contextof IGA. This sectionalsoincludesthe algorithmusedto numericallysolve shapeopti-
mizationproblems.To validatethe methodologytwo benchmarkproblemsnamelya minimum
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Figure 1: Family of design domaif¥® generated through design functioxs,; §.

surface problem and a passive temperature control prolilpre-aletermined time are presented
in Sec. 6.1. To further illustrate the range of possible i@pfibns, two examples are presented in
Sec. 6.2 and Sec. 6.3, namely the shape design of a plungenfotten glass forming die and
a thermal protection system (TPS) for a re-entry ballisgbigle nose. Finally, some concluding
remarks are givenin Sec. 7.

2. Problem statement

2.1. Design function and heat conduction problem

Consider an isotropic, homogeneous and linearly theratahducting material that occu-
pies a regiom2® with boundaryl's as shown in Fig. 1. The superscripis a continuous s-
calar parameter that representfetient configurations (or states) of the region. Each configu-
ration corresponds to a design of the structure. The statieeofegion withs = 0, i.e. Q°, is
called the referential or initial design. A material desjgpint p € Q° is mapped to a position
x = X[p, g] € Q°by a design functiox as indicated in Fig. 1. For simplicity, the mappirgs”
henceforth also denoted asand the meaning of the symbol may be inferred from the context
(i.e., position or design mapping).

In the domainQ® and during a time interval™ = [0, T], with T a given final analysis time,
the governing equation for a transient heat conductionlprolcan be expressed as

00[x, 1]
ot

wheref = [x, 1] is the temperature at poitand timet, ¢ > 0 is the heat capacity, > 0 is the
mass densityk > 0 is the thermal conductivityQ = Q[x, 1] is the inner heat generation rate per
unit volume (volumetric heat supply) a is the Laplacian operator. For subsequent use, the
governing equation is written in terms of an operatas defined in (1). It is assumed that there
are only three types of boundary conditions on the bounbgryhich is divided as follows:

[[6[x,1]] := pC —kv2[x, 1] - Q[x,t] =0, (x,1)e Q5xT, (1)

*=Tjulrqurs

wherel'§ represents portions where the temperature is spedif@rresponds to portions where
the contact heat supply is given afiglis the part of the boundary where heat is exchanged with
3



the environment through convection. The boundary andirénditions are as follows:

6=60 on IyxT
g-n=-q on Igx7
g-n=—qe=h(0-6) on TexT

0[x, 0] = 6o[X] in Q°

(2)

with the heat flux vectoq given by Fourier's model, i.e.,
q=-kveé.

In (2),6 = 6[x,t] andg = g[x, ] are the specified temperature and contact heat supdly a1y
andIg x 7, respectivelyn = n[x] is the unit outward normal vector to the bounddrys the
convection cofficient,f, = 6¢[t] is the convective exchange temperature (ambient tempedat
andép[ x] is the initial temperature field in the domain. For notadboonvenience, the contact
heat supply oig is denoted age. The contact heat suppligsahdge are given as the negative of
the normal heat flux, hence they take positive values if heassffrom the external environment
into the system and negative values otherwise.

2.2. Transient shape optimization problem

In order to develop a versatile framework for shape optitioreproblems, which can accom-
modate various situations within a unified formulation, agral objective functional is defined
such that it can measure the performance on pre-selecteivpiagre the physical phenomenon
occurs, both in space and time. This is achieved through ¢inebmation of two local per-
formance functions, denoted &g andy, and defined, respectively, 92° andI'®, and three
characteristic functions, denoted@sy andg, that specify, respectively, the (sub)-parts of the
regionQs, boundany™ and time interval/” where the performance is monitored. In particular,
the overall objective functiong is defined as

T
NIERS f S[t]P[t; sldt  with  W[t; §] := W, [t; §] + ¥, [t; 9] 3)
0
whereY,, is a functional defined over the regi@f as

69 = [ olp v ) o @

and¥, is a functional defined on the bounddiyas

Bl6g = [ p s, lox. 6. ax g dr. (5)

The functionsy,, andy,,, appearing in (4) and (5), are the local performance funstioThe

functiony,, measures the performancei based on the temperature figldvhile the function

¥, measures the performance b based on the temperatufeand the contact heat supply

g = —q- n, wheren is the outward unit vector on the boundary. The paransitethe argument

of the functions and functionals shown in the equations abogicate that these are evaluated

for a given design functiox[", ]. The material design poinp used in the argument of the
4
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Figure 2: lllustration of subdomafg,, boundary portioi’J and time subintervaf; where the
objective functionaly is measured.

characteristic functions andy should be interpreted gs= f[X, 5], wheregis the inverse of
the design functiox.”Following the approach proposed in [43] and [24], the fiordw andy
are associated with, respectively a (sub)don@finc Q° and a portion of the boundafy} c '
in which the performance function is measured.

The functionsw andy correspond to fixed design points in the reference designadom
Correspondingly, the subdomai}j, ¢ Q° and the portior”; € I'® are assumed to be obtained
through a mapping of the referential subdom@fhc Q° and the referential portior ¢ . For
increased design flexibility, the subdom&ifj and the portiorl“g may themselves be prescribed
as functions of time. Hence, the characteristic functiorgafined as

1, ifpeQd 1, if pero®
t] = @ t] = 4 6
“[p.d] {O, otherwise ’ (.1 0, otherwise ©)

Similarly, the characteristic functionthat appears in (3) is associated with a time (sub)-interval

7. €T such that
1 ifte 7.
t — s S . 7
1t {O, otherwise )

In a typical optimization problem, the design may be sulg@tb a resource constraint that
limits the total volume of the design region, i.e.,

39 = dQ <X, (8)
Qs

whereX is a given upper bound. In addition, it is often required tasider constraints of the
following form:
de[x, 9§ <0 c=1,...,N, (9)
where the scalar functiomi represent pointwise constraints (such as upper or lowards)and
N, is the total number of constraints. The optimization praobtensists on finding an admissible
design functiorx[-, s*], which satisfies the constraints (8) and (9), such figg'] = msinj[s].
5



3. Continuous adjoint sensitivity analysis

3.1. Material and spatial design derivatives

Continuous shape modifications in a shape optimizationlproltan be understood as a s-
mooth sequence of deformations from an initial (referéntdasign as shown in Fig. 1. The
dependence of functions and functionals on the designifumg{-, 5] is indicated with a depen-
dence on the design paramegerSimilar to the notion of material and spatial time derives
used in continuum mechanics, it is possible to define a natéesign derivative and a spatial
design derivative. The material design derivative (at tamtg) is denoted here with either a
superimposed open ring) (or with the operator Df/Ds (also known as the total design deriva-
tive), while the spatial design derivative (at constanis indicated using an apostrophe;,(or
using the operatad(-)/ds (partial design derivative). For functions that only depp@m s, the
derivative with respect tsis indicated as dJ/ds. The material and spatial design derivatives of
a functionh are related as follows:

o Dh ,

h = Ds = h" + (Vh) v, (10)
whereV refers to the gradient with respectt@ndy is the so-called design velocity. The design
velocity of a material design poirp is the material design derivative of the design function
x=X[p,9,i.e. 5

o X
Vi=X= Ds’ (11)
The spatial design derivative and the spatial gradient cotenne.,

(VhY = V(W) = Vh' . (12)

3.2. Transport relations

For a volume integral of a generic smooth functibrdefined inQ® and a characteristic
functionw as given in (6), the volume transport theorem is extended as

Ef wfdQ:f wf’dQ+fwfvndF+f|[w]|fvndr, (13)
dS QS QS rS SE,

wherev, = v- nis the normal design velocity with the outward normal vector on the boundary,
andS? = 9Q7 — I'®is the interior boundary of the sub-region (see [46]). Thation [] =
()" = () indicates the jump of a quantity across a surfiiwe/point of discontinuity, with {*
representing the values on thesides according to the normal vector (pointing towards the
+side).

For a boundary integral of a generic smooth functiodefined onl™®* and a characteristic
functiony as given in (6), the boundary transport theorem is extended a

gfyfdl":f(yf'+y(Vf-n)vn—/<fvn) dar +f|[y]| fymdT, (14)
ds rs s Ts

wherex is the total curvature of® (twice the mean curvature of a two-dimensional surface
embedded in three space dimensiol$)= Jr’; is the edge of the boundary, vm = v - m, with
mbeing the normal vector pointing outwarddif} and div refers to the surface divergence (see
[47], [48] and [49]).

6



3.3. Augmented functionals

The optimal design process is to find a design such that treetiNg functional is minimized
(or maximized) while simultaneously satisfying all the igesconstraints. The governing equa-
tion of the transient heat conduction problem shown in (1) thie associated load and boundary
conditions in (2) can be treated as an equality constraivaiiational form.

In order to include the constraints in the sensitivity asalyit is convenient to introduce an
augmented objective functional (Lagrangian) defined as

N
L[S A, As] =71 + ) (Ac,delsas + As (2[8] ~ Z0) (15)
c=1
where
. T
19 = 719 + f (161, st (16)
0

In the preceding equations, the inner produchqs refers to an integral over the regi@? of the
product of the arguments. In (15), the inequality constsagjiven in (8) and (9) are multiplied
by the corresponding Lagrange multipliexs = Ac[X] and Agx, respectively. Moreover, using
integration by parts, the transient heat conduction eqodfi) is included in (16) as a constraint
in the following form:

A16], 9 = f (pc%ﬁ +kV6 - V9 — Qﬂ) - | ggdr=o.
Qs rs

The Lagrange multiplier field = 9[x, t] corresponds to the so-called adjoint temperature field.
Observe that since the constraint must be satisfied, thevaihes ofJ andj, as well as the
values of their shape derivatives, essentially coincidas Teature is used in the adjoint method
to compute the shape derivative of the functional.

3.4. Shape derivatives of

In view of (16) and since the variablésand s are independent of each other, the design

derivative ofJ can be written as

df dg (T d

5= a5 ), gl Mt (17)
which consists of two parts: one is the design derivativénefdriginal objective functional and
the other one is the design derivative of the equality caig(l[6], 3)qs = 0. However, in order
to directly compute g /ds, it is required to determine the shape derivatives of theperature,
¢, and the contact heat suppty, which typically are computationally expensive to obtais-(
ing, e.g., a direct perturbation method). Instead, follaythe adjoint method, the strategy is to
manipulate the right hand side of (17) in order to express & convenient format (i.e., elimi-
nating® andd’), thus allowing an ficient computation of §’/ds. In turn, d7/ds delivers the
desired expression offl/dswithout the term®’ andq’. The steps to convert the right hand side
of (17) into a convenient format are indicated in the subsatjsections.



3.4.1. Shape derivatives of the objective functional
Bearing in mind that the contact heat supplyIg@ris ge = —h(6 — 6¢), it follows that

q, = —h¢’ and VQge = —hV6 on Fg . (18)

Using the transport relations shown in (13) and (14) and @wvof (12) and (18), the shape
derivative of the objective functiongl can be obtained as

T T
_=f gf wlﬁw,egldet+f g(f wxpwvndl"+f [w]zpwvndl")dt
S Jo  Jos 0 rs ss

.

+ f §( f YWyt dl + f Yy 0 AT + f YWy 66 dr) dt
0 I3 r re
.

+ f ( f YWyad dl + fr Sywy,qq’ dr - fr Sthy,qe’ dr]dt

0 eT
f f (Vry - ) i = wrykovn) dclt + f s f [Y1¥,vmdrdt .
0 Ts

3.4.2. Shape derivative of the governing equation.

The second term on the right hand side of (16) involves thedwmaluction problem, treated
as an equality constraint integrated in space and time.ew oif obtaining a useful expression
for this term, consider first the shape derivativélfd], #)qs, which, using the transport relations
(13) and (14) and in view of (12), can be expressed as

(19)

d R4 a0

d—s<|[9],ﬂ>gs_f( o o~ Q- Qﬂ)dQ

(KVE - VO +kVO - V) dQ+f(pc%ﬂ+kV0-Vﬂ—Qﬂ)vndl"
rS

Qs

(20)
(9 +§y) dr - f (g9 +qy) dr - f (g9 +qy’) dr
I3 rs rs

_ fr (V@) M)y~ (@) o)

Noting that(l[8], ¥’ )qs = 0 and using (18), it follows from (20) that
d 00 , , a0
—(I[6], Pgs = f pC—1 — Q9+ kV¢ - V9 |dQ + f pC—1 + kV6 - Vi — QI | v,y dl
dS Qs ot s ot

- f godr— [ godr+ [ heodr - f ((V (g9) - N) vy — (09 kv AT .
IS rs IS rs

(21)
Since the transient heat conduction equation (1), expdessstrong form ad[d] = O, is
satisfied for everyx € Q° and everyt € 7, then the relation (21) holds for evetye 7.
Integrating the first term in the first integral on the righdesiof (21) over the time interval
= [0, T], exchanging the order of integration and subsequentbgirting by parts in time
provides the following relation:

f fpc‘%) HdQdt = [pca’ﬂﬂ 0dQ - f prG’—det (22)
QS QS QS




It is convenient to introduce the adjoint time variahle= T — t and the convention that an
arbitrary functionf may refer to either a function a¢for 7, i.e., f = f(t) = f(7) with T related to
t as indicated (i.e., the proper argument may be inferred ttantontext). In that case, it holds

that
ffdt_f fdr and f—dt_ f—d’f

Following this, (22) becomes

T e T T a9
f f pC—9dQdt = f [pce/ 91155 da + f f ocd —dQdr . (23)
0 Qs ot Qs 0 Qs ot

Integrating by parts ove the third term in the first integral on the right side of (21)drder
to transfer the gradient fromto ), one has

kVe - V9 dQ = — f (kv?9)erd2+ | qodr (24)
QS

Qs Is

whereq* is the adjoint contact heat supply on the boundaiywhich is related to the adjoint

heat fluxg* as follows:
qg:=-q-n g :=-kvg. (25)

3.5. Transient adjoint system

Integrating (19) in time and in view of (17), (21), (23) and2the design derivative of the
augmented functional defined in (16) can be expressed as

% = q)]_ + CDZ, (26)
where
-
f f ( = —kVZ9 + S‘a)l//wa)g deT+f [Pce'ﬂ]ig 40
0 N
-
+ \f(; (f §7’¢ye +qQ )0’ dar + \fl:s (Q’lﬂy,q _ ‘19) q/ dr) dr (27)
T
’ f (f ( ( mr/:%e - W‘/’y,q) + q*) ¢ dF) dr
0
and

T
d)z:zf g(f wzpwvndl"+f [w]lpwvndl"+f[y]¢yvmd'f)dt
0 Is S$ rs
T( 90
+f f pC—1 + kv - Vi — Q| v dI' | dt
0 rS at

+ f T( —Q9dQ + f (svryo+ )@ dr + f (srya—-0)d dr] dt
I3

f f ley - tpykvn) = (V@) - n)vn+ (q9) Kvn) drdt.
rS
9

(28)



All the terms that contain eithé or g have been grouped i, (except? andd which cor-
respond to derivatives of prescribed boundary conditions) while the remaining terms have been
collected in®,. The initial temperaturé[x, 0] = 6p[X] is henceforth assumed to be the same for
all designss (in an Eulerian sense). Correspondingly, the spatial shape derivative of the initial
condition is zero, i.e§'[X, 0] = O for all s. As a consequence of this assumption, the tecé)
appearing inb; is zero att = 0.

In order to eliminate the terms appearingln that involve the implicitly-dependent shape
derivativesy’ andq’, the following adjoint system is required:

U .
ch—T -kv?9-Q* =0 with Q = —SWWy0 X, 1) e QX T

9=9 with d=cyrq (XT)ETSXT

g-n=-§ with § =-sy,y (X, 1) eTgxT (29)
g -n=-gs=h(@-79:) with U= —Wﬁy’ﬁ + SWWyq (X, 1) eTexT

9[x,0] =0 XeQs.

In (29), the adjoint volumetric heat supply* in Q3 x 77, the adjoint temperatuné inTHx T,
the adjointcontactheatsupply§* in T x 7~ andthe adjointambienttemperaturéle in I'g x 7°
areknownoncethe primaryfield equationfor 6 hasbeensolved. Observethatthe characteris-
tic function ¢ needsto be evaluatecat t = T —t. Moreover,the “initial” adjointtemperature
correspondso T = 0 (i.e., for thefinal timet = T of the primary problem).The adjointprob-lem

(29) is thereforeformally a transientheat conductionproblemfrom Tt = 0to t = T. In the
numericalimplementationthe boundaryconditionsshownin (29) are evaluatedbasedon the

solved primary systemtemperaturefield 9[x, t] at eachtime step.Imposingthesetime- and
temperature-dependenbundaryconditions,especiallythe essentiaboundaryconditions,needs
to be carefulin isogeometri@analysisdueto the non-interpolatoryof the NURBS basis.Numer-
ical implementatioraspects can be found in [50].
Choosing an adjoint temperatufdhat satisfies (29), the terdm vanishes, i.e.,
=0, (30)

hence the shape derivative of the objective functional is provided by theliggiven in (28).
3.6. Continuous adjoint sensitivity

In order to obtain the final expression for the shape derivative, further simplifications for the
term®; can be carried out. First, the spatial gradiengptan be expressed as

Vi, = 4, 6VO0 + 4, gVQ . (32)
In view of (31) and (29), it follows that the terms containing gradients in the fourth integral on
the right hand side of (28) can be written as

fr S (57 (Vury - ) vo = (V(@9) - n) ) dT

= f (s71,.6Y6 - QV®) - v dl + fr (7. =) (VG- n) vpdr (32)

s
rs q

- f h(syy.q =) (VO ) v dr.
rs
10



Substituting (32) in (28), in view of (30) and using the fawatd7/ds = d.J/ds, it follows
from (26) that the shape derivative of the objective funtaids

!
%—Z = Jo ( MLty f (s7.0 = 9) @ + (VG- n) vn) dl"]dt

S
q

.
+ fo ( fr (5‘7%,9 + q*) g dr - fr h (gylp%q - 19) (VO - ) v dl") ot

S
6

+fOTg(fSZ[a)]lﬁwvn dr + fTs[y]t//yvde) dt (33)

T
+ f f (ga)t//w + pcgﬁ + kVo -V — Qﬁ) vpdl'dt
o Jrs

+ f ' f (s (¢ry0 (VO - 1) = gyk) = GV - n+ (@) &) v T,
0 Is

The above equation is a general expression of the contiradjomt gradient for the opti-
mization problem with an objective functional given by (8)dsa temperature field that satisfies
the transient heat conduction problem given by (1) and (2)is Heneral expression can be
applied for problem with design-dependent temperatunetacd heat supply aradr volumetric
heat supply. For simplicity, however, it is henceforth ased that the externally-prescribed heat
supplies and temperature are such that 0, § = 0,Vg- n = 0 andQ = 0. Under the above-
mentioned assumptions, the shape derivative of the obgefiinctional g for a transient heat
conduction problem given in (33) may be expressed as

d7 T T
sl o on =f(f gdt)-vdr+f(f [w]tpwndt)-vdl"
pTmE S (34)
o ([} 1w met)-var.
s 0
where
g= (gwxpw + pc%ﬁ + KV - V9 — QF —yeh (gy,p%q - 19) (V6 - n)
ot (35)

+67 (Uy0 (VO - 1) = k) = qVE - n + (@) k) N

andye in (35) is the characteristic function that is equal to 1 anltbundary’e and O otherwise.
For regular design points on the boundary (i.e., points wiiee fields are continuous), the un-
constrained local shape gradientis given by the time ialegfrg. For singular points (including
edges), the local gradient contains additional terms thatige information in the tangential
direction, as indicated in (34).

4. |sogeometric analysisand design discretization

In general, the NURBS-based geometrical model can be esquies

X = Z R x' (36)
11



whereR' is a NURBS function associated with the control point of coordingtesd the index
I runs over all control points that characterize the geometry.

The basic idea behind isogeometric analysis is to employ the NURBS basis functions used
in CAD to define the geometry also as shape functions for analysis. This approach provides
a unified environment between computer added design and finite element analysis. Under this
framework, the temperature field can be discretized using NURBS shape functions as follows:

9:20’R',I=1,2,---,a, (37)
|

whered' is the temperature céiicient associated to tHeh control point anda is the number of
the control points used for analysis.

The representation (37), together with the corresponding approximations for the test func-
tions, the volumetric and contact heat supplies and the heat flux fields, are substituted in a weak
formulation of problem (1) in order to obtain a system of equations for the unkn@wns.,

06
— +KO=f
C 5 + K@ (38)

wherefd = {6%,6%,---} is the vector of temperature dfieients,C is the global capacitance
matrix, K is the global conductance matrix afids the global heat supply vector.

Introducing a parametér € [0, 1] and a time stept in the finite-diference approximation
in time 4(-)/0t ~ (1/At) (ﬂ(-)t+At + (1—ﬁ)(-)t), the fully-discrete system of equations can be
expressed from (38) as

A" = b (39)

with
A = C+ BAtK b:= Atf + (C - (1 - B)AtK) 6

andwhere™** corresponds$o an approximationof @ at time t + At, which is obtainedfrom
the approximationg* by solving (39). Thecases3 = 0, 0.5, 1 correspondrespectivelyto the
forward Euler, Crank-Nicolsonand backwardEuler methods. The isogeometriapproachcan
be usedto solvethe primary andadjoint problemsin orderto determinethe fields requiredto
computeshapederivatives.

The discretizationof the analysisanddesigncanbe carriedout in two differentlevels(see
Fig. 3). Typically, in the analysisspace|t is requiredto first carry out a refinementn order
to havesuficientaccuracy. This canbe achievedusing knot refinement.In the designspace,
usinga coarsemeshcanreducethe designparameterand simplify the proces=f updatingthe
locationsof the interior control points. The links betweerthe designandanalysisdiscretization
spacesanbe summarizedsfollows (alsosee[9, 24,23)):

1. Thedesignmodelis updatedn thedesigndiscretizatiorspace

2. The analysis discretizaticspace is a refined space from the design discretizapane
through NURBS knot refinement

3. The sensitivityanalysis is carriedut in the design discretizatiapace but using the field
variablesrom the analysis discretizatispace

12



(a) Design discretization space (b) Analysis discretization space

Figure 3: Schematic of geometrical representation usin@RS\: (a) Coarse representation to
define the design geometry (design control points), (b) Refent used for analysis (analysis
control points) that preserve the design geometry.

5. Isogeometric shape design optimization

5.1. Discrete shape gradients with respect to design coptimts

At the design level, the discretization typically uses arseamesh compared with the dis-
cretization used for analysis. The design shape is expgiesseg (36). Following the definition
in (11), the design velocity can be discretized as follows:

o |
SEEEECEEpYILESS (40)
|

Substituting (40) in (34) gives

dy 09 dx
ds .4, van Q=0 Z ax' ds (41)
where
0T T T T
Tn =57 = R (f gdt)dl"+f R (f [w]xpwndt) dr+f R (f [y]lpymdt) dr.
rs 0 sg 0 TS 0
(42)

Similarly, for the volume constraint, it can be deduced that

s f |
=— = R ndrl". 43
X! 6X| - ( )

After solving the primary and adjoint system, all the unkmnostate variables involved in
(42) and (43) can be evaluated. The normal vector and cue/gtms can be calculated directly
using relations from dierential geometry.

)y

5.2. Normalization of the search direction

In isogeometric shape optimization, the descent direqiredicted from the discrete shape
gradient is strongly dependent on the discretization. Trssretization-dependency can slow
down the convergence speed and may lead the process inteop8oial solution. The source of
this discretization-dependency can be traced back to theofeconsistency with the local steep-
est descent search direction in the continuous formulafitis inconsistency can be alleviated
using a normalization approach as presented in the work efiddiet al. [15] and Wang et al.

13
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Figure 4: (a) Initial shape of a 2D plate with a circular ogfend (b) the NURBS
parameterization for a quarter of the plate (values in m).

[51]. The normalization scheme employed in the present e diagonally-lumped matrix
mapping-based approach [51] (also referred to as “seitgitireighting” in [15]), which results

in g
_ ’x,
jx' = W—XI’

whereW, is a factor that accounts for the support of NURBS functisoamted to the control
pointx', i.e.,

(44)

W, = | Rd. (45)

s

5.3. lterative descent method.

With the sensitivity analysis given in (44), the shape optation problem presented above
can be solved using filerent iterative algorithms (e.g., classical steepestatgsar sequential
guadratic programming). For simplicity, a descent aldnitthat incorporates the global con-
straint through a penalty-like formulation is summarizedlgorithm 1, where the design index
sin the continuous formulation is formally replaced by amat®n numben and the increment
osis formally replaced by a step size

6. Numerical examples

6.1. Verification examples

6.1.1. Minimum surface problem

Consider a 2D plate with a circular orifice in it as shown in.Fgda). The plate has an initial
temperature oflp = 100°C and is placed in an environment with an ambient temperatfire
0. = 0°C. The plate is made of a material with a mass densitysf7800 kgm?, a heat capacity
of c = 420 J(kg-°C) and a thermal conductivity céiicient ofk = 20 W/(m-°C). The convection
cogficient on the external boundaFy is h = 50 W/(m?-°C) and on the internal boundaFy it
is assumed that no heat is exchanged, i.e., the contactupgayss zero "= 0). In this case the
steady state, in which/ot vanishes, is reached only for the uniform temperature loage as
t — oo that corresponds to the situation when no more heat is egeltllpetween the plate and

14



Algorithm 1 Descent algorithm with global constraint

Initialize (n = 0)
Choose a initial design doma™=9 with design control points for its boundary,
a step sizer > 0, a penalty factog, > 0 and a toleranceand setAg)) =0
Main loop (n > 0)
while | gD — g 50 > € do
Solve the transient problem (39), compute adjoint boundangitions
and solve the adjoint problem (29)
for All control pointsl on the design boundado
Compute the gradient of the objective and the volume coinstra
with respect to discrete variables from (42) and (43), retsypay
Compute the normalized search direction from (44)
end for
Constrained minimization
Initialize (m = 0), AT*? = AP
while |A;n+1,m+l) _ Ag“n+1,m)|//\(2n+l,m) > e for A(2n+l,m) +0 do
for All control pointsl on the design boundado
Update the location of the design control points for subaitienm:
()" = ()" = a (G + AL

: n
and denote new location also (a\é)(n+ m

end for
Update the volume of the design regibfit-™ and A ™ %)

AT = max(0, AT+ g, (£OFLM — 3))

Check convergence for casd™ ™" = 0 separately
mem+1

end while (n+1) (n+1,m)

SetAl™D) = AfrLm) and(x' =(x")" "

Update internal control points based on boundary contrimitpo
nN—n+1
end while
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its surroundings. In practice, with the initial design ane ¢fiven data, the plate cools down and
reaches a state of near-uniform temperature®@f, @ within a tolerance of 1§ °C, after 7200
seconds.

Suppose that one would like to find the optimal shape of the external bouhgdanych
that the heat exchange rate with the external environment is minimized while using the same
amount of material as the original design. This benchmark problem can be alternatively thought
of as a minimum surface problem that admits a simple solution, namely a circular external shape
(which corresponds to the minimum surfacelg). The verification consists of formulating the
problem as a minimization of the heat exchange rate and finding the circular shape starting from
the initial shape shown in Fig. 4(a). It should be noted that this problem, formulated in terms
of the heat exchanged, cannot be solved based on the steady-state problem since the steady-state
solution forany shapeorresponds to zero temperature and zero heat exchange rate. Instead, this
problem can be solved using a transient-state design approach. To achieve this, the problem can
be formulated as a minimization of the total heat exchanged during a given time interval with an
objective function defined over the external boundaras follows:

T
g = f P, dt with ¥, = h(6 — 6)dI (46)
0 I
subjected to a volume constraint
2 =X,

whereX is thevolumeof theinitial design.In thisproblem,¥, > 0 sincethesurfaceemperature
satisfied) > 6.

For the optimizationproblem,it is assumedhatthe modelhashorizontalandvertical sym-
metries,soit is sufficientto consideronly a quarterof the domainasshownin Fig. 4(b). Cor-
respondinglyzero contactheatis assumedn the lateralboundariesx; = 0 andx, = 0. The
locationsof six control points,denotedasCy, | = 1,...,6, arechosenasthe discretedesign
variables. The shapeoptimizationis carriedout with a designtime T = 300s. Thetransient
solutions for boththe primaryandadjointsystemsareobtainedusingtheisogeometri@analysis
frameworkwhile the integrationovertime for the computatiorof the gradientis doneusingthe
trapezoidakule. The adjointequationscorrespondingo this problemcanbe derivedfrom (29)
as

pC%—szﬁ—Q*:O with Q=0  (X,1)eQ°xT

q-n=—g.=h(@-9) with ge=-1 (x1)elSxT (47)

9[x,0]=0 X € Q°,

The characteristidunction y[p, ] is equalto 1 for all timesif p € IS = I'; andzeroother-
wise. It is worth mentioningthat the numericalsensitivity obtainedfrom the methodpresented
hereagreeswell with thosecalculatedusingfinite differencesasis shownin Table1. Dueto
symmetry the control point C; is only allowedto movehorizontallywhile Cgis only allowedto
movevertically. The correspondingensitivityanalysisregardingto the restricteddirectionsare
omitted.

Usingtheiterativeoptimizationapproactsummarizedn Algorithm 1, the optimizationpro-
cessconvergesvithin 5 iterationsto within a smalltoleranceof 10~* asshownin Fig. 5(a). The
correspondingpptimal shapeis shownin Fig. 5(b) in comparisorto the initial andthe exact
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Figure 5: (a) Iteration history and (b) the optimal shape.

Table 1: Comparison between adjoint gradient and finif@dince gradient for the transient
heat dissipation problem.

C, Component Adjointgradient Finite fierence gradient RelativeftBrence

c, 1 1.3528<10P 1.3665¢<10P 1.01%
2 ~ ~ ~
c 1 2.4255¢10P 2 442%10P 0.71%
2 2 -0.3706&¢10° -0.373%10P 0.75%
c 1 8.964%10° 8.9665<10° 0.018%
3 2 3.06410° 3.054%10° 0.32%
c 1 3.0640<10° 3.054X10° 0.32%
4 2 8.964%10° 8.9665¢<10P 0.018%
c 1 -0.3706<10° -0.373%10° 0.75%
5 2 2.425%10° 2.442%10° 0.71%
1 ~ ~ ~
Ce 2 1.352810° 1.3665¢10° 1.01%

circularshapeAs canbeseernfrom Fig. 5(b), the obtainedoptimal shapeagreesloselywith the
circular shapewhich providesa validation of the designmethodology.The control pointsand
the correspondingveightsof the initial andoptimal designsare presentedn Tabel2. The knot
vectorsusedfor thetwo directionsin theindexspaceareé =[0001/31/22/311 1] andp =
[0 0011 1], respectively.

6.1.2. Passivdemperaturecontrol problem

In this example,a heatflux q = 10kW/m? appliedto the left side (I';) of a 2D plate, as
shownin Fig. 6. Therestof the boundaryis isolatedsuchthat the contactheatflux onT';, 3
can be neglected. The material propertiesof the plate are assumedo be the sameasin the
previousexample.Theinitial temperaturef the plateis assumedo be 0°C. With the heatflux
on the left side, the temperaturen the right side of the plate (I';) reachesa (nearly) uniform
temperatureof about36°C att = 400s. By modifying the shapeof the upperboundary(I's)
of theplate, it is possibleto controlthe temperaturen theright side(I';) suchthatit reachesa
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Table 2: Geometry information of the heat dissipation proble

Initial design Optimal design
G, j) lLoca“O”? Weights I G, j) ILoca“O”S Weights
1 X3 2

(1,1) 0.0100 0.0000 1.00]| (1,1) 0.0100 0.0000  1.00
(2,1) 0.0100 0.0026 0.90| (2,1) 0.0100 0.0026  0.90
(3,1) 0.0080 0.0061 0.85| (3,1) 0.0080 0.0061 0.85
(4,1) 0.0061 0.0080 0.85| (4,1) 0.0061 0.0080 0.85
(5,1) 0.0026 0.0100 0.90| (5,1) 0.0026 0.0100  0.90
(6,1) 0.0000 0.0100 1.00| (6,1) 0.0000 0.0100  1.00
(1,2) 0.0150 0.0000 1.00| (1,2) 0.0150 0.0000  1.00
(2,2) 0.0150 0.0039 0.90| (2,2) 0.0150 0.0039  0.90
(3,2) 00121 00091 0.85]| (3,2) 0.0121 0.0091 0.85
(4,2) 0.0091 0.0121 0.85| (4,2) 0.0091 0.0121  0.85
(5,2) 0.0039 0.0150 0.90| (5,2) 0.0039 0.0150  0.90
(6,2) 0.0000 0.0150 1.00| (6,2) 0.0000 0.0150  1.00
(1,3) 0.0200 0.0000 1.00| (1,3) 0.0235 0.0000  1.00
(2,3) 0.0200 0.0100 1.00| (2,3) 0.0230 0.0092  1.00
(3,3) 0.0238 00213 1.00| (3,3) 0.0172 0.0163  1.00
(4,3) 00213 00238 1.00| (4,3) 0.0163 0.0172  1.00
(5,3) 0.0100 0.0200 1.00| (5,3) 0.0092 0.0230  1.00
(6,3) 0.0000 0.0200 1.00| (6,3) 0.0000 0.0235  1.00

target distribution at a desired time. In particular, sugpibst the target dt= T = 400 sis a
uniformly distributed temperature of 40 on the right side. The objective of this problem can
be formulated as follows:

.
J = f sP,dt  with ¥, = f (6 — 6)%dr (48)
0 |

whereg = §[t — to] is the characteristidunctionfor thetime interval, 5[t — to] is the Dirac delta

function with to = T = 400 s and § = 40°C is the targettemperatureThe adjoint equations
corresponding to this problem can be derived from (29) as

9} . ,
pcg—lT ~kv?9-Q* =0 with Q0 (X,1) e Q°xT

g -n=-§ with §=-2660-0) (xDelixT (49)
9[x,0] =0 Xe€ Q.

The numericaensitivityobtainedirom the method presented here agrees well with those
calcu-latedusing finite differences, as is shown in Table 3. The optimizatiooess converges
within 6 iterationsto within a small tolerancef 10-%as shown in Fig. 7(a). The corresponding
optimalshape and the temperatuwentours at t = 400 s are plottauFig. 7(b), from which it
can be seen that the temperatat¢he right side matchdbe targetemperatureery well. To
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Table 3: Comparison between adjoint gradient and finifie@ince gradient for temperature
control problem.

I(i,j) Component Adjointgradient Finitefiiérence gradient Relativeftkrence

3.2) 1 13.9820 14.3893 2.91%
' 2 55.9280 57.5575 2.91%
(3.3) 1 13.9571 14.3640 2.91%
' 2 55.8286 57.4564 2.91%

o Control points e Design control points
Insulating material

3

002 T

0.02

@ ¢ (b)

Figure6: (a)Theplateimmersedn theisolationmaterialand(b) thetemperatureontourat
t = 400s.

anearlyuniformtemperaturelistribution,the shapeoptimizationproceduresftectively creates
uni-directionaheatflow patternontheright sideof thedomainwhile thetargettemperaturean
be reachedusinglessmaterialcomparedo theinitial design(i.e., in this casethe resourcecon-
straintis not active). The control pointsandthe correspondingveightsof theinitial andoptimal
designsarepresentedn Table4. Theknot vectorsusedfor thetwo directionsin theindexspace
areé=[000111]Jandp=[0001/21 1 1], respectively.

6.2. Shapeoptimizationof a plunger

The shapeoptimizationmethodologyis testedin this sectionwith an exampledrawnfrom
theliterature,namelyatwo-dimensionaplungerthatis designedo form atelevisionbulb panel

°
)

g I e
=3 = —
b 3 S}

=)

Objective functional [°C* m?]

o

1 2 3 6 7 8 9 10

4 s
(a)

Figure 7: (a) Iteration history and (b) the optimal shape &edémperature contouriaE 400s.
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Table 4: Geometry information of the temperature controbpem

Initial design Optimal design
G, j) lLoca“O”f’ Weights I G, j) ILOC""“O”S Weights
1 X1 2

(1,1) 0.0000 0.0000 1.00 | (1,1) 0.0000 0.0000 1.00
(2,1) 0.0000 0.0100 1.00 | (2,1) 0.0000 0.0100 1.00
(3,1) 0.0000 0.0200 1.00 | (3,1) 0.0000 0.0200 1.00
(1,2) 0.0100 0.0000 1.00 | (1,2) 0.0100 0.0000 1.00
(2,2) 0.0100 0.0088 1.00 | (2,2) 0.0100 0.0088 1.00
(3,2) 0.0100 0.0175 1.00 | (3,2) 0.0100 0.0174 1.00
(1,3) 0.0300 0.0000 1.00 | (1,3) 0.0300 0.0000 1.00
(2,3) 0.0300 0.0063 1.00 | (2,3) 0.0300 0.0063 1.00
(3,3) 0.0300 0.0125 1.00 | (3,3) 0.0289 0.0081 1.00
(1,4) 0.0400 0.0000 1.00 | (1,4) 0.0400 0.0000 1.00
(2,4) 0.0400 0.0050 1.00 | (2,4) 0.0400 0.0050 1.00
(3,4) 0.0400 0.0100 1.00 | (3,4) 0.0400 0.0100 1.00

Symmetricb'é
O Control points
el @ Design control points
-------- .------.----.E------------------
Cy 5 r
o\
o O
80 120 160 200

Figure 8: A plunger model and its NURBS control points (dists in mm).

from molten glass [52], as is shown in Fig. 8. Although thiample pertains to a technology that
is not currently widely used, it is an existing reference g&ves to illustrate the main features
of the method and may be applicable to similar situationsstfavn in the figure, the workpiece
is brought into contact with a surface at a temperature.= 1000°C on the boundarys.
The boundary; is a cooling surface that exchanges heat with a cooling fluatamperature
of 8.1 = 0 °C. The quality of the product surface iffected by temperature fluctuations on
the contact surfacE; [52]. An optimization is formulated where the shape of theael';

is modified in order to reduce the temperature variance owahéact surfac&’s. To this end,
denote a@ = 6[t] the average temperature aloFigat timet, i.e.,

1 .
— odl’ with |I'3] = ar
T3l Jr, T3

%
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Figure 9: The irregular geometry and mesh during the itematibhout restricting the
movements of the control points.

and define a performance functional as

.
J = f P,dt with P, = f (6 - 6)*dr,
0 I's

st x>=20mm x,>20mm |=1,...,5

(50)

wherexi',i = 1,2 arethe coordinatesof the control pointsC;, | = 1,...,5 asshownin the
figure. Thelocationsof the controlpointsC, thatcharacterizéhe coolingboundaryl’; areused
as designvariables. For simplicity, the designcontrol pointsC; andC, are only allowedto
move horizontally,C, and Cs are only allowedto move vertically, and Cz is allowedto move
both horizontally and vertically. The restrictionsof thesemovementss to avoid the meshand
geometryirregularity. Without theserestrictions the geometryandmeshmay becomeirregular,
asis shownin Fig. 9. The convectioncoefficientsareh = 3.15x 107*W/(mn? - °C) onT'; andh
= 2.88 x 10°*W/(mn? - °C) on I's, respectively.The thermal conductivity coefficientis k =
27.52x 10°W/(mm- °C) andtheeffectiveheatcapacityis (oc) = 2.288x 10-3J/(mm?- °C). On
theboundarie§™, andl's it is assumedhatthereis no heatexchangendtheinitial temperature
onthewholedomainis takenas0°C).

In orderto studythe influenceof the designtime T, the optimizationproblemwas solved
with two distinct values,namelyT = 500 s and T = 1000s. The sensitivity obtainedusingthe
continuousadjoint methodwas verified with the finite differencemethod,which are shownin
Table5 andTable6, respectively The optimal shape®btainedareplottedin Fig. 10 for thetwo
designtimes.As may be seenin thefigure, the designfor T = 500 s hasa more complexshape
thanthe designfor T = 1000 s, which may be ascribedto the influenceof the detailsof the
transientstates.In contrast,the designfor T = 1000s is closerto the steadystatelimit case,
which is more heavily influencedby stationaryconditions. The correspondingconvergence
histories are plotted in Fig. 11(a) for T = 500 s and Fig. 11(b) for T = 1000 s. These
convergencéistoriesalsoreflectthe complexity of the designsn the sensehatgenerallymore
iterationsarerequiredto convergefor designghataremoreinfluencedby thetransientstateqin
this casemoreiterationsarerequiredto convergeor the designfor T = 500s thanfor T = 1000
s). The control points and the correspondingweights of the initial and optimal designsare
presentedn Table7. Theknotvectorsusedfor thetwo directionsin theindexspaceareé = [0 0
00.20.4050.7111]andx[000 11 1], respectively.

The space-average@mperaturdluctuationson the boundaryl'z of the initial andthe two
optimal designshapedduring the first 1000 secondsare plottedin Fig. 12(a)in termsof the
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Figure 11: Iteration history of the optimization for desiimes (a)T = 500 s and (b} = 1000
s.

corresponding transient temperature variance, whichakiated as

A1t = ¥, [t/Is,

where, as beforél's| denotes the length of the boundary The quantity[t] measures, at each
timet, the average deviation of the local temperature from thesaetemperature (a larger value
indicating an undesirable fluctuation).

Fromthe plotsin Fig. 12(a), it can be seen that the optimegbeh for boti = 500 s andl’ =
1000 s have a lower variance than the initial shape througheuime interval O< t < 1000 s
except during the first 150 s for the caBe= 1000 s, in which the variance is slightly larger.
However, the time-averaged variance for both designs igldhan the original design. The
optimal shape for the cade = 500 s provides the lowest temperature variance during téie fir
410 seconds, but after that the temperature variance ofgeTc= 1000 s becomes the lowest.
This result is consistent with the expected influence of tegigh parametef on the design,
namely that a design performs better during its own desitgrval [0, T] but not necessarily
during other times intervals (either larger or shorter ttrendesign interval).

In terms of local temperature fluctuations, as shown in F&(b}, the optimization proce-
dure reduces the ratio of the maximum temperafiigg on I's to the average temperatutrand,
simultaneously, increases the ratio of the minimum tentpegé.i, onI's to the average temper-
atured, as compared with the corresponding ratios for the origilesign. The evolution of the
average temperatufeon I's is shown in Fig. 12(c), which indicates that both optimaliges
generally decrease the average temperature comparecdwidivérage temperature of the initial
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Figure 12: (a) The temperature variarscéb) the ratios of the maximum and minimum
temperatures to the average temperature and (c) the tnhaserage temperature on the
boundaryl’; for 0 < t < 1000 s for the initial and optimall(= 500 s andl' = 1000 s) designs.

design.

The example presented in this section illustrates the fidgnit efect that the transient re-
sponse has on the optimal design and highlights the impoetahmaking a judicious choice of
the design parameters depending on the desired perforroatieedesign.

6.3. Shape optimization of a thermal protection panel

In this example, the structural shape and the heating ra¢ebailistic re-entry vehicle are
considered, as shown in Fig. 13(a) and Fig. 14, which is adispbm [53]. The vehicle has two
parts: the recovery tip (forward part) and the destructifllstum (aft part, see Fig. 13(a)). The
outer boundary’; has a heavy heating rate during re-entry, as shown in Figorl@d £ t < 50s,
which is used as (time-dependent) boundary condition.iFeg greater than 50 s, it is assumed
that the heating rate is negligible in comparison to the fat® < t < 50s. In order to protect
the internal equipments inside the tip, a layer of low thérommductivity material is used to
insulate the heat from outside the tip. The cross sectiom@frécovery tip and its NURBS
parameterization are shown in Fig. 13(b). The thermal cotinty coeficient of the thermal
insulation material i% = 8.0 x 10-°W/(mm-°C), the heat capacity is = 514J(kg-°C) and the
material density ip = 0.22 x 10-°kg/mm?. The initial temperature is assumed to BEPthe
convection cofficient onI' is takenh = 6.0 x 10-3W/(mn? - °C), the ambient temperature on
I'; is assumed to be’@ and on the remaining boundaries the heat exchanged is aaskaaro.

With the goal of minimizing the heat transferred throughlibendary",, an objective func-
tional is formulated as

:
J = f h(6 - 6e)dr'dt (51)
0 I
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Figure 13: (a) The sketch of a re-entry vehicle (adapted {i&81) and (b) the cross section of
the recovery tip skin and its NURBS parameterization (disés in mm).
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Figure 14: The time-dependent heating rate along the bayidgdata from [53]).
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Table 5: Comparison between adjoint gradient and finifierdince gradient for the plunger
design withT = 500s.

I  Component Adjointgradient Finite fierence gradient Relativefiérence
c 1 -6.0855¢10° -6.107&10° 0.36%
! 2 0 2.6388 ~
c 1 -3.1106<10° -3.030&10° 2.57%
2 2 3.374%10° 3.445410° 2.10%
c 1 2.040%10° 2.0891x 1P 2.36%
3 2 1.100x10° 1.1451x 1P 4.10%
c 1 0.844%10° 0.865810° 2.54%
4 2 -6.205510° -6.2875¢10° 1.32%
c 1 0 6.3077 ~
> 2 -1.546%10° -1.539x10° 0.47%

subjectedo a volumeconstraint
2<%,

whereX, is the volumeof the initial design. The designtime is chosenasT = 180s, which
includesan initial time interval with a large heatingrate followed by a time interval with a
lower ratein orderto take both loading scenariosnto account. The locationsof five design
controlpoints,Cy, | = 1,...,5,whichcharacteriz¢heinternalboundary,, arechoserasdesign
variables.Controlpoint C; is only allowedto movehorizontallywhile controlpoint Cs is only
allowedto movevertically. Theexternaboundaryl'; is keptfixed sinceits optimizationdepends
mostly on aerodynamicequirementskurther,it is assumedhatthe heatingrateon theexternal
boundaryasshownin Fig. 14,is the sameregardles®f the shapeof theinternalboundary. As
in previousexamplesthe sensitivityobtainedusingthe continuousadjointmethodwasverified
with the finite differencemethod,which is shownin Table 8. It shouldbe notedthat for the
sensitivity of the designcontrol point Cs, extratermsneedto be includedinto the sensitivity
formulationdueto the geometrydiscontinuityinvolved. The optimizationis performedusingthe
Algorithm 1 andthe convergencdistoryis shownFig. 15(a),which indicatesthat after about
six iterationsthe processhasconverged.The optimal shapeobtainedis plottedin Fig. 15(b).
Fromthe figure, it canbe seenthatthe optimal shaperequiresa thicker layer closeto thetip,
which comesattheexpensef thethicknessn therearpartin orderto preservehetotal volume.
With this changein shape,the heatconductedinside the front sectioncan be reducedabout
11.5% comparedwith the original design,as shownin Fig. 15(a). The control points and the
correspondingveightsof the initial and optimal designsare presentedn 9. The knot vectors
usedfor thetwo directionsin theindexspaceareé =[0001/21/2111]Jandp=[000111],
respectively.

7. Conclusions

In this work, the continuous adjoint shape sensitivity analysis for transient heat conduction
problems is reformulated taking into consideration the discontinuities involved in the objective
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Table 6: Comparison between adjoint gradient and finiiedince gradient for the plunger
design withT = 1000s.

I  Component Adjointgradient Finite fierence gradient RelativeftBrence
C 1 -6.624%10° -6.6298<10° 0.08%

! 2 0 26388 ~
c 1 -0.696%10° -7.18381(P 3.09%

2 2 1.075%10° 1.0903<10° 1.40%
C 1 7.069510° 7.173410° 1.47%

3 2 6.3920x10° 6.5046¢10° 1.76%
c 1 0.3165%10° 0.321%1C° 1.52%

4 2 -1.264%10° -1.2761x10° 0.93%
c 1 0 3.7868 ~

> 2 -5.42910° -5.4290¢10° 2.94%

610 200,

— 600 180}
= 160}

g0 1401
% 580 1201 Initial shape
& 570 100}
2 560 80
8 60 -
-OQ 550 20 / \

540 20 ' [ Optimal shape
0 2 4 6 8§ 10 12 o . ‘ . ‘ . ‘
Iteration step =300 —250 —200 —150 —100 =50 0
(a) (b)

Figure 15: (a) Iteration history of the optimization and ifi®® optimal shape.

functionals. The continuous sensitivity analysis, whiglpplicable to general shape optimiza-
tion problems, is discretized in the context of isogeorseatnalysis. The control points of a
NURBS description of the shape are used as design variatihésh allows a seamless integra-
tion between optimization and analysis. The optimizatiod the analysis are performed at two
levels of discretization (coarse and fine, respectively},rio loss of geometrical information
occurs in this process. The methodology was tested withHyeark problems, which also illus-
trate the flexibility provided by the characteristic furects to measure the design performance in
selected places and times. The transient isogeometrie s@pnization was subsequently ap-
plied to cases where thermal conditions fluctuate duringaifws such as the thermal protection
system design for a reentry ballistic vehicle. In these gdag) it is shown that shape optimiza-
tion with accountability of transient states is an attracfpproach in applications where active
control is not economically feasible. Furthermore, it isgible to combine shape optimization
(as passive control) with an active control approach in viéwncreasing the fiiciency of the
thermal management. Following a similar approach, it i® @isssible to further extend the
methodology and framework to include other transient sibna, such as mechanical problems
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Table 7: Geometry information of the plunger design prob{evh the weight ofith control

point)
Initial design Optimal designl(= 500s) Optimal designT = 1000s)
. Locations Locations Locations
1. J) | | w | I I w | | | w
X1 X X % X X

(1,1) 0.00 100.00 1.00 0.00 100.00 1.0 0.00 100.00 1.00
(2,1) 0.00 80.00 1.00 0.00 80.00 1.00, 0.00 80.00 1.00
(3,1) 0.00 30.00 1.00 0.00 30.00 1.00, 0.00 30.00 1.00
(4,1 0.00 0.00 0.71 0.00 0.00 0.71] 0.00 0.00 0.71
(5,1) 30.00 0.00 1.00 30.00 0.00 1.00] 30.00 0.00 1.00
(6,1) 140.00 0.00 1.00 140.00 0.00 1.00 140.00 0.00 1.00
(7,1) 200.00 0.00 1.00 200.00 0.00 1.00 200.00 0.00 1.00
(1,2) 15.00 100.00 1.00 15.00 100.00 1.00 15.00 100.00 1.00
(2,2) 15.00 80.00 1.0031.7794 80.00 1.0Q 18.1916 80.00 1.00
(3,2) 15.00 65.00 1.0021.4882 65.00 1.0Q 13.1518 65.00 1.00
(4,2) 15.00 20.00 1.00 10.00 10.00 1.00 10.00 10.00 1.00
(5,2) 90.00 20.00 1.00 90.00 20.9044 1.00 90.00 19.4040 1.00
(6,2) 145.00 20.00 1.00 145.00 10.00 1.00 145.00 19.4109 1.00
(7,2) 200.00 20.00 1.00 200.00 20.00 1.00 200.00 20.00 1.00
(1,3) 30.00 100.00 1.00 30.00 100.00 1.00 30.00 100.00 1.00
(2,3) 30.00 80.00 1.0053.9705 80.00 1.0Q 34.5594 80.00 1.00
(3,3) 30.00 65.00 1.0039.2689 65.00 1.00 27.3598 65.00 1.00
(4,3) 30.00 45.00 1.00 20.00 20.00 1.00 20.00 20.00 1.00
(5,3) 70.00 45.00 1.00 70.00 46.2920 1.00 70.00 44.1486 1.00
(6,3) 120.00 45.00 1.00 120.00 20.00 1.00 120.00 44.1584 1.00
(7,3) 200.00 45.00 1.00 200.00 45.00 1.00 200.00 45.00 1.00

involving stress wave propagation.
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