
background
image is a
placeholderCharacterizing and

Detecting Battery Saver
Bugs in Android
Applications
Thesis, MSc Computer Science

W.J. Siemers

Characterizing and
Detecting Battery

Saver Bugs in
Android

Applications
Thesis, MSc Computer Science

by

W.J. Siemers
to obtain the degree of Master of Science

at Delft University of Technology,

to be defended publicly on Friday June 21st, 2024 at 15:00.

Student number: 4594002
Project duration: September 2023 – June, 2024
Thesis committee: Prof. dr. ir. A. Van Deursen1 Supervisor

Dr. L. Miranda da Cruz1 Daily supervisor
Dr. M. Fazzini2 External supervisor
Dr. P. Pawełczak1

1Delft University of Technology
2University of Minnesota

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Before you lies my MSc thesis titled “Characterizing and Detecting Battery Saver
Bugs in Android Applications”. It has been written to fulfill the graduation re-
quirements of the Computer Science program at Delft University of Technology.

Mobile software has interested me since at least 2012. I saw a kid quite like me
describe on a television talk show how he learned to build mobile apps. I figured
if he could do it, why couldn’t I? I asked my parents for a book on Objective-C
programming and started learning.

It’s now 12 years later, and I am finishing up my formal education. Somehow, mo-
bile software has remained interesting and fun to me. There is something personal
and intimate about devices you carry with you all the time. Software is eating
the world, as Marc Andreessen famously said. This small bite is my last academic
contribution, but I am sure I will be back in the field.

My education has been an exercise in determination, although I’ve enjoyed large
swathes of it. I’ve learned the value of discipline over motivation and that trying
hard is often worth it simply because it’s more fun.

I’d like to thank my mother, Ingrid, and honor the memory of my father, Ronald,
for their unwavering support. My father, in particular, would be over the moon to
see me graduate from his — and his father’s — alma mater.

I’m grateful to my daily supervisors, Luís Miranda da Cruz and Mattia Fazzini,
for their direct feedback, expert knowledge, and calm supervision. You’ve kept me
sharp and helped me navigate the challenges of close to ten months of solo work.

W.J. Siemers
Delft, June 2024

i

Summary

Poor battery life is one of smartphone users’ top frustrations about their devices.
This fact, in combination with the limited supply of battery minerals, the working
conditions of mining, and its environmental impact, has led to high interest in
reducing smartphone energy consumption. Smartphone manufacturers have intro-
duced power-saving features on their products and guide developers to use energy-
efficient software engineering practices.

In literature, the increased awareness of the need to reduce energy consumption and
reduce emissions has led to the birth of a Green Software research field. Focusing on
mobile software, prior research has focused on quantifying energy use and finding
instances of software using more energy than is reasonable for its intended purpose.
However, the ubiquitous power-saving features of smartphones have hardly been
studied until now. In particular, bugs stemming from Android’s Battery Saver
mode, a power-saving technology introduced in 2017 by Google, have not been
studied at all. This thesis aims to address this research gap.

To do so, we first characterize these issues by systematically collecting documen-
tation pages, bug reports, and forum questions relating to these bugs. We find
13 separate problems, most of which (9 out of 13) have considerable user impact.
Additionally, most problems are reported multiple times independently (mean re-
porting frequency = 4.1) outside of Google documentation. Four of the problems
have never been officially documented.

Driven by this characterization, we build a static analysis tool that detects one of
the characterized issues. It builds a Conditional Call Graph to find invocations of
the implicated Application Programming Interfaces (APIs) without asserting this
API is available. The tool is fast and does not require source code to be available.
It runs on the Java Virtual Machine for portability.

To evaluate the tool, we use a two-pronged approach. We first determine the
ground truth for all 1,472 Google Play Store applications that are also available in
the FDroid repository. We write a script to identify all suspicious API invocations,
the bug candidates. We find and attempt to reproduce 178 of these bug candidates.
We manually review all candidates to determine the ground truth. We evaluate
our tool using the same data set. The tool reaches a precision of 0.911 and a recall
of 0.911 and identifies 41 reproducible issues.

Lastly, we report the reproduced issues identified by the tool to the developers of the
affected applications. To date, nine issues have been confirmed by the developers,
and two issues have already been addressed.

ii

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives . 2
1.3 Methodology Overview . 2
1.4 Scope . 2
1.5 Outline . 3

2 Background 4
2.1 Battery Developments . 4
2.2 Battery Optimization . 4
2.3 History of Android Power-Saving Features 5
2.4 Potential for Bugs . 5
2.5 Testing Approaches . 6

2.5.1 Accuracy . 6
2.5.2 Realism . 6
2.5.3 Performance . 6
2.5.4 Coverage . 7

2.6 Automated Test Generation . 7
2.7 Energy Testing . 7

3 Related Work 9
3.1 System Settings Bugs . 9
3.2 Data Loss Bugs . 10
3.3 Detecting Problematic APIs . 10
3.4 Android Battery Saver . 10
3.5 Android Doze Mode . 10
3.6 Dark Mode . 11

4 Characterization 12
4.1 Characterization Methodology . 12

4.1.1 Determine Keywords . 12
4.1.2 Query Documentation and Issues 13
4.1.3 Data Preprocessing and Cleaning 14
4.1.4 Collect and Categorize APIs 14

4.2 Characterization Results . 15
4.2.1 Detailed Characterization of Identified Issues 15

4.3 Conclusion . 19

5 Bug Detection 20
5.1 Problem Selection . 20
5.2 Motivating Example . 20
5.3 Problem Specification . 20
5.4 Tool Approach . 22
5.5 Challenges . 23
5.6 Technical Analysis . 23
5.7 Required Modifications to CiD . 24

5.7.1 Distinguishing Invocations . 24

iii

Contents iv

5.7.2 Distinguishing Arguments . 25
5.8 Architecture . 25

5.8.1 Main Components . 26
5.8.2 Modifications to the Edge Representation 27

6 Tool Evaluation 29
6.1 Tool Evaluation Research Questions 29
6.2 Tool Evaluation Methodology . 29
6.3 Selection of Applications . 30
6.4 Application Filtering . 30
6.5 Ground Truth Determination . 31
6.6 Experimental Setup . 31
6.7 Reporting Issues . 31

7 Tool Results 33
7.1 RQ1: Prevalence of Battery Saver Animation Bugs 33
7.2 RQ2: Effectiveness of Diagnostic Tool 33

7.2.1 Error Analysis . 34
7.2.2 False Positives . 34
7.2.3 False Negatives . 34

7.3 RQ3: Efficiency of Diagnostic Tool 34
7.4 RQ4: Usefulness of Diagnostic Tool 35

8 Discussion 37
8.1 Discussion . 37

8.1.1 Implications . 37
8.1.2 Limitations . 38
8.1.3 Future Directions and Recommendations 39

9 Conclusion 41

References 43

List of Figures

5.1 Example of an animation bug in the Wikimedia Commons applica-
tion. Reported as issue #5710 [11]. 21

5.2 Example of a Java program and its corresponding control flow graph
[8] . 24

5.3 Example of a Conditional Call Graph (CCG) from Li et al. [52] . . . 26

6.1 Overview of evaluation methodology 30

v

List of Tables

2.1 Comparison of Static and Dynamic Analysis 7

3.1 Comparison of Closely Related Work 9

4.1 Summary of Identified Issues . 16

7.1 Accuracy Metrics . 33
7.2 Confusion Matrix for Diagnostic Tool 34
7.3 Summary of Developer Responses . 35
7.4 Fixed Issues . 35
7.5 Accepted Issues . 36
7.6 “Will Not Fix” Issues . 36

vi

Glossary

AOSP Android Open Source Project. The original, open-source version of An-
droid, published by Google and often referred to as ‘clean Android’ since it
contains no OEM modifications. 37, 38, 40

API Application Programming Interface. APIs enable different software compo-
nents to communicate, allowing developers to access and use specific features
or data from other programs in their own applications. ii, 1, 8, 10, 12–15, 19,
20, 22, 23, 26, 27, 29, 37–39, 41

CCG Conditional Call Graph. A specialized control-flow graph in which edges
contain the conditions under which the control-flow transition is possible. v,
26, 27

GPS Global Positioning System. A satellite-based radio navigation system run
by the United States. 4, 5

GPU Graphics Processing Unit. A specialized computer chip for executing graph-
ics operations. 20

Java A high-level, object-oriented programming language. 24, 26, 27

OEM Original Equipment Manufacturer. In the context of Android smartphones,
this term refers to companies that manufacture and market Android devices,
such as Samsung and Huawei. vii, 14, 37, 40

OLED Organic light-emitting diode. A display technology often employed in mod-
ern smartphones. It has the notable property that power draw depends on
the brightness of the color displayed. 5, 11

UI User Interface. Denotes the space where interactions between humans and
machines occur. In modern smartphones, the primary user interface is usually
the touchscreen. 9–11, 22

Wi-Fi A widely used family of network protocols for providing wireless Internet
access. 5, 8

Wi-Fi triangulation A method of determining the user’s location by measuring
the strength of the signal (a proxy for distance) to known Wi-Fi access point
locations. 5

vii

1
Introduction

Smartphone users depend more than ever on their devices and want longer bat-
tery life. Battery sizes have increased, both in physical size and due to chemical
improvements. However, workloads have also become heavier, including running
AI models on-device and sophisticated camera processing. Therefore, to maintain
battery life, meet customer expectations, and reduce emissions, general interest
in mobile energy consumption has increased. While individual mobile devices are
quite efficient and do not consume much power, the eight billion mobile phones in
use are significant collectively. Furthermore, reducing the energy need of mobile
devices allows for smaller batteries. Batteries often contain rare minerals mined
in concerning conditions, so using a smaller battery is beneficial both socially [49]
and environmentally [77].

Most smartphones worldwide run Google’s Android operating system. Since 2010,
a growing number of devices running Android have included a software ‘Low Power
Mode’ for temporarily reducing battery consumption. This usually comes at the
expense of lower performance and reduced background activity. However, this is a
trade-off that users who want maximum battery life, such as while traveling away
from a power source, are willing to make. Google later responded by launching a
power-reducing feature called Battery Saver, built into Android itself. It restricts
computationally expensive tasks and functionalities, such as background activity
and user interface animations. In recent Android versions, Google has progressively
introduced more battery-saving features to further increase efficiency and reduce
the number of loopholes available for apps to avoid being restricted [18, 29].

Previous work in the area of mobile energy consumption has focused on quantifying
energy use, i.e., energy testing, and on bugs causing excessive battery drain: so-
called energy bugs. Energy testing work is not directly relevant to this work, since
we do not measure energy consumption. Energy bug work includes studies on ‘no-
sleep’ bugs [116], where applications keep the device from entering a power-saving
sleep state and work on optimizing graphics drawing [48]. Our work differs from
these studies because it specifically addresses bugs stemming from the use of the
Battery Saver mode.

1.1. Problem Statement
While these features are useful, they also present opportunities for new bugs by
restricting APIs that developers could previously count on always working. Power-
saving features modify the system in subtle ways that are not always clearly doc-
umented. Developers may forget to enable these features manually during app
testing, if at all possible, and testing every feature in multiple power-saving states

1

1.2. Research Objectives 2

is highly cumbersome. Related topics, such as issues caused by other settings, have
been widely studied. However, to our knowledge, this is the first study regarding
Battery Saver bugs specifically.

These issues may significantly affect user experience, as we show in section 4.2.
They may not be apparent during standard testing scenarios, highlighting the need
for a comprehensive investigation into the interplay between power-saving features
and app behavior. Additionally, common Android development tooling, such as
Android Studio, does not provide warnings to developers for any of these issues.

1.2. Research Objectives
Having established that these power-saving features cause bugs, it appears that
there is no research focused on characterizing and preventing these issues in practice.
This thesis intends to fill that gap by providing a better understanding of the
failure modes of Android apps under power restriction regimes and offers potential
solutions to these failures. To the best extent of our knowledge, it is the first study
into the topic of bugs caused by Android power-saving features.

More explicitly, this thesis aims to:

1. Provide a systematic characterization of issues stemming from the use of the
Battery Saver functionality on Android devices

2. Find the issues mentioned in Objective 1 in a representative set of real-world
applications

3. Aid developers by providing tooling to identify and resolve these issues in
their applications

1.3. Methodology Overview
A rigorous characterization methodology was designed to achieve the stated re-
search objectives. We first systematically determine keywords to find developer
reports of problems surrounding Battery Saver. We query documentation and well-
known public databases, including Stack Overflow and GitHub, and categorize and
characterize the issues found.

We then develop a tool to address one of the identified issues with high user im-
pact and a feasible fix. We evaluate the tool on a large base of public Android
applications and manually reproduce all identified issues to determine its accuracy.
We report the reproduced issues to developers to assess the usefulness of the bug
reports.

1.4. Scope
We limit the scope of this research to smartphone devices running Android. An-
droid is the world’s most-used smartphone operating system and has a large third-
party app ecosystem. The other major mobile operating system, Apple’s iOS, also
includes a power-saving mode [114], but since the iOS platform is more closed-off
than Android, it is harder to develop tools to identify bugs automatically. Addi-
tionally, iOS disallows some of the functionalities of Android, such as extensive
background processing, regardless of battery-saving mode, so there may be less
surface area for bugs.

We only consider bugs appearing while running stock Android, such as the ver-
sion of Android on Google Pixel devices and the Android emulator shipping with
Android Studio. This has two main reasons: 1. Android implementations are
diverse, and manufacturers have implemented many custom battery-saving mecha-
nisms that may or may not be implemented by other manufacturers. 2. To analyze
apps in a scalable way, using the Android Emulator instead of physical devices is

1.5. Outline 3

preferable so we can run multiple apps at the same time or quickly refer to different
versions of a single app.

1.5. Outline
This thesis is organized as follows:

• In Chapter 2, the importance of this research is motivated, and relevant
background information is presented.

• In Chapter 3, related work is considered and contrasted to this work.
• In Chapter 4, the methodology of this thesis is laid out.
• In Chapter 5, a systematic characterization of the identified issues is pre-

sented.
• In Chapter 6, a tool that automatically detects one identified issue in real-

world apps is presented.
• In Chapter 7, the evaluation process for the tool is described.
• In Chapter 8, the results of evaluating the tool are presented.
• In Chapter 9, the findings are discussed, and limitations are considered.

Then, concluding remarks are given, and recommendations for future work
are made.

2
Background

Smartphones are one of the most impactful technologies of our time. They have
revolutionized communication and information access and have had a major so-
cial and cultural impact, too. Users report preferring their smartphones over sex
[67] and spending an average of about a third of their waking time using their
smartphones [117].

2.1. Battery Developments
Amidst the rapid development and adoption of smartphones, battery life has re-
mained a pressing concern. While many parts of smartphones have matured (pro-
cessors, screens, form factors) and the rate of change has slowed, most users still
report desiring longer battery life. Battery life is one of the most important factors
determining smartphone customer satisfaction. However, raw battery capacity is
not increasing at a fast rate, with densities improving at about 4-5% per year over
the last decade [128]. The 2014 Samsung Galaxy S5 contains a 2800 mAh battery
[41], while the 2023 Samsung Galaxy S23 contains a 3900 mAh battery [82]. Al-
though the newer device has a 39% higher battery capacity, its internal volume
has also increased by 30% [41, 82].

Observed battery life is sometimes even reported to decrease year-over-year due
to more energy-intensive components [109]. Users place increasing demands on
their smartphones, desiring ever-improving camera systems with sophisticated (and
energy-intensive) processing, high-speed networking over 5G, and running apps
that perform on-device machine learning, augmented reality, and high-resolution
graphics.

Users benefit from all these improvements, and many would not dream of going back
to their then-flagship device from five years ago. However, there are scenarios when
users would prefer longer battery life over maximum performance and functionality.
Users may be traveling without access to a power source, performing particularly
power-intensive tasks like GPS navigation, or have older phones with chemically
degraded batteries. We cannot increase physical battery capacity temporarily, and
modern phones usually do not have user-replaceable batteries, so unless the user
brings and remembers to charge an external battery pack, we need to look toward
software.

2.2. Battery Optimization
Luckily, many effective software optimizations for increasing battery life are possi-
ble. Some of the most power-intensive components in a modern smartphone are the
screen, location access, especially using GPS, and the processors. To reduce screen

4

2.3. History of Android Power-Saving Features 5

power consumption, we can lower the brightness, display darker colors on OLED
screens, and reduce the screen refresh rate [10]. To reduce GPS power consumption,
we can simply use it less, depending on other methods of determining location, such
as Wi-Fi network Wi-Fi triangulation if possible. Processors can be kept asleep
for as long as possible by batching operations and postponing non-time-sensitive
operations, reducing power consumption.

Many of these optimizations, however, have trade-offs, such as reduced screen vis-
ibility, less accurate location determination, and delayed processing. Therefore,
manufacturers tend to package these optimizations into modes that the user can
enable and disable at will. This allows the user to trade off battery life versus
functionality. Smartphone manufacturers HTC (in 2011, on its Desire smartphone
[46]) and Samsung (in 2012, on its Galaxy SII smartphone [40]) introduced battery-
saving modes in the early 2010s, and many other manufacturers followed suit. In
2014, Google shipped a built-in Battery Saver mode with Android 5.0 [83] and
further expanded it with subsequent releases.

2.3. History of Android Power-Saving Features
Let us take a look at the high-level power-saving features introduced in Android
over the years.

• In 2014, as stated before, Google introduced Android 5.0 Lollipop, featuring
Battery Saver [5], a battery-saving mode users could enable manually or set
to enable when battery charge dropped below a predefined level. It restricts
background activity and networking [108], background location access [108],
disables user interface animations [61], vibration [78], and 5G networking
[108], and slows down the processor [37], among others.

• 2015 brought more power-saving features, including Doze mode [27], which
only periodically wakes up background apps when on battery power, and App
Standby [27], which reduces background activity for unused apps.

• Android 7.0, launched in 2016, introduced an extension of Doze [17], infor-
mally often called “Light Doze”, which applies a subset of the Doze restric-
tions after turning the screen off. Compared to ‘full‘ Doze, its measures are
less restrictive, and they are activated earlier: for example, the system does
not wait until the device is stationary.

• In 2017, restrictions were placed on broadcasts [21], a feature that allows
apps to send messages to other apps.

• In 2019, these broadcast restrictions were strengthened, and Google launched
App Standby Buckets [19], a refinement of App Standby that further limits
apps based on how frequently and recently they have been used. Based on this
data, apps are placed into five buckets, and the system limits device resources
based on the app’s bucket. 2019 also brought improvements to Battery Saver
[18], such as putting background apps to standby more aggressively, disabling
location when the screen is off, and applying some restrictions to all apps
regardless of target API level.

• 2021 brought features to further delay alarms [29], which allow an app to
schedule itself to be woken up by the system.

• In 2023, new features were launched to freeze cached applications and opti-
mize broadcasts for cached applications [7].

2.4. Potential for Bugs
As becomes clear from the above, Android contains an impressive array of features
that reduce power consumption. Apps are automatically regulated so as not to
drain the user’s battery. This benefits developers, who have to worry less about

2.5. Testing Approaches 6

their app’s power consumption, and users, who can count on their devices lasting
a long time. However, it also comes with an increased need for testing and vali-
dation. Apart from all the existing hardware fragmentation (different screen sizes,
camera, and sensor setups), developers now also have to concern themselves with a
new software mode (Battery Saver) and many types of restrictions on background
processing. It is not surprising that developers struggle with these modes, and
there are hundreds of questions on Stack Overflow and thousands of public issues
on GitHub on this topic.

2.5. Testing Approaches
For software testing in general, it is helpful to distinguish two main approaches:
static and dynamic testing. Their core difference is their mode of analysis: static
testing does not execute the code of the program under test, whereas dynamic
testing does. Static testing has the advantage of not being limited by the running
speed of the software under test; it can, therefore, often be faster than dynamic
testing. Dynamic testing, on the other hand, has the advantage of being able to
see software behavior in action: it is, therefore, less likely to lead to false positives
and can detect sophisticated behavior bugs that may not be detectable from source
code alone.

In the next subsections, we provide more detail on the trade-offs between static
and dynamic testing approaches, based on four key dimensions: accuracy, realism,
performance, and coverage.

2.5.1. Accuracy
The accuracy of a bug detection tool is paramount, as it directly impacts the reli-
ability of the test outcomes. Static analysis often falls short in terms of accuracy
due to its inherent limitations in handling dynamic behavior and runtime condi-
tions. It may generate a higher rate of false positives and false negatives because
it abstracts away some runtime specifics.

On the other hand, dynamic analysis offers more accurate results by executing the
code and observing its behavior. This method is particularly effective in complex
scenarios where bugs manifest only under specific runtime conditions, thus reducing
the likelihood of false positives. However, its accuracy heavily depends on the
comprehensiveness of the test cases used.

2.5.2. Realism
Realism in testing refers to how closely the test environment and scenarios mimic
actual operating conditions under which the software will run. Dynamic testing
excels in this domain as it evaluates the software in a state that closely resembles
its execution in a live environment, thereby providing a realistic assessment of its
behavior and performance.

Static testing, while useful for preliminary checks, often cannot replicate the com-
plex user interactions and other environmental variables that can influence the
behavior of the software, leading to a gap between test results and real-world per-
formance.

2.5.3. Performance
Performance testing is crucial to ensure that the software not only functions cor-
rectly but also meets the required speed and efficiency standards under various
conditions. Static analysis is generally faster and less resource-intensive as it does
not require the program to be executed. This makes it suitable for regularly run
checks and fault detection early in the development cycle.

Conversely, dynamic testing, which involves code execution, tends to be slower and

2.6. Automated Test Generation 7

more resource-demanding. However, it is indispensable for accurately measuring
the software’s performance metrics, such as response time and resource utilization,
under realistic conditions.

2.5.4. Coverage
Coverage measures the extent to which a testing method can examine the code base.
Static analysis typically offers higher coverage in less time because it analyzes all
code paths without executing them. This approach ensures that even the parts of
the code that are rarely executed in a typical runtime scenario are examined.

Dynamic testing, though more constrained in coverage due to its reliance on exe-
cuting specific scenarios, is critical for uncovering issues that only manifest during
runtime. Its coverage is limited by the defined scenarios and test cases or explo-
ration strategy, which might not encompass all possible execution paths.

To summarize, we collect the analysis above into Table 2.1. It is clear from the
table that static and dynamic analysis have different strengths and weaknesses.

Static Analysis Dynamic Analysis
Accuracy + ++
Realism - +
Performance + -
Coverage ++ -

Table 2.1: Comparison of Static and Dynamic Analysis

2.6. Automated Test Generation
Testing software is standard practice to ensure quality and limit the number of
bugs and their severity [71]. However, it is tedious to exercise every function of
the target application manually. To address this, automatic tools for dynami-
cally testing Android applications have been developed. Random tools, such as
the UI/Application Exerciser Monkey [30] developed by Google, often shortened
to Monkey, stress test applications by generating random events such as touches,
system navigation actions such as Back, and scroll actions. However, due to its
random nature, it struggles with common patterns such as deep navigation hierar-
chies and login screens since it, for example, cannot systematically navigate to new
screens or enter a password. Therefore, improved approaches have been proposed,
which usually employ a model that stores which action leads to a screen to limit
repetition. These include, in increasing order of activity coverage, Stoat [105], Ape
[42], and Fastbot2 [62].

2.7. Energy Testing
Energy testing can be divided into two approaches : direct and indirect measure-
ment. In direct measurement, energy consumption is measured at the physical
level by measuring currents and voltages. The hardware for this is included in
most phones; when this is used, this is called internal direct measurement. We
can, however, also attach the device to an external power meter, leading to the
name external direct measurement. While quite accurate on the device level, these
approaches cannot naturally differentiate the different sources of power draw.

In indirect measurement, energy consumption is modeled by taking software char-
acteristics and relating them to energy consumption. By definition, this approach
is less accurate for device-level measurement because the model estimates rather
than measures power consumption. However, this approach is more flexible because
factors like idle power consumption and running multiple applications concurrently
can be accounted for. It can be divided into three categories. Working-time models

2.7. Energy Testing 8

aggregate the time various smartphone systems (CPU, Wi-Fi, Bluetooth, Location)
are in use. Instruction energy models look at the instructions themselves. API call
energy models look up the APIs used in an application in a table of known APIs
and their energy usage.

3
Related Work

In this chapter, we review the prior work related to defects caused by power-saving
features in Android applications. While no previous work addressing our exact
topic exists, several works partially overlap. We show a comparison of the rele-
vant points of comparison in Table 3.1. We provide more details on the points of
comparison in the next sections.

Table 3.1: Comparison of Closely Related Work

Our tool CiD FlowDroid SetDroid SetChecker PATDroid PREFEST

Detects bugs directly 3 3 3 3 3 3

Target Battery Saver bugs 3 3 3

Battery Saver bugs detected 41 N/A N/A 0 0 N/A N/A
Metamorphic testing only 3

Targets non-crash bugs 3 3 3 3 3 3

Static/Dynamic Static Static Static Dynamic Static Hybrid Hybrid

Static sensitivities
Flow
Path
Context

Flow
Path

Flow
Context
Field
Object

N/A Unreported N/A N/A

3.1. System Settings Bugs
Battery Saver is a system setting on Android, that is, it is setting controlled from
outside the application. Therefore, other work on problems surrounding such set-
tings is relevant. Sun et al. [107] develop SetDroid for finding setting-related de-
fects: defects that appear depending on a system setting, such as user interface (UI)
language. The authors start from the assumption that when changing a setting,
except for the behavior change desired by changing the setting, the application
should remain the same. For example, after changing the language setting, all
buttons originally present should remain present, as only their text content may
have changed. This approach is named metamorphic testing. The authors use
modified random test seeds. In an extending study [106], the authors propose a
static analyzer named SetChecker that allows a broader range of defects to be iden-
tified. Compared to our work, these studies do not identify any bugs caused by
Battery Saver mode. Neither does FlowDroid, presented in [2], but its approach is
interesting because it includes many sensitivities.

Permission defects are empirically investigated in [119], and tools to detect them
are proposed in [118, 81, 60]. Of these, PATDroid [81] and PREFEST [60] detect a

9

3.2. Data Loss Bugs 10

limited subset of settings and only support detecting crashing bugs. Aper, proposed
in [118], statically detects permission defects caused by updated Android APIs.

3.2. Data Loss Bugs
An important type of bug relevant to this work is the data loss bug. Appropriately
named, it refers to bugs in which user data is lost inadvertently. These bugs are
relevant to this work because, somewhat surprisingly, toggling Battery Saver mode
can also cause data loss issues.

Early, dynamic work on this problem [126, 1] requires testing suites. DLDetector,
a dynamic tool proposed in [80], improves upon these approaches by including
an exploration strategy to avoid needing a testing suite. Early static work such
as KREFinder [85] does not require a hand-built model that the early dynamic
approaches do. Later approaches are often static too: they include LiveDroid,
proposed in [36], compared to [85] the authors add consideration of UI elements in
resource files. Furthermore, while KREFinder [85] erroneously assumes all variables
are instance state, LiveDroid [36] reasons about what should be saved, preventing
over-saving, which can lead to low performance. iFixDataLoss, put forward in [43],
combines static and dynamic analysis by first building a transition graph statically
and then exercising the app dynamically using guided exploration. It generates the
methods for implementing saving instance state. As mentioned in chapter 2, there
are multiple techniques for saving state. However, iFixDataLoss only supports one,
namely saving instance state. Lastly, DDLDroid [127] outperforms earlier work
with a fully static tool that has the advantage of substantially shorter running
time than competing approaches. It uses data flow analysis and excludes immutable
properties to avoid over-saving.

3.3. Detecting Problematic APIs
Several studies [58, 59, 57, 120] have focused on automatically identifying incom-
patible API calls in Android applications. As APIs malfunctioning in Battery
Saver mode may be seen as an “incompatible” call too, this work is relevant for our
problem. The tool FicFinder, proposed in [120], uses static analysis to find com-
patibility issues automatically, although this process still requires manual effort.
Liu et al. [58], and its extension [59] analyze Android apps to find incompatible
API calls, i.e., APIs that exist in one Android version but are later removed in a
newer version. The related topic of silently-evolved methods, that is, APIs that are
changed without the corresponding documentation being updated, is addressed by
Chen et al. [9].

3.4. Android Battery Saver
To our best knowledge, only a single study has been performed addressing the
non-functional aspects of Battery Saver mode on Android devices. In [39], the
performance of the default Android web browser in this mode is measured. As
Battery Saver mode may limit the clock frequency of the central processing unit
(CPU), the authors hypothesize that web browsing loading times increase when
this mode is active. They analyze a large-scale data set and then show that this
slowdown occurs on some devices, in particular, on Sony and Huawei devices, but
newer high-end models do not exhibit it. It differs from our study in that it
considers performance instead of functionality.

3.5. Android Doze Mode
Recent work has also addressed Doze mode, another power-saving feature in mod-
ern versions of Android. In particular, Chen et al. [9] attack Doze mode by de-
signing an application that intentionally does not allow Doze mode to function by

3.6. Dark Mode 11

constantly scheduling alarms that wake up the device. Running the application
drains the user’s battery up to six times faster than the baseline.

3.6. Dark Mode
A system-level so-called ‘Dark Mode’ or ‘Dark Theme’ is a recent addition to mobile
operating systems. It darkens the UI colors to increase comfort in low-light settings.
Interestingly, a generally darker screen also reduces power consumption on OLED
smartphone screens. For this reason, Android’s Battery Saver mode enables dark
mode, which makes this work relevant to this study. Several works address the
power consumption of mobile devices with dark mode enabled. Dash and Hu [13]
build a model for the power consumption of OLED screens. Other studies [115, 50]
compare web browsing energy consumption in both light and dark themes. These
works treat modeling and reducing power consumption, whereas our work focuses
on bugs caused by Battery Saver mode.

4
Characterization

In this chapter, the methodology for characterizing and analyzing Battery Saver
issues is presented. The methodology aims to provide a path to meeting the research
objectives in section 1.2. The resulting characterization seeks to provide developers
and researchers with a clear picture of the failure modes of Android apps under
Battery Saver mode.

4.1. Characterization Methodology
The section presents an outline of the stages of the research process and their inter-
connections. It presents four steps, followed in order. In the following subsections,
each step will be discussed in detail to aid reproduction. We then report the re-
sults of applying this methodology, consisting of 13 discrete bugs. We describe and
analyze them in detail based on their manifestation, the API implicated, severity,
and potential fixes or workarounds.

4.1.1. Determine Keywords
To systematically identify relevant keywords for finding Battery Saver issues on
Android, we started by identifying the common terms for this feature. To find
unbiased and representative keywords, we used a systematic process starting from
the most basic set of known relevant terms: the marketing term for this feature,
‘Battery Saver’1 and the relevant API to check whether this feature is currently
enabled, PowerManager.isPowerSaveMode(). We then transform these terms sys-
tematically into their constituent parts to get our query set:

1. battery saver
2. power manager
3. PowerManager
4. isPowerSaveMode
5. is power save mode

We remove ‘is’ from the fifth query since it does not add to the term semantics.

We then add the quoted versions of these queries to the query set. For single-word
queries, we do not add quoted versions since these return the same result as the
original query. Therefore, we add:

1. “battery saver” 2. “power manager” 3. “power save mode”

Resulting in the total keyword set:
1See https://support.google.com/pixelphone/answer/6187458?hl=en

12

4.1. Characterization Methodology 13

1. battery saver
2. power manager
3. PowerManager
4. isPowerSaveMode
5. is power save mode
6. “battery saver”
7. “power manager”
8. “power save mode”

These queries are sufficient for querying Android documentation. However, to
disambiguate them for the other resources, that is, GitHub and Stack Overflow, we
modify these queries by prepending “android”, resulting in the following keyword
set for GitHub and Stack Overflow:

1. [android] battery saver
2. [android] power manager
3. [android] PowerManager
4. [android] isPowerSaveMode
5. [android] is power save mode
6. [android] “battery saver”
7. [android] “power manager”
8. [android] “power save mode”

4.1.2. Query Documentation and Issues
To find relevant problematic behaviors and APIs, we query the Android documen-
tation, the public issue database of GitHub, and the Stack Overflow programming
help website. We use the keywords previously identified, that is:

1. [android] battery saver
2. [android] power manager
3. [android] PowerManager
4. [android] isPowerSaveMode
5. [android] is power save mode
6. [android] “battery saver”
7. [android] “power manager”
8. [android] ”power save mode”

We perform one query per keyword per resource (documentation, GitHub, Stack
Overflow). We check the resulting document for inclusion in the order returned
by the resource, which for all three is set to be based on ‘relevance’. To make the
process more efficient, if 20 subsequent issues are deemed irrelevant, we terminate
the process.

We retrieve up to 200 documents per query per resource2. If we reach the stopping
criterion of 20 consecutive irrelevant documents, we stop the search. Otherwise,
we retrieve 200 more documents, repeating this process until we either reach the
stopping criterion or exhaust the set of documents.

2The search may return fewer than 200 results, in that case we simply take all results

4.1. Characterization Methodology 14

The official Android documentation is not accessible via an API, therefore, we query
it manually. GitHub and Stack Overflow have an API that allows us to script the
data retrieval.

After this step, we are left with 1894 artifacts.

4.1.3. Data Preprocessing and Cleaning
Before we can identify the APIs and system features used in them, we must clean
the data since it comes from an unfiltered data set. We removed duplicates and
then used the following inclusion criteria:

Inclusion criteria
Artifacts must be:

1. Addressing a software problem.
2. Relevant to the Android operating system.
3. Relevant to native Android development.

• Native, cross-platform frameworks like React Native3 or .NET MAUI4

are also to be included.
4. Directly related to the built-in Android feature Battery Saver
5. Clear about the failing component, for example, by mentioning the problem-

atic API explicitly or providing a code sample.
6. Available. Deleted posts or issues may be returned by the search but will be

discarded since they provide no useful information.

Exclusion criteria
Artifacts must not be:

1. Reported only to appear on a single manufacturer’s device other than Google

• Artifacts describing issues caused by OEM Battery Saver additions or
changes are not to be included

2. Documented in a language other than English. The Android documentation
has been translated into various other languages and including them would
lead to duplicated results.

These criteria ensure that only artifacts relevant to our research questions are
included and that they are clear enough to be useful for answering them.

4.1.4. Collect and Categorize APIs
We review all artifacts to determine the problem described. For each problem, we
categorize it based on the following factors:

1. Related API(s)
2. Severity, based on Atlassian’s incident management classification [3]

In decreasing order:

(a) Critical, having a high level of user experience impact, such as crashes
with data loss or core functionality impacted.

(b) Major, having a moderate level of user experience impact, such as crashes
without data loss or secondary functionality affected.

(c) Minor, low impact. Minor inconvenience or affecting niche feature.
Workaround may be available.

3See https://reactnative.dev
4See https://dotnet.microsoft.com/en-us/apps/maui

https://reactnative.dev
https://dotnet.microsoft.com/en-us/apps/maui

4.2. Characterization Results 15

3. Frequency of mention - Issues mentioned more often may occur more often
in general. It also lends credibility to the report: while a single bug report
may be a fluke, especially on an open platform like GitHub or Stack Overflow,
multiple reports corroborating the same problem increase our confidence that
the issue exists.

4. Possibility of building oracle - Is there a feasible automatic test to see if this
issue occurs? If not, automatic tools for fixing this issue are hard to build.

We then group and collate all artifacts into a master repository. We group them by
how they manifest. For example, ‘background jobs do not run’ could be one entry.
There may be multiple reasons for this bug occurring, but since they manifest in
similar ways, we can group them here.

Our collation process leaves us with a set of distinct problems, including any info
collected from the underlying GitHub issues, Stack Overflow questions, and relevant
documentation pages. We present these problems in detail in section 4.2.

4.2. Characterization Results
In this chapter, we report the results of applying the methodology in chapter 4. We
share the outcomes of the previously outlined characterization process and analyze
them in detail.

The GitHub search returns 1456 results. After deduplication, 807 issues are left.
Following the process set out in chapter 4, we include 21 issues. The most common
reasons for exclusion are “not concerning Battery Saver” (171 instances), “not re-
porting a problem” (29 instances), and “not related to clean Android’ (17 instances).
The Stack Overflow search returned 1448 results. After deduplication, 998 issues
remain. Of these, we include 30. The most common reasons for exclusion are “not
concerning Battery Saver” (111 instances), “not related to Android” (27 instances),
and “not related to clean Android” (19 instances). The Android documentation
only returns a maximum of 50 results per query. Applying the exclusion criteria,
163 issues remain, of which nine meet all inclusion criteria.

The characterization process provides us with 57 artifacts describing issues caused
by Battery Saver. In this section, we look at these artifacts in more detail and
consider the manifestation, severity, frequency of mention, documentation status,
and suggested fix of these issues. We then group the artifacts that mentioned
the same or similar issues, resulting in 13 separate issues. We summarize the
collated data in Table 4.1. It shows all identified issues, the issue manifestation,
APIs implicated, severity, support, potential fixes or workaround, and further notes
if applicable. We have also assigned a unique identifier to each issue for easy
identification, shown in the leftmost column.

4.2.1. Detailed Characterization of Identified Issues
The following sections provide an in-depth look at the specific issues identified
during the study on Battery Saver bugs in Android applications. Each issue is
analyzed in terms of its manifestation, the APIs it affects, its severity, and possible
fixes or workarounds.

BS1: Location Services Disabled on Screen Off
An important Battery Saver modification is that location services are disabled
when the screen is turned off under Battery Saver mode. This bug affects important
mapping and navigation apps relying on continuous location updates. The primary
API implicated in this issue is android.location.LocationManager. This issue
is classified as major due to its potential to severely disrupt location-dependent
services. No straightforward workaround is available since this behavior is system-
level, suggesting a need for systemic changes in app handling under Battery Saver

4.2. Characterization Results 16

Table 4.1: Summary of Identified Issues

Issue ID Issue Manifestation API(s) implicated Severity Support Fix/Workaround Details/Notes
BS1 Location services

disabled on screen off
android.location.LocationManager Major, core

feature of
mapping /
navigation apps
affected

5 reports +
Google-
documented

None proposed, whitelisting
probably doesn not even work
since this is system-level, not
app-level

See
https://developer.android.com/
develop/sensors-and-
location/location/background#
checklist

BS2 Background
networking disabled

Any networking API, seemingly. Also will
report status disconnected

Major, core
feature of e.g.
communication
apps affected

12 reports +
Google-
documented

Use a foreground service -

BS3 Network looks disabled
even if it is not

android.net.NetworkInfo.isConnecte
d()

android.net.NetworkInfo.isConnecte
dOrConnecting()

Minor, not a
core feature

3 reports +
Google-
documented

Suggested to try pinging a
server

Deprecated solution: get
detailed info or use
isConnectedOrConnecting().
Google points to new API,
unclear how it behaves.

BS4 App cannot run
infinitely in background

android.app.IntentService Major, core
feature of many
apps

4 reports This is deprecated in Android
11 and unsupported on modern
Android. Use
ForegroundService or
JobScheduler / WorkManager
APIs

Deprecated in Android 11(level
30) and affected since 8 (level
26). While documentation does
not mention it, Battery Saver is
reportedly involved too

BS5 JobScheduler jobs are
not run

android.app.job.JobScheduler Major, can be
an important
feature,
background
services often
migrated to
this.

3 reports +
Google-
documented

- Status reported with:
android.app.job.JobParamet
ers.PENDING_JOB_REASON_DEV
ICE_STATE and
android.app.job.JobParamet
ers.PENDING_JOB_REASON_DEV
ICE_STATE

BS6 Alarms are not fired android.app.AlarmManager.setInexac
tRepeating()

android.app.AlarmManager.setAndAll
owWhileIdle()

android.app.AlarmManager.setExact(
)

android.app.AlarmManager.setWindow
()

Major,
sometimes a
core feature,
especially if
setAlarmClock
breaks

3 reports +
Google-
documented

- Only
setExactAndAllowWhileIdle
is reliable, but can only fire
once per 15 mins and may be
ordered arbitrarily.
setAlarmClock can also be
used but is only designed for
highly visible things like alarm
clocks, and one report of it not
firing either

BS7 Activity restarts in
dark mode

android.app.Activity

androidx.appcompat:appcompat.MODE_
NIGHT_AUTO_BATTERY

Critical, can
cause data loss
and crashes

7 reports +
Google-
documented

Implement data/state saving
or disable activity redrawing,
which may lead to other issues
and is not recommended by
Google

Dark theme gets enabled,
causing activity to redraw and
potentially causing data loss

BS8 > 60Hz frame rates
clipped to 60Hz

Surface.setFrameRate()

SurfaceControl.Transaction.setFram
eRate()

ANativeWindow_setFrameRate()

ASurfaceTransaction_setFrameRate()

Minor, just a
nuisance
usually

Google-
documented

No workaround mentioned -

BS9 Work requests may not
execute

androidx.work:work-
runtime.WorkRequest

androidx.work:work-
runtime.WorkRequest.setExpedited()

androidx.work:work-
runtime.Constraints.Builder.setReq
uiresBatteryNotLow()

Minor, usually
not a core
feature,
otherwise would
be e.g. a
foreground
service

Google-
documented

Use alternatives such as a
foreground service

Throws exception when
foregrounding is not allowed,
see
https://developer.android.com/
develop/background-
work/background-
tasks/persistent/getting-
started/define-work#backwards-
compat

BS10 Animations do not run android.Animator and subclasses (e.g.
ValueAnimator, ObjectAnimator)

android.widget.ProgressBar

com.google.android.material.progre
ssindicator.CircularProgressIndica
tor

Critical, can
cause core
functionality to
break down
confusingly if
elements never
appear on
screen

10 reports Use animation.* APIs. Check
that non-animating behavior is
clear (especially: reaches end
state). Check that animators
are enabled using
ValueAnimator.AreAnimatorsE
nabled() or put in Runnable to
schedule after view lays out
(see report 9)

android.view.animation
subclasses explicitly not affected
according to Xamarin Forms
issue #8382, also mentioned by
2048-Battles issue #261

BS11 Cannot start
foreground service from
background

android.app.Service Major, no big
user impact
reported

2 reports +
Google-
documented

Disable background
optimizations or a slew of
other options, see
https://developer.android.com
/develop/background-
work/services/foreground-
services

-

BS12 Foreground service gets
killed by Battery Saver

android.app.Service Major, affects
core features
such as data
upload

3 reports,
bug verified
and fixed by
Google

Workaround by starting
separate process for service,
mentioned to be fixed in
Android 8+

Confirmed bug in Android. Issue
tracker only mentions Doze but
reported twice on Battery Saver
too. Hardly documented. Only
Android 6/7

BS13 GPS does not respond LocationManager Major, may
break core
piece of
application

1 report Disable BS, potentially
whitelist?

Not well corroborated

4.2. Characterization Results 17

mode and/or user education. Popular apps like Strava [111] and Ride with GPS
[6] have begun warning their users to disable Battery Saver on Android phones.

Supported by [18, 64, 84, 113, 72]

BS2: Background Networking Disabled
Another significant issue involves the disabling of background networking, which
impacts any application relying on network connectivity to perform background
operations. This bug primarily affects communication apps and is linked to several
networking APIs. The severity of this bug is also classified as major. A possible
fix is the use of a foreground service to ensure connectivity remains active.

Supported by [18, 63, 12, 68, 76, 65, 14, 47, 79, 75, 74, 73]

BS3: False Network Disconnection Reports
Applications might receive incorrect signals that the network is disconnected when
it is not. This minor issue involves APIs such as android.net.NetworkInfo
.isConnected() and can lead to poor user experiences due to unnecessary handling
of “no network” errors. Developers can mitigate this by implementing additional
checks on the Battery Saver status or pinging a server to verify connectivity.

Supported by [66, 91, 87]

BS4: App Suspended in Background
Under Battery Saver mode, apps are often prevented from running indefinitely
in the background, which affects services designed for continuous operation. The
implicated API android.app.IntentService has been deprecated, pushing devel-
opers towards using JobScheduler or ForegroundService for background tasks.
This issue is a major concern as it requires significant changes to app architecture
for compliance with modern Android standards.

Supported by [88, 101, 94, 103]

BS5 JobScheduler Jobs Are Not Run
A major issue can arise when jobs that are scheduled via the android.app.job.
JobScheduler API do not execute under Battery Saver mode, significantly affect-
ing apps that rely on background tasks for functionality such as syncing data or
processing tasks. This problem can severely impact the reliability of applications
that use JobScheduler for important operations. The severity of this issue is clas-
sified as major due to its potential to disrupt critical app functionalities such as
file uploads.

Developers should also consider handling the android.app.job.JobParameters.
PENDING_JOB_REASON_DEVICE_STATE callback to determine if a job is pending due
to device state restrictions and implement conditional logic to reschedule jobs or
handle failures appropriately. This approach requires a robust error-handling and
job-management strategy to ensure that app functionality remains consistent even
under restrictive conditions imposed by Battery Saver mode.

Supported by [28, 26, 4]

BS6: Alarms Do Not Fire
Scheduled alarms using AlarmManager may fail to fire under Battery Saver mode,
which disrupts both apps that rely on precise timing (e.g., reminder and alarm apps)
and apps that use alarms to perform scheduled work. The severity of this issue is
major, especially for applications where timing is crucial. The workaround involves
using the setExactAndAllowWhileIdle alarm instantiation method, although this
method imposes limitations on the frequency of alarm execution.

Supported by [15, 38, 102]

4.2. Characterization Results 18

BS7: Activity Restarts in Dark Mode
Switching to Battery Saver mode can trigger an unwanted activity restart when the
system transitions to a dark UI mode. This is critical because it can lead to data loss
or crashes if the activity state is not properly managed. The APIs involved include
android.app.Activity and androidx.appcompat:appcompat.MODE_NIGHT_AUTO_-
BATTERY. A possible fix involves implementing robust state saving and restoration
techniques or explicitly handling mode changes without redrawing the activity,
which, although easy to implement, is not recommended due to potential side ef-
fects on app behavior.

Supported by [25, 16, 20, 86, 89, 95, 92]

BS8: Frame Rate Limitations
Under Battery Saver mode, high frame rates are often clipped to 60Hz to save power
on devices that support higher refresh rates, affecting apps that rely on higher
frame rates for smooth visual experiences, such as games or video applications.
The APIs affected include Surface.setFrameRate() and its variants. This issue
is considered minor as it generally only causes a visual nuisance rather than a
functional impairment. There is no direct workaround other than adjusting app
expectations concerning frame rates when Battery Saver mode is active.

Supported by [24]

BS9: Work Requests May Not Execute
Scheduled work requests using the WorkManager API may not execute as expected
under Battery Saver mode, which can delay or prevent background tasks from run-
ning. This issue typically impacts non-critical background tasks but can escalate to
major if critical operations are deferred. The affected API is androidx.work:work-
runtime.WorkRequest. Developers can use alternatives such as a foreground ser-
vice to ensure reliability.

Supported by [22]

BS10: Animations Are Not Run
Animations within apps do not run in Battery Saver mode, which can confuse users
if UI elements rely on animations to appear or convey information. This affects
various animator APIs and is classified as critical if it prevents core functionalities
from being accessible. Developers are advised to ensure that UI elements reach their
end state even without animations or to check the animation status dynamically
and adjust the behavior accordingly.

Supported by [34, 123, 33, 32, 125, 112, 100, 104, 99, 93]

BS11: Cannot Start Foreground Service from Background
Starting a foreground service from the background can fail under Battery Saver
mode, potentially affecting apps that need to promote a background service to
the foreground to continue tasks without interruption. The implicated API is
android.app.Service. This issue is major due to its impact on service continu-
ity. Workarounds include requesting the user to disable battery optimizations or
adjusting the app design to avoid needing to start services from the background.

Supported by [23, 110, 56]

BS12: Foreground Service Gets Killed
Even when configured correctly, foreground services may be terminated by the sys-
tem under Battery Saver mode, affecting apps that rely on continuous operation
to function properly, such as music players or location trackers. This bug, primar-
ily associated with android.app.Service, has been addressed in recent Android

4.3. Conclusion 19

updates but may still occur in older versions. A possible fix is to implement a sep-
arate process for the service or to apply for exemptions from battery optimizations
where feasible.

Supported by [90, 96, 97]

BS13: GPS Does Not Respond
A disruptive issue encountered under Battery Saver mode is the lowered accuracy
and non-responsiveness of GPS services, which can critically impact apps that
depend on real-time location tracking, such as navigation and fitness tracking apps.
This issue is associated with the LocationManager API and is classified as major
due to its potential to completely disable core functionalities of location-dependent
applications.

This issue has only been reported once and has not been documented by Google,
so it would benefit from more evidence.

The severity of this issue may require users to manually disable Battery Saver mode
to restore GPS functionality, which is a poor solution as it compromises the device’s
battery life. Developers might consider implementing a fallback mechanism or
alerting users about the reduced functionality when Battery Saver mode is detected.
Additionally, requesting users to whitelist the app from battery optimizations can
mitigate it.

Supported by [98]

4.3. Conclusion
In this chapter, we laid out the methodology that we follow to characterize the
relevant issues caused by Battery Saver mode on Android devices. We systemati-
cally collect reported problems and rate them in various dimensions to identify the
issues with the highest impact.

We then provide the results of executing this methodology, a systematic charac-
terization of Battery Saver bugs across various Android APIs. Each identified
issue presents unique challenges and necessitates specific developer interventions
to mitigate the impact on app functionality and user experience. Continuing ad-
vancements in Android’s power management features will require ongoing vigilance
and adaptation from app developers to ensure smooth and reliable app operations,
even under restricted power conditions.

As can be seen in the table, most problems have considerable user impact (rated
major to critical). Diving deeper into the results, we see that 3/13 are classified as
having ‘Minor’ severity, 7/13 as ‘Major’, and 2/13 as ‘Critical’. All ‘Major’-rated
and up issues except one are reported at least three times independently. Four of
these ‘Major’ and up issues, including one rated as ‘Critical’, are additionally not
found in the documentation and are therefore easy to miss for developers.

Additionally, the problems are, on average, independently reported 4.1 times, show-
ing these issues occur in practice and are noticed. Two of the issues have never
been reported but have been documented by Google.

5
Bug Detection

In the previous chapter, we identified 13 problems caused by the Battery Saver
functionality in Android. In this chapter, we turn our attention to solutions. We
design and implement a tool that can automatically detect a subset of the problems
we have identified. The goal is to warn developers during development when they
use an affected API without taking proper precautions.

5.1. Problem Selection
From the characterization in section 4.2, we have the information required to prior-
itize the issues identified. We want to focus on issues where we can make an impact
for developers and users alike. Issue BS11 looks promising: it has high impact, a
potential fix, and is well corroborated. Sorted just by impact, issues BS4 and BS13
rank equally high. However, issue BS4 does not have a feasible detection strategy
because it requires us to know whether apps are expected to run infinitely, while
BS13 has weak corroboration and is only reported once.

Only issue BS11 Animations Do Not Play, has a viable detection strategy and is
strongly corroborated. Additionally, it is not documented well by Google: it is not
mentioned on the developer website for the feature, but only mentioned within the
documentation for specific, non-obvious APIs, such as ValueAnimator.

5.2. Motivating Example
As a motivating example, we look at Wikimedia Commons [122], an Android ap-
plication published by the Wikimedia Foundation. Wikimedia Commons is an
open-source Android application that allows users to upload media to Wikimedia,
which is not just the media repository of Wikipedia but also a separate project that
“seeks to document the world with photos, videos and recordings” [122]. When run
in Battery Saver mode, the application shows a confusing user interface, as shown
in Figure 5.1.

Instead, when Battery Saver is enabled, the developer should provide an alternative
experience, possibly showing but not animating the item.

5.3. Problem Specification
Most animations do not and should not play in Battery Saver Mode on Android
devices. Animations may require complex graphics rendering, which taxes the
Graphics Processing Unit (GPU), and require a high frame rate to be visually
pleasing on modern devices, often 120Hz or even higher. Disabling animations is,
therefore, one of the measures taken by the Battery Saver mode built into Android.

20

5.3. Problem Specification 21

Figure 5.1: Example of an animation bug in the Wikimedia Commons application. Reported
as issue #5710 [11].

In most cases, this poses no significant problem to developers or users. Animation
durations are simply set to zero, so they complete instantly. Instead of animating
smoothly to the final position or size, elements simply ‘jump’ to that state immedi-
ately. While this is less visually pleasing and maybe even slightly confusing because
the user may see elements jump jarringly around their screen, the end state of these
animations remains consistent with what the developer intended.

In some cases, however, this paradigm breaks down. In some Android versions,
disabling animations stops some UI elements from appearing at all. This happens
for some elements that do not have a clear end state: the elements may animate
forever until they are removed from the screen. A common element, and the one
we will focus on, is the progress bar shown in the motivating example. Such a UI
element shows that a longer-running action is occurring and that the user needs
to be patient. An example is provided in Figure 5.1. When run on Android 8.1
and earlier, progress bar elements only draw a static, circular arrow in Battery
Saver mode. This confuses the user because it seems to represent a ‘refresh view’
or ‘restart’ button, both of which commonly use the same glyph. The progress
bar, however, does not respond to taps, so users may repeatedly tap it without
any effect. Indeed, in the Wikimedia Commons application shown in the example,
tapping the ‘reload’ icon does nothing.

To make matters worse, progress bars with a custom graphical interface may not

5.4. Tool Approach 22

be rendered at all, as shown in the SpinKit animation library [124]. Here, the
developers provide a custom interface, which usually starts with an empty view
and then smoothly animates an element into view and out again. With Battery
Saver enabled, the Android animation engine now immediately draws the end state,
which, for this repeating animation, is equal to the start state. This start/end state,
however, is empty. Therefore, a device in Battery Saver mode will simply display
empty space. This is confusing to the end user since the progress is not displayed
anymore. The addition of the progress bar to the UI in the first place directly
shows that the developer thinks the user may not realize they need to wait. The
developer, however, may not be aware that this element never shows for users in
Battery Saver mode. Even the user may not realize that disabling Battery Saver
would fix the issue.

The key element in this bug is the indeterminate nature of these progress bars. Since
they do not represent measurable progress, their animation is their sole source of
utility. Removing this and not replacing it with a useful UI element in its place
removes its meaning entirely. A solution to this problem should detect these cases
of unclear or disappearing UI elements and report them to the developers.

5.4. Tool Approach
Based on the characterization presented in the previous chapter and the motivating
example, we can now design a tool to automatically detect this bug at scale.

We first need to pick whether we will use the static or dynamic flavor of software
testing. The concerns around this choice were already set out in chapter 2.

Given these concerns, we opt for static testing, picking large-scale application and
coverage over maximum accuracy. This is for three main reasons: Firstly, this
being the first study on these bugs, we want a sense of the scale of the problem,
for which static testing is more appropriate. Secondly, the issues seem reasonably
detectable with a static tool since we know the exact API that causes them. Lastly,
the performance of static testing also more easily enables continuous testing as part
of an automatic testing suite.

Looking at related work, we find the work of Li et al. [52] is quite similar in its
purpose. The authors propose a method for detecting API compatibility issues:
issues where developers invoke APIs that are unavailable on the current operating
system version. Similarly to the bug we want to address, the bugs identified in Li et
al. [52] should be addressed by adding a conditional statement, as shown in line 4 in
Listing 5.1. This statement checks that the Android version of the device executing
this code is new enough, in this case, equal to or newer than version Marshmallow,
released in 2015. The API ContextCompat.getColor(context, colorResId) was
only added in Android Marshmallow and invoking it on an older version causes a
crash. On older versions, an older fallback method is invoked.

Listing 5.1: Example of an addressed API compatibility issue
1 public static int getColor(Context context , int colorResId) {
2 // Check if the Android version is Marshmallow
3 // (API level 23) or higher
4 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
5 // Use the ContextCompat.getColor method introduced
6 // in API level 23
7 return ContextCompat.getColor(context , colorResId);
8 } else {
9 // Use the older method for API levels below 23

10 return context.getResources().getColor(colorResId);
11 }
12 }

The work by Li et al. [52] is not only similar but also quite influential, being cited

5.5. Challenges 23

142 times at the time of writing. It builds upon the ideas of Li et al. [53], which
won the FOSS Impact Paper Award at MSR 2018 [51].

Li et al. do not address any Battery Saver issues identified in this work. Moreover,
their tool CiD is not suitable for finding issue BS11 Animations Do Not Play that
we want to address due to the limitations we present in section 5.7. However, due
to its relevant focus on conditional statements in building the call graph and the
quality of the work, we decide to use their CiD tool as a foundation and modify
and expand it to find Battery Saver animation issues.

5.5. Challenges
A main challenge bug detection is accuracy. Related to Android in particular, chal-
lenges include Android apps containing multiple entry points, complicated lifecycles
that are component-specific, dynamic user events, inter-component communication,
and third-party libraries [54]. For problem BS11 in particular, a challenge lies in
separating problematic uses of ProgressBar from innocuous cases.

We can partly quantify these accuracy challenges and safeguard against them with
manual effort. To avoid false positives, we can manually inspect the bugs identified
by the tool and verify their veracity. To avoid false negatives, we test our tool on
known faulty applications.

5.6. Technical Analysis
Having established that the source of the bug is the disablement of animations and
its effects on the progress bar, we can now analyze the details of this bug to drive
us toward a potential solution.

As shown in the previous section, we are interested in detecting indeterminate
progress bars. Our first requirement, therefore, is detecting these elements. Since
these appear problematically in Battery Saver mode, we need to know whether the
app is checking if this mode is enabled. If the application only shows a ProgressBar
when the device is not in Battery Saver mode, the app will not exhibit this bug.

There exists an API for checking whether the device is currently in Battery Saver
Mode: PowerManager.isPowerSaveMode(). While this allows us to express the
idea in the previous paragraph, we should be even more precise: while on Google
Pixel devices, this mode disables animations, devices from different third-party
manufacturers may or may not do so. Luckily, all manufacturers should report on
the animation status engine specifically using the ValueAnimator.areAnimatorsEnabled()
API. Furthermore, on many devices it is possible to disable animations separately
using ‘Developer mode’ settings. Applications should therefore use the specific
ValueAnimator.areAnimatorsEnabled() API instead of the high-level isPower-
SaveMode() check.

A naive implementation could, therefore, reason as follows:

If an indeterminate ProgressBar is initialized and its parent statement
is not a condition on areAnimatorsEnabled(), report potential bug

However, there is a problem with this approach. There are multiple ways for
developers to ‘protect’ their progress bars in Battery Saver Mode. Instead of a
direct call to areAnimatorsEnabled(), they may also call a method that returns
the value of areAnimatorsEnabled(). Obviously, a wide variety of these scenarios
is possible: the app may, for example, implement a subtype of ProgressBar, or
call a closure that calls areAnimatorsEnabled(), et cetera.

This shows that we need two properties: path-sensitivity, i.e., we need to know
which conditions were true when the progress bar is initialized or modified, and
interprocedurality, i.e., we must be able to transcend method boundaries with our

5.7. Required Modifications to CiD 24

Figure 5.2: Example of a Java program and its corresponding control flow graph [8]

analysis to handle cases where the check is called in a different method and its
value returned.

The tool needs to find calls to create an indeterminate ProgressBar that are not,
somewhere up the control flow chain, protected by an appropriate check. This
expression naturally leads to the idea of a control flow graph, in which we represent
statements and control flow structures such as methods, conditional statements,
and exception handling in a directed graph. An example of a Java program and
its control flow graph are shown in Figure 5.2. Every statement is represented
as a node in the graph, the edges show the possible control flow paths from one
statement to the next.

More specifically, we can view the application as a graph with multiple roots, where
each root represents an entry point. Instead of the familiar Java main(String[]
args) method, Android applications can be launched in multiple ways. These entry
points are defined by the Android framework and called by the operating system
at the appropriate time.

For any potentially problematic statement, we can use the graph to find its prede-
cessor statements by following the arrows in reverse. These statements can then
be analyzed to determine if they contain checks protecting against the bug.

5.7. Required Modifications to CiD
In this section, we highlight two key static analysis problems the tool should handle,
distinguishing invocations and distinguishing arguments.

5.7.1. Distinguishing Invocations
A problem in the CiD algorithm we discovered during testing is its context-insensitivity.
That is, we cannot distinguish multiple invocations of the same method. This leads
to unexpected and erroneous behavior, as can be seen in the (contrived) example
in Listing 5.2.

Listing 5.2: Example of repeated invocation
1 // No bug (properly protected)
2 if (!ValueAnimator.areAnimatorsEnabled()) {
3 progressBar.setIndeterminate(true)
4 }
5

6 ...

5.8. Architecture 25

7 // Bug (unprotected)
8 if (progressBar != null) {
9 progressBar.setIndeterminate(true)

10 }

In Listing 5.2, the setIndeterminate method is invoked twice. The comments
indicate the status of these invocations: the first is properly protected, whereas
the second is not. While the second invocation is wrapped by an if-statement,
the condition of the if-statement does not check the system-level animation set-
ting. However, the CiD algorithm would erroneously mark the second unprotected
invocation as protected.

Since CiD is context-insensitive, method invocations are not separately modeled.
CiD is only sensitive to method signatures. Therefore, two invocations with the
same setIndeterminate signature cannot be distinguished. Having multiple in-
vocations of this method is a common occurrence, for example, in the real-world
example from the well-known video player application VLC shown in Listing 5.3.12

Listing 5.3: Repeated invocations in the VLC application
1 if (scanProgress.inDiscovery && !scanProgressBar?.isIndeterminate) {
2 scanProgressBar?.isVisible = false
3 scanProgressBar?.isIndeterminate = true
4 scanProgressBar?.isVisible = true
5 }
6

7 if (!scanProgress.inDiscovery && scanProgressBar?.isIndeterminate) {
8 scanProgressBar?.isVisible = false
9 scanProgressBar?.isIndeterminate = false

10 scanProgressBar?.isVisible = true
11 }

Clearly, these two invocations are independent, and one can be protected while the
other is unprotected. We should, therefore, model them separately.

5.7.2. Distinguishing Arguments
We are only interested in invocations of setIndeterminate() passing the argu-
ment false. If true is passed, we create a determinate ProgressBar, which does
not exhibit the problem. CiD does not model or store arguments, therefore prevent-
ing distinguishing problematic and benign invocations of the setIndeterminate()
method.

To address this problem, we need to include information about the arguments to
method invocations in the graph to be able to filter out benign cases during further
processing.

5.8. Architecture
In this subsection, we describe the architecture of the tool. We adapt the algorithm
of CiD to our purpose of finding issue BS11. We update the list of Android sup-
port libraries that are excluded from analysis to reduce false positives and increase
performance. To refine our static analysis and address the issues described above,
we introduce modifications to CiD that allow for making a distinction between dif-
ferent method invocations and retaining information about invocation arguments.

1An attentive reader may notice that instead of a setIndeterminate method, an
isIndeterminate method is invoked here. This is an example of a synthetic property in Kotlin.
The two variants, set- and is-, are semantically identical. See https://kotlinlang.org/docs/
java-interop.html

2Retrieved from https://code.videolan.org/videolan/vlc-android/-/blob/
2176328541cb020a04ada3a19b3e177a4ff3c080/application/vlc-android/src/org/videolan/
vlc/gui/AudioPlayerContainerActivity.kt

https://kotlinlang.org/docs/java-interop.html
https://kotlinlang.org/docs/java-interop.html
https://code.videolan.org/videolan/vlc-android/-/blob/2176328541cb020a04ada3a19b3e177a4ff3c080/application/vlc-android/src/org/videolan/vlc/gui/AudioPlayerContainerActivity.kt
https://code.videolan.org/videolan/vlc-android/-/blob/2176328541cb020a04ada3a19b3e177a4ff3c080/application/vlc-android/src/org/videolan/vlc/gui/AudioPlayerContainerActivity.kt
https://code.videolan.org/videolan/vlc-android/-/blob/2176328541cb020a04ada3a19b3e177a4ff3c080/application/vlc-android/src/org/videolan/vlc/gui/AudioPlayerContainerActivity.kt

5.8. Architecture 26

Figure 5.3: Example of a Conditional Call Graph (CCG) from Li et al. [52]

We do not describe the parts of CiD that are irrelevant to our purpose, such as
API usage extraction and API lifetime modeling. These features are tied to the
specific and separate problem of compatibility issue detection.

5.8.1. Main Components
The tool contains three main components: the Conditional Call Graph, Trans-
former and Traverser. In short, Transformer finds relevant classes in the applica-
tion to analyze for problems. Traverser runs on every class found by Transformer
to find invocations of the API we are interested in and returns their call stacks.
Traverser also modifies the global CCG.

Conditional Call Graph
A Conditional Call Graph CCG is a call-graph with each edge representing a
method invocation. Compared to a control-flow graph, it is less expressive, as it
only shows method invocations instead of the full range of control-flow possibilities.
However, the call-graph representation is enough for our tool.

An example of a CCG is given in Figure 5.3 The conditional nature of this graph
means that edges are labeled by the conditions under which they can be taken.
These conditions may also be the empty set, indicating that the edge can always
be taken. This is a translation of the concept of a conditional statement in Java,
such as an if-statement, to a call-graph representation of a program.

We modify CiD’s algorithm and conditional call graph to include richer edges, as
explained in subsection 5.8.2.

In the following subsections, we explain the responsibilities of the main Trans-
former and Traverser components of the tool and explain the main loop of the
tool execution.

Transformer
1. Find all the classes in the project, also in separate dynamically loaded libraries

in .dex files. These libraries may be loaded at runtime, so we need to analyze
them too.

2. Filter out library classes starting with prefixes android.support, androidx,
com.google.android, and kotlinx. CiD only excludes the first of these,
however, we found that this causes false positives and we need a broader set
of excluded prefixes

3. Call Traverser on every method in every class.

Traverser
1. Construct a Soot graph for every method body.

5.8. Architecture 27

2. Traverse this body consisting of Soot Units, which loosely represent Java
statements.

(a) Finding assignment statement: Ignore and continue loop, as variable
resolution is not supported.

(b) Finding if-statement: Check if it checks areAnimatorsEnabled(), re-
cur on its body, passing animator status to ensure that conditions earlier
in the control-flow graph affect the later nodes.

(c) Finding method invocation: Add Edge with the conditions and call site
to the CCG. If the method is a defined in an interface and not pri-
vate, add edges to all classes implementing it. Otherwise, it cannot be
extended, so we do not need to find its extending classes as there are
none.

(d) Finding return statement: Continue loop, this path has been fully ex-
plored.

Main Loop
1. Set up an empty, global CCG.
2. For each API of interest, obtain every invocation and the call stacks for them

using Transformer.
3. Filter the returned call stacks on the developer prefix to ensure the invocation

is not from a third-party library.
4. Check whether any call up the call stack checks whether animators are en-

abled.

(a) If not, the invocation is not protected, report BUG.

5.8.2. Modifications to the Edge Representation
To address the problems identified in section 5.7, we make the following modifica-
tions to CiD’s edge:

1. The Edge class has been modified to include the call site and arguments along
with the existing elements.

2. During program traversal, the call site and arguments are now captured,
enhancing the granularity of our analysis.

To accommodate these changes, the structure of the Edge class used in the CiD
algorithm was significantly altered, as shown in Listing 5.4 and Listing 5.5.

Listing 5.4: CiD Edge
1 class Edge(source: String, target: String, condition: Set<String >) {...}

Listing 5.5: Our enriched Edge
1 class Edge(source: Invocation , target: String) {...}
2

3 class Invocation(sig: String, callSite: CallSite , conditions: Set<String>,
arguments: List<Value >) {...}

4

5 class CallSite(className: String, lineNr: Int) {...}

In the original CiD model, shown in Listing 5.4, edges consist of a source method
signature, a target method signature, and a set of conditions. Our modified version,
shown in Listing 5.5, introduces an Invocation class that includes the method
signature, call site, and arguments, providing a more detailed and context-sensitive
analysis. The CallSite class captures the class name and line number, facilitating
precise and unique identification of the invocation context.

5.8. Architecture 28

These changes allow the tool to capture significantly more information which is
required for accurately finding issue BS11 we are interested in. In the next chapter,
we evaluate the tool’s performance and the usefulness of the bugs it identifies in
open-source applications.

6
Tool Evaluation

This chapter provides a detailed evaluation of the diagnostic tool developed to
identify and report energy inefficiencies in Android applications. The assessment
focuses on the prevalence and nature of energy bugs within a curated set of open-
source Android applications from the F-Droid repository that are also available on
Google Play. The presence on Google Play suggests that these applications are
more likely to be maintained actively since Google periodically prunes outdated
applications, thus enhancing the relevance and impact of the evaluation. The avail-
ability on F-Droid ensures we can access the source code of the application, which
is not required for executing the tool but aids bug reproduction and reporting.

6.1. Tool Evaluation Research Questions
The evaluation of the tool is structured around several research questions:

RQ1. How prevalent are Battery Saver animation bugs in open-source
Android apps? We write a script to automatically flag potentially prob-
lematic API calls in more than 1400 publicly available apps and attempt
reproduction for each call to get a ground-truth measure for the prevalence
of these bugs.

RQ2. How effective is the diagnostic tool in identifying these bugs? We
execute our diagnostic tool on the set of flagged applications, reproducing
every positive. We then compare the results to the ground-truth labeled set
to determine false positive and false negative rates.

RQ3. How efficient is the diagnostic tool in identifying these bugs? We
evaluate the runtime of the tool to assess its practical feasibility.

RQ4. Is the output of the diagnostic tool useful for verifying and address-
ing these bugs? We conduct a live study by reporting the positives found
by our tool as bug reports to the developers of the open-source applications
under study.

6.2. Tool Evaluation Methodology
We divide the evaluation of the tool into five steps. We first select applications
from F-Droid and Google Play. We then filter the applications on the API call of
interest. After filtering, we determine the ground truth for each call by manually
reproducing the bug. We set up the tool to run on every application with at least
one reproduced bug. Using the ground truth we determined, we can find the false
negative and false positive rate of the tool. Lastly, we report all reproduced issues
to developers and track their responses to help developers address these issues

29

6.3. Selection of Applications 30

Applications

Suspicious calls

Buggy applications

Bug reports

Manual
reproduction

Application
Selection

Google Play F-Droid

Filter on
problematic API

Determine Ground
Truth

Run Tool

Report to
Developers

Figure 6.1: Overview of evaluation methodology

and determine the real-world usefulness of the tool. We show an overview of this
evaluation methodology in Figure 6.1. The following sections describe each step in
more detail.

6.3. Selection of Applications
Applications for this evaluation are automatically selected based on their avail-
ability on both F-Droid and Google Play. This condition is introduced to ensure
real-world relevance and active maintenance. Their availability on F-Droid also
ensures that source code is available, since this is a requirement to be listed on
this repository. The availability of source code greatly aids our analysis of the
applications. For every app in the F-Droid index, we attempt to find its unique
identifier in the Google Play Store. In total, 1472 applications meet this criterion.

6.4. Application Filtering
We develop a script1 to determine which applications invoke the method we have
previously linked to the bug we are interested in. The script simply analyzes a
compiled Android app and prints any calls of the signature we are interested in. It
does not know the context of this call, whether this call is part of the application
code or of a third-party library, or whether the call is protected by a preceding
conditional statement in the control-flow graph. It is, therefore, a rough indication
of which apps to inspect further, not an accurate diagnostic tool. It, by design,
suffers from a high false-positive rate but, crucially, a low false-negative rate. If
an application does not invoke this method, we define it to be out of scope for our
analysis.

1This ‘script’ is actually a simple static analyzer built using the Soot framework. However, for
the purpose of disambiguating it from our diagnostic tool, which is also a Soot static analyzer,
albeit a more sophisticated one, we will refer to it as a ‘script’ here.

6.5. Ground Truth Determination 31

For the filtered applications, we collect the following metrics: number of commits,
number of stars on the repository, and download count on Google Play. This data
can provide insights into the apps’ maintenance status and popularity.

6.5. Ground Truth Determination
For each flagged app in the set produced by the filtering process, we attempt
to reproduce the issue. To this end, we load the application onto an emulated
Pixel 7 device running Android 8.1 Oreo. We use the output of the filtering script
to determine which parts of the application to pay particular attention to. For
example, if the source code calls the problematic API in a DownloadManager class,
we attempt to navigate to functionalities that relate to downloading data. In
a mapping app, this could include tapping a menu item reading “Manage Map
Downloads”.

For each problematic API call, we record whether we were able to find it during app
exploration and, if so, whether we could reproduce the problem. If we manage to
reproduce the issue, we record a screen recording or screenshot for documentation
purposes.

Naturally, not all applications can be run to perform this exploration. Some apps
may crash at startup, require login to an accessible service, or even fail to install
onto the emulated device. We also record such instances and the reason for our
failure to explore them and reproduce the bugs. We exclude them from further
analysis since we do not know their ground truth.

6.6. Experimental Setup
The experimental setup involves running the diagnostic tool on each of the filtered
applications and recording the output. We document the versions of the applica-
tions, the configuration of the tool and the computing environment specifications
to ensure the reproducibility of the results. We monitor for any instances where
the tool times out or crashes to subsequently analyze the potential cause of these
problems.

We execute the tool on an Apple MacBook Pro with an octa-core M1 Pro processor
and 16 GB of RAM running MacOS 14.5 and Java 1.8.

6.7. Reporting Issues
We report all non-false positives to the developers of the applications under test.
This means we report confirmed true positives (where we could reproduce the
issue) and unconfirmed positives (where we did not manage to reproduce the issue).
However, we exclude confirmed false positives: cases where the tool returns a
positive, but we assert this is incorrect.

We choose to also report non-confirmed positives because we believe that even if
we are not able to run the application or find the required functionality in it, the
developers might well be, by virtue of their intimate knowledge of the application
and its structure.

We report the bugs in the standard format to all repositories, except if the repos-
itory specifies its own required style. If possible, we provide screen recordings or
screenshots. We engage with the developers to provide clarification or provide
additional information where required.

We track the following statuses for the issue reports:

• Pending
• Developer accepted

6.7. Reporting Issues 32

• Developer marked as ‘not a bug’
• Developer plans not to address
• Developer needs more information
• Developer fixed issue

7
Tool Results

7.1. RQ1: Prevalence of Battery Saver Animation
Bugs

To determine the prevalence of Battery Saver animation bugs, we analyze a total
of 1,472 applications. We test each using our diagnostic tool, and manually verify
the results to ensure accuracy.

Out of the 1,472 applications analyzed, 65 apps invoke the setIndeterminate
method we are interested in, for a total of 178 invocations. These apps have
been downloaded more than 121 million times collectively on Google Play, have an
average of 1,251 stars on their code repository, and an average of 5,865 commits.

We attempt to manually trigger every setIndeterminate invocation to determine
whether it leads to a bug in the host application. Out of 178 invocations, we are
able to reproduce 41 instances of the bug. We find 59 invocations that do not cause
bugs, the large majority of them simply passing false as an argument, therefore
creating a determinate progress bar that does not exhibit the issue we are looking
for. We exclude 78 instances where we were not able to determine whether a bug
occurs. The most common reasons for this are not finding the element in the app,
not being able to launch the app, or not being able to get past a setup phase, such
as a sign-in screen.

These data suggest that reproducible Battery Saver animation bugs occur in 2.6%
of applications, highlighting the need for effective diagnostic tools to identify and
address these issues.

7.2. RQ2: Effectiveness of Diagnostic Tool
The effectiveness of the diagnostic tool was measured by its ability to detect ani-
mation bugs in the applications tested. The tool detected 45 potential bugs across
the 65 previously flagged applications.

The identified bugs were verified through manual reproduction. Table 7.1 and
Table 7.2 present the relevant metrics.

Metric Score
Precision 0.911
Recall 0.911
F1 Score 0.911

Table 7.1: Accuracy Metrics

33

7.3. RQ3: Efficiency of Diagnostic Tool 34

Actual Positive Actual Negative
Predicted Positive True Positives = 41 False Positives = 4
Predicted Negative False Negatives = 4 True Negatives = 35

Table 7.2: Confusion Matrix for Diagnostic Tool

The diagnostic tool demonstrated a high level of accuracy with both precision and
recall at 0.911. The F1-Score, defined as the harmonic mean of precision and
recall, is also 0.911. This confirms the tool’s accuracy in identifying Battery Saver
animation bugs.

7.2.1. Error Analysis
We note eight errors in total: four false positives (Type I errors) and four false
negatives (Type II errors).

7.2.2. False Positives
Analyzing the false positives, which occur in OSMDashboard, Libre BusTO, WiGLE
Wireless Wardriving, and Seadroid [70, 55, 121, 44], we find that three out of four
false positives are caused by the animated element being set to be hidden or invisi-
ble directly after creation. A further false positive is caused by the setIndetermi-
nate method being called from a Runnable construct. As found in the systematic
characterization in section 4.2, this construct may prevent the bug from occurring
in some configurations, but we choose to flag it because we cannot consistently
reproduce its protective effect.

7.2.3. False Negatives
Analyzing false negatives, we find two types of tool shortcomings.

Two out of four false negatives are caused by a mismatch between the appli-
cation ID defined on the Google Play Store and within the application. Each
application submitted to Google Play must contain a globally unique applica-
tion ID. To prevent false positives due to third-party libraries and frameworks,
our tool filters classes to be analyzed based on the unique application ID de-
fined by the developer. It assumes that code with a different application ID
is from a third party. The application ID has a reverse-DNS notation such as
com.exampledeveloper.exampleapplication. Our tool only analyzes class names
that start with this identifier to ensure that it only analyzes the application code
and no third-party frameworks or libraries. This filtering is not perfect, however,
since developers sometimes change the application ID of the overarching application
without changing the application code to match it.

For example, the developers of the In The Poche application intially used the appli-
cation ID fr.gaulupeau.apps.Poche. However, the app is listed under the differ-
ent ID fr.gaulupeau.apps.InThePoche in the Google Play Store. When filtering
classes, the tool erroneously treats the classes under fr.gaulupeau.apps.Poche
as being non-application code and excludes them from analysis.

A further two errors are caused by setIndeterminate method invocations from
within an enumeration construct. The traversal implementation does not currently
support enumeration constructs.

7.3. RQ3: Efficiency of Diagnostic Tool
To evaluate the efficiency of the diagnostic tool, we measured the time taken to
run the tool on each application. The average time taken per application was 51.6
seconds. In total, running on 65 suspected buggy applications took 56 minutes
and 45 seconds. The tool ran out of available memory on a single application and

7.4. RQ4: Usefulness of Diagnostic Tool 35

successfully executed on all others.

These data show that executing this tool is feasible both for mass-testing pub-
licly available applications and for common use during development or continuous
integration (CI) pipelines.

7.4. RQ4: Usefulness of Diagnostic Tool
While accuracy numbers are useful, they do not tell the whole story for a bug
detection tool. While a tool may be accurate at identifying bugs, developers may
not find the bug reports useful. This can be due to a variety of factors. For
example, the bugs themselves may not have enough user impact to warrant fixing.
Conversely, the bug may be disastrous, but the bug report might be too unclear to
be helpful in addressing it. Therefore, it is valuable to not just assess the accuracy
but also the usefulness of the tool.

The usefulness of the diagnostic tool was assessed by reporting the identified issues
to developers using the anonymous GitHub username graciouselectric, which we
randomly generated. Developer feedback and subsequent actions taken by develop-
ers were recorded and categorized. We reported 39 of the 41 reproducible identified
bugs. Two bugs could not be reported due to non-public issue trackers. We record
the developer responses in Table 7.3.

Developer Response Count
Pending 29
Accepted 9
- Fixed 2
Will Not Fix 2
Total Reported 39

Table 7.3: Summary of Developer Responses

This feedback indicates that the diagnostic tool is considered useful by the developer
community, as a significant number of identified issues were acknowledged, and the
first issues have already been addressed.

The addressed issues are represented in Table 7.4. The developers report “Thanks
for reporting the issue and suggesting the fix!” and “Hi, thank you for this issue.
[...] So I corrected this. When the phone is in batery [sic] saving mode the loaders
are not displayed anymore. Instead a static label is displayed in the left lower corner
of the screen.”

Application Name Issue Tracker Entry

Unofficial Golem.de Reader https://github.com/eknoes/
golem-android-reader/issues/50

Planes Android https://github.com/xxxcucus/planes/issues/
48

Table 7.4: Fixed Issues

Some developers have confirmed the bug but have not addressed it. These ‘ac-
cepted’ issues are shown in Table 7.5. All of these have received comments from
developers acknowledging the bug(s). A developer for the Wikimedia Commons
project responded by saying “Are we sure this is specific to API levels < 28? I
remember seeing this reload icon even on an Android 12 device. I don’t have that
device now to confirm if it still happens, but it would be good to validate for all the
cases”. The developer of the Fruit Radar application responded by saying “Thank
you very much for reporting this! I do not have time at the moment to work on
it but you are very welcome to provide a pull request!”. The maintainer of PinPoi

https://github.com/eknoes/golem-android-reader/issues/50
https://github.com/eknoes/golem-android-reader/issues/50
https://github.com/xxxcucus/planes/issues/48
https://github.com/xxxcucus/planes/issues/48

7.4. RQ4: Usefulness of Diagnostic Tool 36

Application Name Issue Tracker Entry

Unofficial Golem.de Reader https://github.com/eknoes/
golem-android-reader/issues/50

Planes Android https://github.com/xxxcucus/planes/issues/
48

Wikimedia Commons https://github.com/commons-app/
apps-android-commons/issues/5710

Mensa https://github.com/famoser/Mensa/issues/
43

Fruit Radar https://github.com/niccokunzmann/
mundraub-android/issues/329

PinPoi https://github.com/fvasco/pinpoi/issues/
42

OSM Dashboard https://github.com/OpenTracksApp/
OSMDashboard/issues/369

Table 7.5: Accepted Issues

commented “Thank you @graciouselectric, I agree with you, this graphic behavior
should be improved. I cannot provide an ETA, yet, however PR is welcome.”. The
developer of OSM Dashboard for OpenTracks replied “Thanks for reporting. I’ve
never experienced it, so far. Replacing the progress bar with a text in case of
disabled animations feels a bit awkward, but I’ll think about it.”

Negative developer feedback, shown in Table 7.6, consists of the feedback on a
single issue reporting two instances of the bug to the developers of the aTalk instant
messaging application. The developers eventually report that they do not intend to
address the bug, mentioning “This is android OS 8.1 battery saver implementation
problem. You can raise the issue with the android development team for further
advice. aTalk will not attempt to resolve this type of problem.”

Application Name Issue Tracker Entry

aTalk https://github.com/cmeng-git/
atalk-android/issues/215

Table 7.6: “Will Not Fix” Issues

https://github.com/eknoes/golem-android-reader/issues/50
https://github.com/eknoes/golem-android-reader/issues/50
https://github.com/xxxcucus/planes/issues/48
https://github.com/xxxcucus/planes/issues/48
https://github.com/commons-app/apps-android-commons/issues/5710
https://github.com/commons-app/apps-android-commons/issues/5710
https://github.com/famoser/Mensa/issues/43
https://github.com/famoser/Mensa/issues/43
https://github.com/niccokunzmann/mundraub-android/issues/329
https://github.com/niccokunzmann/mundraub-android/issues/329
https://github.com/fvasco/pinpoi/issues/42
https://github.com/fvasco/pinpoi/issues/42
https://github.com/OpenTracksApp/OSMDashboard/issues/369
https://github.com/OpenTracksApp/OSMDashboard/issues/369
https://github.com/cmeng-git/atalk-android/issues/215
https://github.com/cmeng-git/atalk-android/issues/215

8
Discussion

8.1. Discussion
In this section, we present the implications of our research and discuss limitations
and future work.

8.1.1. Implications
• Developer Assumptions - Many developers assume that the operating sys-

tem will handle most energy-saving mechanisms, leading to a false sense of
security. This assumption needs to be challenged, and developers should
be encouraged to implement explicit checks within their applications. More
automated tools for detecting and fixing these bugs would help the devel-
oper community address them. Furthermore, both Google and the research
community can play a role in educating developers on the potential bugs
introduced by system features like Battery Saver.

• Fragmentation and OEM Customizations - The diversity of Android de-
vices and manufacturer-specific customizations further complicate the issues
identified in this work. Android fragmentation is a well-known phenomenon
that has been related to several other problem, such as malware detection
issues [69] and vendor-specific bugs that are hard to address [45]. Apps
that function well on AOSP may encounter problems on modified versions of
Android. Manufacturers are sometimes aggressive in limiting energy use to
the detriment of user experience. This fragmentation necessitates more ro-
bust and adaptable development practices. Furthermore, these manufacturer-
specific ‘optimizations’ are often undocumented.

• Legacy Support and API Evolution - Older versions of Android and their
APIs may not be well-supported, making it difficult for developers to address
Battery Saver bugs across all versions. This highlights the need for tools and
practices that can handle legacy systems and evolving APIs efficiently. An
overview of the work on evolving Android APIs is provided by Liu et al. [59].

• Infrequent Use Cases and Limited Testing - Many Battery Saver bugs
only manifest in specific use cases, such as background services or location
tracking, which may not be frequently tested. This underscores the impor-
tance of comprehensive testing strategies that cover a wide range of scenarios.
Developers need to be aware that a modern operating system has many non-
default settings that significantly affect the application runtime.

• Tool Limitations and Manual Effort - While diagnostic tools can help
identify many issues, they are not foolproof and often require manual veri-
fication. Developers need to be prepared for the additional effort required

37

8.1. Discussion 38

to confirm and address these bugs. Additionally, Android Studio does not
provide warnings on any of the issues identified, as opposed to previous work
like CiD [52], where Android Studio already warns on the use of unsupported
APIs and even suggests a fix inline.

• Future Tool Development - The insights from this research can inform the
development of more sophisticated tools that not only detect but also help
fix Battery Saver-related issues. The characterization provided in this work,
along with the positive reactions from developers, suggest room for future
tooling development on issues not addressed in this work.

Developer Interest
In general, while developers are concerned about these energy-saving functionalities,
as evidenced by numerous questions on Stack Overflow and talks at conferences,
we do not see this concern reflected much in real-world code.

Several factors contribute to this lack of interest:

• Misalignment with user expectations - Users generally expect their ap-
plications to function seamlessly without being aware of underlying energy-
saving mechanisms.

• Complexity and learning curve - Implementing and testing for Battery
Saver compatibility adds complexity and requires significant learning effort.

• Time and resources required - Developers often face constraints on time
and resources, making it challenging to prioritize Battery Saver issues.

• Platform fragmentation - The diversity of Android devices and versions
increases the difficulty of ensuring correct behavior across all devices.

• System handling - Developers may assume that the system handles most
energy-saving aspects, leading to a false sense of security.

• Support for older Android versions - Older APIs may not be well sup-
ported, and migrating to newer APIs can be difficult.

• Infrequent use cases - Some bugs appear infrequently, affecting only spe-
cific use cases such as location tracking or background fitness apps.

• Limited developer education - There may be a general lack of awareness
and understanding of Battery Saver features among developers.

Additionally, tools developed years ago may not run on modern systems, further
complicating efforts to address these issues.

8.1.2. Limitations
To contextualize this work’s outcomes, we confront the limitations inherent in the
proposed approach, grouping them by category.

Characterization
1. Limited reach - Our study focuses on Android AOSP only, excluding vari-

ants like Samsung, Xiaomi, and others. This limitation increases the gener-
alizability of our findings. However, manufacturer-specific bugs may not be
included in the results of this study, reducing completeness.

2. Incomplete Keywords - The identified keywords for finding problematic
APIs may be incomplete. We addressed this by collecting keywords from di-
verse sources, including Android documentation and GitHub issues, to create
a more comprehensive set.

3. Impact Assessment - The scale on which the impact of bugs was assessed
is open to debate. We based the scale on the impact scale used at Atlassian.
Impact assessment of software bugs is not standardized within the software

8.1. Discussion 39

industry. To mitigate this, we present the data informing the impact score
so the reader may apply their own impact scoring system.

Tool Evaluation
1. Insufficient Representativeness of Selected Apps - The selected apps

may not fully represent the diversity of the Android app ecosystem because
We only select open-source applications. To mitigate this, we ensure the
selected applications are also available on Google Play.

2. Manual Inspection - The potential inaccuracy from manual inspection is a
concern. To address this, the author discussed unclear cases with colleagues
to reach a consensus.

3. Issue Reproduction - Reproducing issues may introduce errors if there
is an unclear link between the application user interface and the relevant
code. It may seem that a certain misbehaving element is caused by a line
of code. However, to be sure, we would need to attach a debugger, which is
complicated for the pre-built Android Package (APK) files the tool ingests.
To mitigate this, we are conservative with the reproduction status and only
label an issue as reproduced if we see a clear link between the code and the
misbehaving element on screen.

Tool Accuracy
1. Variable resolution - The diagnostic tool does not resolve variables. There-

fore, it does not support assigning the result of a check to a variable, nor does
it detect problematic calls in closures assigned to variables. Listing 8.1 shows
a code example demonstrating the former. While this is a valid way of pro-
tecting the setIndeterminate call, our tool would raise a false positive here
because it does not consider the safe variable as representing the status of
the areAnimatorsEnabled() check.

Listing 8.1: Assigning the check to a variable
1

2 boolean safe = ValueAnimator.areAnimatorsEnabled();
3

4 if (safe) {
5 // Would be flagged by our tool as unprotected
6 progressBar.setIndeterminate(true)
7 }

2. Enumeration support - The diagnostic tool does not handle invocations
from within enumeration constructs.

3. Declarative layout files - The diagnostic tool does not parse and analyze
XML layout or Jetpack Compose files, which are a common way of specifying
the user interface for an Android application.

4. Other Progress Bar APIs - The diagnostic tool solely identifies problems
with the android.widget.ProgressBar API. There are other APIs for cre-
ating animating (progress) elements, but since bugs surrounding these were
not found during the characterization process, we do not address these APIs
here.

8.1.3. Future Directions and Recommendations
Future work can explore several areas:

• Improving Test Oracles - Developing test oracles for Battery Saver bugs
remains challenging and requires expert knowledge. Several issues identified
in this work can not currently be detected automatically due to a lack of
oracles. Further research could focus on improving this process, for example,
by applying machine learning to create accurate oracles.

8.1. Discussion 40

• Addressing Fragmentation - Future work should consider manufacturer-
dependent Battery Saver bugs, as apps that work on AOSP may not function
properly on customized Android versions [31]. A challenge in this regard is
the lack of documentation and the diversity of OEM approaches to battery-
saving techniques. While AOSP source code is available for reference [35],
the OEM modifications to it are usually not. These manufacturer-dependent
Battery Saver issues are often hard to diagnose and address.

• Improving Accuracy and Sensitivities - Enhance the precision of the
diagnostic tools to reduce false positives and false negatives. This can involve
refining the static analysis algorithms to include more sensitivities.

• Guided Exploration - Guided exploration tools could be applied to help
reproduce issues identified by our diagnostic tool. Furthermore, it could be
used to corroborate rarely reported issues.

• Automating Fixes for Common Issues - Future research could focus on
automating the remediation of detected Battery Saver issues. Integrating
automated refactoring tools that apply known fixes to common problems
could save developers significant time and effort.

9
Conclusion

This study provides a systematic characterization of Battery Saver bugs across var-
ious Android APIs. Each identified issue presents unique challenges and requires
specific developer interventions to mitigate impacts on app functionality and user
experience. As Android’s power management features continue to evolve, ongo-
ing adaptation from application developers will be essential to ensure smooth and
reliable app operations under restricted power conditions.

This work provides a comprehensive examination of the challenges posed by Bat-
tery Saver mode on Android devices, particularly focusing on its impact on various
APIs and the resultant bugs that can significantly affect user experience and app
functionality. Through systematic characterization, we identify and analyze 13 dis-
tinct issue types, highlighting their severity, frequency, and the potential difficulties
developers face in mitigating these problems.

One of the primary findings is that Battery Saver mode introduces a variety of
bugs that are often not well-documented, making them difficult for developers to
anticipate and address. Our research identified 13 distinct issue types, with the
majority classified as having major to critical impact on app performance. This
underlines the importance of developers being vigilant and proactive in testing their
applications under different power-saving conditions.

The development and evaluation of a diagnostic tool to detect one of these char-
acterized issues, specifically related to animations disabled in Battery Saver mode,
showcases the practical application of our findings. We automatically analyze 1,472
open-source Android applications and identify 45 separate issues across 40 applica-
tions. The tool demonstrates a high level of precision and recall, both at 0.911, and
successfully identifies nine bugs that were confirmed by developers. Two of these
bugs have already been addressed. This not only validates the tool’s effectiveness
but also emphasizes the usefulness of the diagnostic tool in the development life
cycle.

Future work should focus on expanding the capabilities of this diagnostic tool to
cover more of the identified issues. Additionally, further research into improving
test oracles and addressing fragmentation caused by manufacturer-specific modifi-
cations to Android could provide deeper insights and more robust solutions. The
continued evolution of Android’s power management features necessitates ongoing
adaptation and vigilance from the developer community to ensure a reliable user
experience.

In conclusion, this thesis has laid the groundwork for better understanding and
mitigating the impacts of Battery Saver mode on Android applications. Developers

41

42

cannot assume that their apps will work well in this mode and must test it carefully.
Both developer education and up-to-date tooling is required for identifying and
addressing these bugs. By providing both a detailed characterization of the issues
and a practical tool for their detection, we hope to contribute to more resilient
and user-friendly app experiences in the face of increasingly sophisticated power
management systems.

References

[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. “System-
atic execution of android test suites in adverse conditions”. In: Proceedings
of the 2015 International Symposium on Software Testing and Analysis. 2015,
pp. 83–93.

[2] Steven Arzt et al. “Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps”. In: ACM sigplan notices
49.6 (2014), pp. 259–269.

[3] Atlassian. Understanding incident severity levels. url: https://www.atlas
sian.com/incident-management/kpis/severity-levels.

[4] Automattic. Push notifications delayed or missing. https://github.com/
Automattic/pocket-casts-android/issues/1615. Accessed: 2024-06-07.
2023.

[5] Roberto Baldwin. Google introduces Android 5.0 Lollipop. Oct. 2014. url:
https://thenextweb.com/news/google- introduces- android- 5- 0-
lollipop.

[6] Battery Saving Tips - Ride with GPS. Dec. 2023. url: https://support.ri
dewithgps.com/hc/en-us/articles/14156247374747-Battery-Saving-
Tips.

[7] Android Developers Blog. Android 14 is live in AOSP - Android Developers
Blog. url: https://android- developers.googleblog.com/2023/10/
android-14-is-live-in-aosp.html.

[8] Jorge Cardoso. “How to measure the control-flow complexity of web pro-
cesses and workflows”. In: Workflow handbook 2005 (2005), pp. 199–212.

[9] Ting Chen, Haiyang Tang, Xiaodong Lin, Kuang Zhou, and Xiaosong Zhang.
“Silent Battery Draining Attack against Android Systems by Subverting
Doze Mode”. In: 2016 IEEE Global Communications Conference (GLOBE-
COM). IEEE. 2016, pp. 1–6.

[10] Xiang Chen, Yiran Chen, Zhan Ma, and Felix CA Fernandes. “How is energy
consumed in smartphone display applications?” In: Proceedings of the 14th
Workshop on Mobile Computing Systems and Applications. 2013, pp. 1–6.

[11] Commons-App. [bug]: Confusing loading state in battery saver on older
versions of Android · issue #5710 · commons-app/apps-android-commons.
url: https://github.com/commons-app/apps-android-commons/issues/
5710.

[12] Flutter Community. [Bug]: Incorrect connection status on Galaxy S10e in
power saving mode. https://github.com/fluttercommunity/plus_plug
ins/issues/2144. Accessed: 2024-06-07. 2024.

[13] Pranab Dash and Y Charlie Hu. “How much battery does dark mode save?
An accurate OLED display power profiler for modern smartphones”. In: Pro-
ceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services. 2021, pp. 323–335.

[14] Dimtion. Fails to share a link when marshmallow’s battery saver is ON.
https://github.com/dimtion/Shaarlier/issues/22. Accessed: 2024-06-
07. 2024.

[15] Android Developer Documentation. AlarmManager. https://developer.
android.com/reference/android/app/AlarmManager. Accessed: 2024-06-
07. 2024.

43

https://www.atlassian.com/incident-management/kpis/severity-levels
https://www.atlassian.com/incident-management/kpis/severity-levels
https://github.com/Automattic/pocket-casts-android/issues/1615
https://github.com/Automattic/pocket-casts-android/issues/1615
https://thenextweb.com/news/google-introduces-android-5-0-lollipop
https://thenextweb.com/news/google-introduces-android-5-0-lollipop
https://support.ridewithgps.com/hc/en-us/articles/14156247374747-Battery-Saving-Tips
https://support.ridewithgps.com/hc/en-us/articles/14156247374747-Battery-Saving-Tips
https://support.ridewithgps.com/hc/en-us/articles/14156247374747-Battery-Saving-Tips
https://android-developers.googleblog.com/2023/10/android-14-is-live-in-aosp.html
https://android-developers.googleblog.com/2023/10/android-14-is-live-in-aosp.html
https://github.com/commons-app/apps-android-commons/issues/5710
https://github.com/commons-app/apps-android-commons/issues/5710
https://github.com/fluttercommunity/plus_plugins/issues/2144
https://github.com/fluttercommunity/plus_plugins/issues/2144
https://github.com/dimtion/Shaarlier/issues/22
https://developer.android.com/reference/android/app/AlarmManager
https://developer.android.com/reference/android/app/AlarmManager

References 44

[16] Android Developer Documentation. Android 10 highlights. https://develo
per.android.com/about/versions/10/highlights. Accessed: 2024-06-07.
2024.

[17] Android Developer Documentation. Android 7.0 Behavior Changes. url: ht
tps://developer.android.com/about/versions/nougat/android-7.0-
changes.

[18] Android Developer Documentation. Android Pie Power Management. url:
https://developer.android.com/about/versions/pie/power%5C#
battery-saver.

[19] Android Developer Documentation. App Standby Buckets - Android Docu-
mentation. url: https://developer.android.com/topic/performance/
appstandby.

[20] Android Developer Documentation. AppCompatDelegate. https://develo
per.android.com/reference/androidx/appcompat/app/AppCompatDele
gate. Accessed: 2024-06-07. 2024.

[21] Android Developer Documentation. Background Execution Limits. url: htt
ps://developer.android.com/about/versions/oreo/background%5C#
broadcasts.

[22] Android Developer Documentation. Define work requests. https://deve
loper.android.com/develop/background- work/background- tasks/
persistent/getting-started/define-work. Accessed: 2024-06-07. 2024.

[23] Android Developer Documentation. Foreground services. https://develo
per.android.com/develop/background- work/services/foreground-
services?hl=en. Accessed: 2024-06-07. 2024.

[24] Android Developer Documentation. Frame rate. https://developer.andr
oid.com/media/optimize/performance/frame-rate. Accessed: 2024-06-
07. 2024.

[25] Android Developer Documentation. Implement dark theme. https://deve
loper.android.com/develop/ui/views/theming/darktheme. Accessed:
2024-06-07. 2024.

[26] Android Developer Documentation. JobParameters. https://developer.
android . com / reference / kotlin / android / app / job / JobParameters.
Accessed: 2024-06-07. 2023.

[27] Android Developer Documentation. Optimize for Doze and App Standby -
Android Documentation. url: https://developer.android.com/training
/monitoring-device-state/doze-standby.

[28] Android Developer Documentation. Power management restrictions. https:
//developer.android.com/topic/performance/power/power-details.
Accessed: 2024-06-07. 2023.

[29] Android Developer Documentation. Schedule alarms. url: https://devel
oper.android.com/training/scheduling/alarms%5C#inexact-after-
specific-time.

[30] Android Developer Documentation. UI/Application Exerciser Monkey. url:
https://developer.android.com/studio/test/other-testing-tools/
monkey.

[31] Don’t Kill My App. url: https://dontkillmyapp.com/.
[32] dotnet. MAUI issue 19000. https://github.com/dotnet/maui/issues/

19000. Accessed: 2024-06-07. 2023.
[33] dotnet. MAUI issue 19002. https://github.com/dotnet/maui/issues/

19002. Accessed: 2024-06-07. 2023.
[34] dotnet. Port Forms Animation/Power Save test. https://github.com/

dotnet/maui/issues/16511. Accessed: 2024-06-07. 2023.
[35] Download the Android Source. url: https://source.android.com/docs/

setup/download.
[36] Umar Farooq, Zhijia Zhao, Manu Sridharan, and Iulian Neamtiu. “Live-

droid: Identifying and preserving mobile app state in volatile runtime envi-

https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/nougat/android-7.0-changes
https://developer.android.com/about/versions/nougat/android-7.0-changes
https://developer.android.com/about/versions/nougat/android-7.0-changes
https://developer.android.com/about/versions/pie/power%5C#battery-saver
https://developer.android.com/about/versions/pie/power%5C#battery-saver
https://developer.android.com/topic/performance/appstandby
https://developer.android.com/topic/performance/appstandby
https://developer.android.com/reference/androidx/appcompat/app/AppCompatDelegate
https://developer.android.com/reference/androidx/appcompat/app/AppCompatDelegate
https://developer.android.com/reference/androidx/appcompat/app/AppCompatDelegate
https://developer.android.com/about/versions/oreo/background%5C#broadcasts
https://developer.android.com/about/versions/oreo/background%5C#broadcasts
https://developer.android.com/about/versions/oreo/background%5C#broadcasts
https://developer.android.com/develop/background-work/background-tasks/persistent/getting-started/define-work
https://developer.android.com/develop/background-work/background-tasks/persistent/getting-started/define-work
https://developer.android.com/develop/background-work/background-tasks/persistent/getting-started/define-work
https://developer.android.com/develop/background-work/services/foreground-services?hl=en
https://developer.android.com/develop/background-work/services/foreground-services?hl=en
https://developer.android.com/develop/background-work/services/foreground-services?hl=en
https://developer.android.com/media/optimize/performance/frame-rate
https://developer.android.com/media/optimize/performance/frame-rate
https://developer.android.com/develop/ui/views/theming/darktheme
https://developer.android.com/develop/ui/views/theming/darktheme
https://developer.android.com/reference/kotlin/android/app/job/JobParameters
https://developer.android.com/reference/kotlin/android/app/job/JobParameters
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/training/scheduling/alarms%5C#inexact-after-specific-time
https://developer.android.com/training/scheduling/alarms%5C#inexact-after-specific-time
https://developer.android.com/training/scheduling/alarms%5C#inexact-after-specific-time
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://dontkillmyapp.com/
https://github.com/dotnet/maui/issues/19000
https://github.com/dotnet/maui/issues/19000
https://github.com/dotnet/maui/issues/19002
https://github.com/dotnet/maui/issues/19002
https://github.com/dotnet/maui/issues/16511
https://github.com/dotnet/maui/issues/16511
https://source.android.com/docs/setup/download
https://source.android.com/docs/setup/download

References 45

ronments”. In: Proceedings of the ACM on Programming Languages 4.OOP-
SLA (2020), pp. 1–30.

[37] Fast and resilient web apps: Tools and techniques - Google I/O 2016. May
2016. url: https://www.youtube.com/watch?v=aqvz5Oqs238&t=
1185s.

[38] forrestguice. Alarm not working in battery saver mode. https://github.
com/forrestguice/SuntimesWidget/issues/726. Accessed: 2024-06-07.
2020.

[39] Utkarsh Goel, Stephen Ludin, and Moritz Steiner. “Web performance with
android’s battery-saver mode”. In: arXiv preprint arXiv:2003.06477 (2020).

[40] Preston Gralla. Galaxy S II: The missing manual. O’Reilly Media, 2012.
[41] GSMArena. Samsung Galaxy S5 - GSM Arena. url: https://www.gsmarena.

com/samsung_galaxy_s5-6033.php.
[42] Tianxiao Gu et al. “Practical GUI testing of Android applications via model

abstraction and refinement”. In: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE. 2019, pp. 269–280.

[43] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng.
“Detecting and fixing data loss issues in Android apps”. In: Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis. 2022, pp. 605–616.

[44] Haiwen. Haiwen/seadroid: Android client for Seafile. url: https://github.
com/haiwen/seadroid.

[45] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and
Eleni Stroulia. “Understanding android fragmentation with topic analysis
of vendor-specific bugs”. In: 2012 19th Working Conference on Reverse En-
gineering. IEEE. 2012, pp. 83–92.

[46] HTC. HTC Desire User Guide. 2010. url: http://files.customersaas.
com/files/Manual/HTC_A8181_Desire_User_manual.pdf.

[47] K0shk0sh. Notifications do not work (yet again). https://github.com/
k0shk0sh/FastHub/issues/2867. Accessed: 2024-06-07. 2024.

[48] Chang Hwan Peter Kim, Daniel Kroening, and Marta Kwiatkowska. “Static
program analysis for identifying energy bugs in graphics-intensive mobile
apps”. In: 2016 IEEE 24th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE. 2016, pp. 115–124.

[49] Marcos Lerides et al. “Environmental and social impacts of Li-ion batteries”.
In: (2021).

[50] Ding Li, Angelica Huyen Tran, and William GJ Halfond. “Making web ap-
plications more energy efficient for OLED smartphones”. In: Proceedings of
the 36th International Conference on Software Engineering. 2014, pp. 527–
538.

[51] Li Li. Awards - Li Li. url: http://lilicoding.github.io/awards.html.
[52] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. “Cid: Au-

tomating the detection of api-related compatibility issues in android apps”.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2018, pp. 153–163.

[53] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques
Klein. “Characterising deprecated android apis”. In: Proceedings of the 15th
International Conference on Mining Software Repositories. 2018, pp. 254–
264.

[54] Li Li et al. “Static analysis of android apps: A systematic literature review”.
In: Information and Software Technology 88 (2017), pp. 67–95.

[55] LibreBusTO · libre-busto. url: https : / / gitpull . it / source / libre -
busto/.

https://www.youtube.com/watch?v=aqvz5Oqs238&t=1185s
https://www.youtube.com/watch?v=aqvz5Oqs238&t=1185s
https://github.com/forrestguice/SuntimesWidget/issues/726
https://github.com/forrestguice/SuntimesWidget/issues/726
https://www.gsmarena.com/samsung_galaxy_s5-6033.php
https://www.gsmarena.com/samsung_galaxy_s5-6033.php
https://github.com/haiwen/seadroid
https://github.com/haiwen/seadroid
http://files.customersaas.com/files/Manual/HTC_A8181_Desire_User_manual.pdf
http://files.customersaas.com/files/Manual/HTC_A8181_Desire_User_manual.pdf
https://github.com/k0shk0sh/FastHub/issues/2867
https://github.com/k0shk0sh/FastHub/issues/2867
http://lilicoding.github.io/awards.html
https://gitpull.it/source/libre-busto/
https://gitpull.it/source/libre-busto/

References 46

[56] linhvovan29546. Issue 38 in React Native Full Screen Notification Incoming
Call. https://github.com/linhvovan29546/react-native-full-scree
n-notification-incoming-call/issues/38. Accessed: 2024-06-07. 2023.

[57] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. “Identifying
and characterizing silently-evolved methods in the android API”. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP). IEEE. 2021, pp. 308–317.

[58] Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li.
“Automatically detecting api-induced compatibility issues in android apps: A
comparative analysis (replicability study)”. In: Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis. 2022,
pp. 617–628.

[59] Pei Liu, Yanjie Zhao, Mattia Fazzini, Haipeng Cai, John Grundy, and Li Li.
“Automatically Detecting Incompatible Android APIs”. In: ACM Transac-
tions on Software Engineering and Methodology (2023).

[60] Yifei Lu, Minxue Pan, Juan Zhai, Tian Zhang, and Xuandong Li. “Preference-
wise testing for android applications”. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. 2019, pp. 268–278.

[61] lukef. Animations should disable or degrade when Battery Saver Mode is
enabled (Android) · issue 11436 · flutter/flutter. July 2017. url: https:
//github.com/flutter/flutter/issues/11436.

[62] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang.
“Fastbot2: Reusable Automated Model-based GUI Testing for Android En-
hanced by Reinforcement Learning”. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 2022, pp. 1–
5.

[63] Organic Maps. [android] Maps download/update is interrupted in the back-
ground when power saving settings are enabled. https : / / github . com /
organicmaps/organicmaps/issues/5586. Accessed: 2024-06-07. 2024.

[64] Mendhak. Battery Saver Kills App. https://github.com/mendhak/gpslo
gger/issues/813. Accessed: 2024-06-07. 2024.

[65] Solana Mobile. When Android battery saver mode is enabled, incoming MWA
connections from Chrome fail. https://github.com/solana- mobile/
mobile-wallet-adapter/issues/335. Accessed: 2024-06-07. 2024.

[66] mohamnexus. Couldnt́ check ping when power saving is on. https://github.
com/stealthcopter/AndroidNetworkTools/issues/63. Accessed: 2024-
06-07. 2020.

[67] Quenton Narcisse. Adults in the U.S. prefer their smartphones instead of
sex. Feb. 2023. url: https://www.complex.com/pop-culture/a/quenton-
narcisse/adults-prefer-smartphones-over-sex.

[68] Nextcloud. Add a ’force upload/sync’ button. https://github.com/nextc
loud/android/issues/7019. Accessed: 2024-06-07. 2024.

[69] Long Nguyen-Vu, Jinung Ahn, and Souhwan Jung. “Android fragmentation
in malware detection”. In: Computers & Security 87 (2019), p. 101573.

[70] OpenTracksApp. OpenTracksApp/Osmdashboard: Openstreetmaps dashboard
for OpenTracks. url: https://github.com/OpenTracksApp/OSMDashboard.

[71] Alessandro Orso and Gregg Rothermel. “Software testing: a research trav-
elogue (2000–2014)”. In: Future of Software Engineering Proceedings. 2014,
pp. 117–132.

[72] Stack Overflow. Android 9: How to get locations with power saving mode and
screen off. https://stackoverflow.com/questions/52907856/android-
9-how-to-get-locations-with-power-saving-mode-and-screen-off.
Accessed: 2024-06-07. 2024.

[73] Stack Overflow. Audio call stops working when android app goes in back-
ground and device is on battery. https://stackoverflow.com/questions/

https://github.com/linhvovan29546/react-native-full-screen-notification-incoming-call/issues/38
https://github.com/linhvovan29546/react-native-full-screen-notification-incoming-call/issues/38
https://github.com/flutter/flutter/issues/11436
https://github.com/flutter/flutter/issues/11436
https://github.com/organicmaps/organicmaps/issues/5586
https://github.com/organicmaps/organicmaps/issues/5586
https://github.com/mendhak/gpslogger/issues/813
https://github.com/mendhak/gpslogger/issues/813
https://github.com/solana-mobile/mobile-wallet-adapter/issues/335
https://github.com/solana-mobile/mobile-wallet-adapter/issues/335
https://github.com/stealthcopter/AndroidNetworkTools/issues/63
https://github.com/stealthcopter/AndroidNetworkTools/issues/63
https://www.complex.com/pop-culture/a/quenton-narcisse/adults-prefer-smartphones-over-sex
https://www.complex.com/pop-culture/a/quenton-narcisse/adults-prefer-smartphones-over-sex
https://github.com/nextcloud/android/issues/7019
https://github.com/nextcloud/android/issues/7019
https://github.com/OpenTracksApp/OSMDashboard
https://stackoverflow.com/questions/52907856/android-9-how-to-get-locations-with-power-saving-mode-and-screen-off
https://stackoverflow.com/questions/52907856/android-9-how-to-get-locations-with-power-saving-mode-and-screen-off
https://stackoverflow.com/questions/66238061/audio-call-stops-working-when-android-app-goes-in-background-and-device-is-on-ba

References 47

66238061/audio-call-stops-working-when-android-app-goes-in-
background-and-device-is-on-ba. Accessed: 2024-06-07. 2024.

[74] Stack Overflow. Manage internet connection on android nougat or android
oreo with enabled battery. https://stackoverflow.com/questions/4628
7015/manage-internet-connection-on-android-nougat-or-android-
oreo-with-enabled-batter. Accessed: 2024-06-07. 2024.

[75] Stack Overflow. Run background services on battery saver mode android.
https://stackoverflow.com/questions/49639229/run- background-
services-on-battery-saver-mode-android. Accessed: 2024-06-07. 2024.

[76] Stack Overflow. Unable to load images for the firebase notificationData mes-
sages in background. https://stackoverflow.com/questions/573588
94/unable- to- load- images- for- the- firebase- notificationdata-
messages-in-background. Accessed: 2024-06-07. 2024.

[77] Jens F Peters, Manuel Baumann, Benedikt Zimmermann, Jessica Braun,
and Marcel Weil. “The environmental impact of Li-Ion batteries and the
role of key parameters–A review”. In: Renewable and Sustainable Energy
Reviews 67 (2017), pp. 491–506.

[78] Nikhil Rastogi. Battery saver and vibration - Google Pixel Phone Help. url:
https://support.google.com/pixelphone/thread/197296069?hl=en&
msgid=197468537.

[79] Realm. Realm SyncManager takes up to 4-5 minutes to reconnect to ROS
after waking device. https://github.com/realm/realm-java/issues/
7003. Accessed: 2024-06-07. 2024.

[80] Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci,
and Leonardo Mariani. “Data loss detector: automatically revealing data
loss bugs in Android apps”. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2020, pp. 141–
152.

[81] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. “Patdroid: permission-
aware gui testing of android”. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 2017, pp. 220–232.

[82] Samsung. The S23 Series Battery: How powerful is it? - Samsung Support.
Feb. 2023. url: https://www.samsung.com/ae/support/mobile-devices/
the-s23-series-battery-how-powerful-is-it/.

[83] Dan Seifert. Google announces Android 5.0 Lollipop. Oct. 2014. url: https:
//www.theverge.com/2014/10/15/6982167/google-android-5-0-l-
lollipop-announcement-release.

[84] Seva-coder. [Feature] Ignore battery saver state. https://github.com/
Seva-coder/Finder/issues/29. Accessed: 2024-06-07. 2024.

[85] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. “Finding resume and
restart errors in android applications”. In: ACM SIGPLAN Notices 51.10
(2016), pp. 864–880.

[86] simplex-chat. Push notifications not working when battery saver is on. https:
//github.com/simplex- chat/simplex- chat/issues/2135. Accessed:
2024-06-07. 2022.

[87] StackOverflow. Android check connectivity on low battery power saver mode.
https://stackoverflow.com/questions/60821414/android- check-
connectivity-on-low-battery-power-saver-mode. Accessed: 2024-06-
07. 2020.

[88] StackOverflow. Background service stops in battery saver mode in Android
R. https : / / stackoverflow . com / questions / 63459111 / background -
service - stops - in - battery - saver - mode - in - android - r. Accessed:
2024-06-07. 2020.

[89] StackOverflow. Battery saver and night mode on Android 9 Pie relaunches
whole activity, how to prevent it. https://stackoverflow.com/questio

https://stackoverflow.com/questions/66238061/audio-call-stops-working-when-android-app-goes-in-background-and-device-is-on-ba
https://stackoverflow.com/questions/66238061/audio-call-stops-working-when-android-app-goes-in-background-and-device-is-on-ba
https://stackoverflow.com/questions/66238061/audio-call-stops-working-when-android-app-goes-in-background-and-device-is-on-ba
https://stackoverflow.com/questions/46287015/manage-internet-connection-on-android-nougat-or-android-oreo-with-enabled-batter
https://stackoverflow.com/questions/46287015/manage-internet-connection-on-android-nougat-or-android-oreo-with-enabled-batter
https://stackoverflow.com/questions/46287015/manage-internet-connection-on-android-nougat-or-android-oreo-with-enabled-batter
https://stackoverflow.com/questions/49639229/run-background-services-on-battery-saver-mode-android
https://stackoverflow.com/questions/49639229/run-background-services-on-battery-saver-mode-android
https://stackoverflow.com/questions/57358894/unable-to-load-images-for-the-firebase-notificationdata-messages-in-background
https://stackoverflow.com/questions/57358894/unable-to-load-images-for-the-firebase-notificationdata-messages-in-background
https://stackoverflow.com/questions/57358894/unable-to-load-images-for-the-firebase-notificationdata-messages-in-background
https://support.google.com/pixelphone/thread/197296069?hl=en&msgid=197468537
https://support.google.com/pixelphone/thread/197296069?hl=en&msgid=197468537
https://github.com/realm/realm-java/issues/7003
https://github.com/realm/realm-java/issues/7003
https://www.samsung.com/ae/support/mobile-devices/the-s23-series-battery-how-powerful-is-it/
https://www.samsung.com/ae/support/mobile-devices/the-s23-series-battery-how-powerful-is-it/
https://www.theverge.com/2014/10/15/6982167/google-android-5-0-l-lollipop-announcement-release
https://www.theverge.com/2014/10/15/6982167/google-android-5-0-l-lollipop-announcement-release
https://www.theverge.com/2014/10/15/6982167/google-android-5-0-l-lollipop-announcement-release
https://github.com/Seva-coder/Finder/issues/29
https://github.com/Seva-coder/Finder/issues/29
https://github.com/simplex-chat/simplex-chat/issues/2135
https://github.com/simplex-chat/simplex-chat/issues/2135
https://stackoverflow.com/questions/60821414/android-check-connectivity-on-low-battery-power-saver-mode
https://stackoverflow.com/questions/60821414/android-check-connectivity-on-low-battery-power-saver-mode
https://stackoverflow.com/questions/63459111/background-service-stops-in-battery-saver-mode-in-android-r
https://stackoverflow.com/questions/63459111/background-service-stops-in-battery-saver-mode-in-android-r
https://stackoverflow.com/questions/55397866/battery-saver-and-night-mode-on-android-9-pie-relaunches-whole-activity-how-t

References 48

ns/55397866/battery- saver- and- night- mode- on- android- 9- pie-
relaunches-whole-activity-how-t. Accessed: 2024-06-07. 2019.

[90] StackOverflow. Battery saver feature killing my music service. https://
stackoverflow . com / questions / 36263882 / battery - saver - feature -
killing-my-music-service. Accessed: 2024-06-07. 2016.

[91] StackOverflow. Can not check network info programmatically in battery save
mode in Android device. https://stackoverflow.com/questions/5187
8434/can-not-check-network-info-programmatically-in-battery-
save-mode-in-android-devi. Accessed: 2024-06-07. 2018.

[92] StackOverflow. Custom dialog crashing after theme change. https://stac
koverflow.com/questions/58016100/custom-dialog-crashing-after-
theme-change. Accessed: 2024-06-07. 2019.

[93] StackOverflow. FragmentTransaction setCustomAnimations doesnt́ work when
battery saver is on. https : / / stackoverflow . com / questions / 354898
28/fragmenttransaction- setcustomanimations- doesnt- work- when-
battery-saver-is-on. Accessed: 2024-06-07. 2016.

[94] StackOverflow. How force the app to opt out of battery saver mode when the
service is on. https://stackoverflow.com/questions/53115473/how-
force- the- app- to- opt- out- of- battery- saver- mode- when- the-
service-is-on. Accessed: 2024-06-07. 2018.

[95] StackOverflow. How to avoid Android application UI changes on low battery
level. https://stackoverflow.com/questions/71480001/how-to-avoid-
android-application-ui-changes-on-low-battery-level. Accessed:
2024-06-07. 2022.

[96] StackOverflow. How to avoid having my foreground service stopped when
on battery power saving mode. https://stackoverflow.com/questions/
36922608/how- to- avoid- having- my- foreground- service- stopped-
when-on-battery-power-saving-m. Accessed: 2024-06-07. 2016.

[97] StackOverflow. Is there any way to read the battery permissions of Xi-
aomi/Redmi for background. https://stackoverflow.com/questions/
57302686/is-there-any-way-to-read-the-battery-permissions-of-
xioamiredmi-for-background. Accessed: 2024-06-07. 2019.

[98] StackOverflow. LocationSettings dialog appears even if GPS is turned on.
https://stackoverflow.com/questions/55488779/locationsettings-
dialog-appears-even-if-gps-turn-on. Accessed: 2024-06-07. 2019.

[99] StackOverflow. Object Animator not working in battery saver mode post-
JellyBean/Android 5.x. https://stackoverflow.com/questions/36548
097/object-animator-not-working-in-battery-saver-mode-post-
jellybeanandroid-5-x. Accessed: 2024-06-07. 2016.

[100] StackOverflow. ProgressBar disappears in battery saver mode Android 5.x.
https://stackoverflow.com/questions/35221706/progressbar-dis
appears-in-battery-saver-mode-android-5-x. Accessed: 2024-06-07.
2016.

[101] StackOverflow. Run background services on battery saver mode Android.
https://stackoverflow.com/questions/49639229/run- background-
services-on-battery-saver-mode-android. Accessed: 2024-06-07. 2018.

[102] StackOverflow. SetAlarmClock is not exact and system adjusts the time for
it. https://stackoverflow.com/questions/72242900/setalarmclock-
is-not-exact-and-system-adjusts-the-time-for-it. Accessed: 2024-
06-07. 2022.

[103] StackOverflow. Unable to send location updates to server because of battery
saver mode in MIUI. https://stackoverflow.com/questions/53537284/
unable-to-send-location-updates-to-server-because-of-battery-
saver-mode-in-miui. Accessed: 2024-06-07. 2018.

[104] StackOverflow. ValueAnimator doesnt́ work as expected when battery saver
is enabled API 21. https://stackoverflow.com/questions/38483783/

https://stackoverflow.com/questions/55397866/battery-saver-and-night-mode-on-android-9-pie-relaunches-whole-activity-how-t
https://stackoverflow.com/questions/55397866/battery-saver-and-night-mode-on-android-9-pie-relaunches-whole-activity-how-t
https://stackoverflow.com/questions/55397866/battery-saver-and-night-mode-on-android-9-pie-relaunches-whole-activity-how-t
https://stackoverflow.com/questions/36263882/battery-saver-feature-killing-my-music-service
https://stackoverflow.com/questions/36263882/battery-saver-feature-killing-my-music-service
https://stackoverflow.com/questions/36263882/battery-saver-feature-killing-my-music-service
https://stackoverflow.com/questions/51878434/can-not-check-network-info-programmatically-in-battery-save-mode-in-android-devi
https://stackoverflow.com/questions/51878434/can-not-check-network-info-programmatically-in-battery-save-mode-in-android-devi
https://stackoverflow.com/questions/51878434/can-not-check-network-info-programmatically-in-battery-save-mode-in-android-devi
https://stackoverflow.com/questions/58016100/custom-dialog-crashing-after-theme-change
https://stackoverflow.com/questions/58016100/custom-dialog-crashing-after-theme-change
https://stackoverflow.com/questions/58016100/custom-dialog-crashing-after-theme-change
https://stackoverflow.com/questions/35489828/fragmenttransaction-setcustomanimations-doesnt-work-when-battery-saver-is-on
https://stackoverflow.com/questions/35489828/fragmenttransaction-setcustomanimations-doesnt-work-when-battery-saver-is-on
https://stackoverflow.com/questions/35489828/fragmenttransaction-setcustomanimations-doesnt-work-when-battery-saver-is-on
https://stackoverflow.com/questions/53115473/how-force-the-app-to-opt-out-of-battery-saver-mode-when-the-service-is-on
https://stackoverflow.com/questions/53115473/how-force-the-app-to-opt-out-of-battery-saver-mode-when-the-service-is-on
https://stackoverflow.com/questions/53115473/how-force-the-app-to-opt-out-of-battery-saver-mode-when-the-service-is-on
https://stackoverflow.com/questions/71480001/how-to-avoid-android-application-ui-changes-on-low-battery-level
https://stackoverflow.com/questions/71480001/how-to-avoid-android-application-ui-changes-on-low-battery-level
https://stackoverflow.com/questions/36922608/how-to-avoid-having-my-foreground-service-stopped-when-on-battery-power-saving-m
https://stackoverflow.com/questions/36922608/how-to-avoid-having-my-foreground-service-stopped-when-on-battery-power-saving-m
https://stackoverflow.com/questions/36922608/how-to-avoid-having-my-foreground-service-stopped-when-on-battery-power-saving-m
https://stackoverflow.com/questions/57302686/is-there-any-way-to-read-the-battery-permissions-of-xioamiredmi-for-background
https://stackoverflow.com/questions/57302686/is-there-any-way-to-read-the-battery-permissions-of-xioamiredmi-for-background
https://stackoverflow.com/questions/57302686/is-there-any-way-to-read-the-battery-permissions-of-xioamiredmi-for-background
https://stackoverflow.com/questions/55488779/locationsettings-dialog-appears-even-if-gps-turn-on
https://stackoverflow.com/questions/55488779/locationsettings-dialog-appears-even-if-gps-turn-on
https://stackoverflow.com/questions/36548097/object-animator-not-working-in-battery-saver-mode-post-jellybeanandroid-5-x
https://stackoverflow.com/questions/36548097/object-animator-not-working-in-battery-saver-mode-post-jellybeanandroid-5-x
https://stackoverflow.com/questions/36548097/object-animator-not-working-in-battery-saver-mode-post-jellybeanandroid-5-x
https://stackoverflow.com/questions/35221706/progressbar-disappears-in-battery-saver-mode-android-5-x
https://stackoverflow.com/questions/35221706/progressbar-disappears-in-battery-saver-mode-android-5-x
https://stackoverflow.com/questions/49639229/run-background-services-on-battery-saver-mode-android
https://stackoverflow.com/questions/49639229/run-background-services-on-battery-saver-mode-android
https://stackoverflow.com/questions/72242900/setalarmclock-is-not-exact-and-system-adjusts-the-time-for-it
https://stackoverflow.com/questions/72242900/setalarmclock-is-not-exact-and-system-adjusts-the-time-for-it
https://stackoverflow.com/questions/53537284/unable-to-send-location-updates-to-server-because-of-battery-saver-mode-in-miui
https://stackoverflow.com/questions/53537284/unable-to-send-location-updates-to-server-because-of-battery-saver-mode-in-miui
https://stackoverflow.com/questions/53537284/unable-to-send-location-updates-to-server-because-of-battery-saver-mode-in-miui
https://stackoverflow.com/questions/38483783/valueanimator-doesnt-work-as-expected-when-battery-saver-is-enabled-api-21

References 49

valueanimator-doesnt-work-as-expected-when-battery-saver-is-
enabled-api-21. Accessed: 2024-06-07. 2016.

[105] Ting Su et al. “Guided, stochastic model-based GUI testing of Android
apps”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 2017, pp. 245–256.

[106] Jingling Sun et al. “Characterizing and Finding System Setting-Related
Defects in Android Apps”. In: IEEE Transactions on Software Engineering
(2023).

[107] Jingling Sun et al. “Understanding and finding system setting-related defects
in Android apps”. In: Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 2021, pp. 204–215.

[108] Google Support. Use Battery Saver on a Pixel phone. url: https://support.
google.com/pixelphone/answer/6187458?hl=en.

[109] Geoffrey A. Fowler The Washington Post. It’s Not your imagination: Phone
battery life is getting worse. Nov. 2018. url: https://eu.heraldnews.com/
story/news/2018/11/01/it-s-not-your-imagination/9374880007/%5
C#:~:text=%22Batteries%20improve%20at%20a%20very,up%20faster%
20than%205%20percent.%22.

[110] thunderbird. Issue 7416 in Thunderbird Android. https://github.com/
thunderbird/thunderbird-android/issues/7416. Accessed: 2024-06-07.
2023.

[111] Troubleshooting GPS Issues. Mar. 2024. url: https://support.strava.
com/hc/en-us/articles/216918967-Troubleshooting-GPS-Issues.

[112] TylerCarberry. Issue 161 in 2048-Battles. https://github.com/TylerCar
berry/2048-Battles/issues/161. Accessed: 2024-06-07. 2022.

[113] Tytydraco. Is there plans for android 12 support? https://github.com/
tytydraco/Buoy/issues/12. Accessed: 2024-06-07. 2024.

[114] Use low power mode to save battery life on your iPhone or iPad. url: https:
//support.apple.com/en-us/HT205234.

[115] Matteo Varvello and Benjamin Livshits. “On the battery consumption of
mobile browsers”. In: arXiv preprint arXiv:2009.03740 (2020).

[116] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. “To-
wards Verifying Android Apps for the Absence of {No-Sleep} Energy Bugs”.
In: 2012 Workshop on Power-Aware Computing and Systems (HotPower
12). 2012.

[117] Jane Wakefield. People devote third of waking time to mobile apps. Jan.
2022. url: https://www.bbc.com/news/technology-59952557%5C#:~:
text=People%20are%20spending%20an%20average, its%20research%
20included%20watching%20TV..

[118] Sinan Wang et al. “Aper: evolution-aware runtime permission misuse detec-
tion for Android apps”. In: Proceedings of the 44th International Conference
on Software Engineering. 2022, pp. 125–137.

[119] Ying Wang et al. “Runtime permission issues in android apps: Taxonomy,
practices, and ways forward”. In: IEEE Transactions on Software Engineer-
ing 49.1 (2022), pp. 185–210.

[120] Lili Wei, Yepang Liu, and Shing-Chi Cheung. “Taming android fragmenta-
tion: Characterizing and detecting compatibility issues for android apps”. In:
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. 2016, pp. 226–237.

[121] Wiglenet. Wiglenet/wigle-WIFI-wardriving: Nethugging client for Android,
from Wigle.net. url: https://github.com/wiglenet/wigle-wifi-wardri
ving.

[122] Wikimedia Commons. url: https://play.google.com/store/apps/detai
ls?id=fr.free.nrw.commons&hl=en.

https://stackoverflow.com/questions/38483783/valueanimator-doesnt-work-as-expected-when-battery-saver-is-enabled-api-21
https://stackoverflow.com/questions/38483783/valueanimator-doesnt-work-as-expected-when-battery-saver-is-enabled-api-21
https://stackoverflow.com/questions/38483783/valueanimator-doesnt-work-as-expected-when-battery-saver-is-enabled-api-21
https://support.google.com/pixelphone/answer/6187458?hl=en
https://support.google.com/pixelphone/answer/6187458?hl=en
https://eu.heraldnews.com/story/news/2018/11/01/it-s-not-your-imagination/9374880007/%5C#:~:text=%22Batteries%20improve%20at%20a%20very,up%20faster%20than%205%20percent.%22
https://eu.heraldnews.com/story/news/2018/11/01/it-s-not-your-imagination/9374880007/%5C#:~:text=%22Batteries%20improve%20at%20a%20very,up%20faster%20than%205%20percent.%22
https://eu.heraldnews.com/story/news/2018/11/01/it-s-not-your-imagination/9374880007/%5C#:~:text=%22Batteries%20improve%20at%20a%20very,up%20faster%20than%205%20percent.%22
https://eu.heraldnews.com/story/news/2018/11/01/it-s-not-your-imagination/9374880007/%5C#:~:text=%22Batteries%20improve%20at%20a%20very,up%20faster%20than%205%20percent.%22
https://github.com/thunderbird/thunderbird-android/issues/7416
https://github.com/thunderbird/thunderbird-android/issues/7416
https://support.strava.com/hc/en-us/articles/216918967-Troubleshooting-GPS-Issues
https://support.strava.com/hc/en-us/articles/216918967-Troubleshooting-GPS-Issues
https://github.com/TylerCarberry/2048-Battles/issues/161
https://github.com/TylerCarberry/2048-Battles/issues/161
https://github.com/tytydraco/Buoy/issues/12
https://github.com/tytydraco/Buoy/issues/12
https://support.apple.com/en-us/HT205234
https://support.apple.com/en-us/HT205234
https://www.bbc.com/news/technology-59952557%5C#:~:text=People%20are%20spending%20an%20average,its%20research%20included%20watching%20TV.
https://www.bbc.com/news/technology-59952557%5C#:~:text=People%20are%20spending%20an%20average,its%20research%20included%20watching%20TV.
https://www.bbc.com/news/technology-59952557%5C#:~:text=People%20are%20spending%20an%20average,its%20research%20included%20watching%20TV.
https://github.com/wiglenet/wigle-wifi-wardriving
https://github.com/wiglenet/wigle-wifi-wardriving
https://play.google.com/store/apps/details?id=fr.free.nrw.commons&hl=en
https://play.google.com/store/apps/details?id=fr.free.nrw.commons&hl=en

References 50

[123] Xamarin. Issue with battery saver mode. https://github.com/xamarin/
Xamarin.Forms/issues/8382#issuecomment-54999G11. Accessed: 2024-
06-07. 2023.

[124] Ybq. Not showing in Battery Saver mode in android 7+ | issue #59 |
ybq/android-spinkit. url: https://github.com/ybq/Android- SpinKit/
issues/59.

[125] ybq. Issue 59 in Android-SpinKit. https://github.com/ybq/Android-
SpinKit/issues/59. Accessed: 2024-06-07. 2018.

[126] Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. “Auto-
mated generation of oracles for testing user-interaction features of mobile
apps”. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. IEEE. 2014, pp. 183–192.

[127] Yuhao Zhou and Wei Song. “DDLDroid: A Static Analyzer for Automati-
cally Detecting Data Loss Issues in Android Applications”. In: Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2023, pp. 1471–1474.

[128] Micah S Ziegler and Jessika E Trancik. “Re-examining rates of lithium-ion
battery technology improvement and cost decline”. In: Energy & Environ-
mental Science 14.4 (2021), pp. 1635–1651.

https://github.com/xamarin/Xamarin.Forms/issues/8382#issuecomment-54999G11
https://github.com/xamarin/Xamarin.Forms/issues/8382#issuecomment-54999G11
https://github.com/ybq/Android-SpinKit/issues/59
https://github.com/ybq/Android-SpinKit/issues/59
https://github.com/ybq/Android-SpinKit/issues/59
https://github.com/ybq/Android-SpinKit/issues/59

	Preface
	Summary
	Introduction
	Problem Statement
	Research Objectives
	Methodology Overview
	Scope
	Outline

	Background
	Battery Developments
	Battery Optimization
	History of Android Power-Saving Features
	Potential for Bugs
	Testing Approaches
	Accuracy
	Realism
	Performance
	Coverage

	Automated Test Generation
	Energy Testing

	Related Work
	System Settings Bugs
	Data Loss Bugs
	Detecting Problematic APIs
	Android Battery Saver
	Android Doze Mode
	Dark Mode

	Characterization
	Characterization Methodology
	Determine Keywords
	Query Documentation and Issues
	Data Preprocessing and Cleaning
	Collect and Categorize APIs

	Characterization Results
	Detailed Characterization of Identified Issues

	Conclusion

	Bug Detection
	Problem Selection
	Motivating Example
	Problem Specification
	Tool Approach
	Challenges
	Technical Analysis
	Required Modifications to CiD
	Distinguishing Invocations
	Distinguishing Arguments

	Architecture
	Main Components
	Modifications to the Edge Representation

	Tool Evaluation
	Tool Evaluation Research Questions
	Tool Evaluation Methodology
	Selection of Applications
	Application Filtering
	Ground Truth Determination
	Experimental Setup
	Reporting Issues

	Tool Results
	RQ1: Prevalence of Battery Saver Animation Bugs
	RQ2: Effectiveness of Diagnostic Tool
	Error Analysis
	False Positives
	False Negatives

	RQ3: Efficiency of Diagnostic Tool
	RQ4: Usefulness of Diagnostic Tool

	Discussion
	Discussion
	Implications
	Limitations
	Future Directions and Recommendations

	Conclusion
	References

