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ABSTRACT

Due to technological breakthrough in recent decades and the rapid increase in the avail-
ability of multidimensional data, data science has become one of the most important
areas of research. Within this field, modeling dependence of random variables is gaining
great interest. To cope with this task, the use of graphical models is often advocated. In
this dissertation, we study Bayesian Networks (BNs), a particular type of graphical mod-
els. Concretely, structure learning algorithms for two types of continuous BNs: Gaussian
Bayesian Networks (GBNs) and Pair Copula Bayesian Network (PCBNs) are investigated.

We present an overview of these two types of BNs, illustrating its properties and dif-
ferences. An outline of the different existing structure learning algorithms is provided,
showing their efficiency for the Gaussian case and limitations for the copula based. The
problems of structure learning for PCBNs are then addressed. We investigate the per-
formance of Gaussian structure learning algorithms for PCBNs. Based on a simulation
study, we show that these procedures are not completely efficient, but prove beneficial.
Second, a new approximation of the score based on logLikelihood of PCBNs is explored.
We propose to solve the computational inefficiency of the exact logLikelihood by esti-
mating the necessary copulas from data such that the copula terms in the PCBNs de-
composition can be computed without need of integration. A simulation study suggests
that this logLikelihood approximation yields better results than the approximation used
by Pircalabelu et al. (2017). Finally, an algorithm to learn the structure of PCBNs is pro-
posed, based on the 2 previous procedures.
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1
INTRODUCTION

"As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality."

Albert Einstein

1.1. MOTIVATION
Due to technological breakthrough in recent decades and the rapid increase in the avail-
ability of multidimensional data, data science has become one of the most important ar-
eas of research. Within this field, modeling dependence of random variables (Joe, 1997)
is gaining great interest. One example from the area of finance where the dependence
is of interest would be an investment problem, in which neglecting the dependence be-
tween stock returns might result in a poor investment strategy and, eventually, a loss of
money.

The most popular approach to model dependencies between continuous random vari-
ables is to use the multivariate Gaussian distribution. Indeed, this distribution provides
computational simplicity and efficient sampling algorithms (Scutari and Denis, 2021).
However, it is also generally acknowledged that multivariate Gaussian distribution is
quite restrictive (all marginal distributions are Gaussian, there is no tail dependence)
and does not provide adequate model in many situations (e.g. in finance (McNeil et al.,
2015)).

To make it possible to build distributions with various types of one dimensional marginal
distributions Sklar (1959) introduced the so-called copulas. Copulas are multivariate cu-
mulative distribution functions on the unit hypercube with uniform margins. The im-
portance of copulas resides in Sklar’s theorem, which states that every multivariate joint
distribution may be expressed in terms of univariate marginal distribution functions and
a copula that represents the dependency structure of the variables. In high dimension
the copula is still a complicated object to model. The flexible construction of multivari-
ate copulas is obtained by specifying the product of bivariate and conditional bivariate

1
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copulas associated with a graphical structure of a vine Joe (1997),(Bedford and Cooke,
2002). This construction is referred to, in the literature, as vine copula or pair copula
construction (PCC).

Vine copula is a graphical model that is most often used to represent dependencies be-
tween random variables in a flexible way. This is in contrast to other graphical models
(directed, undirected) (Lauritzen, 1996, Spirtes et al., 2000) that utilize graphs to allow
representation of (conditional) independence between random variables. The nodes
represent random variables and edges dependencies between these random variables.
Lack of connection between nodes in a graph can be interpreted with conditional inde-
pendencies present in the joint distribution corresponding to the model.

This dissertation focuses on Bayesian Networks (BNs) which are graphical models whose
underlying structure is a directed acyclic graph (Pearl, 1988). BNs are composed of: a
Directed Acyclic Graph1 (DAG) and a set of Conditional Probability Distributions (CPDs).
The DAG provides a compact representation of the set of conditional independence in
the distribution. Moreover, BNs can be seen as a structure that allow to factorised the
joint distribution as the product of CPDs specified for this graph.

The moralised graph of the BN will also be crucial during this project. This graph gives
a connection between directed and undirected graphs. It is the result of placing undi-
rected edges between nodes that are connected by directed edges, and between nodes
that share common children. The importance of the moralized graph of a BN is that it is
possible to read from it, part of the conditional independencies that exist in the distri-
bution.

There are different types of BN, depending on whether the random variables involved are
all discrete, all continuous, or a mixture of both types. In this dissertation only the case
where all the variables involved are continuous is discussed. In that case the structure of
a graph leads to specification of the joint probability density (PDF) of random variables,
in the form of the product of a non-unique sequence of conditional densities of variables
given their parents in the graph.

Continuous BNs are gaining popularity due to their wide range of applications, which
range from medicine (Vepa et al., 2021), to biology (Sachs et al., 2005) or natural disaster
risk analysis (Li et al., 2010). See Pourret et al., 2008, for a review of different applications.
Despite its extensive applicability, continuous BNs have been mostly limited to the case
where the joint distribution is multivariate Gaussian. We call them Gaussian Bayesian
Networks (GBNs).

In Kurowicka and Cooke (2004) copula based BNs were discussed. They demonstrated
that every continuous multivariate distribution associated with a DAG, can be expressed
as the product of bivariate copulas corresponding to the underlying graph’s edges. The
ides presented in this paper were further analysed in A. M. Hanea et al. (2006) and Bauer
et al. (2012), where they have been referred to as Pair Copula Bayesian Network (PCBNs).
These models may account for a wide range of distributional features, such as tail de-
pendency, non-linearity, and asymmetric dependence. Thus relaxing the Gaussian as-
sumptions.

1All the edges have a single direction and no loops are allowed
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In application BNs are often used by specifying the structure which is assessed by experts
A. Hanea et al., 2015. In this thesis we will consider learning the structure of BN model
with data-driven methods.

1.2. RESEARCH PROBLEM
This dissertation addresses the problem of Structure Learning of GBNs and PCBNs us-
ing data driven methods. Three different approaches are studied: the Graphical Lasso
(Meinshausen and Bühlmann, 2006), Constraint-based and Score-based algorithms (Koller
and Friedman, 2009).

The Graphical Lasso results in an undirected graph corresponding to the moralised graph
of the BN. This method progresses by fitting a regression for each of the variables, using
the rest as predictors and imposing a penalty of L1 (Tibshirani, 1996) on regression co-
efficients. The method was developed under Gaussian assumptions, so it may lead to
misspecification of the structure when applied to PCBN data.

Constraint-based algorithms derive the DAG through a sequence of conditional inde-
pendence tests. For the Gaussian case 0-conditional (partial) correlation implies condi-
tional independence between random variables. Therefore, a simple and efficient test
can be applied to check the presence of conditional independence between random
variables, just by looking at the correlation matrix. In case the data is not Gaussian an-
other type of test is needed. An example could be a test of the independence of condi-
tional copula between random variables (Bauer and Czado, 2016). However, these tests
are very expensive and cannot be efficiently used to learn structures of BNs.

Lastly, score-based algorithms approach the problem of structure learning as an opti-
mization problem. They assign a score to each network based on how well it fits the
data. Then they select the graph that optimizes that score. Often used scores are log-
Likelihood based. For the Gaussian case score-based algorithms are fast and efficient.
The non-Gaussian case is very different. Then the LogLikelihood based scores involve
the computation of non-analytic integrals. Expensive Monte Carlo methods (Hammer-
sley, 1964) must then be used for their evaluation. These calculations make algorithms
based on these scores computationally very expensive.

To ease the computational issues of score based algorithms for PCBNs Elidan (2010) pro-
posed a score based on fitting a multivariate copula for each term in the DAG density
factorization. However, this method usually requires high-dimensional copulas that lack
flexibility. Pircalabelu et al. (2017) proposed a score based on quotient of Vines for each
term in the DAG density factorization. This approximation is more flexible, but it does
not generally produce any consistent joint distribution, causing structure misspecifica-
tion.

1.3. KNOWLEDGE GAP
In this thesis we start our investigations with the application of methods designed for
GBNs to PCBNs. We apply Gaussian structure learning algorithms for the non-Gaussian
case. The main goal is to examine if these procedures are still sufficiently efficient for
PCBN data and will allow us to find the structure of the graph.
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Then we compare the results of GBN algorithms with ones designed for PCBN data. Our
contribution is to explore a new approximation of the score based on logLikelihood of
PCBNs. We propose to solve the computational inefficiency of the exact logLikelihood
by estimating the necessary copulas from data such that the copula terms in the PCBNs
decomposition can be computed without need of integration. The main goal is to see if
this approximation yield better results than those proposed by Pircalabelu et al. (2017).
Simulation studies are carried out to compare different methods.

1.4. OBJECTIVES
The objectives of this dissertation are:

1. To present an overview of two types of continuous BNs:

• Gaussian Bayesian Networks. Showing their good computational properties,
but also their lack of flexibility.

• Pair Copula Bayesian Network. Highlighting their greater flexibility, but also
their computational inefficiency.

2. To provide an outline of the different existing structure learning algorithms:

• Showing how efficient they are for GBNs.

• Illustrating all the computational problems that arise when dealing with PCBNs.

3. To assess how Gaussian structure learning algorithms work for GBNs vs PCBNs.

4. To study how good the new PCBNs logLikelihood approximation is, and compare
it with the score proposed by Pircalabelu et al. (2017).

1.5. OUTLINE
The outline of the dissertation is as follows:

• Chapter 2 provides an introduction to copula and Vine copula
models.

• Chapter 3 introduces Bayesian Networks

•
Chapter 4 presents an overview of two types of continuous BN:
GBNs and PCBNs, addressing objective 1.

•
Chapter 5 includes an outline of the different existing structure
learning algorithm, achieving objective 2.

• Chapter 6 assess how Gaussian structure learning algorithm work
for GBNs and PCBNs, tackling objective 3.

•
Chapter 7 studies different scores for Score-based algorithms for
PCBNs, attaining objective 4.

• Chapter 8 discusses the findings, concludes and propose different
lines of future work.

⇒ Literature Review

⇒ Methodology
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COPULA AND VINE COPULA

MODELS

This chapter provides an overview of Copula and Vine Copula frameworks to model de-
pendence of random variables. Simulations and examples of these models are included,
illustrating the great flexibility they offer.

2.1. COPULAS
Gaussian distribution is one of the most popular approaches for modeling dependence.
However, most of the data we encounter in practice possess properties such as skewness,
tail dependence or heavy tails. In such cases the Gaussianity assumption is violated and
there is a need for different techniques.

To be able to model distributions with various types of one dimensional margins copulas
have been introduced. A copula is a multivariate cumulative distribution function on
the unit hypercube [0,1]n , which has uniform margins. The importance of these copulas
resides in Sklar’s Theorem (Sklar, 1959).

Theorem 2.1 Let XXX = (X1, . . . , Xn) be random vector with joint Cumulative Distribution
Function (CDF) FX1,X2,...,Xn and with margins FX1 , . . . ,FXn . Then there exists a copula
C1,2,...,n : [0,1]n → [0,1] such that, ∀ x1, . . . , xn ∈ Rn ,

FX1,X2,...,Xn (x1, . . . , xn) =C1,2,...,n(FX1 (x1), . . . ,FXn (xn)). (2.1)

If X1, . . . , Xn are continuous then C1,2,...,n is unique.

Copulas allow us to describe the dependence between the different variables. The above
theorem can be rewritten for densities by differentiating the previous expression:

fX1,X2,...,Xn (x1, . . . , xn) = c1,2,...,n(FX1 ((x1), . . . ,FXn (xn)) fX1 (x1) fX2 (x2) · · · fXn (xn), (2.2)

where c1,2,...,n is the copula density function and fXi are the marginal densities.

5
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There are many types of copulas that are able to represent tail dependencies, asymme-
tries etc. In high dimensions, however, the most flexible model results from decompos-
ing the multivariate copula as the product of conditional bivariate copulas, assigned to
a graphical structure called vine.

This section then focuses on two-dimensional copulas. In particular, we deal only with
parametric copula families. In this dissertation we parameterize them by means of the
dependence measure called Kendall’s τ. This choice facilitates the comparison between
different copula families. The relationship between a copula and Kendall’s τ is:

τ= 4
∫ ∫

[0,1]2
C1,2(u1,u2)dC1,2(u1,u2)−1. (2.3)

In the literature, numerous copulas with different properties are found (Joe, 2014). In
this dissertation the following parametric families are considered: Gaussian, t, Clayton,
Gumbell, Frank and Joe 1. In Figure 2.1 examples of scatter plots of these copula families
are shown. The overall dependence of all these bivariate copulas is the same, τ= 0.75.

Figure 2.1: Scatter plots of bivariate copulas: Gaussian, t, Clayton, Gumbell, Frank and Joe.

Despite having the same overall dependence, their properties are very different. Indeed,
Clayton, Gumbel and Joe copulas are not symmetric. Clayton copula has lower tail de-
pendence and upper tail independence, in contrast, Gumbel copula exhibits upper tail

1Their rotated versions will also be used.
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dependence and lower tail independence. Frank and Gaussian copula have both upper
and lower tail independence. On the other hand, t copula symmetric and has both lower
and upper tail dependence.

VISUAL ANALYSIS AND GOODNESS OF FIT TEST

To analyse, assess and compare different copulas presented in this dissertation, the fol-
lowing methodology will be used:

1. Qualitative methods. They are based on visual analysis of data by means of scatter
plots using the ggplot2 package 2. They have two main purpose:

(a) To check whether data is sampled correctly (see for instance Figure 4.7).

(b) To compare data generated from a copula with data used to fit that copula
(see for instance Figure 7.4).

2. Quantitative methods.

• Comparison of different models based on quantities of interest: values of
copulas Kendall’s τ specified in (2.3), as well as values of the logLikelihoods
and penalized logLikelihoods (Information Criteria).

• Hypothesis testing, used as goodness of fit test. To check whether we ac-
cept or reject the null hypothesis: H0 : data comes from the fitted copula. For
this purpose, we use the tests implemented in the VineCopula package (Na-
gler, 2021) using the command BiCopGofTest. These tests are based on
the so-called Kendall process proposed by Wang and Wells (2000), where the
Cramer-von Mises and Kolmogorov Smirnov statistics are included.

As we previously introduced, more flexible models can be built using the product of bi-
variate copulas. This approach is called the Pair Copula Construction (PCC), initially
introduced by Joe (1997). The most widely researched models arising from PCCs are the
so-called Vine Copulas introduced by Bedford and Cooke (2002).

2.2. VINE COPULA
In this section an overview of Vine Copula models is presented. First, Construction and
Sampling are shown. Estimation and Structure Learning of vines are then discussed.

2.2.1. VINE DECOMPOSITION

Any copula density c1,2,...,n can be decomposed into a product of n × (n −1)/2 bivariate
copula densities (Bedford and Cooke, 2002). Below, we follow the procedures outlined
in Aas et al. (2009) to show the ideas behind the PCC.

• n = 2n = 2n = 2

2https://ggplot2.tidyverse.org/

https://ggplot2.tidyverse.org/
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Applying (2.2) to the two-dimensional case with the variables X1 and X2, we obtain:

fX1,X2 (x1, x2) = c1,2
(
FX1 (x1),FX2 (x2)

) · fX1 (x1) · fX2 (x2). (2.4)

Dividing the left-hand side by the term fX2 (x2) and using the definition of conditional
probability:

fX1|X2 (x1|x2) = c1,2
(
FX1 (x1),FX2 (x2)

) · fX1 (x1). (2.5)

• n = 3n = 3n = 3

The joint probability distribution of X1, X2 and X3 can be expressed as:

fX1,X2,X3 (x1, x2, x3) = fX1|X2,X3 (x1|x2, x3) · fX2|X3 (x2|x3) · fX3 (x3). (2.6)

Let’s see how the above equation can be formulated in terms of bivariate copulas. We
first start focusing on fX1|X2,X3 :

fX1,X3|X2 (x1, x3|x2) = c1,3|2
(
FX1|X2 (x1|x2),FX3|X2 (x3|x2); x2

) · fX1|X2 (x1|x2) · fX3|X2 (x3|x2).

Dividing the left-hand side by the term fX3|X2 (x3|x2), using the definition of conditional
probability and using (2.5) to replace the value of fX1|X2 (x1|x2), we get:

fX1|X2,X3 (x1|x2, x3) =c1,3|2
(
(FX1|X2 (x1|x2),FX3|X2 (x3|x2); x2

)
· c1,2

(
FX1 (x1),FX2 (x2)

) · fX1 (x1).
(2.7)

Replacing (2.7) and using (2.5), we get:

fX1,X2,X3 (x1, x2, x3) =c1,3|2
(
FX1|X2 (x1|x2),FX3|X2 (x3|x2); x2

) · c1,2
(
FX1 (x1),FX2 (x2)

)
· c2,3(x2, x3) · fX1 (x1) · fX2 (x2) · fX3 (x3).

(2.8)

However, applying the same procedure for the conditional function fX1,X2|X3 instead of
for fX1,X3|X2 , it follows that:

fX1,X2,X3 (x1, x2, x3) =c1,2|3
(
FX1|X3 (x1|x3),FX2|X3 (x2|x3); x3

) · c1,3
(
FX1 (x1),FX3 (x3)

)
· c2,3(x2, x3) · fX1 (x1) · fX2 (x2) · fX3 (x3).

(2.9)

This yields two equivalent decompositions: (2.8) and (2.9), each with distinct pair-copula
terms. Actually, by choosing other orders of the variables that we condition in (2.6), we
would obtain more equivalent structures.

These decompositions can be represented using graphical models that are called regular
vines, namely a sequence of trees Ti = (Ni ,Ei ).
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Definition 2.1 (Vine Copula) V is a regular vine on n elements if:

1. V = {T1, ...,Tn−1}

2. T1 is a tree with nodes N1 = {1, . . . ,n}, and edges E1;

for i = 2, . . . ,n −1, Ti is a tree with nodes Ni = Ei−1.

3. (regularity) for i = 2, . . . ,n −1, {a,b} ∈ Ei and a = {a1, a2}, b = {b1,b2} then exactly
one of the ai equals one of the bi .

Vine Copulas allow the decomposition of the joint density as the product of algebraically
independent bivariate conditional copulas 3. This factorization is achieved by associat-
ing a conditional bivariate copula to the edges of each tree. The copulas are assigned
such that the conditioning variables correspond to the conditioning set and the condi-
tioned variables to the conditioned set of each edge. These sets are defined below.

Definition 2.2 (Constraint, Conditioning and Conditioned set) The constraint set, the
conditioning set and the conditioned set are defined as:

1. The constraint set associated with e( j ,k) ∈ Ei is a subset of N1 = {1,2, . . . ,n} reach-
able from e by inclusion (membership) relationship denoted by U∗

e .

2. For i = 1, . . . ,n −1,e( j ,k) ∈ Ei , the conditioning set associated with e is:

De =U∗
j ∩U∗

k ,

and the conditioned set associated with e is:

{Ce, j ,Ce,k } =U∗
j △U∗

k = {U∗
j \De ,U∗

k \De }.

The order of node e is |De |.

Example 2.1 (Vine Copula.) To illustrate these concepts the 4-dimensional Vine Copula
in Figure 2.2 is considered:

(a) Graphical Representation of a Regular Vine. (b) Trees of a Regular Vine.

Figure 2.2: Example of a 4-dimensional Regular Vine.

3There is no algebraic restriction on type of copula families and parameters that can be used for the construc-
tion.
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We can observe three different trees: T1, T2 and T3. T1 has nodes N1 = {1,2,3,4} and edges
E1 = {(1,2), (2,3), (3,4)}. In T2, we can see that N2 = E1 as defined above. Moreover, the
constraint sets of the three edges of E2 are {1,2,3}, {2,3,4}. The conditioning sets are {2}, {3}
and the conditioned sets are {1,3}, {2,4} respectively. Lastly, there are no constraint on the
choice of families and parameters of: C1,2, C2,3, C3,4, C1,3|2, C2,4|3 and C1,4|2,3.

Combining Sklar’s theorem and the decomposition showed above, Bedford and Cooke
(2002) proved the following representation theorem of the joint PDF factorised using
Vine Copula models:

Theorem 2.2 Let FX1,X2,...,Xn be a CDF with margins FXi and density margins fXi , i =
1, . . . ,n. Let V = (T1, . . . ,Tn−1) be a regular vine on n elements. Each edge e( j ,k) ∈ Ti ,
i = 1, . . . ,n − 1, with conditioned set given by { j ,k} and conditioning set given by De , is
associated with the corresponding copula C j ,k|De and its density c j ,k|De . Then the distri-
bution for the copula vine specification (FX1,X2,...,Xn ,V ) is uniquely determined and has a
density given by:

fX1,...,Xn (x1, . . . , xn) = fX1 (x1) · · · fXn (xn)

·
n−1∏
i=1

∏
e( j ,k)∈Ei

c j ,k|De (FX j |XXX De
(x j |De ),FXk |XXX De

(x j |De );xxxDe ).
(2.10)

Each of the bivariate copulas c j ,k|De of the previous decomposition, describes the de-
pendence between the random variables X j and Xk conditional on XXX De .

One usually assumes that the bivariate conditional copula c j ,k|De does not depend di-
rectly on the variables XXX De . This assumption is called the simplifying assumption(Hobæk
Haff et al., 2010). This assumption greatly reduces the complexity of the models and will
be used from now on. The reduction in the complexity is very useful but is also one of
the reasons that different decompositions (different vine structures) differ in terms of
performance in modeling a data set.

The conditionals CDFs FX j |XXX De
in (2.10) can be evaluated tree-by-tree using a recursive

formula derived in Joe (1997), which says that for every i ∈ N1, every A ⊂ N1 − i and an
arbitrary j ∈ A:

FXi |XXX A (xi |xxx A) =
∂Ci , j ;A\{ j }

(
FXi |XXX A\{ j } (xi |xxx A\{ j }),FX j |XXX A\{ j } (x j |xxx A\{ j })

)
∂FX j |XXX A\{ j } (x j |xxx A\{ j })

. (2.11)

Note that if FXi |XXX A appears in (2.10), by the construction of the Vine, there is only one
j ∈ A, such that the copula Ci , j |A\{ j } belongs to the previous tree. Therefore, the only
copulas needed in this computation are the ones already specified in the preceding trees.
This result is fundamental, since it allows us to compute the joint density function in a
closed form.

We can also consider the variables to be uniform such that (2.10) and (2.11) read as:

fU1,...,Un (u1, . . . ,un) =
n−1∏
i=1

∏
e( j ,k)∈Ei

c j ,k|De (u j |De ,uk|De ). (2.12)
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and

ui |A =Ci |A(ui |uuu A) = ∂Ci , j ;A\{ j }
(
ui |A\{ j },ui |A\{ j }

)
∂ui |A\{ j }

, (2.13)

respectively 4.

Example 2.1 (Continued) The joint probability density for the Vine Copula model in Fig-
ure 2.2 using simplifying assumptions is given by:

fU1,...,Un (u1, . . . ,u4) =c1,2(u1,u2) · c2,3(u2,u3) · c3,4(u3,u4)·
c1,3|2(u1|2,u3|2) · c2,4|3(u2|3,u4|3) · c1,4|2,3(u1|2,3,u4|2,3).

(2.14)

All the conditional samples can be computed, using the copulas defined in previous trees:

u1|2 =
∂C1,2(u1,u2)

∂u2
,u3|2 =

∂C2,3(u2,u3)

∂u2
, u1|2,3 =

∂C1,3|2(u1|2,u3|2)

∂u3|2
, . . .

CONDITIONAL INDEPENDENCES IN VINES

Some copulas in the decomposition (2.10) can be specified to be the independent cop-
ula 5. This allows us to build models that include some conditional independencies.
However, there might be more conditional independencies in the distribution that one
constructs, except the ones directly specified by assigning the independence copula to
some edges. Such a case will be later illustrated in Example 4.3.

TYPES OF VINES

Two different types of vines will be important later on in this thesis.

Definition 2.3 (C-Vine, D-Vine) C and D-Vines are subclasses of the regular Vine, which
are characterised by:

• C-Vine: In every tree there is a central node, which is connected to the rest of the
nodes of the tree. So that all the trees are star-shaped, with the central node as the
center. They will be denoted as CV1,...,n .

• D-Vine: Each of the trees is chain-shaped, so that all nodes are connected with 2
nodes except the ends, which are only connected with 1 node. They will be denoted
as DV1,...,n .

For more information about this type of vines, please see Brechmann and Schepsmeier
(2013). For instance, the Vine Copula in Figure 2.2 is a D-Vine.

Other important types are the incomplete vines. These are vines from which some nodes
have been removed, that is, the corresponding copula is set to be the independent cop-
ula. Within the incomplete vines the so-called m-saturated vines introduced by Kurow-
icka and Cooke, 2006a play a fundamental role in this project.

Definition 2.4 (m-saturated vine) An incomplete vine is an m-saturated vine of a regu-
lar vine V if all descendants of a node in its node set belong to the node set of the incom-
plete vine.6

4Notice that the derivatives of a copula are equal to conditional copulas
5This copula is used to model independence between random variables.
6Please see Kurowicka and Cooke (2006a) to understand the notation used.
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Example 2.2 (m-saturated vine) Let’s illustrate the concept of m-saturated vine. We can
observe in Figure 2.3 two different vines.

Figure 2.3: Illustration of m-saturated vine definition.

The vine on the left is m-saturated. Indeed, for the node 3,4, we have that its descendant
nodes are 2,4|3 and 1,4|2,3. For these nodes, we have that C2,4|3 = C1,4|2,3 = C⊥⊥. On the
other hand, for the vine on the right C1,4|2,3 ̸=C⊥⊥. Therefore, it does not fulfil the previous
definition.

2.2.2. VINE SAMPLING

There are two strategies for sampling from a vine, the cumulative and density approaches.
During this project, we only use the first one, which is illustrated by means of an example.
The theory behind can be consulted in Kurowicka and Cooke (2006b). All computations
shown over this section are obtained by using the VineCopula package.

Example 2.1 (Continued) The sampling procedure for the vine copula model in Figure 2.2
is based on the fact that if v1, v2, v3, v4 ∼U (0,1) are independent, (u1,u2,u3,u4) fulfilling:

u1 = v1,
u2 =C−1

2|1;u1
(v2) ,

u3 =C−1
3|1;u1

(
C−1

3|1,2;C1|2(u1|u2) (v3)
)

,

u4 =C−1
4|3;u3

(
C−1

4|2,3;C2|3(u2|u3)

(
C−1

4|1,2,3;C1|2,3(u1|u2,u3) (v4)
))

.

(2.15)

are distributed as that Vine Copula. We choose the copula families and parameters to be:

Family Kendall’s τ
C1,2 Gaussian: N 0.25
C2,3 Clayton: C 0.25
C3,4 Gumbell: G 0.75

C1,3|2 Frank: F 0.75
C2,4|3 Joe: J 0.75

C1,4|2,3 Independent: I -

tree edge | family cop par | tau utd ltd
--------------------------------------------------------

1 2,1 | 1 N 0.38 | 0.25 - -
3,2 | 3 C 0.67 | 0.25 - 0.35
4,3 | 4 G 4.00 | 0.75 0.81 -

2 3,1;2 | 5 F 14.14 | 0.75 - -
4,2;3 | 6 J 6.78 | 0.75 0.89 -

3 4,1;3,2 | 0 I - | 0.00 - -
---
type: D-vine 1 <-> U1, 2 <-> U2, 3 <-> U3, 4 <-> U4.

Taking N = 2500, as a sample size and set .seed(1), we carry out the sampling. The ob-
tained results can be seen in Figure 2.4.
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Figure 2.4: Bivariate contour plots, scatter plots,
correlations and histograms of data simulated

from our Vine Copula.

The computation time is:

Sampling time: 0.1999979 secs

The logLikelihood of this sample with
the true parameters is given by:

l og Li k = 7834.768

Applying the inverse of the CDFs, we obtain samples of the distribution: xi = F−1
i (ui ).

2.2.3. VINE ESTIMATION
Estimation of the Vine copula model requires four steps.

1. Estimate the marginal distributions FXi
7 and transform the data (xm

1 , . . . , xn) into
pseudo observations (u1, . . . ,un) using the Probability Integral Transformation (PIT).

2. Select the Vine structure.

3. Choose copula families for each bivariate term.

4. Estimate copula parameters for each bivariate term8.

⇒ Dependence Structure

This estimation procedure is called the Inference Functions for Margins (IFM) method
and was introduced by Joe (1997).

The problem of selecting the structure will be analysed in Subsection 2.2.4. Once the
structure is selected, the Maximum Likelihood (ML) method is used to carry out steps
3 and 4. That is having the structure V , the pseudo observation (um

1 , . . . ,um
n ), with m =

1, . . . , N , the objective is to find the parameters θθθ which maximise:

log Li k(uuu,θθθ) =
N∑

m=1

n−1∑
i=1

∑
e( j ,k)∈Ei

log
(
c j ,k|De

(
C j |De (um

j |uuum
De

,Ck|De (um
k |uuum

De
);θθθ

))
. (2.16)

To compare different models with varying number of parameters we use Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) given by:

AIC(uuu,θθθ) = log Li k(uuu,θθθ)−|θθθ|, (2.17)

BIC(uuu,θθθ) =
N∑

m=1

n∑
i=1

log
(

f (xm
i |xxxm

pa(vi ))
)
− |θθθ|

2
log(N ). (2.18)

7Either using parametric or non-parametric methods.
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The model with the highest score will be the preferred one.

Moreover, to evaluate the fit of a Vine, some goodness of fit test can be used. Schep-
smeier (2019) shows several tests which are implemented in the VineCopula package
through the RVineGofTest command.

Finally, optimizing the Likelihood over the whole space of parameters is very expensive.
Instead, the estimation is carried out tree by tree (Aas et al., 2009). First, the bivariate
copulas in the first tree are estimated using the observations. We can then plug these es-
timated copulas and our observations in (2.13) to transform our data. These transformed
data is then used to estimate the bivariate conditional copulas in the second tree, etc...

Example 2.1 (Continued) Let’s estimate the copula families and parameters for the sim-
ulated data from Figure 2.4 using the structure shown in Figure 2.2. The obtained results
using the BIC as criterion are:

tree edge | family cop par | tau utd ltd
-----------------------------------------------------------

1 2,1 | 1 N 0.40 | 0.26 - -
3,2 | 3 C 0.70 | 0.26 - 0.37
4,3 | 4 G 4.01 | 0.75 0.81 -

2 3,1;2 | 5 F 14.22 | 0.75 - -
4,2;3 | 6 J 6.62 | 0.74 0.89 -

3 4,1;3,2 | 0 I - | 0.00 - -
---
type: D-vine logLik: 7827.79 AIC: 7822.79 BIC: 7808.23
---
1 <-> U1, 2 <-> U2, 3 <-> U3, 4 <-> U4, Computation time of 9.012099 secs.

We can see how well the estimation implementations work, since all the families are cor-
rectly recovered and the parameters are close to the real values. The computational times
for this example are feasible, but as the dimension increases, they increase greatly.

2.2.4. VINE STRUCTURE SELECTION
Theoretically, any vine structure can be used to decompose a density (Zhu, 2022). In
practice, however, because of the limited number of parametric bivariate copula fami-
lies, the simplifying assumption and the tree by tree estimation procedure, the perfor-
mance of different vine copula models vary.

Morales Napoles et al. (2010) showed that in n dimensions, the number of different reg-
ular vines structure rn is given by:

rn =
(
n
2

)
(n −2)! 2

(
n −2

2

)
. (2.19)

As the number grows super exponentially with dimension, estimating all vine struc-
tures in high dimensions is computationally not feasible. Heuristic techniques are then
needed for searching the best structure. The most popular one in the literature is the
Dibbman’s heuristic (Dißmann et al., 2013). It constructs the vine structure tree-wise.
The first tree is determined by a maximum spanning tree with weights being the absolute
Kendall’s τ. The remaining trees are determined under the same premise, respecting the
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Table 2.1: Number of possible regular vine structures depending on the dimension.

Dimension n Number of vines rn
2 1
3 3
4 24
5 480
6 23040

regularity condition in Definition 2.1. Other option proposed by Kurowicka (2011), con-
sist on building a vine such that nodes of top trees correspond to the smallest absolute
values of partial correlations. Nevertheless, these procedures are not optimal, and the
challenge of structure selection remains as an open problem currently under research,
see for instance Zhu (2022).

Example 2.1 (Continued) Let’s apply the Dibbman’s algorithm to the simulated data showed
in Figure 2.4 to find the structure. The obtained results are:

tree edge | family cop par par2 | tau utd ltd
------------------------------------------------------------

1 3,1 | 5 F 13.54 0.00 | 0.74 - -
4,2 | 14 SG 1.89 0.00 | 0.47 - 0.56
4,3 | 4 G 4.01 0.00 | 0.75 0.81 -

2 4,1;3 | 6 J 1.19 0.00 | 0.10 0.21 -
3,2;4 | 24 G90 -2.51 0.00 | -0.60 - -

3 2,1;4,3 | 0 I - - | 0.00 - -
---
type: D-vine logLik: 6755.18 AIC: 6750.18 BIC: 6735.62
---
1 <-> U1, 2 <-> U2, 3 <-> U3, 4 <-> U4, Comput. time: 0.6690509 secs

We can observe that the estimated structure is quite different from the true structure. The
logLik of the obtained model is lower than the one for the true structure. Indeed, a relative
error of 13.77% is made. Finally, a goodness of fit test is performed to assess the resulting
structure. Using the PIT method and the KS statistic, the obtained results are:

Hypothesis testing:
$KS $p.value
[1] 20.29188 [1] 0.575

Despite the large difference in logLik, this test does not reject the null hypothesis at signif-
icance level α= 0.05.

This example illustrates how difficult it is to find the correct structure and that by us-
ing heuristics we cannot guarantee that the best model will be obtained. Nevertheless,
heuristic methods can obtain acceptable results.





3
BACKGROUND ON BAYESIAN

NETWORKS

"You are smarter than your data.
Data do not understand causes and effects; humans do."

Judea Pearl

The objective of this chapter is to familiarize the reader with the ideas behind graphical
models, particularly Bayesian Networks.

3.1. CONCEPTS FROM GRAPH THEORY
This section provides an introduction to graph theory that will be key to understanding
graphical models in general, and BNs in particular.

Definition 3.1 (Graph) A graph is a pair G = (V,E) with:

• V= {v1, . . . , vn} a finite set of nodes.

• E = {
{vi , v j }, vi , v j ∈V and vi ̸= v j

}
a set of edges between nodes.

Two types of edges are to be distinguished:

1. Undirected edges :=
{

vi , v j
}
, if they are unordered pairs. The graph is then

called undirected graph.

2. Directed edges :=
(
vi , v j

)
if they are ordered pairs: vi → v j , that is (vi , v j ) ̸=

(v j , vi ). They are also called arcs and the graph is then called directed graph.

If a graph contains both directed and undirected edges, it is called partially directed
graph.

Definition 3.2 (Parents, Children) If there is an arc
(
vi , v j

)
, then vi is a parent of v j and

v j is a child of vi . We also denote:

17
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• pa(vi ) := {set of parents of vi }. If pa(vi ) =;, then vi is a root node.

• ch(vi ) := {set of children of vi }. If ch(vi ) =;, then vi is a leaf node.

Definition 3.3 (Trail, Cycle) :

• A trail going from node a to node b is a set of different edges
{
{vi−1, vi } ∈ E , i =

2, . . . ,k
}
, such that a = v1 and b = vk . If the edges are undirected/directed, the trail

is called undirected/directed trail, respectively.

• A non-empty trail, in which the first and last vertices are equal : v1 = vk , is a cycle. If
there are no cycles, the graph is said to be acyclic. If the trail is undirected/directed,
the cycle is called undirected/directed cycle, respectively.

Definition 3.4 (Ancestors, Descendants) If there is a directed trail from vi to v j , then v j

is a descendant of vi and vi is an ancestor of v j . We also denote:

• an(vi ) := {set of ancestors of vi }.

• de(vi ) := {set of descendant of vi }.

Example 3.1 (Graph) Below we show an example of a Directed Acyclic Graph composed
by 8 nodes and 11 arcs. Moreover, we illustrate definitions of sets of parents, children, an-
cestors and descendant presented above.

Figure 3.1: Example of a Directed Acyclic
Graph G .

V= {
v1, v2, v3, v4, v5, v6, v7, v8

}
E = {

v1 → v3, . . . , v7 → v8
}

pa(v6) = {
v3, v4, v5

}
ch(v5) = {

v6, v7
}

an(v7) = {
v1, v2, v3, v5

}
de(v3) = {

v5, v6, v7, v8
}

This network does not contain directed cycles, however, if we reversed the arc v3 → v6, we
would obtain the directed cycle:

C= {v3 → v5 → v6 → v3}.

3.1.1. DIRECTED ACYCLIC GRAPHS
Directed Acyclic Graphs (DAGs) play a fundamental role during this project. They al-
low ordering the vertices in such a way that the parents appear before the children in
the ordering. This will enable us to factorise the joint probability function when using
graphical models.
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Definition 3.5 (Complete Order) The vertices are completely ordered if there exists a re-
lationship " < " on elements of V= {v1, . . . , vn} such that ∀ vi , v j , vl ∈V, we have:

1. either vi < v j , or v j < vi .

2. vi ≮ vi .

3. if vi < v j and v j < vl , then vi < vl .

Theorem 3.1 In a directed graph, conditions 1 and 2 are equivalent.

1. There is no directed cycle.

2. There exists a complete ordering of the vertices such that parents are earlier in the
ordering than children.

The proof of this theorem can be seen in Appendix A.

Example 3.1 (continued) The graph in Figure 3.1 is a Directed Acyclic Graph, and hence
there exist a complete ordering. However, this ordering does not have to be unique. Indeed,
two possible orderings for this example are:

{
v1 < v2 < v3 < v4 < v5 < v6 < v7 < v8

}
,{

v2 < v1 < v4 < v3 < v5 < v6 < v7 < v8
}
.

3.1.2. MORALISED GRAPH

The moralised graph is an important concept that will be used in this dissertation. This
graph gives a connection between directed and undirected graphs.

Definition 3.6 (Moralised Graph) The moral graph M [G ] of a Directed Acyclic Graph G

is the undirected graph that contains an undirected edge between vi and v j if:

• There is a directed edge between vi and v j in G .

• vi and v j are both parents of a node vk ∈V.

Example 3.1 (continued) We can see in Figure 3.2 the moralised graph associated with
the DAG shown above.

3.1.3. SEPARATION IN GRAPHS

Separation is a key concept to study independence relationships in a set of variables
corresponding to nodes of the graph.
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(a) DAG G . (b) Moralised graph M [G ].

Figure 3.2: Example of a DAG G and its moralised graph M [G ].

UNDIRECTED GRAPHS

Definition 3.7 (Blocked Trail in Undirected Graphs) In an undirected graph, a trail be-
tween two different nodes vi and v j is said to be blocked by a set VK , if that trail contains
a node vk that is in VK .

Definition 3.8 (Separation in Undirected Graphs) If VI , VJ and VK are three disjoint
subsets of nodes in an undirected graph G , then VK is said to separate VI from VJ , denoted
sepG (VI ;VJ |VK ), if all undirected trails between any nodes vi ∈ VI and v j ∈ VJ contains a
node vk ∈ VK .

We denote:

I (G ) = {
sepG (VI ;VJ |VK ) , VI ,VJ ,VK ∈V}

, if G is an undirected graph. (3.1)

We will refer to this set as the set of conditional independences encoded in the undi-
rected graph G .

Example 3.1 (continued) Let’s study the separation between v1 and v6 in the previously
studied moralised graph. We identify in Figure 3.2b, 10 different undirected trails between
these two nodes. It is easy to see that both V = {v2, v3, v5} and V = {v3, v4, v5} block all
these previous trails. It can be concluded that:

sepM [G ](v1; v6|v2, v3, v5),

sepM [G ](v1; v6|v3, v4, v5).

DIRECTED GRAPHS

In case of directed graphs, the separation criterion is extended to include one extra way
how a trail can be blocked.
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Definition 3.9 (Blocked trail in Directed Graphs) An undirected trail between two dif-
ferent nodes vi and v j resulting from dropping directions on the directed graph, is said to
be blocked by a set VK if:

• Either that trail contains a node vk that is in VK and the connection at vk is either
serial or diverging, that is:

(→ vk →,← vk ←,← vk →)

• Or that trail contains a node vl such that vl and its descendants are not in VK and
the connection at vl is a converging connection, that is:

(→ vl ←)

Figure 3.3: Serial, diverging and converging connections.

Definition 3.10 (Separation in Directed Graphs) If VI , VJ and VK are three disjoint sub-
sets of nodes in a DAG G , then VK is said to d-separate VI from VJ , denoted d-sepG (VI ;VJ |VK ),
if all undirected trails between any nodes vi ∈ VI and v j ∈ VJ resulting from dropping di-
rections in the directed graph, are blocked by nodes of VK .

We denote

I (G ) = {
d-sepG (VI ;VJ |VK ) , VI ,VJ ,VK ∈V}

, if G is a DAG. (3.2)

We will refer to this set as the set of separations encoded in the DAG G .

Example 3.1 (continued) Let’s examine now whether v1 and v6 are d-separated in the
directed graph. When we disregard the directions in DAG, we can identify in Figure 3.4
three different trails between v1 and v6 ( they are presented in figure below). Our objective
is to find the minimal subset of nodes that block each one of them.

1. v1 → v5 → v6 is blocked by V = v5, as there is a serial connection.

2. v1 → v3 → v6 is blocked by V = v3, as there is a serial connection.

3. v1 → v3 ← v2 → v4 → v6 is blocked by V =;. This follows from the fact that there is
a diverging connection in vl = v3, and v3 ̸∈ ;.
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(a) trail 1 (b) trail 2 (c) trail 3

Figure 3.4: Trails between v1 and v6 obtained by disregarding directions in the BN.

Note that the minimal subset of nodes that block all the trails is not the union of subsets
blocking each trail separately. We see that the set V = {

v3, v5
}

does not block trail 3, as v3

has a converging connection. Indeed, either v2 or v4 have to be included in V. It can be
concluded that:

d-sepG (v1; v6|v2, v3, v5),

d-sepG (v1; v6|v3, v4, v5).

In this case, the sets of nodes separating and d-separating v1 and v6 , in the moralised
graph and in the DAG respectively, are the same.

This does not always hold. For instance, we identify in Figure 3.2a four different trails
between modes v3 and v4. The trail that goes through v2 has a diverging connection. The
rest of the trails contain converging connections. As a consequence:

d-sepG (v3; v4|v2).

On the other hand, the nodes v3 and v4 are connected in the moralised graph, and there-
fore there is no possible separation between them. As a consequence:

((((((((hhhhhhhhsepM [G ](v3; v4|v2)

LINK BETWEEN SEPARATION IN UNDIRECTED AND DIRECTED GRAPHS

Motivated by this previous example, the connection between separation in the moralised
graph and d-separation in the DAG is shown

Proposition 3.1 Let G be a DAG. Then I (M [G ]) ⊆I (G ).

The proof can be found in Koller and Friedman (2009), Proposition 4.8. This proposition
implies that all separations encoded in the moralised graph M [G ] will also be present in
the DAG G .
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3.1.4. CHORDAL GRAPHS
Lastly, concepts of chordal and strongly chordal graphs are introduced. These concepts
will be important when dealing with PCBNs.

Definition 3.11 (Chordal and Strongly Chordal Graphs) An undirected graph G = (V,E)
is said to be chordal if all its cycles of four or more vertices have a chord 1. Moreover, a graph
is strongly chordal if it is a chordal graph and every cycle of even length (≥ 6) in G has an
odd chord 2.

Example 3.1 (continued) The undirected graph resulting from replacing directed edges
by undirected ones (removing directionality) in the DAG in Figure 3.1 is not a chordal
graph.

Indeed, if we remove directionality, there
is a cycle of length 4 with no chord.

{v2, v3, v6, v4}

To make the undirected graph chordal, we have to include the edges: {v3, v4} or {v2, v6}
and {v6, v7} or {v5, v8}. When {v3, v4} and {v6, v7} are added, the resulting graph is not
strongly chordal, as then there is a cycle C= {v1, v3, v4, v6, v7, v5} without odd chord. If e.g.
edge {v1, v4} is added, the obtained graph is strongly chordal.

3.2. GRAPHICAL MODELS
Graphical models are a popular class of dependency modeling techniques (Lauritzen,
1996, Spirtes et al., 2000). They utilize graphs G to depict the relationships between
elements of the random vector XXX with distribution P .

• Each node vi ∈V represents a random variable Xi ∈ XXX .

• Each edge {vi , v j } ∈ E represents the direct dependence between Xi and X j .

We start the presentation with basic probabilistic concepts. They are presented for ab-
solutely continuous random variables rather then in general set up, due to our focus on
this case in the thesis.

3.2.1. PROBABILITY CONCEPTS
Definition 3.12 (Independence) Two random variables Xi and X j are independent if
and only if (⇐⇒) their joint density is equal to the product of marginal densities

fXi ,X j (xi , x j ) = fXi (xi ) · fX j (x j ).

1A chord is an edge that is not part of the cycle but connects two vertices of the cycle.
2An odd chord is an edge that connects two vertices that are an odd distance (> 1) apart from each other in the

cycle.
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In this thesis We will use the following notation when Xi and X j are independent: Xi ⊥⊥
X j . Naturally the alternative definition of independence involving the conditional density
of Xi given X j can be used. Xi and X j are independent if and only if the conditional
distribution:

fXi |X j (xi |x j ) = fXi (xi ).

Definition 3.13 (Conditional Independence) Two random variables Xi and X j are con-
ditionally independent given a random variable Xk ⇐⇒

fXi ,X j |Xk (xi , x j |xk ) = fXi |Xk (xi |xk ) · fX j |Xk (x j |xk )

We denote it as Xi ⊥⊥ X j |Xk . If Xi and X j are conditionally independent given Xk then:

fXi |X j ,Xk =
fXi ,X j |Xk (xi , x j |xk )

fX j |Xk (x j |xk )
=

fXi |Xk (xi |xk ) · fX j |Xk (x j |xk )

fX j |Xk (x j |xk )
= fXi |Xk (xi |xk ).

3.2.2. BAYESIAN NETWORKS

In this project, we focus on graphical models called Bayesian Networks (BNs).

Definition 3.14 (Bayesian Networks) Bayesian Networks B are a class of graphical mod-
els specified by

• A Directed Acyclic Graph G = (V,E) in which the absence of the arc vi → v j , for
vi < v j , represents conditional independence between Xi and X j given the variables
corresponding to parents of X j .

• A set of Probability Density Functions (PDFs)

fXi |XXX pa(vi ) (xi |xxxpa(vi )) (3.3)

It is easy to see using standard factorisation of a density and given the conditional in-
dependence that follow from the definition above that the density represented by BN
is:

fX1,...,Xn (x1, . . . , xn) =
n∏

i=1
fXi |Xpa(vi ) (xi |xxxpa(vi )). (3.4)

The derivation of (3.4) can be seen in Appendix A.

Example 3.2 (Bayesian Network) Taking the DAG studied in Example 3.1 and ordering
of nodes {1,2,3,4,5,6,7,8}, we get using the definition above that, the quantitative part of
the Bayesian Network requires specification of conditional densities given next to the fig-
ure of the DAG. These densities are presented below in parametric form where vectors of
parameters, that need to be specified, are denoted as θiθiθi , i = 1, ...,8.
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Figure 3.5: Example of a Bayesian Network.

The cpds that need to be specified are:{
fX1 (x1;θ1θ1θ1), fX2 (x2;θ2θ2θ2),

fX3|X1,X2 (x3|x1, x2;θ3θ3θ3), fX4|X2 (x4|x2;θ4θ4θ4),

fX5|X1,X3 (x5|x1, x3;θ5θ5θ5), fX6|X3,X4,X5 (x6|x3, x4, x5;θ6θ6θ6),

fX7|X5 (x7|x5;θ7θ7θ7), fX8|X6,X7 (x8|x6, x7;θ8θ8θ8)
}

The density can then be expressed as:

fX1,...,Xn (x1, . . . , xn) = fX1 (x1;θ1θ1θ1) · fX2 (x2;θ2θ2θ2) · fX3|X1,X2 (x3|x1, x2;θ3θ3θ3) · fX4|X2 (x4|x2;θ4θ4θ4)

· fX5|X1,X3 (x5|x1, x3;θ5θ5θ5) · fX6|X3,X4,X5 (x6|x3, x4, x5;θ6θ6θ6)

· fX7|X5 (x7|x5;θ7θ7θ7) · fX8|X6,X7 (x8|x6, x7;θ8θ8θ8).
(3.5)

3.3. CONDITIONAL INDEPENDENCIES IN GRAPHICAL MODELS
There can be more conditional independencies in the distribution represented by BN
than the ones given in its definition. The main idea is to show that the concept of sep-
aration of nodes in the graph is equivalent to conditional independencies in the distri-
bution corresponding to this graph. The notation introduced by Koller and Friedman
(2009) is used in this section. Let us denote:

• The conditioanl independencies encoded in the graph G , denoted as I (G ).

• The conditional independencies that hold in the distribution P , denoted as I (P ).
This corresponds to the set:

I (P ) = {
XI ⊥⊥ P XJ |XK , XI ,XJ ,XK ∈ XXX

}
. (3.6)

Theorem 3.2 (d-separation ⇒ Conditional Independence) Let P be the probability dis-
tribution of the random vector XXX . Let G be a DAG, such that P admits a recurring factori-
sation according to G of the type (3.4). Then I (G ) ⊆I (P ).

The proof of this theorem can be found either in Koller and Friedman (2009), Subsection
4.5.1.1, or in Lauritzen (1996), Theorem 3.27.

It is vital to underline the following points from this theorem:

1. Any conditional independence that appears in the network is also satisfied in the
distribution. That is:

d-sepG (VI ;VJ |VK ) ⇒ XI ⊥⊥ P XJ |XK . (3.7)

2. The reciprocal does not hold. In fact, there may be conditional independencies in
the distribution that cannot be read in the network. This will be later illustrated in
Example 4.3.
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3.3.1. MORALISED GRAPH OF BAYESIAN NETWORKS
We could use a moralized graph corresponding to DAG to read conditional independen-
cies present in the distribution. Indeed, from Proposition 3.1 and Theorem 3.2, it can be
deduced that the conditional independencies encoded in the moralised are satisfied in
the distribution:

sepM [G ](VI ;VJ |VK ) ⇒ XI ⊥⊥ P XJ |XK . (3.8)

However, there may be more conditional independencies in G , which cannot be read
from M [G ]. Even so, undirected graphs can provide us with useful information to obtain
the structure of directed graphs.

3.4. PROPERTIES OF BAYESIAN NETWORKS
There are two fundamental properties of BNs that are examined in this section.

3.4.1. LOCAL MARKOV PROPERTY
Definition 3.15 (Local Markov Property) Each Xi is conditionally independent of its non
descendants (e.g., X j for which there is no path from vi to v j ) given its parents.

Xi ⊥⊥ XXX non-de(vi )|XXX pa(vi ) ∈I (G ). (3.9)

The structure of the Bayesian Network can be then viewed in two very different ways:
(Koller and Friedman, 2009):

• First, as a compact representation of a set of conditional independence assump-
tions about a distribution.

• Second, as a structure that allows to compactly represent a joint distribution in a
factorized manner.

3.4.2. EQUIVALENCE CLASSES
Serial and divergent connections result in equivalent factorisations of the distribution.
This is illustrated in Figure 3.6.

Figure 3.6: Different probability factorisations for serial, converging and diverging connections.
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Then Xi → Xk → X j and Xi ← Xk → X j are equivalent. As a consequence, the probability
distribution P can be represented using DAGs with different arc configurations. Such
DAGs are said to belong to the same equivalence class. Furthermore, there is no intrinsic
property of P that would allow us to associate it with one graph over an equivalent one.

Definition 3.16 (Equivalence classes) Two graph structures G1 and G2 over P belong to
the same equivalence class ⇔ I (G1) = I (G2), that is, they encode the same set of condi-
tional independences.

These equivalence classes are completely characterised by:

• Skeleton: undirected graph obtained as the result of removing directionality from
G .

• v-structures: convergent connections of the type Xi → Xk ← X j , where there is no
arc connecting Xi and X j .

The following theorem holds.

Theorem 3.3 Two DAGs G1 and G2 over the distribution P belong to the same equiva-
lence class ⇐⇒ G1 and G2 have the same skeleton and the same set of v-structures.

This theorem can be found in Koller and Friedman (2009), Theorem 3.7, and the ideas
behind the proof are included in Appendix B.

Equivalence classes are represented by a partially directed graph 3. Directed edges rep-
resent v-structures. Undirected edges represent edges that admit both directions. By
directing them we give rise to different graphs belonging to the same equivalence class.
We include in Appendix B an example of how to obtain the equivalence class of a DAG.

When estimating structures in later chapters, we will be interested in obtaining the equiv-
alence class of the DAG used to generate the data. The cpdag command from the bnlearn
(Marco Scutari, 2022) package allow us to determine whether two DAGs belong to the
same equivalence class. This will facilitate the assessment of structure estimation re-
sults.

3see Definition 3.1
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GBNS AND PCBNS

The aim of this chapter is to provide an overview of the two types of BNs that will be
studied in this dissertation. First, Gaussian Bayesian Networks (GBNs) are presented.
Later, Pair Copula Bayesian Networks (PCBNs) are introduced. The qualitative part of
both GBNs and PCBNs are the same. They differ with respect to the quantitative part,
hence how the conditional probability functions are modelled.

4.1. TYPES OF BAYESIAN NETWORKS
The PDFs of the form fXi |XXX pa(vi ) (xi |xxxpa(vi )) must be specified.

• GBNs: The conditional distributions are assumed to be Gaussian with constant
variance. This assumption asserts that the joint distribution of the random vari-
ables is multivariate Gaussian.

• PCBNs: the conditional distributions can be expressed as the product of bivariate
copulas. The study of these distributions is one of the main current challenges in
the field of BN research.

4.2. GAUSSIAN BAYESIAN NETWORKS
Gaussian Bayesian Networks (GBNs) are discussed below. The notation used in this sec-
tion is that of Koller and Friedman (2009).

Definition 4.1 (Gaussian Bayesian Network) GBNs are BNs whose variables are contin-
uous, and in which all PDFs are Gaussian with constant variance. That is, if Xn+1 is a
continuous variable with continuous parents X1, . . . , Xn , then there exist some parameters
β0,β1, . . . ,βn and σ2 such that the CPDs are of the form:

fXn+1|X1,...,Xn (xn+1|x1, . . . , xn) =N
(
β0 +β1x1 +·· ·+βn xn ;σ2) .

A significant result is that GBNs can be used to represent the class of multivariate Gaus-
sian distributions and vice versa. Indeed, we show in Appendix C that:

29
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• If B is a GBN, then it defines a joint distribution that is jointly Gaussian.

• The result of conditioning a multivariate Gaussian, is a Gaussian distribution where
the mean is a linear function of the conditioning variables.

From the above we have:

1. Gaussian distributions are completely characterized by its mean vector µµµ and its
covariance matrix ΣΣΣ. This makes the distributions computationally tractable via
simple algebra. Exact inference is hence possible.

2. Sampling from Gaussian distribution is computationally cheap and fast.

3. The independencies and conditionally independencies of the Gaussian distribu-
tion can be read from the covariance matrix ΣΣΣ, and the precision matrixΩΩΩ =ΣΣΣ−1.
Indeed:

• Xi and X j are independent ⇐⇒ Σi , j = 0.

• Xi and X j are conditionally independent given XXX \{Xi , X j } ⇐⇒ Ωi , j = 0.

• Xi and X j are conditionally independent given Xk1 , . . . , Xkn ⇐⇒ Σ̃−1
i , j = 0,

where Σ̃ denote the covariance sub-matrix formed by: (Xi , X j , Xk1 , . . . , Xkn ).

The proofs of these properties are shown in Appendix C. These properties also
hold for the correlation matrix (result of normalizing the covariance matrix). More-
over, we show that these properties do not hold in general if the distribution is not
multivariate Gaussian (see an example in Appendix C).

Example 4.1 (Gaussian Bayesian Network) Let’s study the GBN given by Figure 4.1.

Figure 4.1: Diamond-shape Gaussian Bayesian Network.

1. Simplicity of computations:
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To compute the distribution of fX2,X3 (x2, x3) we need to carry out the following inte-
gral 1:

fX2,X3 (x2, x3) =
∫ ∞

−∞
fX1,X2,X3 (x1, x2, x3) ·d x1

=
∫ ∞

−∞
fX1 (x1) · fX2|X1 (x2|x1) · fX3|X1 (x3|x1) ·d x1.

(4.1)

In general, if the distributions are not Gaussian, the above integral does not have a closed
form. For the multivariate Gaussian to obtain the marginal distribution it is sufficient to
remove the irrelevant variables (the variables to be marginalized) from the mean vector
and covariance matrix 2.

Example 4.1 (Continued)

1. The distribution of (X2, X3) is given by:

(X2, X3) ∼ N

((
µ2 +β1µ1

µ3 +β2µ1

)
,

(
σ2

2 +β2
1σ

2
1 β1β2σ

2
1

β1β2σ
2
1 σ2

3 +β2
2σ

2
1

))
. (4.2)

The derivation can be examined in Appendix C.

2. Fast simulations: We use the bnlearn package. The parameters have been chosen
such that:

µ1 =µ2 =µ3 =µ4 =β1 =β2 =β3 =β4 =σ2
1 =σ2

2 =σ2
3 =σ2

4 = 1.

Taking N = 2500, and set .seed(1) for reproducible results, the computation time
taken by the R software is: Sampling time: 0.01843095 secs This time is relatively
small considering the large number of samples. We will compare these times with
ones needed in the PCBNs.

3. Can the conditional independencies be easily detected?: We show in Appendix C that
the theoretical covariance matrixΣΣΣ fulfils:

Σ−1
1,4 = Σ̃−1

2,3 = 0,

and therefore X1 ⊥⊥ X4|X2, X3, X2 ⊥⊥ X3|X1. In practice, these conditions are checked
from the empirical covariance and empirical correlation matrices, we have:

ΣΣΣ=


1.0516 1.064 1.0244 2.0772
1.0643 2.1027 1.0363 3.0970
1.0244 1.0363 1.9666 2.9867
2.0772 3.0970 2.9867 6.9532

 , Σ̃̃Σ̃Σ=
1.0516 1.0643 1.0244

1.0643 2.1027 1.0363
1.0244 1.0363 1.9666


1We use the fact that X2 ⊥⊥ X3|X1 holds in our BN, to factorise the joint density.
2https://web.archive.org/web/20100117200722/http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/

node7.html

https://web.archive.org/web/20100117200722/http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
https://web.archive.org/web/20100117200722/http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html


4

32 4. GBNS AND PCBNS

Computing the inverse:

Σ−1Σ−1Σ−1 =


2.871 −0.925 −0.897 −0.062
−0.925 1.971 1.000 −1.002
−0.897 1.000 1.986 −1.020
−0.062 −1.002 −1.020 1.022

 , Σ̃−1Σ̃−1Σ̃−1 =
 2.867 −0.987 −0.959
−0.987 0.988 1.94 ·10−6

−0.959 1.94 ·10−6 0.968


We obtain Σ−1

1,4 =−0.0259 and Σ̃−1
2,3 = 0.0004, values really close to 0. Finally, partial

correlations can be directly computed from these matrices 3. In this case, we obtain:
1.000 0.389 0.375 0.036
0.389 1.000 −0.505 0.706
0.375 −0.505 1.000 0.716
0.036 0.706 0.716 1.000

 ,

1.000 0.586 0.576
0.586 1.000 −1.98 ·10−6

0.576 −1.98 ·10−6 1.000


Therefore ρX1,X4|X2,X3 = 0.036 and ρX2,X3|X1 = −1.98 ·10−6. In practice, conditional
independencies in GBNs will be checked by testing whether partial correlations are
equal to zero.

These three studied properties allow us to efficiently learn the structure of GBNs and
make these networks pretty attractive.

However, it is also the case that GBNs are very restrictive and often cannot be used in
practice as the Gaussianity assumption is frequently violated.

Example 4.1 (Continued) The previously simulated Gaussian data can be seen in Fig-
ure 4.2.

Figure 4.2: Density and Scatter Plots for the different bivariate margins of the Gaussian BN, N = 2500.

This type of distribution cannot take into account features such as asymmetries, tail de-
pendencies or non-linear dependencies. Recall that copulas were able to take account for
these properties. Highlighting then the limitations of GBNs. limitations.

3By just normalising these matrices and taking negative values of the off-diagonal terms.
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To evaluate multivariate Gaussian assumptions we will use the so-called Mardia test
(Mardia, 1970), which assess skewness and kurtosis of the distribution. This test is im-
plemented in the MVN package 4 in R (Korkmaz et al., 2014), and will be used during this
project.

Example 4.1 (Continued) Applying the Mardia test5 to the previous Gaussian data, we
obtain:

Test Statistic p value Result
1 Mardia Skewness 15.3319426173024 0.757109152690467 YES
2 Mardia Kurtosis -1.37411557685134 0.169405804326776 YES
3 MVN <NA> <NA> YES

For the simulated GBN data, at significance level α = 0.05, we obtain that the test does
not reject the null hypothesis that the data follow a multivariate Gaussian distribution, as
expected.

4.3. PAIR COPULA BAYESIAN NETWORKS
Pair Copula Bayesian Networks are introduced in this section.

4.3.1. PCBN CONSTRUCTION

In PCBNs the conditional distributions of variables given their parents in DAG are mod-
elled using copulas and conditional copulas. Let’s see then how to decompose PDFs of
the form fXv |XXX K (xv |xxxK ), in terms of bivariate copulas.

Let v ∈V be a vertex, with parental set K = {pa(v)}. Let’s assume that n := |K |, and K can
be written as an ordered subset K = {ω1, . . . ,ωn}, such that ωi ̸= ω j , for i ̸= j . We define
K−i = {ωi+1, . . . ,ωn} for every i ∈ {1, . . . ,n}. Using the same reasoning for the PCC in (2.7),
it follows that:

fXv |XXX K (xv |xxxK ) = cv,ω1|K−1

(
FXv |XXX K−1

(xv |xxxK−1 ),FXω1 |XXX K−1
(xω1 |xxxK−1 );xxxK−1

)
· fXv |XXX K−1

(xv |xxxK−1 ).

By using the previously defined order and repeating the process recursively, the desired
factorisation can be read as:

fXv |XXX K (xv |xxxK ) = fXv (xv )
n∏

i=1
cv,ωi |K−i

(
FXv |XXX K−i

(xv |xxxK−i ),FXωi |XXX K−i
(xωi |xxxK−i );xxxK−i

)
. (4.3)

This decomposition is characterized by the order of the parental set. For the n-dimensional
case, there are n! possible permutations of the order in K . This give rise to n! different
pair copula factorisations.

4This package also allow us to generate box plots, Q-Q plots, histograms to assess Gaussian assumptions.
5Yes in the MVN column means that the test does not reject the null hypothesis that the data are multivariate

Gaussian.
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FORMAL DEFINITION

We then proceed to show a more formal definition. Let G = (V,E) be a DAG. Let P be
an absolutely continuous Markovian probability measure 6 on Rn , n := |V|, with strictly
increasing univariate marginal CDFs FXi . Let <v be a total order in pa(v) for every v ∈V,
and denote O := {<v |v ∈ V} the set of parental orderings for G . For every v ∈ V and
ω ∈ pa(v), we set:

pa(v ;ω) := {u ∈ pa(v)|u <v ω} (4.4)

Using Sklar’s Theorem, first Kurowicka and Cooke (2004), and later Bauer et al. (2012),
showed that the joint probability density fX1,...,Xn can be factorised using the conditional
pair copulas Cv,ω|pa(v ;ω), v ∈V andω ∈ pa(v), each of them corresponding to exactly one
edge ω→ v in G . Therefore, the joint distribution can be decomposed as:

fX1,...,Xn = ∏
v∈V

fXv (xv )·∏
ω∈pa(v)

cv,ω|pa(v ;ω)

(
FXv |XXX pa(v ;ω) (xv |xxxpa(v ;ω)),FXω|XXX pa(v ;ω) (xω|xxxpa(v ;ω));xxxpa(v ;ω)

)
.

(4.5)

Theoretically, every multivariate distribution can be represented using (4.5). In practice,
however, as we saw when studying vine models, simplifying assumptions7 (Hobæk Haff
et al., 2010) are assumed. This greatly simplifies the inference process, but leads to the
fact that different orders result in different, non-equivalent decompositions. From now
on, we work under these assumptions.

EXAMPLES

This factorization can be better understood by means of an example.

Example 4.2 (Pair Copula Bayesian Network) Let’s consider the Diamond-shaped BN with
uniform margins, given by Figure 4.3a.

The only node with more than one parent is 4, that has precisely two parents pa(4) = {2,3}.
Hence, there are two possible orders of the variables for the decomposition:

• The first order is given by 3 <4 2, which means pa(4;3) =; and pa(4;2) = {3}. This
order is illustrated in Figure 4.3b and the decomposition can be read as:

fU1,...,U4 (u1, . . . ,u4) = c1,2(u1,u2) · c1,3(u1,u3) · c3,4(u3,u4) · c2,4|3(u2|3,u4|3). (4.6)

• The second order is given by 2 <4 3, which means pa(4;2) = ; and pa(4;3) = {2}.
This order is illustrated in Figure 4.3c and the decomposition can be read as:

fU1,...,U4 (u1, . . . ,u4) = c1,2(u1,u2) · c1,3(u1,u3) · c2,4(u2,u4) · c3,4|2(u3|2,u4|2). (4.7)

6This means that the probability measure has the local Markov property defined in Definition 3.15
7It is then not possible to represent all multivariate distributions by a pair-copula decomposition of the sim-

plified form. Any distribution might however be approximated by a simplified PCC.
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(a) Diamond-shape BN, U-margins (b) Order 1. (c) Order 2.

Figure 4.3: Diamond-shape BN uniform margins and its possible orders

Let’s analyse (4.6) in detail 8. To evaluate the conditional copula c2,4|3, the conditional
data u2|3 and u4|3 must be computed. The latter can be easily obtained using the copula
C3,4 specified during the decomposition and (2.13), such that:

u4|3 =
∂C3,4(u3,u4)

∂u3
=C3|4(u3|u4).

However, to obtain the value u2|3, we need to know the value of C2|3. The copula C2,3 is
not specified in the decomposition given by (4.6). Therefore, integrations are necessary
to compute C2|3. Exploiting the conditional independence U2 ⊥⊥ U3|U1 readable in the
previous DAG, we get:

u2|3 =C2|3(u2|u3) =
∫ u2

0
c2,3(ω2,u3) ·dω2 =

∫ 1

0

∫ u2

0
c1,2,3(ω1,ω2,u3) ·dω1 ·dω2 =∫ 1

0

∫ u2

0
c1,2(ω1,ω2) · c1,3(ω1,u3) ·dω1 ·dω2 =

∫ 1

0

(∫ u2

0
c1,2(ω1,ω2) ·dω2

)
· c1,3(ω1,u3) ·dω1 =∫ 1

0

∂C1,2(ω1,u2)

∂ω1
· c1,3(ω1,u3) ·dω1. (4.8)

If we have m = 1, . . . , N different samples, the logLikelihood function becomes:

logLik(uuu,θθθ) =
N∑

m=1
log

(
c1,2(um

1 ,um
2 )

)+ log
(
c1,3(um

1 ,um
3 )

)+ log
(
c3,4(um

3 ,um
4 )

)+
l og

(
c2,4|3

(∫ 1

0

∂C1,2(ω1,um
2 )

∂ω1
· c1,3(ω1,um

3 ) ·dω1,C4|3(um
4 |um

3 )

))
.

(4.9)

The previous integral has no general closed-form solution. Hence, Monte Carlo meth-
ods (Hammersley, 1964) must be used for its evaluation.On the other hand, we saw in
Section 4.2 that for the Gaussian case, the distribution of (X2, X3) was computable via
simple algebra, without the need for integrations.

8The case of (4.7) is analogous.
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Bauer and Czado (2016) proposed a general algorithm for evaluating conditional PDFs
in PCBNs. For high-dimensional cases, the integrals involved in computing the PDFs are
usually multidimensional integrals. The main problem arises from the long computa-
tional time required to determine these integrals.

This subsection brings to light the aspects of PCBNs.

• On the one hand, we have seen how probability densities can be factorised using
bivariate copulas as in (4.5). This fact, together with the good properties of the
copulas studied in Section 2.1 shows the great flexibility offered by these PCBNs.

• On the other hand, we have seen in this example that integrations with no-closed
solutions are usually present on PCBNs. Its computation implies an immense
computational cost and is therefore one of the main disadvantages of PCBNs.

In the case where all copulas involved in the decomposition are Gaussian, the integrals
can be avoided by using the covariance matrix (A. M. Hanea et al., 2006) and the partial
correlation vines (Kurowicka and Cooke, 2003). However, the use of Gaussian families
alone does not result in flexible models.

4.3.2. PCBNS VS VINES
PCBNs theory is closely connected to that of regular vines and has benefited from de-
velopments in the latter. In addition, it also provides an alternative way of modeling
dependencies, different from undirected graphical models. This subsection discusses
the differences and similarities between PCBNs and Vines. These will be illustrated via
examples. The work of A. M. Hanea (2011), shows a more general and detailed overview
of this topic

DIFFERENCES

PCBNs are directed graphical models, whereas Vines are undirected graphical models.
Perhaps the most important difference between directed and undirected graphs, in gen-
eral, is that they make different statements of conditional independence. The lack of
an edge between two nodes in both graph structures means that the dependency struc-
ture between these two variables is controlled by some other variables. However, these
structures have a different nature. The absence of an arc in PCBNs encodes conditional
independence statements. In contrast, regular vines can be viewed as fully connected
graphs representing conditional dependency statements. One may then wonder which
model is better. This question is ill-posed, since each model has its advantages and dis-
advantages over the other.

• In regular vines the concept of conditional independence is weakened to allow for
various forms of conditional dependence (A. M. Hanea, 2011). This can be seen in
the example above.

Example 4.2 (Continued) The involved copulas and the conditional independence
statements readable from Figure 4.3b are respectively:

C1,2, C1,3, C3,4, C2,4|3
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U2 ⊥⊥U3|U1 , U1 ⊥⊥U4|U2,U3.

Let’s try to construct a vine that specifies all these copulas and the conditional inde-
pendence statements. Figure 4.4 shows the different steps (for 2,3 and 4 variables) in
the construction of such a vine.

Figure 4.4: Vines D2, D3 and D4 to reconstruct the Diamond shape BN.

The variable orders in the lower tree of the vines in 3 and 4 dimensions do not coin-
cide. We therefore cannot specify both conditional independence statements at the
same time with a single vine copula. The same is true for the specification of all
copulas.

This is closely related to the fact that PCBNs enable the specification of conditional
copulas, which cannot be computed by simply plugging in results from preceding
levels as in (2.13). Instead, integrations are needed for the computation of these
copulas, as viewed in (4.8).

• We have seen that in BNs that d-separation implies conditional independence.
However, if two nodes are not d-separated it does not imply that the corresponding
variables are dependent. Let’s illustrate this with an example.

Example 4.3 (Non-d-separation ̸⇒ conditional dependence) Let’s study the trian-
gle shape BN. This BN can also be expressed in terms of a regular vine, as can be seen
in Figure 4.5.

Figure 4.5: Triangle-shape BN and its equivalent Vine representation

There may be independencies that are not encoded in the graph but are present in
the distribution. Taking C1,2, C2,3 and C1,3|2 to be Gaussian. Then the copula de-
scribing dependence between U1, U2 and U3 is Gaussian, with parameters described
in the correlation matrix. The relationship between the partial correlations of these
copulas is given by the following equation (Kurowicka and Cooke, 2003)

ρ1,3|2 =
ρ1,3 −ρ1,2ρ2,3√(

1−ρ2
1,2

)
·
(
1−ρ2

2,3

) .
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Choosing C1,3|2 such that its partial correlation is:

ρ1,3|2 =
−ρ1,2ρ2,3√(

1−ρ2
1,2

)
·
(
1−ρ2

2,3

) ,

we then get ρ1,3 = 0. This plus the fact of C1,3 is Gaussian, implies that U1 ⊥⊥ U3.
Thus, U1 and U3 are not d-separated and are not dependent.

This example shows how there may be conditional independencies present in our
data that are not encoded in the DAG.

We have just seen how if vines fail to represent independencies (see Example 4.2), PCBNs
fail to represent dependencies (see Example 4.3). Some statement combinations are bet-
ter represented using a regular vine, whereas others benefit from DAG representation.
The saturated nature of regular vines is a disadvantage in modeling and learning rela-
tionships when hundreds of variables are involved. Furthermore, the directed structure
of PCBNs provides a more intuitive representation in terms of the flow of influences be-
tween variables (A. M. Hanea, 2011).

SIMILARITIES

There are situations in which PCBNs and regular vines represent the same set of condi-
tional independence statements and can be characterized by the same bivariate copulas.
In the work of Hobæk Haff et al. (2016) and Müller and Czado (2018), the conditions un-
der which high-dimensional DAG models can be linked to regular vines are presented.
Motivated by previous work, Zhu and Kurowicka (2022) show that the set of conditional
independence encoded in a DAG with strongly chordal skeleton (see Definition 3.11) can
be represented by an m-saturated vine (see Definition 2.4). Moreover, one can choose
orders in these DAGs, so that the set of bivariate copulas involved in the factorization is
the same as in the equivalent m-saturated Vine.

Example 4.4 (Continued) The vine given by Figure 2.2, together with the copula families
taken for sampling (C1,4|2,3 = C⊥⊥) is an m-saturated vine. Therefore, there is a strongly
chordal graph, which represents the same conditional independence statements: U1 ⊥⊥
U4|U2,U3 as the Vine. This m-saturated vine and its equivalent strongly chordal graph
can be seen in Figure 4.6.

Figure 4.6: m-saturated vine and its equivalent strongly chordal
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Furthermore, choosing order 1, the specified copulas are exactly the same. This means
that (2.13) can be used, and hence integrations are not needed. In this case DAG inherits
all the properties/procedures studied in Section 2.2. On the other hand, choosing order 2,
the copula C2,3 is not specified. As a result, integrations are still necessary. Although in this
case:

c2,3(u2,u3) =
∫ 1

0
c1,2(ω1,u2) · c1,3(ω1,u3) · c2,3|1(u2,u3) ·dω1.

The avoidance of integral is a powerful result, as it greatly simplifies the computations.
The only problem is that strongly chordal assumptions are restrictive and not every graph
fulfils them.

Finally, the nature of both methods of factorising the density function as the product of
bivariate copulas is the same. As a consequence the sampling procedure for PCBNs uses
the one for regular vines. This will be illustrated in Subsection 4.3.3. In addition, the idea
behind learning the DAG of an PCBNs together with its parameters from data coincides
with the one for learning regular vines (A. M. Hanea, 2011).

4.3.3. PCBN SAMPLING
The principles behind sampling for PCBNs are the same as that of vines, illustrated in
Subsection 2.2.2. The main differences are that PCBNs tend to specify more independent
copulas and that integrations are usually required. Let’s look at an example to clarify this
procedure. The command cuhre from the cubature package (Narasimhan et al., 2022)
in R is used to perform the integrations.

Example 4.3 (Continued) Let’s sample from the PCBN specified by Figure 4.3b.

SAMPLING PROCEDURE

The sampling procedure (Kurowicka and Cooke, 2006b) is then based on the fact that if
v1, v2, v3, v4 ∼U (0,1) are independent, (u1,u2,u3,u4) fulfilling:

u1 = v1,
u2 =C−1

2|1;u1
(v2) ,

u3 =C−1
3|1;u1

(v3) ,

u4 =C−1
4|3;u3

(
C−1

4|2,3;
∫ 1

0
∂C1,2(ω1,u2)

∂ω1
·c1,3(ω1,u3)·dω1

(v4)

)
.

(4.10)

are distributed as the diamond-shape PCBN. Moreover, (4.10) differs from (2.15) in:

• C2,3|1 =C⊥⊥ and therefore the expression to obtain u3 is simplified.

• The copula C2|3 need to be computed through integrations and therefore the expres-
sion to obtain u4 becomes significantly more complicated.

SIMULATION SETUP

The copula families and parameters chosen for sampling are presented in Table 4.1.
The families have been chosen to obtain a dependence structure with tail dependencies
and asymmetries, far away from the Gaussian case. The parameters have been chosen to
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Table 4.1: Families and parameters of the copulas chosen for the diamond-shaped PCBN.

Family Kendall’s τ
C1,2 Clayton 0.5
C1,3 Gumbell 0.75
C3,4 Frank 0.5

C2,4|3 Joe 0.75

have highly/medium correlated copulas so that they can be visually identified by scatter
plots. In addition, N = 2500 is chosen as a sample size large enough to be representative
and not too computationally expensive. Finally, we set .seed(123) for reproducibility of
our results.

The computation time taken by the R software for N = 2500 is:

Sampling time: 103.85 secs

This time is more than 1000 times larger than the times taken in the vine in Example 2.1.
This reveals how computationally expensive it is to perform integrations.

Plugging the true parameters specified in Table 4.1 into (4.9), and evaluating the obtained
samples, we get:

True logLik = 7029.19, Comp.time = 93.76secs

Even the evaluation of the logLikelihood function with true parameters in the simplest
non-strongly chordal graph is computationally very expensive.

VISUAL ANALYSIS

After carrying out the sampling procedure explained in (4.10), we present scatter plots to
make sure that we are simulating correctly. These plots can be examined in Figure 4.7:

(a) U1 vs U2. (b) U1 vs U3. (c) U3 vs U4. (d) U2|3 vs U4|3.

Figure 4.7: Scatter plots of the bivariate margins specified by the copulas in Table 4.1

The first three subfigures were obtained by simply plotting the corresponding non-conditional
margins. For the fourth one the pseudo-observations u2|3 were computed using (4.8) and
u4|3 using differentiation of C3,4.

We visually verify that the simulation results correspond to the expected results of the cop-
ulas and parameters selection. In addition, the plots of the remaining bivariate margins
are included in Figure 4.8 to gain a broader understanding of the dependency structure.
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Figure 4.8: Bivariate contour plots, scatter plots, correlations and histograms of our data simulated from the
Diamond-shape PCBN.

4.3.4. PCBN ESTIMATION
The PCBN estimation procedure, as in the case of vines, follows the IFM method ex-
plained in Subsection 2.2.3. There are, however, two fundamental differences:

• In the case of DAG, not only do we have to choose the structure, but we must also
choose the order of the variables. Different orders give rise to different results. This
is mainly due to the limited number of copulas we consider and the simplified
assumptions.

• If the graph is not strongly chordal, integrations will be necessary to compute the
conditional margins and fit the corresponding conditional copulas.

The problem of selecting the DAG and the order will be analysed later. Haff (2013) ex-
plores different methods used for parameter estimation. We only show the ML estima-
tion method tree by tree (Aas et al., 2009). That is having the DAG G , the order O and the
pseudo observations (um

1 , . . . ,um
n ) the ML method finds the parameters θθθ which max-

imise:

log Li k(uuu,θθθ) =
N∑

m=1

∑
v∈V

∑
ω∈pa(v)

l og
(
cv,ω|pa(v ;ω)

(
Cv |pa(v ;ω)(um

v |uuum
pa(v ;ω)),Cω|pa(v ;ω)(um

ω |uuum
pa(v ;ω))

))
(4.11)

For more insights, we refer to Bauer et al. (2012), who carried out a simulation study to
investigate the tractability of likelihood inference in PCBN models. Bauer and Czado
(2016) and Bauer and Czado (2016) also deal with ML estimation.

Example 4.3 (Continued) Let’s use the ML method to estimate parameters, copula fami-
lies and to compute the logLikelihood for the true DAG using the true order. The obtained
results are:

Estimated logLik,True DAG, True order = 7029.76, Comp.time = 113.83secs
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> C12.estim
Bivariate copula: Clayton (par = 1.95, tau = 0.49)
> C13.estim
Bivariate copula: Gumbel (par = 4.07, tau = 0.75)
> C34.estim
Bivariate copula: Frank (par = 5.66, tau = 0.5)
> C24.3.estim
Bivariate copula: Joe (par = 6.88, tau = 0.75)

We can observe how the ML techniques are able to obtain the correct families and almost
all the parameters as well. Therefore, the estimated logLik is practically the same as the
real one, and the computation time is similar as well. It can be seen how the estimation
process for non-strongly chordal PCBNs is computationally expensive with respect to
that of the vines in Subsection 2.2.3.

4.3.5. PCBN STRUCTURE SELECTION
The problem of selecting the structure in PCBN lies in between the problems of:

• Learning the structure in BNs, will be studied in later chapters.

• Learning the structure in Vines, already studied in Subsection 2.2.4.

It involves two steps.

1. Estimation of the DAG G .

2. Selection of the set O of parent orderings. Remember that the number of possible
parent ordering was

∏
v∈V pa(v)!. Theoretically, given a DAG G any order can be

used to decompose the density. In practice, however, because of the limited num-
ber of parametric bivariate copula families, the simplifying assumption and the
tree by tree estimation procedure, the performance of different orders vary.

Example 4.3 (Continued) Let’s illustrate this last statement. Previously we simulated
data from Figure 4.3b and we obtained that the estimated logLik using the true order
3 <4 2 was given by:

Estimated logLik, True DAG, True order = 7029.76, Comp.time = 113.83secs.

Let’s now estimate the logLikelihood for these data using the order specified by Figure 4.3c,
that is the wrong order 2 <4 3. In this case the logLikelihood can be read as:

logLik(uuu,θθθ) =
N∑

m=1
log

(
c1,2(um

1 ,um
2 )

)+ l og
(
c1,3(um

1 ,um
3 )

)+ log
(
c2,4(um

2 ,um
4 )

)+
l og

(
c3,4|2

(∫ 1

0

∂C1,3(ω1,um
3 )

∂ω1
· c1,2(ω1,um

2 ) ·dω1,C4|2(um
4 |um

2 )

)) (4.12)

Using the procedure explained in Subsection 4.3.4, we obtain that the estimated logLike-
lihood of the true DAG using the wrong order is given by:

Estimated logLik, True DAG, Wrong order = 6334.587, Comp.time = 89.74secs.



4.3. PAIR COPULA BAYESIAN NETWORKS

4

43

Even knowing the structure, the simple fact of choosing an incorrect order results in a rel-
ative error of 9.88%.

These are the main reasons why the problem of PCBN structure selection from data is
NP-hard with no solution yet found.

This section serves as an introduction to one of the most important topics that will be
addressed in this dissertation. Methods attempting to find structures of PCBNs will be
discussed in the next chapters.





5
STRUCTURE LEARNING IN BNS

"It is impossible to be a mathematician
without being a poet in soul."

Sofia Kovalevskaya

In this chapter we study the problem of learning the structure and the parameters of
BNs. In particular Structure Learning is the main focus of this dissertation.

We give an overview of the different Structure Learning algorithms available in the liter-
ature. Moreover, we introduce the measures that will be used in this thesis to assess the
performance of studied algorithms.

5.1. LEARNING BAYESIAN NETWORKS
Model Selection and Estimation are collectively known as learning, and are usually per-
formed as a two-step process:

• Structure Learning: learning the graph structure from the data.

• Parameters Learning: learning the local distributions implied by the graph struc-
ture learned in the previous step.

In fact learning is a two-step process:

P (ΘΘΘ,G |D) = P (G |D)︸ ︷︷ ︸
Structure Learning

· P (ΘΘΘ|G ,D)︸ ︷︷ ︸
Parameter Learning

,

where D is the data.

45
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5.1.1. LEARNING METRICS
Te evaluate performance of different methods in learning the structure of BNs from data
the Structural Hamming Distance (SHD) is used in this thesis.

Definition 5.1 (Structural Hamming Distance) The SHD between two partially directed
graphs 1 counts the number of edges that need to be added to, removed from, directed in,
or reversed to transform one graph to another graph. The SHD comprises:

• False Positive edges (FP): edges that have to be removed from, directed in, or reversed
from the estimated graph.

• False Negative edges (FN): edges that have to be added to the estimated graph.

SHD = FP+FN (5.1)

This distance is implemented in the bnlearn package by means of the command shd.
Furthermore, a visual comparison of the graphs can be carried out using the command
graphviz.compare of the bnlearn package. This command displays the original graph
and next to it the estimated graph including:

• True positive edges in black.

• False positive edges in red.

• False negative edges in blue.

In addition to SHD, Hamming distance will also be used as an evaluation metric.

Definition 5.2 (Hamming Distance) The Hamming distance between two graphs counts
the number of distinct edges between the two networks’ skeletons.

This measure provides complementary information to that obtained from the SHD. In-
deed, it is useful to assess whether the algorithms can recover the true directions of the
arcs in the BN. It is also used to compare moralised graph of BNs.

Finally, we will also compare the number of edges between the true and the estimated
network. This measure will give us information about whether overestimation or under-
estimation is occurring.

5.2. STRUCTURE LEARNING IN BAYESIAN NETWORK
This section presents the theory behind the different types of structure learning algo-
rithms. First, the Graphical Lasso is studied. Second, the Constraint-Based and the
Score-Based algorithms are discussed. For each of these 3 algorithms we show the good
properties of the Gaussian case, and the problems that arise in when these algorithms
are used when data is generated from PCBNs.

5.2.1. GRAPHICAL LASSO
First, the Graphical Lasso is discussed. This algorithm results in an undirected graph,
which corresponds to the moralized graph M [G ] of the BN.

1Remember that the equivalence classes were defined by this type of graphs
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GRAPHICAL LASSO

It can be deduced from Definition 3.8 that if there is no edge in M [G ] between nodes
vi and v j , the remaining set of nodes separate them. We saw that all the conditional
independences encoded in M [G ], also hold in the distribution P . As a consequence, the
variables Xi and X j would be conditionally independent given the remaining variables.
We saw in Appendix C, that for the Gaussian distribution it holds that:

Xi ⊥⊥ X j |X1, . . . , Xn\{Xi , X j } ⇐⇒ Ωi , j = 0, (5.2)

whereΩΩΩ is the precision matrix. Therefore, estimating the sparsity pattern ofΩΩΩ is equiv-
alent to determining which edges are missing in M [G ]. This is precisely the reasoning
behind the Graphical Lasso (Friedman et al., 2008) to obtain the graph structure.

There are different methods to estimate the sparsity pattern ofΩΩΩ, but most of them rely
on the use of the L1 penalty (Tibshirani, 1996). In this project, we only focus on the
method developed by Meinshausen and Bühlmann (2006), using the implementations
carried out by Giraud et al. (2012). This method fits a regression for each of the variables,
using the remaining variables as predictors and imposing a L1 penalty:

min(X1 −θ1,2X2 −·· ·−θ1,n Xn)2 +λ(|θ1,2|+ · · ·+ |θ1,n |
)

...
min(Xn −θn,1X1 −·· ·−θn,n−1Xn−1)2 +λ(|θn,1|+ · · ·+ |θn,n−1|

) (5.3)

More rigorously, the problem can be expressed as finding the matrix θ̂λθ̂λθ̂λ for a given regu-
larisation parameter λ, such that:

θ̂λθ̂λθ̂λ = argmin{∥XXX D −XXX Dθ
′θ′θ′∥2

N×n +λ∥θ′θ′θ′∥1 : θ′ ∈ΘΘΘ}, (5.4)

where XXX D is the N ×n data matrix 2,ΘΘΘ is the set of n ×n matrices with 0 on the diagonal
and ∥θ′θ′θ′∥1 = ∑

i ̸= j θi , j . The procedure then starts with the fully connected undirected

graph. Once the solution θ̂λ is found, the edges of the type vi − v j are removed, if either
the estimated coefficient θi , j or θ j ,i are zero. This results in the desired moralised graph
M [Gλ].

The performance of this method heavily depends on the regularisation parameterλ. Let-
ting λ→ 0, the moralised graph M [Gλ] will become more and more dense. For λ→∞,
the moralised graph M [Gλ] will become more and more sparse. This parameter’s opti-
mal value is frequently unknown. To cope with this issue, many authors propose to apply
cross-validation or the BIC criterion. The GGMselect package instead uses the criterion
3 proposed by Giraud (2008) to solve this problem 4.

EXAMPLES AND REMARKS

The most important remark to be made is that (5.2) only holds for the Gaussian case.
Hence, if the model is misspecified, (e.g. when data from PCBNs is used), this algorithm
might lead to incorrect results.

2Each column corresponds to an independent realization of the random vector XXX T = (X1, . . . , Xn )
3This criterion offers good statistical accuracy and strong theoretical results.
4This criterion is not included here due to the complexity of the formulas, but it can be found in Giraud et al.

(2012)
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Example 5.1 (Graphical Lasso algorithm for Gaussian data) Let’s apply the Graphical Lasso
algorithm to the Gaussian data generated in Example 4.1 and plotted in Figure 4.2. To do
so, the GGMselect package (Bouvier et al., 2022) in R is used. The LA family is chosen in
Giraud et al. (2012), to apply the procedure previously explained. The criterion proposed
in Giraud (2008) is used to determine λ’s optimal value. The resulted undirected graph is
showed in Figure 5.1.

Figure 5.1: Graphical Lasso applied to Gaussian data.

The algorithm is able to recover the true moralised graph of the DAG and the Hamming
distance is 0. It can be read from Figure 5.1 that X1 ⊥⊥ X4|X2, X3. On the other hand, there
is an edge between X2 and X3.This is because X2 ̸⊥ X3|X1, X4, even though X2 ⊥⊥ X3|X1

holds.

In the Gaussian setting, this method has been proven to be asymptotically consistent in
estimating the set of non-zero elements ofΩΩΩ (Friedman et al., 2008). This algorithm can
be used as a preliminary step to learn the BN structure. Indeed, edges not presented in
the moralized graph, will not be in DAG. These edges can then be blacklisted to give prior
extra information to the score and constraint algorithms.

Finally, this algorithm has also been applied to areas outside the Gaussian assumptions,
with useful and interesting results (Müller and Czado, 2019, Zhu and Kurowicka, 2022).
Therefore, we will study their performance for PCBNs.
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5.2.2. CONSTRAINT-BASED ALGORITHMS
Constraint-based algorithms address the problem of learning BN structures as a repre-
sentation of conditional independencies. They attempt to test for conditional depen-
dencies and independencies in the data and then reconstruct a map that best captures
the test results. The outcome of these algorithms is an equivalent class, rather than a par-
ticular graph. The most important decisions to be made in this context are the choice of:

CONDITIONAL INDEPENDENCE TESTS

The methodology used in this project is hypothesis testing. To test whether the variables
Xi and X j are conditionally independent given the set XXX K , the framework used is:

H0 : Xi ⊥ X j |XXX K vs H1 : Xi ̸⊥ X j |XXX K

In this context, we need to define a statistic, to measure the discrepancy with the null
hypothesis. Based on this statistic and a significance level α ∈ (0,1), we define a decision
rule Tα(xi , x j ;xxxK ) ∈ {H0, H1}, that will be used to accept or reject the null hypothesis.

• In GBNs, we studied that 0 correlation implies independence. Hence, the so-called
0-correlation independence tests are used 5. During this project, we use the exact
t test for Pearson’s correlation coefficient, defined as:

t (Xi , X j |XXX K ) = ρXi ,X j |XXX K

√√√√ n −|K |−2

1−ρ2
Xi ,X j |XXX K

, (5.5)

where ρXi ,X j |XXX K is the conditional correlation. This test statistics under null hy-
pothesis is distributed as a Student’s t with n − |K | − 2 degrees of freedom. The
null-hypothesis is rejected when: |t (Xi , X j |XXX K )| > t1− α

2 ;n−|XXX K |−2
6.

In this Gaussian case, the conditional and partial correlations are equal. These can
be calculated directly using the covariance matrix, so that these tests can be per-
formed very quickly. Moreover, these tests also work when working with Gaussian
copulas.

• Outside the Gaussian world the equality of partial and conditional correlations is
not valid and zero correlation does not mean independence Another type of test is
then needed to test for conditional independence. One could test whether some
distance of an empirical copula and independence copula is very small, but these
type of tests are computationally expensive. Therefore, it is not recommended to
use them to learn the structure of PCBNs.

5Tests that use conditional correlations as deviance measures
6This threshold value is set according to the probability of false rejection.
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CONSTRUCTION PROCEDURES

Several algorithms have been proposed to construct the network using the above tests.
In this project we only discuss the PC algorithm (Spirtes et al., 1993), which is schema-
tized Algorithm 1 and Algorithm 2. The application of this algorithm will be illustrated
with an example below.

Algorithm 1 PC algorithm: finding the skeleton.
Input Data set X; significance level α ∈ (0,1); conditional independence test with decision rule

Tα(xi , x j ; xK ) for the null hypothesis H0 : Xi ⊥ X j |XXX K vi ̸= v j ∈V,VVV K ⊆V\{vi , v j }.
Output Skeleton G = (V,E), separation sets Svi ,v j , vi ̸= v j ∈V, (vi , v j ) ̸= E , (v j , vi ) ̸= E .

1: G ← fully connected undirected graph on V;
2: k ← 0;
3: repeat
4: for vi ∈V and v j ∈ ad(vi ) do vi and v j are adjacent in G do
5: if if Tα(xi , x j ; xK ) = H0 for any VVV K ⊆ ad(vi )\{v j } with |VVV K | = k then
6: delete vi − v j from G

7: Svi ,v j ←VVV K ;
8: Sv j ,vi ←VVV K ;
9: end if

10: end for
11: k ← k +1.
12: until |ad(vi )| ≤ k for all vi ∈V.

Algorithm 2 PC algorithm: introducing edge directions.
Input Skeleton G = (V,E), separation sets Svi ,v j , vi ̸= v j ∈V, (vi , v j ) ̸= E , (v j , vi ) ̸= E .
Output Partially directed graph representing the equivalence class.

1: % Introduce the v-structures
2: for vi ∈V and v j ̸∈ ad(vi ) and vk ∈ ad(vi )∪ad(v j ) do
3: if vk ̸∈ Svi ,v j then
4: replace vi − vk − v j by vi → vk ← v j in G ;
5: end if
6: end for
7: % Orient as many undirected edges as possible by application of the rules:
8: repeat
9: R1 orient v j − vk into v j → vk whenever G contains vi → v j and vk ̸∈ ad(vi );

10: R2 orient vi − v j into vi → v j whenever G contains vi → vh → v j ;
11: R3 orient vi − v j into vi → v j whenever G contains vi − v j → v j and vi − vl → v j and

vl ̸∈ ad(vk );
12: until no more edges can be added.

The basic idea is to start with a fully connected undirected graph, and removing edges
whenever the null hypothesis H0 is not rejected. The final step is to direct the edges to
prevent new v-structures and directed cycles until no more edges require direction. As a
result, the equivalence class is obtained rather than a specific network.
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EXAMPLES AND REMARKS

If all the conditional independences presented in P hold in G and if all statistical test
decisions are correct, then the PC algorithm returns the correct equivalence class (Meek,
2013). For the low-dimensional Gaussian case these algorithms seem to work well.

Example 5.2 (PC algorithm for Gaussian data) Let’s apply the PC algorithm to the Gaus-
sian data generated in Example 4.1 and plotted in Figure 4.2. To do so, the command
pc.stable of the bnlearn package is used. The conditional independence test is the lin-
ear correlation test for continuous variables showed in (5.5) with α = 0.05. The resulting
equivalent class can be seen in Figure 5.2:

Figure 5.2: PC algorithm applied to Gaussian data.

In this case, the PC algorithm recovers the true equivalent class and hence the SHD and
the Hamming distance are 0.

Unfortunately, some problems may arise, especially for high dimensional cases:

1. Constraint-based algorithm assumes that I (G ) = I (P ) 7. The main problem is
that there might be some conditional independencies in the data to exist that are
not represented in the graph 8.

2. Small conditional correlation does not imply independence.

3. Independence tests have always certain probability of false rejection or false ac-
ceptance. When several tests are carried out the multiple testing problem might
occur. To cope with this multiple testing problem, one may lower the value of
al pha. This is not implemented in PC algorithm.

Constraint-based algorithms are sensitive to false acceptance and rejections. Hence, it
is often better to opt for the score-based algorithms (Scutari et al., 2019).

7Recall that is not always true since I (G ) ⊆I (P ), see Theorem 3.2.
8See for instance Example 4.3
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5.2.3. SCORED-BASED ALGORITHMS
Score-based algorithms approach the problem of structure learning as an optimization
problem (Koller and Friedman, 2009). The idea is to define a score function that mea-
sures how well the model fits the observed data9. An initial graph is then modified based
on improvements in the score, until a DAG corresponding to a local maximum score is
reached (Theodoridis, 2020). This part of the procedure requires specification of a search
process through the set of all possible DAGs. Unlike the Constraint-based algorithms
where an equivalence class was obtained, the Score-based algorithms output a particu-
lar graph. The most important decisions to be made in this context are the choice of:

SCORE FUNCTION

There are different types of score functions, but we will only study likelihood based score
functions. Desirable properties of score functions include that:

1. The score functions include a penalisation term. The use of the mere Likelihood
function as a score might lead to overfitting. Indeed, adding one extra edge to
a network will usually not decrease the maximum Likelihood score (Koller and
Friedman, 2009). It is then reasonable to add penalisation terms that favour sim-
pler structures.

2. The score functions are equivalent. This means that the scores associated with all
DAGs belonging to an equivalent class are the same.

3. It is desirable that a score function is decomposable, in the sense that the total
score is the sum of the scores of all the nodes. Decomposability allows a significant
reduction of computational time required during the search of structures. Local
changes in the network result in local changes in the score, while most of the score
components remain the same, speeding up the procedure.

Example of widely used score functions (Scutari and Denis, 2021) are the AIC-score and
the BIC-score:

AIC (G ,D) =
N∑

m=1

n∑
i=1

log
(

f (xm
i |xxxm

pa(vi ))
)
−|θθθ|, (5.6)

B IG(G ,D) =
N∑

m=1

n∑
i=1

log
(

f (xm
i |xxxm

pa(vi ))
)
− |θθθ|

2
log(N ), (5.7)

where |θθθ| is the total number of parameters and m = 1, . . . , N are the different samples.

• The Gaussian case exhibits very good properties. Indeed, the logLikelihood scores
are equivalent. Moreover, the value of the logLikelihood associated with a GBN
can be quickly computed using simple algebra.

• The non-Gaussian case is quite different. LogLikelihood scores are not equivalent
in this case. Indeed, we saw that even for the same DAG, the resulting scores from
taking different parental orderings were different. Lastly, the logLikelihood com-
putation might involve integrals which are extremely computationally expensive.
These reasons make, learning structure of PCBNs using score-based algorithms,
much more challenging.

9The higher the score, the better model we have for our data.
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SEARCH PROCEDURE

The search through the set of possible DAG structures is very difficult. The pool of poten-
tial candidate structures is immense. Indeed, Robinson (1977) showed that on n := |V|
the number of DAGs pn is given by the recurrence equation:

p0 = 1, pn =
n∑

k=1
(−1)k−1

(
n

k

)
2k(n−k)pn−k . (5.8)

Table 5.1: Number of possible DAG structures.

nodes number: n DAGs number: pn
1 1
2 3
3 25
4 543

10 4.2×1018

We see that pn grows super-exponentially in n, hence a systematic trial of all poten-
tial DAGs is impossible, necessitating the use of efficient searching techniques. Many
heuristic approaches (Koller and Friedman, 2009) have been presented in recent decades
to try to identify global maxima in a computationally efficient manner. In this project we
only discuss the Hill Climbing algorithm presented in Algorithm 3, which belongs to the
so-called Greedy search algorithms.

Algorithm 3 Hill Climbing algorithm: finding the DAG.
Input Score function used and Initial network structure G , usually (but not necessarily) with 0

edges.
Output Directed Acyclic Graph Gfinal representing the BN.

1: % Compute the score of G , ScoreG = Score(G );
2: Set max.score = ScoreG .
3: repeat
4: for every possible arc addition, deletion or reversal resulting in a DAG: do
5: Compute the score of the modified network ScoreG∗ = Score(G∗)
6: if ScoreG∗ > ScoreG , set G =G∗ and ScoreG = ScoreG∗ . then
7: update max.score = ScoreG .
8: end if
9: end for

10: until max.score does not increase.
11: Gfinal =G .

The algorithm starts with an initial graph, and explores the search space by adding, re-
moving, or reversing one arc at a time. The scores function is computed for each pro-
posed graph and the one with the highest score is kept. The procedure is repeated until
the score cannot be improved any further. The three operations: adding, removing and
reversing posses good properties. The space of graphs is search locally but also explored
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efficiently at the same time. The algorithm does not guarantee that the best structure
will be found and it is important that the good initial structure is chosen. It is also rec-
ommended to run the algorithm with random restarts.

Example 5.3 (Hill-Climbing algorithm for Gaussian data) Let’s apply the Hill Climbing
algorithm to the Gaussian data generated in Example 4.1 and plotted in Figure 4.2. To
do so, the command hc of the bnlearn package is used. We choose the BIC-score defined
in (5.7) and the empty graph as initial one. The Hill-Climbing algorithm steps with its
corresponding scores are displayed then in Figure 5.3:

Figure 5.3: Hill Climbing algorithm with BIC-score and no random restarts applied to Gaussian data.

Running the algorithm did not lead to finding the true structure. Hence l = 20 random
restarts 10 are included. The graphs obtained with their respective scores are shown in
Figure 5.4 11.

The distance between the graphs are given by:

No random restarts: TP = 2, SHD = 4 : FP = 4, FN = 0, Ham=1

20 random restarts: TP = 4, SHD = 0 : FP = 0, FN = 0, Ham=0

The score for the original network is found to be higher than the score initially obtained.

Finally, the command score of the bnlearn package is applied to the 3 different DAGs
belonging to the same equivalence class to show that the score is equivalent.

> score(model2network("[X1][X2|X1][X3|X1][X4|X2:X3]"),
+ data = gaussian.data, type = "bic-g")
[1] -14354.48
> score(model2network("[X2][X1|X2][X3|X1][X4|X2:X3]"),
+ data = gaussian.data, type = "bic-g")
[1] -14354.48
> score(model2network("[X3][X1|X3][X2|X1][X4|X2:X3]"),
+ data = gaussian.data, type = "bic-g")
[1] -14354.48

10Initialising the Hill Climbing algorithm using different initial graphs
11See Subsection 5.1.1 to interpret the graph.
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(a) No random restarts. (b) l = 20 random restarts.

Figure 5.4: Hill Climbing algorithm with BIC-score and different number of random restarts applied to
Gaussian data.

This example highlights some of the drawbacks of the Hill Climbing algorithm, such
as getting stuck at a local maximum. For this reason, it is really important to choose
a favourable DAG as the starting point of the algorithm. In this task, the Graphical Lasso
could be of great help. Indeed, if the Graphical Lasso recovers the true moralized graph,
this graph could be used as the initial graph, thus incorporating previous knowledge. By
simply removing the necessary edges 12, we would recover the original graph.

Finally, we mention that score-based algorithms are more stable than constraint-based
algorithms according to Scutari et al. (2019).

12The edges that connect common parents in the original network.





6
GAUSSIAN METHODS APPLIED TO

PCBNS DATA

In chapter Chapter 5 we saw the difficulties of structure learning algorithms for PCBNs
data. Hence, we will now explore whether the algorithms for the Gaussian case could
be still applied to estimate the structure of PCBNs. The goal of this chapter is thus to
assess how Gaussian Learning algorithms work for PCBNS. First, the Graphical Lasso,
Constraint and Score-based algorithms are analysed for a particular example. Finally, a
larger simulation study is carried out to gain more insights about how appropriate are
these learning procedures.

6.1. OVERVIEW
We generated data from PCBNs with standard Gaussian margins. This is not restrictive as
margins can always be transformed to desired distributions and this choice of margins
’helps’ the tested algorithms. Even if the marginal distributions are Gaussian the joint
distribution is far from joint Gaussian. This difference can be explored below.

Example 6.1 (Limitations of Gaussian assumptions) The data simulated from the Diamond-
shape PCBN in Example 4.2 with Gaussian margins and the best fitting joint Gaussian
distributions are plotted in Figure 6.1.

It can be seen at a glance that these scatter plots are very different. Indeed, we can observe
lower tail dependency between X1 and X2 in the copula data, whereas these dependencies
are not present in the multivariate Gaussian. Similarly, X1 and X3 exhibit upper tail de-
pendencies in the copula data that are obviously not visible in the multivariate Gaussian.

One can also apply the Mardia’s test 1 to see that the multivariate Gaussian distribution is
not a good choice to model the PCBN data.

1See Section 4.2)
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(a) Transformed data. (b) MLE multivariate Gaussian.

Figure 6.1: Bivariate Scatter Plots for PCBN Data with Gaussian margins vs Data simulated from the MLE
Multivariate Gaussian.

$multivariateGaussianity
Test Statistic p value Result

1 Mardia Skewness 1848.0922252244 0 NO
2 Mardia Kurtosis 35.1589144379238 0 NO
3 MVN <NA> <NA> NO

The test rejects the multivariate Gaussianity hypothesis at significance level α = 0.05. So
the multivariate Gaussian distribution is not appropriate, but we could still obtain rea-
sonable results when applying methods designed for Gaussian data to find the PCBN struc-
ture.

The rest of the chapter continues as follows:

1. First, Graphical Lasso, Constraint-based and Score-based algorithms are applied
to data simulated from the Diamond-shape PCBN with standard Gaussian mar-
gins. The main objective is to illustrate the performance of these algorithms

2. Finally, a more in-depth simulation study on the suitability of these Gaussian stru-
cuture learning algorithms for GBN and PCBN data is carried out.

6.2. GRAPHICAL LASSO
First, the Graphical Lasso is analysed. The obtained results, applying this algorithm and
using the criterion proposed by Giraud (2008) to determine the optimal value of λ, can
be seen in Figure 6.2.

In this case we obtain a fully connected network. However, the moralized graph associ-
ated with the true graph does not have the edge (X1 − X4). The Graphical Lasso fails to
spot that conditional independence in this case. As we said before, the equation (5.2) is
no longer valid. As a consequence, this algorithm fails to recover the moralised graph for
non-gaussian data.
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Figure 6.2: Moralised Graph obtained using Graphical Lasso for our PCBN Data with Gaussian margins.

It might be interesting to check the graph obtained for different values of λ 2. The main
problem is that the GGMselect package is coded in such a way that the above criteria is
implemented directly. Therefore, we can not choose the desired value of λ.

6.3. CONSTRAINT-BASED ALGORITHMS
Next, Constraint-based algorithms are analysed. The obtained results, applying the PC
algorithm and using the 0-correlation independence test in (5.5) with α = 0.05, can be
seen in Figure 6.3.

(a) Equivalence class result of the PC algorithm.
(b) Comparison between the obtained and true

equivalence classes using PC algorithm.

Figure 6.3: Gaussian PC algorithm applied to our PCBN Data with Gaussian margins.

The distances between both graphs are given by:

TP = 1, SHD = 5 : FP = 4, FN = 1, Ham = 3

The results obtained are pretty poor, in a 4 edges network the SHD is 5. Let’s try to iden-
tify the reasons behind it. The only conditional independence readable from the esti-
mated network is X3 ⊥⊥ X4|X1. However, this conditional independence in not presented
in the Diamond-shape PCBN, nor in the data since:

c3,4|1(u3,u4|u1) =
∫ 1

0
c1,2(u1,ω2)·c1,3(ω1,u3)·c3,4(u3,u4)·c2,4|3(C2|3(ω2|u3),C4|3(u4|u3)·dω2 ̸= 1

2This example may suggest that by penalizing more, we would obtain a graph with fewer edges, and who knows
if we would recover the graph.
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On the other hand, these algorithms are not able to detect: X2 ⊥⊥ X3|X1 nor X1 ⊥⊥ X4|X2, X3,
even though these conditional independences are encoded in the Diamond-based PCBN
and thus are present in our data. The performed Gaussian conditional independence
tests are:

> ci.test("X2", "X3", "X1", test = "cor", data = gdatabbn1)
Pearson's Correlation
data: X2 ~ X3 | X1
cor = -0.055426, df = 2497, p-value = 0.00558
alternative hypothesis: true value is not equal to 0

> ci.test("X1", "X4", c("X2","X3"), test = "cor", data = gdatabbn1)
Pearson's Correlation
data: X1 ~ X4 | X2 + X3
cor = 0.065404, df = 2496, p-value = 0.001073
alternative hypothesis: true value is not equal to 0

> ci.test("X3", "X4", "X1", test = "cor", data = gdatabbn1)
Pearson's Correlation
data: X3 ~ X4 | X1
cor = 0.0042779, df = 2497, p-value = 0.8307
alternative hypothesis: true value is not equal to 0

We can see that the only test not rejecting the null hypothesis H0
3 at significance level

α= 0.05, is the test: X3 ⊥⊥ X4|X1. The other two tests yield small correlations, but do not
have sufficient statistical evidence to reject the null hypothesis.

This example illustrates that the correlation tests for the Gaussian case might not de-
tect the conditional independences presented in our data. Secondly, these tests might
not reject the null hypothesis when low correlation is in the data but variables are not
independent.

6.4. SCORE-BASED ALGORITHMS
Lastly, the Score-based algorithms are analysed. The results obtained, applying the Hill-
Climbing algorithm, using BIC score (5.7) and l = 15 random restarts, can be seen in
Figure 6.4.

The distances between both graphs are given by:

TP = 4, SHD = 1 : FP = 1, FN = 0, Ham = 1

In this case, the results are not so bad. Only the edge X1 → X4 was not present in the
original network. Thus, Hill Climbing fails to detect X1 ⊥⊥ X4|X2, X3, but is able to recover
X2 ⊥⊥ X3|X1. Let’s examine the scores for the estimated graph and the true one.

BICEstim.DAG =−8629.624, BICTrue.DAG, estim.param. =−8631.07

3The test use, H0: variables are conditionally independent.
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(a) Equivalence class result of the Hill Climbing
algorithm.

(b) Comparison between the obtained and true
equivalence classes using Hill Climbing algorithm.

Figure 6.4: Gaussian Hill Climbing applied to our PCBN Data with Gaussian margins.

The score gives priority to the estimated DAG over the true DAG. The true DAG is hence
no longer the global maximum of the score function. We are using a score function based
on the Gaussian logLikelihood. However, since our data are not Gaussian, this score
function will no longer be valid to represent the likelihood of these data. As a conse-
quence, these algorithms may fail to recover the true DAG. Despite this, the obtained
results seem more promising than in the Constraint-based case.

6.5. SIMULATION STUDY
Finally, a further simulation study on the suitability of these procedures for learning the
structure of PCBNs is carried out. We are insterested in getting insights that can help us
in the process of finding the true structure of PCBNs.

6.5.1. SIMULATION OBJECTIVES
The main objective of this simulation study is to compare the efficiency of the Gaussian
structure learning algorithms for GBNs and PCBNs. To do so, we study the following
points:

1. Assess whether the Graphical Lasso is able to recover the true moralised graphs.

2. Examine which of the 2 algorithms: PC and Hill Climbing yield better results.

3. Analyze the results obtained for SHD and Hamming distance, to see if our algo-
rithms are able to recover equivalence classes and skeletons.

4. Study the performance of these algorithms for graphs of different nature, i.e. with
different number of nodes and edges.

5. Inspect the efficiency of the algorithms with respect to the sample size.

6. Explore the computation time required for each of these algorithms.

7. In case the algorithms do not recover the true structure:

• whether there is an overestimation or underestimation of the number of edges.

• are there any patterns with respect to copula families or parameters.
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6.5.2. SIMULATION SETUP
We have selected two DAGs of different nature to carry out this simulation study. These
DAGs can be seen in Figure 6.5. Both graphs are strongly chordal, so vine copula models
are used to sample from them4.

(a) Small Network. (b) Big Network.

Figure 6.5: Simulation Study: GBNs vs PCBNs.

The idea of this study is, first, to sample from these DAGs using only Gaussian copulas,
so that by transforming the margins to Gaussian, GBNs are obtained. Second, to sample
from these DAGs choosing other copula families, so that PCBNs are obtained.

SMALL NETWORK

The small network can be seen in Figure 6.5a. It has n = 4 nodes and |E | = 5 edges, i.e.
we are dealing with a low-dimensional but dense network. We simulate from m = 60
different scenarios, results of the combination of:

• 10 family configurations.

– For GBNs, the chosen families are Gaussian copulas.

– For PCBNs, these configurations are shown in Table 6.1.

Table 6.1: Different Family Configuration for PCBNs, Small Network.

Family Configuration
1 2 3 4 5 6 7 8 9 10

C1,2 t C G F J t G J t C
C2,3 t C G F J t G J C F
C3,4 t C G F J t G J G J

C1,3|2 t C G F J C F t F t
C2,4|3 t C G F J C F t J C

• 6 different parameter configurations 5, shown in Table 6.2.

The choice of these configurations has been such that we have scenarios where:

4See Subsection 2.2.2
5Same parameter configuration for GBNs and PCBNs
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Table 6.2: Different Parameter Configurations, Small Network.

Parameter Configuration
1 2 3 4 5 6

τ1,2 0.25 0.75 0.75 0.25 0.25 0.75
τ2,3 0.25 0.75 0.75 0.75 0.25 0.75
τ3,4 0.25 0.75 0.25 0.75 0.25 0.75
τ1,3|2 0.75 0.25 0.75 0.25 0.25 0.75
τ2,4|3 0.75 0.25 0.25 0.75 0.25 0.75

– Copulas in 1st tree are low correlated and Copulas in 2nd tree are highly cor-
related, and vice versa.

– Mix between highly and low correlated copulas.

– All copulas are low correlated.

– All copulas are highly correlated.

BIG NETWORK

The larger network can be seen in Figure 6.5b. It has n = 10 nodes and |E | = 9 edges, i.e.
we are dealing with a higher dimensional, but sparse network. We simulate from m = 64
different scenarios, results of the combination of:

• 8 family configurations.

– For GBNs, the chosen families are Gaussian copulas.

– For PCBNs, these configurations are shown in Table 6.3.

Table 6.3: Different Family Configuration for PCBNs, Big Network.

Family Configuration
1 2 3 4 5 6 7 8

C1,2 t C G F J t G J
C2,3 t C G F J t G J
C3,4 t C G F J C F t
C2,5 t C G F J C F t
C5,6 t C G F J G J C
C6,7 t C G F J G J C
C6,8 t C G F J F t G
C5,9 t C G F J F t G

C9,10 t C G F J J C F

• 8 different parameter configurations 6, shown in Table 6.4.

The choice of these configurations has been such that we have scenarios where:

– All copulas are low correlated.

– All copulas are high correlated.

– Mix between highly and low correlated copulas.
6Same parameter configuration for GBNs and PCBNs
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Table 6.4: Different Parameter Configurations, Big Network.

Parameter Configuration
1 2 3 4 5 6 7 8

τ1,2 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
τ2,3 0.25 0.75 0.25 0.75 0.25 0.75 0.75 0.25
τ3,4 0.25 0.75 0.25 0.75 0.75 0.25 0.25 0.75
τ2,5 0.25 0.75 0.25 0.75 0.75 0.25 0.75 0.25
τ5,6 0.25 0.75 0.75 0.25 0.25 0.75 0.25 0.75
τ6,7 0.25 0.75 0.75 0.25 0.25 0.75 0.75 0.25
τ6,8 0.25 0.75 0.75 0.25 0.75 0.25 0.25 0.75
τ5,9 0.25 0.75 0.75 0.25 0.75 0.25 0.75 0.25
τ9,10 0.25 0.75 0.75 0.25 0.75 0.25 0.25 0.75

ADDITIONAL REMARKS

• Since neither of these two networks has a v-structure, the moralized graph and the
DAG skeleton will coincide. This enables a direct comparison of the three investi-
gated methods.

• The fact that GBNs and PCBNs have the same parameter configurations makes the
scenarios comparable and therefore also their results.

For each of the previous scenarios, M = 30 simulations are performed using different
seeds 7. During the whole simulation study we set the seeds to get reproducible results.
Moreover, 4 different sample sizes are taken:

N = 500, N = 2500, N = 7500, N = 15000.

This will allow us to determine how the efficiency of these algorithms varies with respect
to the sample size.

6.5.3. SIMULATION RESULTS
For each of the simulations:

1. the Graphical Lasso, using the criterion proposed by Giraud (2008) to determine
the optimal value of λ,

2. the PC algorithm, using the 0-correlation test showed in (5.5) with α= 0.05,

3. the Hill Climbing algorithm, using BIC score (5.7) and l = 15 random restarts,

are applied to the simulate data. To compare the true and the estimated structures we
compute for each of the previous algorithms:

• SHD distance 8. • Hamming distance.

7To ensure that outliers are smoothed out
8only for the PC and Hill Climbing algorithm
9We also store an adjacency matrix for each of the scenarios, to better understand the edges that are presented.
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• Number of edges 9. • Running times.

The quantities of interest are averaged over the M = 30 different simulations. These val-
ues are stored for all different scenarios into data frames.

For a better visual analysis of the results, density plots are created for: SHD distances,
Hamming distances and number of edges. In addition, the medians of these results are
computed and represented with a vertical line in the density plots. We also include the
values of the quantiles: Q0.05 and Q0.95 to have a better quantitative understanding of
the spread in the distribution. The computational times for each of the algorithms are
stored. The obtained results can be seen in Table 6.5.

Table 6.5: Simulation Results Chapter 6.

Small Network Big Network

N = 500 Table D.1 Table D.4
Figure D.1 Figure D.5

N = 2500 Table D.2 Table D.5
Figure D.2 Figure D.6

N = 7500 Table D.3 Table D.6
Figure D.3 Figure D.7

N = 15000 Table 6.6 Table 6.7
Figure D.4 Figure D.8

Number of edges Table D.7 Table D.8

Running times Table D.9

Notice that we will have in total:

2︸︷︷︸
Small and Big

× 4︸︷︷︸
Different Sample Sizes

× 2︸︷︷︸
Gaussian and Non-gaussian

= 16 Data Frames

2︸︷︷︸
Small and Big

× 4︸︷︷︸
Different Sample Sizes

× 2︸︷︷︸
Gaussian and Non-gaussian

× 3︸︷︷︸
SHD, Hamming, edges

= 48 figures

For a better follow-up of the discussion of the results, we include Table 6.6 and Table 6.7
corresponding to N = 15000.

Once these results have been obtained, we are ready to address the first 6 simulation
objectives. Let’s analyse in which cases the studied algorithms fail, in order to address
point number 7.
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Table 6.6: Simulation Results for N = 15000, Small Network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.033 0.000 1.033 1.000 0.000 1.440

Constraint
SHD 1.016 0.031 4.667 1.000 0.067 4.467

Hamming 0.900 0.031 1.102 1.000 0.067 1.803

Score
SHD 0.000 0.000 1.003 0.833 0.000 3.500

Hamming 0.000 0.000 1.003 0.833 0.000 1.745

Table 6.7: Simulation Results for N = 15000, Big Network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.000 0.000 0.033 3.733 0.000 20.995

Constraint
SHD 0.467 0.177 1.147 6.633 0.458 16.118

Hamming 0.267 0.067 0.662 3.933 0.267 15.953

Score
SHD 0.167 0.000 0.390 7.733 0.238 22.958

Hamming 0.067 0.000 0.167 5.550 0.100 19.500

6.5.4. SIMULATION FAILURE ANALYSIS
The most significant results we have found during the analysis are included below.

SMALL NETWORK

1. Graphical Lasso

The performance of Graphical Lasso for the Gaussia case is very efficient, especially the
larger the sample size. This algorithm never place the edge (1,4), so overestimation never
occurs. Moreover, it is able to recover the true moralised graph in most scenarios. How-
ever, it encounters problems with parameter configurations 1 and 6 10 in Table 6.2. For
these cases, all the scenarios fail to recover the edge (2,3).

For the non-Guassian case the performance worsens notably. In fact, for this case, as we
increase the sample size, the results are farther away from the real ones. No failure pat-
terns are observed. But it always tends to overestimate the number of edges, for instance
including the (1,4) edge in 35 out of the 60 scenarios we study.

2. PC Algorithm

The PC algorithm does not perform well for the Gaussian case, compared to the other
algorithms. Even for N = 15000, it fails to recover the true equivalence class. It mainly
fails for:

• Parameter configuration 3 in Table 6.2, characterised by τ3,4 = 0.25. It is precisely
the edge (3,4) the one that it is not recovered.

10These correspond to cases where copulas in the second tree are highly correlated.
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• Parameter configuration 4 in Table 6.2, characterised by τ1,2 = 0.25. It is precisely
the edge (1,2) the one that is not recovered.

These copulas with low correlation are probably the cause of the failure of the tests. On
the other hand, the edge (1,4) is almost never included, so the number of edges tends to
be underestimated.

For the non-Gaussian case, the results are even poorer. There are no apparent patterns
in the failed scenarios, but they always tend to overestimate the number of edges.

3. HC Algorithm

The HC algorithm gives the best results for the Gaussian case. Like the Graphical Lasso,
it only fails to recover the true structure for scenarios with highly correlated copulas in
the second tree.

The results obtained for the non-Gaussian case are worse than for the Gaussian case.
Even so, it is the one that gives the best results of the 3 algorithms for PCBNs. It is the
least overestimated and has a median hamming distance that is closest to zero. This
algorithm gives good results for the scenarios where the copulas in the second tree have
all low correlations.

BIG NETWORK

1. Graphical Lasso

Graphical Lasso for the Gaussian case is the best performing algorithm. For N = 15000,
it is able to recover the true moralized graph in 58 out of 64 scenarios.

The performance for the non-Guassian case worsens considerably, reaching even 20
wrong edges. In this case, the scenarios furthest away from the true network were those
corresponding to configuration families 2 and 5 in Table 6.3. These scenarios correspond
to the fully Clayton and fully Joe copula cases. On the other hand, configuration families
1: t copula, gives good results. It was also interesting to find that the fully low correlated
case had a lower error than the fully highly correlated case. Finally, this algorithm always
overestimates the number of edges, but it recovers the edges of the true network.

2. PC Algorithm

The PC algorithm performs considerably better than it did for the small network. In fact,
the median of SHD for the big network is lower in all cases than the small one, even
though the number of edges is higher. In the few cases where it fails, it is because it
incorporates some extra edges, but it always recovers the true edges.

As expected, the outcomes for the PC algorithm for the non-Gaussian case are much
poorer. They get even worse with growing sample size. It is interesting to see how the
scenarios in which PC fails coincide exactly with those in which Graphical Lasso failed
11. As before, these algorithms tend to overestimate the number of edges (although a
little less than Graphical Lasso) but always recover the true edges.

11Fully Clayton and fully Joe copula scenarios
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3. HC Algorithm

As in the case of the small network, the HC algorithm is relatively good for the Gaussian
case. Moreover, it always recovers the true edges.

For the non-Gaussian case exactly the same happens as in case of the Graphical Lasso
and the PC algorithm. HC also fails mainly when the copula families are Clayton and Joe,
and even more so when all copulas have high correlation. It always recovers true edges,
but adds even more edges than the previous algorithms. The quantile 95 reaches a value
of 28 wrong edges.

6.5.5. SIMULATION DISCUSSION
For this two different network structure we can draw the following conclusions from this
simulation study.

The results obtained for GBNs are as expected significantly better than those for PCBNs.
Indeed, all the methods we have used work under Gaussian assumption, so when the
data is not Gaussian likelihoods and tests are no longer valid .

1. The Graphical Lasso is able to recover the moralized graph for the Gaussian case.
In fact for the large network, it is the best performing algorithm. On the other
hand, for the non-Gaussian case it tends to overestimate the number of edges, but
the true edges are usually recovered.

2. The Hill Climbing algorithm outperforms the PC algorithm for the Gaussian set-
ting in both networks. This is in line with the results discussed in Scutari et al.
(2019). For the non-Gaussian case this is no longer true.

3. There are no major differences when SHD or Hamming distance are used.

4. The results are quite different between networks. For example the PC algorithm
did not have a good performance for the small and dense network, however for
the large network it seems to work much better. This suggests that we should not
expect any of these algorithms to have the best performance in all cases.

5. For the Gaussian case we can observe that the efficiency of all algorithms increases
with respect to the sample size, as expected. For the non-Gaussian case this is no
longer true. For the large network, the larger the sample size, the more overesti-
mation occurs.

6. The computation times are longer for the Graphical Lasso than for the other two
algorithms, however all three algorithms are quite fast considering the large sam-
ple size. We have tested only 4 and 10 dimensional networks. Higher-dimensional
examples should be still considered.

7. Finally, it is interesting to see the results analysed at Subsection 6.5.4. The main
conclusion we can draw is that for the large network, non-Gaussian case, the three
algorithms overestimate, but they all recover true edges. It might then be a good
idea:
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(a) Use higher values of λ to induce more sparsity on the moralised graph.

(b) Lower the significance level α in the conditional independence tests. By do-
ing so, we would reject less the null hypothesis. As a consequence, more
edges would be removed from the network.

(c) Using scores that penalize more than the BIC, to remove edges.

However, these procedures may also cause true edges not to be recovered.

Since the true edges are always recovered, we can use these Gaussian methods to
obtain prior information about the structure of PCBNs.

6.5.6. SIMULATION CONCLUSION
The above results suggest that these methods are not entirely efficient at learning the
structure of PCBNs. Even if these algorithms were efficient in recovering the structure,
we would still have to choose a parental ordering for the nodes in the PCBNs and then
estimate the relevant conditional copulas. So we would run into additional questions
and problems. It might be a better idea to tailor algorithms for PCBNs:

• For Constraint-based algorithms we saw many problems arise on how to test in-
dependencies for the non-Gaussian case.

• We therefore opt for exploring algorithms with scores based on the logLikelihood
of PCBNs. This will be the topic to discuss in the following chapter.

In any case, we can benefit from the procedures discussed in this chapter. Indeed, the
three algorithms were able to recover all the true edges. Thus, we could use these results
to obtain an initial graph. This graph would be used to initialize a score-based algorithm
with a suitable score for the PCBNs.

A more in-depth simulation study is needed to obtain more meaningful results or to
support the findings in this simulation study.





7
SCORE-BASED ALGORITHMS FOR

PCBNS

Gaussian methods were not completely efficient for learning the structure from PCBN
data. Score-based algorithms with PCBN logLikelihood scores are then explored in this
chapter. Two main issues arise when dealing with these scores:

1. The logLikelihood computation might involve integration which is computation-
ally expensive 1.

2. The scores computed for different ordering of parents are not the same even if the
structure is the same 2.

For these reasons, it is computationally unfeasible to implement search algorithms based
on the exact logLikelihood expressions and to check all the possible parental orderings.
Instead, we can:

1. Make logLikelihood approximations that avoid integral computations. In this way,
the procedure is speed up and computationally practical algorithms can be ob-
tained.

2. Choose some criteria to select the set of parental orderings.

The former point was first addressed by Pircalabelu et al. (2017). They proposed approx-
imating the logLikelihood using quotient of regular vines and using it as a score. This
algorithm is analysed in this chapter, showing its shortcoming.

Motivated by these works, another PCBN logLikelihood approximation is proposed. More-
over, a heuristic criterion for the selection of the parental ordering is included to tackle
the second point. A particular example is presented to motivate the choice of our pro-
posed approximation and a simulation study is carried out to compare these methods.

1Recall for instance (4.8) when dealing with the Diamond shape PCBN.
2Recall the large logLikelihood difference when choosing different parental ordering in the Diamond shape

PCBN from Example 4.2.
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7.1. VINE DAG
Pircalabelu et al. (2017) were the first to propose a logLikelihood approximation using
regular vines. The score is based on the fact that if Xn has parents X1, . . . , Xn−1, then the
PDF can be expressed as the quotient of:

fXn |X1,...,Xn−1 (xn |x1, . . . , xn−1) = fX1,...,Xn (x1, . . . , xn)

fX1,...,Xn−1 (x1, . . . , xn−1)
(7.1)

Moreover, they proposed to model

• fX1,...,Xn (x1, . . . , xn) using a C-Vine, with central node Xn
3.

• fX1,...,Xn−1 (x1, . . . , xn−1) using a D-Vine 4.

Since theoretically all vine structures can be used to decompose the density, the assump-
tions included so far are valid. However, at this stage (7.1) propose:

fXn |X1,...,Xn−1 (xn |x1, . . . , xn−1) = CV1,...,n(x1, . . . , xn)

DV1,...,n−1(x1, . . . , xn−1)
. (7.2)

Indeed, the above is correct if the density of D-vine is computed from the density of C-
vine by integrating out the first variable. Such computations are prohibitive.

The authors proposed to represent each of the conditional densities in the density fac-
torization separately and designed an interesting penalty to create their approximation
of the likelihood based score:

IC =
N∑

m=1

n∑
i=1

(
log

(
CVpa(i ),i (xxxm

pa(i ), xm
i )

)
− log

(
DVpa(i )(xxx

m
pa(i ))

))
︸ ︷︷ ︸

logLikelihood

−
N∑

m=1

n∑
i=1

log
(
DVpa(i )(xxxm

pa(i ))
)

|pa(i )|log(n)︸ ︷︷ ︸
Penalty

,

(7.3)

where N is the sample size and n is the number of nodes.

In practice the authors fit the C-Vine and D-Vine separately and they fit each conditional
density separately.

Few more choices are quite arbitrary in our opinion:

• The choice of the vine copula structures in the decomposition. In the C-Vine the
child node is always included in the conditioned set, whereas we saw in Subsec-
tion 4.3.1 that the child node was always in the conditioning set. Furthermore, the
type of vines are specified, but not the order of the nodes belonging to them.

3linking the central node: the child, to all of its parents.
4Linking all the parents, giving them equal importance.
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• The penalty is very difficult to motivate. It is based on part of the logLikelihood
and that the number of parents is in the denominator.

To run the algorithm presented above the order of variables in the decomposition is
needed. This point has not been addressed in the paper. Moreover, the testing of the
proposed procedure included in the paper was minimal.

To gain more experience with the proposed method, several practical experiments were
performed. Below we include a small example of the shortcomings of the proposed score
function.

7.1.1. SHORTCOMINGS VINE DAG
Let’s examine the shortcomings of this result. To do so we investigate two different
PCBNs, BN1 and BN2 that can be seen in Figure 7.1. Both graphs are strongly chordal, so
vine copula models can be used to simulate from them and also to estimate its logLike-
lihoods.

(a) BN1. (b) BN2.

Figure 7.1: Shortcoming of the CD-Vine decomposition’s logLikelihood approximation.

Imagine that we simulate from BN1 in Figure 7.1a. For this network we have:

• BIC (see (5.7)), estimating the logLikelihood 5 using the correct order 2 <3 1, and
assigning a copula to each edge, we obtain:

BIC BN1 =
N∑

m=1
log

(
ĉ2,3(um

2 ,um
3 ) · ĉ1,3|2(um

1|2,um
3|2)

)
︸ ︷︷ ︸

Estimated logLikelihood

− 2

2
log(N )︸ ︷︷ ︸

Penalisation

. (7.4)

• IC (see (7.3)), estimating the approximated logLikelihood. Since U3 has two par-
ents U1 and U2, the C-Vine will have as its central node U3, while the D-Vine will
consist of the copula joining the parents, i.e. c1,2.

IC BN1 =
N∑

m=1
log

(
ĉ1,3(um

1 ,um
3 ) · ĉ2,3(um

2 ,um
3 ) · ĉ1,2|3(um

1|3,um
2|3)

ĉ1,2(um
1 ,um

2 )

)
︸ ︷︷ ︸

Approximated logLikelihood

−
N∑

m=1

log(ĉ1,2(um
1 ,um

2 ))

2log(N )︸ ︷︷ ︸
Penalisation

.

(7.5)

5From now on the hat is used to denote that the copula is estimated (both family and parameters) from data.
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Moreover, we also analyse BN2 represented in Figure 7.1b. For this network we have:

• BIC (see (5.7)), estimating the logLikelihood using the order 3 <2 1, and assigning
a copula to each edge, we obtain:

BIC BN2 =
N∑

m=1
log

(
ĉ1,3(um

1 ,um
3 ) · ĉ2,3(um

2 ,um
3 ) · ĉ1,2|3(um

1|3,um
2|3)

)
︸ ︷︷ ︸

Estimated logLikelihood

− 3

2
log(N )︸ ︷︷ ︸

Penalisation

. (7.6)

• IC (see (7.3)), estimating the approximated logLikelihood. Since U2 has two par-
ents U1 and U3, the C-Vine will have as its central node U2, while the D-Vine will
consist of the copula joining the parents, i.e. C1,3. In addition, U3 has only one par-
ent: U1, so the D-Vine consist just of c1,3. As the margins are uniform the C-Vine
corresponding to node U3 will be 1.

IC BN2 =
N∑

m=1
log

(
ĉ1,2(um

1 ,um
2 ) · ĉ2,3(um

2 ,um
3 ) · ĉ1,3|2(um

1|2,um
3|2)

ĉ1,3(um
1 ,um

3 )

)
+ log

(
ĉ1,3(um

1 ,um
3 )

)
︸ ︷︷ ︸

Approximated logLikelihood

−
N∑

m=1

log(ĉ1,3(um
1 ,um

3 ))

2log(N )︸ ︷︷ ︸
Penalisation

.

(7.7)

Let’s look at the expression (7.7). If we simulated from BN1, in theory C1,2 = C⊥⊥, such
that c1,2(u1,u2) = 1. In practice ĉ1,2(um

1 ,um
2 ) will be close to 1, so when taking loga-

rithms these terms will be negligible compared to the other terms in the logLikelihood.
Moreover, the term ĉ1,3(um

1 ,um
3 ) vanishes as it is in numerator and denominator. Conse-

quently:

Approximated logLikelihood of BN2 ≈ Estimated logLikelihood of BN1

On the other hand, and again as log
(
ĉ1,2(um

1 ,um
2 )

)
will be negligible in (7.6). We then

have that:

Approximated logLikelihood of BN1 ≈ Estimated logLikelihood of BN2

Thus, a problem then arises since the CD-Vine decomposition approximation associates
the logLikelihood of some networks with the true logLikelihood of others. We therefore
expect the IC criterion to give priority to incorrect networks in most cases. Let’s confirm
our presumptions.

We simulate from BN1 given by Figure 7.1a, using m = 40 different scenarios, results of
the combination of:
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• 10 family configurations shown in Table 7.1.

Table 7.1: Different Family Configurations, CD-Vine shortcomings.

Family Configuration
1 2 3 4 5 6 7 8 9 10

C1,3|2 C G F J C G F C G C
C1,2 C G F J G F J F J J

• 4 different parameter configurations shown in Table 7.2.

Table 7.2: Different Parameter Configurations, CD Vine shortcomings.

Parameter Configuration
1 2 3 4

τ1,3|2 0.25 0.25 0.75 0.75
τ2,3 0.25 0.75 0.25 0.75

For each of the above scenarios, we set the seeds to get reproducible results and N = 2500
is taken as a sample size during this example. Moreover, we compute:

• BIC BN1, given by (7.4).

• BIC BN2, given by (7.6).

• IC BN1, given by (7.5).

• IC BN1, given by (7.5).

The results obtained can be summarized as follows

1. In 39 out of 40 scenarios BIC BN1 > BIC BN2, and hence the BIC score prioritise
the true network over the other one.

2. In 40 out of 40 scenarios IC BN2 > IC BN1, and hence the IC score always prioritise
the other network over the true one.

Taking into account that the SHD between the two networks is SHD = 3, we show the
significant errors that are made if we choose the IC criterion as the score. This example
illustrate the limitations of this approach.

On the other hand, Pircalabelu et al. (2017) demonstrate the consistency of the penalty
term in their proposed score. The proof can be seen in Lemma 4 in the previous paper.
This leads us to believe that what fails in the score function is the approximation of the
logLikelihood. Therefore, in the remainder of this chapter we will only focus on the study
of logLikelihood approximations.

7.2. ESTIMATING EXTRA COPULAS
To simplify computation of likelihoods of PCBNs we propose to instead of integrating,
we will estimate all the necessary copulas from data. The proposed score function will
be then taken as an approximation of the likelihood and BIC penalty.



7

76 7. SCORE-BASED ALGORITHMS FOR PCBNS

Example 7.1 (Approximation logLikelihood Diamond shape PCBN) This procedure might
become more clear with an example. Let’s go back to the Diamond shape PCBN studied in
Example 4.2.

Figure 7.2: Diamond shape PCBN.

To evaluate the conditional copula c2,4|3, the
pseudo-observations u2|3 and u4|3 must be

computed. This could be done applying
(2.13) to the copulas C2,3 and C3,4, i.e:

u2|3 =
∂C2,3(u2,u3)

∂u3
, u4,3 =

∂C3,4(u3,u4)

∂u4
.

The PCBN decomposition specifies the copula C3,4, allowing for the direct computation of
u4|3. In contrast, the decomposition does not directly include C2,3. This copula has to be
calculated using integrals:

C2,3(u2,u3) =
∫ u3

0

∫ 1

0

∂C1,2(ω1,u2)

∂ω1
· c1,3(ω1,ω3) ·dω1 ·dω3. (7.8)

Instead of computing C2,3 using (7.8), our proposal is to estimate Ĉ2,3 directly from data.
Differentiating this copula 6, we obtain an approximation û2|3 of u2|3. The final step is to
estimate Ĉ2,4|3 using the approximation û2|3 and the observation u4|3. The approximated
logLikelihood becomes:

Approx.logLik(uuu,θθθ) =
N∑

m=1
log

(
c1,2(um

1 ,um
2 )

)+ log
(
c1,3(um

1 ,um
3 )

)+
log

ĉ2,3(um
2 ,um

3 ) · c3,4(um
3 ,um

4 ) · ĉ2,4|3(ûm
2|3,um

4|3)︸ ︷︷ ︸
D-Vine

− log
(
ĉ2,3(um

2 ,um
3 )

)
.

(7.9)

Hence, no integration is required to compute this approximated logLikelihood. A motiva-
tional example showing good qualitative and quantitative properties of these procedures
will be included later in Section 7.3.

7.2.1. GENERAL PROCEDURE
In a more general framework, if the node v ∈ V, has an ordered parental set given by
K = {ω1, . . . ,ωn}, we saw in Subsection 4.3.1, that the PDF could be expressed as:

fXv |XXX K (xv |xxxK ) = fXv (xv )
n∏

i=1
cv,ωi |K−i

(
FXv |XXX K−i

(xv |xxxK−i ),FXωi |XXX K−i
(xωi |xxxK−i );xxxK−i

)
,

(7.10)

6as in (2.13)
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where K−i = {ωi+1, . . . ,ωn}, for every i ∈ {1, . . . ,n}. The copulas in this prior decomposi-
tion are Cv,ωn ,Cv,ωn−1|ωn , . . . ,Cv,ω2|ω3,...,ωn ,Cv,ω1|ω2,...,ωn .

Our proposal is then to construct a vine containing all the previous copulas, allowing
us to estimate them without the need of integrals. This can be done by choosing a D-
Vine with order in the 1st tree given by D = {ω1,ω2 . . . ,ωn , v}. By doing this, a regular
vine is obtained in which the last node of each tree corresponds to each of the preceding
copulas. This is better illustrated in Figure 7.3.

Figure 7.3: D-Vine, estimating extra copulas to avoid integrals.

By using the RVineCopSelect command of the VineCopula package, this D-Vine can
be fitted from data. The output includes the logLikelihood of each of the copulas that
compose the D-Vine. By selecting just the terms that appear in (7.10) and adding them
up, we obtain the desired logLikelihood approximation of log

(
fXv |XXX K (xv |xxxK )

)
.

7.2.2. PARENTAL ORDERING
To select the set of parental orderings O , the approach suggested by Bauer and Czado
(2016) is employed. The foundation of this approach is the application of a greedy-type
procedure inspired by the structure selection algorithm for vine copula models 7.

Imagine that the node v ∈V, has a parental set given by K = {ω1, . . . ,ωn}, and assume that
we have already selected the n − i smallest parents of v , denoted by the ordered subset
K−i = {ωn <v · · · <v ωi+1}. This implies that the pair-copula families for

Cv,ωn , . . . ,Cv,ωi+1|ωi+2,...,ωn ,

have already been chosen, and its parameters have been estimated. The selection of the
n − i +1 smallest parent is performed in three steps.

1. A truncated C-Vine up to level n − i + 1, with order C = {ωn , . . . ,ωi+1, v} is con-
structed. The copulas in the last tree will be given by Cv,ω|K−i , for all ω ∈ K \K−i =
{ω1, . . . ,ωi }.

7See Subsection 2.2.4
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2. The previous C-Vine is fitted and the Kendall’s τ for each of the copulas in the last
tree are computed.

3. We selectω ∈ {ω1, . . . ,ωi } such that it maximizes the absolute value of τv,ω|ωi+1,...,ωn .
For such a node, we select the copula family and we estimate its parameters.

Repeating this process pa(v) times for each v ∈ V, the set of parental orderings O is
obtained. It is worth mentioning that this procedure is heuristic, and in many cases it
will not recover the true order.

7.3. MOTIVATIONAL EXAMPLE
The proposed approach is then explored for the particular example of the diamond-
shaped PCBN. The data simulated in Example 4.2, with parameters given by Table 4.1
and plotted in Figure 4.7 is used in this section.

7.3.1. LOGLIKELIHOOD COMPARISON

First, the true logLikelihood and its different approximations are computed.

• True logLikelihood 8:

logLik(uuu,θθθ) =
N∑

m=1
log

(
c1,2(um

1 ,um
2 )

)+ log
(
c1,3(um

1 ,um
3 )

)+ log
(
c3,4(um

3 ,um
4 )

)
+ log

(
c2,4|3

(∫ 1

0

∂C1,2(ω1,um
2 )

∂ω1
· c1,3(ω1,um

3 ) ·dω1,C4|3(um
4 |um

3 )

)) (7.11)

• Estimated LogLikelihood using CD-Vine approximation.

logLik(uuu,θ̂θθ) =
N∑

m=1
log

(
ĉ1,2(um

1 ,um
2 )

)+ log
(
ĉ1,3(um

1 ,um
3 )

)
+ log

(
ĉ2,4(um

2 ,um
4 ) · ĉ3,4(um

3 ,um
4 ) · ĉ2,3|4(Ĉ2|4(um

2 |um
4 ),Ĉ3|4(um

4 |um
2 )

ĉ2,3(um
2 ,um

3 )

)
(7.12)

• Estimated logLikelihood computing extra margins using the correct order.

logLik(uuu,θ̂θθ) =
N∑

m=1
log

(
ĉ1,2(um

1 ,um
2 )

)+ log
(
ĉ1,3(um

1 ,um
3 )

)
+ log

(
ĉ2,3(um

2 ,um
3 ) · ĉ3,4(um

3 ,um
4 ) · ĉ2,4|3(Ĉ2|3(um

2 |um
3 ),Ĉ4|3(um

4 |um
3 )

)
− log

(
ĉ2,3(um

2 ,um
3 )

) (7.13)

• Estimated logLikelihood computing extra margins using the wrong order.

8Parameters and copula families specified by Table 4.1
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logLik(uuu,θ̂θθ) =
N∑

m=1
log

(
ĉ1,2(um

1 ,um
2 )

)+ log
(
ĉ1,3(um

1 ,um
3 )

)
+ log

(
ĉ2,3(um

2 ,um
3 ) · ĉ2,4(um

2 ,um
4 ) · ĉ3,4|2(Ĉ3|2(um

3 |um
2 ),Ĉ4|2(um

4 |um
2 )

)
− log

(
ĉ2,3(um

2 ,um
3 )

) (7.14)

The obtained results can be seen in Table 7.3.

Table 7.3: Values and Computational times of the different logLikelihood approximations for the Diamond
shape PCBN.

Value Computational Time
True logLik 7029.19 93.76

Estim. logLik CD-Vine 6176.758 8.102
Estim. logLik, extra copulas, true order 6773.572 8.245

Estim. logLik, extra copulas, wrong order 6357.682 8.634

Regardless of the chosen order, our proposed method yields better approximations than
the CD-Vine approach. The relative error of the CD-Vine decomposition is 12.12%, while
for our procedure with the true order is only 3.64%. This once again highlights the short-
comings of the CD-Vine approach. It also suggests that using our method might be a
good idea. Indeed, a small error is still made, but this procedure is more than 10 times
faster than computing the integrals.

Regarding the parental ordering and as we have τ2,4 = 0.77 > τ3,4 = 0.50, the previous
criteria choose the wrong order 2 <4 3. As a consequence, a worse estimate of the log-
Likelihood is obtained. This example illustrate how heuristic methods can sometimes
fail. A more intensive study of this heuristic method is needed.

7.3.2. VISUAL ANALYSIS AND GOODNESS OF FIT TEST

We examine now how the estimation of extra copulas affects the data. To do so, we
compare true margins (obtained by integration) with the copulas estimated using our
method.

COMPARISON OF TRUE MARGINS U2 −U3 VS ESTIMATED COPULA Ĉ2,3

This comparison can be seen by means of scatter plots in Figure 7.4, where we include
the values of τ and the copula families.

At first glance these scatter plots are very similar. Both have a lower tail dependence
and the values of Kendall’s τ are close Nevertheless, we need a quantitative study to con-
firm our findings. To do so a goodness-of-fit test 9 is performed to assess whether the
estimated copula fits the true margins:

$p.value.CvM $p.value.KS $statistic.CvM $statistic.KS
[1] 0 [1] 0 [1] 0.2724597 [1] 1.112736

9See the goodness of fit test discussed in Section 2.1
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Figure 7.4: True margins U2 and U3 vs Data simulated from Ĉ2,3.

These tests reject the null hypothesis H0 that margins U2, U3 come from the copula Ĉ2,3.
This highlights how in order to simulate from this PCBN, integrations are required.

COMPARISON OF TRUE MARGIN U2|3 VS ESTIMATED MARGIN Û2|3 = Ĉ2|3(U2,U3)
In the approximation of likelihood we are not using the density of copula C23. This cop-
ula is used to compute pseudo-observations U2|3. We thus compare the true margins
U2|3 with the estimated ones Û2|3 generated using the copula Ĉ2|3. This comparison can
be seen in Figure 7.5.

(a) Density plots U2|3 vs Û2|3. (b) Scatter plot U2|3 vs Û2|3.

Figure 7.5: Comparison of True Margin U2|3 vs Estimated Margin Û2|3 = Ĉ2|3(U2,U3).

In the figure on the left we can see how the distribution of Û2|3 is approximately uniform
in the interval [0,1]. In the figure on the right we can observe how most of the points lie
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on the diagonal. Therefore, for most of the observations, its approximation is very close
to the true value. In addition, we perform a goodness of fit test to check whether Û2|3 is
uniform.

One-sample Kolmogorov-Smirnov test
data: hatu2.3, D = 0.027141, p-value = 0.05029

The p-value is greater than α = 0.05, so there is not enough statistical evidence to reject the null
hypothesis that Û2|3 is uniform.

COMPARISON OF TRUE MARGINS U2|3 −U4|3 VS ESTIMATED COPULA Ĉ2,4|3
Finally, including the margin U4|3, we study the differences between the true copula C2,4|3 and the
estimated one Ĉ2,4|3 using the approximations. This comparison can be seen by means of scatter
plots in Figure 7.6.

Figure 7.6: True conditional margins U2|3 and U4|3 vs Data simulated from Ĉ2,4|3.

In general terms the approximation made does not affect the shape of the data. Both distributions
have upper tail dependence. There are differences between the families, but the values of both
Kendall’s τ are close. Moreover, a goodness-of-fit test is performed to obtain more quantitative
insights:

$p.value.CvM $p.value.KS $statistic.CvM $statistic.KS
[1] 0.6666667 [1] 0.7 [1] 0.02784511 [1] 0.4738971

There is not enough statistical evidence to reject the null hypothesis at level α = 0.05.
This shows that actually estimating copulas instead of carrying out integration is not a
bad approximation. Although, there is still a difference in logLikelihoods:

log (C2,4|3) = 2734.239, l og (Ĉ2,4|3) = 2478.053
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7.4. SIMULATION STUDY
Finally, a small simulation study is carried out on the suitability of the approximations
to obtain the PCBN logLikelihoods.

7.4.1. SIMULATION OBJECTIVES
The main objectives of this simulation study are:

1. To analyse how good the previously explained logLikelihood approximations are.

2. To compare the performance of the approximations using the CD-Vine decompo-
sition vs. estimating extra copulas.

3. To investigate the trade-off between the logLikelihood error incurred in these ap-
proximations vs the reduction in computational time involved in their use.

4. To inspect how appropriate is the proposed parental ordering.

7.4.2. SIMULATION SETUP
We have selected only one DAG to conduct this simulation study. This DAG is precisely
the diamond-shape one. The choice of this DAG is based on the fact that:

Figure 7.7: Diamond shape PCBN
Simulation Study Chapter 7.

• We need a network where there is at least one
node with more than one parent. This implies
that the CD Vine approximation and the ap-
proximation by estimating additional copulas
lead to different results. This fact rules out all
tree-shaped DAGs.

• We need a DAG with a non-strongly chordal
skeleton, so that integrations are necessary
for the computation of its logLikelihood. On
the other hand, these integrations are often
extremely costly. In our case only a one-
dimensional integration will be required.

We simulate from m = 80 different scenarios, results of the combination of:

• 10 family configurations shown in Table 7.4.

Table 7.4: Different Family Configurations, Simulation Study Diamond-Shape PCBN.

Family Configuration
1 2 3 4 5 6 7 8 9 10

C1,2 t C G F J t G t G J
C1,3 t C G F J t G C F t
C3,4 t C G F J C F G J C

C2,4|3 t C G F J C F F t G
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• 8 different parameter configurations shown in Table 7.5.

Table 7.5: Different Parameter Configurations, Simulation Study Diamond-Shape PCBN.

Parameter Configuration
1 2 3 4 5 6 7 8

τ1,2 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
τ1,3 0.25 0.75 0.25 0.75 0.25 0.75 0.75 0.25
τ3,4 0.25 0.75 0.75 0.25 0.25 0.75 0.25 0.75
τ2,4|3 0.25 0.75 0.75 0.25 0.75 0.25 0.75 0.25

For each of the above scenarios we only simulated M = 1 time due to the computational
burden of the simulations. We set the seeds to get reproducible results. Moreover, N =
2500 is taken as a sample size during the whole study.

7.4.3. SIMULATION RESULTS
For each of the scenarios, we compute:

1. True logLik, given by (7.11).

2. LogLik using CD-Vine decomposition, given by (7.12).

3. LogLik computing extra margins using the true order, given by (7.13).

4. LogLik computing extra margins using the wrong order, given by (7.14).

5. LogLik computing extra margins, using the previously described parental ordering
heuristic.

The logLikelihood values vary greatly between scenarios, depending on whether the
copulas are highly correlated or low correlated. Therefore, we compute the relative er-
rors between the true logLik and the approximations made. This makes it easier for us to
compare different scenarios. In addition, the respective computational times are stored.

For a better visual analysis of the results, density plots are created for both relative errors
and computational times. Furthermore, the medians of these quantities are computed
and represented with a vertical line in the above plots. We also include the values of the
quantiles: Q0.05, Q0.25, Q0.75 and Q0.95, to have a better quantitative understanding of the
spread of the distribution. The obtained results can be seen in:

• Relative Errors: Table 7.6, Figure 7.8.

• Computational Times: Table 7.7, Figure 7.9.

We now analyse the results obtained.
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Table 7.6: LogLikelihood Relative Errors, Simulation Study Diamond-Shape PCBN.

Q0.05 Q0.25 Median Q0.75 Q0.95
CD-Vine 0.167 1.307 3.185 7.358 13.951

True order 0.006 0.039 0.146 0.797 2.514
Wrong order 0.093 1.252 4.084 9.577 23.258

Parental order 0.025 0.095 1.069 4.239 14.322

Table 7.7: Computational Times, Simulation Study Diamond-Shape PCBN.

Q0.05 Q0.25 Median Q0.75 Q0.95
True logLik 139.214 156.717 190.453 247.769 388.397

CD-Vine 6.096 7.729 8.634 9.225 10.737
True order 7.233 8.188 8.818 9.612 11.377

Wrong order 7.131 8.017 8.550 9.263 11.278

(a) Density plots: Relative Error CD-Vine approach vs
Estimation Extra Copula, True Order.

(b) Density plots: Relative Error CD-Vine approach vs
Estimation Extra Copula, Parental Order Criteria.

Figure 7.8: Comparison of the LogLikelihood Relative Errors using the CD-Vine approximation vs Estimation
of Extra Copulas, simulation Study Diamond-Shape PCBN.

(a) Density plots: Computational Times CD-Vine
approach vs Estimation Extra Copula, True Order.

(b) Density plot: Computational Times True
LogLikelihood.

Figure 7.9: Comparison of the Computational Times using the studied Approximations vs Computing the
True LogLikelihood, Simulation Study Diamond-Shape PCBN.
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7.4.4. SIMULATION ANALYSIS

The best among the approximations of the true logLikelihood is to estimate additional
copulas with the true order. Indeed, in more than 75% of the scenarios, the relative error
is lower than 1%. This is really good considering that the approximation is more than 20
times faster than the integral computations. Moreover, it can be observed in Figure 7.8a
that the proposed true order approach outperforms by far the CD-Vine method. In fact,
it is better in 75 out of 80 scenarios 10.

On the other hand, the situation changes a lot if we choose the wrong order. In that case,
about 25% of the scenarios yield a relative error larger than 10%. Making this a rather
poor approximation. In fact the CD-Vine method beats the proposed approximation
with the wrong order in 45 out of 80 scenarios. These scenarios include all cases in which
the copula C3,4 is highly correlated, τ3,4 = 0.75 11. This emphasizes how important it is
to choose the correct order.

In this case computing all possible orders is not a computationally demanding task 12.
In many other cases, a heuristic criterion for the choice of the parental ordering will be
needed. The criterion proposed by Bauer and Czado (2016), selects the true order in only
32 out of 80 scenarios. Despite this, we can observe in Figure 7.8b that this method is su-
perior to the CD-Vine approach. This procedure yields a more accurate approximation
in 61 out of 80 scenarios. Moreover, it results in a relative error of less than 1% in approx-
imately half of the scenarios. On the other hand, it can get errors of more than 10%, as a
consequence of choosing the wrong order.

7.4.5. SIMULATION DISCUSSION

This simulation study confirms that implementing search algorithms based on the ex-
act logLikelihood expressions is computationally unfeasible 13. Instead, approximations
are required to speed up computations. In this task, the above results suggest that our
proposed method outperforms the CD-Vine approach.

If the number of parents is not too large, all parental orderings can be checked. This
would guarantee to find the correct order. Consequently, very accurate and fast approx-
imations are obtained. Heuristic techniques are required in several other situations to
handle the parental ordering. The simulation study findings demonstrate that even us-
ing heuristics, the proposed approximations are superior to the CD-Vine.

Everything seems to indicate that implementing search algorithms with a score based
on this logLikelihood approximation can give good results. However, a more in-depth
simulation study is needed to obtain more meaningful results or to support the findings
in this simulation study.

10The remaining 5 scenarios correspond to the case where all copulas are t.
11i.e, parameter configurations 2, 3, 6 and 8 in Table 7.5
12Indeed, there are only two.
13See Figure 7.9b.
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7.5. PROPOSAL
Although the above approximations are relatively fast, starting with an empty graph in
score-based algorithms for PCBNs is a computationally challenging task. Instead, it
seems like a wise idea to:

1. Apply Gaussian Structure Learning algorithm to our PCBN data to obtain an initial
graph, as we studied during Chapter 6.

2. Employ the Hill Climbing algorithm based on the logLikelihood approximation
proposed in Section 7.2 and the parental ordering presented in Subsection 7.2.2.

This is precisely the method proposed in this dissertation to learn the structure of PCBNs.
It is outlined in Algorithm 4.

Algorithm 4 Proposed algorithm for Structure Learning of PCBNs.
Input Data set X.
Output Directed Acyclic Graph Gfinal with parental ordering O , representing the PCBN.

1: Transform margins to Gaussian;
2: Apply Gaussian Learning algorithms to obtain an initial graph Gstart;
3: Order the nodes in Gstart utilizing the parental ordering criteria and set O = order(Gstart);
4: Use the logLikelihood approximation to compute the score of Gstart, ScoreGstart = Score(Gstart)

and set max.score = ScoreG .
5: repeat
6: for for addition, deletion or reversal of randomly selected arcs resulting in a DAG: do
7: Order the parents;
8: Use the logLikelihood approximation to compute the score of the modified network,
9: ScoreG∗ = Score(G∗)

10: if ScoreG∗ > ScoreG , set G =G∗, O = order(G∗) and ScoreG = ScoreG∗ . then
11: update max.score = ScoreG .
12: end if
13: end for
14: until max.score does not increase.
15: Gfinal =G and O = order(G ).

The application of this algorithm is illustrated below in a concrete example.

7.5.1. APPLICATION EXAMPLE
Let’s continue with the data simulated from the Diamond-shape PCBN in Example 4.2.
First, the HC algorithm using the Gaussian procedure 14 is applied. Then, the previously
explained criteria is used to choose the parental ordering. The resulting DAG can be seen
in Figure 7.10b.

The next step is to compute the chosen score. To account for the penalty, the BIC given
by (5.7) is used as in this example. The obtained score is then:

BICInitial DAG = 6338.122

14Please see Section 6.4 for more details.
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(a) Diamond shape PCBN.
(b) PCBN result from: Gaussian HC Algorithm + Parental

Order Criterion.

Figure 7.10: True PCBN and Estimated PCBN using Gaussian HC Algorithm and Parental Order Criterion.

The HC algorithm then randomly adds, removes or reverses different edges. It also uses
the criteria to order the parents and computes the resulting score. Below, some possible
steps of the algorithm are shown.

REMOVING ONE EDGE

(a) Removing U1 →U4,
BIC = 6342.03.

(b) Removing U1 →U2,
BIC = 5288.03.

(c) Removing U1 →U3,
BIC = 3862.97.

Figure 7.11: Removing 1 edge, HC Algorithm applied to Diamond-shape PCBN.
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ADDING ONE EDGE

(a) Adding U2 →U3,
BIC = 6334.21.

(b) Adding U3 →U2,
BIC = 6334.21.

Figure 7.12: Adding 1 edge, HC Algorithm applied to Diamond-shape PCBN.

REVERSING ONE EDGE

(a) Reversing U4 →U3,
BIC = 6288.29.

(b) Reversing U4 →U2,
BIC = 6060.20.

Figure 7.13: Reversing 1 edge, HC Algorithm applied to Diamond-shape PCBN.

Of all the possible movements we have checked, the DAG that results in the highest BIC is
the one given by Figure 7.11a. Therefore, we would recover the true structure. Although,
the order of the parents is the wrong one. This example illustrate how promising is the
suggested method to learn the structure of PCBNs.

Unfortunately, we arrived at these ideas at the end of the research period. So there was no
time left to implement and test this procedure. Another interesting point to investigate
in the future is the search for suitable penalties for our score. Therefore, we leave these
lines of research open for future work, to support our beliefs.



8
DISCUSSION AND FUTURE WORK

The aim of this study was to investigate structure learning algorithms for both Gaussian
Bayesian Networks and Pair Copula Bayesian Network. First, we presented an overview
of the two types of BNs, illustrating its properties and differences. Second, we provided
an outline of the different existing structure learning algorithms, showing their efficiency
for the Gaussian case and limitations for the copula based. The performance of Gaussian
structure learning algorithms for PCBNs was evaluated. Finally, different logLikelihood
approaches to construct PCBN score-based algorithms were studied. All these points
will be discussed in the following paragraphs.

We first looked at the Gaussian case. It was shown that GBNs were equivalent to multi-
variate Gaussian distributions. Thus, acquiring all the good properties of these distribu-
tions. Indeed, these distributions were fully characterized by their mean and covariance
matrix, making them computationally tractable using simple algebra. Furthermore, the
independencies and conditional independencies of the distribution could be directly
derived from the covariance matrix. On the other hand, these networks were very re-
strictive and made strong assumptions that were frequently violated in practice.

To address the previous problem, we examined PCBNs, in which distributions were ex-
pressed as the product of bivariate copulas. These models could account for a wide range
of distributional features, such as tail dependencies, non-linearities, and asymmetric
dependencies. Thus, strict Gaussian assumptions were relaxed. However, these distri-
butions were not tractable and usually involved computationally expensive integrals. In
addition, the independencies and conditionally independencies could no longer be read
from the covariance matrix. Finally, due to the simplifying assumptions, different orders
produced different decompositions, which made learning the structure of PCBNs a NP-
hard problem.

89
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The following step was to give an overview of the different structure learning algorithms.
We studied three different algorithms: Graphical Lasso, Constraint-based and Score-
based. The good properties of these algorithms for the Gaussian case were illustrated:

• The Graphical Lasso was proven to be asymptotically consistent 1 in estimating
the set of non-zero elements of the precision matrix, and therefore recovering the
true moralised graph.

• For the Constraint-based we showed that 0-correlation implies independence. As
a consequence, accurate independence tests could be performed by simply using
the covariance matrix.

• Lastly, the tractability properties of the Gaussian distribution made the Score-based
algorithms fast and powerful.

All these statements were validated by means of a simulation study, where the high effi-
ciency of these methods was proven.

Conversely, the non-Gaussian case was shown to present numerous problems:

• Indeed, the Graphical Lasso worked under Gaussian assumptions, causing mis-
specification for PCBN structures.

• Outside the Gaussian world, 0-correlation did not imply independence. Conse-
quently, other conditional independence test were required in Constraint-based
algorithms for PCBNs. The issue was that other types of tests were computation-
ally demanding, making these algorithms computationally infeasible.

• Finally, we showed the shortcomings that arose in score-based algorithms for PCBNs.
LogLikelihood scores were not equivalent; even for the same DAG, the scores re-
sulting from taking different parental orderings were quite different. Furthermore,
the logLikelihood computation often involved computational expensive integrals,
making these algorithms not really practical.

Following these findings, two different procedures were investigated to enhance the struc-
ture learning of PCBNs.

First, Gaussian learning algorithms were applied to PCBNs. Indeed, after seeing the high
efficiency of the Gaussian case, we wondered whether these procedures could help us
to obtain some information about the structure of PCBNs. To this end, we conducted a
simulation study to test the suitability of these procedures. The results suggested that
these methods were not completely efficient in learning the structure, obtaining mis-
specifications in general. However, these procedures proved to be beneficial. In fact,
all three algorithms were able to recover all true edges. This suggested that we could
use these results to obtain an initial graph. This graph could then be used to initialize a
score-based algorithm with a score suitable for PCBNs.

Second, Score-based algorithms for PCBNs were examined. As we mentioned earlier, the
logLikelihood scores in these networks often involved integrals and were not equivalent.

1see Friedman et al., 2008
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To tackle the former problem a logLikelihood approximation based on estimating extra
copulas was proposed. To address the latter issue, a heuristic technique was introduced.
A simulation study was carried out to test the appropriateness of these procedures. The
results indicated that our proposed method outperform previously proposed approxi-
mations. Moreover, they showed that the computation of exact logLikelihood expres-
sions was computationally unfeasible, making our proposal an attractive candidate.

These two lines of research have shown promise. However, we believe that it is the com-
bination of the two that could really yield powerful results for PCBN structure learn-
ing. This dissertation therefore proposes to apply Gaussian learning algorithms to find a
graph, which would serve as a starting point for a Hill Climbing algorithm based on our
proposed logLikelihood approximation. This method must be tested and validated by
means of a simulation study.

Along with the implementation of the proposed method, there are several paths open
for further research:

• First, a more in-depth simulation study on the performance of Gaussian methods
for PCBNs could be performed. Indeed, more networks could be included, for
example a high-dimensional and dense network. On the other hand, we saw that
in the larger network, we always overestimated the number of edges. So it could
be a good idea:

– Use other criteria 2 that would result in higher values for the regularization
parameter λ. Thus, the moralized network becomes sparse.

– Reduce the value of the significance level α in hypothesis testing of con-
ditional independencies. For example, following the Bonferroni correction
used in the case of multiple testing. By lowering the value of α, the num-
ber of test rejecting the null hypothesis would decrease, and thus more edges
would be removed from the network.

– Include heavier penalties than the BIC for score-based algorithms. In this
way the number of edges would be reduced.

It would be interesting to see if by following these procedures it would still be pos-
sible to recover the true edges and remove the ones not present in the original
network.

• Secondly, a more in-depth simulation study could be conducted on the approxi-
mations made. Indeed, testing different networks in greater dimensions might be
interesting. It would also be useful to check how the approximations work for net-
works involving double or even triple integrals for the logLikelihood computation.
Two other paths to follow could be:

– Study appropriate penalties for the score of PCBNs.

– Try to find approaches to evaluate integrals that are less computationally de-
manding than the Monte Carlo methods.

More research is needed in this area.
2Different from the one implemented in the GGMselect package.
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A
PROOFS IN BNS

A.1. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 is as follows:

• (1 ⇒ 2)[Contradiction]

Assume there is directed cycle and complete ordering. Since there is a directed
cycle, then there exists a vertex vi1 such that vi1 → vi2 → ··· → vin → vi1 . Since
there is complete ordering we get vi1 < vi2 < ·· · < vin < vi1 , which cannot happen
because from complete ordering vi1 ≮ vi1 .

• (2⇒1)

If there is a complete ordering the vertices can be numbered such that v1 < v2 <
·· · < vn (not unique). Which means that we cannot follow arcs in the graph such
that we start in one vertex and end up at this vertex again. Hence there is no di-
rected cycle.

A.2. DERIVATION OF (3.4)

The derivation of (3.4) is as follows:

1. As we are dealing with a DAG, Theorem 3.1 states that there exists a complete or-
dering. We denote it as: v1 < v2 < ·· · < vn , where parents are earlier in the ordering
than children.

2. The joint probability density can be decomposed as the product of PDFs as fol-
lows:

fX1,...,Xn (x1, . . . , xn) = fXn |X1,...,Xn−1 (xn |x1, . . . , xn−1) · fX1,...,Xn−1 (x1, . . . , xn−1).
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3. Using the local Markov property and the fact that vn is a leaf node, we have that:

fXn |X1,...,Xn−1 (xn |x1, . . . , xn−1) = fXn |Xpa(vn ) (xn |xpa(vn )).

4. Proceeding in the same manner:

fX1,...,Xn−1 (x1, . . . , xn−1) = fXn−1|X1,...,Xn−2 (xn−1|x1, . . . , xn−2) · fX1,...,Xn−2 (x1, . . . , xn−2).

5. Restricting to the subgraph G ′ = (V\ vn ,E \ (vi , vn)vi∈E ), where vn−1 is a leaf node:

fXn−1|X1,...,Xn−2 (xn−1|x1, . . . , xn−2) = fXn−1|Xpa(vn−1) (xn−1|xpa(vn−1)).

6. Using the complete order of the vertices and repeating the process recursively, the
desired factorisation in (3.4) is obtained.



B
EQUIVALENCE CLASS OF A BN

B.1. PROOF OF THEOREM 3.3
Let’s assume that Xi ⊥⊥ X j |Xk ∈I (G1) and we are going to show that Xi ⊥⊥ X j |Xk ∈I (G2).
If the two graphs have the same skeleton, then removing directionality, the trails between
Xi and X j are the same in both G1 and G2. Let’s study some trail between Xi and X j in
G1. As Xi ⊥⊥ X j |Xk ∈ I (G1), then Xk blocks the trail between Xi and X j in G1. Consider
two cases:

1. The trail in G1 is blocked because it contains Xk and its connection is not a v-
structure. Then, the connection at Xk in G2, will also not be a v-structure. Conse-
quently, the trail in G2 will be blocked by Xk too.

2. The trail in G1 does not contain Xk . Since this path is blocked by Xk , it contains a v-
structure centred at → Xl ←, such that Xk belongs neither to the v-structure (Xk ̸=
Xl ), nor to the descendants of it (Xk ̸∈ de(Xl )). Let us consider all the directed
paths between Xl and its descendants. It is clear that Xk does not belong to any
of these paths in G1. In G2 all these trails must also be directed the same, because
otherwise a v-structure that is not in G1 would be introduced. Therefore, Xk is not
presented in any of these trail in G2. Consequently, the trail in G2 will be blocked
by Xk too.

This result can be easily generalised for higher dimensional cases: if XXX I ⊥⊥ XXX J |XXX K ∈
I (G1) then XXX I ⊥⊥ XXX J |XXX K ∈ I (G1). Using the reverse order, we have that if Xi ⊥⊥ X j |Xk ∈
I (G2) then Xi ⊥⊥ X j |Xk ∈I (G1). We therefore arrive to the desired result:

I (G1) =I (G2).
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B.2. FINDING EQUIVALENCE CLASSES OF A BN
Example B.1 The objective of this example is to find the equivalence class of the BN rep-
resented in Figure 3.5. The procedure is as follows:

1. The command skel of the bnlearn (Marco Scutari, 2022) package is used to obtain
the skeleton. This can be seen in Figure B.1a.

2. The command vstructs of the bnlearn (Marco Scutari, 2022) package is used to
get the vstructs. Including them in the skeleton graph, we get the semi-direct graph
in Figure B.1b. Note that reversion any of these edges change the v-structures.

3. By directing the remaining indirect edges and avoiding the formation of new v-
structures or cycles, we obtain the equivalence class of the DAG:

(a) Skeleton. (b) v-structures.

Figure B.1: Skeleton and v-structures of our Bayesian Network.

• If we introduce an arc X5 → X3, then we get an v-struct X5 → X3 ← X2.
So we set X3 → X5.

• We then have to introduce an arc X1 → X5.
Otherwise we would form a cycle: X1 → X3 → X5 → X1.

• If we introduce an arc X7 → X5, then we get an v-struct X7 → X5 ← X1.
So we set X5 → X7.

• Hence, the only arc that we can reverse is X2 → X4. Indeed, introducing X4 → X2,
we do not change the v-structures neither the skeleton.

Therefore, there are only two DAGs in that equivalence class. The command cpdag of
the bnlearn (Marco Scutari, 2022) package can be used to calculate and represent the
equivalence class. This representation can be seen in Figure B.2. In many other cases,
however, we could obtain equivalence classes with a large number of graphs.
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(a) DAG 1 (b) DAG 2 (c) Equivalence Class representation.

Figure B.2: Equivalent DAGs.





C
GAUSSIAN BAYESIAN NETWORKS

C.1. EQUIVALENCE BETWEEN GBNS AND MULTIVARIATE GAUS-
SIAN DISTRIBUTIONS.

If B is a GBN ⇒ It defines a joint distribution that is jointly Gaussian.

Let Xn+1 be a continuous random variable with parents XXX T = (X1, . . . , Xn), such that:

fXn+1|X1,...,Xn (xn+1|x1, . . . , xn) =N
(
β0 +βββT xxx;σ2) ,

where βββT = (β1, . . . ,βn) and xxxT = (x1, . . . , xn). Assume that XXX T = (X1, . . . , Xn) are jointly
Gaussian with distribution N (µµµ,ΣΣΣ). We then have:

fX1,...,Xn ,Xn+1 (x1, . . . , xn , xn+1) =N

((
µµµ

β0 +βββTµµµ

)
,

(
ΣΣΣ ΣΣΣβββ

βββTΣΣΣ σ2

))
. (C.1)

Proof:

Let’s first study the expectation, variance and covariance of this joint distribution. The
properties of conditional expectation are used for this task. These can be seen for in-
stance in Le Gall et al. (2016). We have:
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E[Xn+1] = E[E[Xn+1|X1, . . . , Xn] = E[β0 +βββT XXX ] =β0 +βββTµµµ

Var[Xn+1] = E[Var[Xn+1|X1, . . . , Xn]]+Var[E[Xn+1|X1, . . . , Xn]]

= E[σ2]+Var[β0 +βββT XXX ] =σ2 +
n∑

i , j=1
βi Cov(Xi , X j )β j =σ2 +βββTΣβββ

Cov(Xi , Xn+1) = E[Xi Xn+1]−E[Xi ]E[Xn+1]

= E[E[Xi Xn+1|X1, . . . , Xn]]−E[Xi ]E[Xn+1]

= E[Xi (β0 +βββT XXX )]−E[Xi ]E[Xn+1]

=β0E[Xi ]+
n∑

j=1
β jE[Xi X j ]−β0E[Xi ]+E [Xi ]

n∑
j=1

β jE[X j ]

=
n∑

j=1
β j

(
E[Xi X j ]−E[Xi ]E[X j ]

)= n∑
j=1
Σi , jβ j =ΣΣΣiβββ,

(C.2)

whereΣΣΣi is the i-th row of the matrixΣΣΣ.

We still need to prove that the joint distribution (X1 . . . , Xn , Xn+1) is a Multivariate Gaus-
sian Distribution. For this purpose, we slightly change the notation 1 to the one used by
Kurowicka and Cooke (2006b). They show that GBNs can be seen as a set of regression
equations:

Xi =µi +
∑

j∈pa(i )
bi , j (X j −µ j )+p

νννZ j , i = 1, . . . ,n +1, (C.3)

where it is assumed without loss of generality that the sequence of indices is ordered,
so that the matrix BBB = [bi , j ] is strictly upper triangular. ZZZ = (Z1, . . . , Zn , Zn+1) are in-
dependent standard Gaussian variables and ννν = (ν1, . . . ,νn+1) is a vector of conditional
variances. This can be rewritten as:

XXX −µµµ=BBB T (
XXX −µµµ)+SSST ZZZ ,

where DDD = diag(ννν) =SSST SSS. This can also be expressed as:

SSST ZZZ = (
III −BBB T )(

XXX −µµµ)
.

Since BBB is strictly upper triangular then
(
III −BBB T

)
is invertible and

XXX −µµµ= (
III −BBB T )−1

SSST ZZZ =UUU T SSST ZZZ = AAAT ZZZ ,

where UUU = (III −BBB) and AAA =SSSUUU , we finally get

XXX =µµµ+AAAT ZZZ ,

which is precisely the definition of a Multivariate Gaussian distribution with mean vector
µµµ and covariance matrixΣΣΣ= AAAT AAA. This concludes the proof.

1Working with the inverse of the covariance matrix in (C.1) is extremely cumbersome.
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Conditioning joint Gaussian distributions ⇒ produces a GBN.

Let (XXX , Xn+1), with XXX = (X1, . . . , Xn), be multivariate Gaussian distribution distributed as:

fX1,...,Xn ,Xn+1 (x1, . . . , xn , xn+1) =N

((
µµµ

µn+1

)
,

(
ΣX ,XΣX ,XΣX ,X ΣΣΣXXX ,Xn+1

ΣΣΣXn+1,XXX ΣXn+1,Xn+1

))
. (C.4)

Then the conditional density

fXn+1|X1,...,Xn (xn+1|x1, . . . , xn) =N
(
β0 +βββT xxx;σ2) ,

is such that:

• β0 =µn+1 −ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1µµµ,

• βββ=ΣX ,XΣX ,XΣX ,X
−1ΣΣΣXXX ,Xn+1 ,

• σ2 =ΣXn+1,Xn+1 −ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1ΣΣΣXXX ,Xn+1 .

Proof:

All conditional distributions of a multivariate Gaussian distribution are also Gaussian,
we therefore only need to prove the previous equations.

Let’s define the variable Z = Xn+1 +AAAXXX , where AAA =−ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1. We then have:

Cov(Z ,XXX ) = Cov(Xn+1,XXX )+AAA Cov(XXX ,XXX ) =ΣΣΣXn+1,XXX −ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1ΣX ,XΣX ,XΣX ,X = 0. (C.5)

Hence Z and XXX are uncorrelated and, since they are Gaussian, they are independent.
Using this fact, we then have:

β0 +βββT XXX = E[Xn+1|XXX ] = E[Z −AAAXXX |XXX ] = E[Z ]−AAAXXX =µn+1 +AAA
(
µµµ−XXX

)
=µn+1 +ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X

−1(XXX −µµµ),
(C.6)

which proves the first 2 points. For the covariance matrix, note that:

Var[Xn+1|XXX ] = Var[Z −AAAXXX |XXX ]

= Var[Z |XXX ]+Var[AAAXXX |XXX ]−AAA Cov[Z ,XXX |XXX ]−Cov[Z ,XXX |XXX ]AAAT

= Var[Z ]

(C.7)

Var[Z ] = Var[Xn+1 +AAAXXX ] = Var[Xn+1]+AAA Var[XXX ]AAAT +AAA Cov[XXX , Xn+1]+Cov[Xn+1,XXX ]AAAT

= Var[Xn+1]+ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1ΣX ,XΣX ,XΣX ,XΣX ,XΣX ,XΣX ,X

−1ΣΣΣXXX ,Xn+1

−ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1ΣΣΣXXX ,Xn+1 −ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X

−1ΣΣΣXXX ,Xn+1

=ΣXn+1,Xn+1 −ΣΣΣXn+1,XXXΣX ,XΣX ,XΣX ,X
−1ΣΣΣXXX ,Xn+1 ,

(C.8)

which proves the last point

These previous results demonstrate the equivalence between GBNs and multivariate
Gaussian distributions. Conversely, while the two representations are equivalent in their
expressive power, there is not a one-to-one correspondence between their parameteri-
zations (Koller and Friedman, 2009).
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C.2. INDEPENDENCIES AND CONDITIONAL INDEPENDENCIES

IN GAUSSIAN DISTRIBUTIONS

Xi and X j , joint gaussian distribution, are independent ⇐⇒ Σi , j = 0.
proof:

• (⇒)

Σi , j = E[Xi X j ]−E[Xi ]E[X j ].

As the variables are independent then

E[Xi X j ] = E[Xi ]E[X j ].

Hence we get Σi , j = 0.

• (⇐)

The characteristic function of (Xi , X j ) can be computed as:

ϕXi ,X j (ti , t j ) = e
i tiµi+i t jµ j − 1

2

(
t 2

i Σ
2
1,1+2ti t jΣi , j +t 2

j Σ
2
j , j

)

If Σi , j = 0, then the previous expression can be factorised as:

ϕXi ,X j (ti , t j ) = e i tiµi− 1
2 t 2

i Σ
2
1,1 ·e

i t jµ j − 1
2 t 2

j Σ
2
j , j =ϕXi (ti ) ·ϕX j (t j )

characteristic function of a pair of random variables is equal to the product of their char-
acteristic functions, the random variables are independent, which concludes the proof.

Counterexample: 0-correlation does not imply independence outside the multivari-
ate Gaussian distribution.

Take a random variable X with E [X ] = 0 and E [X 3] = 0, e.g. Gaussian random variable
with zero mean. Take Y = X 2. It is clear that X and Y are related, but:

Cov(X ,Y ) = E [X ·Y ]−E [X ]︸ ︷︷ ︸
0

·E [Y ] = E [X 3] = 0.

Xi and X j are independent given the remaining variables ⇐⇒ Ωi , j = 0.

We are going to show the ideas behind this previous result. Let’s split the multivariate
random vector XXX = (X1, . . . , Xn) into two components: XXX = (XXX 1,XXX 2), where XXX 1 = (Xi , X j )
and XXX 2 = (XXX \{Xi , X j }) are respectively two and n −2 dimensional random vectors.

If the joint distribution of XXX = (XXX 1,XXX 2) is:

fXXX 1,XXX 2 (xxx1,xxx2) =N

((
µµµ1

µµµ2

)
,

(
ΣΣΣ1,1 ΣΣΣ1,2

ΣΣΣ2,1 ΣΣΣ2,2

))
,
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then the conditional distribution XXX 1|XXX 2 is given by:

fXXX 1|XXX 2 (xxx1|xxx2) =N
(
µµµ1 +ΣΣΣ1,2ΣΣΣ

−1
2,2

(
xxx2 −µµµ2

)
,ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ

−1
2,2ΣΣΣ2,1

)
This above statement can be demonstrated using the same reasoning we used to show
that joint Gaussian distribution conditioning leads to GBNs. Notice that this distribution
is bidimensional, so we denote its precision matrix and mean vector as:

(
ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ

−1
2,2ΣΣΣ2,1

)−1 =KKK =
(

ki ,i ki , j

k j ,i k j , j

)

µµµ1 +ΣΣΣ1,2ΣΣΣ
−1
2,2

(
xxx2 −µµµ2

)=µµµ=
(
µi

µ j

)
On the other hand, the inverse of the covariance matrix of XXX = (XXX 1,XXX 2) is:

ΣΣΣ−1 =
(
ΣΣΣ1,1 ΣΣΣ1,2

ΣΣΣ2,1 ΣΣΣ2,2

)−1

=
 (

ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ
−1
2,2ΣΣΣ2,1

)−1 −
(
ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ

−1
2,2ΣΣΣ2,1

)−1
ΣΣΣ1,2ΣΣΣ

−1
2,2

−ΣΣΣ−1
2,2ΣΣΣ2,1

(
ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ

−1
2,2ΣΣΣ2,1

)−1
ΣΣΣ−1

2,2 +ΣΣΣ−1
2,2ΣΣΣ2,1

(
ΣΣΣ1,1 −ΣΣΣ1,2ΣΣΣ

−1
2,2ΣΣΣ2,1

)−1
ΣΣΣ1,2ΣΣΣ

−1
2,2


Therefore, the first block of the precision matrixΩΩΩ of (XXX 1,XXX 2), coincides with the preci-
sion matrix KKK of the distribution XXX 1|XXX 2. Then it follows thatΣΣΣ−1

i , j = ki , j .

IfΣΣΣ−1
i , j = ki , j = 0, we can then factorise the conditional probability as:

fXi ,X j |XXX 2 (xi , x j |XXX 2) ∝ exp

(−1

2

(
xi −µi , x j −µ j

)(ki ,i 0
0 k j , j

)(
xi −µi

x j −µ j

))
∝ exp

(−1

2
(xi −µi )ki ,i (xi −µi )

)
︸ ︷︷ ︸

∝ fXi |XXX 2 (xi |xxx2)

·exp

(−1

2
(x j −µ j )k j , j (x j −µ j )

)
︸ ︷︷ ︸

∝ fX j |XXX 2 (x j |xxx2)

,

(C.9)

where µi and µ2 depends on xxx2. Therefore we have that:

fXi ,X j |XXX 2 (xi , x j |XXX 2) = fXi |XXX 2 (xi |XXX 2) · fX j |XXX 2 (x j |XXX 2), (C.10)

which shows the desired result: Xi ⊥⊥ X j |XXX \{Xi , X j }.

This previous result can be extended to:

Xi and X j are conditionally independent given Xk1 , . . . , Xkn ⇐⇒ Σ̃−1
i , j = 0, where Σ̃ de-

note the covariance sub-matrix formed by: Xi , X j , Xk1 , . . . , Xkn .

These results follow from the above reasoning plus the fact that the marginal distribution
(Xi , X j , Xk1 , . . . , Xkn ) is multivariate Gaussian with mean and covariance matrix resulting
from eliminating the irrelevant variables (the variables to be marginalized) from the vec-
tor of means and the covariance matrix of XXX .
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C.3. COMPUTATIONS IN GBNS

Computing the joint distribution (X2, X3) of the GBN given by Figure 4.1.

To do so, we compute the required means and covariance.

E[X2] = E[E[X2|X1]] = E[µ2 +β1X1] =µ2 +β1µ1.

V[X2] = E[V[X2|X1]]+V[E[X2|X1]] = E[σ2
2]+V[µ2 +β1X1] =σ2

2 +β2
1σ

2
1.

In a similar way, we obtain:

E[X3] =µ3 +β2µ1 , V[X3] =σ2
3 +β2

2σ
2
1.

Lastly, we compute the crossed term Σ2,3:

COV[X2, X3] = E[X2 ·X3]−E[X2] ·E[X3] = E[E[X2 ·X3|X1]]−E[X2] ·E[X3]

= E[E[X2|X1] ·E[X3|X1]]−E[X2] ·E[X3]

= E[
(
µ2 +β1X1

) · (µ3 +β2X1
)
]− (

µ2 +β1µ1
) · (µ3 +β2µ1

)
=β1β2

(
E[X 2

1 ]−µ2
1

)=β1β2
(
E[X 2

1 ]−E[X1]2)=β1β2σ
2
1.

(C.11)

Therefore the distribution of (X2, X3) is given by:

(X2, X3) ∼ N

((
µ2 +β1µ1

µ3 +β2µ1

)
,

(
σ2

2 +β2
1σ

2
1 β1β2σ

2
1

β1β2σ
2
1 σ2

3 +β2
2σ

2
1

))
. (C.12)

Independencies and conditional independencies presented in the GBN given by Fig-
ure 4.1 using the theoretical covariance matrix.

Using the rbmn package2, the mean vector, the covariance matrix and the correlation
matrix are obtained:

µ=


1
2
2
5

 , ΣΣΣ=


1 1 1 2
1 2 1 3
1 1 2 3
2 3 3 7

 , Σ̃̃Σ̃Σ=
1 1 1

1 2 1
1 1 2


Computing the inverse we have that:

Σ−1Σ−1Σ−1 =


3 −1 −1 0
−1 2 1 −1
−1 1 2 −1
0 −1 −1 1

 , Σ̃−1Σ̃−1Σ̃−1 =
 3 −1 −1
−1 1 0
−1 0 1


Therefore:

Σ−1
1,4 = 0 ⇒ X1 ⊥⊥ X4|X2, X3,

Σ̃−1
2,3 = 0 ⇒ X2 ⊥⊥ X3|X1.

2https://cran.r-project.org/web/packages/rbmn/rbmn.pdf

https://cran.r-project.org/web/packages/rbmn/rbmn.pdf
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RESULTS SIMULATION STUDY

CHAPTER 6

Below we show all the results obtained in the simulation studied carried out in Chapter 6.

Table D.1: Simulation results for N = 500, small network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.384 0.000 2.769 0.683 0.031 2.505

Constraint
SHD 2.133 0.033 2.905 2.200 0.067 3.303

Hamming 1.033 0.033 2.602 1.050 0.065 2.500

Score
SHD 0.984 0.000 2.600 1.183 0.098 2.870

Hamming 0.583 0.000 2.600 0.716 0.031 2.435

Table D.2: Simulation results for N = 2500, small network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.067 0.000 1.635 0.666 0.033 1.833

Constraint
SHD 1.433 0.033 4.867 1.534 0.065 4.669

Hamming 0.967 0.033 2.135 1.016 0.065 2.279

Score
SHD 0.167 0.000 2.203 0.817 0.000 2.447

Hamming 0.067 0.000 1.441 0.600 0.000 1.935
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Table D.3: Simulation results for N = 7500, small network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.000 0 1.072 0.933 0.000 1.646

Constraint
SHD 1.083 0 4.835 1.000 0.065 4.436

Hamming 0.933 0 1.502 1.000 0.065 1.870

Score
SHD 0.000 0 1.067 0.867 0.000 2.894

Hamming 0.000 0 1.067 0.867 0.000 1.743

Table D.4: Simulation results for N = 500, big network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 1.667 0.000 2.962 2.200 0.000 5.950

Constraint
SHD 1.134 0.200 1.723 1.816 0.520 4.228

Hamming 0.733 0.143 1.290 1.200 0.438 4.090

Score
SHD 1.917 1.005 2.923 2.900 1.600 8.642

Hamming 0.734 0.433 1.228 1.417 0.572 5.708

Table D.5: Simulation results for N = 2500, big network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.133 0.000 0.428 1.217 0.005 9.493

Constraint
SHD 0.400 0.133 0.733 2.417 0.372 8.358

Hamming 0.267 0.038 0.585 1.750 0.238 7.400

Score
SHD 0.433 0.167 0.985 3.866 0.477 13.452

Hamming 0.200 0.100 0.390 2.117 0.205 10.432

Table D.6: Simulation results for N = 7500, big network.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

G.Lasso Hamming 0.000 0.000 0.062 1.917 0.000 16.277

Constraint
SHD 0.367 0.100 0.862 4.934 0.467 13.100

Hamming 0.300 0.100 0.695 2.716 0.353 12.483

Score
SHD 0.300 0.105 0.713 5.900 0.310 20.608

Hamming 0.133 0.067 0.267 3.966 0.133 16.567
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Table D.7: Number of edges, for the small network with 5 edges.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

N=500 G.Lasso 4.916 2.365 5.033 4.666 2.633 5.570
Constraint 4.000 2.698 5.035 4.000 2.960 5.240

Score 4.867 3.000 5.002 4.800 3.098 5.238
N=2500 G.Lasso 5.000 3.800 5.033 5.050 3.995 6.000

Constraint 4.067 3.233 5.100 4.883 3.233 5.935
Score 5.000 4.297 5.002 5.033 4.492 5.741

N=7500 G.Lasso 5.000 4.000 5.033 5.300 4.164 6.000
Constraint 4.167 3.698 5.100 5.167 3.930 6.000

Score 5.000 5.000 5.000 5.100 5.000 6.000
N=15000 G.Lasso 5.000 4.000 5.033 5.550 4.098 6.000

Constraint 4.200 4.000 5.100 5.434 4.130 6.000
Score 5.000 5.000 5.000 5.284 5.000 6.000

Table D.8: Number of edges, for the big network with 9 edges.

Gaussian Non-Gaussian
Median Q0.05 Q0.95 Median Q0.05 Q0.95

N=500 G.Lasso 9.166 8.343 10.295 10.000 8.567 12.952
Constraint 8.850 8.467 9.400 9.467 8.533 11.385

Score 9.500 9.272 9.723 10.100 9.433 14.335
N=2500 G.Lasso 9.084 9.000 9.390 10.133 9.000 18.183

Constraint 9.233 9.033 9.557 10.650 9.233 16.323
Score 9.200 9.100 9.390 11.116 9.205 19.355

N=7500 G.Lasso 9.000 9.000 9.062 10.917 9.000 25.277
Constraint 9.300 9.100 9.695 11.716 9.353 21.483

Score 9.133 9.067 9.267 12.966 9.133 25.567
N=15000 G.Lasso 9.000 9.000 9.033 12.733 9.000 29.995

Constraint 9.267 9.067 9.662 12.933 9.267 24.953
Score 9.067 9.000 9.167 14.550 9.100 28.500
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Table D.9: Simulation results: median Running Times.

Small Network Big Network
Gaussian Non-Gaussian Gaussian Non-Gaussian

N=500 G.Lasso 0.432 0.462 0.481 0.433
Constraint 0.007 0.006 0.017 0.024

Score 0.015 0.016 0.030 0.035
N=2500 G.Lasso 0.445 0.424 0.530 0.456

Constraint 0.007 0.006 0.017 0.024
Score 0.038 0.037 0.103 0.122

N=7500 G.Lasso 0.487 0.420 0.601 0.510
Constraint 0.011 0.010 0.030 0.068

Score 0.096 0.084 0.332 0.352
N=15000 G.Lasso 0.510 0.481 0.685 0.586

Constraint 0.017 0.018 0.082 0.228
Score 0.178 0.178 0.649 0.726
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.1: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 500 generated from the small network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.2: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 2500 generated from the small network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.3: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 7500 generated from the small network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.4: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 15000 generated from the small network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.5: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 500 generated from the big network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.6: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 2500 generated from the big network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.7: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 7500 generated from the big network
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(a) Density plots SHD Gaussian case. (b) Density plot SHD non-Gaussian case.

(c) Density plots Hamming distance Gaussian case. (d) Density plots Hamming distance non-Gaussian case.

(e) Density plots number of edges Gaussian case. (f) Density plots number of edges non-Gaussian case.

Figure D.8: Comparison of the obtained results applying Graphical Lasso, PC and Hill Climbing to , Gaussian
and non-Gaussian data, for N = 15000 generated from the big network
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CODE

All the code used in this dissertation to build the examples, obtain figures and tables and
perform the simulation studies can be found in the following GitHub repository: https://
github.com/Amadeovi/Master-Thesis-Amadeo-Villar. This repository also includes an
explanation of the different scripts and its purposes.
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