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Abstract

Mimetic discretization methods are emerging techniques designed to preserve, as much as
possible, properties of the continuous differential equation. In this framework the geometric
nature of physics plays a crucial role. Thus, it is necessary to use a new language to model
physical problems, Differential Geometry. The calculus of differential forms reveals intrinsic
structures that usually, are obscured by metric notions implicitly encoded in vector calculus.
In the language of differential forms the unified treatment of scalar and non-scalar advection
is simplified by the use of one operator: the Lie Derivative.

Much attention has been devoted to the discretization of scalar advection problems in nu-
merical analysis. Therefore, it would be expected that non-scalar advection is not common
or relevant. This is not true. The so-called magnetic advection in electromagnetism or the
advection of vorticity in fluid mechanics are examples of important non-scalar fields. Fur-
thermore, it is widely known that the classical Galerkin formulation when applied to scalar
convection may lead to spurious (non-physical) oscillations. The goal of this thesis is to derive
a physically accurate discretization of the generalized advection problem. Thus, very small
or even vanishing artificial diffusion should reflect the robustness of these methods. Also in
this thesis, geometric structure-preserving semi-Lagrangian and Eulerian discrete schemes are
derived.

For the semi-Lagrangian methods it is necessary to determine the flow of a vector field, i.e.
it is necessary to solve a set of ordinary differential equations. A new scheme, that aims
to preserve the integral of velocity is presented and compared with high-order fully implicit
Runge-Kutta methods. Furthermore, to compute the advection a backtrack algorithm is
implemented. It will be shown that this scheme allows for large time steps, but, the error of
the backtrack integration proves to be a drawback. For Eulerian methods, the derived scheme
is solved based on a flux approach. Here the time step is more restrictive.
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“Any intelligent fool can make things bigger and more complex... It takes a lot of
courage to move in the opposite direction.” — Albert Einstein





Chapter 1

Setting the stage

Physics in essence is an observing and measuring science. Associated with every object mea-
sured there is spatial and temporal geometric object. Thus, physical laws are no more than a
relation between these different objects. Many of these laws are characterized by symmetries
and invariants. For example, momentum preservation is a consequence of space symmetry,
i.e space is all the same, from a mathematical point of view there is not a preferred origin.
This connection between conservation laws and certain symmetries is elegantly formulated by
Noether’s theorem. Thus, preserving these structures numerically, independent of the order of
accuracy of the method, is crucial to avoid unphysical solutions [5]. For example, it is known
that linear momentum is preserved when dealing with the motion of a rigid body. Obviously,
when designing a simulation of this system the linear momentum should also be preserved.
This principle is likelihood to remove any unphysical behavior. The goal of structure preser-
vation from the continuous equation to their discretization will be constant in this thesis.

The so-called geometric methods are designed with the clear goal to preserve symmetries and
invariants. Geometry plays a vital role in this derivation. Consider an object with a certain
mass and volume, the average mass density is the mass divided by the volume. Until this
point, it is clear that average mass density is connect with a volume. In the purely mathe-
matical world, consider that in the limit the volume tends to zero, which allows to compute
density in a point. However, as small the limit can get the volume is never a point. These
two views are the principles of integral and differential modeling, respectively. The integral
modeling is the physical foundation of mimetic methods. The fact that physical laws are
derived without mathematical abstractions, i.e. the limiting process, leads to a more phys-
ical discretization process. Furthermore, the association of physical variables to spatial and
temporal geometric objects has deserved attention of several authors, [6, 7, 8, 9].

On the other hand, it was proven that the use of classic vector calculus is inadequate in
fully encoding physical quantities and their relation with geometry. Hence, it is necessary to
find a mathematical language that can encode different geometric structures in a concise and
consistent manner for both smooth and curved spaces. Differential geometry provides this
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2 Setting the stage

framework. Moreover, this language allows a clear identification of metric (angles, lengths,
distances, etc) and non-metric (topological) components. In its core is the concept of differ-
ential form, that is an abstraction of the measurement process. Hence, the machinery of this
coordinate-free approach are the line, surface and volume integral.

Finding a discrete notion of differential geometry is a crucial point in mimetic methods. Al-
gebraic topology proves to be deeply connected with differential geometry and its objects.
Mainly, the concepts of chains and cochains provide a natural tool to discretize exterior cal-
culus in finite grids. Chains are related with the geometric objects of the finite grid, i.e.
vertices, edges, surface and volumes. On the other hand, cochains are pointwise functions,
line integrals, surface integrals and volume integrals. This view is perfectly compatible with
the use of scalar functions, as in finite element methods, or volume integrals, as in finite
volume methods [10]. In fact, it uses edge elements and facet elements introduced in the
electromagnetism framework as Hdiv and Hcurl.

The so-called discrete exterior calculus (DEC) [11], or equivalently, the mimetic finite dif-
ference approach [12], or finite element exterior calculus [1] proposes similar discretizations
that preserve vector calculus fundamental identities. The use of differential geometry in the
context of electromagnetism is wide spread [7]. However, its application to fluid mechanics
remains limited.

Recently [13] established a general framework combining mimetic discretizations with spec-
tral methods. Spectral/high-order methods are established tools in the field of discretization
of PDE’s [14, 15]. These methods use high-order basis functions. Its application to algebraic
topology, which is the discrete counterpart of differential forms, is done in order to introduce
smoother interpolation functions and use the valuable convergence properties of spectral ele-
ments.

The objective of this work is to model the generalized advection equation through the frame-
work of differential geometry, by discretizing the Lie derivative. This treatment of advection
allows a generalization from scalar to non-scalar fields. The advection of scalar fields is com-
mon and several numerical schemes have been proposed to solve these types of hyperbolic
conservation laws [16, 17, 18, 19]. Recently, [20] have extended this applications to non-
scalar fields using finite volume schemes based on DEC. Low numerical diffusion is attainable
through the use of high-resolution finite volume methods. A similar approach, however, in
context of finite element methods have been proposed by [21]. A different approach that
combines differential geometry and variational calculus has been proposed by [22]. The real-
ization that the loss of Lagrangian structures is a major numerical impediment of standard
numerical techniques [23] is the foundation of this work.

Pedro Pinto Rebelo Master of Science Thesis



1-1 Why geometric mechanics? 3

1-1 Why geometric mechanics?

A common goal when designing numerical methods is to search for converge under refinement,
i.e. when the size of the discrete element goes to zero the results accurately represent the
continuous physical system. However, in the long term, even having convergence under refin-
ing, the numerical scheme might reveal inaccurate since important invariants are not kept in
mind. The following examples give an insight on this.

As mentioned before, vector calculus tends to blur underlying mathematical structures. A
common example is to consider the well-known Poisson equation, ∆p = f , where ∆ = ∂2

∂x2 +
∂2

∂y2 . This can be rewritten as a first order system,

∆p = f ⇔


∇ · q = f

∇p = u

u = q

(1-1)

Both equations in (1-1) can be discretized in an exact way, i.e. without error,
∇ · q = f

∇p = u

u = q

⇐⇒


qi,j − qi−1,j + qi,j − qi,j−1 = fi,j

ui,j = pi,j − pi−1,j

ui,j = qi,j

(1-2)

(a) Piecewise constants for p
and u

(b) Piecewise constants for
p and Raviart-Thomas ele-
ments for u

Figure 1-1: Approximation of the first order system for Poisson’s equation, with u = x(1 −
x)y(1− y) [1].

Naively, it would be expected that using (1-2) a solution without error would be retrieved.
This is not true [1]. The reason for this is that in fact p and u cannot be discretize in the
same way, i.e. as point value quantities, because they have different geometric interpretation.
Inside the FEM community this has been identified as shown in Figure 1-1, where a com-
parison between using piecewise constants for p and, either, piecewise linear (Figure 1-1a) or
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4 Setting the stage

edge Raviart-Thomas elements (Figure 1-1b) for u. It will be shown in the following section
if one was aware of the geometry behind the problem the immediate choice would be the edge
Raviart-Thomas elements.

The uncertain geometric nature of vector calculus is also revealed in the treatment of scalar
fields. Consider a temperature field, T (x, y, z) and a mass density field, ρ(x, y, z). Both are
scalar fields, however, one is associated with point values and the other as an average of mass
per volume. The same problem occurs if one consider a potential flow, u(x, y, z) = ∇φ and
a flux vector f(x, y, z). The first is defined along line segments and the second one along
surfaces. However, in vector calculus both are described by vectors. These two intuitive ex-
amples prove the lack of crucial information to give proper representation of physical variables
by vector calculus.

Lets consider the motion of a single body. Its dynamic behavior can be described by Newton’s
second law, F = ma or equivalently,

ẋ = v

v̇ = F

m
,

(1-3)

where, ẋ represents the velocity of the system and v̇ the acceleration. Using an explicit Euler
to discretize these ODE’s,

xk+1 = xk + ∆tvk

vk+1 = vk + ∆tF (xk)
m

.
(1-4)

Alternatively, to Newton’s second law an Hamilton’s principle can be considered, this lead to
the following system of ODE’s,

xk+1 = xk + ∆tvk+1

vk+1 = vk + ∆tF (xk)
m

.
(1-5)

Both methods have the same accuracy and convergence to the correct solution when refined.
However, the second one even using coarser meshes preserve a crucial property, the Hamilto-
nian.
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1-2 Outline

Here is a brief summary of the contents of this thesis. In Chapter 2 a revision of the stan-
dard modeling of convection-diffusion is presented. Afterwards, in Chapter 3 the concepts of
differential geometry of continuous modeling of physical problems are introduced. It will be
shown that convection can be modeled by means of the Lie derivative and it can be seen in a
more dynamic or algebraic approach that later will be the foundation of the semi-Lagrangian
and Eulerian description, respectively.

The next chapter, Chapter 4, presents the connection between the discrete algebraic topology
and the continuous differential geometry world. The discrete version of the metric free vector
operators, grad, curl and div is presented.

Chapter 5 defines two crucial numerical operators, the reduction and reconstruction, that
generalizes the approximation spaces. Afterwards, in Chapter 6 different type of ODE solvers
are compared for different test cases, this will be the base for the dynamic view of convection.

Finally in Chapter 7 the generalized convection is computed. The computations are divided
in two main fields, Semi-Lagrangian and Eulerian. In each section both 1D and 2D test cases
are presented. The conclusions and future perspectives are presented in Chapter 8.
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Chapter 2

Review of convection-diffusion

Rarely, heating, air conditioning and weather forecast are considered in terms of the math and
physics involved. Fluid dynamics and transport phenomena, such as heat and mass transport
are a critical part involved in these systems. Convection and diffusion are responsible for
temperature fluctuations and transport of pollutants in air, water or soil. Therefore, the
ability to predict these phenomena is essential. Figure 2-1 shows a practical example.

(a) Top view of the smoke
plume

(b) CFD simulation

Figure 2-1: Smoke plume of oil explosion in Baghdad

This chapter gives a brief introduction to the mathematical structures of transport equations.
A more detail discussion can be found [16]. Section 2-1 reviews the concept of convection
and diffusion and their mathematical modeling, respectively. Afterwards, Section 2-2 details
the different mathematical nature that the transport equations possess. Section 2-3 models
boundary conditions. Finally, in Section 2-4 details of the numerical and physical constraints
are discussed.
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8 Review of convection-diffusion

2-1 Mathematics behind transport phenomena

Consider an arbitrary control volume, V ∈ Rd, where d is the number of space dimensions. If
the fluid is in motion, it can flow across the control surface S which forms the boundary of
V . Figure 2-2 gives an example of such control volume.

Figure 2-2: A fixed control volume V bounded by the control surface S

Let c(x, t) ∈ R denote the concentration (amount per unit mass) of a scalar conserved quantity
at point x ∈ V and time t ≥ 0. The concentration per unit of volume is given by u = ρc,
where ρ is the mass density of the carrier fluid. The total amount of the conserved variable
inside V is given by the volume integral,

Cv =
∫
V
u(x, t)dx =

∫
V
ρ(x, t)c(x, t)dx. (2-1)

The time rate of change of Cv of (2-1) depends on the rate at which c flows, i.e enters or
leaves V through the boundary S. This rate is called flux and denoted by

f(x, t) = (f1, . . . , fd),

where fk corresponds to the rate of transport in the k-th coordinate direction, per unit area
and time. If ds = nds is an infinitesimally small patch of S with the unit outward normal
n, then the mass crossing this patch per unit time is f · nds. In the simplest case, the flux
vector f is a linear function of u and\or ρ∇c, where ∇ =

(
∂
∂x1

, . . . , ∂
∂xd

)
.

Processes such as chemical reaction or heating give rise to interior sources or sinks that
generate s(x, t) units of concentration per unit volume and time. Thus, the temporal variation
of (2-1) satisfies the integral conservation law of the form

∂

∂t

∫
V
u(x, t)dx +

∫
S

f · nds =
∫
V
s(x, t)dx. (2-2)

The surface integral is the mass that leaves V per unit area and time, whereas the right-hand
side of (2-2) corresponds to the mass produced inside V per unit time. If the functions u(x, t)
and f(x, t) are differentiable, then the divergence theorem applied to the surface integral in
(2-2) yields ∫

V

[
∂u(x, t)
∂t

+∇ · f(x, t)− s(x, t)
]
dx = 0.

Since any V can be chosen arbitrarily the following partial differential equation emerges,
∂u(x, t)
∂t

+∇ · f(x, t) = s(x, t). (2-3)
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2-1 Mathematics behind transport phenomena 9

2-1-1 Convective and Diffusive fluxes

Convection consists in the transport of quantities of interest with the fluid flow. For example,
consider an horizontal pipe filled with water that flows from the left to the right with constant
velocity. Consider the leaf at time t = 0 displayed in Figure 2-3. After a certain time interval,
∆t, the leaf has moved towards the outlet.

Figure 2-3: A fixed control volume V bounded by the control surface S

Another mechanism that allows transport is diffusion. Random molecular motion induces
the diffusive fluxes. For instance, consider a tank where the left half contains ink and the
left-right water. At time t = 0 there is a diaphragm that divides the tank in half. After
removing the diaphragm the system will tend to equilibrium. This means that the ink will
dissolve in the water.

Figure 2-4: A fixed control volume V bounded by the control surface S

Knowing the velocity field v(x, t) the volume of fluid that crosses an infinitesimally small
patch ds = nds during a small time interval dt is

dV = (v · nds)dt.

If the n is taken to be the unit vector along the coordinate direction, the convective flux

fC = v(x, t)u. (2-4)

On the other hand, the diffusion process is driven by the gradients of the concentration field.
The diffusive flux vector is,

fD = −D(x, t)ρ∇c, (2-5)
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10 Review of convection-diffusion

where D = {dij} is a symmetric positive definitive diffusivity matrix. For a isotropic diffusion
in all coordinate directions d(x, t) > 0 the diffusive flux reduces to

fD = −d(x, t)ρ∇c. (2-6)

Thus, the total flux is given by

f(x, t) = v(x, t)u− D(x, t)ρ∇c. (2-7)

The relative strength of fC and fD can be expressed in terms of the Peclet number

Pe = vL

d
, (2-8)

where v is the reference velocity, L the geometric length reference and d the diffusion coef-
ficient. Thus, in the limit for pure convection the Peclet number is infinitive and for pure
diffusion is zero.

2-2 Transport equation

The generic transport partial differential equation is given by

∂ρc

∂t
+∇ · (vρc)−∇ · (Dρ∇c) = s. (2-9)

The terms of 2-9 correspond:

• ∂ρc
∂t the net gain \loss of concentration per unit volume and time;

• the convective term ∇ · (vρc) due to transport by the fluid velocity v;

• the diffusive term −∇ · (Dρ∇c) due to nonuniform distribution of the concentration c;

• s the source or sink

In this thesis the parameters ρ, v, D and s are assumed to be known. Moreover, (2-9) can
also be formulated in terms of u = ρc

∂u

∂t
+∇ · (vu)−∇ · (D∇u) = s. (2-10)

Furthermore, if the velocity field v is incompressible, ∇ · v = 0, then

∇ · (vu) = v · ∇u+ (∇ · v)u.

Then,

∂u

∂t
+ v · ∇u−∇ · (D∇u) = s. (2-11)
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2-2 Transport equation 11

Alternatively take the average of (2-10) and (2-11) which gives the skew-symmetric form of
the convective term,

∂u

∂t
+ 1

2v · ∇u+ 1
2∇ · (vu)−∇ · (D∇u) = s. (2-12)

Note that the previous three formulations are equivalent for divergence-free velocity-fields but
only (2-10) is conservative for ∇ · u 6= 0. Equation (2-10) has a variety of types of differential
equations that are summarized in Table 2-1.

Table 2-1: Type of equation for the transport problem

Elliptic ∇ · (vu− D∇u) = s
−∇ · (D∇u) = s

Hyperbolic ∇ · (vu) = s
∂u
∂t +∇ · (vu) = s

Parabolic ∂u
∂t +∇ · (vu− D∇u) = s

∂u
∂t −∇ · (D∇u) = s

2-2-1 Elliptic transport equation

If the system reaches an equilibrium between convection and diffusion the time derivative at
(2-10) vanishes

∇ · (vu− D∇u) = s. (2-13)

This is a second-order elliptic type of PDE. In elliptic problems the information does not have
a preferred direction,but rather, propagates in all directions. Thus, the change of solution u
at point x1 ∈ Ω may influence the solution at any other point x2 ∈ Ω.

Furthermore, for the steady-diffusion process, i.e. v = 0 is also a elliptic PDE,

−∇ · (D∇u) = s. (2-14)

Considering a constant diffusion coefficient, d, then the following Poisson equation emerges

−∆u = f. (2-15)

2-2-2 Hyperbolic transport equation

Consider purely convective transport, D = 0. In that case the following hyperbolic PDE
appears in steady state

∇ · (vu) = s. (2-16)
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12 Review of convection-diffusion

For this type of equations the information is transported at a finite speed along the streamlines
of the stationary velocity field v(x). Boundary conditions must be specified at the inflow part.

For the unsteady case,

∂u

∂t
+∇(vu) = s. (2-17)

2-2-3 Parabolic transport equation

Consider now the unsteady diffusion process with constant diffusion,

∂u

∂t
− d∆u = s. (2-18)

This is a parabolic equation, even though, the steady part corresponds to an elliptic equation.
Furthermore, in these type of equations the information travels forward in time at infinite
speed and there is no backward influence.

2-3 Boundary conditions

Let Ω ∈ Rd be a bounded domain and let the time interval vary between 0 and T . The
boundary part Γ of Ω consists in an inflow part Γ− = {x ∈ Γ|v · n < 0}, an outflow part
Γ+ = {x ∈ Γ|v · n > 0} and a solid wall Γ0 = {x ∈ Γ|v · n = 0}, where n denotes the unit
outward normal to the boundary at the point x ∈ Γ.

If the values of u are known on ΓD ∈ Γ it is possible to prescribe Dirichlet boundary conditions

u(x, t) = uD(x, t), ∀x ∈ ΓD,∀t ∈ (0, T ). (2-19)

Alternatively, a given normal flux can be prescribed defined as Neumann boundary condition

f · n = g(x, t), ∀x ∈ ΓN , ∀t ∈ (0, T ). (2-20)

Additionally, an initial state should be prescribed

u(x, 0) = u0(x), ∀x ∈ Ω. (2-21)

2-4 Numerical and physical constraints

In order to design reliable numerical schemes there are important constraints to take into
account, mainly

• Consistency means that as numeric parameters are refined (e.g mesh size, time step,
order of the method,etc) the discrete equations tends to the continuous representation;
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2-4 Numerical and physical constraints 13

• Stability concerns the fact that numerical errors (e.g. roundoff) are not amplified;

• Convergence measures the error between the discrete and exact solution as numeric
parameters are refined.

Some discretization techniques might converge to stable numerical solutions however if they
do not respect the physics of the problem they are useless. Therefore, concepts like:

• Conservation property is an essential requirement for the solution of transport phe-
nomena. The fact that the physical laws are build under this principle should also be
reflected in the numerical solution;

• Boundedness means that the solution must be within a certain range. For example,
temperature or density cannot be negative;

• Causality assures that the information travels at the right speed and direction.
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Chapter 3

Old wine new bottles: Differential
Geometry

As the title suggests, this chapter does not intend to reformulate or reinvent mathematical
concepts that are well studied. In fact, it intends to introduce a powerful new language,
differential geometry, to describe physical models. The aim is the possibility to rewrite phys-
ical models with a deep connection with a geometric basis. This might come as a surprise,
but bear in mind that ideas introduced by Euclid, Maxwell or Kelvin were strongly based
on geometric concepts. Therefore, before entering in the discrete/numerical world, one must
first understand the inherent structures, i.e. the geometric background upon which physics is
build [6]. An astonishing observation is the realization that different physical theories share
a common structure. This translates the common engineer feeling that concepts from elec-
tromagnetism can be easily transfered for fluid mechanics, for instance.

Furthermore, many concepts from differential geometry have a direct discrete representation.
Unfortunately this is not true for all operators. For example, the operator that generalizes
convection, the Lie derivative, does not have a one-to-one correspondence in the discrete world
of algebraic topology and some numerical modeling needs to be applied. On this chapter con-
cepts from this continuous representation will be introduced in a intuitive manner for a more
formal introductions see [8, 9, 24, 25, 26].

First of all, in Section 3-1 the use of geometric ideas as modeling tool is introduced. The
aim is connect with physics with a geometric representation. Afterwards, in Section 3-2 the
connection between different objects is established by action of differential geometry and it
main operators are explained.
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16 Old wine new bottles: Differential Geometry

3-1 Geometric modeling

It is common to understand the world as a 4-dimensional shape. This is inherently a ge-
ometric view. This representation goes back to the “Father of Geometry”, Euclid. In his
work Euclid modeled physical phenomena using simple, geometric descriptions that reveal
symmetries and experimental invariants, e.g mass conservation. This approach has been the
foundation of many physical theories. Unfortunately, vectorial or tensorial notations, i.e. the
use of a coordinate systems in which the equations are expressed, keeps the geometric nature
of this theories under the hood.

Furthermore, it is possible to distinguish between two types of physical variables, global and
local. Global quantities are the ones that are actually measured, therefore are associated with
space-time domains -e.g. mass. Local variables - e.g. density - are derived quantities and
it is natural to associate them to the oriented geometric object of the corresponding global
variable. Reviewing the previous example, consider the mass of an object,

m =
∫
V
ρdv, (3-1)

in herem represents the global variable and ρdv the local quantity with the respective oriented
object associated. Standard vector calculus does not allow this association to be represented
[27].

In every physical theory quantities are related to the most basic geometric objects. Moreover,
it is necessary to orient these objects. There are two kinds of orientations, inner and outer.
The first one is related only with the geometric object itself and the second one relates the
geometric object and the embedding space.

In this spirit [6] established various derivations for different physical theories. The importance
of this approach and its advantages have been widely recognized in the field of electromag-
netism, [7] where the main quantities of interest are best described as forms. Table 3-1
summarizes some of this association.

Table 3-1: Forms used in Electromagnetism

Quantity Unit Dimension
Electric Potential (φ) V 0
Electric Flux (D) V/m 1
Magnetic Field (B) (V · s) /m2 2
Charge Density (q) A/m3 3

Each variable is associated with a different dimensional unit. A common example to prove the
strength of this formulation is to define work. Consider a charge moving from point x to point
x + v(x), the energy transfered by the electric field, E, is proportional to the displacement,
v(x). In a geometric interpretation, the value E should be a linear functional on the tangent
space at x, as it will be shown in the next section this corresponds to a 1-form.

Pedro Pinto Rebelo Master of Science Thesis



3-2 Differential Geometry 17

3-2 Differential Geometry

Previously, it was argued that vector calculus obscures the geometric nature of physical mod-
els. Thus, it is necessary to introduce a new language that allows to re-express physical
theories in a way that the connection with geometry is not lost. Differential geometry has
proven to be a natural language for electromagnetism, Hamiltonian mechanics, thermody-
namics, etc [8, 9, 26, 28, 29].

This concise and consistent formalism allows to express differential and integral equations
on smooth and curved space, while revealing geometric invariants [30]. The integration of
differential forms is an abstraction of the measurement and as it will be shown the calcu-
lus by differential forms provides and intrinsic, coordinate-free approach to different physical
problems [31]. The awareness that different physical quantities are associated with different
geometric notions, therefore, have different properties is crucial. As mentioned before, differ-
ent fields must be associated with different geometric objects, for example temperature with
a point or mass density with a volume.

3-2-1 Differential forms

Lets start by considering a line integral along a curve from A to B. Its is known that if the
integration is reversed, i.e. from B to A the integral value changes to its negative∫ B

A
f(x)dl = −

∫ A

B
f(x)dl. (3-2)

Same principle occurs in oriented surface integrals if the direction of the normal is reversed,∫∫
F · ndS, (3-3)

the normal can be thought as the cross product of two basis vectors within the surface. Func-
tion on the order by which the cross product between the two basis vectors is done the sign
to the normal, n, is assigned.

If an antisymmetric product - wedge product ∧ - is introduced, such that the cross product
between the basis vectors is given by,

dx ∧ dy = −dy ∧ dx. (3-4)

This automatically gives the right orientation to the surface. Similarly, the volume element
can be written as,

dV = dx ∧ dy ∧ dz, (3-5)

which will automatically encode orientation, i.e. if any pair of these basis forms are changed
the sign changes. Furthermore,
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18 Old wine new bottles: Differential Geometry

dx ∧ dx = dy ∧ dy = dz ∧ dz = 0.

At this point, this concept can be extended to the full integrand,

α1 = Axdx+Aydy +Azdz, (3-6)

this object is called a 1-form. A summary of the available k-forms in R3 and their respective
connection with geometry is summarized in Table 3-2.

Table 3-2: Forms available in R3

0-form α0 = A(x, y, z)

M
n

Points
1-form α1 = A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz Lines
2-form α2 = A(x, y, z)dydz +B(x, y, z)dzdx+ C(x, y, z)dxdy Surfaces
3-form α3 = A(x, y, z)dxdydz Volumes

Clearly, differential forms come in different flavors. A 1-form can be integrated over a 1D-
manifold,M1, i.e a smooth curve,

∫
M1

α1 =
∫
M1

A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz. (3-7)

Table 3-3 summarizes the equivalent duality pairing for all forms in R3. Functions, line,
surface and volume elements are called 0, 1, 2 and 3-forms, respectively. The main difference
to standard vector calculus is that not only the vector proxies, A(x, y, z), B(x, y, z) and
C(x, y, z), are taken into account but also the basis forms, dx, dy and dz. The basis forms in
the object indicates the type of form.

Table 3-3: Duality paring for k-forms in R3

0-form
〈
α0,M0〉 = α(M0)

1-form
〈
α1,M1〉 =

∫
M1 α1

2-form
〈
α2,M2〉 =

∫
M2 α2

3-form
〈
α3,M3〉 =

∫
M3 α3

A more formal definition for differential forms is that they are anti-symmetric k-tensors acting
on vectors in the tangent space to a manifold, TxRn. Translating this to a more engineering
approach, k-forms are the objects found “underneath“ the integral sign. They are of extreme
importance because of their ability to capture the geometric nature of the local quantities.

Addition and subtraction of differential forms are exactly as expected,
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α1 = A1(x, y, z)dx;
β1 = A2(x, y, z)dx+B2(x, y, z)dy;

α1 + β1 = (A1(x, y, z) +A2(x, y, z)) dx+B2(x, y, z)dy.
(3-8)

Table 3-4 summarizes common examples of the connection between k-forms and physical
variables. It is clear that the physics has inherently a geometric character.

Table 3-4: Example of physical variables associated with k-forms

Temperature α0 = T (x, y, z)
Velocity α1 = u(x, y, z)dx+ v(x, y, z)dy + w(x, y, z)dz
Vorticity α2 = wz(x, y, z)dxdy + wy(x, y, z)dzdx+ wx(x, y, z)dydz
Density α3 = ρ(x, y, z)dxdydz

3-2-2 The wedge product between forms

The wedge product is a product between k-forms and l-forms and the result is a (k+ l)-form.
Let the space of k-forms in Ω be denoted by Λk(Ω) and the space of l-forms be given by
Λl(Ω),

∧ : Λk(Ω)× Λl(Ω)→ Λk+l(Ω) (3-9)

The wedge product, ∧, as the following properties:

• Associative: (a ∧ b) ∧ c = a ∧ (b ∧ c);

• Multi-linear: (αa+ βb) ∧ (γc+ δd) = αγ(a ∧ c) + αδ(a ∧ d) + βγ(b ∧ c) + βδ(b ∧ d);

• Anti-symmetry: a ∧ b = (−1)klb ∧ a.

Consider the following examples of the action of the wedge product,

α1 = Adx

β2 = Bdy ∧ dz.
(3-10)

Then the wedge product is,

α1 ∧ β2 = (Adx) ∧ (Bdy ∧ dz)
= ABdx ∧ dy ∧ dz
= (Bdy ∧ dz) ∧ (Adx)
= β2 ∧ α1.

(3-11)
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However, considering two 1-forms,

α1 = Adx

β1 = Bdy + Cdz,
(3-12)

then the wedge is given by,

α1 ∧ β1 = (Adx) ∧ (Bdy + Cdz, )
= ABdx ∧ dy +ACdx ∧ dz
= −Bdy ∧Adx− Cdz ∧Adx
= −β1 ∧ α1.

(3-13)

It can be shown that the wedge product of a 1-form, in R3, behaves just like the cross product
in vector calculus. Consider the following example,

α1 = a1dx+ a2dy + a3dz;
β1 = b1dx+ b2dy + b3dz;

α1 ∧ β1 = (a1dx+ a2dy + a3dz) ∧ (b1dx+ b2dy + b3dz)
= (a1b2 − a2b1)dx ∧ dy + (a1b3 − a3b1)dx ∧ dz + (a2b3 − a3b2)dy ∧ dz.

(3-14)

The coefficients are the same that would appear in a vector cross product of α and β. The
advantage of using differential forms is that the metric dependence, i.e the orthogonality
between vectors, does not emerge when using the wedge product. Furthermore, the wedge
product generalizes the cross product to Rn. It is common practice to rewrite dx∧ dy simply
as dxdy.

Other example is the volume of a parallelepiped spanned by the vector a, b and c that can be
determined,

γ1 = c1dx+ c2dy + c3dz;
α1 ∧ β1 ∧ γ1 = (a1dx+ a2dy + a3dz) ∧ (b1dx+ b2dy + b3dz) ∧ (c1dx+ c2dy + c3dz)

= (a1b2c3 − a3b2c1 + a2b3c1 − a3b1c2 + a2b3c2 − a2b1c3)dx ∧ dy ∧ dz.
(3-15)

3-2-3 Exterior derivative

The exterior derivative is a generalization of the differential of a function. It maps k-forms
to (k + 1)-forms.

d : Λk(Ω)→ Λk+1(Ω) (3-16)

The exterior derivative has the following properties
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• Leibniz’s rule: d(a ∧ b) = da ∧ b+ (−1)ka ∧ db;

• d ◦ d = 0.

Let α0 be a 0-form given by α0 = A(x, y, z). Then the exterior derivative, dα0 is given by

dα0 = ∂A

∂x
dx+ ∂A

∂y
dy + ∂A

∂z
dz. (3-17)

The vector proxy of the 1-form, dα0, resembles the gradient in vector calculus. The physical
meaning, for example α0 is a temperature representation, computing dα0 corresponds to de-
termining the temperature gradient.

Consider, the 1-form, α1 = A(x.y, z)dx + B(x, y, z)dy + C(x, y, z)dz, the exterior derivative
is given by

dα1 =
(
∂C

∂y
− ∂B

∂z

)
dydz +

(
∂A

∂z
+ ∂C

∂x

)
dzdx+

(
∂B

∂x
− ∂A

∂y

)
dxdy. (3-18)

Again, the vector proxy of the 2-form, dα1, resembles the rotational operation from vector
calculus, ∇×.

At last, applying the exterior derivative to the 2-form, α2 = A(x, y, z)dydz+B(x, y, z)dzdx+
C(x, y, z)dxdy,

dα2 =
(
∂A

∂x
+ ∂B

∂y
+ ∂C

∂x

)
dxdydz. (3-19)

The vector proxy of the 3-form, dα2, corresponds to the divergence, ∇·. Table 3-5 summarizes
the action of the exterior derivative for different k-forms in R3.

Table 3-5: Relation between the exterior derivative and vector calculus operations

dα0 Gradient: ∇
dα1 Curl: ∇×
dα2 Divergence: ∇·

It should be clear now that the fact that d (dα) = 0 translates the identities curl ◦ grad = 0
and div ◦ grad = 0.

R Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω) 0d

∇
d

∇×
d

∇·
d

(3-20)
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3-2-4 Transformation

A transformation of a k-form, αk can be written using the so-called pullback operator. Sup-
pose there is a mapping defined by, φ : (x, y, z) → (u, v, w), a differential form, αk given in
terms of (u, v, w) integrated in a manifold,M, then∫

φ(Mk)
αk =

∫
Mk

φ?αk. (3-21)

Equivalently, 〈
φ(Mk), αk

〉
=
〈
Mk, φ?αk

〉
. (3-22)

Therefore, the pullback operator takes a k-form defined in (u, v, w) to a k-form defined in
(x, y, z), i.e. φ? : Λk(Ω)→ Λk(Ω′). The pullback commutes both with the wedge product and
the exterior derivative,

• φ?dαk = dφ?αk ;

• φ?
(
αk ∧ βl

)
=
(
φ?αk

)
∧
(
φ?βl

)
.

Table 3-6: Pull-back action on k-forms in R3

α0 = f(y) φ?α0 = f(φ(x))

α1 =
3∑
i=1

fi(y)dyi φ?α1 =
3∑
j=1

3∑
i=1

fi(φ(x)) ∂φ
i

∂xj dx
j

α2 =
∑

1≤i<j≤3
fij(y)dyi ∧ dyj φ?α2 =

∑
1≤k<l≤n

∑
1≤i<j≤m

fij(φ(x))det
(
∂φi

∂xk
∂φi

∂xl

∂φj

∂xk
∂φj

∂xl

)
dxk ∧ dxl

α3 = f(y)dy1 ∧ dy2 ∧ dy3 φ?α3 = f(φ(x))det


∂φ1

∂x1
∂φ1

∂x2
∂φ1

∂x3
∂φ2

∂x1
∂φ2

∂x2
∂φ2

∂x3
∂φ3

∂x1
∂φ3

∂x2
∂φ3

∂x3

 dx1 ∧ dx2 ∧ dx3

The use of a parametric map allows to differentiate and integrate without need of metric
information. A common example is the computation of the work required to move a charge
through an electric field. Let the electric field intensity be given by, E1 = 2xydx+x2dy− dz.
A charge of q = 1C is transported over the path P given by (x = t2, y = t, z = 1− t3) from
t = 0 to t = 1. The work required is given by,

W = −q
∫
P

2xydx+ x2dy − dz

= −q
t=1∫
t=0

P ?E,
(3-23)
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Table 3-7: Connection between the integral theorems in vector calculus and differential geometry

0-Forms
∫
M1 dα0 = α0(b)− α0(a) Stokes

∫
M1 ∇ψ · d−→s = ψ(b)− ψ(a)

1-Forms
∫
M2 dα1 =

∫
∂M2 α1 Kelvin-Stokes

∫
M2

(
∇×

−→
A
)
· −→n dS =

∫
∂M2
−→
A · d−→s

2-Forms
∫
M3 dα2 =

∫
∂M3 α2 Gauss

∫
M3

(
∇ ·
−→
A
)
dV =

∫
∂M3
−→
A · −→n dS

where P ?E is the pullback of the field 1-form to the path P,

P ?E = 2(t2)(t)2tdt+ (t2)2dt− (−3t2)dt
= (5t4 + 3t2)dt.

(3-24)

Integrating this 1-form in t over the interval [0, 1],

W = −
t=1∫
t=0

(5t4 + 3t2)dt = −2J, (3-25)

this is the total work required to move the charge along P.

3-2-5 Generalized Stokes theorem

Differential forms are natural objects to be integrated over a k-dimensional manifold. As
shown in the previous sections the vector operations, grad, curl and div can be general-
ized depending on the space Λk where the exterior derivative, d, acts. Therefore, the integral
theorems from vector calculus, i.e. Stokes, Kelvin-Stokes and Gauss can also be re-interpreted.

Consider a k-form αk and an k + 1-manifold, Mk+1 with boundary ∂Mk, the generalized
Stokes theorem is given by ∫

Mk+1
dαk =

∫
∂Mk+1

αk (3-26)

Table 3-7 together with Figure 3-1 summarize the connection between the integral theorems
in vector calculus and differential geometry.

The integration can also be seen as the duality pairing between a k-form and a k-manifold.
Thus, the generalized Stokes theorem can be written as〈

dα(k−1),Mk
〉

=
〈
α(k−1), ∂Mk

〉
(3-27)

This representation highlights that the exterior derivative, d, is the formal adjoint of the
boundary operator ∂.
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A B A
B

(a) Stokes (b)
Kelvin-
Stokes

(c) Gauss

Figure 3-1: Geometric interpretation of the generalized Stokes theorem

3-2-6 Hodge-?

Lets return to the Poisson equation ∆φ = f . In terms of differential geometry, it was already
shown that div corresponds to the action of the exterior derivative in 2-forms, thus

dα2 = f3 (3-28)

The action of the exterior derivative in 0-forms corresponds to action of the grad, thus

dα0 = β1 (3-29)

The assumptions done in Chapter 1 Section 1-1, are clearly wrong, because, β1 6= α2. Between
(3-28) and (3-29) there is link missing that connects both equations. It is necessary to create
an operator that changes the geometric object. Lets define the Hodge-? operator, which maps
k-forms onto (n− k)-forms, where n is the dimension of the ambient space. This operator is
based in the inner product. Consider a manifold,M, the inner product 〈·, ·〉 be defined by

〈α, β〉 :=
∫
M
α ∧ ?β. (3-30)

It should be clear that the Hodge-? does not alter the scalar field or vector field but changes
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the orientation of the geometric object where this field acts,

α1 = u(x, y, z)dx+ v(x, y, z)dy + w(x, y, z)dz; (3-31)
?α1 = u(x, y, z)dydz + v(x, y, z)dzdx+ w(x, y, z)dxdy. (3-32)

This operator is a crucial operation in differential geometry and much attention has been
devoted to it [32].

Some examples of the action of the Hodge-?,

?1 = dxdydz, ?dxdydz = 1,
?dx = dydz, ?dy = dzdx, ?dz = dxdy

?(dydz) = dx, ?(dzdx) = dy, ?(dxdy) = dz.

(3-33)

3-2-7 de Rham complex

It became clear in the previous sections that the exterior derivative maps k-forms to (k+ 1)-
forms while the Hodge-? changes the orientation of the k-form. Hence, it becomes possible
to build a sequence called the double deRham Complex.

R Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω) 0

0 Λ̃3(Ω) Λ̃2(Ω) Λ̃1(Ω) Λ̃0(Ω) R

d

Grad

d

Curl

d

Div

d

d d

Div

d

Curl

d

Grad

? ? ? ?

(3-34)

The exactness of this differential complex plays an important role in the design and stability
of numerical methods for PDE [33]. In computational electromagnetism this has been widely
used, [7, 32].

3-2-8 Codifferential

In contrast to the exterior derivative, the operator d? maps a k-form to a (k − 1)-form. The
coderivative is given by

d? := (−1)n(k+1)+1 ? d? (3-35)

For the codifferential also holds d? ◦ d? = 0.
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3-2-9 Laplace-deRham

Lets define a new operator that generalizes the Laplacian operator. This operator maps
k-forms into k-forms defined as

∆ = (d+ d?)2 = d ◦ d? + d? ◦ d (3-36)

The Laplace-deRham operator has the following properties

• Self-adjoint: 〈∆α, β〉 = 〈α,∆β〉;

• Non negative: 〈∆α, α〉 ≥ 0;

• ∆α = 0 if and only if dα = 0 and d?α = 0.

Table 3-8 summarizes the action of the Laplace-deRham operator in k-forms. An example of
a physical application of this operator is in the modeling of diffusion.

Table 3-8: Action of the Laplace-deRham onto forms in R2

0-forms ∆α0 = d?dα0

1-forms ∆α1 = d?dα1 + dd?α1

2-forms ∆α2 = dd?α2

3-2-10 Connection between forms and vector fields

Operators such as the flat, [, and the sharp, ], are important because they allow to connect
vector fields with differential forms. First define the [,

[ : v(Ω)→ Λ1(Ω) (3-37)

The inverse is given by the ],

] : Λ1(Ω)→ v(Ω) (3-38)

The sharp and the flat operator connect as,

] ◦ [ = [ ◦ ] = 1. (3-39)

Examples of the action of the, ] and [ are,

]dx = ∂
∂x , [ ∂∂x = dx,

]dy = ∂
∂y , [ ∂∂y = dy.
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3-2-11 Interior product & Extrusion

As described in [34] the interior product is the removing of the surfaces of the first form from
the those of the second one. The interior product ιdxdy = 0 since there are no dx surface
to remove from dy. On the other hand, the ιdxdx = 1. This operator allows a combination
between vector fields and differential forms. If v is a vector and α is a k-form, their interior
product or contraction,

ιv : Λk+1(Ω)→ Λk(Ω) (3-40)

given by

ιvα(v1, . . . , vk) = α(v, v1, . . . , vk). (3-41)

Thus, this operator does not depend on the metric. Furthermore, for smooth manifolds, [11]
proves that interior product can also be defined as

ιvα = (−1)k(n−k) ? (?α ∧ v[). (3-42)

The properties of the interior product are:

• ιA+B = ιA + ιB;

• ιaA = aιA;

• ιv(αp ∧ βq) = [ιvαp] ∧ βq + (−1)pαp ∧ [ιvβq];

• ιv(αj ∧ ?βk) = ιvα
j ∧ ?βk + (−1)j+kαj ∧ (−1)kιv ? βk.

The interior product of arbitrary 1-forms can be found by linearity from the following rela-
tionships,

ι ∂
∂x
dx = 1 ι ∂

∂x
dy = 0 ι ∂

∂x
dz = 0

ι ∂
∂y
dx = 0 ι ∂

∂y
dy = 1 ι ∂

∂y
dx = 0

ι ∂
∂z
dx = 0 ι ∂

∂z
dy = 0 ι ∂

∂x
dy = 1

The interior product of a 1-form and a 2-form can be found

ι ∂
∂x
dy ∧ dz = 0 ι ∂

∂x
dz ∧ dx = −dz ι ∂

∂x
dx ∧ dy = dy

ι ∂
∂y
dy ∧ dz = dz ι ∂

∂y
dz ∧ dx = 0 ι ∂

∂y
dx ∧ dy = −dx

ι ∂
∂z
dy ∧ dz = −dy ι ∂

∂z
dz ∧ dx = dx ι ∂

∂z
dx ∧ dy = 0

On the other hand, the dual concept to the interior product is the extrusion operator [35].
Figure 3-2 represents a geometric interpretation of extrusion. Imagine that 1-manifold, M1

being transported by the flow, v, from time t0 to t1. The resultant 2-manifold is then a
surface,M2

Ext.
The connection between the interior product and the extrusion is established by,∫

Ω
ιXα = d

dt

∣∣∣∣
t=0

∫
Ext(Ω,t)

α (3-43)
∫ ∆t

0

[∫
Ω(t)

ιXα

]
dt =

∫
Ext(Ω,t)

α (3-44)
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Figure 3-2: Geometric interpretation of the extrusion concept

3-2-12 Lie Derivative

The Lie derivative, also called by Arnold [36] as the Fisherman derivative, i.e. the flow carries
all possible differential-geometric objects past the fisherman, and the fisherman, sits there and
differentiates them. The Lie derivative is a representation of the convective part of the flow,
a directional derivative.

The interior product operator together with the exterior derivative forms the Lie derivative,
by means of Cartan’s magic formula,

£X := ιX ◦ d+ d ◦ ιX . (3-45)

The properties of the Lie derivative are:

• Leibniz rule: £X(αp ∧ βq) = (£Xα
p) ∧ βq + αp ∧ (£Xβ

q);

• ιXdα0 = £Xα
0;

• d ιXαn = £Xα
n;

• £fXα
p = f£Xα

p + df ∧ ιXαp.

It is easy to show that the Lie derivative commutes with the exterior derivative,

d£vα
k = d

(
ιvdα

k + dιvα
k
)

= dιvdα
k = (dιv + ιvd) dαk = £vdα

k. (3-46)

This can be summarized in the following commuting diagram,

Λk(Ω) Λk+1(Ω)

Λk(Ω) Λk+1(Ω)

d

d

£v £v

(3-47)
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The consequence of this commutation is that the advection of a closed form, i.e. dαk = 0,
remains closed. The concept of closed form is deeply connected to the concept of conservative
force in physics. For example in the case of a scalar field α0 the advection of the correspondent
gradient field, i.e. dα0 = β1 is given by,

£vβ
1 = d£vα

0, (3-48)

where the left hand side correspond to the advection of the gradient field itself and the right
hand side the advection of scalar field and then differentiated. However, both sides of the
equation lead to a gradient field.

On the other hand, the Lie derivative can also be defined in a more dynamic way,

£vα
k = d

dt

∣∣∣∣
t=0

∫
Ωt

αk = d

dt

∣∣∣∣
t=0

Φ?
tα

k. (3-49)

For example, consider the vector field X,

X = v1(x, y) ∂

∂x1 + v2(x, y) ∂

∂x2 .

It is possible to construct a 1-parameter family of maps, φt, that takes the molecule located
at p when t=0 to the position of the same molecule at t seconds later.

dx1

dt
= v1(x1(t), x2(t));

dx2

dt
= v2(x1(t), x2(t)).

For example, let’s consider the £Xvol
n. In this case, the Lie derivative measures how volumes

are changing under the flow generated by X. Figure 3-3 represents the advection of a 2-form
by a divergence free velocity field and in this case the area of the surface is kept constant.

A more concrete example of the action of the Lie derivative is if a vector field, v =< x, y >
that gives a flow Φt(x, y) = (etx, ety) acts on a 1-form, α1 = (x2 + y2)dx. Thus

(Φ?
tα) (x, y) =

(
(etx)2 + (ety)2

)
φ?tdx

= e2t(x2 + y2)d(x ◦ Φt)
= e2t(x2 + y2)(etdx)
= e3tα1

(3-50)

Thus,

£vα
1 = d

dt

∣∣∣∣
t=0

e3tα1 = 3α1 (3-51)
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Figure 3-3: Advection of a 2-form by a divergence-free vector field

This can also be confirmed by the algebraic approach,

dα1 = −2ydxdy

ιvdα
1 = (−1)2(2−2) ?

(
?dα1 ∧ v[

)
= ? (−2y ∧ (xdx+ ydy))

= ?
(
−2yxdx− 2y2dy

)
= −2yxdy + 2y2dx

(3-52)

ιvα
1 = (−1)1(2−1) ?

(
?α1 ∧ vf lat

)
= − ?

(
(x2 + y2)dy ∧ (xdx+ ydy)

)
= − ?

(
−(x2 + y2)xdxdy

)
= (x2 + y2)x

dιvα
1 =

(
3x2 + y2

)
dx+ 2xydy

(3-53)

Therefore, combining (3-52) and (3-53) the Lie derivative is given by,

£vα
1 =

(
3x2 + y2 + 2y2

)
dx+ (2xy − 2yx) dy

£vα
1 = 3α1

(3-54)

Obviously, both approaches lead to the same result.
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Table 3-9: Algebraic and dynamic definition of the Lie derivative and the interior product

Algebraic £v = ιvdα+ dιvα ιvα = (−1)k(n−k) ? (?α ∧ v[)
Dynamic £vα = d

dt

∣∣∣
t=0

∫
Ωt
α

∫
Ω ιvα = d

dt

∣∣∣
t=0

∫
Ext(Ω,t) α

The Lie derivative is a concept that emerges in several areas of mechanics, e.g. the rate
of strain tensor in elasticity, the magnetic diffusion-advection and the vorticity advection
equation in fluid dynamics. Table 3-9 summarizes both algebraic and dynamic definitions for
the interior product and the Lie derivative.

Table 3-10: Connection between differential geometry operators and vector calculus in R3

dαk ιvα
k £vα

k = dιvα
k + ιvdα

k

0-forms gradα v · gradα
1-forms curlα v · α grad (v · α) + curl (v× α)
2-forms divα v× α curl (v× α) + vdivα
3-forms vα div (αv)

The action of the Lie derivative can also be summarized in the following diagram,

Λ̃0(Ω) Λ̃0(Ω) Λ3(Ω) Λ3(Ω)

Λ̃1(Ω) Λ̃1(Ω) Λ2(Ω) Λ2(Ω)

Λ̃2(Ω) Λ̃2(Ω) Λ1(Ω) Λ1(Ω)

Λ̃3(Ω) Λ̃3(Ω) Λ0(Ω) Λ0(Ω)

?

?

?

?

£v

£v

£v

£v

d

d

d

ιv

ιv

ιv

ιv

ιv

ιv

£v

£v

£v

£v

d

d

d

ιv

ιv

ιv

ιv

ιv

ιv

(3-55)

The Lie derivative has also proven to be a key ingredient in understand symmetries [37].
This approach might be consider in future to develop a full space-time approach to the
discretization of the Lie derivative.
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Chapter 4

Algebraic Topology - The discrete
world of differential forms

Finding a proper discrete notion to differential forms is a crucial step. If the differential
forms were approximated using their coordinate values and the exterior derivative by finite
differences, the fundamental integration theorems would not hold numerically. Thus, the goal
of this Chapter is to present proper discretization of differential forms. Furthermore, the geo-
metric discretization hereafter presented as the advantage to be well suited for computational
purposes.

In Chapter 3 it was mentioned that physical variables can be associated with different ge-
ometrical concepts. Thus, it is natural to search for a mathematical branch that is mainly
concerned with the fundamental properties of the space. Algebraic topology is this branch.
Topological concepts are inherently metric-free, i.e. the computations do not depend on
norm, angles, inner-product, etc. Specifically, the concepts of chain and cochain from al-
gebraic topology can be used to mimic differential geometry of finite grids. The collection
of values on vertices, edges, surfaces and volumes are a proper discrete version of pointwise
functions, line, surface and volume integrals, respectively.

First of all, in Section 4-1 a topological description of geometry for R2 and R3 is introduced,
i.e. point, line, surface and volume complexes. Afterwards, in Section 4-2 the notion of chain
and the boundary operator are introduced. In Section 4-3 the natural discrete equivalent of a
differential form, the cochain, is introduced. It will also be shown that the exterior derivative,
d, as a natural topological discrete version, the coboundary operator. Finally, in Section 4-4
de Rham complex is rewritten in terms of the discrete world. A more mathematical detailed
presentation of this concepts can be found in [38, 39]
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4-1 Cell Complexes

The domain of interest Ω is going to be divided into a set of discrete sub domains, cells.
Consider p-cells, where p = 0, 1, 2, 3 for R3. 0-cells represent points, 1-cells represents lines,
2-cells surfaces and 3-cells volumes. Figure 4-1 represents all available cell complexes for 3D
and 2D.

(a) 3D (b) 2D

Figure 4-1: Cell complex for R3 and R2

Furthermore, in order to perform operations in the cells they require a numbering and orien-
tation. The numbering can be done freely, Figure 4-5 shows an example for a cell complex
in R2. Analogous to the differential geometry, where forms could be associated with inner
and outer oriented infinitesimal geometric objects, cells can also be associated with these two
types of orientation. Figure 4-2 represents the different type of cells that can be associated
with inner and outer oriented objects in 2D.

(a) Inner orienta-
tion

(b) Outer orienta-
tion

Figure 4-2: Different orientations for the cell complex in R2

It is obvious if points, 0-cell, are connected a 1-cell is obtained. Moreover, a 2-cell is a
surface bounded by 1-cells, obviously, a 3-cell is a volume bounded by 2-cells. Thus, it is
possible to create a mesh with chains. However, it is not clear if these lines are straight,
curved, self-intersection or with any other special feature. Although there is an orthogonal
cell complex in Figure 4-1 and Figure 4-2 nothing change if it was highly curved for instance.
The reason for this is that in topological space only the relation between objects is important.
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4-2 Chains and boundary operator

If there are a finite number of cells and each is labeled with Pi, i = 1 · · ·nP , the following
chain can be formed,

Cp =
np∑
i

mpicpi , (4-1)

the weight mpi gives information about the cell orientation. If mpi = +1 the cell is positive
oriented and if mpi = −1 the cell is negatively oriented with respect to the coordinate axes.

Figure 4-1 shows a 2D oriented cell-complex. Moreover, each p-chain, where p = 0, 1, 2, 3,
forms a collection of points, lines, surfaces and volumes, respectively. As mentioned before,
there is a connection between different oriented and labeled p-chains. The boundary operator,
∂ emerges naturally out of this formalism establishing this connections.

The boundary operator connects different p-chains. It maps p-chains to (p− 1)-chains.

∂ : Cp → Cp−1. (4-2)

In R3 it is possible to construct the following exact sequence,

0 C0 C1 C2 C3 0∂∂∂

(4-3)

In this sequence C0 represents the set of all ordered vertices. The ordering of the vertices
induces orientation in the edges C1, the faces C2 and the cells C3. For example looking at
the 2D oriented and labeled 1-cell complex of Figure 4-1, the following can be established,

∂


L1
L2
L3
L4

 =


∂L1
∂L2
∂L3
∂L4

 =


−1 1 0 0
0 −1 1 0
0 0 1 −1
−1 0 0 1



P1
P2
P3
P4

 (4-4)

Equation (4-4) shows that the boundary operator consists only in an incidence matrix, E(1,0)
(subscript indicating a change from 1-cells to 0-cells) with -1, 0 and 1 entries, reflecting if the
cell as a positive or negative sense of direction.

Other example of the action of the boundary operator,

∂S1 = E(2,1)Li =
(

1 1 −1 −1
)

L1
L2
L3
L4

 . (4-5)
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36 Algebraic Topology - The discrete world of differential forms

(a) Boundary operator in 3D

(b) Boundary operator in 2D

Figure 4-3: Boundary operator action in R2 and R3

In a more general framework,

∂

np∑
i

mpicpi =
np∑
i

mpi∂cpi . (4-6)

Another important property is that the boundary of the boundary is always empty,

∂ ◦ ∂ = 0 (4-7)

Figure 4-3 represents the action of the boundary operator. It is clear that when the boundary
operator acts twice opposed orientations are obtained. This is clear for the 3D case where
the 1-cells, edges, are oppositely oriented. Thus, there is a cancel out of all terms.

Along Chapter 3 it was defined, through the generalized Stokes Theorem, that the exterior
derivative was the formal adjoint of the boundary operator.
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4-3 Cochains and coboundary operator

Consider a 1-chain, c1, where a 1-form, α1 is going to be integrated,∫
c1
α1 =

nl∑
i=1

mi

∫
ci

1

α1 (4-8)

this is called 1-cochain. This is the dual of the 1-chain. This operation assigns discrete
numbers representing the integral value to the 1-chain, c1, just like 1-forms assigns numbers
to vectors. In more general terms, consider a p-cochain, as a list of numbers, associated to a
p-chain by means of pairing,

〈C(p), C(p)〉 =
np∑
i=1

np∑
j=1

a
(p)
i m(p)〈c

(p)
i , c(p),j〉 (4-9)

Knowing that 〈c(p)
i , c(p),j〉 = δij

〈C(p), C(p)〉 =
np∑
i=1

a
(p)
i m(p) (4-10)

Equation (4-10) resembles
〈
αk,Mk

〉
, in which the p-cochain plays the role of the k-form and

the p-chain is relate to the k-manifold.

Analogous, to the exterior derivative which maps k-forms to k + 1-forms the coboundary
operator does the same for the p-cochains mapping them into (p+ 1)-cochains.

δ : Cp → Cp+1 (4-11)

This operator is the formal adjoint of the boundary operator, ∂,

〈δCp, Cp+1〉 := 〈Cp, ∂Cp+1〉 (4-12)

In R3 it is possible to construct the following exact sequence,

0 C0 C1 C2 C3 0
δδδ

(4-13)

Comparing (4-12) with the generalized Stokes theorem,〈
dα(k−1),Mk

〉
=
〈
α(k−1), ∂Mk

〉
(4-14)

The coboundary applied to cochains plays the same role as the exterior derivative applied to
a k-form. Therefore, the coboundary represents the discrete version of the exterior derivative
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38 Algebraic Topology - The discrete world of differential forms

operator and can also be associated with the vector calculus operations, grad, curl and div.

Thus, the relations established from the generalized Stokes theorem can be stated exactly in
terms of chains and cochains. It is important to keep in mind that all these operators are
metric-free.

Figure 4-4 shows an example of the action of the coboundary operator.

Figure 4-4: Coboundary operator example

In a more general framework,

δC0 = C1 =


−1 1 0 0
0 −1 1 0
0 0 1 −1
−1 0 0 1




4
5
9
10

 =


1
4
−1
6

 (4-15)

Similarly, to the boundary operator the coboundary consists in an incidence matrix D(1,0)

(subscript indicating a connection between from 1-cochains to 0-cochains).

δC1 =
(

1 1 −1 −1
)

1
4
−1
6

 =


0
0
0
0

 (4-16)

Furthermore, as the double action of the exterior derivative, the coboundary operator also

δ ◦ δ = 0. (4-17)

This is a consequence of the fact that,〈
δδC(p), C(p+2)

〉
=
〈
C(p), ∂∂C(p+2)

〉
=
〈
C(p), 0

〉
= 0. (4-18)

Figure 4-5 shows a numbered and oriented primal cell complex for R2.

The coboundary operators for the numbered and labeled primal complex of Figure 4-5 are
given in Tables 4-1 and 4-2.
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(a) Primal
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(b) Dual

Figure 4-5: Numbered primal and dual cell complex in R2

Table 4-1: Coboundary operator D(1,0) for the labeled cochain complex of Figure 4-5

Points
1 2 3 4 5 6 7 8 9

Edges

1 1 0 0 -1 0 0 0 0 0
2 -1 0 0 0 1 0 0 0 0
3 1 -1 0 0 0 0 0 0 0
4 -1 0 1 0 0 0 0 0 0
5 0 1 0 0 0 -1 0 0 0
6 0 -1 0 0 0 0 0 1 0
7 0 0 1 0 0 0 -1 0 0
8 0 0 -1 0 0 0 0 0 1
9 0 0 0 1 0 -1 0 0 0
10 0 0 0 -1 0 0 1 0 0
11 0 0 0 0 1 0 0 -1 0
12 0 0 0 0 -1 0 0 0 1

Table 4-2: Coboundary operator D(2,1) for the labeled cochain complex of Figure 4-5

Edges
1 2 3 4 5 6 7 8 9 10 11 12

Surfaces

1 -1 0 1 0 1 0 0 0 -1 0 0 0
2 1 0 0 1 0 0 -1 0 0 -1 0 0
3 0 -1 -1 0 0 1 0 0 0 0 1 0
4 0 1 0 -1 0 0 0 -1 0 0 0 1

The same analysis done for the primal complex can be extended to the dual complex. The
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40 Algebraic Topology - The discrete world of differential forms

coboundary operator in the dual complex can be constructed using the boundary operator.
Consider the same initial example used in the primal complex the dual boundary operator
can be defined,

F(1,0) =


1
1
−1
−1

 and F(2,1) =


−1 0 0 −1
1 −1 0 0
0 1 1 0
0 0 −1 1

 (4-19)

It should be clear that in the example of Figure 4-5 the incidence matrix F(1,0) = ET(2,1) and
F(2,1) = ET(1,0). Figure 4-6 shows a cell complex for R3.

Figure 4-6: Primal and dual cell complex in R3

4-4 Discrete de Rham complex

The interaction between differential forms and manifolds with cochains and a cell complex is
crucial. The connection between differential geometry and topology is established by the de
Rham map. The top part of the de Rham complex can be rewritten in terms of the p-cochains

0 C0 C1 C2 C3 0
δ

∇
δ

∇×
δ

∇·
δ

(4-20)

Unfortunately, there isn’t any analogues operation to the Hodge-? operator in algebraic topol-
ogy that allows a connection between cell complexes.

R C0(K) C1(K) C2(K) C3(K) 0

0 C̃3(K) C̃2(K) C̃1(K) C̃0(K) R

δ

Grad

δ

Curl

δ

Div

δ

Div

δ

Curl

δ

Grad

?h ?h ?h ?h

(4-21)

Pedro Pinto Rebelo Master of Science Thesis



Chapter 5

Numerical implementation

The goal of this chapter is to establish a connection between continuous differential forms
and discrete cochains. All discrete structures in our framework will be defined by using two
basic operators.

Reduction, Section 5-1, of a physical model assures that the model behaves in the same way
both in the full infinite dimensional and in the discrete system. Basically, this consists of map-
ping k-forms to k-cochains, meaning that even in the discrete world the generalized Stokes
theorem is satisfied. This is given by the de Rham mapping.

On the other hand, reconstruction (Section 5-1) maps k-cochains into k-forms. This translates
how local information is obtained from global representation. The choice of this operator is
less restrictive and is in here that finite difference [40], finite volume [12], finite element
[1] or something else can be chosen. Particularly, in the remainder of this thesis piecewise
polynomial reconstructions common in spectral element methods, [13, 41, ?, 42, 43] are used.
Recently, experiments using isogeometric reconstruction were used [44, 45, 46]. In Section
5-3 and Section 5-4 the action of the reduction and reconstruction is generalized from one-
dimensional to multi-dimensional, respectively.
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42 Numerical implementation

5-1 Reduction operator

A crucial step is to correctly map differential forms to their discrete version, cochains. Lets
consider a cell-complex, such that all p-chains, C(p), the reduction operation is the de Rham
mapping,

R : Λk(Ω)→ Ck(D) (5-1)

defined as,

〈Rαp, C(p)〉 :=
∫
C(p)

αp (5-2)

Knowing that C(p) =
∑np

i=1m(p),ic(p),i

np∑
i=1

m(p),i〈Rαp, c(p)〉 =
np∑
i=1

m(p),i

∫
c(p)

αp (5-3)

The reduction operator is completely determined by integration over all individual p-cells.
Table 5-1 summarizes the action of the reduction operator in k-forms in R3.

Table 5-1: Connection between differential forms and co-chains established by the Reduction
operator

0-Forms Point values -
nP∑
i=1

α0(Pi)c0
i

1-Forms Line integrals -
nL∑
i=1

[
∫
Li

α1]c1
i

2-Forms Surface integrals -
nS∑
i=1

[
∫
Si

α2]c2
i

3-Forms Volume integrals -
nV∑
i=1

[
∫
Vi

α3]c3
i

The reduction operator has a commuting property with respect to continuous and discrete
differentiation,

Rd = δR. (5-4)

This is summarized in the following diagram,

Λk Λk+1

Ck Ck+1

d

R R

δ

(5-5)

This is easily proved by the using the Stokes theorem,

〈Rdαp, C(p)〉 =
∫
C(p)

dαp =
∫
∂C(p)

αp = 〈Rαp, ∂C(p)〉 = 〈δRαp, C(p)〉 (5-6)
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Figure 5-1: Reduction and exterior derivative of a 0-form for sin(2πx)

5-2 Reconstruction operator

The operator acting in the opposite direction to the reduction is the reconstruction operator,
i.e. it maps cochains to k-forms.

L : Ck(D)→ Λk(Ω) (5-7)

Opposite to the reduction where a natural candidate emerges naturally there is more flexibility
to choose the reconstruction operator because the de Rham map is not invertible. This
operator maps p-cochains to k-forms, in such a way that the reduction of all reconstruction
p-forms gives the original cochains,

R ◦ L = id (5-8)

Similarly, to the reduction the reconstruction also commutes with respect to differentiation,

Λk Ck

Λk+1 Ck+1

Lk

d δ

Lk+1 (5-9)

Furthermore, the reconstruction operator needs to be linear, i.e. for all p-cochains C(p) and
D(p) defined on the same cell complex, and all γ and β ∈ R,

L(γC(p) + βD(p)) = γL(C(p)) + βL(D(p)) (5-10)
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Figure 5-2: Reduction and Reconstruction of a 1-form for sin(2πx)

However, de Rham map is not invertible the approximation property should be defined, i.e.
L ◦ R = id + O(hp), where h denotes the size of the p-chains and p the polynomial order of
the reconstruction. Therefore, a projection operator can be constructed, π := L ◦ R,

Λk Λkh

Ck

πh

R L

(5-11)

Furthermore, the projection operator also commutes with respect to differentiation both con-
tinous and finite dimensional,

Λk Λk+1

Λkh Λk+1
h

d

πh πh

d

(5-12)
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5-3 Reduction and reconstruction of k-forms

In the previous sections a general framework was derived giving general indications on how to
choose the reduction, R, and the reconstruction, L, operators. From this point onwards, the
use of polynomial discrete representation of k-forms is going to be explained with examples
for 1D, 2D and 3D. More formal definitions can be found in [43, 47].

5-3-1 0-forms

Assume a partitioning of the interval, [a, b] given by a = x0 < x1 < · · · < xN = b. Consider
a 0-form α0(x) = f(x). The 0-chain is a collection of the nodal points, x0, · · · , xN , and the
0-cochain the value of the function at each nodal point. The reduction operator of 0-forms,

α0
i (x) =

∫
xi

α0(x) =
〈
α0, xi

〉
(5-13)

this consist in computing the the value of the 0-form in each point. By integrating over all
0-cells the 0-cochain is obtained. A continuous representation of the 0-cochain is given by,

α0(x) =
N∑
i=0

f(xi)hi(x) (5-14)

where hi(x) is the Lagrange polynomial through the points xi, i.e. hi(x) is a polynomial of
degree np − 1 such that,

hi(Pj) =
{

1 if i = j
0 if i 6= j

(5-15)

The reconstruction of the 0-cochain, C(0) =
∑np

i=1 aic
(0)
i is given by,

a
(0)
h (x) = L(C(0)) =

np∑
i=1

aihi(x) (5-16)

This is no more than the usual nodal interpolation.

5-3-2 1-forms

This stage is a crucial point in the development of the mimetic discretization. Equivalent, to
the reduction of 0-forms, the 1-cochain is computed by means of integration. Thus, 1-cochains
consist of a line integrals over a collection of 1-chains. Consider the 1-form, α1 and the 1-cell,
(xi−1, xi), then the 1-cochain is given by,

α1
i =

∫ xi

xi−1
α1(x) =

〈
α1(x), (xi−1, xi)

〉
. (5-17)
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Figure 5-3: Reduction and reconstruction of a 0-form for sin(2πx) + 1

At this stage, its crucial to define a consistent procedure that allows to interpolate the values
such that after reduction the same values are retrieved. The standard Lagrange nodal inter-
polation is not sufficient. So, knowing that an exterior derivative can be applied to a 0-form
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and a 1-form is obtained,

a
(1)
h (x) = d

np∑
i=1

aihi(x) =
np∑
i=1

aidhi(x). (5-18)

Therefore, a 1-form can thus be expanded as

a
(1)
h (x) =

nl∑
i=1

aiei(x). (5-19)

Therefore, the edge functions, introduced in [48], needs to satisfy∫
Lj

ei(x) =
{

1 if i = j
0 if i 6= j

(5-20)
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Figure 5-4: Reconstruction basis functions on Gauss-Lobatto nodes

These are polynomials, ei(x) of degree ne−1, a detailed derivation can be found in Appendix
A. Therefore, its possible to reconstruct the 1-form, α1,

α1(x) =
N∑
i=1

α1
i ei(x). (5-21)
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Figure 5-5: Reduction and reconstruction of a 1-form for sin(2πx) + 1

5-4 Multidimensional problems

Until this point, only discretization in R1 were discussed. However, this concepts can be easily
generalized by means of tensor products, this is summarized in Table 5-2. As mentioned before
a correct discretization of the de Rham complex has several advantageous. The use of of a
proper reduction and reconstruction allows to construct the following commuting diagram,
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R Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω)

R C0(Ω) C1(Ω) C2(Ω) C3(Ω)

d

Grad

d

Curl

d

Div

δ δ δ

R0 R1 R2 R3L0 L1 L2 L3

(5-22)

Table 5-2: Reconstruction of k-forms for R3

0− Forms α0
h(x, y, z) =

Npx∑
i=1

Npy∑
j=1

Npz∑
k=1

αi,j,khi(x)hj(y)hk(z)

1− Forms α1
h(x, y, z) =

Nlx∑
i=1

Npy∑
j=1

Npz∑
k=1

αxi,j,kei(x)hj(y)hk(z)+

Npx∑
i=1

Nly∑
j=1

Npz∑
k=1

αyi,j,khi(x)ej(y)hk(z)+

Npx∑
i=1

Npy∑
j=1

Nlz∑
k=1

αzi,j,khi(x)hj(y)ek(z)

2− Forms α2
h(x, y, z) =

Npx∑
i=1

Nly∑
j=1

Nlz∑
k=1

αxi,j,khi(x)ej(y)ek(z)+

Nlx∑
i=1

Npy∑
j=1

Nlz∑
k=1

αyi,j,kei(x)hj(y)ek(z)+

Nlx∑
i=1

Nly∑
j=1

Npz∑
k=1

αzi,j,kei(x)ej(y)hk(z)

3− Forms α3
h(x, y, z) =

Nvx∑
i=1

Nvy∑
j=1

Nvz∑
k=1

αi,j,kei(x)ej(y)ek(z)

Table 5-3: Reconstruction of k-forms for R2

0− Forms φ0
h(x, y) =

Npx∑
i=1

Npy∑
j=1

φ0
i,jhi(x)hj(y)

1− Forms α1
h(x, y) =

Nlx∑
i=1

Npy∑
j=1

xαxi,jei(x)hj(y) +
Npx∑
i=1

Nly∑
j=1

yαyi,jhi(x)ej(y)

2− Forms ρ2
h(x, y) =

Nlx∑
i=1

Nly∑
j=1

ρ2
i,jei(x)ej(y)
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Figure 5-6: Reduction and reconstruction of a k-form in R2
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Chapter 6

Geometric integration

The topic of this chapter is the construction of structure-preserving numerical integrators
for ordinary differential equations (ODEs). ODEs are ubiquitous, appearing from particle
accelerators, molecular dynamics to structural analysis. In Chapter 3 it was shown that the
Lie derivative can be computed in a dynamic perspective by determining the integral curve
from a velocity field. For example, for a vector field, v = (x, y) there is an analytical solution
for the flow given by φt(x, y) =

(
etx, ety

)
. However, analytical solution for this ODE system

are not always possible.

Important continuous symmetries are not unique to PDE’s they are also also a feature in
ODE’s. Besides the common structures, e.g mass, momentum and volume, there is one which
is less obvious, the symplectic form for Hamiltonian systems. Non-dissipative phenomena are
often modeled by Hamiltonian systems of differential equations. Integrators for Hamiltonian
systems that preserve a discrete notion of the symplectic form are named symplectic integra-
tors. The concept of Hamiltonian is very often connected with the total energy of the system,
and therefore the conservation of the symplectic structure implies energy conservation. They
were first introduced by Vogelaere [49]. Later on, Ruth [50] constructed symplectic integra-
tors while researching particle accelerators. After this the range of applications increased
exponentially, ranging from stock market modeling to celestial mechanics. A detail review of
the available symplectic integrators [2].

Section 6-1 gives a brief overview of qualitative inherent physical structures. In section 6-2
the construction of Hamiltonian systems is explained. Section 6-3 reviews known symplectic
algorithms and the a new arbitrary order mimetic symplectic integrator is introduced. In
section 6-4 all the previous integrators are tested in a set of benchmark test cases.
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6-1 Why preserve structure?

Before detailing the advantageous of preserving the structures of a differential equation it is
important to describe what these structures are. It is well know, that for any mechanical
system the total energy should be preserved. Thus, this is a structure inherent to the dif-
ferential equation. Furthermore, the principle that in nature Nothing is created, nothing is
lost, everything is transformed reflects the conservation of mass which is also a structure of
a differential system. As previously mentioned, in the case of rigid body dynamics the linear
momentum should be preserved, this is also an invariant of the system. Further details can
be found in [50].

Standard numerical methods for differential equations tend to focus their analysis in the
local truncation errors. However, as mentioned, minimizing the error does not imply that
the physical structures are preserved. The main advantageous of preserving the inherent
structures of the differential equations are:

• the discrete system has the same properties as the continuous

• excellent energy conservation properties

• can conserve angular momentum or even unknown structures

• accurate computation of singularities

The aim of this section is not to detail every possible structure, but, instead give a general
overview. For more examples consult [2, 50].

6-2 Hamiltonian system

Consider the generalized coordinates q ∈ Rd, i.e. q represents the position of a mechanical
system with d degrees of freedom described by,

q = (q1, · · · , qd)T . (6-1)

Consider the kinetic energy of the form,

T ≡ T (q, q̇), (6-2)

and the potential energy,

V ≡ V (q). (6-3)

Then the corresponding Lagrangian is given by,

L = T − V. (6-4)
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Thus, the the coordinates q obey the following set of differential equations

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, for k = 1, · · · d. (6-5)

Therefore, the solution of these differential equations allows to predict the motion of the
system. For example, let m be a mass point in R3 with Cartesian coordinates, (x1, x2, x3)T .
The kinetic energy is given by,

T = 1
2
(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
. (6-6)

Suppose the point is moving in a conservative force field, F (x) = −∇U(x). Thus, the Lagra-
gian leads to

mẍ = F (x), (6-7)

which is Newton’s second law.

Hamilton simplified the structure of Lagrange’s equations. Consider the conjugate generalized
momentum,

p = ∂L

∂q̇ ∈ Rd, (6-8)

and define the Hamiltonian expressing q̇ = q̇(p, q)

H(p,q) = pT q̇ − L(q, q̇). (6-9)

Lagrange’s equations are equivalent to Hamilton’s equations

ṗ = −∂H
∂q

q̇ = ∂H

∂p .

(6-10)

Assuming a quadratic kinetic energy,

T = 1
2 q̇

TM(q)q̇, (6-11)

where M(q) is symmetric and positive definitive matrix. For a fixed q,

p = M(q)q̇. (6-12)

Thus, the Hamiltonian can be defined,

H(p, q) = pTM−1(q)p− L(q,M−1(q))

= 1
2p

TM−1(q)p+ U(q),
(6-13)
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which is the total energy of the system. Thus, for quadratic kinetic energies the Hamiltonian
represents the total energy.

Besides, the conservation of the Hamiltonian a key feature of Hamiltonian systems is also the
symplecticity of its flow. The solution of (6-9) induces a transformation ψ on the phase space
R2d with the associated Jacobian ψ′. Such a map is said to be symplectic if

ψ′TJψ′ = J (6-14)

6-3 Numerical integrators

In this section the standard integrators such as explicit and implicit Euler and mid-point
are reviewed. Afterwards, special attention is given to symplectic integrators such as the
symplectic Euler, Stormer/Verlet and the Gauss Runge Kutta method. Finally, the new
mimetic integrator is introduced and its symplectic and symmetric nature is explained.

6-3-1 Explicit Euler

The simplest of all numerical methods. The method was formulated by Euler in 1768,

yn+1 = yn + ∆tf(yn). (6-15)

The method is called explicit because the approximation yn+1 is computed using an explicit
evaluation of f at the already known value yn.

6-3-2 Implicit Euler

The implicit Euler is given by

yn+1 = yn + ∆tf(yn+1). (6-16)

In contrast to (6-15) the approximation yn+1 is defined implicitly, i.e. f(yn+1). The imple-
mentation requires a numerical solution of a nonlinear system of equations.

6-3-3 Implicit mid-point

The implicit mid-point takes a mean of yn and yn+1,

yn+1 = yn + ∆tf
(
yn + yn+1

2

)
. (6-17)
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6-3-4 Symplectic Euler

As shown by [51] a combination between explicit and implicit methods produces a symplectic
method. For partitioned systems, i.e {

u̇ = a(u, v)
v̇ = b(u, v)

The symplectic Euler method is defined as{
un+1 = un + ∆ta(un+1, vn)
vn+1 = vn + ∆tb(un+1, vn) . (6-18)

6-3-5 Stormer/Verlet

Consider a system of second order differential equations,

q̈ = f(q), (6-19)

where the right hand side, f(q), does not depend on q̇. Taking a step size, ∆t, and the grid
points, tn = t0 + ∆tn, the most natural discretization of (6-19) is,

qn+1 − 2qn + qn−1 = ∆t2f(qn). (6-20)

This is simply a second-order central differencing. Geometrically, this consists in determining
the interpolating parabola that has a second-order derivative in the mid-point determined by
6-19. This is a two-step formulation.

(a) Two step formulation (b) One step formulation

Figure 6-1: Geometric interpretation of the Stormer/Verlet method [2]

If the velocity, q̇ = v, is introduced into equation 6-19,

q̇ = v, v̇ = f(q). (6-21)

The discrete approximations for v and q are,

vn = qn+1 − qn−1
2∆t . (6-22)
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Introducing the velocity approximations at the midpoint, a one-step formulation is given by,

vn+1/2 = vn + ∆t
2 f(qn),

qn+1 = qn + ∆tvn+1/2,

vn+1 = vn+1/2 + ∆t
2 f(qn+1).

(6-23)

This is known as the Stormer/Verlet method. It has been proven to be a second order
symplectic and symmetric method. In practical terms the conservation of the symplectic
structure is associated with the accurate long energy behavior and the symmetric property
with the non dissipative character of the integration scheme.

6-3-6 Runge-Kutta

Runge-Kutta methods form an important class of methods for the integration of differential
equations. These are one-step methods for the numerical solution of initial value problems,

ẏ = f(y(x)), y(x0) = y0, y(x) ∈ Rm. (6-24)

The general form of a Runge-Kutta method is given by,

Yi = yn−1 +
s∑
j=1

aij∆tf(Yj),

yn = yn−1 +
s∑
i=1

bi∆tf(Yi).
(6-25)

It is also common in literature that f(Yi) = ki. The computed value, yn, is an approximation
of the exact solution, y(xn). Furthermore, the coefficients of a Runge-Kutta can be represented
in a Butcher tableau,

Table 6-1: Genral Butcher tableau

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

where bi are called the weights of the method -
∑s
i=1 bi = 1 - and ci =

∑s
j=1 aij for i = 1, · · · , s

are the abscissas location at which the stages Yi are computed. Figure 6-2 shows a geometric
representation of the general Runge-Kutta method.

A Runge-Kutta method is explicit if aij = 0 for i ≤ j. One main advantage of this is that the
stages can be computed sequentially. Therefore, this is cheaper in terms of computational
cost. However, explicit Runge-Kutta schemes are limited in their stability and are unable
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Figure 6-2: Geometric interpretation of Runge-Kutta method for ẏ = t2 + y2, y0 = 0.46, h = 1;
dotted: exact solution [2]

Table 6-2: Fourth order explicit Runge-Kutta

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

to solve general Hamiltonian problems that are not separable. The classic 4th order explicit
Runge-Kutta tableau is shown in Table 6-2.

On the other hand, Runge-Kutta schemes are implicit if aij 6= 0 for some i ≤ j. Thus, for an
s-stage implicit Runge-Kutta method it is necessary to solve a set of non-linear equations. It
is common practice to use Netwon iterations to achieve this. To reduce the introduction of
iterative errors on the solutions, it is convenient to reformulate the problem as

z = ∆tAF (z), (6-26)

where z = (z1, z2, . . . , zs)t with zi = y0 − yn,

A =


a11 a12 . . . a1s
a21 a22 . . . a2s
...

... . . . ...
as1 as2 . . . ass

 , and F (z) =


f(tn + c1∆t, z1 + yn)
f(tn + c2∆t, z2 + yn)

...
f(tn + cs∆t, zs + yn)

 . (6-27)

If the matrix A−1 exists, (6-26) can be written as ∆tF (z) = A−1z so the update formula can
be simplified

yn+1 = yn + (b1, b2, . . . , bs)∆tF (z) = yn + (b1, b2, b3, . . . , bs)A−1z (6-28)

This tends to be computationally expensive when compared to explicit methods. However,
with fewer stages it is possible to achieve the same order of an explicit method. The better
stability of these methods and the ability to preserve the structures underlying ODEs makes
them very relevant. Inside the subclass of symplectic methods, that only exist for implicit
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Runge-Kutta schemes, Gauss-Legendre schemes are the most important ones. These methods
are constructed making the abscissa, ci = 0 for the shifted Legendre polynomials, P ?S ,

P ?S = s!
2s

s∑
k=0

(−1)s−k
(
s
k

)(
s+ k
k

)
xk (6-29)

For example, taking s = 1,

P ?1 (x) = x− 1
2 (6-30)

The zero of this polynomial is the abscissa of the 1-stage Gauss Runge-Kutta method, i.e.
c1 = 1/2, this is the second order implicit midpoint rule. Furthermore, taking s = 2,

P ?2 (x) = x2 − x+ 1
6 (6-31)

The zeros for this polynomion are, c1 = 1
2−

√
3

6 and c1 = 1
2 +

√
3

6 , the butcher tableau obtained
is given in Table 6-3.

Table 6-3: Gauss-Legendre method of order 4 (s = 2)

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

These methods have the maximum possible order for an s-stage, i.e. 2s order. Butcher
tableaus for s = 3, s = 4 and s = 5 can be found in Appendix B. It has been proven that for
a Runge-Kutta method to be symplectic the coefficients must satisfy [2],

biaij + bjaji = bibj for all i, j = 1, . . . , s (6-32)

Other characteristics such as A-stability, B-Stability and L-Stability are also relevant in cer-
tain applications. Although, this are not subject of study hereafter, for more details see
[52, 53].

6-3-7 Mimetic geometric integrator

Consider a system given by,

ẏ = f(y(t)). (6-33)

Both sides can be integrated in time,∫ tn+1

tn

dy

dt
dt =

∫ tn+1

tn
f(y(t))dt. (6-34)
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Thus,

yn+1 = yn +
∫ tn+1

tn
f(y(t))dt. (6-35)

Applying a quadrature to the integral,

yn+1 = yn + ∆t
∑
i

wif(yti), (6-36)

where yti = t(ti), ti ∈ [tn, tn+1]. The values of yti can be interpolated by using a Lagrange
polynomial,

yn+1 = yn + ∆t
∑
i

∑
k

wif (y(tk)hk(t)) . (6-37)

Instead of deriving a polynomial that at certain points is tangent to the curve, i.e. the velocity
is known, the concept is to find a solution such that the integral of the curve is computed
directly. Thus, this is the major difference for the Runge-Kutta methods previously presented.
Figure 6-3 shows a geometric interpretation for the mimetic method with the same case used
for the Runge-Kutta method.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

t

y

 

 
Vector Field
Int nodes (zone 1)
Int nodes (zone 2)
Lobatto roots

Figure 6-3: Mimetic integrator explained for ẏ = t2 + y2 with ∆t = 1 and y0 = 0.46

Figure 6-4 show the symmetric nature of the integrator. Consider a set of points that define
the figure at image are transported. The symmetric nature, means that the transport by a
vector field v(x, t) after some ∆t can be reverted by taking v(x,−t). A more formal proof of
the symplectic and symmetric nature of the integrator is left for future work.
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(a) Forward flow (b) Backward flow

Figure 6-4: Symmetry behavior of the mimetic integrator

6-4 Numerical Experiments

Along this section a set of numerical experiments are going to be performed. For all test cases
the Hamiltonian is known and it should be preserved. Moreover, for the first test case the
analytical solution for the position is also known.

6-4-1 Circle

A classical test is

H(p, q) = (q − q0)2

2 + (p− p0)2

2 =⇒
{
ṗ = −q + 1
q̇ = p− 1

(6-38)

This has a known solution with a period of 2π given by,

p =
√
R2sin(t+ sin−1

(
q0 − 1
R

)
+ 1.0 (6-39)

q =
√
R2cos(t+ cos−1

(
p0 − 1
R

)
+ 1.0 (6-40)

where R = (p0− 1)2 + (q0− 1)2. Figure 6-5 shows a phase plot of the problem. Qualitatively
it is clear that only the symplectic methods present a correct behavior.

Figure 6-6 shows the energy error for different time step and different orders of the method
for a physical time of 100s, i.e. closely 16 turnovers. The solution is limit to time steps of the
order of ∆t ≤ 100 for both methods. In this case, both method immediately converge to the
exact energy.
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Figure 6-5: Circle phase plot for different integration schemes

Figure 6-7 shows the L2 norm for the radius function of the time step and polynomial order
after 100 seconds of simulation. In absolute values the mimetic method has always a lower
error than the corresponding Gauss method. This difference increases when the order of the
method increases. Furthermore, both methods present a spectral convergence.

Until this point all the analyses done concerned with the final result obtained after 100
seconds. Figure 6-8 shows the Hamiltonian and position error norm for the initial, final and
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Figure 6-6: Energy error of Gauss vs Mimetic for the circle problem
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Figure 6-7: L2 error of Gauss vs Mimetic for the circle problem

intermediate points were computations are performed for ∆t = 0.1 and s = p = 3. Its clear
that, although, for the initial and final time step the error is of the order of machine precision
for both methods, this does not happen in the intermediate points in the case of the Gauss
method. It is important to keep in mind that the intermediate points are not the same for
both methods.
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Figure 6-8: Hamiltonian and radius error of Gauss and mimetic method for the circle problem
with ∆t = 0.1 and p = 3

Figure 6-9 to Figure 6-11 shows the Hamiltonian and radius error function of the number of
iterations for different polynomial order with time step respectively 0.01, 0.1 and 1. Although,
the number of iterations for the Gauss method are higher this does not mean that the number
of degrees of freedom correspond to this value, since the final points are computed based on
the interior points. The high oscillatory nature of the figures is due to the fact that in the
final points, i.e. the ones obtained after each time step, the Hamiltonian and the radius
error are minimum. Moreover, as the time step decreases the absolute difference between the
Gauss and Mimetic method decreases. However, it is clear that in the intermediate points
the absolute error for the mimetic method is smaller than for the correspond Gauss method.
This difference can be of two order of magnitude in the case of ∆t = 1.
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Figure 6-9: Hamiltonian and radius error of Gauss vs Mimetic for the circle with ∆t = 0.01 for
100 seconds
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Figure 6-10: Hamiltonian and radius error of Gauss vs Mimetic for the circle with ∆t = 0.1 for
100 seconds
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Figure 6-11: Hamiltonian and radius error of Gauss vs Mimetic for the circle with ∆t = 1 for
100 seconds

6-4-2 Harmonic oscillator

Taking the generalized coordinates α the Cartesian coordinates are given by

x = lsin(α)
y = −lcos(α).

(6-41)

Then the kinetic and potential energy are given by,

T (x, y) = 1
2m(ẋ2 + ẏ2) = 1

2ml
2α̇2

U(x, y) = mgy = −mglcos(α).
(6-42)

Thus, the Lagragian is given by,

ml2α̈+ g

l
sin(α) = 0. (6-43)

The mathematical pendulum (mass = 1, massless rod of length l = 1, gravitational accelera-
tion g = 1) is a system of one degree of freedom having the Hamiltonian

H(p, q) = 1
2p

2 − cos(q) =⇒
{
ṗ = −sin(q)
q̇ = p

(6-44)
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Figure 6-12: Phase plot of the pendulum problem for different integration schemes

Figure 6-12 is a phase-plot of the pendulum problem for the start point, (x0, y0) = (0, 1.4).
Qualitatively, the explicit Euler and the implicit Euler spirals outwards and inwards, respec-
tively. The fourth order explicit Runge-Kutta does not conserve the total energy, therefore
there is also a drift from the true value. On the other hand, it is clear that the symplectic
Euler, Gauss and mimetic methods present a conservative behavior.

Figure 6-13 shows a comparison between different orders for the Gauss and the mimetic
integrator after 100 seconds of simulation time. It is clear that with the same number of
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Figure 6-13: Gauss vs Mimetic for the pendulum problem after 10 seconds of physical time

degrees of freedom the mimetic method behaves has good as the gauss method in terms of
energy error. Furthermore, both methods present a spectral convergence.

6-4-3 Lotka-Volterra model

This is a mathematical biology model that represents the growth of animal species. The
real variable u(t) represents the number of individuals of a certain specie at time t, the
simplest assumption about its reproduction rate is ∂u

∂t = uα, where α leads to an exponential
growth. In case of more species living together, the reproduction rates will also depend on
the population numbers of the other species. For example, for two species, with u(t) denoting
the number of predators and v(t) denoting the number of preys, the model relates then,

u̇ = u(v − 2) (6-45)
v̇ = v(1− u) (6-46)

It turns out that dividing u̇ by v̇,

u̇

v̇
= u(v − 2)
v(1− u) (6-47)

then by separation of variables [2],

1− u
u

u̇− v − 2
v

v̇ = 0, (6-48)

or
d

dt
I(u, v) = 0. (6-49)
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Integrating this equality the following invariant

I(u, v) = ln(u)− u+ 2ln(v)− v, (6-50)

where I (u(t), v(t))) = cte for any time. Thus, every solution of the system lies on the this
level curve. Furthermore, since these curves are closed all solutions are periodic. Until this
point it might not be clear the Hamiltonian nature of the system. However, introducing the
canonical coordinates p = log(u) and q = log(v) then the invariant I(u, v) becomes,

H(p, q) = p− ep + 2q − eq. (6-51)

Thus, the Lotka-Volterra equations become,

ṗ = −udH
dq

= u(eq − 2) = u(v − 2)

q̇ = v
dH

dp
= v(1− ep) = v(1− u)

(6-52)

Figure 6-14 shows a phase-plot with initial condition (x0, y0) = (0.5, 0.5). It is clear that the
model cycles through three stages. First, the number prey population increases, second, the
predator population increases by feeding on the preys, and at last the predator population
diminishes due to lack of food. The fourth order Runge-Kutta and the explicit and implicit
Euler do not conserve "energy" has shown for the pendulum problem.
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Figure 6-14: Lotka-Volterra phase plot

Figure 6-15 compares the Hamiltonian error for the mimetic and Gauss integrators function
of the polynomial order and the time step for a simulation time of 100 seconds. As can be
seen, the Gauss method does not converge when ∆t > 10−1. The reason for this might lie on
the Newton iterative scheme used and future research might be done in this matter. However,
using the same Newton scheme the mimetic method allows for larger time steps.
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Figure 6-15: Gauss vs Mimetic for the Lotka-Volterra problem after 10 seconds

Figure 6-16 shows the energy error function of the number of iterations for the case with
∆t = 0.01 after 100 seconds of physical time. Its observed that the error is bounded for all
mimetic method and it is always smaller in absolute value than the corresponding order of
the Gauss method. For the case where Gauss has s = 2 the error seems to be growing as a
function of the number of iterations. This might be influenced by the Newton solver.
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Figure 6-16: Hamiltonian error for the Lotka-Volterra problem function of number of iterations
with ∆t = 0.01
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6-4-4 Rudman-Vortex

This Rudman-vortex is a vortical shearing vector field type. The velocity field is given by

u = Asin(πx)cos(πy) v = −Acos(πx)sin(πy) (6-53)

In all the following test cases A = 1. This velocity field will be used later when testing the
2D advection of differential forms. The Hamiltonian is given by,

H(x, y) = sin(πx)sin(πy) (6-54)

Figure 6-17 shows the phase plot with initial position, (x0, y0) = (0.8, 0.6). Besides the
previous reported behavior for the explicit, implicit and fourth order Runge-Kutta, it is
important to remark the difference between the symplectic Euler and the all other symplectic
integrators shown. The exact path is a closer to the mimetic and the Gauss method than the
symplectic Euler. Even thought, the Hamiltonian/energy is preserved. This translates that
preserving energy does not mean that the solution for the position is correct.

Figure 6-18 represents a comparison between the Gauss and the mimetic integrator with
respect to the Hamiltonian, i.e the energy error. Once again, both methods converge with
spectral order 2p/2s.

Figure 6-18c shows the error in energy function of the number of the number of iterations
for, ∆t = 0.01 after 100 seconds. The energy error is bounded for all cases. The mimetic
method has always a smaller absolute error than the Gauss method. However, this difference
decreases as the the order of the method increases.

6-4-5 Two-body Kepler problem

Kepler first law, predicts the motion of two bodies attracting to each other

r = d

1 + ecos(φ) = a+ aecos(E) (6-55)

where a is the great axis, e the eccentricity, b = a
√

1− e2, d = b
√

1− e2 = a(1 − e2), E the
eccentric anomaly and that r2φ̇ = cte.

For computing the motion of two bodies which attract to each other, one can use the two-
dimensional coordinates q = (q1, q2) and the following differential equations are obtained,

q̈1 = − q1

(q2
1 + q2

2)
3
2
, q̈2 = − q2

(q2
1 + q2

2)
3
2

(6-56)

This is equivalent to a Hamiltonian system with the Hamiltonian,

H(p1, p2, q1, q2) = 1
2(p2

1 + p2
2)− 1√

q2
1 + q2

2

, pi = q̇i (6-57)
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Figure 6-17: Phase plot for the Rudman-Vortex problem with different integration schemes

The problem (6-56) will be computed with 0 ≤ e ≤ 1, with the initial values

q1(0) = 1− e , q2(0) = 0, , q̇1(0) = 0 , q̇2(0) =
√

1 + e

1− e

This implies that

H0 = −1/2 , L0 =
√

1− e2 , d = 1− e2 and Period = 2π

Master of Science Thesis Pedro Pinto Rebelo



72 Geometric integration

2 3 4 5

10
−15

10
−10

10
−5

10
0

10
5

Order p

‖
H

-
H

0
‖

Gauss (∆ t = 10)
Gauss (∆ t = 1)
Gauss (∆ t = 0.1)
Gauss (∆ t = 0.01)
Mimetic (∆ t = 10)
Mimetic (∆ t = 1)
Mimetic (∆ t = 0.1)
Mimetic (∆ t = 0.01)

(a) Function of Order

10
−2

10
−1

10
0

10
1

10
−15

10
−10

10
−5

10
0

10
5

4

6

8

10

∆ t

‖
H

-
H

0
‖

Gauss (s = 2)
Gauss (s = 3)
Gauss (s = 4)
Gauss (s = 5)
Mimetic (p = 2)
Mimetic (p = 3)
Mimetic (p = 4)
Mimetic (p = 5)

(b) Function of ∆t

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

Number of iterations

‖
H

-
H

0
‖

Gauss (s = 2)
Gauss (s = 3)
Gauss (s = 4)
Gauss (s = 5)
Mimetic (p = 2)
Mimetic (p = 3)
Mimetic (p = 4)
Mimetic (p = 5)

(c) Function of number of iterations

Figure 6-18: Gauss vs Mimetic for the Rudman-Vortex problem

Figure 6-19 represents the (q1, q2) plot for the Kepler problem with e = 0.6 after 200 seconds.
The mimetic integrator performs as good as the Gauss method. Once again, the explicit Euler
completely drifts from the exact solution. Furthermore, the symplectic Euler and the implicit
mid-point have a precession effect that disturbs the solution clockwise and anti-clockwise,
respectively.
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Figure 6-19: Kepler (q1.q2) plot for 2000 steps with ∆t = 0.1
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Figure 6-20: Energy error of Gauss vs Mimetic for the Kepler problem

6-4-6 Perturbed Kepler problem

Consider a perturbed Kepler problem with the following Hamiltonian,

H(p, q) = 1
2(p2

1 + p2
2)− 1√

q2
1 + q2

2

− µ

3
√

(q2
1 + q2

2)3
(6-58)

where µ is the perturbation. Therefore, the system is represented by the following differential
equations,

q̇1 = p1, ṗ1 = − q1
(q2

1 + q2
2)3/2 −

µq1
(q2

1 + q2
2)5/2

q̇2 = p2, ṗ2 = − q2
(q2

1 + q2
2)3/2 −

µq2
(q2

1 + q2
2)5/2

(6-59)

The following numerical examples are computed with for a perturbation, µ = 0.015 and with
initial values,

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1 + e

1− e

where the eccentricity, e = 0.6.
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Figure 6-21: Plot (q1, q2) for the perturbed Kepler problems with constant step size, ∆t = 0.065

Figure 6-21 shows the (q1, q2) plot of the perturbed Kepler problem for three different parts
of the integration for the ∆t = 0.065. Similar results for low order symplectic integrator were
reported in [2].
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6-4-7 Outer solar system

The same reasoning applied to the two-body Kepler problem can be extended to the motion
of the five outer planets relative to the sun. The problem is an Hamiltonian system with,

H(p, q) = 1
2

5∑
i=0

1
mi
pTi pi −G

5∑
i=1

i−1∑
j=0

mimj

||qi − qj ||
(6-60)

Here p and q are the vectors containing the momenta and positions respectively. The masses
are relative to the sun, m0 = 1.00000597682 to take into account the inner planets. The
distances are in astronomical units. Time is taken in Earth days and the gravitational constant
is G = 2.959122082861̇0−4. The initial conditions are given in Appendix C.

Figure 6-22 shows a phase plot for the outer solar system. For the explicit Euler method the
energy spirals outwards. On the other hand, for the implicit Euler method the planets fall
into the sun and thrown far away. The rest of the integrators are symplectic and show the
correct behavior.
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Figure 6-22: Outer solar system phase plot. ∆t = 100, 2000steps

Master of Science Thesis Pedro Pinto Rebelo



78 Geometric integration

Pedro Pinto Rebelo Master of Science Thesis



Chapter 7

Discrete generalized advection

Several techniques have been proposed to solve the advection problem. These can be di-
vided into three major groups: Lagrangian, Eulerian and Semi-Lagrangian. The first group,
Lagrangian, have the coordinate system “attached“ to the medium under consideration and
move along with it. Particles (representing fluid molecules [54]) or a mesh (representing the
surface of some object [55]) moving along the flow are examples of schemes derived based on
this principle. On the other hand, Eulerian schemes, use a fixed coordinate system. Com-
mon schemes that use this ideas are for instance finite volume or finite element methods.
The last group, Semi-Lagrangian or Eulerian-Lagrangian, combine a Lagrangian tracking al-
gorithm along characteristic lines while keeping the convenience of a fixed computational grid.

Any of these method as advantageous and disadvantageous. For example, tracking of surfaces
is easier with Lagrangian methods while Eulerian methods tend to introduce artificial diffusion
due to the fixed nature of the computational mesh. On the other hand, large deformations in
the mesh system can lead to numerical problems in the Lagrangian schemes. Furthermore, in
the case of Eulerian methods it is necessary to derive a temporal discretization scheme that
is able to geometrically preserve spatial quantities in time.

Along the previous Chapter it was mentioned that important symmetries and invariants, such
as mass, volume, momentum, energy, etc, should be preserved independent of the order of the
method used. Furthermore, in the case of Hamiltonian systems the symplectic structure plays
an important role. Along this Chapter semi-Lagrangian and Eulerian methods combined with
the mimetic integrator are derived for the generalized convection problem by discretizing the
Lie derivative. Section 7-1 introduces the pure Lagrangian schemes. Afterwards, Section 7-2
will introduce advection through semi-Lagrangian methods based on the dynamic perspective
of the Lie derivative. Finally, Section 7-3 introduces the Eulerian schemes for the discretization
of the advection of differential forms using the algebraic definition of the Lie derivative.
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7-1 Lagrangian

Theoretically, the Lagrangian methods are well suited for advection problems. But in prac-
tice, stretching and shearing of the original fluid particles distort the mesh after a few time
steps. Thus, these methods are rarely used. Figure 7-1 shows a mesh of different polynomial
order being advected by the Rudman-vortex velocity field. It is clear that after some time
steps the mesh quality is completely deteriorated.

(a) t = 0 seconds (b) t = 1 second

(c) t = 5 second (d) t = 10 second

Figure 7-1: Lagragian mesh movement (p = 1; p = 4; p = 30);
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7-2 Semi-Lagrangian

Semi-Lagragian or Eulerian-Lagrangian schemes are a large class of methods applied in CFD.
firstly introduced in the 50s and 60s to model weather forecasting [56]. They are based on a
Lagrangian tracking algorithm along the characteristic lines. Points from within the Eulerian
grid are tracked backward along the characteristic over the time step, forming a Lagrangian
grid. Numerical information from the previous time level is projected from the background
Eulerian grid onto the Lagrangian grid.

A clear advantage of these methods is the relaxation of the CFL restriction. Moreover, the
intrinsic connection between spatial and temporal discretization is expectable to reduce the
error significantly. Because of what they promise several semi-Lagragian schemes have been
proposed [57, 58, 59, 60]. However these schemes mainly deal with scalar fields with the
exception of the recent [21].

Recalling the dynamic definition of the Lie Derivative,

£Vα = d

dt

∣∣∣∣
t=0

∫
Ωt

α = d

dt

∣∣∣∣
t=0

Φ?
tα

k, (7-1)

where Φ?
t is the pullback induced by the flow of the velocity field V. If the position of a fluid

element at time t, which was (or will be) at x at time s, is denoted by X (x, s; t). Then the
characteristic curves of this equation, along which ρ remains constant, are defined by,

dX
dt

(x, s; t) = V (x, s; t) , (7-2)

with X (x, s; s) = x. After computing the characteristics from (7-2), the solution of the
advection equation is given by

ρ (X (·, t; t+ τ) , t+ τ) = c (·, t) , (7-3)

where τ is a time interval. When discretized in time with a time step ∆t, tn = n∆t, the
characteristics can used to define,

x = X
(
y, tn+1; tn

)
, (7-4)

and

y = X
(
x, tn; tn+1

)
. (7-5)

The points x and y represent the departure point at time tn and the arrival point at time
tn+1, respectively. If a set of quadrature points are backtracked following this approach the
values of the the respective integral can be computed. Two methods are proposed, the path
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tube and flux backtrack. For the first one the quadrature points are collocated at the tn+1

and then backtracked to tn. For the flux backtrack the quadrature points are collocated along
the common faces in time where the exchange between cells occurs. Figure 7-2 and Figure
7-3 give a geometric representation of the flux backtrack and the path tube method, respec-
tively. It is clear that both methods are computationally expensive because they require
the solution of a system of ODE for each integration point. However, each element or face
is independent from its pairs so the method can be easily parallelized making it more efficient.

Figure 7-2: Flux backtrack method

(a) No restart (b) Restart every time step

Figure 7-3: Path tube method

From this point on numerical experiments for both 1D and 2D test cases are presented for
both methods. For the 1D test case a constant velocity vector field of, v = 1, is considered
with periodic boundary conditions and an initial 1-form ρ1 = sin (2πx) + 1dx. The total
physical time of simulation is of 10 seconds, which corresponds of 10 turns of the system.
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The analytical solution is computed considering the equation,

∂ρ

∂t
+ ū

∂ρ

∂x
= 0 ρ(0, x) = ρ0(x). (7-6)

The solution is given in the form,

ρ(t, x) = ρ0(x− ūt). (7-7)

Consider an auxiliary variable, z = x− ūt. Thus,

∂ρ

∂z

∂z

∂t
+ ū

∂ρ

∂x
= 0

ρ′0(x− ūt)(−ū) + ρ′0(x− ūt) = 0.
(7-8)

Figure 7-4 presents the solution and the error for different physical times with N = 100 and
px = 10, this is the best space space discretization computed and ∆t = 0.01.
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Figure 7-4: Comparison between the 1D advection of a 1-form, sin(2πx) + 1dx, with the
analytical solution for the path tube method

First of all, Figure 7-5 and Figure 7-6 show the space time advection of the solution and the
error for the flux backtrack and the path tube method withN = 100 and px = 10, respectively.
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Both methods, qualitatively, present a long term accurate behavior. Furthermore, looking at
the error it is clear that the path tube method as a slightly better performance.

(a) ∆t = 1

(b) ∆t = 10−1

(c) ∆t = 10−2

Figure 7-5: Space-time 1D advection of a 1-form, sin(2πx) + 1dx by the flux backtrack method

Figure 7-7 shows the L2 error for the path tube method selecting N = 100 and a polynomial
order in space of px = 10. The goal is to minimize the spatial error and only evaluated the
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(a) ∆t = 1

(b) ∆t = 10−1

(c) ∆t = 10−2

Figure 7-6: Space-time 1D advection of a 1-form, sin(2πx) + 1dx by the path tube method

contributions from the influence of the change of ∆t and the polynomial order in time. It is
clear that for the 1D case the contribution of this to factor is practically non existent since
the L2 error is constant around 10−11. Although, the L2 error is small it does not reach the
zero machine.
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Figure 7-7: L2 error of the path tube method for N = 100 with px = 10

The reason for that is the accumulation of error from integration between discontinuous
functions, i.e. some integrations points are in one element other in the adjacent one something
that quadrature does not tolerate properly, because of the discontinuity among adjacent
elements. An example is given in Figure 7-8. This effect will have more profound consequences
in 2D.

Figure 7-8: Integration error for semi-Lagrangian methods in 1D

Figure 7-9 shows the the L2 error for ∆t = 0.01 (this is the smallest time step computed) and
a polynomial order for the ODE solver of pt = 10. The aim is to reduce the time contribution
for the error. It is clear that as the mesh size is decreased, i.e. the number of elements
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increases, spectral convergence with the space polynomial order is obtained.
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Figure 7-9: L2 error of the path tube method for 10 seconds with ∆t = 0.01

At this point it is important to do the same analysis for in the case of the flux backtrack
method. Figure 7-10 plots the L2 error for the case with the best spacial conditions computed,
i.e N = 100 and px = 10. One clear difference to the path tube method, is that the backtrack
flux does not cope a ∆t = 10. Moreover, the absolute L2 error is in the order of 10−10 slightly
higher than the path tube method, this once again regards an integration error. On the other
hand, as seen in the path tube method there is no convergence function of the ∆t or the
polynomial order in time.
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Figure 7-10: L2 error of the flux backtrack method for N = 100 with px = 10

Figure 7-11 represents the L2 error for the backtrack flux method with the best time dis-
cretization available, i.e. ∆t = 0.01 and pt = 10 . It is clear that as the mesh size decreases
the L2 error decreases with spectral convergence with space polynomial order. However, the
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absolute value for which the convergence is obtained is around 10−10. The reason for this is
once again the integration error that occurs and pollutes the solution.
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Figure 7-11: L2 error of the flux backtrack method for ∆t = 0.01

At this stage it is important to analyze the results obtained for 2D. The velocity vector field
used is the Rudman-vortex, presented along Chapter 6, given by,

u = sin(πx)cos(πy) v = −cos(πx)sin(πy). (7-9)

An interesting feature of this vector field is that there are no normal components along the
boundary, i.e. there is no in/out flow across the boundaries. Therefore, the initial mass that
is in the system should be preserved. Furthermore, the initial 2-form is a Gaussian bell given
by,

ρ2 = e−
(x−x0)4

hx e
− (y−y0)4

hy dxdy, (7-10)

where (x0, y0) = (0.3, 0.3) and hx = hy = 0.001. Figure 7-12 shows the advection of the
Gaussian bell 2-form, with ∆x = ∆y = 0.25 and space polynomial of order 9, for different
times.

Figure 7-13 shows the the backtrack of the mesh grid after 1 second of physical time with
different mesh size. It is clear that the backtrack of the quadrature points can lead to points
between two different elements. As discussed in Chapter 5 the edge functions are discontinuous
among elements. Thus, it can happen that integration is done between two discontinuous
functions, something that quadrature rule do not handle properly.

Figure 7-14 shows the global mass error function of the number of elements. Opposite to
what expected, as the number of elements increases the global mass error increases. This
happens because as the number of elements increases the integration error increases.
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Figure 7-12: 2D advection of a 2-form Gaussian bell with Nx = Ny = 4 and px = py = 9

One simple alternative is to determine where both the backtracked and the initial mesh
intersect and create different integration regions. This linear clipping idea is compared with
the standard quadrature in Figure 7-14. For px = 1 the error from this different quadrature is
numerically zero. However, has the space polynomial order increases, even with this different
quadrature, the error increases because the linear intersection is not able to cope with curved
meshes. Major drawback of this is the algorithm complexity. Figure 7-15 shows a geometric
interpretation of this clipping idea.

Figure 7-3 shows two ideas for the path tube method with and without restart. This can also
be extended to the backtrack flux approach. The major advantage of this approach is the
reducing the computational time required. However, before solving the influence the integra-
tion error this approach will only amplify the error every time step.

It is left for future research the advection of 1-forms in 2D, although the implementation
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(a) Nx = Ny = 3
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Figure 7-13: 2D backtrack of the integration points for p = 9 after 1 second of simulation time
(the origin of quadrature errors)
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Figure 7-14: Mass error for the 2D path tube method

must be straightforward because instead of backtracking volumes or points it is the edge
elements that should be backtracked. Dealing with boundary conditions is also left for future
work. Traditionally, characteristic-based algorithms are applied to open boundary problems
(e.g. in groundwater applications) or to problems with periodic boundary conditions (like
meteorological problems on a sphere). However, the characteristic-based schemes can be
applied in problems with closed boundaries by stopping the characteristic lines where they
cross the inlet boundaries, Figure 7-16 shows an idea proposed in the context of ELLAM
method [3]. Furthermore, alternatives to quadrature have been proposed [61].
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Figure 7-15: Different quadrature approach to compute the integral values in the 2D path tube
method

Figure 7-16: Boundary conditions implementation [3]

7-3 Eulerian

Most numerical schemes are Eulerian in nature. Eulerian methods are build on semi-discretization
in space. It is well known that the classical Galerkin discretization when applied to pure con-
vection leads to spurious (non-physical) oscillations [62]. Much attention as been devoted to
this problem and several alternatives have been proposed to handle this [62]. In the case of
scalar advection streamline upwind Petrov-Galerkin [63, 64], Galerkin/least-squares [65, 66]
and Taylor-Galerkin [67, 68] are very popular schemes. A major drawback of all Eulerian
methods is the limitation of CFL condition.

Furthermore, it is common to focus much of the attention and to acknowledge the spatial
discretization as the major sort of numerical error. However, unphysical time discretization
can reveal to be as much problematic has discrete spatial representation. Classical time
marching schemes such as explicit Runge-Kutta will always add some artificial dissipation
to the system compromising the kinetic energy. Oppositely, it is likely that symplectic time
marching schemes allow the conservation of kinetic energy. This has been acknowledge in
[69, 70] where a trapezoidal method, which is a low order symplectic scheme, has proven
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to preserve kinetic energy in the context of inviscid fluids. Still in the context of inviscid
fluids, recently [71] developed a time-reversible integrator that preserves energy exactly. The
time marching scheme used from this point onwards is derived based on the mimetic symplec-
tic integrator introduced in Chapter 6. A geometric representation can be seen in Figure 7-17.

Figure 7-17: Geometric representation of the time marching scheme

In order to compare the results with the ones obtained from the semi-Lagrangian discretiza-
tion, the test cases are the same. Therefore, for 1D consider a constant velocity field, v = 1,
periodic boundary conditions and an 1-form ρ1 = sin (2πx) + 1dx. The total physical time
of simulation is of 10 seconds, which corresponds of 10 turns of the system.

The advection of a 1-form, ρ1 ∈ R1, is given by,

∂ρ1

∂t
+ £vρ

1 = 0, (7-11)

where £vρ
1 = dιvρ

1,

∂ρ1

∂t
+ dιvρ

1 = 0. (7-12)

In vector calculus this can be seen as discretizing,
∂ρ

∂t
+ div (ρv) = 0. (7-13)

The discrete exterior derivative is simply an incidence matrix. The difficulty lies in discretizing
the interior product. Keeping in mind that the interior product of a 1-form gives a 0-zero,

ιvρ
1 = vρ1. (7-14)

Thus, 〈
ιvρ

1, β0
〉

=
〈
q0, β0

〉
(7-15)

Let ρ1 be expanded,

ρ1 =
Nlx∑
i=1

ρiei(x), (7-16)
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and

q0 =
Npx∑
i=1

qihi(x). (7-17)

Then, 〈Nlx∑
i=1

viρiei(x), hj(x)
〉

=
〈Npx∑
i=1

qihi(x), hj(x)
〉
. (7-18)

Then this allows to write a system,

MT
i,jρivi = NT

i,jqi, (7-19)

where Mi,j = 〈ei(x), hj(x)〉 and Ni,j = 〈hi(x), hj(x)〉. After determining all qi its only neces-
sary to apply the exterior derivative D(0,1). This ends the spatial discretization.

However, it is still necessary to define an accurate time discretization,

t1∫
t0

∂ρ1

∂t
= −

t1∫
t0

£h
vρ

1. (7-20)

This represents an ODE system that can be solved using the mimetic integrator previously
introduced,

ρ1
t1 = ρ1

t0 −
∑
i

∆t£h
vρ

1
tiwi. (7-21)

Figure 7-18 presents the solution and the error for different physical times. In fact this plot are
slices of Figure 7-19 where it can be seen the space-time advection for the total physical time
simulation with N = 100 with px = 10, this is the best space space discretization computed.

In Figure 7-19 it might seem that for ∆t = 10−1 that the image is blurred when compared
with ∆t = 10−3. In fact the blurring is just a matter of time resolution. It is clear that the
maximum error obtained is of the order of 10−10 and does not change significantly as the time
step is refined.

Figure 7-20 plots the L2 error function of the time step and the polynomial time order for
the best spacial discretization available, i.e N = 100 and px = 10 and after 10 seconds of
physical time simulation. The absolute value for which the convergence occurs is not exactly
the zero machine and the reason for that is an error accumulation. Furthermore, as expected,
using the Eulerian scheme it is not possible to use time steps as big as the semi-Lagrangian
methods. Also, there is no clear trend of convergence.

Figure 7-21 shows the L2 error for ∆t = 10−4 and pt = 10, the best time discretization
available. There is a clear difference for the absolute value for which the convergence occurs
between 0 seconds and the final time of 10 seconds. Thus, there is some small numerical
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Figure 7-18: Comparison between the 1D advection of a 1-form, sin(2πx) + 1dx, with the
analytical solution

diffusion or other spurious effect occurring. Even thought, there is still a spectral convergence
with spatial order.

Figure 7-22 shows the L2 error and the mass error for different time steps function of the
number of iterations. For the case where ∆x = ∆t, i.e. CFL = 1, there is mass conservation.
This means that all the quantities that is in one element is transfered for the adjacent one.
The reason why mass is not preserved for other CFL conditions lies in the time interpolation
used. There is the need to compute the fluxes in the intermediate time steps enforcing they
are divergence free. Furthermore, there is an increase of the L2 error function of the number
of iterations. However, the rate of increase is function of the number of elements.

Figure 7-23 shows an example of the combination between the derived schemes for the dis-
cretization advection with diffusion. More details can be found [4].

7-3-1 2D

Although, no deep analysis is done in this section the extension of the previously defined
framework is presented. It is left for future work a convergence study.

Pedro Pinto Rebelo Master of Science Thesis



7-3 Eulerian 95

(a) ∆t = 10−1

(b) ∆t = 10−2

(c) ∆t = 10−4

Figure 7-19: Space-time 1D advection of a 1-form, sin(2πx) + 1dx

For a 2-form, ρ2 ∈ R2, the Lie Derivative is given by,

£vρ
2 = dιvρ

2. (7-22)
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Figure 7-21: Convergence plot for the initial and after advection of ρ1 = sin(2πx) + 1dx with
∆t = 10−4 (– – Initial ; — Final)

Thus, the advection of a 2-form is given by,

∂ρ2

∂t
+ dιvρ

2 = 0. (7-23)

In vector calculus this can be seen as,

∂ρ

∂t
+ div (ρv) = 0. (7-24)

Consider the 2-form, ρ2 is given by,

ρ2 = ρdxdy. (7-25)
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Figure 7-22: Time error advection of a 1-form, sin(2πx) + 1dx

The interior product with the vector, v = vxdx+ vydy, is given by,

ιvρ
2 = vxρ

2dy − vyρ2dx. (7-26)

Lets expand,

ρ2 =
ns∑
i=1

rhoiφi, (7-27)

where φi(x, y) = e(x)e(y). Then its possible to derive the following system,

MT
i,jv

y
i ρi = NT

i,jq
x
i , (7-28)
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Figure 7-23: Space-time 1D advection-diffusion of a 1-form, sin(2πx) + 1dx with N = 90,px =
10 and a diffusion coefficient = 1 [4]

where Mi,j = 〈φi(x, y), ξj(x, y)〉 and Ni,j = 〈ξi(x, y), ξj(x, y)〉 with ξ(x, y) = e(x)h(y).

The same analysis can be done for the other term,

MT
i,jv

x
i ρi = NT

i,jq
y
i , (7-29)

where Mi,j = 〈φi(x, y), ηj(x, y)〉 and Ni,j = 〈ηi(x, y), ηj(x, y)〉 with η(x, y) = h(x)e(y).
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Figure 7-24: 2D advection of a 2-form Gaussian bell with Nx = Ny = 10 and p = 4

For a 1-form, α1, the Lie Derivative is given by,

£vα
1 = dιvα

1 + ιvdα
1. (7-30)
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Thus the advection of a 1-form, α1 ∈ R2, is given by,

∂α1

∂t
+ dιvα

1 + ιvdα
1 = 0. (7-31)

In vector calculus this corresponds to,

∂α

∂t
+ curl (v) + vdiv (α) . (7-32)

Consider the 1-form, α1 is given by,

α1 = α1
xdx+ α1

ydy. (7-33)

The interior product with the vector, v = vxdx+ vydy, is given by,

ιvα
1 = vxα

1
x + vyα

1
y. (7-34)

Then expanding α1,

α1 =
nlx∑
i=1

αiξi +
nly∑
i=1

αjηj . (7-35)

Then the following system can be constructed,

MT
i,kv

y
i ρi +MT

j,kv
x
j ρj = NT

i,jq
x
i , (7-36)

where Mi,k = 〈φi(x, y), βk(x, y)〉, Mj,k = 〈ηj(x, y), βk(x, y)〉 and Ni,j = 〈βi(x, y), βj(x, y)〉
with β(x, y) = h(x)h(y).

For a 0-form, α0, the Lie Derivative is given by,

£vα
0 = ιvdα

0, (7-37)

the term dα0 is a 1-form. Therefore, the treatment presented previously can be applied to
this form.
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Figure 7-25: 2D advection of a 0-form Gaussian bell with Nx = Ny = 10 and p = 4
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Chapter 8

Conclusions

This thesis merged spectral methods with the mimetic framework in order to design physical
accurate discretizations of the generalized advection problem. The representation of discrete
differential forms by algebraic topology offers the possibility to capture accurately the struc-
tures inherent to the problem.

The discretization of the interior product combined with the exterior product, thus, the Lie
derivative allows the extension of the framework of mimetic spectral methods to hyperbolic
problems. The use of known ideas of semi-Lagrangian schemes and the implementation of a
flux based Eulerian perspective can be seen as span of classical scalar advection methods to
the more generalized advection. It was clear in this thesis that both semi-Lagrangian and
Eulerian methods have advantageous and disadvantageous.

To solve semi-Lagrangian methods it is necessary to compute the trajectory of the fluid par-
ticles. Thus, it is necessary to solve a set of ordinary differential equations. In this thesis a
new arbitrary order mimetic integrator was presented and compared with a symplectic Gauss
Runge-Kutta scheme. The mimetic scheme performs as good as the Gauss method in terms
of energy convergence.

Semi-Lagrangian methods allow to choose larger time steps keeping the a good long term
behavior. However, because of the discrete representation of the cochains, i.e. through basis
functions that are discontinuous between elements, the quadrature error after backtracking
is a major drawback.

On the other hand, Eulerian methods are computationally cheaper than semi-Lagrangian
methods. However, the time step are more restricted and if the time marching scheme is not
handed carefully results tend to get polluted over time. The limitations for both of these
methods serve as motivation for future work.
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8-1 Future work

The work developed during this thesis left open a set of numerical and theoretical challenges.
Regarding the symplectic mimetic integrator it is left to be proven its formal symplectic na-
ture. Remaining for future work is a detailed analysis of the behavior of the integrator using
variable time steps, this has been reported as a drawback of symplectic integrators. Regard-
ing the advection problem it remains has open direction a careful analysis of box schemes
introduced by Keller [72] and Preissman [73]. In these methods space and time discretiza-
tion are intimately coupled. Opposite to other methods, this ideas have proven powerful in
wave propagation problems avoiding unphysical oscillations. These ideas have been applied to
convection-diffusion in [74] and might reveal suitable for the generalized advection-diffusion
of differential forms. Recently, the combination between discrete exterior calculus (DEC) and
variational calculus have lead to exact preservation of momenta and good long-term energy
behavior [22, 75]. The combination of these ideas with the mimetic spectral methods might
reveal very fruitful.

The geometric nature of Fluid Mechanics, mainly Euler’s equations for inviscid fluid have re-
ceived some attention [76]. In here vorticity is represented as a two-form. This idea have been
applied to obtain circulation preserving schemes [77]. Therefore, in the future it would be
interesting to extend the use of the mimetic spectral methods, mainly the discrete Lie deriva-
tive developed in this thesis, to Euler’s equation and later on to Navier-Stokes equations.
However, to complete this goal it might be necessary the extension of this framework to op-
erate not only in differential forms, but in arbitrary tensors, in such a way that the geometric
identities remain intact. Furthermore, the extension of Kelvin’s circulation to compressible
fluids done by Bjerkne [78] can be also be used a starting point for further developments.

The application of differential geometry to other continuum theories such as magnetohydro-
dynamics (MHD) might prove very useful. In the case of MHD it is well known that the
failure to preserve the divergence-free property of the magnetic field during simulation can
lead to unphysical motions. This problem might be solve by a proper discretization through
the use of mimetic methods.
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Appendix A

Edge Functions

Integration is the mathematical operation that allows to associate physical variables with
their respective geometric orientation, A-1 shows an example of this connection for density
of an object, ∫

M3
ρdV =

〈
M3, ρ

〉
(A-1)

Spectral basis functions associated with points, lines, surfaces and volumes are the base for
the numerical computations along this thesis. The use of quadrilateral elements its simple
and can be done by applying tensor products.

A-1 The edge functions

Consider the one-dimensional equation,

u(ξ) = dφ

dξ
, ξ ∈ [a, b] (A-2)

Let a = ξ0 < ξ1 < · · · < ξN−1 < ξN = b be a partition of the interval [a, b], then the function
φ(ξ) can be expanded in nodal basis functions,

φ(ξ) =
N∑
i=0

φihi(ξ) (A-3)

in which hi(ξ) are Lagrange basis functions through the points ξi, i = 0, · · · , N and φi = φ(ξi).
Its common in nodal approach to discretize u(ξ) using the same Lagrange basis functions,

u(ξ) =
N∑
i=0

uihi(ξ) (A-4)
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Combining A-3 and A-4,
N∑
i=0

uihi(ξ) =
N∑
i=0

φi
dhi
dξ

(A-5)

There are two main concerns with this approach. First of all, this formulation is not invariant
under general C1 coordinate transformations. Furthermore, a polynomial of degree N on the
left hand side is equated to a polynomial of degree N − 1 on the right hand side. Re-writing
the equation in terms of differential geometry,

u1 = dφ0 (A-6)

Integrating this expression,

φ(p) = φ(q) +
∫ p

q
u(x)dx (A-7)

It is possible to exactly satisfy ūi = φi − φi−1 by defining, the integral quantities,

ūi =
∫ ξi

ξi−1
u(x)dx, i = 1, · · · , N (A-8)

Interpolation of integral quantities is called histopolation [79]. Its then possible to define,

uN (ξ) =
N∑
i=0

φidhi(ξ)

=
N∑
i=0

(φiφk) dhi(ξ)

=
N∑
i=0

− k∑
j=i+1

ūj +
i∑

j=k+1
ūj

 dhi(ξ)
= −

k∑
j=1

j−1∑
i=0

dhi(ξ)

 ūj +
N∑

j=k+1

 N∑
i=j

dhj(ξ)

 ūj

(A-9)

Its possible to eliminate k by averaging over all k,

uN (ξ) = 1
N + 1

N∑
k=0

uN (ξ)

= − 1
N + 1

N∑
k=0

k∑
j=1

j−1∑
i=0

dhi(ξ)

 ūj + 1
N + 1

N∑
k=0

N∑
j=k+1

 N∑
i=j

dhi(ξ)

 ūj
= 1
N + 1

N∑
j=1

−(N + 1)ūj
j−1∑
i=0

dhi(ξ) + jūj

N∑
i=0

dhi(ξ)


= −

N∑
j=1

ūj

j−1∑
i=0

dhi(ξ)

(A-10)
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Taking as basis function,

ej(ξ) = −sumj−1
i=0dhi(ξ), j = 1, · · · , N (A-11)

Thus, u can be expressed in terms of the integral quantities ūi as,

uN (ξ) = sumN
i=1ūiei(ξ) (A-12)

The basis function ei(ξ) satisfy,∫ ξk

ξk−1
ei(x) = δi,k =

{
1 if i = k

0 if i 6= k
(A-13)

The edge basis functions correspond in fact to a higher order Whitney forms [80]. Applying
dej(ξ) = −d ◦ d

∑
hi(ξ) ≡ 0. Returning to A-2, now expanding u in terms of edge basis

functions,
N∑
i=1

ūiei(ξ) =
N∑
i=0

φiði(ξ) (A-14)

= −
N∑
i=1

(φi − φi−1)
i−1∑
j=0

dhj(ξ) (A-15)

=
N∑
i=1

(φi − φi−1) ei(ξ) (A-16)

This solves the problems previously mentioned, i.e. the polynomial degrees match for both
sides and this relation remains valid under arbitrary C1 transformations. Since the basis
functions, ei(ξ) are linearly independent,

N∑
i=1

[ūi − (φi − φi−1)] ei(ξ) = 0 (A-17)

This is a purely topological, metric-free relation. What this means is that, once the boundary
nodes of a given line are known this relation can be set up. This definition is shown to be
exact and no approximations are involved.

A-1-1 Gradient operator

Consider

u = gradφ (A-18)

Lets expand φ as a tensor product of nodal functions in the coordinates (ξ, η, ζ)

φ(ξ, η, ζ) =
N∑
i=0

N∑
j=0

N∑
k=0

φi,j,khi(ξ)hj(η)hk(ζ) (A-19)
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then its possible to derive an exact, coordinate free and invariant under C1 transformation,

ūξi,j,k = φi,j,k − φi−1,j,k ūηi,j,k = φi,j,k − φi,j−1,k ūζi,j,k = φi,j,k − φi,j,k−1 (A-20)

with

uξ(ξ, η, ζ) =
N∑
i=1

N∑
j=0

N∑
k=0

ūξi,j,kei(ξ)hj(η)hk(ζ)

uη(ξ, η, ζ) =
N∑
i=0

N∑
j=1

N∑
k=0

ūηi,j,khi(ξ)ej(η)hk(ζ)

uζ(ξ, η, ζ) =
N∑
i=0

N∑
j=0

N∑
k=1

ūζi,j,khi(ξ)hj(η)ek(ζ)

(A-21)

Figure A-1: Geometric representation of the discrete gradient operator

A-1-2 Curl operator

Let u be defined along edges then w = curlu is given by,

wξi,j,k = ūζi,j,k − ū
ζ
i,j−1,k − ū

η
i,j,k + ūηi,j,k−1 (A-22)

wηi,j,k = ūξi,j,k − ū
ξ
i,j,k−1 − ū

ζ
i,j,k + ūζi−1,j,k (A-23)

wζi,j,k = ūηi,j,k − ū
η
i−1,j,k − ū

ξ
i,j,k + ūξi,j−1,k (A-24)

(A-25)

with

wξ(ξ, η, ζ) =
N∑
i=0

N∑
j=1

N∑
k=1

w̄ξi,j,khi(ξ)ej(η)ek(ζ)

wη(ξ, η, ζ) =
N∑
i=1

N∑
j=0

N∑
k=1

w̄ηi,j,kei(ξ)hj(η)ek(ζ)

wζ(ξ, η, ζ) =
N∑
i=1

N∑
j=1

N∑
k=0

w̄ζi,j,kei(ξ)ej(η)hk(ζ)

(A-26)

This is again exact, metric free and invariant under C1 transformations. Furthermore, if u is
a gradient then wξ = wη = wζ ≡ 0 then,

u = gradφ⇐⇒ curlu = 0 (A-27)
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Figure A-2: Geometric representation of the discrete curl operator

A-1-3 Divergence operator

Considering the divergence equation,

a = divf (A-28)

Given fluxes defined over surfaces. Let the flux vector be expanded as

f ξ(ξ, η, ζ) =
N∑
i=0

N∑
j=1

N∑
k=1

f̄ ξi,j,khi(ξ)ej(η)ek(ζ)

fη(ξ, η, ζ) =
N∑
i=1

N∑
j=0

N∑
k=1

f̄ηi,j,kei(ξ)hj(η)ek(ζ)

f ζ(ξ, η, ζ) =
N∑
i=1

N∑
j=1

N∑
k=0

f̄ ζi,j,kei(ξ)ej(η)hk(ζ)

(A-29)

If a is expanded in terms of the volume basis functions

a(ξ, η, ζ) =
N∑
i=1

N∑
j=1

N∑
k=1

āi,j,kei(ξ)ej(η)ek(ζ) (A-30)

the divergence operator reduces to

āi,j,k = f̄ ξi,j,k − f̄
ξ
i−1,j,k + f̄ηi,j,k − f̄

η
i,j−1,k + f̄ ζi,j,k − f̄

ζ
i,j,k−1 (A-31)

Once more, no numerical approximations are involved and the divergence equation reduces to
a topological equation which is independent of the basis functions. If the fluxes are f = curlw
then,

divf = 0⇐⇒ f = curlw (A-32)
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Figure A-3: Geometric representation of the discrete divergence operator
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Appendix B

Geometric integration tableaus

In this appendix a set of Butcher tableaus can be found for the fully implicit Gauss method.

B-1 Gauss

Table B-1: Gauss method of order 6

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18
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Table
B
-2:

Gauss
m
ethod

oforder8

w
(1,1)=

18
−
√

30
144

w
(1,2)=

18
+
√

30
144

w
(2
,1)=

12 √
15

+
2 √

30
35

w
(2,2)=

12 √
15
−

2 √
30

35

w
(3,1)=

w
(2,1) 1

/6
+
√

30
24

w
(3,2)=

w
(2
,2) 1/6

−
√

30
24

w
(4,1)=

w
(2,1) 1

/21
+

5 √
30

168
w

(4,2)=
w

(2
,2) 1/21

−
5 √

30
168

w
(5,1)=

w
(2,1)−

2
w

(3,1)
w

(5,2)=
w

(2
,2)−

2
w

(3
,2)

12
−
w

(2,1)
w
(1,1)

w
(1,2)-w

(3,1)+
w
(4,2)

w
(1,2)-w

(3,1)-w
(4,2)

w
(1,1)-w

(5,1)
12
−
w
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w
(1,1)-w

(3,2)+
w
(4,1)

w
(1,2)

w
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w
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w

(2,2)
w
(1,1)+

w
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w
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w
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w
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12

+
w

(2,1)
w
(1,1)+

w
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w
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w
(4,2)

w
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w
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(4,2)
w
(1,1)

2
w
(1,1)

2
w
(1,2)

2
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(1,2)

2
w
(1,1)
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Ta
bl
e
B
-3
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Ga
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s
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ho
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0
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32
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00
w

(1
,2

)=
32

2
+

13
√

70
36

00

w
(2
,1

)=
1 2√ 35
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Appendix C

Outer solar system

In this appendix the initial conditions used to simulate the outer solar system in Chapter 6
are given. The gravitational constant, G = 2.95912208286e− 4. Furthermore, the masses of
the system are relative to the mass of the sun and are summarized in Table C-1.

Table C-1: Mass of the planets relative to the mass of the sun for the outer solar system
simulation

Sun + inner planets 1.00000597682
Jupiter 9.54786104043e-4
Saturn 2.85583733151e-4
Uranus 4.37273164546e-5
Neptune 5.17759138449e-5
Pluto 7.692307692307693e-9

Distances are measured in astronomical units ( 1[A.U.] = 149597870 [km]) and time in earth
days. Initial locations and velocities are given in Table C-2
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Table C-2: Initial position and velocity of the planets relative to the mass of the sun for the
outer solar system simulation

Position = (q1, q2, q3) Velocity = (p1, p2, p3)

Sun + inner planets
0 0
0 0
0 0

Jupiter
0.00565429 0
-3.0458353 -0.00412490
-1.5507963 -0.00190589

Saturn
0.00168318 0
-3.8169847 0.00483525
-1.6483708 0.00192462

Uranus
8.3101420 0.00354178
-16.2901086 0.00137102
-7.2521278 0.00055029

Neptune
11.4707666 0.00288930
-25.7294829 0.00114527
-10.8169456 0.00039677

Pluto
-15.5387357 0.00276725
-25.2225594 -0.00170702
-3.1902382 -0.00136504
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