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Enhancing the Reliability of Closed-Loop
Describing Function Analysis for Reset Control

Applied to Precision Motion Systems
Xinxin Zhang , Member, IEEE, and S. Hassan HosseinNia , Senior Member, IEEE

Abstract—The sinusoidal input describing function (SIDF) is
a powerful tool for control system analysis and design, with its
reliability directly impacting the performance of the designed
control systems. This study improves both the accuracy of
SIDF analysis and the performance of closed-loop reset feedback
systems through two main contributions. First, it introduces
a method to identify frequency ranges where SIDF analysis
becomes inaccurate. Second, these identified ranges correlate
with dominated high-order harmonics that can degrade system
performance. To address this, a shaped reset control strategy is
proposed, incorporating a shaping filter that tunes reset actions to
suppress these harmonics. A frequency-domain design procedure
for the shaped reset control system is then demonstrated in
a case study, where a proportional–integral–derivative (PID)-
based shaping filter effectively reduces high-order harmonics
and eliminates limit cycles issues under step inputs. Finally,
simulations and experiments on a precision motion stage validate
the shaped reset control, confirming improved SIDF analysis
accuracy, enhanced steady-state performance over linear and
reset controllers, and the elimination of limit cycles under step
inputs.

Index Terms—High-order harmonics, limit cycles, precision
positioning system, reset feedback control, sinusoidal input
describing function (SIDF), steady-state performance.

I. INTRODUCTION

IN MECHATRONICS industries, such as semiconductor
manufacturing, robotics, and optical systems, there is

a continuous demand for enhanced positioning precision,
speed, and stability [1]. Linear feedback control, particularly
proportional–integral–derivative (PID) control, is widely used
in these applications due to its effectiveness and ease of
implementation. However, the limitations of linear controllers,
including the “waterbed effect” and the Bode phase-gain
trade-offs [2], undermine their transient and steady-state
performance, making it challenging for them to meet the
increasing performance demands in industries.

To overcome the limitations of linear controllers and address
the rising industrial demands, nonlinear control strategies have
been explored [3]. One such advancement is reset feedback
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control. Reset control originates from the Clegg integrator
(CI), which is introduced by Clegg [4]. The CI is a linear
integrator that incorporates a reset mechanism zero-crossing
law, that resets the integrator’s output to zero whenever the
input signal crosses zero. The Sinusoidal-Input Describing
Function (SIDF) analysis [5] reveals that the CI introduces a
phase lead of 51.9◦, while maintaining the gain characteristics
of a linear integrator. Leveraging the gain and phase benefits,
reset controllers demonstrate enhanced performance compared
with linear controller, including reduced settling time, lower
overshoot, and improved noise rejection in various precision
motion control applications [6], [7], [8], [9], [10], [11], [12].

While reset control enhances gain-phase margins for the
first-order harmonic, it also introduces high-order (beyond the
first order) harmonics. To evaluate these harmonics in closed-
loop reset systems, higher order sinusoidal input describing
function (HOSIDF) analysis is effectively used [13], [14], [15].
The HOSIDF analysis quantifies the magnitude and phase of
the harmonics in reset systems by measuring the systems’
steady-state responses to sinusoidal inputs over a frequency
range [13]. When only the first-order harmonic is considered
and high-order harmonics are neglected, this is referred as the
first-order SIDF (FOSIDF) [5]. In this study, both HOSIDF
and FOSIDF are collectively termed SIDF analysis methods.

Current SIDF analysis methods for closed-loop reset sys-
tems [5], [14], [15] assume that only two reset actions per
steady-state cycle in sinusoidal-input reset systems. However,
sinusoidal-input closed-loop reset systems can exhibit either
two reset actions or multiple (more than two) reset actions
per steady-state cycle, referred to as two-reset systems and
multiple-reset systems, respectively. The two-reset assumption
in SIDF analysis introduces inaccuracies when applied to
multiple-reset systems, as demonstrated in Section III. In such
cases, the validity of the SIDF analysis is compromised, and
thus the reliability of the reset control system design based on
this analysis is not guaranteed.

To enhance the reliability of SIDF analysis in closed-loop
reset systems, the first contribution of this study presents a
method for identifying multiple-reset frequency ranges where
the validity of SIDF analysis is compromised. To achieve
this, we first derive piecewise expressions for the steady-
state trajectories of sinusoidal-input closed-loop reset control
systems. Using these expressions, a method is proposed to
evaluate whether the SIDF analysis satisfies the two-reset
condition in closed-loop reset systems. In previous methods,
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verifying this condition required calculating time-domain
responses across the entire frequency spectrum, a process that
is computationally expensive. The new method streamlines
this process, offering a more efficient approach. Experimental
results from two case studies confirm the effectiveness and
time-saving benefits of this method.

In addition to compromising the accuracy of closed-
loop SIDF analysis, multiple-reset actions in sinusoidal-input
closed-loop reset systems indicate dominated high-order har-
monics. These dominated high-order harmonics can increase
the system’s sensitivity to high-frequency noise and distur-
bances, leading to overall performance degradation [15].

To tackle this challenge, the second contribution of this
study introduces a shaped reset control strategy that incor-
porates a shaping filter that enables the tuning of reset actions
to reduce high-order harmonics while preserving the benefits
of the first-order harmonic. A detailed design procedure for a
PID-shaped reset control system is provided, aimed at reducing
high-order harmonics in a CI-based reset system. In addition,
the PID-shaped reset control addresses limit-cycle issues in
reset systems under step inputs. Experimental results on a
precision motion stage show that by decreasing the impact
of high-order harmonics, the PID-shaped reset control system
enhances the reliability of SIDF analysis and improves steady-
state precision, including better reference tracking accuracy,
disturbance rejection, and noise suppression. Moreover, it
eliminates limit-cycle problems.

The remainder of this article is organized as follows.
Section II provides background on reset control systems
and and an overview of the experimental setup. Section III
identifies two key research problems through illustrative exam-
ples, framing the study’s objectives. Section IV introduces
the first contribution: a method to distinguish between two-
reset and multiple-reset actions in sinusoidal-input closed-loop
reset systems, establishing two-reset conditions for SIDF
analysis with validation through simulations and experiments.
Section V presents the second contribution, proposing a shaped
reset control strategy aimed at reducing high-order harmonics.
Section VI outlines a design procedure for a PID shaping filter,
showcased as a case study to decrease high-order harmonics
and eliminate limit cycles. Section VII then provides simula-
tion and experimental results to validate the PID-shaped reset
control system’s effectiveness on a precision motion stage.
Finally, Section VIII summarizes the main findings and offers
recommendations for future research directions.

II. PRELIMINARIES

This section introduces the definition of the reset feedback
control system, its stability and convergence conditions, the
SIDF analysis method, and the experimental setup.

A. Reset Control System

This study focuses on the frequency-domain analysis and
design of closed-loop reset feedback control systems, as shown
in Fig. 1. The system comprises a nonlinear time-invariant
reset controller Cr in conjunction with linear time-invariant
(LTI) systems Cs, C1, C2, C3, C4, and an LTI plant P . The

Fig. 1. Block diagram of the closed-loop reset feedback control system.

signals r(t), e(t), u(t), y(t), a(t), and v(t) denote the reference
input, error, control input, system output, output of C2, and
input to C3, respectively. The LTI system Cs, referred to as the
shaping filter in this study, is defined by state-space matrices
As, Bs, Cs, and Ds, with xs(t) ∈ Rns×1, ns ∈ Z

+, denoting its
state vector.

The reset controller Cr is a hybrid system. Its state-space
representation, with z(t) as the input signal, m(t) as the output
signal, and xc(t) ∈ Rnc×1(nc ∈ Z

+) as the state vector, is
expressed as follows [16]:

Cr =

8̂<̂
:

ẋc (t) = ARxc (t) + BRz (t) , (xs (t) , z (t)) < Jc

xc
�
t+
�

= Aρxc (t) , (xs (t) , z (t)) ∈ Jc

m (t) = CRxc (t) + DRz (t)
(1)

where AR ∈ R
nc×nc , BR ∈ R

nc×1, CR ∈ R
1×nc , and DR ∈ R

1×1

define the flow dynamics of the reset controller Cr, and Aρ ∈

Rnc×nc characterizes its jump dynamics, given by

Aρ =

�
γ

Inc−1

�
, γ ∈ (−1, 1) ∈ R. (2)

The reset set is defined as (xs(t), z(t)) ∈ Jc, where Jc =

{(xs(t), z(t)) | xs(t) ∈ Rns×1, z(t) ∈ R,Csxs(t) + Dsz(t) =

0}, indicating that reset actions occur when the “reset-
trigger signal” zs(t) crosses zero, following the “zero-crossing
law” [16].

The flow dynamics of Cr are characterized by the base-linear
controller (BLC), described in the frequency domain as

Cl (ω) = CR ( jωI − AR)−1 BR + DR, j =
√
−1, ω ∈ R+. (3)

By substituting the reset controller Cr with its base-linear
counterpart Cl as defined in (3), the system depicted in Fig. 1
is referred to as its base linear system (BLS).

B. Stability and Convergence Conditions for Reset Control
Systems

Although stability and convergence are not the primary
focus of this study, they are essential for the analysis and appli-
cation of reset systems. These topics have been extensively
explored in the literature [16], and we outline the necessary
assumptions to ensure stability and convergence.

The reset controller (1) with an input signal e(t) =

|E| sin(ωt + ∠E) has a globally asymptotically stable 2π/ω-
periodic solution if the following condition is satisfied [5]:ˇ̌

λ
�
AρeARδ

�ˇ̌
< 1 ∀δ ∈ R+. (4)

Therefore, to guarantee that there exists a steady-state solution
for the SIDF analysis of the open-loop reset control system,
the following assumption is introduced.



448 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 34, NO. 1, JANUARY 2026

Assumption 1: The reset system (1) with input e(t) =

|E| sin(ωt + ∠E) meets the condition in (4). In addition, LTI
systems C1, C2, C3, and C4 are Hurwitz.

To ensure that the frequency response of a closed-loop reset
control system is well-defined, Assumption 2 is introduced to
guarantee the system’s stability and convergence.

Assumption 2: The closed-loop reset control system is
asymptotically stable in the absence of inputs and exponen-
tially convergent. The reset controller Cr in (1) has zero initial
conditions, i.e., xc(0) = 0. The input signals are Bohl functions
as defined in [17]. Furthermore, there exist infinitely many
reset instants ti such that limi→∞ ti = ∞, and the system does
not exhibit Zeno behavior.

The stability and convergence conditions for reset control
systems have been extensively studied, including the Hβ condi-
tion [18], [19] and additional criteria in [20] and [21]. As these
are beyond the scope of this article, they are not discussed in
detail. Nevertheless, Assumption 2 can be achieved through
careful system design, as demonstrated in [14] and [16].

C. Sidf Analysis for Open-Loop Reset Control Systems

For an open-loop reset system in Fig. 1 with the input e(t) =

|E| sin(ωt + ∠E) and the output y(t), satisfying Assumption 1,
let E(ω) and Y1(ω) represent the Fourier transforms of the
input signal e(t) and the first-order harmonic component of
the output signal y(t), respectively. Define

∆ (ω) = I + e( π
ω AR)

∆r (ω) = I + Aρe( π
ω AR)

Ω (ω) = ∆ (ω) − ∆ (ω) ∆r
−1 (ω) Aρ∆ (ω)

C1
r (ω) = CR (AR − jωI)−1 Θφ (ω) + Cbl (ω)

Θφ (ω) = −2 jωIe j∠Cs(ω)Ω (ω) /π · [ωI cos (∠Cs (ω))

− AR sin (∠Cs (ω)) ]
�
ω2I + AR

2�−1
BR. (5)

Using the SIDF analysis method [22], the first-order transfer
function of the open-loop reset system, L1(ω), is expressed as

L1 (ω) =
Y1 (ω)
E (ω)

= C1 (ω)
�
C1

r (ω) + C2 (ω)
�
C3 (ω)P (ω) . (6)

In this study, the crossover frequency ωBW of L1(ω) where
|L1(ωBW)| = 0 dB in (6), is defined as the bandwidth frequency
of a reset control system.

D. Precision Motion Stage

This article addresses the challenge of performance in reset
feedback control systems related to SIDF analysis, which is
crucial for precision motion control applications. When the
reliability of the SIDF frequency response analysis for closed-
loop reset systems is compromised, it results in uncertainty
regarding the precision of the designed reset control system.
In addition, the frequency ranges where SIDF analysis is com-
promised correspond to regions with high-order harmonics. If
these harmonics are not properly managed in reset systems,
they can cause oscillations due to high-frequency noise. Such
oscillations can degrade system precision, negatively affecting
stability and overall performance.

Fig. 2. Experimental precision positioning setup.

Fig. 3. FRF data from actuator A1 to attached mass M1.

The precision motion setup used in this study is shown
in Fig. 2. The motion stage is a 3 degree-of-freedom (DoF)
system with three masses (M1, M2, and M3), actuated by
three voice coil actuators (A1, A2, and A3). These masses
are connected to a central base (Mc) via dual leaf flexures,
which provide the necessary flexibility for precise motion. The
actuators are driven by a linear current–source power amplifier.
The control systems for this stage are implemented on an
NI compactRIO platform, which includes field-programmable
gate array (FPGA) modules for real-time processing. The dig-
ital control utilizes the Tustin discretization method. Position
feedback is provided by a Mercury M2000 linear encoder
(labeled as Enc, offering a high-resolution measurement of
100 nm, with the data sampled at a rate of 10 kHz.

In this study, the pair of actuator A1 and mass M1 are uti-
lized. Fig. 3 shows the measured frequency response function
(FRF) from actuator A1 to mass M1. The FRF data characterize
a collocated double mass-spring-damper system with high-
frequency parasitic dynamics.

Using the system identification tools in MATLAB, the
system is modeled as an LTI system represented by

P (s) =
6.615× 105

83.57s2 + 279.4s + 5.837× 105 . (7)

This model represents the core behavior of the actuator-mass
system and is used for the design and analysis of the reset
control strategies discussed in the article.
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Fig. 4. Block diagram of the reset PID control system.

Fig. 5. Bode plots of the PID and the first-order harmonic of the PCID control
systems.

III. MOTIVATION AND PROBLEMS STATEMENT VIA
ILLUSTRATIVE EXAMPLES

This section outlines two research problems through exam-
ples. The first problem is that the precision of SIDF analysis is
compromised by multiple-reset actions. The second problem is
that these actions relate to high-order harmonics in the system,
which, if large, can degrade overall system performance.

To illustrate these two problems, we design a reset control
system as an example. The generalized CI is defined by (1)
with the matrices Aρ = γ ∈ (−1, 1) and (AR, BR,CR,DR) =

(0, 1, 1, 0). A CI-based reset controller is a reset element
designed using built on this generalized CI. PID controllers
are widely used in mechatronics applications, and when the
integrator in the PID controller is replaced by the generalized
CI, the system becomes a reset PID control system. This
section uses a reset PID control system to demonstrate the
research problems addressed in this study.

The block diagram of the reset PID control system used in
this study is depicted in Fig. 4. The parameter ζ denotes the
number of integrators in the system, with this study utilizes
cases where ζ = 0 and ζ = 1, referred to as proportional-CI-
derivative (PCID) and PCI-PID control systems, respectively.
More discussion on employing multiple integrators (ζ > 1) is
beyond the scope of this article and can be found in [23].

A PCID control system is designed as the illustrative
example with the following parameters: kp = 17.8, ωc = 300π
[rad/s], ωr = 0.1ωc, kr = 0.85, γ = 0, ωd = ωc/3.8,
ωt = 3.8ωc, ω f = 10ωc, ζ = 0, and Cs = 1. A PID controller is
also designed for comparison with the following parameters:
kp = 17.8, ωc = 300π [rad/s], ωi = 0.084ωc, ωd = ωc/3.8,
ωt = 3.8ωc, and ω f = 10ωc.

The Bode plots for the PID and the first-order harmonic of
the PCID control systems are presented in Fig. 5. To ensure
a fair comparison, both the PID and PCID controllers are
designed to maintain the same bandwidth of 100 Hz and a
phase margin of 50◦ with the plant P(s) in (7). However, the
PCID controller exhibits a higher gain at frequencies below

Fig. 6. (a) Magnitude |S(ω)| for the PCID control system, derived from
simulation and SIDF analysis. The multiple-reset and two-reset systems are
represented by gray and white shading, respectively. Normalized steady-
state errors of the system under sinusoidal inputs r(t) = sin(2π f t) with
(b) f = 20 Hz, (c) f = 32 Hz, and (d) f = 40 Hz.

100 Hz and a reduced gain at frequencies above 100 Hz.
This design aims to enhance low-frequency tracking and
disturbance rejection, and high-frequency noise suppression.

A. Problem 1: Multiple-Reset Actions Leading to
Inaccuracies in Closed-Loop Sidf Analysis

To evaluate the performance of closed-loop reset control
systems, SIDF analysis is often employed. For closed-loop
reset systems with a sinusoidal input r(t) = |R| sin(ωt), which
satisfies Assumption 2, the sensitivity function based on SIDF
analysis [5], [22], is defined as follows:

S (ω) = 1/ (1 + L1 (ω)) (8)

where L1(ω) is defined in (6).
The magnitude of the closed-loop sensitivity function |S(ω)|

for the PCID control system, analyzed using (8), is presented
in Fig. 6(a). This analytical result is compared with the
simulated value of |S(ω)|, which is calculated as ||e||∞/||r||∞
at each frequency ω, where e(t) represents the steady-state
error and r(t) denotes the input signal.

In closed-loop reset systems with a sinusoidal reference
input r(t) = |R| sin(ωt), a two-reset system is defined by
exactly two reset events within each 2π/ω steady-state cycle,
whereas a multiple-reset system has more than two reset events
per cycle. For instance, Fig. 6(b)–(d) shows the simulated
steady-state errors under sinusoidal inputs r(t) = sin(2π f t) at
f = 20 Hz, f = 32 Hz, and f = 40 Hz, corresponding to a
multiple-reset system, the transition region between multiple-
and two-reset systems, and a two-reset system, respectively.
In Fig. 6(a), the region associated with multiple-reset systems
is shaded in gray, where notable discrepancies between SIDF
analysis and simulation results are observed. These differences
arise because the two-reset assumption in the SIDF analysis,
does not hold in systems exhibiting multiple-reset actions.

Hence, to ensure the reliability of the SIDF analysis for
closed-loop reset systems, it is crucial to establish a two-reset
condition. The first contribution of this study in Section IV
addresses this issue. Consider a closed-loop reset system sub-
jected to a sinusoidal input signal defined by r(t) = |R| sin(ωt),
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Fig. 7. Steady-state errors e(t) for the PID and PCID systems under two input
signals: (a1) r(t) = sin(20πt) and (a2) r(t) = sin(100πt). The gray circles
mark the reset instants per cycle. Panels (b1) and (b2) display the PSD plots
for the errors e(t) in (a1) and (a2), respectively.

where |R| represents the amplitude and ω denotes the fre-
quency. As ω sweeps through the operational frequency range,
the proposed method identifies the frequency ranges where
multiple-reset actions occur and thus deviations occur in the
SIDF analysis, as illustrated by the gray area in Fig. 6(a).

B. Problem 2: Multiple-Reset Actions Relating to
High-Order Harmonics That Need to Be Reduced

In addition to introducing imprecision in SIDF analy-
sis, multiple-reset actions in a sinusoidal-input closed-loop
reset system indicate high-magnitude high-order (beyond first-
order) harmonics [14], [15]. These large high-order harmonics
can adversely affect overall system performance. This detri-
mental effect is further illustrated in Fig. 7.

The steady-state errors of the closed-loop PCID and PID
control systems, subjected to sinusoidal reference inputs r(t) =

sin(20πt) (10 Hz) and r(t) = sin(100πt) (50 Hz), are illustrated
in Fig. 7. In addition, the corresponding power spectral density
(PSD) plots are presented. To facilitate a clearer comparison,
the magnitude of the first-order harmonic of the steady-state
error in the PCID control system is normalized to 1, with the
same scaling factor applied to the PID control system for fair
comparison.

At an input frequency of 50 Hz, as shown in Fig. 7(b2),
the first-order harmonic component dominates, and the mag-
nitudes of the high-order harmonics are relatively small. In this
scenario, as illustrated in Fig. 7(a2), the PCID control system
demonstrates two-reset actions and a lower steady-state error
compared with the PID control system.

In contrast, at an input frequency of 10 Hz, the error signal
exhibits multiple reset instants as shown in Fig. 7(a1), which
are associated with the presence of high-magnitude, high-order
harmonics in Fig. 7(b1). These high-magnitude high-order
harmonics diminish the benefits of the first-order harmonic in
the PCID control system, leading to a larger steady-state error
compared with the linear PID control system in Fig. 7(a1).

Thus, this work introduces a shaped reset control strategy to
address the adverse effects of dominated high-order harmonics,
as detailed in Section V.

Note that though the practical applications extend beyond
sinusoidal-input systems, the sinusoidal-input analysis serves
as an effective tool for investigating the frequency-domain
harmonic characteristics within these reset control systems.

IV. IDENTIFYING TWO-RESET CONDITIONS IN SIDF
ANALYSIS AND EXPERIMENTAL VALIDATION

In this section, first, Lemma 1 presents the piecewise
expressions of steady-state trajectories in sinusoidal-input
closed-loop reset systems. Then, building on these expressions,
Theorem 1 introduces a method to identify frequency ranges
of multiple-reset and two-reset actions in sinusoidal-input
closed-loop reset systems. Finally, simulations and experi-
ments validate the effectiveness of the approach in Theorem
1.

A. Piecewise Expressions for Steady-State Trajectories in
Sinusoidal-Input Closed-Loop Reset Control Systems

Consider a closed-loop reset system with a sinusoidal input
r(t) = |R| sin(ωt) that satisfies Assumption 2. In order to con-
duct steady-state analysis, it is crucial to establish a reference
point for one steady-state cycle. This reference point t0 = 0
is defined at the time instant where r(t0) = 0 and ṙ(t0) > 0.
Define

Lbl (ω) = C1 (ω) (Cl (ω) + C2 (ω)) C3 (ω)P (ω) C4 (ω)

Sbl (ω) = 1/ (1 + Lbl (ω))

Ts (ω) = Sbl (ω) ( jωI − AR)−1 �Aρ − I
�

Cσ (ω) = C3 (ω)P (ω) C4 (ω) C1 (ω)

Tα (ω) = Cσ (ω) CRTs (ω)

hs (t) = F −1 [Ts (ω)]

hα (t) = F −1 [Tα (ω)] , hβ (t) = F −1 [Cs (ω) Tα (ω)] . (9)

Lemma 1 provides a piecewise expression of steady-state
trajectories in sinusoidal-input closed-loop reset systems.

Lemma 1: Consider a closed-loop reset control system as
shown in Fig. 1, with a sinusoidal reference input r(t) =

|R| sin(ωt), and satisfying Assumptions 2. Within one steady-
state period (0, 2π/ω], the reset instant ti, at which zs(ti) = 0,
divides the system trajectories into piecewise functions. Let
xi(t), zi(t), and zi

s(t) denote the state, reset input, and reset-
triggered signal, within the intervals (ti−1, ti], where i ∈ Z+,
respectively. They are expressed as follows:

xi+1 (t) = xi (t) − hs (t − ti) xi (ti)

zi+1 (t) = zi (t) − hα (t − ti) xi (ti)

zi+1
s (t) = zi

s (t) − hβ (t − t1) xi (ti) (10)

Proof: The proof is provided in Appendix A. �

B. Identifying Multiple-Reset and Two-Reset Actions in
Sinusoidal-Input Closed-Loop Reset Control Systems

Consider a closed-loop reset system with a sinusoidal input
r(t) = |R| sin(ωt) that satisfies Assumption 2. Let t1 denote the
first reset instant within a single steady-state cycle. Prior to
reaching steady state, the system exhibits transient responses.
Within the steady-state interval (0, t1), the trajectories of the
reset controller are determined by both the dynamics of its
BLS, as described in (3), and transient effects. To simplify the
steady-state analysis and mitigate the complexity associated
with modeling transient behavior, Assumption 3 asserts that
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the transient effects within the interval (0, t1) are negligible,
and that the reset system behaves equivalently to its BLS over
this interval.

Assumption 3: The closed-loop reset control system
depicted in Fig. 1, under the sinusoidal reference input r(t) =

|R| sin(ωt) and satisfying Assumption 2, follows the same
steady-state trajectory as its BLS during the time interval
(0, t1), where t1 represents the first reset instant of this system
within one steady-state cycle.

Assumption 3 may introduce deviations in multiple-reset
system identification due to transient effects. In practical reset
system designs, these transient effects are often mitigated using
strategies such as feedforward control and high-bandwidth
feedback loops. Moreover, the case studies in Section IV-C
assess these deviations.

Define

sign (x) =

(
0, if x > 0
1, if x ≤ 0

Sls (ω) = Cs (ω) C1 (ω)Sbl (ω)

Θbl (ω) = ( jωI − AR)−1 BRC1 (ω)Sbl (ω)

tm = ∠Sls (ω) /ω+ π/ω · sign (Sls (ω))

Θs (ω) = |Θbl (ω) | sin (∠Sls (ω) − ∠Θbl (ω)) . (11)

Then, Theorem 1 and Remark 1 delineate the condition
for ensuring the two-reset assumption in the SIDF analysis
methods (see [5], [14], [15]) for closed-loop reset control
systems.

Theorem 1: Consider a closed-loop reset control system
illustrated in Fig. 1 with a sinusoidal reference input r(t) =

|R| sin(ωt), satisfying Assumptions 2 and 3. The system is a
multiple-reset system if there exists at least one time instant
tδ ∈ (0, tm), such that

∆ (tδ) = |Sls (ω)| sin (ωtδ) + hβ (tδ) Θs (ω) = 0 (12)

where Sls(ω) and Θs(ω) are given in (11), and hβ(t) is given
in (9).

Proof: The proof is provided in Appendix B. �
Theorem 1 is applicable to model-based reset control. To use

it, first, the FRF data of the plant P(s), is measured, and system
identification methods are employed to derive the system
model. Then, Theorem 1 is applied to identify the multiple-
reset frequency range in sinusoidal-input closed-loop reset
systems. However, if the system identification is inaccurate,
the accuracy of Theorem 1 may also be compromised. In
addition, deviations may arise from Assumption 3 if the
transient response exhibits a large impact on the steady-state
behavior. These deviations will be discussed and validated
through case studies in Section IV-C.

Based on Theorem 1, Remark 1 establishes the two-reset
condition for the SIDF analysis of closed-loop reset systems.

Remark 1: The SIDF analysis for closed-loop reset systems
assumes a two-reset condition. This condition holds if, for all
frequencies ω within the SIDF analysis frequency range, the
criteria outlined in Theorem 1 are not met.

TABLE I
THEOREM 1-PREDICTED AND SIMULATED BOUNDARY FREQUENCIES fb

AND f ′b THAT SEPARATE THE TWO-RESET AND MULTIPLE-RESET SYS-
TEMS, AS WELL AS THE COMPUTATION TIME IN CASE1 TO CASE2

C. Simulations and Experimental Validation of Theorem 1

To validate Theorem 1, two CI-based reset controllers are
designed and implemented on the precision motion system
P(s) defined in (7) as case studies. CI-based reset control
systems are chosen for this validation because they are easily
implemented within the classical PID control framework, but
they often encounter multiple-reset actions in SIDF analysis
[14]. Ensuring the reliability of their SIDF analysis would
facilitate their practical application. The systems are config-
ured with the following parameters.

1) Case1: A PCID control system, using the same design
parameters outlined in Section III.

2) Case2: Cr is built on a BLC Cl = (30π)/s with the
reset value γ = 0, C1(s) = 1/(s/(150π) + 1), Cs(s) =

(s + 1)/(s + 2), C2(s) = 1, C3(s) = 20.5 · (s/(150π) +
1)/(s/(3000π) + 1) · (s/(62.5π) + 1)/(s/(1440π) + 1) ·
(1 + 15π/s) · 1/(s/(3000π) + 1).

The stability and convergence of these two cases are verified
using the conditions presented in [21], as provided in the
supplementary material.

In these two case studies, multiple-reset actions occur at
frequencies below a certain frequency, denoted fb in predic-
tions from Theorem 1 and as f ′b in simulations, with deviations
| fb− f ′b | summarized in Table I. Both prediction and simulation
methods sweep the frequency range from 1 Hz to 50 Hz with
a step of 1 Hz. At each frequency, the sampling rate is set to
104. The results show discrepancies between 1 and 4 Hz across
the cases, primarily due to the exclusion of transient response
effects, as outlined in Assumption 3. In practice, these transient
effects can be mitigated using strategies such as ensuring an
appropriate bandwidth in the feedback loop and implementing
feedforward techniques. Moreover, despite deviations of 1–4
Hz between the simulation results and the predictions from
Theorem 1, the prediction method offers substantial time-
saving benefits. Identifying multiple-reset occurrences through
simulation or using the numerical method in [20] requires
calculating the time response at each frequency across the
entire operational frequency range via a for loop in MAT-
LAB, followed by counting the reset instants per steady-state
cycle. In contrast, Theorem 1 streamlines this process. Table I
presents a comparison of computation times for the prediction
and simulation methods. Results show that Theorem 1 achieves
a reduction in computation time by around 300-fold compared
with the simulation approach.

If extremely precise identification of multiple-reset actions
is needed, Theorem 1 can be utilized for initial estima-
tion. Subsequent simulations can then focus on the predicted
frequency range, ensuring both accuracy and efficiency in
pinpointing multiple-reset occurrences.
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Fig. 8. Experimentally measured steady-state reset-triggered signal zs(t) for
Case1 with input frequencies of (a) 20 Hz, (b) fb = 30 Hz, and (c) 40 Hz.
Steady-state reset-triggered signal zs(t) for Case2 with input frequencies of
(d) 28 Hz, (e) fb = 38 Hz, and (f) 48 Hz. Gray-shaded regions indicate
multiple-reset systems.

To further validate Theorem 1, Fig. 8 presents experi-
mentally measured reset-triggered signals zs(t) for systems
Case1 and Case6 in response to a reference input of r(t) =

1×10−6 sin(2π f t) [m]. Testing was conducted at the predicted
threshold frequency f = fb Hz, as well as at f = fb ± 10
Hz, over two steady-state cycles. The results show that at
( fb−10) Hz, the systems exhibit multiple-reset behavior, while
at ( fb + 10) Hz, they display two reset instants per cycle,
characteristic of a two-reset system. At the predicted threshold
frequency fb, the systems demonstrate 3–4 reset instants per
cycle, indicating a transitional behavior between two-reset
and multiple-reset categories. These observations confirm that
fb serves as a boundary frequency for distinguishing two-
reset from multiple-reset actions, thereby validating Theorem 1
within a 10-Hz tolerance.

V. ANALYSIS AND DESIGN OF SHAPED RESET SYSTEMS

Multiple-reset actions in sinusoidal-input closed-loop reset
systems are indicative of dominated high-order harmonics.
To reduce these harmonics, this section introduces a shaped
reset control strategy. First, Lemma 2 provides an analytical
decomposition of the steady-state reset-triggered signal zs(t)
in such systems into a base-linear trajectory and a nonlinear
component. Building on this, Theorem 2 defines a function
βn(ω), which quantifies the presence of high-order harmonics
in zs(t). This function serves as the foundation for designing a
shaped reset control approach to reduce high-order harmonics.

Lemma 2: Consider a closed-loop reset control system
as shown in Fig. 1, with a sinusoidal reference input

r(t) = |R| sin(ωt) and adhering to Assumptions 2 and 3. Let
µ denote the number of reset instants occurring within a half
π/ω-cycle. Define

Tβ (nω) = Tα (nω) · jnω

Dn
s (ω) =

2
�
Aρ − I

�
nπ

i=µX
i=1

F [x (ti) sin (nω (t − ti))] . (13)

In this system, the steady-state reset-triggered signal zs(t) is
composed of two components: a base-linear element zbl(t) and
a nonlinear element znl(t), expressed as

zs (t) = zbl (t) + znl (t)

zbl (t) = |R| · |Sls (ω)| sin (ωt + ∠Sls (ω))

znl (t) = −

∞X
n=1

F −1 �Cs (nω) Tβ (nω) Dn
s (ω)

�
. (14)

In (14) and (13), Tα(ω) and Sls(ω) are defined as in (9)
and (11), respectively, and x(ti) denotes the state of the reset
controller Cr at the reset instant ti.

Proof: The proof is provided in Appendix C. �
In the reset-triggered signal zs(t), the nonlinear component

znl(t) in (14) can be represented as the sum of its harmonic
components, expressed as

znl (t) =

∞X
n=1

zn
nl (t)

zn
nl (t) =

∞X
n=1

ˇ̌
Zn

nl

ˇ̌
sin
�
nωt + ∠Zn

nl

�
(15)

where |Zn
nl| and ∠Zn

nl represent the magnitude and the phase of
the signal zn

nl(t).
Let Zn

nl(ω) represent the Fourier transform of the n-th
harmonic zn

nl(t) within znl(t). The following theorem provides
the magnitude ratio of the higher order harmonics (n > 1) to
the first-order harmonic (n = 1) in znl(t).

Theorem 2: Consider the closed-loop reset control system
depicted in Fig. 1, with a sinusoidal reference input r(t) =

|R| sin(ωt), and assume it satisfies Assumptions 2 and 3. At the
input frequency ω, the magnitude ratio of the higher order
harmonics (where n > 1) to the first-order harmonic (where
n = 1) in znl(t) in (14) is given by

βn (ω) =

ˇ̌
Zn

nl (ω)
ˇ̌ˇ̌

Z1
nl (ω)

ˇ̌ =

ˇ̌
Cs (nω) Tβ (nω)

ˇ̌
n
ˇ̌
Cs (ω) Tβ (ω)

ˇ̌ , where n > 1. (16)

Proof: The proof is provided in Appendix D. �
Remark 2: According to Theorem 2, when βn(ω) → 0,

|Zn
nl(ω)| � |Z1

nl(ω)| holds for n > 1. In this case, from (14),
the reset-triggered signal zs(t) can be approximated as zs(t) ≈
z1

nl(t)+zbl(t), implying that that it predominantly comprises the
first-order harmonic. Therefore, ensuring βn(ω) → 0 supports
the low-pass filtering assumption [24], [25], which is essential
for ensuring the accuracy of the SIDF analysis.

However, due to the inherent nonlinearity of reset control
systems, it is not feasible to completely eliminate high-order
harmonics (i.e., achieve βn(ω) = 0).

Although high-order harmonics do not always cause issues,
they can lead to multiple-reset actions in sinusoidal-input
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closed-loop systems, compromising the accuracy of SIDF
analysis and reducing the reliability of system design and
performance predictions. In addition, dominated high-order
harmonics increase the system’s sensitivity to high-frequency
disturbances and noise. To address this, we identify the
multiple-reset frequency ranges as key areas where high-
order harmonics should be reduced. Decreasing βn(ω) in these
ranges improves the accuracy of SIDF analysis and decreases
the system’s sensitivity to high-frequency noise.

According to (14) and (16), when the base-linear component
zbl(t) remains constant, maintaining βn(ω) within a bound
less than 1, i.e., βn(ω) ≤ σβ ∈ (0, 1), ensures that the ratio
|Zn

nl(ω)|/|Z1
nl(ω)| remains within a controlled range, thereby

limiting the impact of high-order harmonics.
Based on (16), to guide the design of a shaping filter Cs that

achieves βn(ω) = σβ, the magnitude condition for Cs is given
as follows:

|Cs (ω)| = nσβ/
ˇ̌
Tβ (ω) · 1nc×1

ˇ̌
. (17)

Since the reset action is independent of the magnitude of Cs(ω)
[16], the value of n does not affect the system performance. By
default, n = 3 is used in (17). Then, the following steps outline
the design procedure for shaping filters in reset systems.

1) Step 1: Start by designing the reset control system with
Cs(ω) = 1, and use Theorem 1 to identify the frequency
range where multiple-reset actions occur.

2) Step 2: Then, select a value σβ ∈ (0, 1), and design the
shaping filter |Cs(ω)| using (17) to achieve βn(ω) = σβ
within the identified multiple-reset frequency range.

3) Step 3: Since the introduction of Cs(ω) affects both
the magnitude and phase of the first-order harmonics,
adjusting other system parameters to compensate for
these changes is needed in order to preserve the benefits
of the first-order harmonic.

A detailed design procedure of an illustrative example
following these steps is presented in Section VI.

VI. ILLUSTRATIVE EXAMPLE: DESIGNING A PID
SHAPING FILTER TO REDUCE HIGH-ORDER HARMONICS

IN A CI-BASED RESET CONTROL SYSTEM

This section presents the analysis and design procedure for
a PID shaping filter to reduce high-order harmonics in a CI-
based reset control system. The procedure is outlined as an
illustrative case study.

The PCID control system, Case1, with design parameters
outlined in Section III, is chosen as the example due to its
high-order harmonic issues, as shown in Fig. 7(a1).

Following the steps outlined in Section V, Theorem 1 is
applied to identify the multiple-reset frequency range for the
PCID control system, Case1, as (0, 30) Hz. The value of 30
Hz is determined by sweeping the entire frequency range
with a 1-Hz step size. For improved accuracy, smaller step
resolutions can be utilized. Within this identified frequency
range, reducing high-order harmonics is needed.

Next, by setting σβ = 0.6 and applying equation (17), the
resulting magnitude plot of |Cs(ω)| is shown in Fig. 9. The
value σβ = 0.6 is chosen based on experimental evaluations
to achieve improved system performance, as demonstrated in

Fig. 9. Plot of |Cs(ω)| meeting the condition of βn(ω) = 0.6 based on (17).

Section VII. In practice, other values of σβ ∈ (0, 1) may also
be selected, depending on the specific requirements for high-
order harmonic reduction in the system.

From Fig. 9, the shaping filter can be simplified as the LTI
PI shaping filter, given by

Cs (s) = 1 + ωα/s (18)

where ωα = 2π · 30 = 60π [rad/s].
The objective of the shaping filter design is to attenuate

high-order harmonics while preserving the benefits of the first-
order harmonic. However, as shown in (6), the integration of
the PI shaping filter impacts the phase of the HOSIDF of
the reset controller. It is crucial to ensure that the shaping
filter does not induce phase lag but instead introduces phase
lead. The PID shaping filter Cs(s) reduces βn(ω) in (16) for
frequencies ω < ωα, while simultaneously introducing a phase
lead at the bandwidth frequency of ωBW, compared with the
system without the shaping filter (i.e., Cs = 1), by the following
design:

Cs (s) = ks ·

�
1 +

ωα
s

�
·

s/ωβ + 1
s/ωη + 1

·
1

s/ωψ + 1
(19)

with ∠Cs(ωBW) meets the conditions [26]

∠Cs (ωBW) ∈
�

kπ,
π

2
− arctan

�
ωc

ωα

�
+ kπ

�
, k = −1, 0.

(20)

Since reset actions are amplitude-independent [16], the
value of ks , 0 ∈ R does not impact system performance.
By default, ks = 1. The introduction of the derivative ele-
ment in (19) may amplify high-frequency noise, potentially
causing multiple-reset actions. Therefore, the low-pass filter is
incorporated to attenuate high-frequency components in zs(t).
The cutoff frequency ωψ for the LPF is chosen based on the
characteristics of the noise present in practice. In this study,
reset systems incorporating the shaping filter from (19) are
termed PID-shaped reset control systems.

CI-based reset systems, including Case1, are built upon the
generalized CI. Therefore, the phase margin introduced by the
PID shaping filter in the CI-based reset system is first applied
to the shaped CI and then propagated throughout the entire
system. Remark 3 illustrates the phase lead imparted by the
PID shaping filter to the shaped CI.

Remark 3: From (6), the phase lead introduced by the
shaping filter in (19) to a shaped CI is given by

φlead = φs (ωBW) − φ0 (21)

where φs(ωBW) denotes the phase margin of the shaped CI
system when the shaping filter Cs(s) in (19) is applied, and φ0
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Fig. 10. Bode plot of the shaping filter Cs(s) .

refers to the phase margin of the generalized CI when Cs(s) =

1. These phase margins are given by (22), as shown at the
bottom of the page.

Based on (19), the shaping filter Cs(s) for Case1 is designed
with the following parameters: ωα = 60π [rad/s], ωβ =

1.05 · ωBW = 659.7 rad/s, ωη = 12 · ωBW = 7.5 × 103 rad/s,
ωψ = 75 · ωBW = 4.7 × 104 rad/s, and ks = 213. The Bode
plot of Cs(s) is shown in Fig. 10. At frequencies ω < ωα,
Cs(s) functions as a PI controller. Note that due to the integral
property of the shaping filter, the reset-triggered signal zs(t)
may exhibit an offset and lack zero-crossings in the presence
of an integral buffer. In such cases, the system behaves linearly.
However, this linearization does not degrade performance;
rather, it enhances performance, as linear control outperforms
reset control in the low-frequency range in this case study. In
addition, the integrator can be tamed to prevent buffer buildup
at high frequencies as shown in Fig. 10.

In addition, the phase of the shaping filter at the bandwidth
frequency ωBW = 200π [rad/s] is ∠Cs(ωBW) = 21◦. Without the
shaping filter, the CI with γ = 0 has a phase of φ0 = −38.1◦

at ωBW = 200π [rad/s], as determined using (22). In contrast,
by applying the designed shaping filter Cs(s), the phase of the
shaped CI improves to φs = −27.4◦, introducing a phase lead
of φlead = 10.7◦ in the PCID control system, as calculated
from (21). To preserve the phase margin and gain properties
of the first-order harmonic, the parameters are set to ωr =

141.4 rad/s, γ = 0.13, and kr = 1.02. Under these settings, the
phase lead is φlead = 0◦.

Applying the designed PID shaping filter, the Bode plots
for the PID, PCID, and shaped PCID controllers—showing
both first- and third-order harmonics—are provided in Fig. 11.
Then, Fig. 12 provides the corresponding Bode plots when
these controllers are applied to the plant P(s) in (7). Collec-
tively, these figures demonstrate that the shaped PCID control
system reduces high-order harmonics within the frequency
range of (0, 30) Hz, while preserving the gain and phase
benefits of the first-order harmonic, compared with the PCID
control system. It is worth noting that the PID shaping

Fig. 11. Bode plots of the PID controller, the first-order and third-order
harmonics in the PCID, and shaped PCID controllers. The multiple-reset
region (0, 30) Hz identified for the PCID system using Theorem 1 is shaded
in gray.

Fig. 12. Bode plots of the open-loop PID control system and the first-
and third-order harmonics in the open-loop PCID and shaped PCID control
systems on the precision motion stage P(s).

Fig. 13. plot of β3(ω) in the closed-loop PCID and shaped PCID control
systems.

filter amplifies high-order harmonics in certain frequency
ranges—such as [30, 100] Hz in this case study, as shown
in Fig. 11. However, this amplification remains minimal, and
within this range, the first-order harmonics are also enhanced.
As a result, system performance is not degraded, which will be
verified by the experimental results presented in Section VII.

Moreover, the plots of β3(ω) for both the closed-loop PCID
and shaped PCID control systems are shown in Fig. 13. The
shaped PCID control system reduces β3(ω), ensuring that
β3(ω) < 0.6. Note that in this shaped PCID control system,
the values of βn(ω) for n > 3 are smaller than β3(ω) and,

φ0 = arctan (−π (1 + γ)/(4 (1 − γ)))

φs (ωBW) = arctan
�

4 (1 − γ) sin (∠Cs (ωBW )) cos (∠Cs (ωBW )) − π (1 + γ)
4 (1 − γ) cos2 (∠Cs (ωBW ))

�
. (22)
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Fig. 14. Plots of simulated ||e||∞/||r||∞ for the PID, PCID, and shaped PCID
control systems, alongside the SIDF-predicted ||e||∞/||r||∞ for the shaped PCID
control system.

TABLE II
||e||∞/||r||∞ VALUES FOR THE PCID AND SHAPED PCID SYSTEMS UNDER

SINUSOIDAL INPUTS AT FREQUENCIES OF 5, 10, 30, AND 200 HZ

for clarity, are not displayed. However, they can be computed
using (16).

The results shown in Figs. 11–13 indicate that the PID shap-
ing filter designed in this study reduces high-order harmonics
while maintaining the advantages of the first-order harmonic
in the PCID system. These improvements are anticipated to
enhance the accuracy of SIDF analysis and improve the steady-
state precision of the PCID system. Further validation of
these enhancements will be provided through simulations and
experimental results in Section VII.

VII. EVALUATION OF THE EFFECTIVENESS OF THE
SHAPED RESET CONTROL SYSTEM VIA SIMULATIONS AND

EXPERIMENTS

This section presents simulation and experimental results
to validate the effectiveness of the PID-shaped reset system
designed in Section VI in comparison to both linear and reset
systems, as applied to the precision motion stage in Fig. 2.

A. Simulation Results: Enhanced Steady-State Performance
and Improved Accuracy of Sidf Analysis

To evaluate the closed-loop performance of the shaped
PCID control system, Fig. 14 presents the simulated ||e||∞/||r||∞
(8) for the PID, PCID, and shaped PCID systems. The shaped
PCID system demonstrates the lowest ||e||∞/||r||∞ compared
with the other two systems, indicating improved precision.
This enhancement is attributed to the shaped PCID control
system’s superior gain properties in the first-order harmonic
compared with the PID control system, while reducing high-
order harmonics relative to the PCID control system, as
demonstrated in Figs. 11 and 12.

Table II presents a quantitative comparison of ||e||∞/||r||∞
for the PID, PCID, and shaped PCID systems at selected
frequencies: 5, 10, 30, and 200 Hz. The choice of 5, 10,
and 30 Hz validates the improved precision resulting from
high-order harmonics reduction in the shaped PCID system

TABLE III
RPE OF THE SIDF ANALYSIS FOR PCID AND SHAPED PCID CONTROL

SYSTEMS AT FREQUENCIES OF 1, 10, 50, 100, 500, AND 1000 HZ

Fig. 15. Normalized experimental measured steady-state errors of the
PID, PCID, and shaped PCID control systems under sinusoidal inputs
r(t) = 1 × 10−5 sin(2πt) [m], shown for (a) f = 5 Hz, (b) f = 10 Hz,
(c) f = 30 Hz, and (d) f = 100 Hz.

within the targeted frequency range of (0, 30) Hz. In addition,
the inclusion of 200 Hz ensures that high-frequency precision
has also been attained. Across all frequencies, the shaped
PCID system consistently exhibits lower steady-state errors,
highlighting its effectiveness.

Another observation from Fig. 14 is that the SIDF analy-
sis provides more reliable predictions for the shaped PCID
system compared with the PCID system in Fig. 6. Define
the relative prediction error (RPE) of the SIDF analysis as
RPE = ||Ssim(ω)| − |Ssidf(ω)||/|Ssidf(ω)|, where |Ssim(ω)| and
|Ssidf(ω)| are obtained from simulations and SIDF analysis
(8), respectively. A comparison of RPE values across six
frequencies, shown in Table III, supports this observation. The
improved reliability of the SIDF analysis in the shaped PCID
system is attributed to the high-order harmonics reduction.
However, discrepancies between SIDF predictions and sim-
ulations remain, as the SIDF considers only the first-order
harmonic. To address this, βn(ω) → 0 can be restricted to
maintain the two-reset condition, and HOSIDF methods in [14]
and [15], can be employed for higher accuracy.

B. Experimental Results: Improved Steady-State Tracking
Precision

Fig. 15 illustrates the experimentally measured steady-
state errors for the PID, PCID, and shaped PCID systems
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TABLE IV

MAXIMUM STEADY-STATE ERRORS ||e||∞ [M] IN THE PCID SYSTEM AND
SHAPED PCID SYSTEMS UNDER SINGLE SINUSOIDAL INPUTS AT

FREQUENCIES OF 5, 10, 30, AND 200 HZ

Fig. 16. Experimental measured steady-state errors of PID, PCID, and shaped
PCID control systems under d1(t) + n(t).

in response to a normalized sinusoidal input signal defined
as r(t) = 1 × 10−5 sin(2π f t) [m], with frequencies f = 5,
10, 30, and 200 Hz. Note that during practical experiments,
the magnitudes of input signals employed for these four
frequencies were different; however, for the purposes of com-
parison, the magnitude of all input signals has been normalized
to 1× 10−5 [m].

Table IV presents the maximum steady-state errors at the
three test frequencies for the PID, PCID, and shaped PCID
systems. The results demonstrate that the shaped PCID system
achieves the lowest position errors among the three systems,
especially at the low frequency range of (0, 30) Hz. Notably, at
5 Hz, the shaped PCID system improves precision by 72.56%
compared with the PCID system.

Real-world input signals are often more complex than a
single sinusoid. In this section, the results of the single
sinusoidal reference inputs serve to illustrate the steady-state
performance of the three systems across varying frequencies.
To comprehensively evaluate the positioning performance of
the shaped reset control system, multiple inputs—including
disturbances and noise—will be applied to the three systems
in Section VII-C.

C. Experimental Results: Improved Steady-State Tracking
Precision and Disturbance and Noise Rejection

This section presents the steady-state errors of three systems
under multiple input conditions.

Fig. 16(a) shows the measured steady-state errors of the
three systems in response to a disturbance input signal
defined as d1(t) = 1 × 10−7[149.3 sin(4πt) + 1.2 sin(16πt) +
11.9 sin(16πt) + 3.0 sin(40πt)] [m].

Next, a white noise input n(t) with a power bound of
3 × 10−12 [m] is added to the disturbance input d1(t). The
resulting steady-state errors for the three systems are presented
in Fig. 16(b). Table V summarizes the maximum steady-

TABLE V

MAXIMUM STEADY-STATE ERRORS ||e||∞ [M] IN THE PID, PCID,
AND SHAPED PCID CONTROL SYSTEMS UNDER DIFFERENT

INPUT SIGNALS

Fig. 17. Experimental measured steady-state errors of PID, PCID, and shaped
PCID control systems under (a) r2(t) +d2(t) +n(t) and (b) r3(t) +d3(t) +n(t).

state errors for the PID, PCID, and shaped PCID systems
under these inputs. The results show that the shaped PCID
system improves precision by 80.07% compared with the
PCID system, effectively rejecting both the disturbance and
noise.

To evaluate both the reference tracking, as well as the
disturbance and noise rejection of the closed-loop shaped
PCID control system, Fig. 17 compares the steady-state errors
of the PID, PCID, and shaped PCID systems under multiple
input signals. In Fig. 17(a), the inputs include a reference
signal r2(t) = 6 × 10−6 sin(10πt) [m], alongside the dis-
turbance d2(t) = 1 × 10−8[49.0 sin(4πt) + 5.5 sin(16πt) +
1.1 sin(40πt)] [m] and white noise n(t) with a power bound of
3× 10−12 [m]. In Fig. 17(b), the inputs consist of a reference
signal r3(t) = 6 × 10−6 sin(20πt) [m], a disturbance d3(t) =

1×10−7[2.7 sin(10πt)+3.7 sin(14πt)+3.0 sin(30πt)] [m], and
the white noise noise n(t) with a power bound of 3×10−12 [m].
The maximum steady-state errors for these two cases are
summarized in Table V, indicating that the shaped PCID
system improves precision by 73.5% and 53.06% in the two
scenarios, respectively.

Moreover, Fig. 18 illustrates the control inputs for these two
cases, demonstrating that the shaped PCID system requires the
least control input force while achieving the lowest steady-
state error. Together, Figs. 17 and 18 highlight the improved
control efficiency of the shaped PCID system, which can be
attributed to the reduction of high-order harmonics.

D. Experimental Results: Eliminated Limit Cycle

The PID shaping filter can also effectively eliminate limit
cycles observed in the step responses of reset PID systems. A
detailed proof is provided in Appendix D. Current solutions for
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Fig. 18. Experimental measured control input of PID, PCID, and shaped PCID
control systems under (a) r2(t) + d2(t) + n(t) and (b) r3(t) + d3(t) + n(t).

Fig. 19. Experimental measured. (a) Step responses of PID, PCID, shaped
PCID, PCI-PID, PI+CI D control systems. (b) Steady-state errors of the PCI-
PID, PI+CI D, and shaped PCID control systems under sinusoidal input
r(t) = 1× 10−5 sin(20πt) [m].

addressing the limit cycle problem include the PI+CI structure
[27] and the PCI-PID structure in Fig. 4. To provide a fair com-
parison of the effectiveness of five control structures—PID,
PCID, shaped PCID, PI+CI D, and PCI-PID—we designed
these systems with the same bandwidth of 100 Hz and phase
margin of 50◦ of the first-order harmonics for fair comparison.

Fig. 19(a) presents the step responses of the five systems,
highlighting the effectiveness of the shaped PCID, PI+CI D,
and PCI-PID systems in mitigating the limit cycle issues
observed in the PCID system. These systems also exhibit lower
overshoot compared with the PID system. However, the PI+CI
D and PCI-PID structures address limit cycle problems at the
cost of reduced steady-state performance.

For example, as shown in Fig. 19(b), under a sinusoidal
input signal r(t) = 1 × 10−5 sin(20πt) [m], the steady-state
errors of the PI+CI D and PCI-PID systems are larger than
those of the shaped PCID system. This occurs because the
PI+CI D and PCI-PID systems exhibit dominated high-order
harmonics at low frequencies, similar to the PCID system. In
contrast, the shaped PCID system reduces these high-order
harmonics, leading to improved steady-state performance.

In summary, the proposed shaped PCID control system
improves positioning accuracy and control efficiency compared
with both PID and PCID control systems on the precision

motion stage. In addition, it effectively eliminates limit cycles,
leading to enhanced overall system performance.

VIII. CONCLUSION

In conclusion, this article makes two main contributions.
First, it introduces a method for identifying multiple-reset
and two-reset regions in sinusoidal-input closed-loop reset
systems, providing engineers with a practical tool to evaluate
the reliability of SIDF analysis. The effectiveness and time-
saving advantages of this method have been validated through
simulations and experimental results across two case studies.

Second, the study introduces a shaped reset control strategy
to reduce high-order harmonics. As an illustrative example,
the procedure for designing a PID shaping filter in CI-based
reset systems is presented. The resulting PID-shaped reset
control system reduces high-order harmonics while preserving
the benefits of the first-order harmonic compared with the reset
control system. Experimental results from precision motion
stages highlight three key benefits of the PID-shaped reset
system: 1) improved SIDF analysis accuracy; 2) enhanced
tracking precision, disturbance and noise rejection, and overall
control efficiency; and 3) elimination of limit-cycle issues in
the step responses of reset systems.

Future research could explore the application of the shaped
reset control system design in Section V to other reset con-
trol structures, aiming to investigate further improvements in
system performance.

APPENDIX A
PROOF OF LEMMA 1

Proof: Consider a closed-loop reset control system in Fig. 1
under a sinusoidal reference input r(t) = |R| sin(ωt), and
satisfying Assumption 2.

Within each steady-state period (0, 2π/ω], the reset instant ti
is defined as the time at which the reset-triggered signal zs(ti)
reaches zero. Let xi(t), mi(t), zi(t), and zi

s(t) represent the state
of the reset controller Cr, the reset output, the reset input,
and the reset-triggered signal, during the intervals (ti−1, ti],
where i ∈ Z+, respectively. This proof presents the piecewise
expressions for the steady-state trajectories of the system,
following the three steps outlined below.

Step 1 [Derive the Piecewise Expression for xi(t)]:
From (1), the system operates without any reset actions

during the time interval (ti−1, ti]. At the reset instant ti ∈ J, the
state xi(ti) undergoes a reset (or jump) to a new state xi(t+i ),
given by

xi
�
t+i
�

= Aρxi (ti) . (23)

The jump in (23) introduces a step input signal hi(t) into the
system, impacting the trajectories during the subsequent time
interval (ti, ti+1] [15]. The signal hi(t) is given by

hi (t) =
�
xi
�
t+i
�
− xi (ti)

�
h (t − ti) =

�
Aρ − I

�
xi (ti) h (t − ti)

(24)

where h(t) is a unit step signal given by

h (t) =

(
1, t > 0
0, t ≤ 0

(25)



458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 34, NO. 1, JANUARY 2026

Fig. 20. State-space block diagram of Cr during the time interval (ti, ti+1].

with the Fourier transform H(ω) = F [h(t)] = ( jω)−1.
Based on (1) and (24), the block diagram of the controller

C for the time interval (ti, ti+1] is illustrated in Fig. 20, where
the signal xi+1(t) is derived from two inputs: zi(t) and hi(t).
The respective contributions to xi+1(t) from zi(t) and hi(t) are
labeled as xz

i+1(t) and xh
i+1(t), respectively.

Under Assumption 2, the system’s steady-state trajecto-
ries are guaranteed to have well-defined Fourier transforms.
Let Zi(ω), Hi(ω), Xi(ω), Xz

i+1(ω), and Xh
i+1(ω) represent the

Fourier transforms of the signals zi(t), hi(t), xi(t), xz
i+1(t), and

xh
i+1(t), respectively.

Since no reset actions occur during the time interval
(ti, ti+1], the superposition law holds. Therefore, Xi+1(ω) is
express as

Xi+1 (ω)

= Xz
i+1 (ω) + Xh

i+1 (ω)

= Xz
i+1 (ω)Zi (ω)−1 · Zi (ω) + Xh

i+1 (ω)Hi (ω)−1 · Hi (ω) . (26)

Based on Figs. 1 and 20, within the closed-loop reset system,
when hi(t) = 0, we have

Xz
i+1 (ω)Zi (ω)−1 = ( jωI − AR)−1 BR (27)

and when zi(t) = 0, it follows that:

Xh
i+1 (ω)Hi (ω)−1 = Sbl (ω) ( jωI − AR)−1 jω. (28)

By combining (26), (27), and (28), we derive

Xi+1 (ω) = ( jωI − AR)−1 BRZi (ω) + Sbl (ω)

· ( jωI − AR)−1 jωHi (ω) . (29)

According to (1), during the reset interval (ti, ti+1], we obtain
Xi(ω) = ( jωI−AR)−1BRZi(ω). Substituting this Xi(ω) into (29)
yields

Xi+1 (ω) = Xi (ω) + Sbl (ω) ( jωI − AR)−1 jωHi (ω) . (30)

From (24), the Fourier transform of hi(t) is given by

Hi (ω) = F [hi (t)] =
�
Aρ − I

�
( jω)−1 e− jωti xi (ti) . (31)

Substituting (31) into (30), we obtain

Xi+1 (ω) = Xi (ω) + Ts (ω) e− jωti xi (ti) (32)

where
Ts (ω) = Sbl (ω) ( jωI − AR)−1 �Aρ − I

�
. (33)

Conducting the Fourier transforms of equation (32), we obtain

xi+1 (t)

= xi (t) + hs (t − ti) xi (ti) ,where hs (t) = F −1 [Ts (ω)] . (34)

Till here, the state of the reset controller during the time
interval (ti, ti+1] denoted as xi+1(t) is derived.

Step 2 [Derive the Piecewise Expression for zi(t)]:
Similar to Step 1, from Fig. 20, the signal mi+1(t) is derived

from two inputs: zi(t) and hi(t). The contributions to the output
mi+1(t) from zi(t) and hi(t) are denoted as mz

i+1(t) and mh
i+1(t),

respectively. Let Mi(ω), Mz
i+1(ω), and Mh

i+1(ω) represent the
Fourier transforms of the signals mi(t), mz

i+1(t), and mh
i+1(t),

respectively. Using the same calculation process as in Step 1,
Mi+1(ω) is expressed as

Mi+1 (ω)= Mz
i+1 (ω)Zi (ω)−1 · Zi (ω)+Mh

i+1 (ω)Hi (ω)−1 · Hi (ω)
(35)

where

Mz
i+1(ω)Zi(ω)−1 = CR( jωI − AR)−1BR + DR = Cl(ω)

Mh
i+1(ω)Hi(ω)−1 = Sbl(ω)CR( jωI − AR)−1 jω. (36)

Substituting (36) into (35), Mi+1(ω) is simplified to

Mi+1 (ω) = Cl (ω) Zi (ω) + Sbl (ω) CR ( jωI − AR)−1 jωHi (ω) .
(37)

From (1), during the reset interval (ti, ti+1], we have

Mi (ω) = Cl (ω) Zi (ω) . (38)

Substituting (31) and (38) into (37), Mi+1(ω) is given by

Mi+1 (ω) = Mi (ω) + CRTs (ω) e− jωti xi (ti) . (39)

From Fig. 1, in the closed-loop reset system, the following
relation holds:

Zi (ω) = R (ω) − (A (ω) + Mi (ω)) Cσ (ω)

Zi+1 (ω) = R (ω) −
�
A (ω) + Mi+1 (ω)

�
Cσ (ω) (40)

where A(ω) = F [a(t)] and

Cσ (ω) = C3 (ω)P (ω) C4 (ω) C1 (ω) . (41)

From (40), the following equations are derived:

Mi (ω) = [R (ω) − Zi (ω)] · Cσ (ω)−1 − A (ω)

Mi+1 (ω) =
�
R (ω) − Zi+1 (ω)

�
· Cσ (ω)−1 − A (ω) . (42)

Substituting Mi+1(ω) and Mi(ω) from (42) into (39), Zi+1(ω)
is obtained as

Zi+1 (ω) = Zi (ω) − Tα (ω) e− jωti xi (ti) (43)

where
Tα (ω) = Cσ (ω) CRTs (ω) . (44)

Conducting the Fourier transforms of equation (43), we obtain

zi+1 (t)

= zi (t) − hα (t − ti) xi (ti) ,where hα (t) = F −1 [Tα (ω)] . (45)

Till here, the input of the reset controller during the time
interval (ti, ti+1] denoted as zi+1(t) is derived.

Step 3 [Derive the Piecewise Expression for zi
s(t)]:

During the reset intervals (ti−1, ti] and (ti, ti+1], no reset
action takes place. Let Zi

s(ω) denotes the Fourier transforms
of zi

s(t). Therefore, the following relationship holds:

Zi
s (ω) = Cs (ω) Zi (ω) , and Zi+1

s (ω) = Cs (ω) Zi+1 (ω) . (46)
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Substituting (46) into (43), we obtain

Zi+1
s (ω) = Zi

s (ω) − Cs (ω) Tα (ω) e− jωti xi (ti) . (47)

Conducting the Fourier transforms of equation (47), we obtain

zi+1
s (t) = zi

s (t) − hβ (t − ti) xi (ti) (48)

where
hβ (t) = F −1 [Cs (ω) Tα (ω)] . (49)

Till here, the expression of the reset-triggered signal during
the time interval (ti, ti+1] denoted as zi+1

s (t) is derived. We
conclude the proof. �

APPENDIX B
PROOF OF THEOREM 1

Proof: Consider the reset control system shown in Fig. 1
with a sinusoidal reference input r(t) = |R| sin(ωt) and satisfies
Assumptions 2 and 3. This proof derives the multiple-reset
conditions in the sinusoidal-input reset system. It is organized
into three steps as follows.

Step 1 (Derive the First Reset Instant t1 Within One Steady-
State Cycle):

Under Assumption 3, the state and reset-triggered signal of
the reset system during the interval (0, t1], denoted as x1(t)
and z1

s(t), are equivalent to those of its BLS, denoted as xbl(t)
and zbl(t), respectively, as expressed by

x1 (t) = xbl (t) = |RΘbl (ω)| sin (ωt + ∠Θbl (ω))

z1
s (t) = zbl (t) = |RSls (ω)| sin (ωt + ∠Sls (ω)) (50)

where ∠Θbl(ω) ∈ (−π, π] and ∠Sls(ω) ∈ (−π, π]. Functions
Θbl(ω) and Sls(ω) are given in (11).

From Assumption 3 and (50), the first reset instant denoted
as t1 within one steady-state cycle, which corresponds to the
first zero-crossing point of the reset-triggered signal z1

s(t), is
expressed as

t1 =

(
(π − ∠Sls (ω))/ω, if ∠Sls (ω) ∈ (0, π]
(−∠Sls (ω))/ω, if ∠Sls (ω) ∈ (−π, 0] .

(51)

From (51), we have t1 ≤ π/ω.
Step 2 [Establish the Condition for Multiple-Reset Systems:

The Reset Triggered Signal z2
s(t) Must Exhibit at Least One

Zero-Crossing Within the Interval (t1, π/ω)]:
Under Assumption 2, within a steady-state period (0, 2π/ω],

we obtain two conclusions.
1) At the time instant t1 and t1 + π/ω, we have zs(t1) =

zs(t1 + π/ω) = 0.
2) Since t1 represents the first reset instant within a steady-

state cycle (0, 2π/ω], there is no zero-crossings of zs(t)
in the both the time intervals (0, t1) and (π/ω, t1 +π/ω).

From these two conclusions, Fig. 21 shows the green area
that has no reset actions within a steady-state period (0, 2π/ω].

A system is classified as a multiple-reset system if it exhibits
more than two zero-crossings per 2π/ω steady-state cycle in
response to a sinusoidal reference input r(t) = |R| sin(ωt). If
the reset-triggered signal zs(t) has no zero-crossings within
the interval (t1, π/ω), it will lack zero-crossings within

Fig. 21. Plot of the steady-state reset-triggered signal zs(t), with regions of
the same color indicating the same number of zero-crossings and opposite-
sign trajectories. Green areas indicate no zero-crossings, while yellow areas
show regions with zero-crossings.

(t1 + π/ω, 2π/ω). This results in exactly two zero-crossings
at t1 and t1 + π/ω over one steady-state cycle, (0, 2π/ω].

Therefore, a system exhibits multiple-reset behavior if the
reset-triggered signal es(t) has at least one zero-crossing within
(t1, π/ω), as illustrated in the yellow-shaded area of Fig. 21.

From Lemma 1, zs(t) can be broken down into piecewise
components zi

s(t) over intervals (ti, ti+1]. Thus, for zs(t) to have
at least one zero-crossing within (t1, π/ω), the second piece
z2

s(t) must include at least one zero-crossing within the interval
t ∈ (t1, π/ω).

Step 3 (Formulate the Multiple-Reset Condition):
From (10), the reset-triggered signal z2

s(t) during the time
interval (t1, t2] can be expressed as

z2
s (t) = z1

s (t) − hβ (t − t1) x1 (t1) , for t ∈ (t1, t2] . (52)

From (50) and (51), x1(t1) is given by

x1 (t1) = |RΘbl (ω)| sin (ωt1 + ∠Θbl (ω))

=

(
|R| · Θs (ω) , if ∠Sls (ω) ∈ (0, π]
−|R| · Θs (ω) , if ∠Sls (ω) ∈ (−π, 0]

(53)

where

Θs (ω) = |Θbl (ω)| sin (∠Sls (ω) − ∠Θbl (ω)) . (54)

By defining t = tδ + t1 and substituting x1(t1) from (53) into
(52), along with z1

s(t) defined from (50), we obtain

z2
s (tδ + t1) =

(
−|R|∆ (tδ) , if ∠Sls (ω) ∈ (0, π]
|R|∆ (tδ) , if ∠Sls (ω) ∈ (−π, 0]

(55)

where

∆ (tδ) = |Sls (ω)| sin (ωtδ) + hβ (tδ) Θs (ω) . (56)

The multiple-reset condition requires that z2
s(t) has at least

one zero-crossing within the time interval (t1, π/ω). Using the
relation t = tδ+ t1 and from (55), this condition is transformed
to: there exists a time interval tδ ∈ (0, π/ω − t1) such that
z2

s(tδ + t1) has at least one zero-crossing.
From (51), the value of π/ω − t1 is given by

π/ω − t1 =

(
(∠Sls (ω))/ω, if ∠Sls (ω) ∈ (0, π]
(π+ ∠Sls (ω))/ω, if ∠Sls (ω) ∈ (−π, 0] .

(57)

From (57), π/ω − t1 can be expressed as

tm = π/ω − t1 = ∠Sls (ω) /ω+ π/ω · sign (Sls (ω) (58)
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Fig. 22. Plots of signals qi(t) in (62) and ds(t) in (66).

where

sign (x) =

(
0, if x > 0
1, if x ≤ 0.

(59)

Since a zero-crossing is independent of amplitude, the
multiple-reset condition is simplified to verifying the existence
of a time interval tδ ∈ (0, tm) such that ∆(tδ) = 0. This
completes the proof. �

APPENDIX C
PROOF OF LEMMA 2

Proof: Consider a closed-loop reset control system as shown
in Fig. 1, with a sinusoidal reference input r(t) = |R| sin(ωt)
and satisfying Assumptions 2 and 3. This proof demonstrates
that the steady-state reset-triggered signal zs(t) is composed
of a base-linear component zbl(t) and a nonlinear component
znl(t), where znl(t) is obtained by filtering a stair-step signal
ds(t) through an LTI transfer function. The proof is organized
into three steps.

Step 1 (Prove that Reset Actions Introduce Square Waves
into Systems):

The state xc(t) of the reset controller Cr is nonlinear and can
be represented as the sum of its harmonics [28], expressed as

xc (t) =

∞X
n=1

xcn (t) = |Xcn| sin (nωt + ∠Xcn) (60)

where |Xcn| and ∠Xcn represent the magnitude and phase of
each harmonic xcn(t) in xc(t).

From (60), the following relation holds:

xc (ti) = −xc (ti ± π/ω) . (61)

At each reset instant ti, according to (24), the state xc(ti)
undergoes a jump to Aρxc(ti), generating a step input defined
by hi(t) = (Aρ − I)xc(ti) h(t − ti).

Then, based on (61), a step input with an opposite sign
h′i(t) = −hi(t) = −(Aρ − I)xc(ti) h(t − ti ± π/ω) is introduced
at the time instant ti + π/ω. Signals hi(t) and −hi(t) together
produce a square wave signal over each steady-state cycle,
beginning at ti with an amplitude of (Aρ− I)xi(ti) and a period
of 2π/ω, as illustrated in Fig. 22.

Step 2 (Formulate the Square Waves):
The square wave introduced at the time instants ti and ti +

π/ω is expressed as

qi (t) =
�
Aρ − I

�
xc (ti) q (t − ti) (62)

where q(t) is a square wave with an amplitude of 1 and a
period of 2π/ω, defined as

q (t) =

∞X
n=1

2 · sin (nωt)/nπ, n = 2k + 1, k ∈ N. (63)

From (62) and (63), qi(t) is expressed as

qi (t) =

∞X
n=1

qn
i (t) (64)

where

qn
i (t) = 2

�
Aρ − I

�
xc (ti) sin (nω (t − ti))/ (nπ) . (65)

Step 3 [Illustrate that Square Waves qi(t) Combine to Form
a Stair-Step Signal ds(t), Contributing to the Reset-Triggered
Signal zs(t)]:

At each reset instant ti within the half-cycle (0, π/ω], a
square wave qi(t) is introduced. Let the number of reset
instants within each half-cycle (0, π/ω] be denoted by µ. From
(64) and (65), a stair-step signal ds(t) is generated within
one 2π/ω period. This signal is illustrated in Fig. 22 and is
expressed as

ds (t) =

i=µX
i=1

qi (t) =

i=µX
i=1

∞X
n=1

qn
i (t) . (66)

From (66), ds(t) can be written as

ds (t) =

∞X
n=1

i=µX
i=1

qn
i (t) . (67)

Define dn
s (t) as the nth harmonic of ds(t), from (65) and (67),

ds(t) is expressed as

ds (t) =

∞X
n=1

dn
s (t)

dn
s (t) = 2

�
Aρ − I

�
/ (nπ) ·

i=µX
i=1

xc (ti) sin (nω (t − ti)) (68)

with their Fourier transforms given by

Ds (ω) =

∞X
n=1

Dn
s (ω)

Dn
s (ω) = 2

�
Aρ − I

�
/ (nπ) ·

i=µX
i=1

F [xc (ti) sin (nω (t − ti))] .

(69)

Under Assumption 3, the reset-triggered signal zs(t) initially
follows its base-linear trajectory zbl(t) within the interval
(0, t1), as defined in (14). At time t1, reset actions introduce
a stair-step signal ds(t) into the system. By replacing the
signal hi(t) (whose Fourier transform is Hi(ω) = 1/( jω)) with
the stair-step signal ds(t) (whose Fourier transform is Ds(ω))
in Fig. 20, and following the derivation process outlined in
Appendix A, the nonlinear component znl(t) is derived. Finally,
zbl(t) and znl(t) combine to form zs(t), as expressed in (14).
This concludes the proof. �

APPENDIX D
PROOF OF THEOREM 2

Proof: Consider a closed-loop reset control system as illus-
trated in Fig. 1, with a sinusoidal reference input r(t) =

|R| sin(ωt), satisfying Assumptions 2 and 3. This proof derives
the magnitude ratio of the higher order harmonics (for n > 1)
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relative to the first-order harmonic (for n = 1) in the nonlinear
component znl(t) as defined in (14).

From (14) and (15), the signal zn
nl(t), representing the nth

harmonic component of znl(t), is given by

zn
nl (t) = −F −1 �Cs (nω) Tβ (nω) Dn

s (ω)
�
. (70)

From (70), the Fourier transform of zn
nl(t) is given by

Zn
nl (ω) = −Cs (nω) Tβ (nω) Dn

s (ω) . (71)

From (69) and (71), we obtain

βn (ω) =

ˇ̌
Zn

nl (ω)
ˇ̌ˇ̌

Z1
nl (ω)

ˇ̌ =

ˇ̌
Cs (nω) Tβ (nω)

ˇ̌
n
ˇ̌
Cs (ω) Tβ (ω)

ˇ̌ . (72)

Here, the proof is concluded. �

APPENDIX E
PROOF OF LIMIT CYCLE ELIMINATION USING THE PID

SHAPING FILTER

Proof: This proof demonstrates that the PID shaping filter
effectively eliminates limit cycle issues in the step responses
of reset control systems.

Consider a closed-loop reset control system in Fig. 1
subjected to an unit step input h(t), with the Laplace transform
of h(t) given by H(s) = 1/s. In this system, the final value of
zs(t) denoted by limt→∞ zs(t) is given by

Sα (s) = C1 (s)Sbl (s)

lim
t→∞

zs (t) = lim
s→0

s · Zs (s) = lim
s→0

s Cs (s) C1 (s)Sbl (s) · 1/s

= lim
s→0
Cs (s)Sα (s) . (73)

In the reset systems with the shaping filter Cs(s) = 1, limit
cycles occur when the reset-triggered signal continues to
trigger the reset actions at steady states, characterized by

lim
t→∞

zs (t) = lim
s→0
Sα (s) = 0 (74)

while the reset controller’s output m(t) does not settle to
a steady-state equilibrium at zero; instead, it continues to
oscillate persistently around certain nonzero values as t → ∞,
i.e.,

lim
t→∞

m (t) = lim
s→0

sC1 (s) Cl (s)Sbl (s) 1/s = constant , 0. (75)

The following content demonstrates that the PID shaping
filter, as defined in (19), can eliminate limit cycle issues in
reset systems.

The PID shaping filter Cs(s) in (19) can be expressed as

Cs (s) = F (s)/s

F (s) = ks · (s + ωα) ·
s/ωβ + 1
s/ωη + 1

·
1

s/ωψ + 1
. (76)

With the PID shaping filter in (76), limt→∞ zs(t) in (73) is
written as

lim
t→∞

zs (t) = lim
s→0

F (s) · Sα (s)/s. (77)

From (76), the value of F(s) as s→ 0 is given by

lim
s→0

F (s) = ks · ωα = constant , 0. (78)

From (74), the transfer function Sα(s) can be expressed in
terms of polynomial terms, given by

Sα (s) =
n1sn + n2sn−1 + · · ·+ nqs

m1sm + m2sm−1 + · · ·+ mq

n1, . . ., nq,m1, . . .,mq ∈ R, mq , 0, nq , 0. (79)

From (79), we find that

lim
s→0

Sα (s)
s

= lim
s→0

n1sn−1 + n2sn−2 + · · ·+ nq

m1sm + m2sm−1 + · · ·+ mq

= nq/mq = constant , 0. (80)

Combining (77), (78), and (80), we derive

lim
t→∞

zs (t) = lim
s→0

F (s) · Sα (s)/s = constant , 0. (81)

Thus, from (81), by applying the PID shaping filter Cs(s), as
specified in (19), the limit-cycle behaviors in reset systems are
eliminated. �
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