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Abstract 

Nature has found many interesting solutions to similar problems that we face with robots. 

Swarming in robotics is an interesting field to reduce cost and risk, and provide a scalable 

solution to certain problems. The Zebro Project of the TU Delft performs research in the field of 

swarm robotics using the six legged robot, called a Zebro. Swarm robotics consists of using a 

large amount of small, independent robots that respond to one another in order to create a 

distributed, global behaviour. 

The robots have been simulated using the Unity engine, to investigate methods to accomplish 

swarming behaviour. The simulated Zebros and sensors are modelled after real life designs. The 

algorithm is based on bird flocking behaviour to create  mobile and cohesive swarming 

behaviour. The Zebro robots are not ready for testing yet, but the algorithms have been prepared 

for testing using a Raspberry Pi.   
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1. Introduction 
We are often inspired by nature for its ingenious solutions to problems we face as humans. In the 

field of swarm robotics, robots try to imitate the behaviour of social animals and insects, and let 

them cooperate as a group to achieve a certain task. The Zebro, a six legged robot capable of 

traversing rough terrain, has been designed as a versatile platform for research purposes, and can 

be fitted with different modules to prepare them for specific goals [1]. 

Swarming with robots has a number of important features. Each robot is relatively cheap 

compared to one, complex robot. A broken robot can be replaced more cheaply and easily 

without interrupting the operation of the rest. The swarm also does not have a central controlling 

unit, so each robot should make its own decisions and cannot directly influence the movement of 

another. An individual robot will only respond to its immediate surroundings, and does not have 

knowledge of the entire swarm. 

This means that Zebros can be used for tasks which require a scaling solution. Zebros can be 

added and removed from the swarm at any given moment, and the swarm will still operate the 

same way. This means that more Zebros can be deployed for larger tasks, or can be taken away 

when the remaining task at hand does not require as many robots anymore. The Zebros could be 

used for search & rescue, such as finding survivors after an earthquake, or for exploration, such 

as patrolling and mapping the surface of the Moon or Mars. 

The robots are not yet ready to experiment with. The Zebros are first modelled and simulated 

digitally to find a suitable swarming algorithm. The design of the virtual Zebro has been made to 

resemble the physical Zebro as closely as possible, to minimize the differences of the transition 

from simulation to robot. This research focuses on creating a simulation for a swarm of Zebros, 

and the design of the algorithms to achieve swarming behaviour. The algorithms can then be 

used to control the desired heading of the Zebro robot. 
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2. Background 

2.1 Introduction 
The act of swarming has been found in nature in many different types of animals and insects, in 

various forms. It allows groups of animals to work and survive together without the need of a 

leader, and it happens with varying sizes of animals/insects. 

This method of cooperation is also interesting for the field of robotics. Swarms of smaller robots 

can be used for tasks where the scope is varying, or not immediately clear. Robots can be added 

or taken out of the swarm to fit the problem. 

Because the swarm functions without a leader or otherwise externally controlling entity, the 

swarm will continue to function if any of its members dies/breaks down. This makes the system 

robust and broken individuals can be replaced easily. These features make a swarm a potential 

solution for specific challenges, such as problems that require adaptability and robustness [2]. 

A swarm has its disadvantages however. Without controlling entity, influencing the swarm 

becomes difficult. This also makes it unpredictable, more difficult to understand and slower to 

get started. 

This chapter displays the information found regarding swarming, both in nature and in robotics. 

We will investigate what swarming is, how it can be realised and applied and how nature has 

applied these in various animal behaviours to achieve specific goals. 

2.2 Swarms in Nature 
The idea of creating a cooperating swarm of robots comes from nature. There are many reasons 

in the animal and insect kingdom to work together. The main reason is survival, staying within a 

group means there’s less chance of being taken down by a predator. 

Schools of fish cluster together in very close proximity, without colliding. The fish closely 

respond to directions of others around them, allowing the school to move and turn at high 

speeds. The patterns on their bodies often help confuse predators to increase their chance of 

survival together. Staying together also helps foraging. 

Ant colonies work together in large numbers in a nest. 

When looking for food, foraging ants leave a pheromone 

trail in the environment when they are successful on the 

way back. Other ants can follow this trail and end up at 

the same food source. When also successful, they also 

release a trail. The best trail will have the most ants and 

eventually the optimal route will be strongest, and 

followed by most ants. 
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Birds flock together and fly in formations when 

migrating. The formation reduces wind resistance for 

birds flying in the back of the formation, conserving 

energy. Foraging as a group can yield more food and 

reduce the chance of being caught by a predator. Birds 

gather information for the direction of their destination 

by using a variety of sensors, such as a sun compass, 

magnetic fields and visual landmarks. 

2.3 Types and Criteria of Swarm Behaviour 
Self-Organization - Self-Organization (SO) in nature, is a process where sudden order appears 

without an external agent. The initial trigger often comes from a random event, which is then 

reinforced through positive feedback. Due to this nature, it’s typically robust and able to 

withstand perturbation. Examples of self-organization can be found in physical, chemical, 

biological, robotic and cognitive systems. A chemical example is crystallization, an example in 

nature is animal swarming [3]. 

Swarm Intelligence - A swarm is a population which is self-organizing, interacts with each 

other within the swarm, without any central instance controlling the group (A swarm is 

decentralized). The swarm often works together to achieve a goal, where each individual of the 

swarm acts based on its current state, location and environment. A swarm often starts off chaotic, 

and slowly turns into an organized group through communication between members, with 

intelligent behaviour as a result. There are a number of algorithms based on this approach. Two 

of these are Flocking with Particle Swarm Optimization and Ant Colony Optimization [4] [5] [6] 

[7]. 

Flocking Behaviour - Flocking behaviour can be observed in groups of birds, called a flock, that 

are in flight or foraging. Birds in a flock adjust their movement to avoid predators and seek food. 

Based on their neighbours within the flock, the individual agent is modelled with these simple 

rules: 

- Cohesion: Steer towards the local position of flock mates to remain close 

- Separation: Steer away from the local position to prevent crowding 

- Alignment: Steer towards the average heading of local flock mates 

The result is that all agents move in a formation with a common heading, while avoiding 

collisions between agents. The Particle Swarm Optimization algorithm uses the principles of this 

behaviour to find a minimum solution [8] [9]. 

Particle Swarm Optimization - The Particle Swarm Optimization (PSO) algorithm is an iterative 

method that tries to improve a candidate solution by giving a measure of quality and is inspired 

by fish schooling and bird flocking behaviour. The algorithm starts off with a number of 

candidates (dubbed here as particles), and these particles are moved around in the search space 

by following the current optimum particles. Each particle keeps track of its coordinates which are 

associated with the best solution (fitness). The particles also keeps track of the best attained 
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solution so far by neighbouring particles (local best), and the algorithm keeps track of the global 

best. The optimization consists of accelerating each particle towards its own best and local best 

fitness values. The acceleration is weighted by a random term. PSO has been successful in  

finding the optimum faster and cheaper compared to other methods such as Genetic Algorithms 

[10] [11]. 

The Ant Colony Optimization - The Ant Colony Optimization (ACO) algorithm, as the name 

suggests, is based around the behaviour of social insects such as ants. It is a probabilistic 

technique that can find good paths over time through graphs. In nature, ants wander around 

randomly, searching for food. When an ant finds a food source, it walks back to the nest, while 

leaving behind a trail of pheromones. When the trail is picked up by other ants, they will start 

following it to the food source and leave pheromones on the way back. 

Over time, pheromones evaporate, losing strength. Longer paths have more time to evaporate 

due to longer travel time per ant, and as a result become less strong than shorter paths. Stronger 

pheromone trails will be followed more and thus become enforced by large amounts of ants. 

Eventually most ant will start following the shortest found trail [12] [13] [14]. 

2.4 Features of Swarm Robotics 
A group of swarming robots is generally defined to have the following features. 

Autonomous/Decentralized – Each individual robot should not be controlled from an 

outside source, and make its own decisions based on the environment, other robots, its own 

position and status, and the end goal. 

Parallel – Each member of the swarm acts at the same time, creating a large group of 

parallel processes. A swarm can focus and act on multiple targets in a larger environment at the 

same time. 

Scalability – The robotic swarm should be able to function with any number of other 

robots, from 10 to thousands, while still cooperating. 

Limited Capabilities – Each robot does not have the tools to complete the goal on their own. 

A larger number is required to be able to succeed. 

Local Sensing and Communication – Communication is done strictly within a few meters 

around each robot. This makes sure that the swarm is scalable to any degree: Communication 

between each robot with thousands of swarm members is impossible due to the overhead. 

Homogeneous – The robots of the swarm should be homogeneous. Groups can exist where 

their function slightly differs from others, but the number of groups should be small [4] [15]. 

2.4.1 Differences: Multi-Robot Systems versus Swarm Robotics 
Working with multiple robots does not mean that the system is a swarm. A multi-robot system is 

set up to overcome limitations in processing capability, and are generally controlled from a 

centralized point. The robots need to cooperate and collaborate to achieve their goal, but the main 

difference is that each robot is able to perform a meaningful part of the task. Without some of the 
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participating agents, it may not be possible to reach the end goal (But parts of the goal can be 

reached successfully). Where in Swarm Robots, each individual robot is not able to complete any 

task  on its own, it can do so with any size group of (almost) identical fellow robots. 

2.5 Common Swarm Applications 
Swarm robotics can aid in a number of situations, where a small number of robots might not. 

Cover Area – Many small robots can gather information about their surrounding and cover 

very large areas. The size of the swarm can be adjusted to suit the area to cover, thanks to the 

scalability property. The swarm can be used for exploration and/or monitoring. While sensor 

networks can monitor large areas, swarm robots can instead move around and monitor the same 

area with fewer agents. Besides monitoring, the swarm robots can also find the source and even 

take actions, such as patching a leak temporarily by collectively blocking it off.  

Dangerous Environments – Due to the redundancy and scalability, swarm robots can work 

in environments that are dangerous, even to robots. When some robots are lost during the task, 

the swarm continues to operate. The cost of losing a few robots is also less.  

Tasks Requiring Scaling – When the size of a task is still unknown, or the workload changes 

over time, different amounts of robots can be put into action to suit the current demands. An 

example is an oil spill, where the spill begins large and a large amount of robots are needed. As 

the spill shrinks, less robots can work at the same time, and the numbers can be downscaled. 

2.6 Methods of Communication 
This section discusses a number of ways that animals and insects use to send information to each 

other. 

Direct communication – Communicating directly is the easiest way to convey information. This 

can be done in many forms, such as the bee’s dance to directly convey the location of a good new 

hive location. It requires one end to speak and the other to listen, which is not always preferred 

with many agents wanting to speak, or possible when a swarm is spread out.  

Stigmergy – The environment itself can be a good way to leave information for others to find. 

This is called stigmergy, and is a method of communication and organization by modifying the 

surroundings in some way. In nature, some swarming insects leave scent marks (pheromones) in 

the environment to reinforce a certain type of behaviour. In an ant colony, ants leave pheromone 

trails when returning to the nest upon finding food. The pheromone trail encourages other ants 

to follow the trail to end up at the same food source to gather it in larger numbers. In mammals, 

scent marks are left in the environment to mark a territory, repelling competitors or attracting 

mates. 

Another form of stigmergy with organization is sorting. Smaller groups are put together to form 

a bigger (higher density) group. This bigger group becomes more attractive to sort similar items 

into, reinforcing a sorting behaviour. This can be found in social insect hives, where larvae of the 

same growth stage are sorted together [16]. 
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2.7 Simulation Programs 
There are a number of suggested platforms that are suitable for simulating robots. Each program 

has advantages and disadvantages, some are more suitable for single robots, others allow for 

larger numbers of independent agents. The complexity differs between each program, and a 

balance should be found about technical depth as well as ease of use. Since a large part of the 

project is expected to be done in a simulation, it’s important to pick a suitable simulation 

program [15]. 

The Player Project - The Player Project is a free software tool for robot and sensor applications, 

released under the GNU General Public License. It consists of three pieces of software: Player, 

Stage and Gazebo. Each program can work alone, but can interconnect for expanded features. 

The Player Project is available for Linux. 

 Player - Player is a program that provides a network interface to robot and sensor 

hardware. It allows you to connect with mobile robots over the local network. Its interface 

allows programming a control program in any language. 

 Stage - Stage is a multiple robot simulator in a two-dimensional environment. The robots it 

simulates are greatly simplified compared to Player, to provide better performance with 

large numbers of robots. It allows moving and sensing with a variety of sensor types and 

can generate heat maps of robot locations. Stage is a great tool for testing swarming 

algorithms. 

 Gazebo - Gazebo is a 3D multiple robot simulator (Whereas Stage is simulated in 2D) where 

multiple robots can be simulated in more realistic environments (e.g. outdoors). Written 

programs can be used between Gazebo and Stage, and works together with Player. The 

Player Project software is supported on Linux and MacOS [17]. 

UberSim - This simulator is designed to simulate soccer robots in a realistic scenario. It uses an 

ODE physics engine to simulate physics and interactions. Extra robots and sensors can be 

programmed in C and added to the simulator [18]. 

USARSim - Urban Search And Rescue Simulator is designed in the 2.0 Unreal Engine, for 

research and education. It is a multi-robot simulator that uses the Unreal high accuracy physics 

engine. The Unreal Engine was originally designed for games, but works well for simulations 

[19] [20]. 

Enki - A 2D open source robot simulator written in C++. It has collision and limited physics 

on a flat surface. The simple design is also much faster, allowing simulation of much larger 

swarms of robots [21]. 

Webots - A 3D development environment in which multiple robots can be simulated at the 

same time. It features realistic simulations of commercially available robots and sensors, and 

allows the user to tweak each individual part in terms of colour, weight, friction, etc. [22] 

Breve - A free program that enables users to create 3D simulations of multi-agent systems. 

The simulations are written using a language called steve, which is based on C, Perl and 
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Objective-C, and also features full support for simulations written in Python. It has physics 

simulation, collision detection and response [23]. 

V-REP - An open source 3D robot simulator that allows control over each individual part 

through embedded scripts. These scripts can be written in C/C++, Python, Java, Lua, Matlab, 

Octave or Urbi. It can simulate multiple agents in real-time [24]. 

ARGoS - ARGoS is a multi-physics simulator designed for simulating large scale swarms of 

robots in real time. Each robot can be implemented as an individual plugin, and the program is 

designed to handle thousands of robots in a swarm at the same time. ARGoS is supported on 

Linux and MacOS [25]. 

MORSE - Modular OpenRobots Simulation Engine is a generic simulator for academic robots. 

The simulations are done with Python scripts that describe the robot and its environment, and 

are done in the Blender Game engine. The simulator comes with a set of standard sensors, 

actuators and robotic bases, and allows adding new ones easily. MORSE is focused on large, 

complex robots but can also handle a small amount of simpler robots in one environment. This 

makes MORSE less suitable for our application [26]. 

 TeamBots - TeamBots is a Java-based collection of application programs and packages for 

multi-agent mobile robotics research. It supports prototyping, simulation and execution of multi-

robot control systems [27]. 

Unity - Not aimed at robotic simulations, Unity is a game engine that offers physics 

simulations. Like USARSim is based on the Unreal game engine Unity can be used to simulate a 

swarm of robots using its inbuilt physics engine. The paper [28] describes a method of approach 

for modelling a swarm robot with sensors. Unity can be used with the programming languages 

C#, Javascript and Boo [29]. 

2.8 Hardware Study 
One of the challenges and required components of swarm robots is locating and communicating 

with other members of the swarm. They need to estimate where other members are in relation to 

itself.  

Hardware Platform - As one of the goals of the Zebro project is to make the system 

modular, the programming should be done on its own platform. The swarming behaviour is 

designed to be simple and only simple decisions should be made on an individual level. 

Communication - In order to convey information from one Zebro to another, a form of 

communication is needed. Since the swarm is required to be scalable, the communication should 

be done locally, with other Zebros being able to join and lose connection to the local network.  

Zigbee and Bluetooth - Zigbee and Bluetooth (specifically BLE: Bluetooth Low Energy) 

differ from each other on a technical level, but the goal of these network standards is to create a 

(small) local network to transfer data wirelessly. Both standards are capable of transmitting data 

in form of a broadcast, thus no pairing is needed and any number of nearby Zebros can receive 

messages. 
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Zigbee and Bluetooth differ in operating frequency and energy cost (though Bluetooth 5 has 

become much more energy efficient too). Zigbee operates at around 900 MHz versus 2.4GHz 

(Wifi frequency) for Bluetooth, which gives Zigbee a larger range through obstacles. Both 

standards have a range of about 10 meters [30] [31]. 

Infrared - Infrared can be used as a method of communication that requires direct line of sight 

from IR transmitter to receiver. The communication is done in a broadcast-method, where 

information is sent out without knowing who will receive it. An experiment with the e-Puck 

robot has shown it can also help with relative orientation between robots, based on the angle that 

the infrared light is received [32]. 

2.8.1 Orientation 
Compass - One way to know the orientation is to add a compass. The compass measures the 

magnetic field to determine the direction of the north pole. This works because Earth has a strong 

magnetic field, however this is not present (as strongly) on other planets, e.g. Mars. 

Gyroscopes and Accelerometers - Another method of determining the orientation is by using 

gyroscopes and accelerometers. One can estimate their position by using a landmark, and using 

your orientation and velocity to determine your relative position after some time. This method of 

navigation is called “dead reckoning”, and is subject to cumulative errors. 

2.8.2 Range Finding 
Infrared Triangulation - After determining your own relative position, you want to know 

where the other members of the swarm are in relation to your position and orientation. To 

prevent collisions and to stay with the group, it is important to know the distance to the nearest 

swarm robots. This could be determined by measuring the strength or quality of signals such as 

Bluetooth or Wifi coming from other swarm robots. This has many disadvantages however; it is 

not accurate, and with many signals happening at the same time, the signal quality sharply 

drops. Signals bouncing off walls can increase or decrease signal strength, making the calculation 

vary wildly. 

A strong alternative is infrared; Since it uses light, it is detected with line of sight. If the robot 

cannot see the other swarm member, they won’t be able to communicate or measure their 

distance. 

Infrared can determine distance based on a process of triangulation. The sensor has two 

components: One IR transmitter and an IR phototransistor. The transmitter sends out an infrared 

signal, which is reflected off of an obstacle (Or not, if too far away) ahead back to the 

phototransistor. The distance can be measured by determining the angle at which the infrared 

signal is received.  

Infrared is okay for accuracy due to the nature of light; It is reflected differently off of the same 

surface depending on the material and colour. It is also affected by sunlight and has a narrow 

detection width. Infrared range sensors can be found in analogue or digital (byte) variants, and 

the maximum and minimum distance are depending on the sensor [33]. 
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Infrared Time of Flight - A second method of measurement with infrared is by using Time of 

Flight (ToF). By using a precise clock, this type of sensor measures the time it takes for light to 

bounce back from a surface. The accuracy is a few millimetres, which would be a good option for 

the swarming application. 

Ultrasonic - Another alternative are the use of ultrasonic sensors. Where IR uses light, 

ultrasonic sensors use sound for ranging. The ultrasonic sensor sends out pulses of sound, 

inaudible to humans. At the exact same time, the sensor sends a pulse to the microcontroller, 

which then keeps track of time. When the soundwave comes back, it is picked up by the sensor, 

and another signal is sent back. Based on the time, the distance of objects ahead can be calculated. 

The sensor suffers from a maximum and minimum distance: Since sound is pulsed out in a cone, 

the strength of the wave diminishes quickly over distance. When it travels too far (2 to 8 meters, 

depending on the sensor and conditions), the returning pulse is too weak to be picked up by the 

ultrasonic sensor. The minimum distance (~30 cm) is caused by the speed of the sensor, if an 

object is too close the sensor the pulse is returned too quickly to do calculations with. It also 

suffers from “ghost echo”, where pulses bounce off of surfaces under an angle, then off of 

another surface, and are then returned. This means the pulse travels further, and the distance 

measurement is too far.  

Ultrasonic sensors are more accurate than IR sensors and work regardless of surface area you 

would normally find in a room (sponges or foam for example absorb sound much stronger and 

lower range). Pulses from other robots can cause a lot of problems however, since every pulse is 

technically the same. When these pulses are received by other robots in the area, it can cause 

wrong measurements, and might not be suitable with many similar robots [34]. 

Both ultrasonic and infrared sensors are good options for range finding. The IR method is used 

by many other swarm robot researches [35] [36], such as the Kilobot [37], Colias [38], Khepera III, 

Jasmine, Kobot and SwarmBot [39]. 

2.8.3 Sensor Positions 
An important part of the sensors is the placement on the Zebro. Sensors such as a compass, 

gyroscope and accelerometers will work on any location, but the infrared/ultrasonic sensors 

need a direct line of sight. Many swarm robots from other parties such as the e-Puck [40] are 

fitted with 6 to 8 infrared proximity sensors, that are put in a circle on the top. This allows the 

robot to scan around its entire body for obstructions. The Zebro has potential to put sensors on 

the top, but during its walking cycle, the legs might block sensors pointing sideways, causing 

interference. 

2.9 Previous Student Research 
In the past, a student team have worked on a model for swarm intelligence for the Zebro robot 

[41]. This section summarizes their achievements and important findings. The requirements at 

that moment were slightly different, such as the requirement that the communication module 

should be compatible with the Delfly communication module. 



 

 10 

Their report about swarming focuses on wireless communication in the third chapter, where they 

have considered Wifi, Bluetooth and Zigbee. After comparing the different wireless standards, 

Wifi is not as suitable due to lacking an advertising feature. The BLE113 module has a ranging 

tool called iBeacon, that allows information broadcasting in set timeframes. 

 In the next chapter, the team discusses the possibilities of using the BLE113 as a range finding 

tool. After their measurements, they conclude that it could be used to find the distance to another 

module when they are within one meter. This could be used to determine when Zebros are too 

close, but it’s not accurate enough to determine when they are too far away. 

The behaviour of the swarm is discussed in the next chapter, where the team suggests three main 

behaviours: Individual, anti-collision and separation-prevention behaviour, with binary and 

fuzzy-logic based probabilities of which behaviour to follow. The next three chapters describe 

these three behaviour types. 

The individual behaviour should operate when the other requirements are met, such as keeping a 

desired distance to all other Zebros and having high enough battery level. The goal proposed in 

the report is to cover as much new ground as possible, and doing this with as low as possible 

energy cost. Covering area twice is considered as lost energy. 

The anti-separation behaviour section discusses the actions that could be taken to prevent 

separation in a couple of instances. The anti-collision behaviour activates when Zebros get too 

close. It discusses when to take action, such as when moving in the same/opposite direction, and 

what actions to take accordingly. 

The last section discusses another behavioural approach. Instead of assuming small-scale 

collision or separation, they look at a large-scale regulation, without adopting a central controller. 

This is done by estimating the direction and location of individual Zebros through a set of 

possible methods and constructing a table with local Zebro positions and locations for each 

individual Zebro.  
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3. The Zebro Project 

3.1 What 
The Zebro Project was started in September 2013 and, shortly after, established in the TU Delft 

Robotics Institute as part of the Robotic Swarm theme. The project is centred around the Zebro, a 

six-legged robot (Zesbenige Robot) that is capable of traversing rough terrain. 

Three variants, or sizes, of the Zebro are being developed. The largest version, the KiloZebro, is 

nearly a meter long and significantly stronger than the other variants. The medium version is the 

DeciZebro. This design is intended to be deployed as a swarm with about 100 members. It is 

about 30 cm long and completely modular. The smallest version, the PicoZebro, is the size of a 

matchbox.  

The KiloZebro is designed to be a powerful carrier, 

capable of transporting a number of Deci- and 

PicoZebros into the field. Its larger frame allows it to 

move over rough terrain more easily. It can also be 

deployed as a mobile charging dock for DeciZebros, or 

collect broken robots in the field. 

 

The DeciZebro is designed to be mass produced. Its medium 

sized frame allows it to walk over grass fields and climb the 

kerb of a sidewalk. Internally, its design is divided in 

modules, such as the motor, communication and sensor 

module. It is made modular so that they can be swapped on 

the fly and designed to fit a specific purpose without the 

need to replace the other modules. Two holes on the top 

allow the Zebro to be equipped with extra tools, such as 

tools for vision or communication purposes.  

 

The PicoZebro is small and can be deployed from the 

larger Zebro variants in large amounts. Its small frame 

is made up of 6 PCBs, giving it a light and compact 

frame. It is currently being controlled using an external 

computer, using a top-down camera and Bluetooth. The 

PicoZebros are small enough to work on for example a 

table. 

A second team of students is working on a specialised version, the LunarZebro, designed to 

operate on the Moon and on Mars. The environments require a specialised design and the Zebros 

need a rocket to reach these locations in the first place. 
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3.2 Why 
The Zebro project, as part of the Swarm Theme within the Delft Robotics Institute, serves as a 

platform to further research swarm behaviour in robots. Their mission is: 

“To design, plan and build self-deploying, fault-tolerant, inexpensive and extremely miniaturized robust 

autonomous roving robots to cooperate in swarms, capable of functioning on a wide spectrum of topology 

and environment that can quickly provide continuous desired information with the help of distributed 

sensor systems and carry and support payloads suitable for a wide range of missions. “ [42] 

3.3 Who 
The project is led by Chris Verhoeven, an associate professor in the department of 

microelectronics. Chris is also part-time employed at the faculty of Aerospace Engineering and 

since 2013 the theme leader of Swarm Robotics. 

The project is supervised by Edwin Hakkennes, Senior Consultant at the company Technolution. 

Edwin makes sure that the project stays organized, and hosts team meetings every Tuesdays to 

discuss the progress of the members among the project. 

The project groups consist of students from different schools and universities, and are split up in 

a number of subgroups that are working in parallel, such as the chassis design, locomotion 

controller, range finding and localization, and our group, the swarm intelligence. The swarm 

intelligence group consists of Pengqi Chen, a MSc Embedded Systems student, Shamburaj 

Sawant, a bachelor student working in his own time, Mario Collera, a PhD student, and myself. 

Within this group I have discussed our work mainly with Pengqi Chen, who designed his own 

simulation in Matlab, and with Shamburaj to a lesser degree due to conflicting time schedules. 
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4. Zebro Swarming 
There have been a number of efforts around the world into the research subject of swarm 

robotics. Small robots designed for the purpose of swarming have been designed before, such as 

the Kilobot, Kobot, ePuck and SwarmBot. The Zebro is designed as a research platform for the 

TU Delft to investigate the possibilities of swarming. Aside of the Zebro, swarming behaviour is 

being researched and tested using drones, at the TU Delft faculty of Aerospace Engineering. 

4.1 Goal 
At the start of the project, a true end-goal was kept deliberately vague. A few uses were 

suggested, and an ambitious plan to deploy the swarm as a radio telescope on the Moon or Mars 

has been researched. For this purpose, a Lunar Zebro capable of operating on the Moon is being 

researched and developed. 

For the first version of swarming intelligence, the focus is on implementing flocking behaviour, a 

behaviour in nature that is observed in numerous animals such as birds, fish and insects. 

Flocking means, staying together as a group, move in the same direction and cover a distance as 

fast as possible as a group. 

4.2 Research Questions 
During the literature study, both hardware and software topics were discussed. The project 

should focus specifically on the swarming intelligence and it should not concern with the 

hardware used for sensors or locomotion, as these are worked on by other students. The 

hardware research has been very helpful however, to investigate possibilities and discuss the 

sensor information needed to make swarming possible. 

We define the following research questions. 

 Can a swarming intelligence algorithm work on the DeciZebro Robot? 

 Can swarming be shown in a simulation, using the Zebro as model robot? 

 

 Swarm Intelligence Questions 

o What is the performance of the swarm? 

 How can this be measured? 

o How does the performance change when the swarm size changes? 

o How do different parameters influence the swarm performance? 

 

 Hardware Questions 

o What are the challenges from transforming a simulation to a physical test? 

o What type of processor is suitable to implement the algorithm? 

 



 

 14 

4.3 Requirements 
The requirements can be split in multiple subjects: technical requirements and behavioural 

requirements. Not all points are meant for the swarming intelligence specifically, but are 

important to model the real life limitations of the Zebro swarm in the simulation. 

4.3.1 Technical Requirements 
There are a number of important features that should be fulfilled to be able to count the system as 

a swarm. These points have also been discussed in the literature study, and are repeated here for 

completeness. 

Scalability: It should work with any number of robots. New robots can be added to, or removed 

from the group during operation.  

Autonomous and Decentralised: Each robot should make its own decisions based on its sensor 

data, gathered from its immediate surroundings. Outside knowledge is not allowed, such as an 

overhead camera. 

Local Sensing and Communication: The robot sensors can only see their immediate neighbours, 

and communication can only be done in a limited area around the robot. 

Homogeneous: While not technically a requirement, the first tests will be done on a 

homogeneous robot type and therefore the swarming intelligence should be designed with this in 

mind.  

4.3.2 Behavioural Requirements 
The discussion about this topic has been vague from the start. When asked what the swarm 

should be able to do, the response has been: “Everything”. 

The behaviour of the swarm should be designed for general movement, and when a task has 

been determined, the robots can be programmed to deal with the problem in a more specialised 

fashion. The main focus of the thesis is designing a flocking behaviour to keep the swarm 

together and agree on a heading. 

4.4 Assumptions 
There are many variables and unknowns in the project, including the Zebro robot itself. Since all 

parts are actively being worked on, the dynamics of the locomotion, the method and accuracy of 

range finding and communication have not yet been determined  up until now. A physical test 

was not possible during my research. 

To get my thesis started, the project will be designed and tested in a simulation. This will give a 

good indication if swarming intelligence is possible with the restrictions of the Zebro. The 

parameters used will be picked to resemble the dynamics of the robot, but they are not necessary 

accurate for the physical model yet. 

  



 

 15 

5. Simulation Model 

5.1 Introduction 
In my literature study, I have researched a number of different robot simulation programs. 

However, many of the programs described in section 2.7 are either not available for free or offer 

simulations mainly designed for 3D physics. For 3D physics, this means that some form of 3D 

model has to be designed and often makes simulations more complex than necessary. Finally, the 

Unity engine was chosen to design the swarm simulation, using the 2D physics engine it offers. 

5.2 Unity Engine 
With some prior experience and inspired by the paper “Swarm Robotics Simulation Using Unity” 

[28], the game engine Unity was chosen for designing simulations for the Zebro swarm. The 

Unity engine is flexible, offers both 2D and 3D physics simulations and has an extensive 

documentation and many user problems have been solved online by its large community. 

While certain functions need to be programmed manually such as camera controls, its flexibility 

also makes it easy to add functionality such as adding/removing Zebros and obstacles mid-

simulation or reading out individual algorithm end results. Unity does not offer analysis tools, 

but simulation results can instead be written to an external file, and analysed in programs such as 

Matlab or Excel. 

5.3 Virtual Zebro Design 

5.3.1 Zebro Body 
The Zebro design in the simulation makes use of Unity’s 2D physics system and is modelled with 

a simple square collision box and a rigid body. This means, if a Zebro collides with a wall or 

another Zebro, they will not pass through each other but instead walls will block movement, and 

other Zebro collisions will cause the physics to play out in a more realistic manner. While 

technically the Zebros can climb over each other in real life, this is not possible in the simulation. 

The rigid body is moved by applying forces, forwards for accelerating and backwards for 

decelerating. While the Zebros could move backwards, it is not allowed (or needed) in the 

simulation to keep the swarming simple. Rotation is done by rotating the rigid body in very small 

increments each update, meaning that it takes time for the Zebro to rotate a large angle. 

Furthermore, the rigid body has a linear and angular drag so that the Zebro will stop moving on 

its own when no forces are applied. 

The current parameters give realistic looking movements, but they are not 

necessarily accurate for the real life model. It should still give a good 

representation of the effects of the swarming algorithms. 

The Zebro is given an identification number between 1 and 255 and is 

assigned randomly. This number, the “ZebroID”, is displayed on the grey 

box on the sprite (Figure 1). 

Figure 1: Zebro Sprite 



 

 16 

5.3.2 Range Finding Sensor Designs 
The sensors have been designed in two ways, one model is based on an early idea of using eight 

infrared sensors looking in all directions. The second model is based on a more recent 

omnidirectional design developed by a fellow group of students [43]. 

5.3.2.1 Fan-shaped Sensors 
For the first design, a definitive version for range finding was not decided yet. It was speculated 

that the sensors would be based on infrared, aimed in all directions. This has been used in other 

swarm robot designs, such as the E-Puck and Swarm-Bots [40] [44]. 

The sensors of the virtual Zebro are modelled using ray casts. In 

computer graphics, ray casts are lines (rays) that are projected from a 

point towards a direction. When this ray cast collides with a collision 

box, it reports data such as which object it hits and at what distance. 

This information is stored as a data table, useable by the algorithms. 

The initial design used 8 ray casts, meaning it had very little 

coverage. It was clear that this was not enough for swarming, and it 

will function better with as high a coverage as possible. By increasing 

the amount of ray casts, still evenly spread around, the swarming 

intelligence will work much better.  

To go back to 8 sensors, the final data is combined to form eight fans of ray casts that would 

function as one sensor. It takes the closest detected obstacle and discards the other ray casts’ 

information. As an example, when the sensors are modelled as 48 ray casts, each group of six 

would be combined. Thus grouping the ray casts allows for larger detection coverage around the 

Zebro while keeping the idea of the original sensor design. 

5.3.2.2 Omnidirectional Sensing 
When the bachelor group presented their design for their omnidirectional distance sensor, the 

previous design was changed to fit their method of detection. The omnidirectional sensor uses a 

combination of ultrasonic and radio, sent at the same time, and broadcast in all directions. By 

determining the direction of the ultrasonic pulse, and time difference between RF and ultrasonic, 

the distance and relative position can be determined. The ultrasonic pulse is sent and received 

using a unique cone-shaped antenna, pointing directly down onto the ultrasonic transducer [43]. 

  

Figure 2: Fan-shaped Sensors 
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To model this in Unity, every object within a set range is retrieved and 

stored. Taking their position in space and subtracting their own, the 

relative position and distance are found. The angle of the object can be 

calculated using the arctangent. Since every object is retrieved, this 

also includes objects behind other objects. 

To prevent this from happening, the object data table is sorted based 

on distance. If any object is found within a specific angle and with 

larger distance, it is removed from the table, and ignored for further 

calculations. This way, attraction and repulsion are no longer 

happening in the same direction, as this causes Zebros to move closer 

to each other than intended. 

The real life sensor is not able to detect walls, since it relies on receiving pulses from other 

Zebros. The wall detection can be done by infrared sensors instead. The detection of walls in the 

simulator is modelled using the method of the eight directional sensor. 

5.3.2.3 Visualising detections 
For debugging and clarification purposes, the detections are made visible with coloured lines. 

Based on the detected collision, the colour of these lines change to indicate which algorithm is 

used. For example, detecting a wall with a sensor at a close enough distance, the lines will colour 

cyan or blue. When detecting another Zebro, the lines will colour green for cohesion, red when 

separating and yellow when in between. Magenta is used to indicate a goal object is detected. 

5.4 User Interface 
The user interface is made to give some information about what is happening in the simulation. 

These elements have been added to increase the understanding of what is happening behind the 

scenes, and can greatly help finding issues when something is not behaving as expected. 

 

Figure 4: Simulation with User Interface 

Figure 3: Omnidirectional 
sensor detections 
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The icons in the top left of Figure 4 show which algorithms are currently active on all Zebros. 

They are coloured when active, and grey when turned off and they can be toggled with keys 1 to 

9. From left to right, they represent (1) wall avoidance, (2) separation and cohesion, (3) alignment, 

(4) goal attraction, (5) unstuck mechanism, (6) all movement in general, (7) group colour 

algorithm, (8) switch between omnidirectional/fan sensor and (9) sensor noise. When unexpected 

behaviour occurs, these toggles can help identify the culprit. The bar at the top right displays the 

number of Zebros currently in the simulation, time passed and controls for simulation speed.  

During the simulation, new Zebros and walls can be added and removed by clicking, to make 

testing quicker and more convenient. When adding or removing Zebros, the counter will update. 

The timer displays how long the simulation has been running for, based on the simulation speed, 

which can be found in the top right.  

The result of the main algorithms can be read out on each 

Zebro individually by pressing left alt while hovering over 

with the mouse. In the white bubble, the vector results 

(rotation, speed) can be read out, from left to right: wall 

avoidance, cohesion/separation, alignment and final control 

result.  

5.5 Virtual Test Environment 
A number of arenas have been made to test the reaction of the swarm in different environments 

and swarm sizes. The main testing ground is a square room, which is used to test new additions 

to the code and to analyse the behaviour of the swarm when encountering a wall or corner. 

Obstructions in the second arena are placed to find out how the swarm breaks up or stays 

together when encountering a thin wall. The third arena simulates a smaller gap like a doorway, 

to see how well the swarm manages to walk through as a group. The swarm often breaks up 

because each Zebro sees the obstruction differently. 

 

Figure 6: Examples of testing arenas. A square room, a room with thin obstructions, and a room with a “doorway”. 

  

Figure 5: Reading out a Zebro 



 

 19 

6. Swarming Algorithms 
The algorithm for swarming is split into three main sub-algorithms, Wall Avoidance, Separation 

and Cohesion, and Alignment. Each algorithm provides a result based on the sensor data and the 

results of the algorithms are combined into a forward force and a rotation. 

The desired speed is calculated as a value between 0 and 1, with 0 being stand-still and 1 top 

speed. The Zebro will accelerate or decelerate towards the provided value. While the Zebro is 

capable of walking backwards, it is designed to stop and rotate on the spot instead, until it is 

allowed to move forward again. The rotation is given as a value between -1 and 1, with -1 

meaning a maximum rotation speed clockwise, 0 is no rotation, and 1 maximum speed counter 

clockwise. The rotation and speed are updated every time the screen is refreshed, at 60Hz, but 

can be set to run at any frequency (see 7.6). The code for the algorithms can be found in 

Appendix A. 

6.1 Wall Avoidance 
The first algorithm is used when the Zebro detects a wall within the set detection area, and is 

described in Algorithm 1. The detection has a minimum and maximum range; at the maximum 

range there is no action (0), and from there the action linearly ramps up to 1 at the minimum 

range. The resulting action is based on the location the wall is detected: an obstacle straight ahead 

will cause the Zebro to slow down, until it completely stops. The walls detected at the sensors on 

the side will cause the Zebro to rotate away. A minimum value has been added to force a 

decision more quickly and prevent the Zebro from getting stuck. 

In the algorithm, the angle and distance are collected from the Zebro’s sensors. The angle is the 

angle at which a wall is detected, and is relative to the heading of the Zebro. It is calculated in 

degrees with zero meaning straight ahead. After the calculations, if the resulting rotation and 

speed of the algorithm are smaller than -1 or larger than 1, they are set to -1 and 1, respectively. 
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The effect of the force can be summarised by the following plot, describing the relation of force to 

distance to the detected object. 

 

6.2 Separation and Cohesion 
The separation and cohesion algorithm is used when the sensors detect another Zebro. The 

algorithm tries to keep other Zebros at a certain distance by steering towards or away, or by 

slowing down, depending on the relative angle the Zebro is detected at. 

The sensors can be split into three ranges; the outer ring is the attraction range: When another 

Zebro is detected in this ring, the Zebro is attracted towards the others to close the distance and 

stay together. In the inner ring, the Zebros are repelling each other to prevent collision. In 

between the inner and outer ring, the separation is considered to be at an ideal distance, and no 

action is taken.  

The effect of the force can be summarised by the following plot, describing the relation of force to 

distance to the detected object. 
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Algorithm 2 explains the calculations done to achieve the final result. The results are added 

together to ensure that the Zebro will be able to react strongly to just one neighbour, but also find 

a suitable balance with neighbours detected on both the left and right sides of the robot. The 

result is finally limited to a magnitude of 1 to prevent the algorithm from having a too large effect 

when combining the different algorithm results. 

The angle and distance are collected from the sensors. The angle is the angle at which another 

Zebro is detected, relative to the current Zebro, where zero means straight ahead. 

 

6.3 Alignment 
With only the separation and cohesion algorithm, the problem arises that two Zebros would 

continuously move towards and away from each other in a zig zag pattern, since they only try to 

attract and repulse. For this algorithm, it is assumed that Zebros can share some basic 

information as long as they are in sensor range. The information taken from other Zebros in this 

case is their heading, for example from their compass. Taking this data from all nearby Zebros 

and averaging them, will give the average difference in heading. The Zebro will rotate until the 

average heading is less than 5 degrees off. When all nearby Zebros rotate towards this average 

heading, the group moves parallel in the same direction. This algorithm is only active when the 

total result of the wall avoiding and cohesion/separation algorithms combined is below a 

threshold. Without the threshold, the rotation against the wall avoiding or separation algorithms 

might cause an unwanted collision. This algorithm only results in a rotation. 
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In the algorithm, dataAngle is the detected Zebro’s angle relative to the world, in degrees. 

myAngle is the angle of the current Zebro relative to the world, in degrees. The resulting heading 

is the difference in orientation compared to other detected Zebros.  

 

6.4 Data Merging 
After the above three algorithms, three values for rotations and two for speed are returned. The 

minimum speed value from the wall avoiding and cohesion/separation is used, because it is 

important to stop for any immediate collision threats. The rotations are added, meaning that it is 

possible for algorithms to cancel each other out.  

The Alignment algorithm is only added to the results if the rotation result of the Wall Avoidance 

and Separation and Cohesion are between -0.4 and 0.4. This means that, when a Zebro is in a 

good spot within a swarm, it should try to head in the direction of all the others. However if there 

are obstacles to avoid or other Zebros it wants to move towards/away from, the Alignment 

algorithm is not included to ensure the other algorithms can fulfil their intended results.  

A fourth algorithm is added called Goal Attraction, which will be discussed in 6.5.1. This 

algorithm is only added when the rotation of the previous three algorithms is between -0.6 and 

0.6. This limitation tries to prevent collisions and reduce the chance that the swarm breaks up. 

The values are given to the movement methods, that will cause the Zebro to move. If the final 

rotation is smaller than -1 or larger than 1, it is set to -1 and 1, respectively. 
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6.5 Additional Algorithms 
A few other algorithms have been implemented to give the Zebros some kind of a goal to go 

after, or generally help the swarm. 

6.5.1 Goal Attraction 
In the simulation, a red goal can be added that, when touched, turns green and becomes invisible 

to Zebros, essentially marking it as “found” (Figure 9). When a goal node comes in range of a 

Zebro sensor, the Zebro is attracted to the goal. 

This Zebro then raises a flag that lets other 

Zebros know that it has found a goal. Other 

Zebros will follow this Zebro like a goal object. 

Only Zebros that directly see a goal will give 

themselves the flag and become ‘attractive’, 

while those looking at a Zebro with the flag will 

not. Raising this flag will attract a larger part of 

the swarm towards the goal.  

6.5.2 Returning to Base 
Eventually, the swarm has to be collected after tests or when their task is complete. To try and 

pick up every Zebro individually each time is a painful task and it would be helpful to be able to 

send the entire group towards a convenient location. 

In the simulation, the entire swarm can be rotated towards a specific point. When a button is 

pressed, all Zebros will stop moving, get their distance towards this point and start a timer of 

about three seconds. In real life finding this distance could be achieved by estimating the 

Bluetooth signal strength of a broadcast. Making the swarm stop in place shortly will make sure 

the distance measurement is most accurate, and allows the swarm to rotate in any direction. 

While the swarm comes to a halt, each Zebro will look at the distance measured by their 

immediate neighbours. 

When the distance they detected is smaller, the neighbours 

will become ‘attractive’ and the Zebro will rotate to look at it. 

The opposite happens when the neighbour distance is larger, 

the Zebro rotates to look away. On average, the swarm will 

rotate in the general direction towards where the broadcast 

was done. After the timer reaches three seconds, the swarm 

continues with the original algorithms and will try to align, 

pulling the Zebros with a different heading into the same 

direction.  

Figure 10: Visualization of 
algorithm. Numbers 6, 7, and 8 are 
the estimated distances to the source. 

Figure 9: Zebros attracted to a goal (red) 
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6.5.3 Returning to Swarm 
When encountering obstacles, it is possible for the swarm to split up into two or more groups. 

The swarm can generally function with less members in each group, but a single Zebro cannot. 

This algorithm aims to try to reunite a lone Zebro when it has been split off of the rest. When a 

Zebro has not detected any other Zebros for a few seconds, it will stop and directly rotate to the 

direction where it has last detected another Zebro. It is not guaranteed that it will find back the 

rest of the swarm in all situations. 

An option for the simulation is to let a lone Zebro break down instead of turning. This can be 

used for testing, to test the performance over a longer period of time, and determine how many 

are still operational after a given period of time. 

6.5.4 Group Colours 
To give a visual identification when a group splits up, this method will colour the sprite of the 

Zebro based on the lowest ZebroID detected within its local swarm. At a set time interval, all 

Zebros will read out the ID of their immediate neighbours, and if it is lower than their currently 

held ID, it will use that instead. The lowest local ID will propagate through the swarm and after a 

set number of rounds, all Zebros will display a colour with the (HSV) hue determined by the ID. 

After a pause, the ID is reset to its originally assigned value, and the process is repeated. 

Because the IDs are assigned randomly in the simulation, it’s possible for two swarms to have the 

same lowest value and thus the same colour. The IDs are randomized for demonstration and to 

give the Zebros a visual distinction. 

Figure 11 Before and three seconds after the algorithm. The front is made red for clarity. 
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Figure 12: Zebros taking different colours 

  



 

 26 

7. Simulation Results 

7.1 Introduction 
A swarm does not have an ideal way of behaving, and quantifying how well the group “swarms” 

is difficult to determine in numbers. Ideally, the group of robots should stay together, but the 

group splitting up can still be desirable depending on the application. In all cases however, the 

robots should not wander off on their own, since a single robot does not have the capability to 

perform their task. 

The swarm has been experimented on in a number of different ways. Tests have been done with 

different sizes, from 10 up to 100 robots to determine whether the swarm will group up as 

expected when more members are added. The environment has been changed to find if the 

swarm would split up, swarm around one specific object or find a different route. 

To give some form of qualitative measure to the swarm’s performance, one could measure the 

average speed of the centre of the swarm over time to determine the distance covered. Another 

test finds the biggest distance from the centre to the outermost robot to find their grouping 

density. The results of these experiments have been described and summarised here. 

7.2 Observations 
During the development of the simulation, Some parts of the Zebro design have been tweaked 

depending on how it performed. During this time, some observations have been made. 

The initial tests have been done using the fan-shaped sensors. A feature of this model is that each 

sensor detects the first object it sees and the objects behind it are not detected. The first version of 

the omnidirectional sensor detected all objects within its radius, including those that would be 

hidden behind other objects. In large swarms, this caused Zebros to both attract and repel in the 

same direction, making the swarm too packed together. 

7.3 Performance Analysis 
This method was created to find how the performance of the swarm changes with swarm size. 

The performance is measured by determining the average speed of the centre of the swarm. To 

keep the results consistent, the same type of formation and starting angle is used at the start for 

each group. The square starting formation has a size of n², n ∈ {3, 5, 7, 9}, starting with 9, 25, 49 

and 81 Zebros. 

The swarms are deployed in the same large room, and each swarm size is tested 5 times. The 

centre speed recorded once per second, and written to a text file so that it can be easily used in a 

spreadsheet for evaluation. The tests are done with and without walls: Tests with walls are 

running for three minutes, without walls for one minute to allow the swarm to align and explore. 

The tests with walls will give an indication how quickly a swarm recovers from encountering an 

obstacle, while a clear field shows the performance impact of separation and cohesion while 

(mostly) aligned. Due to the small variations in alignment, the Zebros can detect different 

neighbours over time, causing them to steer to repel or attract. These first tests are done without 
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introducing any kind of noise to the sensor data and sensor information is updated continuously. 

Due to the nature of a swarm, a small difference in position can completely change the results of 

the simulation. The results have been averaged because events happen around the same point in 

time, and give an indication of the response of each swarm size. 

7.3.1 Performance Test: Fan Sensors 
This section discusses the performance of the infrared-inspired sensors. This model has been 

tested for a longer time, and has given promising results.  

 

Figure 13: Graph showing performance over time, within arena 

The first graph in Figure 13 displays the average speed of all Zebros over time. After about 60 

seconds, the swarm encounters a wall. When a small group of Zebros encounter a wall, the group 

slows down, turns and quickly moves again. With larger swarms, the time before the swarm has 

turned away takes longer. To get back to full speed, they need to reform their group as well, 

finding an equilibrium between each other. The swarm size of 81 takes about 75 seconds before 

they are moving at their original speed, while the swarm of 9 Zebros recovers in about 15 

seconds. 
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Figure 14: Graph showing performance over time, without obstructions 

The second graph (Figure 14) is the performance within the swarm when no obstructions are 

encountered. The swarm tries to find a distance equilibrium between each other. Zebros at the 

front of the swarm occasionally detect those further behind it, which causes the swarm to slow 

down. 

7.3.2 Performance Test: Omnidirectional Sensor 
The same test has been done for the omnidirectional sensor design. The parameters have been 

slightly adjusted for the difference in detection. The number of neighbours has been set to 5 

because of the better overall performance. 

 

Figure 15: Graph showing performance over time, within arena 

The results in Figure 15 show that the overall performance of the omnidirectional sensor is more 

consistent. The swarm is able to find an equilibrium more quickly, with the 81 size swarm 

recovering in 45 seconds after finding a wall. The difference in consistency from the fan sensors 

could be caused by the fact it can only detect in eight directions, and when a detected Zebro 
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enters another section’s range, the effect on movement can be large. For the omnidirectional 

sensor, this detection difference is smaller and continuous, meaning no sudden big changes in 

movement resulting in a more consistent movement pattern. 

 

Figure 16: Graph showing performance over time, without obstructions 

Without obstructions (graph in Figure 16) , the swarm spreads out more quickly than with the fan 

sensor design, and remains at a higher speed with larger swarms. An important reason the fan 

sensors had lower performance, is due to the detection of Zebros further back. In their position, 

that detection did not have much relevance. By only considering the closest neighbours with the 

omnidirectional sensor, this detection is ignored and the slowdown is not applied. The effect of 

changing the visible neighbours at any time will be further investigated in section 7.4. 

7.4 Number of Neighbours 
For one robot within the swarm, it’s not necessary to keep track of all Zebros picked up by the 

sensor. When another Zebro enters on the edge of the sensor detection range, its attraction force 

will be large, causing the two to rotate towards each other. This can create a disturbance within 

the swarm, causing it to slow down, change direction or change formation. However, looking at 

too little Zebros at any moment makes it easier for the swarm to break up or cause collisions. 

In this test, the omnidirectional sensor design is used to test the effects of lowering the number of 

neighbours visible at any moment. The closest neighbours are taken, and the ones further away 

are ignored. Testing has been done from 1 to 6, and all visible, as the maximum neighbours at 

any time. 

With 1 and 2 neighbours, the group splits up quickly. Even when groups stay close at first, the 

group does not align and slowly diverges. When individual groups meet, collisions often happen 

due to the slow response. With 3 and 4 neighbours the swarm operates as expected in small 

groups, but it is not enough to keep a larger swarm (50+ robots) together. While collisions no 

longer happen, the swarm breaks up into smaller groups too easily. 
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With 7 or more visible neighbours in small groups, the swarm stays together and aligns as 

expected. Due to sight being obstructed by other robots, Zebros further away are ignored, but 

occasionally a gap opens up, causing a Zebro on the edge of the swarm to steer sharply into the 

group. This becomes a more common problem in large swarms, and causes a lot of individual 

robots to move around unexpectedly, slowing down movement even when the swarm is heading 

in one direction. 

The ideal number of neighbours depends on the size of the swarm. For larger swarms, it appears 

to be 6: It gives enough information for larger swarms to align but limits long distance detections 

through the swarm. For smaller swarms (such as 10 Zebros), 4 maximum neighbours seems to 

perform better. Because the group is smaller, it does not need as much information about others 

to stay as a group. 

 

Figure 17: Comparison of cohesion with different numbers of visible neighbours, after 30 seconds. Top left: Starting 
position. Top right: 4 neighbours. Bottom left: 6 neighbours. Bottom right: All neighbours. 

Figure 17 shows the resulting cohesion after 30 seconds after being placed as in the top left image. 

The starting position sets the Zebros closely together and some in different orientations, which 

forces the group to expand outwards and agree with a direction. With 4 neighbours (top right), 

the group is clearly separating. With 6 neighbours (bottom left), the group forms a much tighter 

group and aligns towards one direction. When detecting all neighbours (bottom left), the group 
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forms a cohesive group, but many Zebros are turning into the swarm and the swarm does not 

find a state where all Zebros align as easily, thus slowing it down. 

7.5 Effects of Added Noise 
The sensors designed by the bachelor group have been estimated to have a constant 20 cm noise 

in detected distance. An experiment has been done with this form of noise implemented into the 

sensors. After the sensor information has been collected, the distances are increased or decreased 

at random with up to 10% of the sensors maximum distance value. The report does not specify 

the error for the angle of detection. The angle is increased or decreased randomly with up to 5 

degrees. [43] 

The noise does not seem to have much impact on the cohesion and separation behaviour. The 

alignment of each Zebro is communicated differently and is not affected. The noise causes small 

changes in direction, but are not large enough to cause a disturbance. The real life swarm is not 

expected to be hindered much by the noise from its sensors. 

7.6 Effects of Algorithm Frequency 
The simulation calculates the sensor data and updates the desired movement results 

continuously. This update frequency is not realistic for the real variant: the legs need time to turn 

and move the robot, the wall sensor has to rotate to pick up new signals from different directions, 

and the Zebros will not communicate constantly. This means there is a period of time where the 

algorithms work with old data and this can cause the Zebro to overshoot movements. This is an 

important difference with the real version, and this section investigates the effects.  

The Zebros largely remain together, though breaking up becomes easier with longer time 

between calculations. With delays of 0.5 and 1 seconds, the swarm still operates mostly as 

expected. With longer delays, alignment becomes much harder however. The Zebros overshoot 

the general alignment causing them to rotate back and forth between sensor data refreshes. This 

can be partially solved by updating the previously calculated general heading with the robot’s 

new heading while turning, to stop turning before receiving the updated sensor data. This is not 

done now because the sensor information is expected to refresh frequently enough. 

With larger delays, collisions will also happen more often. This can be reduced by increasing the 

distance the Zebros want to stay away from each other. A delay of 1.5 seconds or longer make 

alignment in its current form almost impossible. The locomotion will have to be updated 

frequently enough to respond accordingly to changes to nearby Zebros and the environment. 

When this is not possible, the maximum speed of the Zebros can be lowered to give the sensors 

more time instead. 

7.7 Effects of Sensor Coverage 
Some experiments have been done by changing the sensor coverage. In early tests with few ray 

casts to represent the fan sensors, Zebros would be able to “hide” between ray casts and diverge. 

This lead to increase the amount of ray casts used to represent the fan sensors, until the coverage 
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was high enough. When Zebros don’t see each other, they do not act and this makes swarming 

difficult. 

Another experiment was done using the omnidirectional sensor design: All Zebros detected 

behind, are removed from the sensor detections, and only detections in the front 180 degrees are 

used to act on. This will be of interest for the design of the Zebro range finding sensor. 

Swarming can be done using only front detections, but this means 

that the Zebro leading the swarm has no idea what happens 

behind it. Thus if the swarm is steered away, the Zebros at the 

front will continue and the swarm becomes split up. Similarly, if a 

Zebro in the back becomes delayed, the rest will not slow down to 

let it catch up. Some issues occur when the swam reaches an 

obstruction, but this could be solved by modifying the behaviour. 

8. From Simulation to Zebro Controller 

8.1 Introduction 
With most of the simulation completed, the algorithms can be transported onto a controller. The 

design of the simulation has been split up in a modular way, so that each method is easily 

transferrable to most other languages. Information such as the sensor data or final result data that 

is sent to the locomotion controller use Unity specific libraries, since these parts will be replaced 

by their real-life counterpart and thus are not a part of our swarm intelligence. Instead, this data 

is used to visually represent the swarm in the engine. 

8.1.1 Type of Processor 
To connect all different components, the swarm intelligence has to be made portable. There are 

many options available on the market, which are divided into two main processor types: a 

microcontroller or a microprocessor. 

A microcontroller is a chip that has all components needed to operate, built into one chip. It has a 

fixed amount of RAM and ROM, and other peripherals such as serial ports and digital/analogue 

IO. Microcontrollers are usually programmed using C since it stays closer to the controller’s 

hardware limitations. 

Microprocessors are much more general-purpose. It does not have any built-in components 

besides the CPU. RAM, ROM and peripherals are implemented separately on a circuit board. 

Thus the external components can be larger to suit more general applications. Microprocessors 

can run an operating system and support most object oriented programming languages, making 

it very versatile for development. 

The calculations done for the swarm intelligence are relatively simple and don’t require much 

processing time. The real Zebros move more slowly than in the simulation and the locomotion, 

sensors and communication need time to process their information. Processing power should not 

be a limitation. 

Figure 18: Zebros see only ahead 
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The size of these modules should be taken into account, since there is limited space on the Zebro 

itself. Both boards can be made very compact. Pre-existing boards in this case are very attractive 

since no extra time has to be spent designing, testing and soldering a PCB. The Arduino [45] 

platform is very popular for microcontrollers, the Raspberry Pi [46] for microprocessors. Both 

platforms have multiple versions in different sizes and processing power. 

In the future, more complicated tasks will be built upon the basic swarming code. OO languages 

would make programming of these modules easier and faster to develop, which would be a good 

reason to choose a microprocessor. If the application becomes much more complex, the 

modularity of a microprocessor also becomes advantageous. 

For the initial testing, the Raspberry Pi Zero W was 

chosen. This version of the Raspberry Pi is made to be as 

small and cheap as possible. The non-Wifi version costs 

as little as 5€, which includes a circuit board with a 

number of modules, such as a connection for HDMI, two 

USB connectors and a slot for an SD card. However, the 

SD card is required as main storage device. The Wifi 

version costs a little more (11€) but allows easy access 

using SSH which makes programming and data transfer much more convenient. The cost of the 

board is low enough to be a good option for deploying them in a large amount of Zebros, and can 

be used when the Zebros functionality needs to be expanded. 

8.1.2 Programming Language 
For the Raspberry Pi, most OOP languages have been ported. The primary language is Python, 

that comes included with the Pi’s Linux based OS, Raspbian, but as long as a language can be 

compiled for the Pi’s processor, the ARMv6, it can be used. Java, C, C++, C#, Javascript, HTML5 

and PERL are other available examples. 

The choice of programming language mainly comes down to personal preference, as most 

programming language generally have the same capabilities. Python in this case, has the 

advantage that a lot of libraries have been written specifically for the Pi, which makes 

implementation easier when starting from scratch.  

While not as commonly used as Python, C# Mono will be able to run on the ARMv6 processor 

and since the simulation is programmed in C#, it would make porting the code a lot simpler. 

New code can be quickly modified and tested on the simulation or on the physical Zebro. 

Because of these advantages, the C# language was chosen. 

8.1.3 I2C Communication 
To communicate between hardware in a single hardware system, a number of communication 

protocols have been designed. The communication on the Zebro uses the I²C: Inter-Integrated 

Circuit. 

The I²C communication uses a Master-Slave system. The master sends out commands to 

connected Slave modules, controlling both sending and receiving. The slaves can only respond to 

Figure 19: Raspberry Pi Zero W 



 

 34 

these commands, and cannot start sending data to a master themselves. I²C uses only two bi-

directional lines: SDA, the Serial Data Line, and SCL, the Serial Clock Line. The SCL is controlled 

by the Master, to synchronise the data transfer, and the SDA as the data transfer line. 

Each slave in the system has an address that is used to select which module to communicate with. 

This setup allows multiple slaves and even masters to be connected to the same two wires. 

However, two masters cannot communicate, and collision should be prevented. 

Using this in the Zebro, the Swarm controller is used as a master, requesting information from 

the localization and communication modules, and sending information to the locomotion 

controller. The communication timing is determined by the master, and it should be noted that 

information is not requested and sent too frequently. The other modules might not have 

information ready or processed yet. For example, the legs need time to rotate physically, so 

sending information multiple times within one-leg revolution is not useful. 

Other forms of communication are UART and SPI. UART, Universal Asynchronous 

Receive/Transmission, only allows for communication between two modules. It uses two data 

lines, one for receiving and one for transmitting. Since communication is asynchronous, a data 

rate should be set beforehand. The inflexibility makes it less suitable for the Zebro 

communication. 

SPI allows for multiple slaves (but not masters) in one system. It expands on the UART, using a 

data line for transmitting and receiving, but adds a SCK, Serial Clock to synchronise 

communication, and SS, Slave Select. The design needs a Slave Select wire for each new Slave, 

meaning the system needs more and more wires when new modules are added. While this 

hardware interface has higher transmission rate and range, they are not necessary, and the 

simpler setup of the I²C bus is a bigger advantage. 

8.2 Raspberry Pi Algorithm Evaluation 
The algorithms for cohesion, separation and alignment have been implemented on the Raspberry 

Pi Zero W, the Wifi variant of the Pi Zero. Using the Wifi channel, communication between the 

simulation and the Pi has been made using the TCP protocol, where the Pi connects as a client to 

the simulation. One of the virtual Zebros is being controlled by the code running in C# Mono on 

the Pi. 

The sensor information is determined in the simulation and is stored in an array. This array is 

sent over Wifi to the Raspberry Pi, that then runs the algorithms. The speed and rotation are 

returned, and the virtual Zebro is moved accordingly. The resulting behaviour is as expected, 

and can’t be distinguished from the computer-controlled Zebros. 

This setup follows closely the setup that will be used in the real Zebros. The sensors will provide 

their information through I2C in the same way. The end result will then be passed on to the 

locomotion controller, that makes the Zebros walk in the appointed direction and speed.  
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8.3 Zebro Wall Sensor Evaluation 
While the Zebro communication is still a work in 

progress, the ultrasonic sensor used to detect walls is 

finished. Its operation and the Wall avoidance 

algorithm have been tested by letting a Zebro walk 

around the hallway. The sensor is set to detect 

obstructions up to a meter ahead, and it rotates left and 

right using a small servo, so that it can scan in a cone 

ahead. The speed of the servo can be adjusted, but 

needs to stop for the ultrasonic sensor to complete its 

range finding. With five measurement points, one scan 

round takes about three seconds, with the centre three 

scans taken twice. 

The Raspberry Pi is programmed with only the wall avoiding algorithm and the locomotion 

controller. Information between the two is shared using a temporary text file. This could be 

updated by using a set memory location instead. 

The communication using I2C, which communicates the sensor information from an Arduino 

Nano to the Raspberry Pi, and from the Pi to the microcontroller on the leg modules, has given a 

few problems. The Pi does not currently have libraries that allow for clock stretching, meaning it 

breaks up communication if the slave takes too long to respond after a Write command. The Pi 

has been able to communicate reliably with the leg modules after lowering the communication 

rate of the Pi. The communication with the Arduino Nano still sometimes fails, but by resending, 

all information will be received. 

A Zebro has been equipped with the ultrasonic sensor, and has been put into a hallway. It walks 

forward until it encounters a wall and responds to it. The Zebro is capable of avoiding walls in a 

similar way as the simulation, with no collisions. The scanning in its current form is quick 

enough to make the Zebro stop and turn if something is placed a bit ahead of it. The ultrasonic 

sensor can detect other Zebros (as obstacles) which allows them to avoid each other. The 

ultrasonic sensor alone is not enough to achieve cohesion or alignment. 

 

  

Figure 20: Zebro fitted with ultrasonic module 
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9. Conclusion 
In the simulation, swarming is a success. Groups of Zebros will move to each other, keep enough 

distance and align using these algorithms, much like a flock of birds. The Zebro has been shown 

to avoid walls both in the simulation and during a physical test using an ultrasonic sensor, which 

has been very promising.  

However, the fact that it has been achieved digitally, does not mean it translates accurately into 

real life scenarios. The mechanics of the real world Zebro are different, such as walking with legs 

that can cause changes in heading, sensors that take some time to process their information and 

other aspects such as battery and temperature management. 

Because the Zebro communication module is not finished yet, testing the algorithms on physical 

Zebros is not possible yet. The algorithms will have to be tested extensively in physical 

experiments to find the problems that these mechanics may cause. The alignment algorithm 

could overshoot its rotation when the movement and/or sensors are not updated frequently 

enough. This could be remedied by lowering the rotation speed when nearing the alignment 

angle, so that the overshoot will be reduced. The real life Zebro moves and rotates slower than in 

the simulation, so it needs to be tested whether this change is needed. 

The simulation itself can easily be modified and further built upon, when the algorithms need to 

be updated or if the Zebros need to be tested for a more specialised task. New parts can be added 

and combined with the existing code. The Unity files for the simulation will be available at the 

Zebro Project. 

 

  



 

 37 

10. Zebro Leg Module 
Aside from the swarming focus of my thesis, I have assisted with the development of the leg 

modules of the Zebro. The PCBs have been designed by Lisanne Kesselaar, an electrical 

engineering student at the TU Delft and member of the Zebro team. Steyn Huurman had started 

working on the software in C++, but was unable to finish it in time. This chapter is a summary of 

its design and my contribution to its software.  

The PCBs are fitted with an ATXMega32A4U 

microcontroller, a temperature sensor connected 

through an internal I2C line, a current sensor 

connected to the AD Converter, an USART connector 

for serial communication and a brushless DC motor, 

that is controlled through an H-Bridge with a PWM 

signal. The motor position can be set in a specific 

position using a photo encoder and encoder wheel 

with slits, and a reference point is made using a Hall 

sensor and a magnet slotted into the leg. Switches on 

the PCB can be set to indicate the location within the 

robot (Front, middle back, left or right). 

The PWM signal that drives the motor is controlled 

with a PID controller. This controller works by setting a reference signal, in this case the desired 

position (set point) to rotate to. The input to the PID is the error: the set point minus the current 

position. The Proportional effect of the controller is directly based on the error: a larger error 

means larger proportional control. The Integral term wants to minimize the error remaining after 

the proportional control, increasing in effect when the P term shrinks. The Differential term is 

based on the speed of change in error, with larger delta error causing larger effect. This has a 

dampening effect. 

The PID controller also uses time as an input. This is used to gradually move the set point to the 

final desired location. This way the turning speed can be slowed down, since the error to the 

shifting set point is lower than driving directly to the desired position. The P, I and D terms of the 

controller have been tuned by Laurens Kinkelaar, who has designed the locomotion controller. 

The microcontroller is programmed to use interrupts to handle encoder updates and I2C 

communication upon receiving data. The PID controller executes at a set frequency using 

interrupts from the real-time counter. While not handling interrupts, the microcontroller picks up 

information from the temperature sensor, and uses the ADC to read the current. 

The I2C is used to send and request information to and from the leg module. Since the module is 

set up as a slave, it can only respond to messages from a Master, in this case Laurens’ locomotion 

controller. The first byte sent is the status, which determines whether the microcontroller should 

listen for more information to change the set point, or to load information into its read buffer. 

Writing can be followed up by a desired position, direction (clockwise, counter clockwise) and 

Figure 21: Inside the Zebro: 6 leg modules, battery 
and battery management system 
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time. Reading can return the temperature, current or the motor’s current position. Setting certain 

states can also indicate to stop the motors or reset using the Hall sensor. 

Finally, the motors are reset to their neutral position when starting up. This ensures that the legs 

will be set in the correct position whenever the robot is powered up.  
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12. Appendix A 
This is part of the simulation code, specifically the methods that describes the cohesion, 

separation and alignment algorithms, as used in the simulation. 

1. class SensData 

2. { 

3.     public Collider2D Collider { get; set; } 

4.     public float Distance { get; set; } 

5.     public float Angle { get; set; } 

6.     public Vector2 Obstruction { get; set; } 

7. } 

8.   

9.  // ==== The main controller, calling other functions in 

order. Called in Update, thus every frame, or can be invoked 

at a certain interval. 

10.     void ZebroCoreController() 

11.     { 

12.         if (SimController.enableFanSensor) ZebroFanSensors(); 

13.         else 

14.         { 

15.             ZebroOmniSensors(); 

16.             ZebroWallSensors(); 

17.         } 

18.  

19.         if (SimController.enableSensErrors) AddSensorErrors(); 

20.  

21.  

22.  

23.         //After considering the wall collisions and detection of 

other zebro's, determine 

24.         //a direction and speed for movement for the next frame. 

25.  

26.         zFinalDir = Vector2.zero; 

27.         zDir1 = Vector2.zero; 

28.         zDir2 = Vector2.zero; 

29.         zDir3 = Vector2.zero; 

30.         zDir4 = Vector2.zero; 

31.  

32.         //This section should be combined more elegantly. How 

and when do we combine certain sensor data? 

33.         if (SimController.enableWallAv) zDir1 = AvoidWalls();        

//This function tries to avoid walls. Modifies x and y. 

34.         if (SimController.enableZSwarm) zDir2 = 

SwarmingBehaviour(); //This function tries to keep 

Zebros together, or disperse when too close. Modifies x 

and y. 

35.         if (SimController.enableZDir) zDir3 = 

SwarmingDirection();   //This function wants to rotate 

all local Zebros in the same direction. Modifies x only. 

36.         if (SimController.enableGoal) zDir4 = AttractiveGoal();      

//This function makes Zebros attracted to pylons. 

37.  

38.         zFinalDir.x = zDir1.x + zDir2.x; 

39.  

40.         if (Mathf.Abs(zFinalDir.x) < 0.4f) zFinalDir.x += 

zDir3.x; 

41.         if (Mathf.Abs(zFinalDir.x) < 0.6f) zFinalDir.x += 

zDir4.x; 

42.  
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43.         if (SimController.enableWallAv && 

SimController.enableZSwarm) zFinalDir.y = 

Mathf.Min(zDir1.y, zDir2.y); 

44.         else if (SimController.enableWallAv) zFinalDir.y = 

zDir1.y; 

45.         else if (SimController.enableZSwarm) zFinalDir.y = 

zDir2.y; 

46.         else zFinalDir.y = 1; 

47.  

48.         if (backToBase != 0) zFinalDir = BackToBase(); 

49.  

50.         Vector2 zStarveReturnResult; 

51.         if (zebroStarveReturn != 0) 

52.         { 

53.             zStarveReturnResult = ZebroStarveReturn(); 

54.             if (zStarveReturnResult != Vector2.zero) zFinalDir = 

zStarveReturnResult; 

55.         } 

56.     } 

57.   

58.  // ==== These functions are part of the core controller. They 

use the received information from the sensors, and process 

them into a movement vector. 

59.     Vector2 AvoidWalls() 

60.     { 

61.         Vector2 zebroDirection = new Vector2(0, 1); 

62.  

63.         //Consider the y as a value of  0 to 1, with 1 default. 

y should only care about things ahead. 

64.         //Consider the x as a value of -1 to 1, with 0 default. 

x should only care about things to the sides. 

65.         foreach (SensData wData in wallData) 

66.         { 

67.             //Check if the current checking sensor is in front 

of the Zebro (0 to 90, 270 to 359 degrees) 

68.             if (wData.Angle <= 90 || wData.Angle >= 270) 

69.             { 

70.                 if (wData.Distance < zoneWallMinimum) 

71.                 { 

72.                     zebroDirection.x = 

(Mathf.Abs(zebroDirection.x) < 

Mathf.Abs(Mathf.Sin(wData.Angle * 

Mathf.Deg2Rad))) ? Mathf.Sin(wData.Angle * 

Mathf.Deg2Rad) : zebroDirection.x; 

73.                     zebroDirection.y = 

Mathf.Min(zebroDirection.y, 1 - 

Mathf.Cos(wData.Angle * Mathf.Deg2Rad)); 

74.                 } 

75.  

76.                 else if (wData.Distance < zoneWallConsider) 

77.                 { 

78.                     zebroDirection.x = 

(Mathf.Abs(zebroDirection.x) < 

Mathf.Abs(Mathf.Sin(wData.Angle * 

Mathf.Deg2Rad) * (1 - ((wData.Distance - 

zoneWallMinimum) / (zoneWallConsider - 

zoneWallMinimum))))) 

79.                         ? Mathf.Sin(wData.Angle * Mathf.Deg2Rad) 

* (1 - ((wData.Distance - zoneWallMinimum) / 

(zoneWallConsider - zoneWallMinimum))) : 

zebroDirection.x; 
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80.                     zebroDirection.y = 

Mathf.Min(zebroDirection.y, (1 - 

Mathf.Cos(wData.Angle * Mathf.Deg2Rad) * (1 

- ((wData.Distance - zoneWallMinimum) / 

(zoneWallConsider - zoneWallMinimum))))); 

81.                 } 

82.             } 

83.         } 

84.  

85.         //Minimum turning value 

86.         zebroDirection.x = (Mathf.Abs(zebroDirection.x) < 0.3f 

&& zebroDirection.x != 0) ? zebroDirection.x = 0.3f * 

Mathf.Sign(zebroDirection.x) : zebroDirection.x; 

87.         return zebroDirection; 

88.     } 

89.  

90.  

91.     Vector2 SwarmingBehaviour() 

92.     { 

93.         //This section describes how the Zebro's should behave 

towards one another. 

94.         //We define a maximum and minimum range. Beyond the 

maximum range, Zebro's will rotate towards each other 

(Cohesion). 

95.         //Within minimum range, Zebro's will try to move away 

from eachother (Separation). 

96.         //In the "Sweet Spot", Zebro's will essentially ignore 

eachother until they hit the other zones. 

97.  

98.  

99.         Vector2 zebroDirection = new Vector2(0, 1); 

100.  

101.         foreach (SensData sensData in zebroData) 

102.         { 

103.             if (sensData.Collider.tag == "Zebro" || 

(sensData.Collider.tag == "ZFoundGoal" && 

sensData.Distance < zebroMinMin)) 

104.             { 

105.                 if (sensData.Distance > zebroMaxMax) 

106.                 { 

107.                     zebroDirection.x += Mathf.Sin(-

sensData.Angle * Mathf.Deg2Rad); 

108.  

109.                     zebroDirection.y = 

Mathf.Min(zebroDirection.y, Mathf.Cos(-

sensData.Angle * Mathf.Deg2Rad)); 

110.                 } 

111.                 else if (sensData.Distance > zebroMaxRange) 

112.                 { 

113.                     zebroDirection.x += Mathf.Sin(-

sensData.Angle * Mathf.Deg2Rad) * 

((sensData.Distance - zebroMaxRange) / 

(zebroMaxMax - zebroMaxRange)); 

114.  

115.                     zebroDirection.y = 

Mathf.Min(zebroDirection.y, Mathf.Cos(-

sensData.Angle * Mathf.Deg2Rad) * (1 - 

((zebroMaxMax - sensData.Distance) / 

(zebroMaxMax - zebroMaxRange)))); 

116.                 } 

117.                 else if (sensData.Distance < zebroMinMin) 
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118.                 { 

119.                     zebroDirection.x -= Mathf.Sin(-

sensData.Angle * Mathf.Deg2Rad); 

120.                     zebroDirection.y = 

Mathf.Min(zebroDirection.y, -Mathf.Cos(-

sensData.Angle * Mathf.Deg2Rad)); 

121.                 } 

122.                 else if (sensData.Distance < zebroMinRange) 

123.                 { 

124.                     zebroDirection.x -= Mathf.Sin(-

sensData.Angle * Mathf.Deg2Rad) * (1 - 

((sensData.Distance - zebroMinMin) / 

(zebroMinRange - zebroMinMin))); 

125.                      

126. zebroDirection.y = 

Mathf.Min(zebroDirection.y, -Mathf.Cos(-

sensData.Angle * Mathf.Deg2Rad) * (1 - 

((sensData.Distance - zebroMinMin) / 

(zebroMinRange - zebroMinMin)))); 

127.                 } 

128.  

129.             } 

130.         } 

131.  

132.         //if(zebroData.Count() != 0) zebroDirection.x /= (0.5f * 

zebroData.Count()); 

133.  

134.         zebroDirection.y = 1 + zebroDirection.y; 

135.         if (zebroDirection.y < 0) zebroDirection.y = 0; 

136.         else if (zebroDirection.y > 1) zebroDirection.y = 1; 

137.  

138.         return zebroDirection; 

139.     } 

140.  

141.  

142.     Vector2 SwarmingDirection() 

143.     { 

144.         //This function lets Zebros move in the same direction 

when they are in each other's sensor range. 

145.         float zebroHeading = 0; 

146.         int numZebros = 0; 

147.  

148.         if (zebroData.Count == 0) return Vector3.zero; 

149.         //Rotate to the average direction of all other detected 

Zebros. 

150.         foreach (SensData sensData in zebroData) 

151.         { 

152.             if (sensData.Collider.tag == "Zebro") 

153.             { 

154.                 if (sensData.Collider.transform.eulerAngles.z > 

180) zebroHeading += 

sensData.Collider.transform.eulerAngles.z - 

360f; 

155.                 else zebroHeading += 

sensData.Collider.transform.eulerAngles.z; 

156.  

157.                 if (transform.eulerAngles.z > 180) zebroHeading 

-= transform.eulerAngles.z - 360f; 

158.                 else zebroHeading -= transform.eulerAngles.z; 

159.  

160.                 numZebros++; 
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161.             } 

162.         } 

163.  

164.         while (zebroHeading < -180 || zebroHeading > 180) 

165.         { 

166.             if (zebroHeading > 180) zebroHeading -= 180; 

167.             else if (zebroHeading < -180) zebroHeading += 180; 

168.         } 

169.  

170.         if (Math.Abs(zebroHeading) < 10) return Vector3.zero; 

171.         else if (Math.Abs(zebroHeading) > 100) return new 

Vector2((1 * Mathf.Sign(zebroHeading)), 0); 

172.         else return new Vector2((zebroHeading / 100f), 0); 

173.     } 

 


