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ABSTRACT 

Grasping of unknown objects with neither appearance data nor object models given in advance is very important for 
robots that work in an unfamiliar environment. The goal of this paper is to quickly synthesize an executable grasp for 
one unknown object by using cylinder searching on a single point cloud. Specifically, a 3D camera is first used to obtain 
a partial point cloud of the target unknown object. An original method is then employed to do post treatment on the 
partial point cloud to minimize the uncertainty which may lead to grasp failure. In order to accelerate the grasp 
searching, surface normal of the target object is then used to constrain the synthetization of the cylinder grasp candidates. 
Operability analysis is then used to select out all executable grasp candidates followed by force balance optimization to 
choose the most reliable grasp as the final grasp execution. In order to verify the effectiveness of our algorithm, 
Simulations on a Universal Robot arm UR5 and an under-actuated Lacquey Fetch gripper are used to examine the 
performance of this algorithm, and successful results are obtained.  

Keywords: unknown object grasping, cylinder searching, single point cloud, 3D vision, robot. 
 

1. INTRODUCTION  
Grasping of unknown objects with neither appearance data nor object models given in advance is very important for 

robots that work in an unfamiliar environment. The motivation of this paper is to quickly synthesize an executable grasp 
on the unknown object for the under-actuated grippers shown in Fig.1 (c) and (d). Fig.1 (a) shows a spray bottle which 
works as an example of unknown objects to explain our proposed grasping algorithm. Fig.1 (b) shows a robot arm 
equipped with a 3D camera and an under-actuated gripper, in which the 3D camera is used to obtain the point cloud of 
the target object and the under-actuated gripper is used to do final grasp execution. 

                                                 
                                          (a)                                    (b)                                              (c)                                                (d) 
Fig.1. The motivation of this paper: (a) shows an example of an unknown object, (b) shows a robot arm equipped with a 3D camera 
and an under-actuated gripper, (c) and (d) show two types of under-actuated grippers respectively. The motivation of this paper is to 
quickly synthesize an executable grasp on the unknown object for the under-actuated grippers shown in (c) and (d). 

Vast research has been conducted on the problem of unknown object grasping and many achievements have been 
obtained in the previous years. However, unknown object grasping is still a challenging task that has not yet been solved 
in a general manner. [1] gives a profound survey about unknown object grasping. The existing unknown object grasping 
algorithms can be divided into two main categories, namely, using partial model and using full model. 

The first method is building a full 3D model using many images or point clouds of the target object. In [2], the full 
3D model is fit and split into many minimum volume bounding boxes and a grasp is found on these bounding boxes. In 
[3], two flat, parallel surfaces are found on the 3D model to realize the grasping task with a gripper. In [4], the center of 
mass and axes of inertia of the target object are calculated from the 3D model, and then a grasp on the center or along the 
axes is found. [5] uses a genetic algorithm to search for grasping points on a 3D model of the target object. [6] uses a 
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cost function to analyze the 3D model to obtain grasping points. In [7], the 3D model is simplified into some shape 
primitives (boxes or cylinders). Then grasping points which are assigned offline to these shape primitives are selected for 
the corresponding shape. [8] establishes a benchmark for the object grasping community by building a grasp simulator 
which is called GraspIt. After GraspIt, OpenGRASP [9] is invented on the base of the OpenRAVE [10], which made a 
progress comparing with GraspIt. OpenGRASP uses the normal of the object as the approaching vector of the robot 
hand, which can greatly reduce the number of grasp candidates. However, [11] states that depending on the choice of the 
parameters, the time of using OpenGRASP to simulate all the corresponding grasp candidates for a common object can 
vary from a few minutes to more than an hour. [11] uses [12] to do sampling of approaching vectors to further reduce the 
grasp candidates. However, it still needs about one minute to find a good grasp for the unknown object, which is pretty 
time-consuming. Therefore, we can get a short summary about using full 3D model to compute grasp, that is, using full 
3D model is usually time consuming. However, [9] and [11] illuminate us to use down-sampled normals to accelerate 
grasping searching. So, in this paper, we will focus on how to quickly synthesize a suitable grasp if one approaching 
normal is chosen. 

The second method is using partial information of an object to achieve fast grasping. [13] uses partial object 
geometry to achieve a semantic grasp. This algorithm needs predefined example grasps and cannot deal with the 
grasping task of symmetric objects since multiple views of a symmetric object could have the same depth images. [14] 
proposes a data-driven grasp planner that requires partial sensor data. Matching and alignment methods were used for 
grasping after obtaining the Columbia Grasp Database. [15] uses local descriptors from several images to construct the 
3D model of an object. Object registration was conducted by using a set of training images. [16] installs a 2D range 
sensor on the robot at an inclined angle to acquire partial shape information of the unknown objects. Two straight lines 
are extracted directly from this partial shape information as the two grasp sides for a parallel jaw gripper. [17] uses 
binocular vision to recover the partial 3D structure of unknown objects. Then process the incomplete 3D point clouds 
searching for good grasp candidate for a three finger robot hand according to a function that accounts for both the 
feasibility and the stability. In a short summary, using partial information can surely decrease the computation time of 
grasp searching, however, using partial information inevitably introduces some uncertainty which may lead to grasp 
failure. Therefore, in this paper, we will use partial information of the unknown object to compute grasp to accelerate 
grasp searching, in the same time, we need to focus on how to deal with the uncertainty which we may encounter if we 
use partial information of the target object.  

In our previous work [18, 19, 20, 21], we used features (principal axis, concavity and boundary) of the object to find 
suitable grasp. In this paper, we will start from the shape of the under-actuated gripper we use to solve the problem of 
unknown object grasping. Our method is to simplify the gripper as a two-layer cylinder (shown as Fig.1 (d) and Fig.2 
(b)) with radius r1 and r2 respectively, then, the algorithm will do cylinder searching on the single point cloud of the 
target object to quickly synthesize an executable grasp. Fig.2 is the outline of our proposed method. Specifically, Fig.2 
(a) shows a simulation setup consisting of a robot arm equipped with a 3D camera, an under-actuated gripper and a spray 
bottle working as an example of an unknown object, Fig.2 (b) shows the inspiration of this paper, the gripper in Fig.1 (d) 
can be described as a two-layer cylinder with radius r1 and r2, Fig.2 (c) shows our approach to deal with the unseen part 
of the target object, Fig.2 (d) demonstrates our method to reduce the grasp candidates to accelerate the speed of grasp 
searching, Fig.2 (e) shows an executable grasp (the blue part) found by our algorithm, Fig.2 (f) shows the grasp 
execution for the spray bottle. Details about our algorithm will be explained in section 2. 

This paper is organized as follows: section 2 contains a detailed explanation of our algorithm, sections 3 shows the 
simulation results, and section 4 is the conclusion of this paper. 

               
                  (a)                  (b)                                         (c)                            (d)                        (e)                                   (f) 

Fig.2. The outline of our grasping algorithm. 
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2. DETAILED ALGORITHM 
This section contains detailed explanation of our grasping algorithm. Specifically, 2.1 shows the problem 

formulation; 2.2 explains how to obtain the point cloud of the target object; 2.3 illustrates how to do grasp searching; 2.4 
demonstrates how to choose the best grasp by using force balance optimization.  

2.1 Problem formulation 
As mentioned above, we simplify the under-actuated gripper we use as a two-layer cylinder. Then, the algorithm will 

do cylinder searching on the single point cloud of the target object to quickly synthesize an executable grasp. In order to 
get the parametric equations for an arbitrary cylinder in 3D space, we need to first know how to obtain the parametric 
equations for an arbitrary circle on an arbitrary plane. C ( 0x , 0y , 0z ) is used to stand for the center of the arbitrary circle 
and r is its radius. If the arbitrary plane is II and its unit normal vector is N=( acos , βcos , γcos ), among which 
a , β , γ  are the direction angles of the unit normal, then the arbitrary plane II can be obtained by transforming the XOY 
plane through the following transformation: rotating around the X axis by a , rotating around the Y axis by β , then 
moving along the vector N to ( 0x , 0y , 0z ) . The whole transformation can be summarized as equation (1). 
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If ( )(tx , )(ty , )(tz ) is used to sand for an arbitrary point on the arbitrary circle, the parametric equations of the circle 
can be obtained using equation (2) and (3), in which π20 ≤≤ t . 
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If the cylinder alignment is { })(),(),()( tztytxtr = , and the unit normal vector of the cylinder is )cos,cos,(cos γβaN = , 
the parametric equations for an arbitrary cylinder in 3D space can be obtained using equation (4), in which  π20 ≤≤ t  
and ws ≤≤0 , w is the width of the griper ( w is shown as Fig.2 (b)). 
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Then the problem can be formulated as follows: finding a , β  ( a  and β  make up the general rotation of the 
transformation matrix in equation (1)), so that the difference between ))(),(),(( tztytxPc (point on the cylinder) and 

oP ))(),(),(( ozoyox (point on the object) can be minimized, which can be summarized as equation (5).  
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In equation (5), π20 ≤≤ t , ws ≤≤0 , a and β stand for the cylinder orientations in 3D space. From the above 
analysis, the cylinder searching problem can be simplified as the searching of a and β . 
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2.2 Obtaining the point cloud of the target object 
The raw point cloud from the 3D sensor contains the environment (for example the table plane). In order to quickly 

isolate the point cloud of the target object, down-sampling and distance filtering are first applied on the raw point cloud 
obtained by the 3D camera to reduce the computation time and remove the points out of the reach of the robot arm. Then 
Random Sample Consensus (RANSAC) method is used to remove the table plane, resulting in the isolated point cloud of 
the target object (shown as the purple points in Fig.2 (c)). 

2.3 Grasp searching 
According to section 2.1, if the center point and the axis direction of the cylinder are figured out, the cylinder can be 

worked out. Therefore, the problem in section 2.1 can be divided into two parts, one is to find the orientation of the 
cylinder, and the other is to find the center point of the cylinder. That is to find the normal vector N( acos , βcos , γcos ) 
and the center point centerP ( 0x , 0y , 0z ). 

2.3.1 Determination of cylinder axis 
As mentioned above, the normal of the target object is used to simplify the grasp searching from SE(3) to SE(2). If a 

random normal rN is chosen, then cylinder axis can only rotate around rN , then we can search incrementally around 

rN with an incremental angle a (shown in Fig.3 (c)). Fig.3 presents a clear and understandable example. Specifically, the 
red lines in Fig.3 (a) represent the normals of the target object. The blue lines in Fig.3 (b) work as the cylinder axis 
incrementally allocated around a rand normal (the yellow line in Fig.3 (c) stands for the random normal). The blue line in 
Fig.3 (d) stands for one cylinder axis. The red frame in Fig.3 (d) stands for the corresponding cylinder. Fig.3 (e), (f) and 
(g) are three example cylinder orientations, and the purple areas stand for the corresponding point cloud covered by the 
three cylinders.   

Point cloud from the 3D camera is located in the camera coordinate system, which should be transformed to the local 
coordinate system to do following analysis. Fig.4 shows the point cloud transformation from the camera coordinate 
system (CCS) to the local coordinate system (LCS). Fig.4 (a) shows the point cloud in the camera coordinate system. 
Fig.4 (b) shows the relation between the CCS and the LCS. cΩ and lΩ respectively stand for the point cloud in CCS and 
the point cloud in LCS. Fig.4 (c) shows an example point cloud in LCS. n


, p


 and q


in Fig.4 (b) mean the unit direction 
vector of the coordinate axis of LCS. ),,( 000 zyx  stands for the translation between LCS and CCS. So the transformation 
matrix ( clT _ ) between LCS and CCS can be formulated as equation (6). The transformation from cΩ to lΩ  can be 

achieved using the inverse matrix of clT _ ( 1
_

−Ω=Ω
cl

Tcl ). 
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                 (a)                                   (b)                                        (c)                                 (d)                          (e)                          (f)                            (g) 

Fig.3. Normal of the target object is used to simplify the grasp searching and explaination of how to orientate the cylinder. 
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               (a)                                                 (b)                                              (c)                                   (d)                               (e)                           (f)             
Fig.4. Point cloud transformation from the camera coordinate system to the local coordinate system ((a) to (c)), and how to 
increase the possiblity of finding suitable grasp ((d) to (f)).  

  During the generation of the cylinder axis, a parameter a is introduced. If a is a big angle, for example, a is 
o60 in Fig.4 (d) and (e), we may get two totally different allocations of cylinder axis. In Fig.4 (d), the three cylinder axis 

will lead to no suitable grasps found, because the gripper will collide with the object. However, the cylinder axis 1 in 
Fig.4 (e) corresponds to a very good grasp candidate (shown in Fig.4 (f)). What result in the difference? The answer is 
the location of the first cylinder axis. Therefore, we need to focus on how to generate the first cylinder axis. Here, we 
propose to use the principal axis of the local point cloud to work as the first cylinder axis. If the local point cloud which 
use point on the rand normal as its center and 1r as its radius is abstracted, principal component analysis (PCA) is 
performed to approximate the principal axis of the local point cloud. PCA is a statistical technique for analyzing 
correlation between observed data. Let ),,,( 21 nX χχχ ⋅⋅⋅=  be the object point set, where iχ  is a point in 3R . The 

object position point centroidP  is calculated as ∑
=

=
n

i
icentriodp

1
n
1

c . From X , the variance covariance matrix is calculated 

by equation (7). 
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                                                                           (7) 

Then the eigenvalues 321 λλλ >> , and the corresponding eigenvectors 1µ , 2µ , 3µ  of the variance covariance matrix 
s are obtained. The eigenvector 1µ corresponds to the largest eigenvalue 1λ , which approximates the direction of the 
principal axis and it is used as the direction of the first cylinder axis.  

2.3.2 How to deal with the unseen part 
In this section, we will explain our method to deal with the problem of uncertainty (unseen part) produced by using 

partial information of the target object. Fig.5 (a) shows an example that the gripper will collide with the target object if 
we do not consider the unseen part, which may result in grasp failure. In this paper, we propose to employ the boundary 
of the object to eliminate the uncertainty led by the unseen part. Specifically, the point cloud in the camera coordinate 
system is used to work out the boundary points bΩ  (shown as Fig.5 (b)). Fig.5 (c) shows our idea. In detail, the two red 
points belong to bΩ , the two orange lines are obtained by connecting the origin point of camera coordinate system and 
the two red points. The two orange dashed lines are obtained by extending the two orange lines. This method will go 
through all the points on the boundary, and we can obtain a point cloud shown as Fig.5 (d). Then, the configuration space 
( C space) of the target object ( objC ) is divided into two parts. '

objC and unseenC are used to describe the configuration 

spaces after the unseen part is generated ( unseenobjobj CCC += ' ).  
2.3.3 Determination of cylinder center point 

After the orientation of cylinder axis is obtained, we need to determine the center point of the cylinder. As we 
mentioned before, the under-actuated gripper will approach the object along the normal direction. Then a question comes 
out, that is, where to stop?    

 Fig.6 is used to explain how to determine the center point of the cylinder. Fig.6 (a) is a possible grasp candidate, the 
green points stand for the points covered by cylinder. Fig.6 (b) is the abstracted point cloud, and the red arrow stands for 
the approaching direction. The two red points in Fig.6 (b) are two example cylinder center points. And the two blue 
circles are the corresponding cylinder. It is obvious to find that the two cylinder center points are not the best one. The 
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Camera coordinate frame

Z One convex hull point

 
 

 
 

                             
                                                          (a)                              (b)                                    (c)                                  (d)                            

Fig.5. How to deal with the unseen part of the target object to eliminate the grasp uncertainty. 

 
cylinder center point can go down further. (c), (d), (e) and (f) are used to explain how to determine the cylinder center 
point. The abstracted point cloud in Fig.6 (b) is first projected to the YOZ plane to get the projected point cloud (orange 
points shown as Fig.6 (c)). Then the convex hull of the projected point cloud is extracted shown as the green points in 
Fig.6 (c). The green point in Fig.6 (d) stands for one convex hull point. If we draw a circle with 1r as its radius (shown as 
the green circle), we can obtain two intersects with Z axis (shown as the two purple points 1P  and 2P ). Then 

),min( 21 ZZZ =  will work as the cylinder center. Using this method goes through all the green points in Fig.6 (c), we 
can get all the center points ),,,( 21 cnccc ZZZZ ⋅⋅⋅=  (shown as Fig.6 (e)). The maximal cZ is used as the final cylinder 
center (shown as the equation (8)). The maximal cylinder center point means the earliest contact point with the object 
when the gripper approaches the object. 

),,,(max 21max_ cnccc ZZZZ ⋅⋅⋅=                                                                     (8) 

            
                  (a)                                    (b)                              (c)                                      (d)                                      (e)                                (f) 

Fig.6. How to determine the cylinder center point. 

2.3.4 Grasp judgement 
After the cylinder orientation and the cylinder center point are determined, we will check whether the cylinder can 

envelop the object. Fig.7 (a) shows an example of cylinder. In the YOZ plane of the local cylinder coordinate system, the 
two cylinders of the gripper are shown as two red circles in Fig.7 (b). Z axis is used as the approaching direction, so the 
shadow areas will not affect grasp execution. If pΩ is used to stand for the projected point cloud, SΩ is used to stand for 

the points in the shadow area, and sp−Ω  ( spsp Ω−Ω=Ω − ) is used to stand for the projected point cloud without the 
shadow part, the gripper configuration space in Fig.7 (b) can be described as }|{ 21 srrgripper CqCqqC ∉∧∈= − . 

      
                                                                                 (a)                                                  (b) 

Fig.7. Collision check with the gripper. 
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Then the problem is simplified to find whether there are points in gripper configuration space gripperC . If there are no 
points in gripperC , it means that this cylinder can envelop the object and this grasp candidate will be reserved. If there are 
points in gripperC , it means that this cylinder will collide with the object and this grasp should be removed. In the end of 
this section, we can get a vector ( )...,( 21 ngggG = ) which is used to store all grasp candidate without colliding with the 
object. 

2.4 Force balance optimization 
All grasp candidates in the vector ( )...,( 21 ngggG = ) can be executed without collision with the object. If 1, 2, 3, 4, 

5, 6 and 7 in Fig.8 (a) stand for the grasp in the vector )...,( 721 gggG = , then how to choose the best one as the final 
grasp. 

Here, we propose to use force balance optimization to select out the best grasp. Usually, the existing papers will 
employ the physic property to do force balance computation, for example, the friction coefficient. But in our case, we 
cannot know the physic property, because the objects for this paper are unknown. We propose to use the local geometry 
shape to do force balance computation. The blue points in Fig.8 (b) stand for the grasp candidate 1 ( 1g ). It is projected to 
the XOY plane to get the projected point cloud shown as the upper in Fig.8 (c). Then we can extract the concave hull of 
the projected point cloud shown as the red points in the upper in Fig.8 (c). The red points in the lower in Fig.8 (c) stand 
for an example concave hull. Straight lines along the Y axis are allocated with an incremental distance y∆ . The most left 
and most right intersection point between each line and the concave hull are extracted. The most left points are shown as 
green ones and the most right points are shown as blue ones. Fig.8 (d) shows the most left points and most right points of 
the grasp candidate in Fig.8 (b). If the points are )),)...(,(),,(( 2211 nn yxyxyx , a straight line ( bkxy += ) can be fit out by 
using equation (9). The two orange lines in Fig.8 (d) stand for the two fit lines for left side and the right side. θ and ξ  
are used to stand for the angel between the fit lines and the Y axis. σ is used to stand for the sum of θ and ξ , i.e. 

ξθσ += . ss is used to stand for the absolute value of σ . The bigger ss is, the less force balance is. The vector 
)...,( 721 ssss ssss =  is used to store all the angles for the grasp vector )...,( 721 gggG = . Fig.8 (e) is a line graph for the 

vector ss , the grasp with the smallest ss is chosen as the final grasp. Fig.8 (f) is the best grasp returned, which 
corresponds to the 4th grasp candidate in Fig.8 (a) and (e). 

      
             (a)                           (b)                               (c)                                        (d)                                                   (e)                                         (f)  

Fig.8. Force balance optimization. 
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Table I. Simulation results of the grasp computation 

Unknown 
Objects 

Spray 
bottle 

Electrical 
drill 

Table 
tennis 
racket 

gun Water 
bottle 

points 8297 7400 6274 4183 6874 

Time(s) 2.068 1.515 1.353 1.194 1.498 

 

3. SIMULATION 
In order to verify our grasping algorithm, several objects in different geometry shapes are chosen to do simulations. 

All the tested objects can be seen in the first column in Fig.9. The second column in Fig.9 shows the generation of the 
normal lines and the cylinder axis. The third column shows the unseen part the target object. The fourth column 
illustrates the result of force balance computation. And the last column shows the best grasp returned. Table I shows the 
number of the points of every tested object and the computation time. We can find that the algorithm can quickly work 
out the best grasp within 2 seconds for one chosen normal line. 

4. CONCLUSION 
In this paper, a novel algorithm of unknown object grasping is presented for under-actuated grippers. The grippers 

are simplified as a cylinder, which is used to do cylinder search on the point cloud of the target object to find suitable 
grasp candidates for the robot. In order to accelerate the computation speed, this algorithm only uses a signal point cloud 
as input. The number of grasp candidates can be greatly reduced by using the normal line of the target object to guide the 
generation of the grasp candidates. Meanwhile, we propose an original method to deal with the unseen part of the object 
to enhance the grasp security. In order to verify the effectiveness of our algorithm, several objects commonly used by 
other grasping algorithms with different geometric shapes were used to do simulations, and successful results are 
obtained. 
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