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Abstract

Deep-learning-based object detectors, while offering exceptional perfor-
mance, are data-dependent and can suffer from generalization issues. In
this thesis, we investigated deep neural networks for detecting people and
medical instruments in the vision-based workflow analysis system inside
Catheterization Laboratories (Cath Labs). The central problem explored
in this thesis is the fact that the performance of the detector can degrade
drastically if it is trained and tested on data from different Cath Labs.

Our research aimed to investigate the underlying causes of this spe-
cific performance degradation and find solutions to mitigate this issue. We
employed the YOLOv8 object detector and created datasets from clinical
procedures recorded at Reinier de Graaf Hospital (RdGG) and Philips Best
Campus, supplemented with publicly accessible images. An aggregated
version of object detection metrics was created for multi-camera system
evaluation. Through a series of experiments complemented by data visual-
ization, we discovered that the performance degradation primarily stems
from data distribution shifts in the feature space. Notably, the object
detector trained on non-sensitive online images can generalize to unseen
Cath Labs, outperforming the model trained on a procedure recording
from a different Cath Lab. The detector trained on the online images
achieved an mAP@0.5 of 0.517 on the RdGG dataset. Furthermore, by
switching to the most suitable camera for each object, the multi-camera
system can further improve detection performance significantly. An ag-
gregated 1-camera mAP@0.5 of 0.679 is achieved for single-object classes
on the RdGG dataset.
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Abstract

Deep-learning-based object detectors, while offering exceptional performance, are data-
dependent and can suffer from generalization issues. In this thesis, we investigated
deep neural networks for detecting people and medical instruments in the vision-based
workflow analysis system inside Catheterization Laboratories (Cath Labs). The central
problem explored in this thesis is the fact that the performance of the detector can
degrade drastically if it is trained and tested on data from different Cath Labs.

Our research aimed to investigate the underlying causes of this specific performance
degradation and find solutions to mitigate this issue. We employed the YOLOv8 object
detector and created datasets from clinical procedures recorded at Reinier de Graaf Hos-
pital (RdGG) and Philips Best Campus, supplemented with publicly accessible images.
An aggregated version of object detection metrics was created for multi-camera system
evaluation. Through a series of experiments complemented by data visualization, we
discovered that the performance degradation primarily stems from data distribution
shifts in the feature space. Notably, the object detector trained on non-sensitive online
images can generalize to unseen Cath Labs, outperforming the model trained on a pro-
cedure recording from a different Cath Lab. The detector trained on the online images
achieved an mAP@0.5 of 0.517 on the RdGG dataset. Furthermore, by switching to
the most suitable camera for each object, the multi-camera system can further im-
prove detection performance significantly. An aggregated 1-camera mAP@0.5 of 0.679
is achieved for single-object classes on the RdGG dataset.
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Introduction 1
1.1 Problem Statement

Object detection is a vital component in various video analysis systems. It detects
objects of interest and proposes bounding boxes indicating their locations in 2D images.
For workflow analysis, those detection results will be further processed by downstream
modules, e.g., action recognition or scene interpretation. Due to regulations regarding
privacy concerns, the availability of procedure recordings, especially annotated ones,
is highly limited. For related applications, this data availability issue often results
in the object detection model being trained on data with limited variety and having
poor generalization ability. When the object detector encounters data from a novel
environment, its performance can drop significantly, damaging the performance of the
whole data analysis pipeline.

This project aimed to investigate the reasons for the performance degradation in a
specific scenario, deploying the YOLOv8 object detector in previously unseen Catheter-
ization Labs, and find potential solutions to alleviate this problem. In summary, our
goals are to:

1. Investigate the reasons for detection performance degradation when the object
detector YOLOv8 is deployed in a previously unseen Cath Lab.

2. Find solutions to alleviate this performance drop due to limited generalization
ability.

3. Further improve and evaluate object detection performance on multi-camera sys-
tems.

1.2 Background

1.2.1 Catheterization Laboratory

Catheterization Laboratory (Cath Lab) is a specialized procedural room in hospitals,
equipped with medical imaging instruments to visualize heart chambers and vessels.
Figure 1.1 shows a photo taken inside a Catheterization Laboratory. Cath Lab is essen-
tial for the diagnosis and treatment of cardiovascular diseases. For example, Diagnostic
Cardiac Catheterization requires a cardiologist to insert a catheter through an artery
and finally into the heart via the guidance of a medical imaging instrument to find
blockages or narrowings [2]. Percutaneous Coronary Interventions place a tiny balloon
to alleviate blockages in vessels through minimally invasive surgery [2]. In our study,
we used procedure recordings from the Cath Labs at two organizations: Reinier de
Graaf Hospital, located in Delft, the Netherlands, and Philips Best Campus, located
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Figure 1.1: An image of Catheterization Laboratory, taken from [1].

in Eindhoven, the Netherlands. Inside the Cath Labs, advanced C-Arm X-ray ma-
chines are used to perform imaging on the hearts and vessels of patients during various
procedures. Their special design features a maneuverable C-shaped arm connected to
the X-ray detector and X-ray source, allowing imaging of the patient from almost any
angle. These machines are capable of providing real-time and high-resolution imaging
with improved radiation exposure control.

Various threats and risks for both medical personnel and patients are associated
with Cath Labs. Chronic radiation exposure can pose health concerns for interventional
physicians, despite protective measures like lead aprons [3]. A study suggests there is
still room for optimization on radiation exposure to patients and medical staff [4].
Besides radiation, health conditions caused by orthopedic strain are related to working
inside Cath Labs [3]. The risks associated with chronic radiation exposure, fatigue,
and beyond motivate improvement in protective measures during procedures, procedure
management, and policies. For those purposes, workflow analysis can provide valuable
insights into efficiency optimization and reducing the effects of potential risks.

1.2.2 Workflow Analysis and Data Acquisition

Workflow refers to the sequence of processes across space and time performed to ac-
complish a task [5]. Through monitoring and analyzing the sequence of actions from
professionals in procedures, workflow helps to improve operational efficiency and en-
sure the quality of medical services [6]. Insights obtained from workflow analysis can
be applied to Quality Improvement (QI) and process redesign [5].

Medical diagnosis and treatment are highly complicated and detailed processes [7].
Therefore, efficient data acquisition is required for complex modeling. Traditional data
acquisition methods rely on comprehensive and extensive documentation from medi-
cal professionals. For example, detailed standards have been formulated for reporting
documents of cardiac catheterization procedures [8]. Despite efforts to refine the doc-
umentation methods, they are subject to human factors. Additionally, these methods
require excessive effort from healthcare professionals.
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Therefore, monitoring systems have been introduced to record and analyze workflow
in a non-intrusive and automated manner. For example, real-time location systems are
actively used, which mainly rely on signal feeds from wireless sensors such as radio
frequency technologies for localization and accelerometer along with gyroscope sensors
for activity recognition [9]. Computer vision, on the other hand, is more versatile, as
video can provide richer information. Extensive research has been conducted regard-
ing human action recognition in the healthcare field [10]. Pose estimation, applied to
patients and healthcare staff in clinical environments, can help researchers better un-
derstand their behavior and further improve the guidelines for treatment or recovery
procedures [11] [12]. Vision-based event detection systems are also capable of event
detection such as alerting for falls of the elderly [13]. Additionally, computer vision has
been a very helpful tool for providing location information [14].

Object detection, as a key component in many vision applications mentioned above,
is of great importance in most vision-based workflow analysis systems. It is the basis of
many other computer vision tasks, including object tracking, semantic segmentation,
and image captioning [15].

1.2.3 Object Detection and Its Challenges

Figure 1.2: Generic object detection and related computer vision tasks, taken from [16].

Object detection is one of the most fundamental tasks in the field of computer vision
and is crucial to image or video understanding, despite but also because of its highly
challenging nature [15]. The most common form of object detection is generic object
detection. The task is shown in Figure 1.2. Given an image, the model decides if objects
from predefined categories are present in this image, and if so, the model should give a
bounding box capturing the spatial location of each instance [16]. Before 2014, the field
of object detection was dominated by handcrafted models [16]. The transition happened
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when researchers noticed the superior performance of AlexNet, a deep learning-based
image classification algorithm [17]. Since then, intensive research on deep-learning-
based object detectors has been conducted. RCNN [18], Faster-RCNN [19], YOLO [20],
and various other deep-learning object detectors have been developed.

Deep learning algorithms, featuring automatic feature extraction and utilization,
benefit greatly from large quantities of high-variety data. Large-scale datasets, such as
PASCAL VOC [21], ImageNet [22], and MS COCO [23], have been constructed and set
as benchmarks to facilitate the research of object detection. Modern object detectors
are often developed with those datasets as performance indicators and have shown
strong performance in them. For example, Co-DINO-Deformable-DETR++ achieved
0.785 AP@0.5 in the COCO val dataset [24]. Those datasets have training and testing
data sampled from the same (or very similar) data distribution. Additionally, individual
images are taken from different environments, which largely increases the variety of the
training and testing data. The COCO dataset itself contains 80 object categories, and
1.5 million object instances in various contexts [23].

For object detection in Cath Labs and other medical applications, the object de-
tectors often need to operate in environments that differ from the setting where the
training data was collected. Therefore, their performance can suffer consequently. The
main issues are the lack of large datasets with high data variety plus the training and
inference data following different distributions. Due to privacy concerns and related
administrative issues, it is very hard to transfer medical data (procedure videos, in
our case) outside the medical institutes. Therefore, it is usually impractical to have
training and testing data covering various environments from different hospitals. Ad-
ditionally, restricted data access makes it expensive to annotate new data and re-train
the object detector for new deployments. Notably, public large-scale datasets usually
adopt a crowd-sourcing approach for speed and cost-effectiveness, distributing data
annotation tasks to a large number of participants on the Internet. However, this op-
tion is impractical in our case, as data annotation and model training usually require
medical experts within the hospital. Without annotating new data and re-training the
model in a new environment, the training data and inference data may follow very
different distributions. This divergence can occur due to differences in room settings,
instrument types, camera settings, and other medical-specific factors in different medi-
cal institutes. Numerous domain-related factors can affect the data distribution of the
images and threaten the robustness of the object detector. Those factors highlight the
importance of the data aspect when developing a robust object detector to deploy in
Cath Labs.

1.3 Outline

This report is structured as follows:

1. In Chapter 2, we summarize the relevant literature. It includes deep-learning-
based object detection models, relevant research on domain shifts, and appli-
cations of multi-camera systems. It lays the foundation for understanding per-
formance degradation related to data distribution shift and using multi-camera
systems for workflow analysis in Cath Labs.
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2. In Chapter 3, we cover the methods we have applied in this thesis. Specifically,
we describe the YOLOv8 object detector we have used and the visualization tech-
niques that reveal the data distribution characteristics of our dataset in the feature
space.

3. In Chapter 4, we illustrate our experiment results and our main findings. In
particular, we expand on our datasets, evaluation metrics, experiment design,
results, and analysis. Notably, we elaborate on the evaluation method for the
multi-camera system. In the results section, we highlight the performance gap
due to varying data distributions and show the capability of the multi-camera
system to detect objects more reliably.

4. Finally, in Chapter 5, we provide discussions of the results, a summary of this
project, and suggestions for future research directions based on our findings and
limitations of current methods.
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Related Works 2
2.1 Deep-learning-based Object Detector

Figure 2.1: The developments of object detection algorithms, taken from [15].

Since the advent of AlexNet, research on object detection algorithms has been fo-
cused on deep-learning-based models and can be broadly divided into two directions,
two-stage detector and one-stage detector [15]. As shown in Figure 2.1, each direction
has numerous detectors featuring their unique designs. In this chapter, the first work of
each direction is covered in detail, because they set the foundational design paradigms,
which are crucial for comprehending the underlying mechanisms distinguishing the two
directions. Their following works are introduced briefly with their major improve-
ments. Specifically, we start with R-CNN, the first deep-learning-based object detector
delivering groundbreaking performance, as well as other two-stage detectors. Then, we
move to YOLO, whose design is more unified, and extend our discussion to subsequent
developments in one-stage detectors.

2.1.1 Two-stage Object Detector

The advent of the two-stage object detector represents a milestone in the development
of object detection algorithms. It is the first deep-learning object detector that showed
ground-breaking performance compared to traditional algorithms. In 2012, AlexNet
showed that Convolutional Neural Networks (CNNs) can effectively learn high-level
features from images and utilize them to achieve record-breaking performance in image
classification tasks [17]. However, the object detection task is more complex than
image classification, as the number of object instances is not fixed and the detectors
need to localize them apart from classification. Therefore, AlexNet can not be directly
applied to object detection. Region-based Convolutional Neural Networks (R-CNN)
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was introduced in 2014. Through a special two-stage design, R-CNN transfers the
success of CNNs from image classification to object detection [18].

Figure 2.2: The data processing pipeline of R-CNN, taken from [18].

The design of R-CNN is shown in Figure 2.2. The pipeline of R-CNN can be roughly
divided into two stages, the region proposal stage and the object detection stage [18].
In the first stage, it identifies potential regions of interest, which are agnostic to the
class of objects. R-CNN chose the selective search method for this purpose, which
employs a CNN to give 2000 region proposals [18]. After this, a simple preprocessing
step will crop them individually into 227×227 RGB bounding boxes for the following
feature extraction. Compared to the naive method of using a sliding window for region
choosing, proposing 2000 regions can significantly reduce computational costs. The
second stage performs the classification of that region. First, each cropped region will
go through a CNN to obtain a 4096-dimension feature vector. The CNN is made up of
5 convolutional layers and 2 fully connected layers. It is pre-trained on ImageNet and
fine-tuned on the proposed regions of the target dataset. Finally, a trained linear SVM
predicts the class of the proposed regions based on their feature vector. An additional
post-processing step, Non-Maximum Suppression (NMS) is applied to refine the result.
It removes redundant bounding boxes by greedily removing extra overlapping bounding
boxes.

As R-CNN established the design paradigm of the two-stage object detectors, the
following works continued to make improvements based on R-CNN. SPPNet was in-
troduced in 2015, which is a significant advancement from R-CNN [25]. Its Spatial
Pyramid Pooling can process images of varying sizes without cropping or rescaling.
Additionally, the whole image is processed only once to create feature maps, and the
proposed feature vectors of regions can be generated from it. As a result, SPPNet is
more than 20 times faster than R-CNN [25]. Fast R-CNN is both faster and more
accurate than R-CNN [26]. It only processes the entire image once with the Region of
Interest (RoI) pooling layer and can be trained in an end-to-end manner. Faster R-CNN
speeds up the region proposal stage with Region Proposal Network (RPN), achieving
real-time object detection [19]. Feature Pyramid Network (FPN) utilizes features from
different levels of CNN to create a rich, multi-scale feature pyramid [27]. This design
improves the object detection performance, especially for objects at different scales,
and is thus used as a standard structure in many later works.
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2.1.2 One-stage Object Detector

You Only Look Once (YOLO) is the first one-stage object detector [15]. Contrary
to the two-stage detectors, which utilize deep-learning classifiers, YOLO treats object
detection as a regression problem that predicts bounding box and corresponding class
probabilities [20]. Due to the unified and simple architecture of YOLO, it enables end-
end training, can run very fast, and has better generalization ability than two-stage
detectors at its time [20].

Figure 2.3: The data processing pipeline of YOLO, taken from [20].

Figure 2.4: The design mechanism of YOLO, taken from [20].

The image processing pipeline and overall design of YOLO are shown in Figure 2.3
and Figure 2.4, respectively. When running YOLO, the image is first resized, then fed
into the neural network, and finally run through a post-processing step. YOLO divides
the image into an s×s grid, and each cell is responsible for predicting bounding boxes
whose centers are inside the cell. For each bounding box, YOLO will predict 4 coordi-
nates (x,y,w,h) and a confidence score associated with objectness and Intersection over
Union (IoU). Objectness is the probability that an object exists in this cell, regardless
of the class of the object. IoU is calculated as the ratio of the area of overlap between
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the predicted and ground truth bounding boxes to the area encompassing both. This
design helps to balance the detection and localization accuracy. A separate map for
class probability is calculated. It predicts conditional class probability given there is an
object existing P (class|object). The final output confidence score is the class probabil-
ity times the bounding box confidence score, which is Confidence = P (class)IoU. Note
that P (class) and IoU are estimated values that the model tries to fit. As each cell will
predict a fixed number of bounding boxes and their scores, there will be a large number
of predicted bounding boxes. In the post-processing step, NMS will remove redundant
bounding boxes of the same object, and we will also set a confidence threshold to filter
out low-confidence detections.

Figure 2.5: The architecture of the neural network in YOLO, taken from [20].

The architecture of the neural network is shown in Figure 2.5. It has 24 convolutional
layers, as an adapted version of GoogLeNet, followed by 2 fully connected layers. This
network design became a design paradigm in later works. The convolutional layers are
referred to as the backbone, responsible for feature extraction, and the fully connected
layers are called the head, responsible for performing regression from the extracted
features [28]. Training of the networks involved pretraining the convolutional layers on
the ImageNet image classification task, and then the whole model is trained for the
detection task in the desired dataset.

Compared to two-stage detectors, the localization ability and detection performance
of YOLO for small objects suffer. Those issues were addressed in the following works
of the one-stage detector [15]. Some of the important following works are Single Shot
MultiBox Detector (SSD), which improves detection accuracy while maintaining fast
speed via integrating region proposal network (RPN) from faster R-CNN [29], and
RetinaNet, which introduces focal loss to address the class imbalance of the foreground
and background [30].

Starting from YOLO, a series of one-stage object detectors developed by different re-
search groups, have gained popularity for object detection applications due to their fast
speed and easy deployment. YOLO9000 (YOLOv2) uses a hierarchical method, Word-
tree, achieving a very large detectable class category number of 9418 [31]. YOLOv3
improves the detection performance of small-scale objects with a network structure
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similar to the Feature Pyramid Network [32]. Starting from YOLOv4, the YOLO fam-
ilies tend to use a combination of engineering techniques to further push the detection
performance. YOLOv4 incorporates improved backbone CSPDarknet53, anchor boxes
optimization, the Mish activation function, and data augmentation techniques such as
Mosaic [33]. At the start of the project, YOLOv8 was the latest version of YOLO
families [34]. It utilizes a large combination of techniques compared to its predecessor
and has achieved a higher mAP on the COCO benchmark. Though the official paper
is not available, we can find its design details in its documentation. Due to its fast
speed and decent performance, we chose YOLOv8 as the detector and will introduce it
in detail in Chapter 3.

2.2 Domain Shift and Its Solutions

2.2.1 Domain Shift

Domain shifts refer to the domain-related data distribution difference, which can dam-
age the performance of machine learning methods [35]. Most machine learning methods
naturally assume that the training data and testing data are independently sampled
from the same distribution [36]. The object detectors mentioned in the previous sec-
tions are no exception. In reality, this ideal assumption usually does not hold. The
training data (from the source domain) and testing data (from the target domain) can
have a distribution shift.

Mathematically speaking, there are different kinds of domain shifts: covariate shift,
label shift, and concept shift (note that there exist more general data shifts) [37]. Our
case fits the covariate shift assumption. A machine learning model focuses on using
input features X to predict target variables Y , which can be achieved by estimating the
conditional probability P (Y |X). Different types of domain shifts can be depicted by
the change in decomposed components of joint distribution P (X, Y ) = P (X|Y )P (Y ) =
Pr(Y |X)P (X).

1. Covariate shift assumes Ptrain(X) ̸= Ptest(X), Ptrain(Y |X) = Ptest(Y |X):
Covariate shift happens when the relationship between the input and the output
(Y |X) is not changed, but the distribution of input P (X) is changed. One example
can be a model that predicts the happiness level of people from the weather.
Assume the relationship between weather and happiness remains consistent. The
model has been trained on data from the summertime in Australia, and now it
is going to be deployed in the Netherlands in the wintertime. Our case fits the
covariate shift assumption, because object appearances from different Cath Labs
are only tiny subsets of the entire spectrum of possible images, while the concept
of the object class (the relationship between the RGB image and its object class)
is not changed. Even though P (Y |X) is unchanged, covariate shift will make it
difficult to estimate P (Y |X) in regions where the data points are sparse or absent.

2. Label shift assumes Ptrain(Y ) ̸= Ptest(Y ), Ptrain(X|Y ) = Ptest(X|Y ):
It is the case that the prior of the label P (Y ) changes while its conditional proba-
bility given the input P (X|Y ) is not changed. An example can be disease diagnosis
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in different periods when the prior of having the disease is different. Observed
symptoms given having the disease stay the same. When a person shows the
symptoms, the chance it having the disease is higher at the time when the disease
prevails.

3. Concept shift assumes Ptrain(Y |X) ̸= Ptest(Y |X), Ptrain(X) = Ptest(X):
Concept shift assumes the internal relationship between the input and the output
P (Y |X) is changed. Therefore, concept shift is more difficult to tackle. One
example can be having an aged and inaccurate thermometer, given the same
input temperature its output readings changed due to the aging process.

Domain shift can happen due to numerous factors and pose serious threats to the
deployed machine learning systems. Researchers have found its presence in images
taken by different types of cameras [38]. Deploying an image segmentation system
in a new city for autonomous driving can seriously hurt its performance [39]. In the
medical field, different imaging devices can also impair performance for automatic polyp
detection in the digestive system [40]. The list of factors that cause domain shift can
be nearly unlimited. Most commonly, they are changes in lighting, camera angles, or
backgrounds [41]. The ubiquitous nature of domain shift makes it hard to avoid. For
less critical systems such as imaging searching systems, the errors introduced by domain
shift are undesirable but can be tolerated. However, for systems deployed in high-stakes
fields, such as autonomous driving and healthcare, the consequences of such errors can
be lethal, thus research on domain shift has attracted growing interest [42].

2.2.2 Domain Adaptation and Domain Generalization

Making the object detector work in a novel domain is a very challenging yet rewarding
task, which attracts researchers working in various directions. That effort can generally
be categorized into two directions: domain adaptation and domain generalization [43].
Domain adaptation adjusts the machine learning model based on the data distribution
of the target domain to increase its performance when the model is deployed in the
target environment. It requires access to the target dataset and adjusts models to
perform well in the target domain without considering other environments. Though it is
a valuable direction, we did not pursue it in this project because domain generalization
is more practical in our specific medical setting. As a promising alternative, domain
generalization intends to make the model maintain good performance in various unseen
domains. Research in this field includes representation learning, training strategy, and
data augmentation [43]. In this approach, the model is encouraged to extract and
utilize features that are robust or even invariant to domain changes so that the model
can have consistent performance in various domains.

The following is a very relevant example in the field of autonomous driving, where
cars need to operate in various weather conditions, which can alter the data distribution
of the appearance of objects of interest. Researchers have found that images from
car cameras in a foggy environment have a different data distribution than in clear
weather, which will hurt the performance of the detector in foggy weather as shown
in Figure 2.6 [44]. The researchers showed the domain shift by calculating the mean
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Figure 2.6: The feature channel statistics (mean) difference in the CityScapes and Foggy
CityScapes datasets. The distribution difference is alleviated by introducing perturbation in
the backbone of the model. The image is taken from [44].

of each feature channel. They found that, by injecting their proposed noise named
“Normalization Perturbation” in the backbone of the model, the data distribution of
two domains can be closer, which alleviates the performance degradation when training
in clear weather and testing in foggy weather.

2.3 Applications of Multi-camera Systems

The multi-camera systems are applied to overcome the limitations inherent in a single-
camera setup. Primarily, it can provide wider coverage, better reliability, and improved
depth and 3D spatial perception. Its potential can go even further because its multi-
perspective views can provide more comprehensive information about the scene for
sophisticated applications. Therefore, multi-camera systems are widely used in robotics,
traffic monitoring, and indoor localization systems. Moreover, such systems have been
drawing increasing research interest in medical applications.

Expanding the visual coverage is one major reason for deploying a multi-camera sys-
tem. Monitoring systems need to track an object or multiple objects for an extended
range, which is hard to accomplish with a single camera. For traffic monitoring systems,
the research interests have been focused on the re-identification problem, which is link-
ing objects from different camera views. Current state-of-the-art algorithms for traffic
tracking can link cars despite drastic viewpoint changes and the absence of overlapping
views [45]. This capability allows traffic analyzing systems to track traffic flow in great
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detail, covering each vehicle across multiple blocks. For indoor applications, the cam-
eras are more clustered and deployed to provide better coverage of the rooms. Such
systems can provide the location of the object inside a room even at every corner [46].
Research on camera layout has been conducted to optimize camera coverage for spe-
cific tasks while balancing the number of cameras used [47]. In healthcare, expanded
coverage is an important reason for multi-camera systems. Fall detection systems can
analyze real-time video feeds and automatically alert for sudden fall accidents of pa-
tients and elderlies [48] [49]. To run this system reliably, multiple cameras are needed
to eliminate blind spots. Otherwise, there exists the possibility that a patient fell out-
side the covered area by the camera, and the healthcare staff stayed unalerted for the
accident.

Figure 2.7: 3D pose estimation results inside an operating room from the 3DPS model, which
merging 2D pose estimation results. The performance of the model against camera coverage
is shown in the line plot. The image is taken from [50].

The capability of providing 3D spatial information is another advantage of multi-
camera systems. The applications of multi-camera systems have a long history in
robotics. Starting from fixed binocular cameras for depth estimation, the capability
now has been extended to using uncalibrated multiple cameras to guide robotic arms
to operate in 3D space [51]. For medical applications, 3D information from multi-
camera systems is also highly valuable. One popular application is 3D human pose
estimation. For example, researchers can track the 3D pose of surgeons (played by
actors in the example) inside an operating room [50] as shown in Figure 2.7. It is done
by initially tracking 2D poses in each view, and then merging them via the 3DPS model.
The model can generate 3D poses when the person is tracked by at least 2 cameras,
and the performance increases with more cameras. The pose information acquired by
this system can be used in vision-based workflow analysis systems for analyzing the
behaviors of medical staff [52]. It can be very helpful for increasing efficiency and
warning for fatigue. The detector in this project can advance beyond merely human
activities, as it can provide information about the interaction between humans and
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instruments, providing more insights such as X-ray exposure. 2D to 3D information
conversion of medical instruments can be accomplished by triangulation-based methods
or more sophisticated models.

The redundancy provided by multi-camera systems can ensure reliability, which is
crucial for medical applications. As shown in Figure 2.7, the camera setup for the 3D
pose estimator uses 5 cameras facing the operating tables, providing overlapping views.
As the operating room is a highly crowded environment, the extra cameras can work
when a person is occluded from certain viewpoints. Additionally, the viewpoint variety
can also ensure reliability. As object detection is a highly challenging task, object
detectors can have difficulties in dealing with viewpoint changes. The appearance
of objects can be very different from different angles. Researchers have attempted
to compensate for this problem with a two-camera setup, and they demonstrated a
higher detection performance can be obtained by combining detection results from two
cameras [53]. This idea can also be helpful for our project, as when the training data
has limited viewpoint variety, our trained detectors can also be unstable with regard
to viewpoint changes.
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Methods 3
3.1 YOLOv8 Object Detector

YOLOv8 was the latest object detector in the YOLO family at the start of this project.
It was developed by Ultralytics, who also developed YOLOv5. Its software provides
a well-designed library for easy implementation of both training and inference. The
algorithm achieved state-of-the-art object detection performance, with its x version
(extra large) achieving 53.9 mAP@0.5-0.95 on the 2017 COCO val dataset [34].

YOLOv8 follows the same design paradigm as the YOLO families. It incorporates an
anchor-free design and provides better generalization ability than two-stage detectors
due to its simple and unified model design. Additionally, the built-in data augmentation
module in the training part can also help to improve its generalization ability when
deployed in the real world.

3.1.1 Architecture

The model architecture of YOLOv8 is shown in Figure 3.1. Like previous YOLO
models, it has a backbone for feature extraction, a neck for feature multi-scale and
multi-level feature integration, and a head for the final bounding boxes prediction.

The backbone of YOLOv8 is a modified version of CSPDarkNet, which is made
up of a series of convolutional layers and the newly introduced Cross Stage Partial
Bottleneck with two convolutions fast (C2f) layers [54]. The convolutional layers per-
form standard 2D convolutions to extract features. The C2f module is inspired by the
ELAN module [55]. Its design features bottlenecks with skip-connections. The C2f
module can make the model more trainable, learn multi-scale features more effectively
and expand its receptive field [56]. At the end of the backbone is the Spatial Pyramid
Pooling-Fast (SPPF), modified from Spatial Pyramid Pooling (SPPF) for greater in-
ference speed [25] [54]. It serves the same role as SPP, which is dandling varied input
sizes and preserving better spatial information for improved accuracy.

The neck is designed to efficiently merge feature maps from 3 different scales in
the backbone. It helps to improve the localization accuracy and detection performance
of smaller objects. The design of the neck in YOLOv8 follows the Path Aggregation
networks (PANet) [57], with its newly introduced C2f module used in it.

The head will finally predict the bounding boxes from the feature maps from the
neck. The design of YOLOv8 features an anchor-free and decoupled head. Anchor-
free is first introduced by CornerNet [58]. Rather than predicting the bounding box
coordinates directly, the anchor-based model calculates their offsets to a set of anchors
predefined at the training stage. This design makes the networks easier to train but
will impose a strong prior of the bounding box. By adopting an anchor-free design,
YOLOv8 gained better generalization ability. The decoupled detection head design
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Figure 3.1: The architecture of YOLOv8, taken from [34].

is first proposed in the Decoupled Classification Refinement (DCR) network, which
improves the precision of object detection greatly [59]. In the original YOLO model,
the task of predicting object class and bounding box coordinates is accomplished by a
single unit. The researchers of DCR found the tasks of classification and regression are
fundamentally different. The loss functions derived from those two tasks can lead to
gradient conflicts, resulting in performance drops [59]. The YOLOv8 instead has two
branches in its head, the classification branch for class probabilities prediction and the
regression branch for bounding box coordinates prediction.

3.1.2 Loss Function

The loss function of YOLOv8 is a weighted sum of multiple loss functions responsible
for predicting the class probability and bounding box coordinates. Though the exact
formula is not given by its authors, information can be found in its GitHub repository.
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The losses are Binary Cross-Entropy (BCE) loss in the classification branch, Complete
Intersection over Union (CIoU) loss, and Distribution Focal Loss (DFL) loss in the
regression branch.

BCE loss is the most commonly used loss for the classification task:

BCE Loss = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] , (3.1)

where yi is the actual label {0, 1}; ŷi is the predicted probability.

CIoU Loss is an advanced version of the IoU loss used for bounding box regression
in object detection. It accounts for the overlap, central point distance, and aspect ratio
between the predicted and ground truth boxes [60]. Its formula is:

CIoU Loss = 1− IoU +
ρ2(b, bgt)

c2
+ α · v, (3.2)

v =
4

π2

(
arctan

wgt

hgt
− arctan

wb

hb

)2

, (3.3)

α =

{
0 if IoU < 0.5

v
(1−IoU)+v

if IoU ≥ 0.5
, (3.4)

where ρ(b, bgt) is the Euclidean distance between the center points of the predicted
bounding box and the ground truth bounding box; c is the diagonal length of the
smallest enclosing box covering both the predicted bounding box and the ground truth;
v measures the consistency of the aspect ratio; α is a trade-off parameter.

DFL helps to provide more accurate localization by considering the distribution of
bounding box predictions for a better localization quality representation [61]. For this
loss, bounding box coordinates are given in the form of a probability distribution. Its
expression is:

DFL(Si, Si+1) = −(yi+1 − y) log(Si) + (y − yi) log(Si+1), (3.5)

where yi and yi+1 are boundaries of the discretized bins that are closest to the target
coordinate y; (Si) and Si+1 are the predicted probabilities for these bins.

3.1.3 Training

The YOLOv8 library offers convenient built-in functions for controlling the training
process. We can adjust transfer learning, data augmentation, and training strategies
by changing them. Careful utilization of those functions can help to improve the model
performance and accelerate the training process.

In YOLOv8, transfer learning can be achieved by initializing the model with pre-
trained weight before training. Those weights are usually obtained by training on
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large-scale datasets. YOLOv8 provides pretrained weights from the MS COCO dataset,
which is a very large and diverse dataset. Transfer learning can significantly accelerate
the training process, lowering the requirement for the quantity of training data, and
providing benefits for the model performance. Its benefits come from feature reuse.
In the pretraining process, the model can learn useful features from the pretraining
dataset. And because pretraining datasets are large and diverse, the learned features are
usually robust. As the images in our datasets and in the COCO datasets are all captured
by RGB cameras, we can expect they share common visual features. Therefore, the
object detector can reuse those features to improve its performance in detecting the
objects inside Cath Labs.

Figure 3.2: The Mosaic data augmentation technique, taken from [62].

To improve its generalization ability and robustness in real-world deployment,
YOLOv8 provides built-in data augmentation functions. The data augmentation tech-
niques include Mosiac, augment HSV, random affine, and other random linear transfor-
mations. Mosaic augmentation stitches cropped part of four random training images
as shown in Figure 3.2 [62]. By doing so, the model can be more robust to different
object scales and background information. It also moderately helps with occlusion
issues, since parts of objects might be cropped out. Augment HSV (hue, saturation,
value) randomly adjusts the HSV values of the images to create variations in color and
brightness. This augmentation can make the model more robust to changing lighting
conditions or camera color shifts in real life. Random affine transformation including
scaling, translation, and rotation. It helps the model to detect objects regardless of
their size and orientation.

YOLOv8 also offers a wide range of parameters to control training strategies. They
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help to accelerate the training process and improve the detection performance. The
basic training setting of YOLOv8 includes changing the optimizer, batch size, learning
rate, weight decay, etc. More advanced training strategies include the warm-up phase
and Exponential Moving Average (EMA). In the warm-up phase, the learning rate
gradually increases from a lower value to the target learning rate. It helps to mitigate
instability in the early training phase. EMA maintains a moving average of model
weights during the training process. It smooths the noise in the training data, which
helps to stabilize the training process and improve the model performance [63].

3.2 Visualization of Data Distributions

As relevant literature on domain shift suggests the relationship between data distri-
bution shifts and the performance degradation of machine learning models, we want
to investigate whether images in our datasets follow different distributions in the fea-
ture space. In this project, we have applied visualization methods to show the feature
distribution of the images in our datasets.

The impact of data distribution shifts on the performance of the object detector
can be understood from an optimization perspective. At the training stage, the weight
of the model is adjusted to optimize the empirical loss in training:

ĴA(θ) =
1

N

N∑
i=1

L(xi, yi; θ), (xi, yi) ∼ A, (3.6)

where ĴA(θ) is the empirical loss in training; θ is the weight of the model; (xi, yi) are
the data points sampled from distribution A.

Due to different testing data, the empirical loss in the testing process is:

ĴB(θ) =
1

N

N∑
i=1

L(xi, yi; θ), (xi, yi) ∼ B. (3.7)

If the data in the training and testing process fits the independent and identically
distributed (i.i.d.) assumption, the model can deliver good performance as the distri-
bution A and B is the same. But when the domain shifts happen, the loss function
can be very different due to the difference in the data. Weight optimized in minimizing
ĴA(θ) can not guarantee to minimize ĴB(θ), resulting in a bad performance in the test
set.

Despite the seemingly complex architectural design of YOLOv8, the purpose of the
network design is first feature extraction and then regression as shown in Figure 3.3. We
aimed to show the distribution shift in the regression part. For this purpose, We chose
the feature maps just before the detection head. Though there are three multi-scale
feature maps for bounding box prediction, we chose the deepest one for its richer se-
mantic information and also the simplicity of our experiments. The high dimensionality
of feature maps (20×12×512) makes it hard to show the data distribution. Therefore,
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Figure 3.3: The simplified data processing pipeline of the neural network in YOLOv8.

we reduce its dimensionality in two steps: calculation of feature channel statistics and
dimensionality reduction. Similar techniques can be found in works regarding domain
shift [44].

3.2.1 Feature Channel Statistics

The feature channel statistics capture the activation patterns of the neural networks.
In this project, we chose mean and variance as the feature channel statistics, while the
work on domain shift in autonomous driving visualizes mean as previously shown in
Figure 2.6. The mean provides a measure of the average intensity of the activations,
and variance measures how much the activations vary across the feature map. The
significance of the mean and variance of the channel can be seen in many important
works in deep learning, such as Batch Normalization calculates them for stabilizing the
training process of neural networks [64]. For model compression, the mean and variance
of the activations can also be used as the criteria to prune unimportant neurons [65].

As there are 512 layers in our feature maps and we calculate the mean and variance
of each layer, we have a 512-dimension mean vector and a 512-dimension variance
vector. They are concatenated to get the final feature vector of 1024 dimensions. This
feature vector captures the neural activation pattern of the whole image.

Figure 3.4: The 5×5 region for calculating object-level feature vector for visualization.

Additionally, we also calculate the feature vector on the object level. YOLOv8 is
designed in a way that each cell is responsible for predicting the bounding boxes centered
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at it. We can read the position of an object from the annotation, and discretize it to
get the responsible cell in the feature maps. Additionally, in the head of YOLOv8,
two convolutional layers have a kernel size of 3 as shown in Figure 3.1. The receptive
field is 5×5. Therefore, we can find the 5×5 region and calculate its feature channel
statistics instead of the whole image as shown previously in Figure 3.4. The feature
vector will have the same dimension because we calculate it with the same method only
in a smaller region instead of the whole image. This method allows us to gain a better
understanding of how objects influence the data distribution.

3.2.2 Dimensionality Reduction Methods

The dimensionality reduction step aims to further reduce the channel feature statistics
vector to 2 dimensions for visualization. In this project, we tested three techniques:
Principal Component Analysis (PCA), T-distributed Stochastic Neighbor Embedding
(T-SNE), and Uniform Manifold Approximation and Projection (UMAP).

In summary, PCA can model global data structure well but is unable to capture
non-linearities. By contrast, both T-SNE and UMAP model non-linearity. While T-
SNE is good at modeling local data structure, it falls short at global data structure.
On the other hand, UMAP can balance both local and global data structures [66].

3.2.2.1 PCA

PCA is one of the most commonly used dimensionality reduction tools. It linearly
projects vectors into lower dimensional space while maximizing the variance after pro-
jection.

PCA performs linear projection with a matrix multiplication:

Y = U
′TX, (3.8)

where Y is the projected low dimensional data; U
′T is the projection matrix; X is the

original data.

U
′T is obtained by computing the eigenvectors and eigenvalues of the covariance

matrix to identify the principal components. This is done by solving the equation:

Cov(X,X)U = UΛ, (3.9)

where Cov(X,X) is the covariance matrix of X; U is the matrix of eigenvectors; Λ is
the diagonal matrix of eigenvalues.

Projection matrix U
′
is obtained by taking top k eigenvectors (columns) of U. In

our case, we chose the top 2 columns for visualization.

3.2.2.2 T-SNE

T-SNE is a widely used statistical method in the field of machine learning for visualizing
data from high dimensional space [67]. It works by finding low-dimensional (typically
two or three-dimensional) representations of high-dimensional data points while keeping
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the data structure. However, studies have found that T-SNE pays more attention to
local data structure while ignoring global data structure [68].

The calculation process of T-SNE is done by minimizing the difference between the
distributions in the original high-dimensional space and the projected low-dimensional
space. It starts by computing asymmetric distributions. Given a data point, the
probability of picking another data point as a neighbor is under a Gaussian distribution
center around it. The probability that xi will pick xj as the neighbour is:

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
. (3.10)

The symmetric pair-wise similarity is defined as:

pij =
pj|i + pi|j

2N
, (3.11)

where N is the number of data points

In the low dimensional space, the corresponding data points of xi and xj are yi and
yj. A heavy-tailed student’s t-distribution is used for more consistent modeling of the
distance [67]. The pair-wise similarity in low dimensional space is calculated as:

qij =
(1 + ||yi − yj||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

. (3.12)

The difference between the two distributions is modeled by Kullback–Leibler diver-
gence:

KL(P ||Q) =
∑
i

∑
j

pij log

(
pij
qij

)
. (3.13)

Finding the low-dimensional points is done by minimizing Kullback–Leibler diver-
gence. As it is non-convex, the gradient descent method is used here.

3.2.2.3 UMAP

UMAP is a dimensionality reduction technique that serves a similar purpose as T-
SNE [66]. It is widely applied in the field of data science like bioinformatics, because
it preserves both the global and local structure of the high dimensional data [66].

UMAP is a manifold learning method. The idea behind it is that the high-
dimensional data can be modeled as a manifold embedded in high-dimensional space.
UMAP tries to learn the manifold structure and project it into a lower-dimensional
space. The modeling of manifold structure is based on the theory of Riemannian ge-
ometry and topological data analysis.
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The implementation of UMAP is shown as the following. The first step is construct-
ing a weighted k-neighbour graph to describe the relations of points in high-dimensional
space. The weight is calculated by:

w((xi, xij)) = exp

(
−
max(0, d(xi, xij)− ρi)

σi

)
, (3.14)

ρi = min{d(xi, xij) | 1 ≤ j ≤ k, d(xi, xij) > 0}, (3.15)

k∑
j=1

exp

(
−
max(0, d(xi, xij)− ρi)

σi

)
= log2(k), (3.16)

where d(xi, xij) is the Euclidean distance between the two points; k is the number
chosen for k-nearest neighbors. This equation is solved for calculating ρi.

The symmetric weight w((xi, xj)) is further acquired by symmetrization:

B = A+AT −A ◦AT, (3.17)

where A is the weighted adjacency matrix calculated by w((xi, xij)) ;◦ is the point-wise
product. B is the matrix of symmetric weights.

The second step is to formulate the graph layout of points in low-dimensional space.
It is done via a force directed graph layout algorithm, which applies attractive forces
to vertices and repulsive forces to edges. The attractive force and repulsive force are
calculated as:

FAttractive = −2ab∥yi − yj∥2(b−1)
2

1 + ∥yi − yj∥22
w((xi, xj))(yi − yj), (3.18)

FRepulsive =
2b

(ϵ+ ∥yi − yj∥22)
(
1 + a∥yi − yj∥2b2

)(1− w((xi, xj)))(yi − yj), (3.19)

where a and b are parameters; ϵ is a very small constant to prevent division by zero.
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Experiments and Results 4
4.1 Datasets

The datasets involved in this project are from one real clinical procedure performed in
a Cath Lab inside Reinier de Graaf Hospital, two mock procedures performed inside a
Cath Lab in Philips Best Campus, and online images that are collected from Google
Images and Bing Images.

Those datasets have their unique characteristics. The RdGG and Philips Best
datasets have highly limited backgrounds and object appearance variety, since the
images of each dataset are captured inside a single Cath Lab. However, the videos
from multiple cameras can cover the objects from different angles, and their appear-
ance changes over time. Additionally, the cameras in the Cath Labs have a wider field
of view for better coverage, which can introduce a greater degree of distortion than
hand-held cameras, especially at the edge of the image.

On the other hand, the collected online images have a wide variety of objects and
background appearances as each photo is taken inside different Cath Labs. However, the
viewpoint variety of these images is limited, because most photos were taken by hand-
held cameras from a limited range of angles. Additionally, most images were captured
without operations being performed. Those still images do not contain appearance
changes of objects across multiple frames.

Figure 4.1: The object Class for detection in the RdGG 20211007 dataset.

The object classes for detection in this project are: [doctor, patient, operating ta-
ble, instrument table, control panel display, control panel button, x-ray detector, x-ray
source, display]. Figure 4.1 shows the object classes for detection inside the RdGG
20211007 dataset. The RdGG dataset and online image dataset also have class ’lead
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shield’, but it is not reported in this project because the Cath Lab in Philips Best does
not have a lead shield. All the object instances were annotated manually. The annota-
tion process was carried out using the Computer Vision Annotation Tool (CVAT), an
open-source, web-based tool designed for the annotation of images and videos [69]. The
work was done by the MSc student of the project, who visually recognized objects of
interest and annotated them inside bounding boxes. The annotation results are plotted
and re-examined by the student to avoid errors. The annotation process adhered to the
guidelines that when severe occlusion happens (over 70% of an object is occluded), we
do not annotate the object unless it is a person with more than 50% of the face visible.

4.1.1 RdGG Dataset

Figure 4.2: The multi-camera system setup in the Cath Lab of Reinier de Graaf Hospital.

Figure 4.3: Example images from the multi-camera system in the Cath Lab of Reinier de
Graaf Hospital.

The RdGG 20211007 dataset was captured from five fixed cameras mounted inside
the Cath Lab in Reinier de Graaf Hospital. All five cameras are facing the operating
table to provide an overlapping view of the operation as the camera setup is shown
in Figure 4.2. All five cameras are synchronized and have a frame rate of 25 Frames
Per Second (FPS). The images in the dataset were taken every 5 seconds from the
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recording of procedure 20211007. The example image from each camera is shown in
Figure 4.3. For privacy reasons, the faces of humans are blurred in all images shown in
this report, but for the training and inference, images are directly from the recording
without changes.

Figure 4.4: The number of object instances of the RdGG 20211007 dataset.

Figure 4.5: Camera coverage analysis of the RdGG 20211007 dataset.

The RdGG 20211007 dataset has 620 images for each camera and thus 3100 images
in total. The dataset covers a short period before the patient entered the room, a long
procedure period, and a relatively short period when medical staff did some cleaning
and organizing after the patient left. The number of object instances is shown in
Figure 4.4. The camera coverage analysis of each single-object class is done based
on the number of frames where the annotation exists. in Figure 4.5, we can see that
most objects have good camera coverage, while the patient and the X-ray source have
relatively poor camera coverage. After examining the videos, we found that if the
patient is inside the Cath Lab, at least one camera will capture it. The reason for no
coverage of the patient is the patient leaving the room. The X-ray source, often placed
under the operating table, can be occluded by doctors, the table, and the surgical drape
covering the patient.
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4.1.2 Philips Best Datasets

Figure 4.6: The multi-camera system setup in the Cath Lab in Philips Best Campus.

Figure 4.7: Example images from the multi-camera system in the Cath Lab in Philips Best
Campus.

The Philips Best 105340 and 100000 are two mock procedures performed in a Cath
Lab at the Philips Best campus. The two mock procedures are relatively short compared
to the real procedure. In the videos, healthcare professionals are performing actions
that simulate real procedures. The reason for using mock procedures for the second
Cath Lab is for data access convenience, as the real procedures are only meant to
be accessed inside their respective medical institutes. The mock procedures provide
high visual fidelity, though future studies may replace them with actual procedures for
greater rigor.

The Cath Lab in Philips Best has 6 cameras rather than 5 with a slightly different
setup. However, they both serve the same purpose, mounted at the edge of the room,
facing the operating table to provide a more comprehensive view and better coverage of
the operation. The example images and camera setup can be found in Figure 4.6 and
Figure 4.7, respectively. Although some cameras have slightly different frame rates,
all are close to 25 FPS. Images in the datasets are also taken every 5 seconds from
the videos. The Philips Best 105340 dataset has 492 images, and the Philips Best
100000 dataset has 792 images. The number of object instances of Philips Best 105340
and Philips Best 100000 are shown in Figure 4.8. Figure 4.9 shows the result of the
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Figure 4.8: The number of object instances of the Philips Best 105340 and 100000 datasets.

Figure 4.9: Camera coverage analysis of the Philips Best 105340 and 100000 datasets.

camera coverage analysis. The control panel button and the control panel display have
relatively bad camera coverage, as they are attached to the operating table at positions
that can be easily occluded by healthcare professionals.

4.1.3 Online Image Dataset

The objects inside a single Cath Lab have highly limited appearance diversity, because
they are namely same objects moving and performing actions in the same environment.
The online images dataset was collected to improve the object and background appear-
ance diversity in our training data. In a manner similar to large-scale datasets like
ImageNet and MS COCO, we too collected online images from search engines. This
approach is based on the idea that diverse images will have a broader data distribution
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in the feature space, which improves the robustness of the trained model.

Figure 4.10: Example images of the online image dataset.

The collection process is simple but labor-intensive. We turned to existing image
repositories available in Google Images and Bing Images by searching for the keyword
’Catheterization Laboratory’. Images with a resolution lower than 640×480 were au-
tomatically filtered out. All collected images were visually examined. The irrelevant,
blurry, or damaged images were manually deleted. The example images are shown in
Figure 4.10.

We observed that most images were taken without procedures being performed.
Therefore, the patient and surgical drapes are not present. Additionally, because most
images are taken by hand-held cameras with aesthetically pleasing angles for advertise-
ment purposes, the viewpoints of those images are highly limited.

Figure 4.11: The number of object instances of the online image dataset.

The number of object instances of the online images is shown in Figure 4.11. We
can see the numbers of patients and the instrument table are much fewer than in other
classes. The reason is that most online images are taken when no operation is performed
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because of privacy results. The extremely low number of patient and operating table
instances will have a negative impact on their detection performance when the online
images are used as training data. In future studies, it is possible to add more images of
instrument tables inside other types of operating rooms. The lack of patient instances
can be solved by detecting humans and then classifying them into medical staff and
patients, as there are abundant publicly available images of people and pretrained
human detectors.

4.2 Metrics

Object detection is a complex task involving a range of metrics, each of which might
have specific implementations depending on the benchmark. In this project, we have
chosen an implementation consistent with the widely recognized COCO benchmark.
This section first covers those metrics. Then, we move to their aggregated version we
created for evaluating the detection performance of the multi-camera system.

4.2.1 Average Precision

Precision and recall are two of the most important metrics in predictive systems espe-
cially in machine learning, as they provide insights into practical model performance
and have significant business implications

Precision and recall are more naturally defined for classification tasks, such as bi-
nary predictions of “Yes” or “No”. Precision measures the reliability of the positive
predictions (predictions of “Yes”) of a model. It is calculated as the proportion of
correct positive predictions out of all positive predictions made. Recall tells the ability
of a model to find all relevant instances (cases with a “Yes” ground truth). It is the
ratio of positive ground truth cases found by the model to all positive ground truth
cases. Typically, prediction outcomes are categorized into four categories, which as
True Positive (TP), False Positive (FP), True Negative (FN), and False Negative (FN).
Positive/negative describes the result of prediction (“Yes” or “No”), and true/false
describes the correctness of detection. The detection and recall can be expressed as:

Precision =
TP

TP + FP
, (4.1)

Recall =
TP

TP + FN
. (4.2)

Most predictive systems provide a confidence score along with the prediction or a
probability, we can set a confidence threshold to decide whether a prediction is positive.
Adjusting this threshold allows us to manage the trade-off between precision and recall.
Generally, a higher threshold provides a higher precision but a lower recall, and vice
versa. By changing the threshold, we can get a precision-recall curve as shown in
Figure 4.12 for a more comprehensive understanding of the system’s performance.

In object detection tasks, an annotated bounding box of an object instance is con-
sidered as a “relevant case” and contributes to the denominator of recall. For a correct
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Figure 4.12: An illustration of the precision-recall curve.

detection that successfully found the object instance, it needs a correct class predic-
tion, a confidence score higher than the threshold, and enough localization accuracy.
Localization accuracy is quantified by Intersection over Union (IoU) [70]. As its name
suggests, IoU is the ratio of intersection to union between the ground truth bounding
box and the prediction bounding box. Its value ranges from 0 to 1, with 0 indicating
no overlap between the ground truth and predicted bounding boxes, and 1 indicating
a perfect match between them.

Additionally, the COCO benchmark has a best-match requirement to discourage re-
dundant bounding boxes of the same object instance. When multiple predicted bound-
ing boxes match an object instance (their IoU and confidence are higher than the
thresholds), only the one with the highest IoU is considered as a true positive while the
rest will be seen as false positives.

Average precision (AP) and mean average precision (mAP) are commonly utilized
metrics for comparing detection performance and providing a basic assessment of the
capabilities of a detector [70]. They can be commonly found in the algorithm rankings
section of most object detection benchmarks such as the COCO benchmark. In the
following sections, we assess AP and mAP under an IoU threshold of 0.5, denoted as
AP@0.5 and mAP@0.5, respectively. The selection of an IoU threshold of 0.5 is because
it is commonly reported in object detection benchmarks, where it is recognized as a
threshold for reliable localization accuracy. While the precision-recall curve provides
more comprehensive evaluation results of object detectors, single-number metrics like
AP and mAP are preferred for more direct comparison. By its definition, AP is the
average precision value across all recall values.

AP =

∫ 1

0

p(r) dr, (4.3)

where AP is average precision; p is precision; r is recall.

In practice, the calculation of average AP is performed by summing interpolated
precision times its recall interval over given recall thresholds. Interpolated precision
is the maximum precision in any recall level greater than or equal to the given re-
call threshold. It is used to guarantee monotonically decreasing the precision-recall
curve, which fits the concept of the precision-recall trade-off. Different benchmarks
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have different implementations, such as Pascal-VOC uses 11-point interpolation aver-
age precision. We followed the implementation of the COCO benchmark, 101-point
interpolated precision, where recall thresholds are {0, 0.01, 0.02, ..., 1}.

AP =
n∑

k=1

(rk − rk−1) · pinterp(rk), (4.4)

pinterp(r) = max
r̃≥r

p(r̃), (4.5)

where AP is average precision; pinterp is interpolated precision; r is recall.

Mean Average Precision (mAP) is another widely-used metric, which takes object
classes into consideration. It is the mean value of the average precision over each object
class, as shown in the equation:

mAP =
1

N

N∑
i=1

APi, (4.6)

where APi is the average precision of the object class i.

Compared to AP, which assigns equal weight to every bounding box, mAP assigns
equal weight to the AP of each class, without being influenced by its object instance
number. mAP can provide a more balanced performance measure in case of class
imbalance, where classes with higher object instance numbers can be over-represented
in AP. For example, in Cath Labs, where there tend to be more medical staff than
patients. However, it does not necessarily mean the detection performance of medical
staff is more important than patients. Due to the higher number of object instances
of medical staff, AP tends to be influenced more by the detection performance of staff
detection, but mAP treats the performance of these two classes equally.

4.2.2 Aggregated Metrics for Multi-camera System Evaluation

The goal of multi-camera evaluation is to demonstrate how well multi-camera systems
can enhance detection performance by mitigating issues related to changes in view-
point and occlusion. During our examination of the object detector trained on the
online images, we found its performance can be sensitive to viewpoint changes and
occlusion. This sensitivity can be attributed to the characteristics of the online images.
Because the online images are taken from limited angles for commercial purposes and
outside procedural timings, viewpoint changes and occlusion are rare in the online im-
age dataset. This issue can be mitigated by switching to the camera views with less
viewpoint change and occlusion at each frame.

Another important reason for multi-camera evaluation is to study the impact of the
detection performance on the downstream tasks that utilize multiple cameras. Given
that object detectors are a vital component of video analysis systems, the performance
of the whole system in downstream tasks becomes a critical area of interest.

Our approach is developing multi-camera evaluation metrics designed to assess the
impact of the detector on downstream tasks which vary in their requirement for the
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number of cameras. The key advantage of this method is its focus solely on the influence
of 2D object detection performance, effectively excluding any effects attributable to
other algorithms within the video analysis pipeline. In Chapter 2, we have introduced
various applications oe multi-camera systems such as fall detection and 3D human
pose estimation. However, conducting tests on all these applications would be beyond
the time constraints of our project. More importantly, our detector detects medical
instruments while the methods introduced only analyze human behavior. Nevertheless,
the integration of medical instrument detection in data analysis is expected to follow
a similar methodology. Specifically, we cover applications requiring 1 or 2 camera(s),
though it can be extended to more cameras for more sophisticated applications.

1. Applications require 1 camera:
Applications that are only interested in the state of the objects. In this case, object
detectors only need to propose the region of the object and other algorithms then
analyze this region. Examples can be detecting if a person falls over or if the
control panel button has been touched by medical staff.

2. Applications require 2 cameras:
Applications that are interested in the 3D position of objects. In this case, object
detectors need to propose the region of the object in at least 2 cameras. The
keypoint detection and matching algorithm then detects keypoints (such as the
joints of people) in the region and matches them across views. Finally, triangula-
tion or a more sophisticated model merges them into 3D locations. Examples can
be analyzing the activities of medical staff and calculating the distance from the
X-ray source to people for studying X-ray exposure.

Given the number of cameras (N) needed for different applications, we evaluate the
performance of multi-camera systems based on the number of frames. We choose the
suitable cameras at each frame for each object based on the detection confidence score
of the object, selecting the top-N camera views with the highest confidence scores. For
simplicity in our evaluation approach, we only evaluate classes with a single object
inside the Cath Lab to avoid the matching problem (Note: This evaluation is applied
to all classes except doctors). By adopting this method, in each camera view, we select
the most confident detection of each class for the object. Matching objects of the same
class from multiple camera views can be reserved for future research.

The selected N detections from N cameras for each object are consolidated into a
single, aggregated detection. This evaluation method simulates whether this aggregated
detection can produce an accurate output for the video analysis pipeline. For each
object, each frame is classified into one of three categories based on the visibility of the
object and the correctness of the aggregated detection. We calculate the numbers of
these three types of frames as follows:

1. The number of frames that an object can be detected (detectable
frames)
It means the frame when an object is visible in at least N cameras. It can be

36



calculated based on the number of annotations that exist in the current frame.

Ndetectable =
M∑
i=1

(Visibilityi ≥ N), (4.7)

where i is the frame index; M is the total frame number; Visibilityi is the number
of annotations of this object in all cameras at frame i.

2. The number of frames that the detector gives an aggregated detection
of the object (detected frames)
If all the selected N cameras have detection confidence higher than the confidence
threshold. We will consider it as a valid aggregated detection. Otherwise, we will
reject it as the detector is not confident enough.

Ndetected =
M∑
i=1

[
N∏
j=1

1 (Confij ≥ Confthresh)

]
, (4.8)

where N is the number of selected cameras; 1() is the indicator function, which
returns 1 when the input is true and 0 when the input is false; Confij is the detec-
tion confidence of the object in frame j and camera i; Confthresh is the detection
confidence threshold.

3. The number of frames that the aggregated detection is correct (cor-
rectly detected frames)
A correct aggregated detection means all selected cameras have a detection con-
fidence score that is high enough and localize the object accurately enough. If
all the selected N cameras have detection confidence higher than the confidence
threshold and IoU with the ground truth higher than the IoU threshold, we con-
sider that the object is correctly detected in this frame. Only in this case, 3D
localization can yeild the correct location of the object.

Ncorrectly detected =
M∑
i=1

[
N∏
j=1

1 (Confij ≥ Confthresh ∧ IoUij ≥ IoUthresh)

]
, (4.9)

where IoUthresh is the IoU between detection between the ground truth in frame
j and camera i; IoUthresh is the IoU threshold.

The concept of these three frame types directly relates to the components used
in calculating precision and recall. The number of detectable frames corresponds to
all ground truth instances. The number of detected frames corresponds to all positive
detections. Lastly, the number of correctly detected frames corresponds to true positive
detections. Therefore, we substitute the components in the precision and recall to create
their aggregated version as follows:

Precisionaggregated =

∑M
i=1

[∏N
j=1 1 (Confij ≥ Confthresh ∧ IoUij ≥ IoUthresh)

]
∑M

i=1

[∏N
j=1 1 (Confij ≥ Confthresh)

] , (4.10)
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Recallaggregated =

∑M
i=1

[∏N
j=1 1 (Confij ≥ Confthresh ∧ IoUij ≥ IoUthresh)

]
∑M

i=1 1 (Visibilityi ≥ N)
. (4.11)

In the context of object detection metrics like AP and mAP, which are fundamentally
derived from precision and recall, we propose an aggregated version by substituting the
standard precision and recall with their aggregated forms.

Those aggregated metrics account for the redundancy of the multi-camera system,
which is a factor not considered in the object detection metrics discussed in Sec-
tion 4.2.1, where each bounding box is treated independently. For instance, consider
a scenario within a 5-camera system involving two frames. In one case, the object is
successfully detected in 2 camera views in each frame. In another case, the object is
detected in 4 camera views in the first frame but is missed in the second frame. Tradi-
tional AP would yield identical results for both scenarios. However, a 3D localization
system would be able to track the object in both frames in the first scenario, whereas
it would lose track of the object in one frame in the second scenario. The aggregated
version of AP distinguishes between these two cases, offering a more realistic evaluation
of the object detection performance in multi-camera systems.

4.3 Experiment design

Experiments in this project are divided into three parts, which are “performance gap
and distribution shift”, “generalization to unseen Cath Labs”, and “multi-camera eval-
uation”. They are designed to answer the following questions:

1. How large is the performance gap when the model is deployed in the same Cath
Lab and in a different Cath Lab?

2. Is the performance drop caused by data distribution shifts?

3. Can the object detector trained on online images generalize to unseen Cath Labs?

4. Can the multi-camera system improve the detection performance?

4.3.1 Performance Gap and Distribution Shift

For the experiment that shows the performance gap, we aimed to train the model
on different training sets and compare their performance on the same testing set to
simulate different scenarios. The testing set we chose is Philips Best 105340. The
training sets we chose are:

1. For performance in the same Cath Lab:
The Philips Best 100000 dataset

2. For performance in different Cath Labs:
The RdGG 20211007 dataset
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3. For performance from diverse non-sensitive images:
The online image dataset

In addition to showing the performance gap, we also want to show that the perfor-
mance gap is caused by the different distribution of our datasets in the feature space.
For comparison, we will also show the data distribution of all our four datasets (feature
extraction is from the pretrained model weight on the MS COCO dataset). The dataset
visualization results serve as the following comparisons:

1. Data distribution in the same Cath Lab:
Philips Best 105340 vs. Philips Best 100000

2. Data distribution from two different Cath Labs:
Philips Best 105340 (100000) vs. RdGG 20211007

3. Data distribution of online images and procedure recording:
Online images vs. Philips Best 105340 (100000) and RdGG 20211007

4.3.2 Generalization to Unseen Cath Labs

The second experiment is to verify whether the model trained purely on online images
can generalize to previously unseen Cath Labs. We trained our model on online images
without using any procedure recordings and tested the trained model on the three
procedure recording datasets, which are Philips Best 105340, Philips Best 100000, and
RdGG 20211007.

We are curious about if the detection performance of each class is related to the
object-level data distribution. Therefore, after obtaining the detection performance
in the unseen Cath Labs, we also visualized the object-level data distribution of the
best-performing class and the worst-performing class.

4.3.3 Multi-camera System Evaluation

The final experiment is to verify if the multi-camera system can further improve de-
tection performance in unseen Cath Labs compared to a single camera. So we perform
multi-camera evaluation via the aggregated metrics. It is done by testing the detector
trained on online images in three procedure recording datasets. which are Philips Best
105340, Philips Best 10000, and RdGG 20171007. And we will choose the number of
selected cameras N=1 and 2, for simulating applications:

1. N=1: Applications that need to know the state of the object.

2. N=2: Applications that need to know the 3D space of the object.

4.4 Implementation Details

This section gives implementation details about the training and evaluation processes.
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When using our datasets for training, we further divide each of them into a training
set and validation set. The weight of the model is first initiated with the COCO
pretrained weight, then updated based on the empirical loss on the training set, while
the loss on the validation set is used for hyperparameter tuning. The early stopping
function also depends on the validation set, it evaluates validation loss after every epoch
and stops training when the validation loss begins to increase to prevent over-fitting.
We splitted 25% of each dataset as their validation set and the rest was used as the
training set. For procedure recordings, the validation set is extracted at the end of the
video rather than random selection, because we want to make the validation set more
independent of the training set. Because the RdGG 20211007 dataset has a considerable
period when the patient has left the Cath Lab, the validation set is chosen at the end
of the period when the patient was in the Cath Lab and the period it left the Cath
Lab. We adjusted the default training hyperparameter of YOLOv8 to achieve the best
performance on the validation set. The adjusted parameters of different training data
are shown in Table 4.1. During training and inference, images are resized to 640 in
width while keeping their aspect ratio.

Table 4.1: Adjusted hyperparameters (training function arguments) when using the following
datasets for training the YOLOv8 object detector.

Function argument
Trained on
RdGG 20211007

Trained on
Philips Best 100000

Trained on
Online Images

epochs 100 100 50
lr0 0.0005 0.0005 0.0005
batch -1(auto) -1(auto) -1(auto)
patient 10 10 10
close mosaic 30 30 30
imgsz 640 640 640
workers 0 0 0

For object detection performance evaluation, we followed the implementation of
COCO datasets. We used the official APIs from the COCO benchmark, a Python
library called pycocotools. The detection results and annotations are fed to pycocotools
to obtain the precision array, which are precision values under the 101 recall thresholds.
Then we calculate the average precision based on this precision array. A detail to
note is that when the detector can not reach a recall of 1, the precision under the
recall threshold that it can not reach will be set to 0. For the aggregated metrics, we
wrote our own implementation. It involves calculating the IoU of each detection with
its corresponding ground truth and calculating the aggregated precision array. The
calculation of precision and recall followed the same method of pycocotools, except
we substituted the nominator and denominator of precision and recall with our own
definition previously discussed.
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4.5 Results and Analysis

In this section, results are grouped according to the experiment design. Additionally, a
failure analysis section provides a summary of the reasons for failure, along with images
of the failure cases.

4.5.1 Performance Gap and Distribution Shift

For the detectors trained on the online image, Philips Best 100000, or RdGG 20211007
dataset, their performance evaluated on the Philips Best 105340 dataset is shown in
Table 4.2.

Table 4.2: AP@0.5 of the detector tested on Philips best 105340 dataset, when the model is
trained on different datasets.

Class Philips Best 100000 RdGG 20211007 Online images

Doctor 0.942 0.778 0.831
Patient 0.928 0.118 0.516
Operating table 0.929 0.404 0.581
Instrument table 0.830 0.240 0.670
Control panel display 0.849 0.183 0.214
Control panel button 0.930 0.059 0.054
X-ray detector 0.976 0.012 0.766
X-ray source 0.853 0.047 0.630
Display 1.000 0.775 1.000

Mean 0.915 0.291 0.585

The results suggest that training the detector in the same Cath Lab significantly
outperforms training in a different Cath Lab. The detector trained on the Philips Best
100000 dataset achieved an mAP@0.5 of 0.915, compared to an mAP@0.5 of 0.291 for
the detector trained on the RdGG 20211007 dataset. A closer examination of each
class reveals that, for the detector trained in the same Cath Lab, the AP@0.5 for all
classes is higher than 0.8. In contrast, the model trained in a different Cath Lab failed
badly in detecting the X-ray detector and the X-ray source. However, it maintained
moderately effective detection of doctors and displays, with AP@0.5 scores of 0.778 and
0.775, respectively. This can be attributed to the high visual similarities of these two
classes in both Cath Labs. In both Cath Labs, doctors wear blue coats with hats and
face masks, and the displays are highly similar, likely being of the same type.

The performance of the model trained on online images falls in between, achieving
0.585 mAP@0.5. It outperforms the model trained in a different Cath Lab, yet it does
not match the effectiveness of the detector trained in the same Cath Lab. This model
also shows potential weaknesses in detecting certain classes. For instance, the control
panel button, with an AP@0.5 of only 0.054, highlights concerns about the inconsistent
performance of the object detector across different classes.

Another key point is that merely increasing the quantity of images from a Cath
Lab may not enhance the cross-room detection capability. The online image dataset
and the Philips Best 100000 dataset contain similar numbers of images, 800 and 720
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Figure 4.13: PCA data distribution visualization of our datasets.

respectively. In contrast, the RdGG 20211007 dataset has a significantly larger dataset
size of 3100 images. Nevertheless, when used as training data, the RdGG 20211007
dataset provides the poorest performance on the Philips Best 105340 dataset. This
outcome is likely due to the high similarity of images collected within the same Cath
Lab.

To explain the performance difference, the experiment is complemented by visual-
izing the data distribution of our four datasets in the feature space. We noticed our
datasets have their unique data distribution characteristics, which relate to the detec-
tion performance in the experiments. The visualization results utilizing PCA, T-SNE,
and UMAP are shown in Figure 4.13, Figure 4.14, and Figure 4.15, respectively. Ev-
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Figure 4.14: T-SNE data distribution visualization of our datasets.

ery point in those figures is the reduced feature vector of an image in our datasets.
Their colors denote the datasets and their marks denote the camera view. We can
see that the visualization result from PCA is highly overlapping, as it does not model
non-linearities, while T-SNE and UMAP give good and consistent visualization results.

Our datasets exhibit their unique characteristic of data distribution. For procedure
recordings in Cath Labs, their data points are narrowly clustered around each camera
view. Images from the same Cath Labs have a very close data distribution. However,
images in different Cath Labs have distinct data distributions. The online images,
compared to procedure recordings, have a wider data distribution, though the dataset
size is relatively small, so some data points scatter sparsely in certain regions.
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Figure 4.15: UMAP data distribution visualization of our datasets.

The distinct characteristics of data distribution in our datasets provide insights into
the varied detection performance observed in the experiment. Images originating from
the same Cath Lab exhibit similar data distributions, which explains why the detector
trained and tested in the Philips Best Cath Lab shows the most impressive performance.
The online images have a wider yet different data distribution to the procedure record-
ings. It partially covered the data distribution of the procedure datasets. Therefore, a
model trained on online images has a moderately good performance, but it is inferior
to the one trained on images from the same Cath Lab. Lastly, the data distribution
of images from RdGG and Philips Best are highly different, which explains the worst
performance of the model trained and tested on images from different Cath Labs.
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4.5.2 Generalization to Unseen Cath Labs

Table 4.3: Evaluation results (AP@0.5) of the detector in different Cath Labs, when the
detector is trained purely on the online images (Note: The result is consistent when the

relative difference |A−B|
|A|+|B| × 2 ≤ 0.2 for each pair).

Class Philips Best 105340 Philips Best 100000 RdGG 20211007 Consistent?

Doctor 0.831 0.870 0.856 Yes
Patient 0.516 0.485 0.274 No
Operating table 0.581 0.649 0.704 Yes
Instrument table 0.670 0.616 0.266 No
Control panel display 0.214 0.152 0.738 No
Control panel button 0.054 0.115 0.311 No
X-ray detector 0.766 0.684 0.709 Yes
X-ray source 0.630 0.681 0.071 No
Display 1.000 0.974 0.727 No

Mean 0.585 0.581 0.517 Yes

We were curious how well the model trained on online images can generalize to
unseen Cath Labs. Accordingly, we tested it on our procedure recording datasets, with
the results detailed in Table 4.3.

The results suggest that the detector trained purely on online images can generalize
to previously unseen Cath Labs with a moderately good performance. However, certain
classes can have poor detection performance, such as the control panel button and the
X-ray detector in the RdGG dataset. We added an extra column to the table to
indicate the performance consistency of each class, based on the relative differences
in their performance across different datasets. Only three out of nine object classes,
namely doctors, operating tables, and X-ray detectors, exhibit consistent detection
performance. This performance inconsistency might be attributable to the narrow yet
distinct data distribution of procedure recordings, potentially leading to significant
variance in detection performance across different Cath Labs. This situation poses
challenges to the safety of deploying the detector in unseen Cath Labs, where the
performance of the object detector can be unpredictable.

To gain a deeper understanding of the relationship between the detection perfor-
mance variability and data distribution, we further conducted a detailed visualization of
the object-level data distribution for the best-performing and worst-performing classes.

Figure 4.16 shows visualization results for the Philips Best datasets. We can see that
the well-detected display has closer data distributions of the training and testing sets,
while the badly-detected control panel display has more divergent data distributions.
This phenomenon is visible but not very obvious in this case because we calculated
the feature vector from a 5×5 region in the feature map and the control panel display
is placed close to the operating table. Therefore, the higher visual similarity of the
operating table can create interference, thereby weakening this effect.

The visualization result of the RdGG dataset is shown in Figure 4.17. The result
can better reflect the influence of data distribution on the detection performance. For
the well-detected doctor class, the data distributions in the training and testing sets
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Figure 4.16: UMAP object-level visualization result of the best and worst performing class
in the Philips Best datasets.

Figure 4.17: UMAP object-level visualization result of the best and worst performing class
in the RdGG dataset.

are observed to be similar. However, the poorly-detected X-ray source class has very
distinct data distributions in the training and testing sets.
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4.5.3 Multi-camera Evaluation

Table 4.4: Aggregated AP@0.5 of model trained on the online images and evaluated in dif-
ferent Cath Labs when using the most confident 1 or 2 camera(s) (Numbers higher than 0.7
are highlighted in bold and green).

Aggregated 1-camera AP@0.5 Aggregated 2-camera AP@0.5

Philips Best
105340

Philips Best
100000

RdGG
20211007

Philips Best
105340

Philips Best
100000

RdGG
20211007

Patient 0.947 0.832 0.505 0.570 0.459 0.053
Operating table 0.884 0.934 0.958 0.764 0.827 0.803
Instrument table 0.896 0.793 0.585 0.809 0.496 0.076
Control panel display 0.440 0.334 0.897 0.105 0.031 0.596
Control panel button 0.041 0.211 0.635 0.012 0.026 0.227
X-ray detector 0.956 0.986 0.798 0.918 0.946 0.605
X-ray source 1.000 1.000 0.053 0.908 0.790 0
Display 1.000 1.000 1.000 1.000 1.000 1.000

Mean 0.771 0.761 0.679 0.636 0.572 0.420

Having demonstrated that the model trained on online images can adapt to un-
seen Cath Labs with reasonably good performance, our next objective was to enhance
its effectiveness using multi-camera systems. The outcomes of this multi-camera sys-
tem evaluation are presented in Table 4.4. Within the table, values exceeding 0.7 are
highlighted to indicate good performance.

The multi-camera system shows promising performance in detecting operating ta-
bles, X-ray detectors, and displays for applications that require one camera. Addi-
tionally, it shows promising performance in detecting operating tables and displays for
applications that require two cameras. However, given that our evaluation was con-
ducted using data from only two Cath Labs, coupled with the significant variation
in data distribution across different Cath Labs, additional safety measures should be
implemented before deploying this system for the detection of these objects.

Figure 4.18: AP@0.5 and aggregated 1-camera AP@0.5 when the detector is evaluated on the
three procedure datasets.
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To illustrate the performance improvement from multi-camera systems, we con-
ducted a comparison between the standard AP@0.5 and the aggregated 1-camera
AP@0.5, as depicted in Figure 4.18. The result suggests the multi-camera system
can significantly improve the performance in most instances. However, two exceptions
exist, which are detecting the control panel button in the Philips Best 105340 dataset
and detecting the X-ray source in the RdGG 20211007 dataset. In these two cases, the
detector fails badly with very low AP@0.5, and the extremely low confidence scores
given by the detector are not informative, resulting in ineffective camera selection.

Figure 4.19: Camera usage analysis on the Philips Best 105340 and 100000 datasets.

The analysis of camera usage in both Cath Labs is depicted in Figure 4.19 and
Figure 4.20. This analysis validates the camera setups in each Cath Lab, demonstrating
that every camera has functioned as the most confident choice at some point during
the procedures. However, it’s noteworthy that certain classes exhibit a preference for
one specific camera over others.
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Figure 4.20: Camera usage analysis on the RdGG 20211007 dataset.

4.5.4 Failure Cases

Table 4.5: Summary of major failure reasons in different Cath Labs when the model is trained
on the online images.
Class Philips Best 105340+100000 RdGG 20211007

Patient Viewpoint, unseen action, occlusion Viewpoint, unseen action, occlusion
Operating table Viewpoint(when undraped)
Instrument table Occlusion Viewpoint, absence of sterile sheet
Control panel display Occlusion, viewpoint, plastic film coverage Occlusion, viewpoint, plastic film coverage
Control panel button Occlusion, viewpoint, plastic film coverage Viewpoint, occlusion, plastic film coverage
X-ray detector Viewpoint Viewpoint
X-ray source Viewpoint, occlusion Plastic film coverage
Display Viewpoint

For the detector trained on online images and tested on procedure recordings, we
visually examined failure cases in our testing set and summarized the major failure
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reasons for each class in Table 4.5. The major reasons for detection failure are viewpoint
changes, occlusion, and coverage from plastic film.

Figure 4.21: Example of failed detection due to viewpoint change from camera setup.

Figure 4.22: Example of failed detection due to viewpoint change from object movement.

Viewpoint changes, which affect detection performance, can arise from both the
camera setup and the movement of objects. Its impact on detection performance can
be coupled with the state of the object, such as whether the operating table is covered
by the surgical drape. The example images for viewpoint-related detection failures are
shown in Figure 4.21, Figure 4.22, and Figure 4.23. In these cases, we can see the
instrument table is detected in camera CornerNW but missed in camera WallW. The
detection confidence score of the X-ray detector dropped sharply because its movement
changed the viewpoint. And for the operating table, its detection from camera WallW
failed only when it was not covered by the drape. The reason could be the drape has
high visual similarity from different viewpoints.

The issue of occlusion is a common challenge for most object detectors. When
parts of an object are covered, features corresponding to the covered parts will have a
weaker response inside the object detection model, resulting in a drop in the detection
confidence score. However, in this project, the issue of occlusion can be particularly
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Figure 4.23: Example of failed detection due to viewpoint only when the operating table is
undraped.

Figure 4.24: Example of failed detection due to occlusion

severe for certain classes. This situation stems from the nature of our training data.
The online images are mostly taken when no operation is performed in the Cath Labs,
resulting in less occlusion of objects. Consequently, our trained detector becomes more
sensitive to occlusion. Figure 4.24 shows an example where the instrument table is
partially occluded. Even though only a small part of the instrument table’s top is
occluded, the detection confidence score drops from 0.92 to 0.2. This example suggests
that the features used to identify instrument tables seem to predominantly rely on the
blue surgical bowls placed on top of them.

Plastic film coverage is a unique problem in operating rooms, including Cath Labs.
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Figure 4.25: Example of failed detection due to plastic film coverage.

The plastic film is usually used to cover medical instruments for hygiene, and it af-
fects the control panel displays, the control panel buttons, and the x-ray sources in
our datasets. Figure 4.25 shows the impact of plastic film coverage on the detection
confidence. We can see a drastic drop in the detection confidence of the control panel
display in the Philist Best 105340 dataset. In the RdGG 20211007 dataset, the detec-
tion of the X-ray source constantly failed, highly likely due to plastic film coverage. As
the online images are mostly taken with no operation being performed, the plastic film
is often absent in the online image dataset. Therefore, the object detector trained on
online images may have difficulties in recognizing objects covered by plastic film.
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Conclusion 5
5.1 Discussions

5.1.1 Implications of the Research

In summary, the experiment results show a promising aspect: moderately good de-
tection performance in unseen Cath Labs can be achieved with only publicly available
images as the training data. The detection performance can be further enhanced with a
multi-camera system. This research lays a promising foundation for developing robust,
vision-based workflow analysis systems for deployment in unseen Cath Labs. However,
the results also highlight concerns about the uncertainty in object detection perfor-
mance inside an unseen Cath Lab, which calls for more safety measures.

In Section 4.5.1, we have observed that the YOLOv8 model, when trained on di-
verse online images, significantly outperforms the same model trained on data from
a different Cath Lab. Further experiments in Section 4.5.2 show the model trained
on online images can generalize to our datasets from two Cath Labs with moderately
good detection performance. Additionally, the data visualization results shed light on
the connection between the data distribution in the feature space and the observed
variations in detection performance. The online image dataset has a wider data dis-
tribution. Therefore, the loss function of YOLOv8 can be optimized in large regions
in the feature space. Images from new Cath Labs have a higher chance of falling into
the proximity of the optimized regions, obtaining better detection performance. More-
over, the object detection performance can be further improved with the multi-camera
system. As online images have less occlusion and viewpoint diversity, the detector
trained on them can be sensitive to occlusion and viewpoint changes, often resulting
in low detection confidence when encountering them. By switching to the camera with
the highest confidence in the multi-camera system, the detector can operate on views
with less occlusion and fewer viewpoint changes, thereby achieving improved detection
performance.

The issue of performance inconsistency is a significant finding in our project, carry-
ing serious implications. We observed this inconsistency in the detection performance
when testing the detector with images from different Cath Labs. Notably, certain ob-
jects, such as the control panel button in the Philips Best dataset and the X-ray source
in the RdGG dataset, yielded particularly poor detection results. The visualization of
object-level data distribution provides insight into the cause of these poor detection
outcomes: these objects have significantly different data distributions compared to the
training data. Additionally, a concerning observation from our study is the narrow and
distinct data distribution of images from different Cath Labs, coupled with the fact
that only a limited number (two) of Cath Labs have been analyzed in this project.
Consequently, when encountering a new Cath Lab, it can be uncertain how their data
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distributions will vary from our existing datasets, and as a result, poor detection per-
formance could potentially occur. On the bright side, since we have found that data
distribution in feature space is related to the detection performance, it is possible to
infer detection performance by comparing the features of the inference image with the
data distribution of the training images. This approach can be leveraged to develop
an out-of-distribution detector, which alerts for potential detection inaccuracies when
encountering unfamiliar objects. In contrast, the current detector YOLOv8 tends to
categorize unfamiliar objects as part of the background. Further detailed research into
the factors influencing data distribution could be instrumental. This could guide the
collection of training data to enhance the robustness and reliability of object detection
performance.

5.1.2 Factors Related to Data Distribution Shifts

Additionally, we aim to provide more insights into the causes of varying data distri-
butions and their associated impact on detection performance. We believe the data
distribution shifts are largely influenced by differences in object appearances. In Sec-
tion 4.5.1, we have noticed that the model trained on the RdGG 20211007 dataset and
tested on the Philips best 105340 dataset has good detection performance of doctors
and the display, while struggling with most other classes. The good detection perfor-
mance can be attributed to the similarities in the wearings of the doctors in the two
Cath Labs, as well as the high visual resemblance between the two displays, which
appear to be the same equipment model. In contrast, other medical instruments, like
the X-ray machines, have quite different appearances, which can result in different
neural activation patterns inside the deep-learning-based object detector. In an ideal
situation, we would have a large-scale image dataset of medical instruments of diverse
equipment models, varying in factors such as viewpoint and lighting conditions. By
training on such a diverse dataset, the object detector would learn to use the common
features across different equipment models and achieve robust performance in various
environments.

Furthermore, differences in viewpoints play a significant role in contributing to the
divergent data distributions. As observed in the data visualization results presented in
Section 4.5.1, data points are found to cluster narrowly around each camera viewpoint.
The occurrence of such clustering within images from the same Cath Lab highlights
the impact that viewpoint differences have on the data distribution. The differences in
viewpoint also account for the divergent data distributions between the online images
and the procedure recording datasets. The cameras within the Cath Labs are mounted
in high positions, observing the procedures from angled downward views. In contrast,
online images are predominantly taken by hand-held cameras with limited viewpoint
variety for commercial purposes. While the online image dataset includes a wide array
of medical instrument models, the images are captured from a relatively limited range
of viewpoints. Consequently, even if the specific equipment model used in Cath Labs
is represented in the training data, the object detector may still struggle to recognize
the equipment from an unfamiliar viewpoint, especially when the viewpoint change is
drastic. This issue underscores the importance of incorporating a multi-camera system.

Finally, the interactions between objects and their environments can significantly
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impact both data distribution and detection performance. In instances where the de-
tection was unsuccessful, we observed that certain instruments in the Cath Labs, such
as the control panel button and the X-ray source, were covered with plastic films. The
optical effects of these coverings, like reflections, cause the challenges in object de-
tection. Occlusion is another factor that significantly impacts detection performance
by diminishing the response of features within the object detector. This is particu-
larly prevalent in Cath Labs during procedures, where medical staff often obstruct the
view of various objects, leading to frequent occlusions. In contrast, the online images,
typically captured outside of active procedures, exhibit fewer instances of occlusion
compared to procedure recordings. Additionally, factors like lighting conditions may
also influence data distribution. These factors, which are not covered in this thesis,
suggest areas for more detailed and comprehensive future research. Such studies are
essential for the robustness of vision-based systems, especially in dynamic and complex
environments like Cath Labs.

5.2 Conclusion

This work emphasizes the generalization issues of deep-learning-based object detectors
for the applications of workflow analysis inside Catheterization Laboratories (Cath
Labs), where object detectors are required to deliver reliable detection results of people
and medical instruments. However, the performance of the object detector significantly
degrades when it is trained on procedure recordings from one Cath Lab and then
deployed in a new, unseen Cath Lab. The implications of this performance degradation
are exacerbated by the sensitive nature of medical videos, which are largely inaccessible
outside the hospitals where clinical procedures occur. Consequently, our motivation is
to ensure that object detectors function effectively in previously unseen Cath Labs.

In summary, the primary goal of this project was to identify the causes of perfor-
mance degradation in unseen Cath Labs and to explore solutions to mitigate this issue.
We demonstrated that such performance degradation is primarily due to differences in
data distribution within the feature space of images. Furthermore, we showed that us-
ing diverse, non-sensitive online images as training data enables the object detector to
generalize effectively to previously unseen Cath Labs. Additionally, the multi-camera
systems, by switching to the most confident camera, can further improve object detec-
tion performance.

Our efforts focus on the data and camera systems aspects. We chose YOLOv8 as the
object detector. The datasets are collected from one real clinical procedure recorded
at Reinier de Graaf Hospital, two mock procedures recorded at Philips Best Campus,
in addition to publicly available online images. The first experiment compared the
detection performance when the training data is from the same Cath Lab, a different
Cath Lab, or online images. The results suggest training data from the same Cath Lab
can provide excellent detection performance, while the data from a different Cath Lab
can cause large performance degradation. The model trained on the online images lies
in the middle, providing moderately good performance. The data distribution visual-
ization revealed that the reason for the performance degradation is data distribution
shifts. Images from the same Cath Labs have narrow and similar data distribution,
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while the ones from different Cath Labs are distinct. Online images have shifted but
wider data distributions compared to procedure recordings. Then, we tested the object
detector trained on online images. It can generalize to all three procedures with mod-
erately good performance, but the performance of certain classes can be inconsistent
across different Cath Labs. Data visualization results further showed that the poor
performance stems from data distribution shifts at the object level. The final experi-
ment explored the capability of the multi-camera systems when the detector is trained
on online images. We created an aggregated version of object detection metrics, and
showed that the multi-camera system can further improve detection performance by
switching to suitable cameras.

This study formed a promising foundation for developing vision-based workflow
analysis systems that are robust for deployment in unseen Cath Labs. It emphasized
the importance of diverse training data and multi-camera systems in improving the
generalization ability of object detectors in medical settings. However, its limitations,
including the inconsistent performance of certain classes across different Cath Labs,
highlight the need for further research.

5.3 Future Directions

5.3.1 Performance Improvement

1. Data augmentation that creates synthetic occlusion and plastic film
coverage:
The online images used in our training, primarily captured when no operations
are being performed, exhibit significantly fewer instances of occlusion and plastic
film coverage compared to actual procedure recordings. Introducing data aug-
mentation techniques that mimic these real-world conditions in the online images
could train the object detector to rely on features that are robust to both oc-
clusion and plastic film coverage. There are already existing data augmentation
techniques designed to introduce occlusion, as referenced in [71]. For simulating
plastic film coverage, approaches can range from naive methods, such as over-
laying a transparent image layer, to more sophisticated techniques. Employing
these methods can help to bridge the gap between the online images and clinical
procedure recordings, thereby enhancing the performance and reliability of the
object detector.

2. Modeling temporal information in the detection system:
In our research, we utilized the capabilities of multi-camera systems while treat-
ing each frame independently. However, integrating frame dependency through
a tracking mechanism could significantly enhance the system’s effectiveness. Our
observations indicate that our object detector is sensitive to occlusion and view-
point changes, leading to potential failures over certain time periods. Imple-
menting a tracking system that maintains object identification across consecutive
frames would allow the detector to momentarily fail without losing track of the
objects. Given that the cameras in this project operate at a high frame rate of 25
FPS, incorporating a tracking mechanism is feasible from a hardware standpoint.
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If we can jointly utilize the 3D spatial information provided by the multi-camera
setup and the temporal information from video sequences, we can anticipate a con-
siderable improvement in detection performance. This combined approach would
offer a more comprehensive solution, enhancing the robustness and accuracy of
object detection in dynamic environments like Cath Labs.

3. Scaling up the online image dataset:
In this project, we have demonstrated that using online images as training data
can lead to improved performance in unseen Cath Labs, primarily due to the high
diversity these images offer. However, it’s important to note that the scope of
our image collection was limited in this research. We managed to collect and
annotate only 800 images. As we expand our dataset with a greater number of
diverse training images, we can anticipate a corresponding improvement in the
detection performance.

5.3.2 Safety Measure

1. Developing an out-of-distribution detector to alert for unfamiliar ob-
jects and bad performance:
In this thesis, we have successfully demonstrated that a model trained on online
images can generalize to unseen Cath Labs. However, a notable observation is
the inconsistency in the detection performance of certain classes across different
Cath Labs. This issue becomes more concerning when considering the narrow and
distinct data distributions characteristic of images from different Cath Labs.

When the detector encounters an object situated in an unfamiliar region of the
feature space, it would be more beneficial for it to provide a score indicating its
level of familiarity with the object, rather than simply classifying it as part of
the background. This mechanism could serve as an important safety measure,
predicting the risk associated with the detector overlooking unfamiliar objects.
This is particularly crucial in medical applications where high safety standards
are essential.

Implementing such an out-of-distribution detector is vital not only in new, unseen
Cath Labs but also in managing variability within previously encountered Cath
Labs. For instance, if unseen factors like uneven lighting lead to object detection
failures in a Cath Lab that has been seen before, an out-of-distribution detector
could provide a valuable warning.

The concept of out-of-distribution detectors has already been explored in high-
stake fields like autonomous driving, where they are used to alert for poor seg-
mentation performance, as detailed in [72]. Employing similar methodologies in
medical applications, particularly in complex environments like Cath Labs, could
significantly enhance the safety and reliability of detection systems.

2. Conducting object detection performance evaluation and feature anal-
ysis in more Cath Labs:
Despite having gained valuable insights from clinical procedure recordings in dif-
ferent Cath Labs, the scope of our study is limited by the number of Cath Labs
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examined, which is currently only two. Expanding our research to include exper-
iments in a greater number of Cath Labs would provide a more comprehensive
understanding of the various factors that pose challenges to object detection in
these environments. Additionally, by analyzing data from a wider array of Cath
Labs, we can uncover more general trends in image data distribution.
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