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Abstract
Freeze casting, amanufacturing techniquewidely applied in biomedical fields for fabricating
biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly
nonlinear behavior and complex interplay of process parameters. Conventional numericalmethods,
such as computational fluid dynamics (CFD), require adequate and accurate boundary condition
knowledge, limiting their utility in real-world transient solidification applications due to technical
limitations. In this study, we address this challenge by developing a physics-informed neural networks
(PINNs)model to predict directional solidification in freeze-casting processes. The PINNsmodel
integrates physical constraints with neural network predictions, requiring significantly fewer
predetermined boundary conditions compared toCFD. Through a comparisonwithCFD
simulations, the PINNsmodel demonstrates comparable accuracy in predicting temperature
distribution and solidification patterns. This promisingmodel achieves such a performance with only
5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict
solidification dynamics with high accuracy. The study’smajor contributions lie in providing insights
into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of
biomaterial scaffolds withfinely tunedmicrostructures essential for various tissue engineering
applications. Furthermore, the reduced computational demands of the PINNsmodel offer potential
cost and time savings in scaffold fabrication, promising advancements in biomedical engineering
research and development.

1. Introduction

The fabrication of porous structures that provide an
optimal environment for tissue engineering applica-
tions has been a focal point of research in regenerative
medicine. Porosity is a vital characteristic of scaffolds,
as it not only facilitates cell proliferation but also
contributes to mechanical stiffness and controlled
drug delivery, making it a key factor in the success of
tissue regeneration efforts [1, 2]. The importance of
porosity is particularly evident in bone tissue engineer-
ing, where studies have shown that the porosity of a
scaffold can significantly enhance bone tissue regen-
eration and promote the differentiation of bone cells

—both of which are crucial for effective tissue integra-
tion and healing [3]. Creating scaffolds with the right
porous architecture is a complex challenge that
requires precise control over the fabrication process.
Thus, various advanced techniques have been devel-
oped to achieve this, each offering unique advantages
in terms of porosity, pore size, and overall scaffold
structure. These fabrication methods not only influ-
ence the physical characteristics of the scaffolds but
also impact their biological performance, making the
choice of technique a critical decision in the design of
tissue engineering scaffolds. By fine-tuning these
methods, researchers aim to develop scaffolds that
closely mimic the natural extracellular matrix, thereby
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improving the outcomes of tissue engineering applica-
tions across various medical fields. Freeze casting, also
known as ice-templating, is a manufacturing techni-
que that has emerged to produce three-dimensional
porous structures with controlled porosity and inter-
connected pore structure [4]. The technique has been
widely applied to produce biomaterial scaffolds for
tissue engineering, regenerative medicine, and drug
delivery, among other biomedical fields, as it can
support cell adhesion, proliferation, and differentia-
tion, enhancing the overall functionality of the engi-
neered tissues [5]. In addition, providing a suitable
porous structure for tissue engineering applications
can be achieved through various scaffold fabrication
techniques. Among these, the development of porous
titanium (Ti) scaffolds has resulted in significant
enhancements in both biocompatibility and mechan-
ical properties of the scaffold [6]. Freeze casting, in
particular, has proven to be highly effective with
bioceramics, making it a key technique in the develop-
ment of next generation bone graft substitute. This
manufacturing technique allows for precise control
over the scaffold’s microstructure, ensuring that the
desired mechanical strength and biocompatibility are
maintained, which are crucial for the success of tissue
engineering applications [7]. Moreover, the utilization
of biocompatible polymers such as chitosan and
alginate in scaffold design brings additional advanta-
geous properties. Chitosan, known for its biocompat-
ibility and biodegradability, also offers unique
antibacterial properties which prevent infection at the
implantation site. Alginate, renowned for its gel-
forming abilities, provides a hydrophilic environment
that promotes cell proliferation and tissue regenera-
tion. Bothmaterials enhance the immunogenic profile
of scaffolds, reducing the body’s immune response
and increasing the scaffold’s functionality in biological
environments [8]. It relies on the controlled solidifica-
tion of a precursor solution or suspension in a mold,
followed by controlled sublimation of the solvent
under reduced pressure, leading to the formation of a
highly ordered porous structure that can mimic the
complex architecture of natural tissues [9, 10]. The
resultant porous structure can be tailored to specific
applications through precise control of parameters,
including the size, shape, and orientation of the ice
crystals, the concentration and size of the biomaterial
particles, and the solidification rate and direction
[11–15]. Moreover, this technique preserves the struc-
tural integrity of the biomaterials and minimizes the
use of potentially harmful chemicals, making it a safer
and more sustainable alternative to conventional
scaffoldmanufacturingmethods [16, 17].

Producing porous structures with desired micro-
structural properties through freeze casting requires
precise determination of processing parameters and
predictive control of the solidification process
achieved by adjusting the boundary conditions
[18, 19]. However, achieving realizing such control

poses several challenges due to the highly nonlinear
behavior of the system, which critically relies on var-
ious process parameters and their complex interplay
[20]. Optimizing the process parameters for manu-
facturing biomaterial scaffolds through trial-and-
error experiments can be both costly and time-
consuming.

The development of analytical and computational
models to study complex heat and fluid flow during
solidification in freeze casting offers an effective tool
for exploring the design space and optimizing the pro-
cess. While analytical models are generally less time-
consuming than computational models, their applica-
tion is often limited to simple problems such as one-
dimensional solidification. High-fidelity numerical
simulations can address this limitation by enabling the
prediction of the complex solidification process across
multiple length and time scales [21–28]. For instance,
Muzzio and Dini [29] developed a computational
model based on the finite-element (FE) method to
determine the thermal profile during freezing for var-
ious design parameters (e.g. chamber pressure, initial
solution temperature and vial shape), enabling predic-
tion of the average crystal size based on these para-
meters. Similarly, Husmann et al [30] performed FE-
based thermal simulations to investigate the impact of
mold design on the structure of freeze-casted scaffold
materials and showed that the scaffold pore structure
can be manipulated by modifying both the geometry
and material of the mold. Rouhollahi et al [31] devel-
oped a computational fluid dynamics (CFD) model
that combined heat and fluid flow models . Incorpor-
ating a population balance model, they predicted the
crystallization pattern and average pore size in freeze-
casted chitosan-alginate scaffolds within molds of
varying diameters and heights. Additionally, Cyr et al
[32] employed an FE-based thermal model to predict
the evolution of the thermal field in a mold and the
topology of the solidification front in freeze casting.

In recent years, high-fidelity physics-based num-
erical simulations have emerged as a promising tool
for predicting thermal field evolution and solidifica-
tion processes during freeze casting. However, these
simulations require special consideration of conv-
ergence stability issues and frequently demand sub-
stantial computational resources, posing challenges
for their practical application in process optimization.
Additionally, defining the physical problem often hin-
ges on oversimplified boundary conditions, primarily
due to the challenges associated with obtaining precise
and non-intrusive measurements of these conditions.
Recent advancements in the field of artificial intelli-
gence (AI) present remarkable potential for the devel-
opment of surrogate models [33–37], which can
expedite the prediction of thermal field evolution dur-
ing freeze casting, even with limited knowledge of the
boundary conditions.

To overcome the limitations of high-fidelity phy-
sics-based numerical simulations, we have developed a
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model based on physics-informed neural networks
(PINNs) to predict the unsteady solidification process
in the mold using only a few points on the boundary.
To generate the data required for training the PINNs
model, we developed a physics-based computational
model based on CFD to predict the thermal field in the
mold. The PINNsmodel then predicts the entire ther-
mal field and its evolution in the mold for arbitrary
experimental conditions, using data obtained from
only a few temperature probes. This approach repre-
sents a novel solution to the challenges associated
with high-fidelity numerical simulations and over-
simplified boundary conditions. By employing a
PINNsmodel, the present work significantly mitigates
the computational costs associated with the process
optimization while providing accurate predictions of
the solidification process. The outcomes of the PINNs
model were validated against the results of the high-
fidelity physics-based thermal model, demonstrating
the effectiveness of the proposed approach.

2. Problemdescription andmethodology

The size and morphology of pores in biomaterial
scaffolds produced using freeze-casting are signifi-
cantly influenced by the evolution of the thermal field
during production. In this study, a numerical invest-
igation was conducted to analyze the evolution of
thermal fields in freeze-casting of a 48-well plate
(figure 1). The used solution material was a mixture of
chitosan and alginate (CA), which is widely employed
for fabricating biocompatible scaffolds [38]. The mold
employed in this process was made of polystyrene.
Table 1 provides the thermophysical properties of

both the CA solution and polystyrene used in the
simulations. To produce the scaffolds, the well plate
mold was subjected to a temperature of −20 °C for
twelve hours. During this period, the solution in the
mold undergoes solidification, resulting in the nuclea-
tion and growth of ice crystals that expel the particles
to the interstitial spaces. Subsequently, the ice crystals
were sublimated in a freeze-dryer, resulting in a
porous structure that represents the final microstruc-
ture of the scaffold.

The effects of mold geometry and thermophysical
properties of the mold material and the solution on
the thermal field evolution were investigated. To sim-
plify the problem and reduce the calculation time, a
single well with axisymmetric well was modeled as a
control volume. This modeling approach inherently
assumes a symmetry condition between the wells,
implying that each well in the system behaves and
interacts in a similar manner. This assumption is cru-
cial for simplifying the computational model and is a
key consideration in interpreting the results. The con-
trol volume has a height (Hm) of 20 mm and a radius
(Rm) of 10 mm. The solution container in the control
volume has a height ofHs and a radius of Rs. Since the
fluid flow within the solution is negligible during the
freeze-casting process, heat conduction is assumed to
be the dominant mode of heat transfer. Accordingly,
the governing equation for the conservation of energy
is expressed as follows:

( )⎛
⎝

⎞
⎠a

¶
¶

=
¶
¶

¶
¶

+
¶
¶

T

t r r
r

T

r

T

z

1 1
, 1

2

2

where, T is the temperature, r the radial coordinate, z
the axial coordinate, and α the thermal diffusivity of
the material. Thermal diffusivity, which is calculated

Figure 1. Scaffold geometry fabricated using a 48-well plate (left); Cross-sectional view of an individual scaffold representing themold
and scaffold dimensions (right). (For interpretation of the color references in thisfigure legend, the reader is referred to theweb
version of this article).

Table 1.The thermophysical properties of chitosan-alginate solution and polystyrene [31].

Property Chitosan-alginate solution Polystyrene

Thermal diffusivity,α (mm2 s−1) 0.14 150

Melting temperature,Tm (K) 273.15 —

Latent heat of fusion, L (kJ kg−1) 330 —
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by dividing the thermal conductivity by the product of
the density and heat capacity, can be determined as
follows:
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where, the terms R, H, k, ρ, and cp, represent radial
distant from the axisymmetric axis, vertical distance
from the bottom of the mold, thermal conductivity,
density, and specific heat capacity, respectively. The
subscripts ‘m’, ‘l’, and ‘s’ refer to the properties of the
mold, the liquid scaffold, and the solid scaffold,
respectively. The size of the scaffold relative to the
mold is defined by using the parameters b = R

Rr
s

m
and

( )b = - .H H

Hz
m s

m
Accordingly, for a fixed mold design,

the radius of the scaffold (Rs) increases with increasing
b ,r and the height of the scaffold (Hs) decreases with
increasing b .z

The governing equation for heat conduction at the
interfaces between the mold-scaffold and the solid–
liquid can be expressed as follows:
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where, L represents the latent heat of the scaffold
material and n signifies the direction normal to the
interface. The primary challenge in resolving freezing
issues lies in the uncertainty of the freezing front’s
position at any given time, which leads to ambiguity
regarding which heat conduction equation applies at
eachmoment.

The boundary conditions for the energy conserva-
tion equation are as follows: the outer vertical surface
of the control volume, shown by the green line in
figure 1, was thermally insulated. A constant temper-
ature of −20 °C was set at the bottom surface of the
control volume, shown by the blue line in figure 1. The
top surface of the control volume, shown by the red
line infigure 1, experienced convective heat losses with
a heat transfer coefficient of 10Wm−2 K−1 and a free

stream temperature of −20 °C [31]. The initial temp-
erature of both themold and the solutionwas 4 °C.

The developed physics-based CFD model was
implemented in ANSYS Fluent (ANSYS, Inc., Canons-
burg, PA, USA) to predict the solution of the unsteady
conjugated heat transfer problem described in this
study. The computational domain was discretized
using uniform quadrilateral cells with a cell size of
0.5 mm. Spatial discretization of the energy equation
was performed using the second-order upwind
scheme. A first-order implicit scheme was used for
temporal discretization and the time-step size was set
to 0.05 s. Average temperature was quantified to
confirm grid independency (table 2). The root
mean square error (RMSE) of the results is defined

as ( )å= =
= -RMSEi time s

time s T T

N0

2500 i 800
2

where N = 6.

RMSE values suggested that grid independence is
achieved beyond 200 cells, where further increase in
number of cells did not significantly enhance accur-
acy. Therefore, a cell number of 200 was selected for
subsequent computations, offering a balance between
computational accuracy and efficiency.

2.1. Physics-informed neural networks
Following the description of the model utilizing
Physics-Informed Neural Networks (PINNs), figure 2
provides a detailed visual representation of themodel’s
architecture. It began with an input layer assuming the
values of time and space, which then fed into five
neural network layers. These layers were intricately
connected to physical constraints that embodied the
enthalpy of the mold and solution in both liquid and
solid states. At the end of this architecture, there is a
focus on the physics-informed loss function, which
integrates the physical constraints with the neural
network’s predictions to ensure that the output
adheres closely to the underlying physical laws.

Once trained, PINNs offered a method with sig-
nificantly reduced computational demands, capable of
predicting key physical properties like enthalpy and
temperature across the domain. The inputs for this
PINNs model included the position vector r (encom-
passing r and z) and time t, while its output was the
enthalpy corresponding to the given (r, t) coordinates.
The two-dimensional spatial coordinates were con-
sidered as r=(r, z) for the PINNsmodel and the temp-
erature distribution function was defined as h= (t, r).
Temperature was the output variable of the neural net-
works in common PINNs models for predicting its

Table 2.Grid independent study.

t (s)
Number of cells 0 500 1000 1500 2000 2500 RMSE

100 276 272.37 270.83 269.37 267.62 263.16 0.399437

200 276 271.96 270.48 269.08 267.38 262.76 0.105987

400 276 271.95 270.47 269.06 267.3 262.63 0.044159

800 276 271.95 270.45 269.02 267.26 262.54 —
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temporalmap, but the enthalpy was chosen here as the
output variable because it enables the governing
equation (equation (1)) to be readily transformed to
equation (3) with each of equation (2)’s conditions
hold according to the input parameters (t, r).

The architecture comprised a fully connected
neural network with a 5-layer structure. The network
employed a sigmoid activation function and was tai-
lored to predict the enthalpy as the output variable.

The loss function (Loss) was expressed as the sum of
three constituent terms:

1. LG.E. = MSE(Np, 0) represents the loss associated
with the governing equations, where MSE denotes
the mean square error, and Np corresponds to the
predicted value.

2. LB.C. = MSE(Tp, Ta)B.C. represents the loss related
to the boundary conditions, with Tp and Ta
indicating the predicted and actual temperature
values, respectively.

3. LI.C. =MSE(Tp, Ta)I.C. represents the loss originat-
ing from the initial conditions, with Tp and Ta

indicating the predicted and actual temperature
values, respectively.

To calculate the Np as the prediction governing
equation:
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The calculation of partial derivatives of enthalpywith
respect to space and time can be accomplished through
the utilization of auto-differentiation in neural networks.
This methodology employs the chain rule to compute

Figure 2.The physics informed neural networks algorithmdeveloped based on enthalpy of thematerials where the layers 1–5 are the
fully connected neural network.
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derivatives analytically and efficiently during the back-
propagation process. Hence, the derivatives can be com-
puted at any point within the domain by PINNs, elim-
inating the necessity for information from neighboring
points, as required by CFD solvers. This characteristic
represents a notable advantage of PINNs over conven-
tional numerical methods employed for solving partial
differential equations.

A total of 100000, 5000, and 150 points were ran-
domly selected for the computation of LG.E., LB.C.s, and
LI.C., respectively. Subsequently, 50000 epochs were exe-
cuted on a personal computer equipped with an Intel
Core i9 CPU and an NVIDIA 4090 GPU. It’s important
to note that the mentioned 250,000 data points were
derived from CFD simulations and not directly used for
training the PINNs.We utilized a selected subset of these
data points to train the PINNs efficiently. This selection
was strategically made to optimize the training of the
PINNs model, prioritizing the capture of the system’s
critical dynamics while avoiding unnecessary complexity
that could lead to overfitting. By carefully curating these
data points, we aimed to strike a balance between model
efficiency and accuracy. Additionally, the chosen data
points are representative of the broader dataset, ensuring
that the trained model can generalize effectively across
the full spectrum of operational conditions. This
approach enhances themodel’s robustness and reliability
in predicting system behavior under varied scenarios.
The predicted temperature distribution generated by the
PINNs model was compared with the temperature dis-
tributionobtained from thenumerical simulations based
on CFD to validate the PINNs model. Figure 3 displays
the training and testing residuals, indicating the conv-
ergence of the simulation and the satisfactory validation
of thePINNs tool.

3. Results and discussion

In the initial phase of validation for the proposed
PINNs model, the examination of mold cooling and

subsequent scaffold freezing was conducted through
the numerical simulation based on the CFDmodel, as
outlined in section 2. The outcomes of this analysis are
detailed in section 3.1. In the subsequent sections 3.2
and 3.3, the effects of thermal conductivity of themold
and dimensions of the scaffold on the temporal and
spatial distribution of temperature are presented,
respectively. The results to be presented in the
subsequent sections were derived using the PINNs
model developed in the present study.

3.1. Verification of the developed PINNsmodel
The problems of heat transfer and freezing of the
scaffold and mold were studied using both the PINNs
and the CFD models. Figure 4 shows the temperature
distribution in the scaffold from left to right at 500 s,
1500 s, and 2500 s after the boundary conditions are
applied.

The relative difference, D ,rel at each point is
defined as follows:

∣ ∣ ( )=
-

D
T T

T
8rel

PINNs CFD

CFD

where TPINNs and TCFD are temperaturemeasurements
fromPINNsmodel andCFDmodel at that point.

The results of the numerical simulation based on
CFD (shown in top row) are compared with the results
obtained from the PINNs model (middle row), and
the Drel values between the two modeling approaches
are shown in the bottom. The relative difference at
each point is defined as the percentage difference
between the temperature values obtained from the
PINNs model and CFD at that point, relative to the
latter.

The results obtained from both the PINNs and
CFD indicate that the liquid phase of the scaffold has
decreased from 73% volume at 500 s to 12% volume at
1500 s. Moreover, the solution is entirely solidified
after 2500 s. Heat is transferred primarily from the
bottom surface of the scaffold, and the last part of the
scaffold to solidify is the layer close to the upper (free)

Figure 3.Training and testing residuals for the PINNSmodel.
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surface. This trend is attributed to the higher heat con-
duction through the mold at the bottom than the nat-
ural convective heat transfer at the upper surface of the
scaffold. Therefore, the initiation of the solid crystal in
thefinal scaffold triggered from the bottomof the scaf-
fold can cause a gradient in crystal size from bottom to
top due to the varying cooling rates, with finer crystals
forming at the bottom where cooling is more rapid
and larger crystals forming near the top. This can
affect themechanical properties of the scaffold, such as
its strength and rigidity, which are critical in applica-
tions where the scaffold is used for load-bearing pur-
poses. To ensure uniform properties throughout the
scaffold, controlling the temperature gradient during
the solidification process is crucial.

The results presented in figure 4 also demonstrate
a reasonable agreement between the outcomes

obtained from the PINNs and CFDmodels in predict-

ing the temperature field with themaximumdeviation

of 0.8%, 0.48%, and 0.28% at 500 s, 1500 s, and 2500 s,

respectively. In the PINNs approach, as outlined by

equations (5)–(7), the criterion for the diffusion of

information in enthalpy computations dictates that

the largest Drel within each contour is associated with

regions experiencing the steepest gradient in enthalpy.

By comparing the Drel percentage and the temperature

distribution contours, the relative agreement between

the location of the maximum relative difference

percentage and the solid–liquid interface can be deter-

mined. The high enthalpy gradient in regions where

solid–liquid phase transformation takes place has

obviously led to computational difference in the

PINNsmodel. Additionally, themaximumpercentage

Figure 4.The temperature distribution inmold and scaffoldwith time obtained fromPINNs andCFDmodels.
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of Drel has decreased from 500 s to 2500 s with the

reduction of themagnitude of enthalpy gradient.
The small values of Drel throughout the domain

promise high accuracy of the predictions, which can
be beneficial for designing biomaterial scaffolds with
precise microstructural characteristics. As a limitation
of the developed PINNs model, despite low deviation
percentages indicating a generally good match
between the CFD and PINNs models, the greatest
errors occur at the phase change boundary. This is due
to the formation of concentration and enthalpy gra-
dients in that area, leading to inaccuracies. Conse-
quently, using the PINNs method for precise
temperature measurements near the phase change
boundary may result in significant errors, although
predictions elsewhere alignwell with theCFDmodel.

The proper matching of the results obtained from
the PINNsmodel and CFD, as well as the low percent-
age difference between the temperature contours,
indicate the validity of the proposed PINNs model.
Therefore, in the following sections, the effect of geo-
metric and physical parameters of the scaffold on the
freezing process will be investigated using this vali-
dated method. Since the formation of scaffold pores is
related to the crystal formation during the freezing
process, in the sections that follow, we will investigate

the effects ofmold thermal distribution andmold geo-
metry on the crystallization process. It should be noted
that in the following discussions, the terms crystals
and scaffold pores will be used interchangeably [31].

3.2. Effect of the scaffold thermophysical properties
on solidification
The effects of the scaffold thermophysical properties
on temperature distribution and solidification pattern
were studied (figure 5). The results of the PINNS
model indicate that the higher conductivity of the
solution leads to a more unidirectional solidification.
The establishment of unidirectional solidification can
be attributed to the enhanced thermal diffusivity of the
scaffold material, suggesting an approximately uni-
form crystal size [39]. The temperature gradient
indicates that at any cross section (r varying while y is
constant) the crystal size will be smaller closer to the
mold wall because of the higher temperature gradient
and consequently less time is required for crystal
growth. In addition to the smaller crystal size, the rapid
cooling at locations closer to the mold centerline
results in a more random orientation of the crystals
due to the nucleation of multiple grains [40]. In molds
with higher thermal diffusivity, the solidification time
is reduced because these molds can transfer heat more

Figure 5.Effects of the scaffold thermophysical properties on temperature distribution and solidification pattern; the solid-fluid
interfaces are shown as gray curves.
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efficiently. This rapid heat transfer allows the material
inside the mold to cool down and solidify faster.
Conversely, in molds with lower thermal diffusivity,
heat is transferred more slowly. This slower heat
transfer rate affects the temperature distribution dur-
ing the freezing process, leading to a higher temper-
ature gradient. Such a high gradient, in turn, results in
smaller crystal sizes and more random orientations
throughout thematerial, as different regions solidify at
different rates [41].

3.3. Effect ofmold geometry on the
solidification rate
The effects ofmold geometry on temperature distribu-
tion and solidification patterns, predicted using the
PINNs model, were also explored (figure 6). The
smaller values of bz results in a more unidirectional
solidification as the temperature gradient at the
bottom of the mold is higher for molds with larger bz

values. It is also observed that smaller values of bz are
assciated with higher temperature gradients at every
time step, indicating a smaller crystal size and a more
random orientation of the crystals. However, a larger
bz value results in a quicker solidification, which leads
to a larger and more uniform crystal formation. This
in turn, leads to a more uniform pore size and higher
porosity in the fabricated scaffolds, offering a more

superior performance for the scaffold in cell seeding
and drug delivery applications.

Although this research provides novel insights and
advancements in the application of physics-informed
neural networks (PINNs) to design bioscaffolds, there
are certain limitations to be acknowledged. First, scal-
ing the current model to extremely complex systems
remains a challenge, potentially requiring significant
computational resources. Second, the accuracy of the
results is highly dependent on the quality and quantity
of the training data, which can be a limiting factor in
some scenarios. Lastly, while PINNs show promise in
generalizing across different physical phenomena,
there is still a need for further validation in diverse and
untested scenarios to fully establish their robustness
and reliability.

4.Model scalability

The PINNs model can be used for more complex
biological and surgical intervention simulations such
as cardiovascular blood flow simulations, cryosur-
geries, hyperthermia cancer treatment, drug delivery,
and pharmacokinetics where precise modeling of
non-linear and dynamic systems is crucial. PINNs
integrate differential equations that describe these
processes directly into the neural network framework,

Figure 6.Effects ofmold geometry on temperature distribution and solidification pattern; the solid-fluid interfaces are shown as gray
curves.
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enabling the simulation of complex interactions and
responses under varying physiological conditions.
This integration helps in optimizing therapeutic
strategies and improving surgical outcomes by provid-
ing real-time predictive insights and adapting to
changes during the procedure, thus ensuring higher
precision and efficacy in patient-specific treatments.
As the complexity of the mechanical system increases,
so does the complexity of the neural network model
demanding for faster and more powerful computer
hardware. Thementioned challenge may be addressed
using distributed computing or using more advanced
methods such as adaptive activation function which
may reduce the complexity of the system hence the
need for more computation power. Another option to
tackle the performance challenge would be to use the
high-performance computing cloud services which
provide substantial GPU capabilities. The cloud ser-
vices are good solutions for on demand analysis of
complex systems as the cost of computation could be
significantly less than purchasing the hardware, soft-
ware, and the energy to run the PINNsmodel.

5. Conclusions

The developed PINNs model, which demonstrates
comparable accuracy to conventional CFD approaches,
can offer invaluable insights into the solidification
patterns during the freeze-casting scaffold fabrication.
Remarkably, such apromising performancewas achieved
with significantly fewer pre-determined boundary condi-
tions than the numericalmethods such as CFD for which
a complete knowledge of all the boundary conditions is
essential.

In future work, we plan to extend the capabilities
of the PINNs model to establish a more comprehen-
sive correlation between experimental parameters—
including temperature and mold geometry—and the
resulting scaffold characteristics, such as average pore
size and morphology. By incorporating these addi-
tional parameters into the model, we aim to predict
the microstructural outcomes of various freeze-cast-
ing conditions more accurately. This expansion will
involve setting up controlled experiments to gather
relevant data on the effects of temperature gradients
and mold shapes on scaffold properties, which can
then be used to further refine and validate the PINNs
model.

The complexity of transient solidification, char-
acterized by the incompletely defined boundary con-
ditions, limits the utility of conventional numerical
approaches while unveiling a fresh avenue of research
using advanced machine learning algorithms to study
complex experiments such as freeze casting. Herein,
we considered 5000 data points in space and time,
equivalent to a staggering 250,000 timesteps. This is
akin to monitoring the temperature values at only two
selected boundary points at every 50 timesteps. In

other words, deploying a temperature probe capable
of recording at a 2 Hz frequency at a random bound-
ary location, the model can remarkably predict the
temperature distribution and solidification within the
whole domain at all time instances, with an impressive
level of accuracy. This unique utility holds the promise
of reliably designing biomaterial scaffolds suitable for
cell growth,mobility, and nutrient delivery, withfinely
tuned microstructures required in various tissue engi-
neering applications, all while reducing fabrication
cost and time.
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