
Analysis of the effect of caching convolutional network layers on resource
constraint devices

Wouter van Lil , Lydia Chen , Bart Cox , Masoud Ghiassi
TU Delft

wvanlil@student.tudelft.nl

Abstract

Using transfer learning, convolutional neural net-
works for different purposes can have similar lay-
ers which can be reused by caching them, reduc-
ing their load time. Four ways of loading and exe-
cuting these layers, bulk, linear, DeepEye and par-
tial loading, were analysed under different memory
constraints and different amounts of similar net-
works. When there is sufficient memory, caching
will decrease the loading time and will always in-
fluence the single threaded bulk and linear mode.
On the multithreaded approaches this only holds
when the loading time is longer than the execution
time. This depends largely on what network will be
run. When memory constraints are applied caching
can be a way to still run multiple networks without
much increased cost. It can also be opted to use less
memory on a device and use transfer learning with
caching to still get the same results.

Keywords
Deep learning, partial loading, caching, transfer
learning

1 Introduction
The devices we use in our everyday life are getting smarter
and faster. As this trend is increasing and their capabilities
grow, we can start using them for more difficult tasks. Exam-
ples of fields in which we can use these edge devices are cog-
nitive assistance, physical analytics, mobile health, memory
augmentation and lifelogging. Some of these tasks use mo-
bile vision, which take visual data as input and compute the
desired application result using a convolutional neural net-
work. Although these devices are improving, they are still
not able to perform costly tasks such as training a network
or sometimes even running an inference. Many edge devices
overcome their limitations by sending their data to the cloud
to be computed elsewhere. This puts the main constraint a
device has as the connection speed. The data sent can contain
sensitive information which imposes a privacy risk. Another
drawback to using this method is that a high bandwidth is re-
quired when the data becomes large. Being able to do the

computations locally has its benefits. One of the places to in-
crease the capabilities of edge devices is with caching. This
paper will look into what strategies benefit most from caching
on executing convolutional neural networks and what the im-
pact of it is.

2 Related Work
On these resource constrained devices it is even more crucial
to find clever ways to avoid doing unnecessary instructions.
Previous works have made progress in this field. DeepEye
makes an early analysis of the input picture to detect whether
or not an inference on a similar image has been done recently
[7]. If so, the cached result of this inference is returned and
the entire inference can be omitted. The idea is to prevent
having to do the work twice if the outcome will most likely
be the same anyway. The problem with this is how image
similarity is defined. Images with a stationary background
and a moving foreground might still inadvertently classify as
similar, even though the main subject has been altered and
the result of the inference would be different. DeepMon rec-
ognizes this problem and improves upon this by comparing
small blocks of the image, and caching the results of applying
the convolutional layers to these [4]. In the previously stated
example the background blocks have been cached and can be
reused, while the changed foreground elements are checked
again. The similar blocks in the image do not have to be
computed again, and with the changed blocks being recom-
puted the outcome of the entire image can be reconstructed
from the separate parts. This is especially advantageous as
a large part of the execution time comes from these convolu-
tional layers. Later work has enhanced this by matching these
blocks to different locations on the cached image by using di-
amond search, a technique used in video compression [10;
11]. This ensures that even if the camera has moved sections
might still match and can be retrieved from the cache.

In many fields there is a lack of training data available. A
solution that has been found for this is to use Transfer Learn-
ing. An existing convolutional neural network that has been
trained to do a certain task, can have specific layers retrained
to fit the new task at hand [8]. This makes use of the abstrac-
tion levels introduced by the original network and prevents
overfitting of the network due to a lack of training data. Pre-
vious work has shown that these networks trained for very
different scenarios can yield positive results when applied in

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



a different field [3; 1; 2]. It should be noted that this does
not always hold as there are cases where the network is better
when retrained [9]. A side effect of this is that different net-
works might have similar layers which can be cached so that
the loading time of the inference is decreased. The approach
of caching layers has been to take the largest layers possi-
ble and cache those [7]. If the similarities between layers are
frequently occurring this solution is suboptimal.

Another approach to optimising networks with similarities
has been proposed by Jiang et al. They present Mainstream,
when two inferences from different networks share layers,
these layers only need to be computed once [6]. Whenever
the networks branch off in different directions, the result up
to that point is used for both individual computation of un-
shared layers. This makes sure that the earlier shared layers
of a network only need to be executed once. As a side effect
of this, the layers only need to be loaded once as well. This
would eliminate the need for caching similar layers as they
only need to be loaded once anyway. Important to note here
is that the specific case this works is when the inferences are
done on the same input image and at the same time. If this is
not the case this method fails to get any improved results.

3 System Scenarios

3.1 Deep Learning Framework

As a choice for handling the operations of the convolutional
networks, Caffe is used. This is a framework which provides
all tools necessary to use and manipulate deep learning. It
offers a broad variety of layer types and pre-trained networks
through a standardised format. Caffe is designed with expres-
sion, speed, modularity, openness and community in mind,
aiming at reproducibility and academic research [5]. Caffe re-
duces the convolutional computation problem to matrix mul-
tiplication and makes use of BLAS libraries, which are highly
optimised at this for almost all platforms.

Built on top of this is EdgeCaffe, which focuses on split-
ting a deep neural network into separate layers and being
able to run it partially, meaning independently layer by layer.
This provides many possibilities for improvements as there is
more control over how the networks are loaded and executed.
Aside from having previously used strategies implemented,
it also provides its own novel way of loading and executing.
This is discussed in the next section on partial loading.

Every layer of the network is divided into two tasks that
need to be completed in order for the layer to be considered
finished. First, the loading task, where the layer has to be
loaded into memory from the disk. The second task is the
execution task, where the layer type dependent operations are
executed. This tasks has some prerequisites that need to be
fulfilled before the execution can begin, namely the layer has
to be loaded into memory, and the previous layer needs to
have completed its execution in order for there to be input to
the current layer. Once all of the layers are done executing
the network is done with the inference and the result has been
computed.

3.2 Modes of operation
The splitting of the network into layers allows for different
strategies of the ordering of tasks and the use of other features
such as multithreading. These different modes of operations
each provide a unique method with its own advantages and
disadvantages. When analysing the added benefit of using
caching, the four modes provided by EdgeCaffe are tested
and compared.

Bulk
Bulk mode can be seen as the most traditional approach on
running convolutional neural networks. The entire network is
loaded into memory first. When this is done, all the layers
will execute one after the other. The memory used by this
mode is high, as layers are in memory that are not currently
used. This mode does not gain anything out of the fact that
the network is split into layers.

Linear
With linear mode, the tasks of loading and executing are al-
ternated. First a layer is loaded, after which it is immediately
executed. This is done in a linear fashion, as a layer cannot be
executed before its previous layer is finished. By having the
network split into separate layers, once a layer is executed it
can be released from memory as it is no longer needed for the
current inference. Layers that are not handled yet have not
been loaded, which means the memory they would take up is
also free to use.

DeepEye
The method used in DeepEye is described as runtime inter-
leaving [7]. The executing of convolutional layers and the
loading of fully connected layers takes up most of the time of
an inference. Two threads are created, one for each of these
tasks. While the convolution-execution thread is loading and
executing the convolutional layers of the network, the data-
loading thread is simultaneously loading fully connected lay-
ers. Once the convolution-execution thread has calculated its
output by executing all its layers, the data-loading thread will
take this as input and can start to execute the fully connected
layers to classify the inference input. This essentially splits
the network up into two parts, with one thread for each seg-
ment.

Partial
The last mode used in the analysis is uniquely from Edge-
Caffe. Partial loading uses multiple threads like DeepEye, but
does not have specific tasks for each of these worker threads.
Instead, task pools are made where every available task is
stored. These tasks are either the loading or the execution of
a layer. All the loading tasks are available immediately. Be-
fore a layer can be executed though, it has to be loaded and
the previous layer has to have finished its execution, since the
current layer needs input. Once these conditions are met, the
task is placed in the task pool and the worker threads can ex-
ecute them. Two worker threads can have the same interleav-
ing effect described in DeepEye, but partial loading has the
advantage of being able to do so in loading all layers instead
of just the fully connected ones. Another benefit of partial
loading is that less memory is required. Instead of starting



with loading the fully connected layers and having to keep
them in memory, other layers can be loaded and executed,
enabling this memory to be freed after the execution.

3.3 Memory
Running an inference on a network will yield different re-
sults depending on the available memory. When the available
amount of memory is exceeded, the system makes use of a
swap file. This is virtual memory that is stored on disk, mean-
ing the access time will be slower than when accessing phys-
ical memory. As more memory is available, the swap file will
be accessed less, decreasing the time taken to fetch the data.
Since the inference is not done on an actual constraint device,
this is simulated by using control groups. Control groups is a
feature from the Linux kernel which allows the user to set a
custom memory limit. After this size is exceeded, the system
will make use of the swap file, which can also be altered in
size. If the swap file is exceeded the program is terminated
as continuing without sufficient memory will lead to unpre-
dictable results.

4 Caching
Different approaches can be taken to optimise the inferences
based on what the conditions are. The circumstances in Main-
stream require the input image to be the same and the arrival
time of the inferences to be before the moment where the
branches are diverging.

This paper will look at a very different case. First, the in-
ferences can, but are not required for improvement, have dif-
ferent input images. An important use case for this is if there
are multiple cameras on the device that all need to run the
same networks simultaneously. Further more the arrival time
can vary. Having multiple images taken seconds apart and
running the same inference on each of these can increase the
certainty of this being the right result.

Convolutional neural networks take up most of the time
executing the convolutional layers and loading the fully con-
nected layers. The caching of layers will allow the program
to fetch them from memory instead of looking them up from
disk, saving time on the loading part. The caching of the con-
volutional layers will have a smaller impact but also requires
less space in memory. The impact of this will depend on the
strategy used.

To determine whether or not two layers are similar, a hash
value is used. This ensures that knowing if it is already stored
does not require loading the entire network. These hashes can
be generated offline, meaning the overhead is only in com-
paring the hashes, not the calculation of it. If the layer has
already been seen and is loaded into memory, the cached ver-
sion can be used preventing costly loading from disk.

With transfer learning, the idea is to use a pre-trained net-
work and alter it slightly for the specific task. This is often
done by freezing all layers except for the last softmax layer,
which outputs the probability for each class label. By do-
ing so the entire network except for the last layer stays the
same. When running the tests this structure is applied and
when networks were required to be similar all layers except
for this last one corresponded to the layers and hashes in dif-
ferent networks.

EdgeCaffe provides a clear division in how the tasks are
handled. The code of the tasks where layers have to be loaded
is extended. Before the layer would immediately be loaded
from disk. As of now the check is first done whether or not
the hash of the layer has been seen already. This check is done
through a single unique map. On the first inference no layers
have been cached yet. The first layers will be loaded from
disk as usual, and a pointer will be stored to the location of
these individual layers. After this the layers will be separately
loaded into the network that requires it. Whenever a layer
with the same hash is requested later on, its memory location
from the cache can be retrieved from the map. The layer can
then be loaded into the network. As some of the modes of op-
eration use multithreading, it is important to make sure these
do not interfere. When accessing this map, mutexes are used,
but should only be held for this duration, and not for the time
loading the memory from disk. This ensures that the mul-
tithreaded approach suffers minimal timeloss when multiple
threads want to access this at the same time.

5 Analysis of Caching Policies
5.1 Testbed and workloads
As a start, four networks are compared. These are AgeNet,
FaceNet, GenderNet and SoS GoogleNet. As AgeNet ap-
peared to be most useful for testing caching, the later results
are done with this network. AgeNet consists of 3 convolu-
tional layers and 3 fully connected layers. The Caffe model
is 45.7MB in size, with 86.8% of the size being the fully con-
nected layers. Every statistic presented in the evaluation sec-
tion consists of 20 to 25 runs.

With the tests run, some of the layers of networks would be
considered similar and thus reusable from cache. Whenever
two networks are similar, this means that all their layers are
similar, except for the last fully connected layer. Why this is
the case is argued for in section 4. In the figures presented
in this section, the amount of similar networks is denoted by
(X/Y ), where X is the amount of networks that were similar
out of Y networks total. As an example, (3/5) means that
in total five networks were run, with three networks sharing
similarities. One of these needs to be loaded from disk af-
ter which the others can use the cached data. The other two
networks not similar required loading from disk. If the no-
tation is not stated or is (1/Y ), none of the networks share
similarities and everything needs to be loaded from disk.

Partial loading can be run with different amounts of
threads. In the test cases two worker threads are used. This
was chosen as the the main advantage of multithreading is to
be achieved from having the execution and loading side by
side.

The machine the tests were run on uses an Intel(R)
Core(TM) i7-4720HQ CPU @ 2.60GHz processor. The
memory with a capacity set by the control groups is DDR3.
A hard disk with 6.0Gb/s SATA was used.

5.2 Results
First, it is important to look at how the time spent on each
part of the network is distributed. All of the networks were
run a total of 20 times on a single thread, with the average



AgeNet FaceNet GenderNet SoS GoogleNet
LoadTime 421.81 1009.22 339.01 278.31

CachedTime 164.87 576.22 118.00 196.63
ExecTime 120.03 157.63 790.04 4170.08
RunTime 642.05 1505.83 1256.02 4898.02

RunTime* 423.14 1019.07 1108.02 4772.26

Table 1: A comparison of the load, cache retrieval, execution and
runtime of four different networks. The runtime indicated with an
asterisk is the runtime with caching applied.

Figure 1: AgeNet is run twice with 1G of memory available on the
different modes of operation

of each statistic taken. The results of this is shown in table
1. The LoadTime, CachedTime and ExecTime labels are the
time taken for solely the layers, while the RunTime displays
the aggregate of the entire run with overhead of the program
included. The LoadTime and CachedTime are mutually ex-
clusive and for a run only one applies, as the layer needs to
be loaded from either memory or disk. One thing that is clear
to see is that the time it takes to retrieve a layer from cache
is significantly faster than retrieving it from the disk. This
works for all networks, with the best decrease in time taken
being 65.19% and the average being 49.59%.

When looking at the total runtime of the networks, SoS
GoogleNet is the one that is relatively changing the least.
This can be explained by the unbalanced distribution of the
time taken by loading or retrieving from cache, and execut-
ing layers. Applying any form of acceleration to the loading
time of this network will not yield significant results to the
overall time. From this example it is already clearly visible
that the caching of layers does not have a great impact on ev-
ery network, and in order to get the most from this technique
the right networks should be used. The other three networks
have shown a good response to caching. AgeNet is the one
that is closest to having the time taken for the loading tasks
and execution tasks equal. In theory this should provide the
best results as the tasks can run simultaneous.

In figure 1 we can see the modes are run with sufficient
memory supplied so that the swap file does not need to be

Figure 2: Three networks are run with varying amounts of memory.
The networks are not cached.

accessed. A clear improvement in runtime can be seen in
most of the modes, with the exception being partial loading.
With bulk and linear mode, the improvement seems obvious.
Since these modes are single threaded, the time waited for
the disk access has been shortened by using the in memory
layer instead, which will decrease the total runtime by the
same amount. With the DeepEye mode the two threads do
not interfere with eachother and operate on different layers.
The same result can be seen here. With partial the effect does
not seem to have an impact. An important note about the
validity of the results of partial loading in this figure is made
in section 6. The only reason the runtime does not decrease
would be if it was dominated by the execution time. As seen
in table 1 this is not the case.

The results of testing different amounts of memory can be
seen in figure 2. As long as there is enough memory, which
is at 1G and 512M in this case, the runtime does not differ.
As soon as we reach a critical amount, the runtime increases
rapidly. For bulk and DeepEye mode this can be explained
by the loading of layers that had to be put in swap memory as
the total amount did not have enough capacity to keep them
in memory. After the initial loading of the layer from disk,
it was written back to swap memory on disk, after which it
was retrieved again when it was ready to be executed. These
modes scale terribly when the amount and size of networks
grow and the memory decreases to a demanding level.

Linear mode is not affected too much by this. Its approach
to immediately use the layer that was loaded does not have the
issue of loading it twice from swap memory. It can be seen
though that at 256M of memory the runtime is also vastly
increased. This is likely due to the execution of the layers
not having enough memory to properly work without using
the swap file. This also affects the other modes of operation.
Again, the results for partial loading are dubious because of
the aforementioned reasons. In figure 6 the correct results
are displayed and here it can be seen partial loading reacts in
a similar fashion, as both the issue of loading early and not
having enough memory for the execution take place.



Figure 3: Five networks are run in bulk mode with varying amounts
of memory. Different amount of networks are considered similar.

Figure 4: Linear mode is used when running the five networks.
Caching is applied in the cases where applicable.

The results for bulk mode have ended surprisingly. In fig-
ure 3 we can see the results of using 1G of memory where
having 5 similar networks does not yield better results than
having only 3. The expected results can be seen when using
512M of memory, where a gradual decrease in runtime is pre-
sented by having more similar layers. When using only 256M
of memory the results seem unstable as well. Reasons for this
could be the operating system working on other processes, or
when the swapping of the wrong data when exceeding the
memory limit.

With linear mode in figure 4 the outcomes behave intu-
itively. The more memory available, the faster the inferences
run up to a certain threshold. As more cached layers can be
reused, the loading time decreases and so does the overall ex-
ecution time as it is single threaded. Linear is a very robust
mode that suffers the least from having too little memory. The
most it needs to have in memory at a single time is one layer

Figure 5: The different runtimes are plotted against the amount of
cached layers. Five networks are tested.

of the network, whereas other modes often have more than
this. The slowdown on execution time due to the memory
constraint is similar to that of other modes.

figure caption more extensive, figure 5 (also applies to oth-
ers)

In figure 5, the axis and labels are swapped, which makes
it clear how changing the memory compares to each other
and affects the runtime. The proportions of running with 1G
or 512M of memory are getting more equal as more of the
networks become similar. When all networks are similar the
advantage of running with extra memory appears to be gone.
This indicates an important decision to be made when design-
ing the device for the application. A trade-off can be made,
with on one side possibly decreasing the accuracy by using
networks trained with transfer learning and on the other side
investing more in better hardware.

The change in memory is especially visible with the Deep-
Eye mode. As this mode loads the fully connected layers on a
different thread from the start, the memory quickly becomes
full and the swap file will be used. The reusing allows for the
memory difference to not be noticeable.

Figure 6 depicts the runs performed with partial loading.
The same trend can be seen where more caching results in
a lower runtime. When running the inferences with partial
loading, 512M of memory and not being able to reuse any
layers, the runtime has a small spike. This is the brim of
where the runtime will start growing rapidly if the memory is
slightly decreased or the workload is increased. This is also
indicated by the error margin being larger. With caching 3 out
of 5 networks the problem is solved and a low steady runtime
is achieved again. Partial loading works the fastest of any
mode when there is enough memory available, but does not
scale as well as linear when this is not the case.

The differences in load and execution time spent on the
layers is shown in figure 7. The test is run on partial
mode. As expected the execution times of the layers remains
roughly the same, with the only exception being 512M with
no reusable layers, which was described earlier as a short-
age of memory for the execution part of the layer. The time
on loading the layers is much higher still than that of execu-
tion. For the non cached runs this seems appropriate, but for



Figure 6: The results of running five networks with partial loading.
Varying amounts of networks share similarities.

Figure 7: The time for loading tasks and executing tasks for five
networks. The time taken is from start to finish, two threads are
used.

the ones where caching takes place the differences are quite
large. With these tests the total time taken on each layer is
taken. This means that with two threads, if they are both try-
ing to load a layer, the time taken for accessing the disk of one
thread is also taken in the loading time of the other. The time
a thread is waiting on another thread diminishes the efficiency
of using a multithreaded approach.

6 Responsible Research
6.1 Reproducibility
The code that was used to gather these results is from Edge-
Caffe, and will become open source in the fall of 2020 when
the paper from the author is released. The caching discussed
in this paper is an extension of this. Whether this is supplied
as well is unsure, but the framework provides easily modifi-
able code. The methods used to implement it were described
in section 4. The specifications of the hardware used is given,
but since this is not any common standardised hardware re-
sults may be difficult to get this exact hardware and it may
vary on different devices.

The results presented in section 5 are from different ver-
sions of the code. Although the results are similar to that of
other versions, changes in the code might have changed the
outcome slightly. This is due to code added later on that made
more statistics about the inferences available, which also in-
cluded other updates such as not needing to initialise every
network from the start but being able to do so during an exe-
cution. The relative differences visible in the images are how-
ever still valid, and prove the point even if the results are not
exact. In figure 1 and figure 2 the partial loading results are
most likely from a faulty version, but due to time constraint
these remain in the image. In the other parts of the analysis,
the partial code results are correct and are up to date.

Networks stored in hdf5 file format have not been tested as
the underlying code in loading these is less adjustable. This
is the reason why SoS AlexNet is not used. The four other
networks that are compared seem diverse enough that this
should not be a huge problem, but analysing more different
cases is always better. That this network is stored in hdf5
format should not matter for the caching.

6.2 Ethics
In itself, the analysis of caching on edge devices is not re-
lated to ethics. Any improvements on being able to run neural
networks on these resource constrained devices will stop this
data from being sent over the internet, and will therefore re-
move this privacy concern. These improvements do not lead
to any new cases that could not have been done before. What
can be done with running deep neural networks on edge de-
vices in general seems outside of the scope of this research.

7 Discussion
Many different looks on caching have been researched in the
past. Each with their own set of constraints and strengths.
Many of these techniques can be combined to fit a certain use
case. If for example we use networks that are trained with
transfer learning, and multiple inferences need to be run on



one single image, all previous mentioned techniques can ap-
ply. We can apply the splitting of the intermediate result from
Mainstream when the networks branch off, and combine this
with the caching of small blocks of the image that DeepMon
introduced.

When the images do not arrive at the same time or the im-
ages are different, the caching of these similar layers will de-
crease the loading time and can be used in combination with
the DeepMon approach, which lowers the execution time.
With partial loading making the most of an even spacing be-
tween loading and execution time, the use of both systems
can be balanced given a limited amount of memory to op-
timally make use of the multithreaded approach. What the
optimal balance is also depends on the networks run, as the
ratio between the load and exection time varies for each.

8 Conclusion and Future Work
As seen, caching can be used to decrease the runtime in cer-
tain cases, but also provides methods for decreasing the hard-
ware requirements of running inferences. For inferring in dif-
ferent modes, the caching techniques can vastly increase per-
formance or decrease the amount of memory needed while
still obtaining the same runtime.

For DeepEye and bulk, the caching has less of an effect.
These modes require much space for keeping pre-loaded lay-
ers in memory. Linear shows steady results with caching hav-
ing a solid benefit. Partial loading is the fastest of the modes
and also has much to gain with caching.

The capabilities of resource constrained devices increase
due to technological advancement and improvements on how
we run deep neural networks. This paired with transfer learn-
ing makes running inferences much more accessible, as the
networks can be both trained and used afterwards more eas-
ily.

References
[1] Yaniv Bar, Idit Diamant, Lior Wolf, and Hayit

Greenspan. Chest Pathology Detection Using Deep
Learning with Non-Medical Training.

[2] Kasthurirangan Gopalakrishnan, Siddhartha K. Khai-
tan, Alok Choudhary, and Ankit Agrawal. Deep
Convolutional Neural Networks with transfer learning
for computer vision-based data-driven pavement dis-
tress detection. Construction and Building Materials,
157:322–330, December 2017.

[3] Shin Hoo-Chang, Holger R. Roth, Mingchen Gao,
Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel
Mollura, and Ronald M. Summers. Deep Convolu-
tional Neural Networks for Computer-Aided Detection:
CNN Architectures, Dataset Characteristics and Trans-
fer Learning. IEEE transactions on medical imaging,
35(5):1285–1298, May 2016.

[4] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan.
DeepMon: Mobile GPU-based Deep Learning Frame-
work for Continuous Vision Applications. In Proceed-
ings of the 15th Annual International Conference on

Mobile Systems, Applications, and Services, pages 82–
95, Niagara Falls New York USA, June 2017. ACM.

[5] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[6] Angela H Jiang, Daniel L-K Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A
Kozuch, Padmanabhan Pillai, David G Andersen, and
Gregory R Ganger. Mainstream: Dynamic stem-sharing
for multi-tenant video processing. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18),
pages 29–42, 2018.

[7] Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya,
Aidan Boran, Claudio Forlivesi, and Fahim Kawsar.
DeepEye: Resource Efficient Local Execution of Mul-
tiple Deep Vision Models using Wearable Commodity
Hardware. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Systems, Applications,
and Services, MobiSys ’17, pages 68–81, Niagara Falls,
New York, USA, June 2017. Association for Computing
Machinery.

[8] Ali Sharif Razavian, Hossein Azizpour, Josephine Sulli-
van, and Stefan Carlsson. CNN Features Off-the-Shelf:
An Astounding Baseline for Recognition. In 2014 IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 512–519, Columbus, OH, USA,
June 2014. IEEE.

[9] Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu,
R. Todd Hurst, Christopher B. Kendall, Michael B. Got-
way, and Jianming Liang. Convolutional Neural Net-
works for Medical Image Analysis: Full Training or
Fine Tuning? IEEE Transactions on Medical Imaging,
35(5):1299–1312, May 2016. arXiv: 1706.00712.

[10] Mengwei Xu, Xuanzhe Liu, Yunxin Liu, and Felix Xi-
aozhu Lin. Accelerating Convolutional Neural Net-
works for Continuous Mobile Vision via Cache Reuse.
page 13.

[11] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu
Lin, and Xuanzhe Liu. DeepCache: Principled Cache
for Mobile Deep Vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing
and Networking, MobiCom ’18, pages 129–144, New
Delhi, India, October 2018. Association for Computing
Machinery.


	Introduction
	Related Work
	System Scenarios
	Deep Learning Framework
	Modes of operation
	Bulk
	Linear
	DeepEye
	Partial

	Memory

	Caching
	Analysis of Caching Policies
	Testbed and workloads
	Results

	Responsible Research
	Reproducibility
	Ethics

	Discussion
	Conclusion and Future Work

