
 
 

Delft University of Technology

Basic Block Coverage for Unit Test Generation at the SBST 2022 Tool Competition

Derakhshanfar, Pouria; Devroey, Xavier

DOI
10.1145/3526072.3527528
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing
(SBST)

Citation (APA)
Derakhshanfar, P., & Devroey, X. (2022). Basic Block Coverage for Unit Test Generation at the SBST 2022
Tool Competition. In Proceedings of the 2022 IEEE/ACM 15th International Workshop on Search-Based
Software Testing (SBST) (pp. 37-38). Article 9810778 IEEE. https://doi.org/10.1145/3526072.3527528

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3526072.3527528
https://doi.org/10.1145/3526072.3527528


Basic Block Coverage for Unit Test Generation at the SBST 2022
Tool Competition

Pouria Derakhshanfar
Delft University of Technology

Delft, Netherlands

p.derakhshanfar@tudelft.nl

Xavier Devroey
NADI, University of Namur

Namur, Belgium

xavier.devroey@unamur.be

ABSTRACT

Basic Block Coverage (BBC) is a secondary objective for search-

based unit test generation techniques relying on the approach level

and branch distance to drive the search process. Unlike the approach

level and branch distance, which considers only information related

to the coverage of explicit branches coming from conditional and

loop statements, BBC also takes into account implicit branchings

(e.g., a runtime exception thrown in a branchless method) denoted

by the coverage level of relevant basic blocks in a control flow graph

to drive the search process. Our implementation of BBC for unit test

generation relies on the DynaMOSA algorithm and EvoSuite. This

paper summarizes the results achieved by EvoSuite’s DynaMOSA

implementation with BBC as a secondary objective at the SBST

2022 unit testing tool competition.

CCS CONCEPTS

• Software and its engineering→ Search-based software en-

gineering; Software testing and debugging.

KEYWORDS

basic block coverage, search-based unit test generation, EvoSuite

ACM Reference Format:
Pouria Derakhshanfar and Xavier Devroey. 2022. Basic Block Coverage for 
Unit Test Generation at the SBST 2022 Tool Competition. In The 15th Search-
Based Software Testing Workshop (SBST’22), May 9, 2022, Pittsburgh, PA, USA. 
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3526072.3527528

1 INTRODUCTION

Various techniques have been developed over the years to gener-
ate unit tests for Java programs. For the 10th time, the Java Unit
Testing Tool Competition, co-located with the 15th edition of the
International Workshop on Search-Based Software Testing (SBST
2022), has evaluated several unit test generators on an unknown set 
of benchmarks to compare the generated tests in terms of structural
coverage and mutation score [4, 6]. In this short paper, we report
the results of our implementation of Basic Block Coverage (BBC), a
secondary objective for search-based test case generation [2, 3], on
top of EvoSuite [5], a state-of-the-art unit test generator for Java,
at the SBST 2022 Tool Competition.

P

This work is licensed under a Creative Commons Attribution International 4.0 
License.
SBST’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9318-8/22/05.
https://doi.org/10.1145/3526072.3527528

2 BASIC BLOCK COVERAGE

BBC was originally proposed for search-based crash reproduc-

tion [1, 2]. Its main purpose is to account for partial coverage caused

by implicit branchings in basic blocks. For instance, many basic

Java operations (e.g., access to an array, method call on an object,

etc.) can throw runtime exceptions (e.g., ArrayIndexOutOfBounds-
Exception, NullPointerException, etc.) that are not declared in
the header of the encapsulating method. When thrown, such ex-

ceptions cause implicit branching in the program that are ignored

by search-based unit test generation techniques relying on the

approach level and branch distance heuristics to drive the search

process. Indeed, both heuristics hypothesize that only a limited

number of basic blocks can change the execution path away from a

target statement. However, if, for instance, a runtime exception is

thrown in the middle of a statement, then the search process does

not benefit from any further guidance from the approach level and

branch distance to reach the targeted statement.

More recently, we extended and evaluated the application of

BBC to search-based unit test generation with DynaMOSA [3, 7].1

Unlike crash reproduction, where only a limited number of paths

need to be explored to reach a target statement and reproduce a

crash, unit test generation seeks to cover several different target

statements, depending on the objectives defined for the search. In

both cases, BBC is used as a secondary objective to compare two

test cases with the same distance to a target statement according

to the approach level and branch distance to find out which one is

the closest. We implemented BBC in EvoSuite [5]

Parameter settings.We rely on EvoSuite with the DynaMOSA

algorithm, and the default set of coverage criteria enabled [8] (i.e.,

line coverage, branch coverage, branch coverage by direct method

invocations, weak mutation testing, output coverage, exception cov-

erage). We set the secondary objectives to maximize BBC and mini-

mize the length to avoid an explosion of the size of the tests during

the search (-Dsecondary_objectives=BBCOVERAGE:TOTAL_LEN-
GTH). BBC comes with two additional parameters: the usage rate,

defining the probability of activating BBCwhen two test cases reach

the same distance for a given target, and the sleep time, defining

the delay after which BBC can be activated when DynaMOSA adds

a target to the active search objectives. We left the usage rate to

its default value of 0.5 (-DBBC_USAGE_PERCENTAGE=50), as recom-
mended from our previous evaluation [3]. We used a sleep time of

10 seconds (-DBBC_SLEEP_TIME=10) when the total search budget
is less than 60 seconds, 30 seconds when the total search budget is

less than 300 seconds, and 60 seconds otherwise. The competition

1Our implementation is openly available at https://github.com/pderakhshanfar/
evosuite/tree/BBC.

37

2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)

http://creativecommons.org/licenses/by/4.0/


SBST’22, May 9, 2022, Pittsburgh, PA, USA Pouria Derakhshanfar and Xavier Devroey

mutants

lines

conditions

bbc evo
sui
te

kex

kex
−re
flec
tion

ran
doo
p

utb
ot−
con
cre
te

utb
ot−
mo
cks

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

co
ve
ra
ge budget

30

120

Figure 1: Overall Results of the SBST 2022 Java Unit Testing

Tool Competition.

Table 1: Number of benchmarks for which BBC performed

better (Â12 < 0.5) or worse (Â12 > 0.5) than EvoSuite with a
medium or large magnitude and a significance level of 0.01.

30 sec. 120 sec.
< 0.5 > 0.5 < 0.5 > 0.5

lines coverage 2 10 5 10
medium 1 6 3 7
large 1 4 2 3

conditions coverage 1 6 4 9
medium 1 1 2 4
large 0 5 2 5

mutation score 2 4 3 6
medium 2 3 2 3
large 0 1 1 3

ran with two different search budgets this year: 30 and 120 seconds.

All the other parameters were left to their default value.

3 RESULTS

Figure 1 reports the overall coverages for conditions and lines and

the mutation score of the different tools entering the 2022 compe-

tition. In general, the lines and conditions coverage increases for

BBC when increasing the time budget. However, we see a decrease

in the mutation score. This decrease should be further investigated

by looking at the generated tests. One possible explanation could be

the difference in the number of generated tests: 18,963 tests in total

across the different runs for a 30 seconds time budget against 15,561

tests in total across the different runs for a 120 seconds budget.

As expected, the results of BBC are close to the ones of EvoSuite.

This is in line with our previous evaluation of BBC for unit test

generation [3]. There is, however, a difference in the coverages and

mutation scores of the different benchmarks between EvoSuite and

BBC. This difference is confirmed by our analysis using the non-

parametric Wilcoxon Rank Sum test (with 𝛼 = 0.01) and effect size
Vargha-Delaney Â12 statistic, reported in Table 1. As can be seen

from the Table, BBC and EvoSuite seem to cover the benchmarks

differently, and this difference seems to evolve over time. Further

investigation is needed to identify the factors influencing the ef-

fectiveness of BBC for specific benchmarks (like, for instance, the

presence of implicit branches, sleep time for small search budgets,

etc.).

4 CONCLUSION

This short paper presents the results of Basic Block Coverage for

unit test generation at the 10th Java Unit Testing Tool Competition.

BBC achieved a good score, ranking second out of seven tools taking

part in the competition this year. The results show that BBC covers

the different benchmarks differently, compared to EvoSuite. Further

investigations are needed to identify the best conditions for BBC

to operate, especially with small budgets.

ACKNOWLEDGMENTS

We would like to thank the organizers of the 10th Java Unit Testing

Tool Competition. This research was partially funded by the EU

Horizon 2020 COSMOS (DevOps for Complex Cyber-physical Sys-

tems) Project No. 957254-COSMOS, and the CyberExcellence (No.

2110186) project, funded by the Public Service of Wallonia (SPW

Recherche).

REFERENCES
[1] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and

Arie Van Deursen. 2020. Botsing, a Search-based Crash Reproduction Framework
for Java. In 35th IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM/IEEE,
1278–1282. https://doi.org/10.1145/3324884.3415299

[2] Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. 2020. It Is Not Only
About Control Dependent Nodes: Basic Block Coverage for Search-Based Crash
Reproduction. In Search-Based Software Engineering - 12th International Symposium,
SSBSE 2020, Aldeida Aleti and Annibale Panichella (Eds.). Springer, 42–57. https:
//doi.org/10.1007/978-3-030-59762-7_4

[3] Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. 2022. Basic Block
Coverage for Search-based Unit Testing and Crash Reproduction. https://doi.org/
10.48550/arXiv.2203.02337 arXiv:2203.02337 [cs.SE]

[4] Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, Fitsum Kifetew,
Annibale Panichella, and Sebastiano Panichella. 2021. JUGE: An Infrastructure for
Benchmarking Java Unit Test Generators. https://doi.org/10.48550/arXiv.2106.
07520 arXiv:2106.07520 [cs.SE]

[5] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering
- SIGSOFT/FSE ’11 (ESEC/FSE ’11). ACM Press, 416. https://doi.org/10.1145/2025113.
2025179

[6] Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti. 2022.
SBST Tool Competition 2022. In 15th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2022. IEEE/ACM, Pittsburgh, PA, USA.

[7] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44, 2
(Feb. 2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[8] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri.
2015. Combining Multiple Coverage Criteria in Search-Based Unit Test Generation.
In Search-Based Software Engineering (SSBSE 2015) (LNCS, Vol. 9275). 93–108. https:
//doi.org/10.1007/978-3-319-22183-0_7

38


