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Chapter 1

Introduction

1.1 Integrated Antennas for High Frequency Applications

An increasing popularity of planar printed antennas is not without reason. Planar antennas offer flexibility
in their design, take less space than three-dimensional antennas, are inexpensive to fabricate, and can be
easily integrated [1]. Hence they are largely used in a great variety of applications, including wireless
communication, radars, space-based systems, etc.

In the past, at microwave frequencies, the traditional approach of antenna engineers was to design
the antennas separately from the electronics. Standardized connectors or wirebonds were then used to
interface the antenna with the electronic front ends. However, when the operating frequency of these
systems increases, reaching the millimeter and sub-millimeter waves, the separation of antenna and elec-
tronic circuits is no longer possible. The recent demand for compact low-cost transceivers in short-range
communication and sensor applications is urging the necessity to integrate the antennas with the elec-
tronics. Automotive radars and ultrafast wireless communication are two applications with huge market
potentials that require high-level of integration. Thus, the recent trend is to place the antennas as close
as possible to the radio front-end, possibly on the same semiconductor chip or the same printed circuit
board where the electronic components are, to facilitate the interconnection.

Radars in cars ought to have high resolution and to operate over long ranges as shown in Fig. 1.1.
This allows the car sensor to detect objects of various sizes and to promptly perform the required action.
The radars also have to be compact in size so they can be embedded in the car without difficulty and have
low production cost. Such requirements can be achieved only by moving to higher frequency. Most of
the currently developed short- and long-range automotive radars already operate in the frequency band
76-77 GHz [2].

Another area that can largely benefit from higher frequency is wireless communication [3]. Figure
1.2 shows the projection of speed that will be needed over the years, with some of the standards already
existing for indoor wireless systems [4]. The required data rate increases about ten times every five
years, because of the growing number of users and the larger amount of data to be transferred. It is
evident that moving towards a higher frequency regime is the sole option to cope with the increasing data
rate requirements of wireless links.

Despite the need for integrated antennas for high-speed wireless communication and automotive
radars, integrated antennas have never showed good performance because of their intrinsic low effi-
ciency. These antennas are limited by problems such as high surface-wave loss, narrow bandwidth, low
front-to-back radiation ratio.

1
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1.2. CHALLENGES AND THE STATE OF ART SOLUTION OF INTEGRATED

ANTENNAS

Figure 1.1: Illustration of a car equipped with long-range and high-resolution radars in action. With the
help of the radars, the car is able to distinguish cyclists on its way and perform braking when it is needed
[2].

Figure 1.2: Projection of speed over year both for the fixed and mobile communications. Several points
mark the standards and the corresponding operating frequency [4].

1.2 Challenges and the State of Art Solution of Integrated
Antennas

High-frequency planar antennas often exhibit poor performance and low radiation efficiency. A planar
antenna in free-space, for example a resonant slot antenna depicted in Fig. 1.3(a) or a dipole shown in
Fig. 1.3(b), tends to have low front-to-back ratio because it radiates the same power in the upper and in
the lower half spaces.

If a ground plane is introduced, as in Fig. 1.3(c), for the slot a large portion of the power is still lost
into parallel plate waveguide modes between the slot plane and the backing reflector. For the dipole,
the distance from the ground plane can limit the matching bandwidth. These negative effects are more
prominent when the distance h between the antenna and the metal plane is very small in terms of the
wavelength. this is the case for antennas integrated on chip, which are characterized by very small h
parameters, as illustrated in Fig. 1.4.

The illustration shown in Fig. 1.4 presents a typical layer stack of a chip, which consists of a thin
layer of silicon dioxide (SiO2), about 10 µm thick, on which the antenna is realized (e.g., a slot antenna).
A conducting metal plane separates the SiO2 slab from a thick silicon (Si) layer. The metal plane has the
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Figure 1.3: (a) A slot antenna in free space, (b) a dipole antenna in free space, and (c) the antennas in
the presence of a metal ground plane.

Figure 1.4: A slot antenna on chip.

Figure 1.5: A slot antenna on chip in the presence of (a) high permittivity homogeneous superstrate and
(b) ideal anisotropic superstrate.

purpose of shielding the antenna from the underlying silicon, since this latter is characterized by very
high losses [5]. Because of the proximity of the antenna to the metal plane, in the case of slot radiators,
most of the power remains confined within the SiO2 layer instead of being radiated outside the chip. This
translates in a poor efficiency.

The state of the art solution to these problems is to include a superstrate on the top of the planar
antenna (shown in Fig. 1.5(a)), as proposed in [6]. This solution enhances the radiation efficiency and
at the same time broaden the matching bandwidth. The presence of a dielectric above the antenna, with
permittivity higher than the one of the material below, results in a higher front to back ratio, since most
of the power is radiated in the direction of the electrically denser material.

However, the Snell’s law of refraction prompts the rays that impinge at the dielectric-air interface
at an angle larger than the critical angle to undergo total reflection. These modes guided within the
dielectric superstrate are referred to as surface waves, and result in reduced efficiency and deteriorated
far-field patterns [7].

The surface-wave problem, which is the main limit to the efficiency in practical integrated antennas,
could be solved with an ideal superstrate such as the one shown in Fig. 1.5 (b). This ideal substrate has
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1.3. ARTIFICIAL DIELECTRIC LAYERS: ENABLING TECHNOLOGY FOR HIGH

FREQUENCY APPLICATION

Figure 1.6: Artificial dielectrics made of (a) metallic spheres, (b) cylinders, (c) strips.

refractive index that varies with the angle of incidence, realizing an anisotropy material. Specifically,
to avoid the excitation of surface waves, the refraction index should decrease as the angle of incidence
increases. The high refraction index for normal incidence will yield the desired enhancement of front-to-
back ratio, while the progressively decreasing permittivity for grazing angles will avoid the occurrence
of critical angle, thus all power is radiated to free space.

Although such an ideal material is not existing in nature, it can be realized artificially by means of
artificial dielectrics.

1.3 Artificial Dielectric Layers: Enabling Technology for High
Frequency Application

Artificial dielectrics (ADs) were introduced in [8] as a light-weight alternative to real dielectric materi-
als, for realizing microwave lenses [9]. After their introduction, ADs have been extensively studied and
used for decades for radar development. An AD consists of a large-scale model of an actual dielectric,
obtained by embedding conducting structures in a host material according to a regular pattern. Some
physical realizations of ADs involve the insertion of metallic spheres, cylinder and strips inside a dielec-
tric in a periodic arrangement, as shown is Fig. 1.6. In all these scenarios, the electric field scattered by
the metallic inclusions, when added to the incident field, creates an effective equivalent delay [10]. At
the frequencies for which the periodicity of the pattern is much smaller than the wavelength, the structure
can be assigned equivalent parameters that describe an homogeneous dielectric. The effective electric
parameters can be engineered by varying the size of the metal obstacles and their spatial density.

In the case of spherically symmetric obstacles, as shown in Fig. 1.6(a), the equivalent medium is
isotropic, since the effect of the impressed field on the structure is independent of the polarization and
the angle of incidence. However, other types of artificial dielectrics, such as the ones in Fig. 1.6(b) and
(c), have anisotropic properties: both the polarization and the angle of incidence of the external electric
field significantly impact on the equivalent properties of the structure.

This thesis relates to a specific type of AD, which are realized as a cascade of planar layers made of
printed metal patches, as depicted in Fig. 1.7. Such structures are also referred to as artificial dielectric
layers (ADLs).

The main property of ADLs, that can be exploited to enhance the efficiency of integrated antennas, is
the anisotropy. The effective refractive index realized with ADLs is a function of the angle of incidence,
i.e. it varies for plane-wave illumination with different incoming angles. The refraction index is also
a function of the polarization, i.e. it differs for transverse electric (TE) and transverse magnetic (TM)
incidence. More specifically, the typical behavior of the effective refractive index as a function of the
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Figure 1.7: Artificial dielectric composed of cascades of metal patches layers embedded in host medium.

Figure 1.8: Effective refractive index of ADL as a function of the angle of incidence and the polarization.

Figure 1.9: A slot antenna on chip (a) with presence of an ideal substrate on the top, (b) with ADL that
mimics the ideal substrate on the top.

incidence angle is shown in Fig. 1.8. It is evident that the highest effective refractive index is obtained
for normal incidence, whereas the lowest is obtained for grazing incidence. Therefore, ADLs effectively
implement the ideal superstrate, as illustrated in Fig. 1.9. Due to the decreasing value as a function of
the angle, surface waves are not supported, resulting in very high efficiency.

The effective refraction index can be engineered by varying the geometrical parameters of the struc-
ture, such as the inter-layer distance, the patch size and the periodicity of the patches. The benefits of
using ADLs to improve the radiation performance of integrated antennas were demonstrated both in the
microwave [11] and terahertz [12] frequency range. ADLs were also as a superstrate of a phased array
antenna to achieve wideband wide-scanning performance in [13]. While all the ADL designs mentioned
were based on aligned layers, this thesis focuses on the analysis of ADLs with non-aligned layers.

1.4 Artificial Dielectrics with Non-Aligned Layers
ADL has been studied extensively in [14] and [15]. [14] introduces a novel analytical method to describe
the scattering from a single layer of rectangular patches under a generic plane-wave incidence. In [15],
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Figure 1.10: Side and top view of an ADL with (a) aligned layers (b) non-aligned (shifted) layers.

the analytical method is generalized for the characterization of ADLs of finite height, under arbitrary
field illumination, leading to closed-form expressions. A rigorous equivalent circuit was given in [15],
that can be used to calculate the scattering properties and the spectral Green’s Function (GF) of the ADL.
This analytical method is valid for aligned layers of sub-wavelength patches shown in Fig. 1.10(a). The
layers on the ADL slab shown in Fig. 1.10(a) are numbered consecutively from 1 to N.

Illustrated in Fig. 1.10(b), is an ADL composed of non-aligned layers. It is achieved by shifting the
odd layers with respect to the even layers (or vice versa) by sx and sy along x and y axis, respectively,
and keeping the same inter-layer distance. The layers are shifted equally along x and y axis, thus sx = sy.
The analytical solutions in [15] does not account for these shifts, therefore it is only valid when there
is no shift introduced between the layers, i.e. sx = sy = 0. The purpose of this thesis is to modify the
formalism in [15] to include the shifts into the analytical solution. The alternate lateral displacement
between layers turns out to be a fundamental parameter to engineer the desired effective electromagnetic
properties of the equivalent homogeneous material realized with the ADLs.

Formulating more general analytical solution for ADL, taking the non-alignment of the layers into
consideration, is relevant due to the fact that this non-alignment can significantly increases the effective
permittivity of the structure. Figure 1.11 shows, as a function of the shift, the enhancement factor defined
as the ratio between the square of effective refractive indexes with and without shift. It can be noted that
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Figure 1.11: Enhancement factor, defined as the ratio between the square of effective refractive indexes
with and without shift, versus shift. The ADL consists of 5 layer with dx = dy = 0.0785λ0, wx = wy =

0.01λ0, with λ0 is wavelength at calculation frequency.

Figure 1.12: Electric field distribution for a plane wave propagating through the ADL slab for (a) aligned
and (b) non-aligned layers. In the first case, the electric field is mainly concentrated in the gaps between
coplanar patches. In the second case the field is also strong in the vertical gaps between contiguous
layers, resulting in a higher capacitive loading.

the effective refractive index increases as a function of the normalized shift ( sx
dx

=
sy
dy

) and is maximum
when the shifts are equal to half period of the ADL. In the specific example considered, the square of the
refractive index is almost five times higher than the one obtained for aligned layers.

The main advantage of introducing the shift between layers is the improved design flexibility. In fact,
to tailor the equivalent dielectric constant in ADL slabs with aligned layers, one can vary geometrical pa-
rameters such as the inter-layer distance and the gap width between patches. However, these parameters
cannot be freely changed, as they are typically limited by the technological constraints of the manufac-
turing process. On the contrary, the shift between layers represents an additional important degree of
freedom that can be used for the design. For example, the introduction of the shift can

• greatly extend the ranges of permittivity values that can be synthesized, given a specific fabrication
technology;

• reduce the number of metal layers with respect to the aligned case, while realizing the same
effective permittivity;

• decrease the height of the ADL slabs when used as an antenna superstrate, without penalty of the
antenna performance.

The reason for the enhancement of the permittivity can be explained by observing the electric field
distribution within two ADL structures, with and without shift, under plane wave illumination. When
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a plane wave is impinging on the ADL structure, the electric field within the periodic unit cell can be
represented with the vector field lines in Fig. 1.12. In the aligned case, the field is mainly concentrated
in the gap between adjacent coplanar patches (Fig. 1.12 (a)). On the contrary, the field in the shifted case
is also distributed within the areas between parallel contiguous layers (Fig. 1.12 (b)). This introduces an
additional capacitance compared to the aligned setup.

Another interpretation of the increased capacitance can be described in terms of effective equivalent
delay. The structure in Fig. 1.12 (b) provides higher delay, since waves are traveling for longer distances
as now they have to go around the patches to find the way out of the structure. It is clear that, when fixing
a specific inter-layer distance dz, the traveling path increases with larger transverse periods (dx,dy).

1.5 Objectives of the Thesis
The main goal of this study is to describe the ADL with an accurate analytical model, taking the non-
alignment between the layers into account. Thus, the formulas derived in this thesis are more general
than the ones available [15]. An analytical and accurate model will tremendously speed up the process
of designing an ADL, as we would not have to rely on the time consuming simulations with commercial
solver. It will also lead to the possibility of sweeping parameters to understand the behavior of ADL and
gain physical insight.

To build an equivalent circuit of ADLs, the equivalent reactance of each layer is derived in closed
form, taking into account for reactive coupling between layers, the shift between odd and even layers and
the finiteness of the ADL height. This equivalent transmission line model can be used to characterize the
scattering (reflection and transmission) due to a plane wave impinging on the ADL.

Another important goal is to analytically characterize the losses introduced by the finite conductivity
of the metal patches in ADLs. The assessment of the losses in ADL was never included before in the
analytical formulas. Losses in ADLs are typically very small because of the sub-wavelength dimension
of the patches, that yield very low current intensity on each patch. On the other hand, including the finite
conductivity in the model allows to quantify these losses (although small) and provide and effective
dissipation factor ( tan(δ)) for these structure.

It is also the objective of this thesis to study more in-depth the effective parameter retrieval of ADLs.
To aid the design of artificial dielectric slabs, the effective permittivity and permeability tensors are
retrieved from the scattering parameters of the plane wave. Diamagnetic properties of ADLs are observed
and explained with a physical interpretation. A parametric analysis of the equivalent electrical properties
as a function of the geometrical parameters is also performed and can be used to provide guidelines for
the design of ADLs.

All the analytical formulas have been implemented in a Matlab code equipped with a graphical user
interface (GUI). This GUI is a design tool for ADLs, as it provides the effective parameters, once the
geometrical parameters are defined (analysis), and it also retrieves the geometrical parameters, given a
set of target effective properties (synthesis).

1.6 Outline of the Thesis
This thesis contains 5 chapters, arranged as follow:

• Chapter 1 focuses on the introduction and the background pertaining to the topic of this thesis.
The objectives of the work are stated and the relevance of the thesis is motivated.

• Chapter 2 describes the steps of the formulation followed to derive the solution for the plane-wave
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scattering for a single ADL layer. After setting up the integral equation, the unknown magnetic
current is expanded in a set of four basis functions. The solution of the resulting system of linear
equations is described and leads to a closed-form expression of the equivalent impedance of the
single layer. Both the case of perfectly conducting patches and finite conductivity are considered.

• Chapter 3 reports the generalization of the procedure used for the single layer to the cascade of
multiple layers, accounting for the shift. An approximation on the current is introduced to be able
to achieve a closed-form for the equivalent layer impedance. The solutions for the infinite cascade,
as well as for the semi-infinite one, are derived, with and without Ohmic losses.

• Chapter 4 deals with the homogenization of ADLs, retrieving the effective parameters of the ADL.
It also gives parametric analysis to highlight the dependence of the ADL properties as a function
of the geometrical parameters. This chapter also includes the general description of the functions
realized by the developed GUI.

• Chapter 5 concludes with a review of the most significant results presented in this thesis and an
outlook on possible future developments.
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Chapter 2

Analysis of a Single Layer of Periodic
Sub-Wavelength Patches

2.1 Single Layer of Periodic Lossless Square Patches
Artificial dielectric layers (ADLs) are composed by a cascade of multiple layers of periodic sub-wavelength
patches. However, to describe the formulation used for the analysis of ADLs in a simpler way, it is con-
venient to consider first the case of a single layer of patches. The characterization of the scattering from
a isolated layer will be useful to explain the main steps adopted for the modeling. Similar steps will be
subsequently used for the case of the multiple layers, but starting from a different integral equation that
takes into account the periodic sequence of layers.

Scattering from a single layer of sub-wavelength periodic square patches has been extensively re-
ported in the literature [16–21]. In those works, several analytical methods were given that provide the
equivalent reactance of the structure under plane-wave incidence. However, all the mentioned references
proposed solutions that are no longer valid for multiple layer configurations, as they neglect the inter-
layer coupling. An equivalent closed-form expression for the equivalent sheet reactance was recently
proposed in [14]. The advantage of this formula is that it can be easily generalized to the multiple layer
case, and it accounts for the higher-order coupling between adjacent layers.

In this section, a method similar to the one reported in [14] will be presented, as it will be the base for
the remainder of the thesis. An expansion of the unknown magnetic current distribution was proposed
in [14], using ad-hoc entire-domain basis functions. However, unlike [14], a more general expansion of
the magnetic current will be used here, where four basis functions are adopted instead of three. This will
allow to address the case of multiple layers in a more rigorous way. The analytical scattering parameters
resulting from the formulation are also verified with simulations that are performed in CST [22].

2.1.1 Problem Definition and Equivalence Principle for Lossless Case
The formulation starts with the original problem, which is a single layer of periodic square patches along
the xy plane, illustrated in Fig. 2.1. Alternatively, one can consider it as a combination of two orthogonal
periodic arrays of infinitely long slots. The slot along x and y, whose widths are equal and denoted as wx

and wy respectively, are electrically narrow (wx = wy� λ). The periodicity of the patches are indicated
by dx along x and dy along y. The structure is illuminated by a generic plane wave. The patches are made
of perfectly conducting material (PEC).

A side view of the original problem is illustrated in Fig. 2.2(a). The incident plane wave impinging
on the layer consists of electric and magnetic fields, ei and hi respectively. Following the equivalence

11
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Figure 2.1: Single layer of infinitely periodic patches along xy plane with its geometrical parameters.

Figure 2.2: (a) Original problem which consists of a single layer of periodic square patches illuminated
with generic plane wave illumination. (b) Applying equivalence theorem onto the gaps. (c) Filling the
enclosed surface with perfect electrical conductor (PEC).

theorem, the gaps are enclosed with a set of infinitely thin closed surfaces S, illustrated in Fig. 2.2(b). n̂ is
the outward normal unit vector to the surfaces, e and h denote the total fields, equal to sum of the incident
and the scattered fields. Equivalent electric and magnetic currents densities, js and ms, are distributed on
the surfaces and are related to the fields by js = n̂×h and ms = e× n̂.

Furthermore, using one of the alternative formulations of the equivalence principle [23], the volumes
enclosed by S are filled with PEC, as shown in Fig. 2.2(c). With this choice, the electric current density
does not contribute to the total field because it cancels out with the image current. Thus the equivalent
problem only consists of an unknown magnetic current density located in correspondence of the gaps in
the original problem.

The superscripts ‘+’ and ‘−’ are used to indicate the current, the field or the position above and
below the layer plane. The magnetic current density m+

0 , located in the z+, is related to the electric field
in the gaps by m+

0 = e+× ẑ. On the other hand, the magnetic current density in the z− side, m−0 , satisfies
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m−0 = e−×−ẑ. Due to the continuity of the electric field in the gaps, e+ is equal with e−. This results in
the magnetic current densities in z+ and z− side being equal and opposite, i.e. m+

0 =−m−0 = m0.
By imposing the continuity of the tangential magnetic field in the gaps, it can be written that the total

field at z+ is equal to the total field at z−, i.e. h+ = h−. The field in the upper side is equal to the sum of
the scattered field, the incident field and the field reflected by the metal plane. Contrarily, the field in the
lower space is only equal to the scattered field. Thus, it can be written that

h+
i (1+Γ)+h+

s = h−s (2.1)

where h+
s and h−s are the tangential magnetic fields radiated by the magnetic current density on each

side of the layer. Γ is the reflection coefficient of the magnetic field at the metal plane and it is equal to
1 for PEC. The scattered magnetic field and the magnetic current density, for z = 0, are related by the
convolution integrals

h±s (ρ) = m±0 (ρ)∗gPEC(ρ) =±
∫

∞

−∞

∫
∞

−∞

g(ρ−ρ′)m0(ρ
′)dρ′ (2.2)

where ρ = xx̂ + yŷ and gPEC is the Green’s function that relates the elementary magnetic source
located on a PEC infinite plane to the magnetic field. Therefore, by substituting (2.2) into equation (2.1),∫

∞

−∞

∫
∞

−∞

gPEC(ρ−ρ′)2m0(ρ
′)dρ′ =−2hi(ρ). (2.3)

By applying the image theorem, the magnetic current density that is radiating above the PEC surface
is equal to twice the same magnetic current density radiating in the free space (gPEC = 2gFS). Thus, the
integral equation (2.3) can be compactly written as

m0(ρ)∗g(ρ) =−2hi(ρ) (2.4)

with g is equal to 4 times of free-space Green’s function (g = 4gFS).
The tangential component of the incident magnetic field associated with an arbitrary plane wave is in

general a superposition of transverse electric (TE) and transverse magnetic (TM) modes that are given
by

hTE(ρ,z) =
1√
dxdy

k̂ρe− jkρ·ρe jkz0z

hTM(ρ,z) =
1√
dxdy

α̂e− jkρ·ρe jkz0z .
(2.5)

Indicating with θ and φ the elevation and azimuth angles of incidence, respectively, the propagation
constant along x, y, and z are given by kx0 = k0sinθcosφ, ky0 = k0sinθsinφ, and kz0 = k0cosθ, where k0 is
the free-space wavenumber. The vector kρ in the exponential is equal to kx0x̂+ky0ŷ, and the unit vectors
of the TE and TM components are defined as

k̂ρ = cosφx̂+ sinφŷ
α̂=−sinφx̂+ cosφŷ .

(2.6)

2.1.2 Solutions and Equivalent Layer Reactance for Lossless Case
The integral equation (2.4) is written in terms of the unknown magnetic current distribution on the layer.
To solve the equation, a procedure similar to the one in [14] is used. This method involves expanding the
magnetic current into four basis functions defined over the entire unit cell (entire-domain):
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Figure 2.3: (a) Illustration of the uniform transverse distribution with anti-symmetric longitudinally, f3

(f4 is along y). (b) Illustration of the distribution at junction.

m0(ρ) =
4

∑
p=1

apfp(ρ) (2.7)

where ap are unknown coefficients, and the basis functions are defined as in [14]:

f1(ρ) = e− jkx0x 1
wy

Π[−wy/2,wy/2](y)x̂, f3(ρ) = bd,x(x)
1

wy
Π[−wy/2,wy/2](y)x̂

f2(ρ) = e− jky0y 1
wx

Π[−wx/2,wx/2](x)ŷ, f4(ρ) = bd,y(y)
1

wx
Π[−wx/2,wx/2](x)ŷ .

(2.8)

The longitudinal part of the functions f1 and f2 describes a phase progression, with wavenumbers
kx0 and ky0 along x and y, respectively. These basis functions represent the linear phase variation of the
magnetic current induced in the slots by the incident plane wave. The transverse distribution on the slots
is assumed to be constant, hence defined by the function Π[a,b](ξ) = 1 for ξ ∈ [a,b] and 0 elsewhere. The
functions f1 and f2 do not account for the interaction between the currents in the two orthogonal slots
occurring at the junction (crossing region between the x- and y-oriented slots). To account for the effects
of the junction, two additional basis functions f3 and f4 are considered, representing anti-symmetric
profiles illustrated in Fig. 2.3(a). These current are equal to zero at the edges of the unit cell and in the
center, and they are consistent with the electric field and electric current distributions that occurs in the
crossing (Fig. 2.3(b)). The mathematical expression of the longitudinal distribution is given by

bd,x(x) =−
(

e jk0x +Γxe− jk0x
)

Π[−dx/2,−wx/2](x)+
(

e− jk0x +Γxe jk0x
)

Π[wx/2,dx/2](x)

+CxxΠ[−wx/2,wx/2](x).
(2.9)

where Cx = (2/wx)(e− jk0wx/2+Γxe jk0wx/2) and Γx =−e− jk0dx is the reflection coefficient at the edges
of the unit cell. The function bd,y(y) follows the same formula, by replacing x with y.

By substituting the expansion (2.7) in the integral equation (2.4) and applying Galerkin projection, a
linear system of equations can be defined:

a1Y11 +a2Y12 +a3Y13 +a4Y14 = i1
a1Y21 +a2Y22 +a3Y23 +a4Y24 = i2
a1Y31 +a2Y32 +a3Y33 +a4Y34 = i3
a1Y41 +a2Y42 +a3Y43 +a4Y44 = i4 .

(2.10)
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where Yqp =
〈
g∗mp,mq

〉
, and iq =

〈
−2hi,mq

〉
; p and q are the indexes indicating the basis and the

test functions. A projection operator is also introduced, which is defined as

〈
fp, fq

〉
=

∫
∞

−∞

∫
∞

−∞

fp(x,y) f ∗q (x,y)dxdy (2.11)

with fp, and fq are generic functions of the variables x,y.
From the linear system of equations described in (2.10), an admittance matrix Y and a vector of

known terms i can be defined, which satisfy

Ya = i (2.12)

where a = (a1 a2 a3 a4)
T is the vector of unknown coefficients and i = (i1 i2 i3 i4)T is the vector of the

projection of the incident magnetic field onto the testing functions. This equations can be solved for
generic plane-wave incidence by inverting the admittance matrix (2.12) in order to find the unknowns.

A number of considerations can be made to allow the derivation of the solution in a closed form
and provide physical insight. For sub-wavelength array periods, the projections of the plane wave onto
the anti-symmetric profile functions can be neglected, since the positive and negative parts of these odd
functions result in equal and opposite contributions and cancel out [14]. This is equivalent to assuming
that i3 ≈ i4 ≈ 0 and Y13 ≈ Y31 ≈ Y24 ≈ Y42 ≈ 0. Such approximation allow to simplify the problem in a
system of only two linear equations and to define a reduced admittance matrix Yr, with 2×2 elements,
as described in Appendix A (Sec. A.2).

For deriving an equivalent model that describes the scattering of a plane wave impinging on the layer,
it is convenient to evaluate the admittance and the forcing terms in the spectral domain. All terms of the
admittance matrix can be written in closed form as shown in Appendix A. The reduced matrix can be
multiplied by rotation matrices as explained in Sec. A.3, to highlight the relation with the TE and TM
component of the plane wave. This defines the matrix YTETM) is written as sum of three contributions

YTETM = YTL + Ylayer + Ycou (2.13)

where

YTL =

 2
Z0TE

0

0 2
Z0TM

 (2.14)

Ylayer =

 jBs

(
1− sin2

θ

2

)
0

0 jBs

 (2.15)

Ycou =

 Yc
sin2

θcos2(2φ)
2 −Yc

sin2
θsin(2φ)cos(2φ)

2

−Yc
sin2

θsin(2φ)cos(2φ)
2 Yc

sin2
θsin2(2φ)

2

 . (2.16)

The wave impedances of the TE and TM modes are introduced as Z0TE and Z0TM. The slot self-
susceptance is denoted by Bs and a coupling admittance term Yc is introduced to describe the coupling
between TE and TM modes. In fact, it can be noted that the only off-diagonal terms are proportional to
Yc. It is demonstrated in [14] that the term Yc asymptotically goes to zero for electrically small cell sizes,
up to about a quarter wavelength (Ycou ≈ 0). Thus, the entire matrix becomes diagonal, which means
that an array of electrically small patches does not couple TE and TM modes of an incident plane wave.

The admittance matrix YTETM can be represented with the equivalent transmission line models shown
in Fig. 2.4. The term YTL can be described as two transmission lines associated with the propagation
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Figure 2.4: Equivalent circuit representation of the layer reactance of a single layer of patches.

of the incident, reflected and transmitted TE and TM waves. The characteristic impedances are given
by Z0TE = ζ0k0/kz0 and Z0TM = ζ0kz0/k0 where ζ0 is the free-space impedance (or, more in general, the
impedance of the medium hosting the layer).

The term Ylayer refers the the equivalent reactance of the layer and is related to the susceptance Bs

defined as the following sum of higher order Floquet modes [14]:

Bs ≈
2k0

ζ0
∑

my 6=0

|sinc(kym
wy
2 )|2

|kym|
(2.17)

where kym = ky0− 2πmy/dy is the Floquet wavenumber with index my. In the described analysis, a
square structure is considered, therefore dx = dy = d and wx = wy = w. Also, the wavenumbers kym ≈
−2πmy/dy by noting that, for higher order modes, ky0� 2πmy/dy. Equation (2.17) then becomes

Bs ≈
k0d
ζ0π

∑
m6=0

|sinc(πm w
d )|

2

|m|
. (2.18)

Equation (2.18) shows that the susceptance of the layer depends on the ratio between the slot width
and the periodicity of the patches. It is also evident that this structure is azimuthal independent (scatters
the same way for any φ), as all the quantities involved in the equivalent transmission line models do not
depend on φ. The impedance (reactance) of the layer in Fig. 2.4 is related to the susceptance as:

ZTE =− j
Bs

1

1− sin2
θ

2

, ZTM =− j
Bs

. (2.19)

To assess these formulas for TE and TM incidence, CST [22] simulations are made and the simulated
scattering parameter are compared to the analytical results. Figure 2.5 shows the comparison between
amplitude and phase of the reflection and transmission coefficient of different plane wave incidence on a
single layer of square patches. The geometrical parameters of the layer of patches are dx = dy = 0.0785λ0,
wx = wy = 0.01λ0, with λ0 being the wavelength at calculation frequency. It can be seen that a good
agreement between analytical solution and CST simulation is present for all cases.
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Figure 2.5: Amplitude and phase of the reflection and transmission coefficients of a plane wave inci-
dent on a single layer of square patches, comparing analytical solution presented in this part with CST
simulation: (a) TE and TM, broadside incidence; (b) TE incidence θ = 60◦, φ = 60◦; (b) TM incidence
θ = 60◦, φ = 60◦. The geometrical parameters are dx = dy = 0.0785λ0, wx = wy = 0.01λ0, with λ0 being
the wavelength at 5 GHz.

2.2 Single Layer of Periodic Square Patches with Finite Con-
ductivity

In the previous section, a single layer of periodic patches is studied and the patches are modeled as PEC.
It allows to use the image theorem and results in an equivalent problem where the currents are radiating
in free-space.

However, realistically, the metal patches will possess a certain conductivity σ. For example, in [24]
an ADL is realized with layers of metal patches made of pure aluminum which has conductivity σ =

2.6× 107S/m. Another design presented in [25] uses gold with σ = 4.09× 107S/m. It is known that
losses in artificial dielectric are very low, because of the non-resonant nature of the sub-wavelength
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Figure 2.6: (a) Original problem which consists of a single layer of periodic square patches illuminated
with generic plane wave illumination. (b) Applying equivalence theorem onto the gaps. (c) Filling the
enclosed surface with the same material as the patches.

patches, that support very low current intensity. However, it is useful to include the finite conductivity of
the metal already in the analytical formulas, to quantify how low these losses are.

A rigorous method for analyzing a radial line slot array was presented in [26]. The analysis includes
an approach to formulate the problem in terms of effective magnetic current. The effective magnetic
currents take into account also for the equivalent electric currents which cannot be any longer neglected
as for the lossless case. This approach gives an advantage of reducing the number of the unknowns. This
method is also used in this thesis because it leads to the possibility of formulating the problem in the
similar way as the lossless case.

2.2.1 Problem Definition and Equivalence Principle for Lossy Case
The problem definition is similar to the one of the previous section, which is a layer of periodic square
patches along xy plane, illuminated by a generic plane wave (see Fig. 2.6(a)). Due to finite conductivity
σ, the metal can be characterized by the conductivity σ, which relates to the surface impedance Zs that is
given by

Zs = (1+ j)

√
k0ζ0

2σ
(2.20)

where k0 and ζ0 are the free-space wave number and impedance, respectively.
The metal surface is modeled using the Leontovich boundary condition [27,28]: e× n̂= Zsn̂× [h× n̂],

where n̂ is the outward normal unit vector of the surface. Following the equivalence theorem, the gaps
are enclosed with infinitely thin closed surfaces S, illustrated in Fig. 2.6(b). The fields e and h denote the
total fields, equal to the sum of incident and scattered. The surface electric and magnetic current density,
js and ms, are related to these fields by js = n̂×h and ms = e× n̂.

The field inside the surface is zero, thus the volume that is enclosed by S can be filled with any type of
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material leading to different formulations of the equivalence principle. Typically, in method of moments
formulations for apertures, the volumes are filled with a PEC, which is also done in the previous section.
This choice makes the equivalent electric current densities to cancel out with their images, hence their
contribution is vanished, and only unknown magnetic current densities are left to be solved.

However, filling this enclosed surface with PEC for this case will cause an inhomogeneity across the
plates where the magnetic currents are located, so that the spectral Green’s function of layered medium
cannot be used. Thus, it is convenient to fill the volume enclosed by the surface S with material which
possesses the same finite conductivity as the metal patches, as shown in Fig. 2.6(c).

Consequently, both electric and magnetic equivalent surface current densities js and ms are present.
An effective magnetic current density me, that account for both js and ms, can be defined as in [26]:

me = ms +mj = ms +Zsn̂× js . (2.21)

The effective magnetic current density on the z+ and z−, denoted by m+
e and m−e respectively, can be

written as

m+
e = m+

s +m+
j = e+× ẑ+Zs ẑ× (ẑ×h+)

m−e = m−s +m−j = e−× (−ẑ)+Zs(−ẑ)× (−ẑ×h−) =−m+
s +m+

j .
(2.22)

The superscripts ‘+’ and ‘−’ are used to indicate the current, the field or the position above and below
the layer plane. Thus, by imposing the continuity of the tangential magnetic field in the gaps, it can be
written that

hi(z+)(1+Γ)+hs(z+) = hs(z−)+htransm(z−) (2.23)

where Γ is the reflection coefficient of the magnetic field at the metal, and htransm(z−) is the mag-
netic field that transmitted to the z− space. For a realistic conductive losses, an approximation that
htransm(z−)≈ 0 is a made. The hs(z+) and hs(z−) are the magnetic fields scattered by the effective mag-
netic current density in z+ and z− space. These scattered magnetic field and the magnetic current density,
for z = 0, are related by the convolution integral which can be written as

(m+
s (ρ)+m+

j (ρ)+m+
s (ρ)−m+

j (ρ))∗gZs
(ρ) =−hi(ρ)(1+Γ)

2m+
s (ρ)∗gZs

(ρ) =−hi(ρ)(1+Γ)
(2.24)

where ρ= xx̂+yŷ and gZs is the Green’s function that relates the elementary magnetic source located
on the infinite lossy plane to the magnetic field. One can note that the magnetic currents mj do not
contribute to the magnetic field integral equation. Therefore, contrarily to the case presented in [26], the
integral equation can be written only in terms of magnetic current densities. This is because, unlike [26],
the Green’s functions for the currents above and below the layer are the same in the problem under
analysis.

Thus, by using a notation similar to the lossless case (ms = m0), the problem becomes the one in Fig.
2.6(c) and the integral equation at that point z = 0 is given by

∞∫
−∞

∞∫
−∞

2m0(ρ
′)gZs(ρ−ρ′,nzdz,z=0)dρ′ =−(1+Γ)hi . (2.25)
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Figure 2.7: Equivalent z−transmission lines for the problem showing (a)TE and (b) TM modes for a
magnetic source.

2.2.2 Solutions and the Equivalent Reactance for Lossy Case
Equation (2.25) can be solved by an appropriate expansion of the magnetic current in four basis functions
(like the lossless case) and Galerkin projection. The term of the admittance matrix are calculated in the
spectral domain. For this reason the spectral Green’s function should be derived.

Due of the finite conductivity of the layer, image theorem cannot be employed. Thus, the Green’s
function in this integral equation is no longer the one of free space. The general expression of the dyadic
spectral Green’s function, relating magnetic field h to an elementary magnetic current m, is given by

G
hm
(kx,ky,z) =

(
Ghm

xx Ghm
xy

Ghm
yx Ghm

yy

)
=

− iT E (z)k2
x+iT E (z)k2

y
k2

ρ

(iT M(z)−iT E (z))k2
x k2

y
k2

ρ

(iT M(z)−iT E (z))k2
x k2

y
k2

ρ

− iT M(z)k2
x+iT E (z)k2

y
k2

ρ

 . (2.26)

The entries of (2.26) are written in terms of the current i and voltage v on the equivalent transmission
lines (TE and TM) along z, shown in Fig. 2.7. The subscripts ‘TE’ and ‘TM’ denotes the modes, and the
characteristic impedance of the transmission lines are Z0T E = ζ0k0/kz and Z0T M = ζ0kz/k0 where kz is√

k2
0− k2

x − k2
y . The magnetic current sources are replaced by voltage generators.

In the integral equation the Green’s function at z = 0 is employed. Solving Fig. 2.7(a), to find current
at z = 0 (similar to one that is detailed in Appendix C) will give

iT E(z = 0) =
2

Z0T E +2Zs
, iT M(z = 0) =

2
Z0T M +2Zs

. (2.27)

which leads to the Green’s function for this specific case of metal layer with finite conductivity. After
the Green’s function is obtained, the rest of the steps are identical to the lossless case. A new term is
included, i.e. the surface impedance of the metal patches. The impedance of the layer is given by:

Zlayer,TE = ZTE +Zs, Zlayer,TM = ZTM +Zs (2.28)

where

ZTE =
1

Ys,TE
, ZTM =

1
Ys,TM

. (2.29)
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Figure 2.8: Equivalent circuit representation of the single layer of patches with finite conductivity.

The equivalent admittances of the layer, Ys,TE and Ys,TM, are different terms than the ones in the
lossless case, in the sense that they are not any longer a pure susceptance. These admittances, assuming
that the patches are square, are given by

Ys,T E ≈−2 j ∑
my 6=0
|sinc(kym

wy

2
)|2
(

k2
x0

2k2
ρm

(
ζ0

k0

kzm
+2Zs

)−1

+

(
k2

ym

k2
ρm

(
ζ0

kzm

k0
+2Zs

)−1
))

Ys,T M ≈−2 j ∑
mx 6=0
|sinc(kxm

wx

2
)|2
(

k2
y0

k2
ρm

(
ζ0

k0

kzm
+2Zs

)−1

+

(
k2

xm

k2
ρm

(
ζ0

kzm

k0
+2Zs

)−1
)) (2.30)

where mx and my are the indexes of the Floquet modes, kxm = kx0−2πmx/dx and kym = ky0−2πmy/dy

are the Floquet wavenumbers, which determine kzm =
√

k2
0− k2

xm− k2
ym and kρm =

√
k2

xm + k2
ym; kx0 =

k0sinθcosφ and ky0 = k0sinθsinφ are the propagation constant of the incident plane wave along x and y,
respectively. Equation given in (2.29) and (2.30) will also be valid for the lossless case, as it gives the
same formula found in the previous section when Zs = 0.

Figure 2.8 shows the equivalent circuit representation of the impedance, including the Zs contribution.
It can be deduced that the finite conductivity introduces an impedance term (Zs) that is in series with the
layer impedance. It is also important to note that the term Zs is not the only contribution to the resistance
but also the impedance ZTE and ZTM have a comparable resistive component.

To quantify the effect of the finite conductivity, the losses are defined as

Loss(dB) = 10log10
1

|S11|2 + |S12|2
(2.31)

where S11 and S12 are reflection and transmission coefficient, respectively. To validate the analyt-
ical solutions, full-wave HFSS simulations are made. Since the losses of the structure with realistic
conductivity values are negligible, an unrealistically low conductivity of σ = 1000 S/m is taken for the
validation. The single layer of patches geometrical parameters are dx = dy = 0.095λ0, wx = wy = 0.01λ0,
with λ0 being the wavelength at 300 GHz. The incident plane wave are coming from oblique angles
(θ = 40◦ φ = 0◦, and θ = 60◦ φ = 0◦).

Figure 2.10 and 2.9 compare the analytical solution with the result from simulations the scattering
parameters and for the loss, respectively. It can be seen from the scattering parameters that the analytical
solution reported in this section is showing an excellent agreement with the commercial solver.

It is also evident that the loss calculated for TE incidence is generally larger than the value observed
for TM incidence. This phenomenon likely happens due to the occurrence of electric current loops that
are supported by the patches when the structure is illuminated by TE incidence. Figure 2.11(a) shows
the electric field distribution on the single layer for TE incidence, and the correspondent electric current
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Figure 2.9: Comparison between analytical solution and HFSS simulation of amplitude and phase of the
reflection and transmission coefficients of a plane wave incident on a single layer of patches with finite
conductivity (σ = 1000S/m): (a) TE, θ = 40◦, φ = 0◦; (b) TM, θ = 40◦, φ = 0◦; (c) TE, θ = 60◦, φ = 0◦;
(d) TM, θ = 60◦, φ = 0◦. The geometrical parameters are dx = dy = 0.095λ0, wx = wy = 0.01λ0, with λ0

being the wavelength at 300 GHz.
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Figure 2.10: Comparing loss (in dB) calculated based on analytical solution and HFSS simulation. The
plane wave incident on a single layer of patches with finite conductivity (σ = 1000 S/m) with angle of
incidence: (a) θ = 40◦, φ = 0◦; (b) θ = 60◦, φ = 0◦. The geometrical parameters of layer of patches are
dx = dy = 0.095λ0, wx = wy = 0.01λ0, with λ0 being the wavelength at 300 GHz.

Figure 2.11: Illustration on single layer of periodic patches illuminated by (a) TE incidence (b) TM
incidence. It is evident that the electric fields that are propagating in the slot generate electric current
loops in the patches in TE incidence, while in TM incidence the patches does not support such current
loop.

on the patches forming a loop. A TM incidence is instead not supporting such current loops, but only
excites uniform and singly polarized currents on the patches, as shown in Fig. 2.11(b). The current
loops are associated with a long electrical length, and therefore with higher current intensity (closer to
the resonance), which can explain the increased Ohmic losses.
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Chapter 3

Analysis of ADLs Composed of
Non-Aligned Layers

3.1 Formulation and Approximation of Current Distribution
for Shifted ADLs

Artificial dielectric layers (ADLs), as described in chapter 1 and chapter 2, are cascades of layers of
periodic patches. This is done so that an ADL realizes an equivalent dielectric slabs, which has been
demonstrated in [11] not to introduces surface waves when used as an antenna superstrate. In realistic
designs [11, 13, 24, 29, 30], the layers are closely spaced, causing the interlayer interaction to become
dominant and significantly changes the reactance that the layer would have in isolation [15]. Due to the
interaction between layers that is not negligible, it is important to extend the formulation of the single
layer to account for this interaction and to arrive to a rigorous analytical method for real ADL designs.

An analysis of artificial dielectrics (ADs) consist of spheres is modeled in [31], which results in
an isotropic materials. This thesis focuses on the ADs composed of layer of patches, known as ADL.
While [10] already reported a theory for planar ADs, it is rigorous only for an infinite strips structure.
In order to characterize a realistic ADL, a three-dimensional analysis of AD slabs with finite height
has to be considered. An analysis of the cascade of multiple layers was presented in [32–34]. These
analytical methods were accounting only for the fundamental Floquet wave, consequently neglecting the
higher-order coupling between adjacent layers. Accordingly, these techniques fail to accurately model
the cascade of layers when the distance between adjacent layer is small compared to the unit cell period.
In practical AD designs [35], such a distance can be in the order of one hundredth of the wavelength.
To rigorously accounting the reactive coupling between parallel adjacent layers, some methods such as
generalized admittance matrix and multimode equivalent networks [36, 37] can be used. The drawback
of such methods is that they lead to rather complex equivalent networks.

The work presented in [15] gives a novel approach to characterize ADLs with finite height analyt-
ically. It expands the closed-form formulation developed for single layer of patches by including the
higher-order interaction between adjacent layers. It also treated infinite and semi-infinite cascade of
layer. This analysis though, is valid only when the layers are aligned.

It is explained in chapter 1 that introducing a shift between alternate layer is relevant for ADLs design
as the shift significantly increases the effective permittivity of the slab with respect to the aligned case,
thus, introducing another important degree of freedom in ADLs design. The closed-form expressions for
the equivalent reactance of the layers have to be generalized from aligned to non-aligned cases to also
account for the shift between alternating layers.

25
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Figure 3.1: Definition of the geometrical parameters characteristic of the shifted ADLs: (a) cross section
and (b) top view.

Figure 3.2: Aperture fields on three layers of an infinite cascade of ADLs.

To start the formulation, the problem is defined, including the shift between alternate layer into con-
sideration and then the equivalence principle is applied to obtain the integral equation formulation. In
this thesis, the periodic cell is redefined as a combination of two layers, instead of one as in [15], because
of the shift between the alternate layers.

3.1.1 Problem Definitions and Equivalence Principle for Shifted ADLs
Consider an ADL composed by an infinite number of layers spaced along z by distance dz and numbered
with consecutive integer indexes nz, as shown in Fig. 3.1(a). The analysis is started with assuming the
patches to have perfect conductivity.

The odd layers (nz = [...−3,−1,1,3, ...]) are shifted with respect to the even layers (nz = [...,−2,0,2, ...])
by sx and sy along x and y, respectively, as depicted in Fig. 3.1(b). The plane wave is assumed to travel in
the negative z-direction within the ADL medium, with electric and magnetic field indicated by ei(x,y,z)
and hi(x,y,z), respectively (shown in Fig. 3.2).

By applying the equivalence theorem as in previous chapter for single layer, three surfaces S1, S0 and
S−1 as shown in Fig. 3.3(a) can be defined, denoting with ‘1’ and ‘2’ the two regions above and below the
layer located at z = 0. The volume bounded by the surfaces can be filled with a perfect electric conductor
(PEC), as shown in Fig. 3.3(b), according to the Schelkunoff’s version of the equivalence principle [23],
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Figure 3.3: (a) original problem and (b) equivalent problem with unknown magnetic current distribu-
tions.

Figure 3.4: Application of image theorem for (a) Region 1 and (b) Region 2, defined in Fig. 3.4.

so that only equivalent surface magnetic currents mnz(x,y) are present in the regions corresponding with
the gaps between patches in the initial problem.

The equivalent magnetic currents are related to the aperture electric field as

m(x,y,z = nzdz± ε) =∓ẑ× ei(x,y,z = nzdz± ε) =±mnz(x,y) (3.1)

with ε being a vanishingly small distance. It is evident from (3.1) that the two magnetic current
distributions above and below the layer nz = 0 are equal and opposite, since the normal unit vector
changes sign and the tangential electric field is continuous in the gap.

Due to the periodicity along z, we can impose Floquet boundary conditions, i.e. the magnetic currents
on the layers at nz = 1 and nz =−1 are related by a phase shift

m1(x,y) = m−1(x,y)e jkzs2dz (3.2)

where kzs is an unknown equivalent wavenumber describing the propagation along z.
By applying the image theorem, we can replace the problem in Fig. 3.3(b) with an infinite sum of

current contributions for the Region 1 and the Region 2, as depicted in Fig. 3.4. Hence, the boundary
conditions for the transverse magnetic field at the layer at z = 0 lead to the following integral equation:
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Figure 3.5: Description of the CST models used to simulate a semi-infinite cascade of layers. A lossy
ADL with the same geometrical parameters is implemented so that the transmitted wave experiences low
reflection.

∑
nzeven

∞∫
−∞

∞∫
−∞

4m0(ρ
′)g(ρ−ρ′,nzdz,z=0)dρ′ =

∑
nzodd

∞∫
−∞

∞∫
−∞

2(e jkzs2dz +1)m−1(ρ
′)g(ρ−ρ′,nzdz,z=0)dρ′

(3.3)

where ρ= xx̂+yŷ and ρ′= x′x̂+y′ŷ are the observation and the source points, respectively. The func-
tion g represents the free-space dyadic Green’s function which relates the magnetic field to a magnetic
source.

3.1.2 Approximation on the Magnetic Current Distribution
Unlike the case of aligned layers that has been studied in [15], the periodic cell is now a combination
of two layers rather than one, thus the magnetic current m0 cannot be related to m−1 using Floquet
boundary conditions. However, to simplify the formulation and enable a closed-form solution for the
equivalent layer reactance, an assumption is made, stating that the magnetic currents on the two layers
are approximately equal in amplitude and differ only from a spatial displacement and a phase term:

m−1(ρ
′)≈m0(ρ

′− s)e− jkρs·se− jkzsdz (3.4)

where s = sxx̂+ syŷ is the vector indicating the shift and kρs = kxsx̂+kysŷ is an unknown wave vector
describing the transverse propagation between adjacent layers.



CHAPTER 3. ANALYSIS OF SHIFTED ADLS 29

Figure 3.6: Normalized magnetic current distribution on the two orthogonal slot axes (red dashed line
in the inset), comparing CST with our approximation in (3.4): TE incidence along (a) x-axis and (b)
y-axis slots, and TM incidence along (c) x-axis slot and (d) y-axis slot. The dimensions of the ADLs are
dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz = 0.012λ0, sx = sy = 0.5dx, with λ0 being the wavelength at
the calculation frequency. All figures refer to plane-wave incidence at θ = 60◦ and φ = 60◦.

The approximation in (3.4) is equivalent to implying that the the field propagation from one layer to
the next is dominated by a lossless guided phenomenon. To assess the error given by this assumption, a
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Figure 3.7: Vector magnetic current density and electric field magnitude in correspondence of the
junction, obtained with CST. The electric-field magnitude (proportional to the magnetic current) drops
in the junction due to the widening of the magnetic current.

simulation using CST [22] is performed. The simulation is as as described in figure 3.5: a semi-infinite
cascade of layers is replicated by considering a lossy section of ADLs that implements a low-reflection
boundary condition for the transmitted wave.

Figure 3.6 shows the normalized magnitude and the phase of the magnetic current on the two orthog-
onal slots (gaps between patches) on different layers. The magnetic current is observed in the slots’ axes,
indicated by the dashed red lines in the inset of figure 3.6(a) and 3.6(b). The geometrical parameters
are set as dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz = 0.012λ0, sx = sy = 0.5dx, with λ0 being the
wavelength at calculation frequency. Transverse electric (TE) and transverse magnetic (TM) plane-wave
illuminations from θ = 60◦ and φ = 60◦ are considered. For all considered cases, it can be observed from
Fig. 3.6 that the approximation (3.4) reproduces well the real current distribution on the odd layers.

The value of kzs to be used in (3.4) was derived from the simulated phase shift between the currents on
two consecutive odd layers (∆φ), which according to (3.2) is equal to (2kzsdz). The propagation constants
kxs and kys in (3.4) are instead selected as the one of the incident plane wave in the ADL host medium,
i.e. k0sinθcosφ and k0sinθsinφ, respectively.

The amplitude drops of the magnetic current that can be observed in figure 3.6 in correspondence of
the junctions are due to the fact that we are plotting the current only on the slot axis, while the transverse
distribution widens in the junction. This effect can be observed in figure 3.7, where the vector magnetic
current and the magnitude of the electric field simulated with CST are presented.

Under the approximation in (3.4), and assuming that the distance dz between layers is electrically
small so that e± jkzsdz ≈ 1± jkzsdz, the integral equation in (3.3) becomes, after a few algebraic steps

∑
nzeven

∞∫
−∞

∞∫
−∞

4m0(ρ
′)g(ρ−ρ′,nzdz,z=0)dρ′ =

∑
nzodd

∞∫
−∞

∞∫
−∞

4m0(ρ
′− s)e− jkρs·sg(ρ−ρ′,nzdz,z=0)dρ′ .

(3.5)

3.2 Solution of the Integral Equation and Equivalent Circuit
The approximated integral equation in (3.5) is written only in terms of the unknown magnetic current
distribution on the layer nz = 0. This condition allows to solve the equation with a procedure similar to
the one described in [14, 15] that has been elaborated in the previous section.
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The current is expanded with four entire-domain basis functions, similar to the one that is described
in single layer problem (equation (2.7) and (2.8)). It must be noted that while the choice of doing
expansion with four entire-domain basis functions in single layer is done just to ensure the consistency
of the method used throughout this thesis, this is mandatory for multilayer case (even when the layers are
aligned) due to the presence of z-components of the electric fields that is propagating between adjacent
layers that is present in this structure.

For deriving an equivalent model that describes the scattering of a plane wave impinging on the ADL
structure, the admittance and the forcing terms are again evaluated in the spectral domain, as described
in Appendix A.

To enable analytical solutions, we consider low-frequency regime, for which the ADL period is small
compared to the wavelength, and we assume that the geometrical parameters are the same along x and
y (sx = sy = s, dx = dy = d, wx = wy = w). The latter assumption refers to geometries with azimuthal
invariance (scattering of a plane wave is independent of φ), in which TE and TM modes are decoupled,
derived from single layer problem. More general geometries can be still analyzed with the formalism,
but they result in more complex equivalent networks that couple TE and TM modes.

Under the condition sx = sy, it can be demonstrated Appendix A that the system of linear equations
is reduced to the following simpler problem

YTETM aTETM = 0 (3.6)

where

aTETM =

(
a1cosφ+a2sinφ

−a1sinφ+a2cosφ

)
(3.7)

iTETM =

(
i1cosφ+ i2sinφ

−i1sinφ+ i2cosφ

)
(3.8)

and the admittance matrix YTETM is a 2×2 diagonal matrix that can be split in two contributions, as
shown in equation (A.18) in Appendix A. One contribution represents the propagation of the plane wave
(fundamental Floquet wave), whereas the second term is the equivalent admittance of one layer of the
ADL and can be approximated as

YADL ≈

[
jB∞(1− sin2

θ

2 ) 0
0 jB∞

]
(3.9)

The equivalent layer susceptance in the presence of the shift is given by:

B∞ ≈
jk0d
ζ0π

∑
m 6=0

|sinc(πm w
d )|

2

|m|
·
(
−cot(− j2π|m|dz

d )+ e j2πm s
d csc(− j2π|m|dz

d )
)

(3.10)

where m are the indexes of the Floquet modes. The analytical expression in (3.10) accounts for the
higher-order coupling between layers and thus remains valid even for inter-layer distances much smaller
than the wavelength. It can be noted that the formula remains valid also for the aligned case sx = sy = 0
and thus is general.

While (3.10) is derived for an infinite number of layer, also the semi-infinite case is relevant to de-
scribe the effect of truncation in a finite cascade of layers. It is shown in the [38] that while the result
only with infinite cascade of ADL shows the fair agreement, accounting the effect of truncation in height
of ADL improves the result further. The semi-infinite elements are describes as the first and the last layer
on the ADL slab. The susceptance of the first layer in a semi-infinite cascade is given by
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Figure 3.8: (a) Plane wave impinging on a cascade of four ADLs with alternate shifts and (b) equivalent
circuits for TE and TM components.

Bsemi-∞ ≈
jk0d
2ζ0π

∑
m6=0

|sinc(πm w
d )|

2

|m|
·
(
− j− cot(− j2π|m|dz

d )+ e j2πm s
d csc(− j2π|m|dz

d )
)

(3.11)

Comparing these susceptance terms for ADL to the one in single layer (equation (2.18)), it can be
deduced that the terms are related. The susceptance in ADL can be split into the reactance of single layer
term, Bs, and the inter-layer reactive coupling term. The later term is related to the closed-form solutions
for the infinite and semi-infinite sums of the layers in Appendix B. Thus, equation (3.10) and (3.11) can
be written compactly as

B∞ ≈ Bs ·S∞ , Bsemi-∞ ≈ Bs ·Ssemi-∞ (3.12)

where the inter-layer reactive coupling terms are given by

S∞ =−cot(− j2π|m|dz
d )+ e j2πm s

d csc(− j2π|m|dz
d ) (3.13)

Ssemi-∞ =
1
2

(
− j− cot(− j2π|m|dz

d )+ e j2πm s
d csc(− j2π|m|dz

d )
)
. (3.14)

3.2.1 Equivalent Transmission-Line Model
From equation (3.6), one can express the reactance of a layer embedded in a periodic multi-layer envi-
ronment as follows:

Z∞,TM =
− j
B∞

, Z∞,TE =
− j

B∞(1− sin2
θ

2 )

Zsemi-∞,TM =
− j

Bsemi-∞
, Zsemi-∞,TE =

− j

Bsemi-∞(1− sin2
θ

2 )
.

(3.15)

These values of the equivalent reactance can be incorporated in an equivalent circuit that describes
the propagation of a generic plane wave in the ADL medium illustrated in Fig. 3.8(a). The equivalent
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Figure 3.9: Amplitude and phase of the reflection and transmission coefficients of a plane wave incident
on a cascade of 5 layers: (a) TE, θ= 60◦, sx,y = 0.25dx,y; (b) TM, θ= 60◦, sx,y = 0.25dx,y; (c) TE, θ= 60◦,
sx,y = 0.5dx,y; (d) TM, θ = 60◦, sx,y = 0.5dx,y. The geometrical parameters are dx = dy = 0.0785λ0,
wx = wy = 0.01λ0, dz = 0.012λ0, with λ0 being the wavelength at 5 GHz.

transmission lines are shown in Fig. 3.8(b) for the TE and TM components. The infinite solution is
used to represent the inner layers, whereas the semi-infinite formula is employed to characterize the edge
layers, to account for the truncation.

To validate the formulas and assess the accuracy of the approximations, we show in Fig. 3.9 the re-
flection and transmission coefficients for TE and TM plane-wave incidence (at θ = 60◦) and for different
shifts. CST [22] simulations are also reported for the same structures and show good agreement with our
method.
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Figure 3.10: Convergence characteristics, defined as in (3.16), of the susceptance B∞ as a function of
the number of Floquet modes: (a) dz = 0.01λ0 and three values of wx = wy are considered; (b) wx,wy =

0.01λ0 and three values of dz are considered. The other parameters are dx = dy = 0.2λ0 and sx = sy =

0.45dx.

3.2.2 Convergence of the Floquet Sums
The sums in equation (3.10) and (3.11) contain an infinite number of terms. In practice, these sums
are truncated to a finite number of Floquet modes m ∈ [−M,−M + 1, ...,−1,1,2, ...,M]. To assess the
convergence properties a relative difference between partial sums is defined as follows:

∆ =
|B∞(M)−B∞(M−1)|

|B∞(M)|
(3.16)

where B∞(M) represents the expression in (3.10) with the Floquet sum truncated from −M to M modes.
This convergence parameter of the susceptance B∞ is shown in Fig. 3.10, for different geometrical
parameters, as a function of the number of Floquet modes. It can be noted that the convergence is slower
for small wx, while smaller dz lead actually to faster convergence. Despite the differences, all cases show
rapid convergence for realistic design parameters, resulting in ∆ < 1% with only 10 modes or less.

3.3 Problem Definition and Formulation for ADLs with Fi-
nite Conductivity

Following the same propositions that are described in chapter 2 about the losses introduced by the finite
conductivity of the patches, the analysis of the finite cascade of layer is also extended to the lossy metal
case. This allows to quantify analytically the losses even at the early stages the design process.

To start the formulation, an ADL composed of an infinite number of layers is considered as illustrated
in Fig. 3.11(a) where the patches have a finite conductivity. Three surfaces denoted with S−1, S0, and
S1, are defined as in the Fig. 3.11, and, following an alternative formulation of the equivalence theorem,
are filled with metal with the same conductivity. This ensures the homogeneity of the metal plates across
their surfaces. As shown in the lossy single layer section in chapter 2, the original problem can be
represented as magnetic current, mnz(x,y), with subscripts that describes the position of layer, radiating
in the presence of infinite metal planes with finite conductivity σ. These metal layers exist on the top and
below the current density, creating structure similar to parallel plane waveguide (PPW) structures.

Imposing the Floquet boundary condition due to the periodicity along z and the approximation of the
magnetic current distribution, relating the currents on the odd and even layers, the integral equation for
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Figure 3.11: (a) original problem and (b) equivalent problem with unknown magnetic current distribu-
tions.

Figure 3.12: Equivalent representation of the ADLs’ unit cell: (a) the lossless case, (b) the lossy case.

the magnetic field at z = 0 can be written as

∞∫
−∞

∞∫
−∞

2m0(ρ
′)gppw(ρ−ρ′,nzdz,z=0)dρ′ =

∞∫
−∞

∞∫
−∞

2m0(ρ
′− s)e− jkρs·sgppw(ρ−ρ′,nzdz,z=0)dρ′ (3.17)

where ρ = xx̂+ yŷ and ρ′ = x′x̂+ y′ŷ are the observation and the source points, respectively. The
function gppw represents the Green’s function which relates the magnetic field to a magnetic source
radiating within a lossy parallel plate waveguide. Due to the finite conductivity that the metal possesses,
the image theorem can not be employed. However, this representation still allows solving the integral
equation in the same way as the lossless case, only changing the Green’s function.

3.3.1 Green’s Function Representation for the Problem
The Green’s function in equation (3.17) can be expressed in the spectral domain by solving for the
current at layer z = 0 of equivalent TE and TM unit cell transmission lines representing the stratified
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Figure 3.13: Equivalent transmission line to the unit cell and depiction of the superposition circuit
theorem

+-
Zs

+-

Zin

Zin

z=0

I1

I2

Figure 3.14: Equivalent circuit for transmission line marked as 1 in figure 3.13.

medium. The unit cell, shown in Fig. 3.12, represents the admittance matrix YTETM which consists of
the contribution of the propagation of the plane wave and the equivalent admittance of the ADL. The
magnetic current densities are represented as voltage generators. In the layer z = 0, the voltage generator
is equal to 1V. The generators placed in z = dz and z = −dz are assumed to be equal in amplitude and
differ only in phase with generator at z = 0. The phase difference comes from a spatial displacement
e− jkρs·s and a phase term e∓ jkzsdz . The vector s = sxx̂+ syŷ is indicating the shift and kρs = kxsx̂+ kysŷ is
an unknown wave vector describing the transverse propagation between adjacent layers.

For the lossless case (Fig. 3.12(a)), the layer is represented by a short circuit. Thus, the problem
unravels to magnetic currents radiating within PEC parallel plate waveguide, which would give the same
results as when image theorem is applied and the currents and their images are radiating in free space.

In the other hand, for the lossy case (Fig. 3.12(b)), each layers has surface impedance Zs that is
depicting the finite conductivity of the layer. It is to be noted that at z = dz and z =−dz, the impedance
is defined as twice of the layer’s impedance, 2Zs. This is due to the fact that at the edge of the unit cell,
only half of the current is considered and half of the current translates to twice of the impedance. Thus
later when this unit cell is cascaded, the total current is equal to the current in the layer.

To solve the transmission lines, superposition theorem is used. Due to the superposition theorem
in circuit, it is possible to separate transmission line depicted in Fig. 3.13 into two transmission lines
(marked with ‘1’ and ‘2’) where each of them has two voltage generators. Furthermore, the transmission
line marked as 1 in Fig. 3.13 can be represented as Fig. 3.14 where Zin is the input impedance seen from
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Figure 3.15: (a) The equivalent Thévenin’s circuit equal to transmission line marked as 2 in figure 3.13.
(b) Definition of the Thévenin’s equivalent circuit voltage generator for the problem.

z = 0. Solving the circuit depicted in Fig. 3.14 (detailed in Appendix C) gives

i1(z = 0) =
2

2Zs +Zin
(3.18)

where

Zin = Z0
2Zs + jZ0 tan(kzdz)

Z0 + j2Zs tan(kzdz)
. (3.19)

Transmission line marked as 2 in Fig. 3.13 can be solved by applying Thévenin’s theorem. It is
illustrated in Fig. 3.15(a) that the transmission line is represented as a circuit similar to Fig. 3.14 but
with Thévenin’s equivalent circuit impedance and voltage generator. Fig. 3.15(b) shows the relation of
the original circuit and its Thévenin’s equivalent circuit voltage generator.

Solving the aforementioned circuit to find the current at z = 0 (detailed in Appendix C) will result in:

i2(z = 0) =− 2
2Zs +Zin

− jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s. (3.20)

The total current that flows at z = 0 at the original problem (figure 3.13) can be seen as an addition of
currents that are given by equation (3.18) and (3.20) which is

i(z = 0) =
2

2Zs +Zin
− 2

2Zs +Zin

− jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s. (3.21)

It can be proved (detailed in Appendix C) that equation (3.21) simplifies to:

i(z = 0) =
2S

Z0 +2ZsS
, (3.22)

where S is the inter-layer reactive coupling identical to the lossless ADL case (equation (3.13)).
This current given in equation (3.22) is the current that is needed to be plugged into the Green’s

Function to find the field by the current density.

3.4 Solution and the Equivalent Reactance of ADLs with Fi-
nite Conductivity

Once the Green’s function is defined, the rest of the steps to solve the unknowns are identical to the
lossless case. Different terms of reactance and impedance for the ADL layers are derived to take into the
account the conductivity of the metal patches. Similar to the single layer case, the equivalent reactance
of the layer, for each mode, is given by:
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Z∞layer,TE = Z∞,TE +Zs , Z∞layer,TM = Z∞,TM +Zs

Zsemi-∞layer,TE = Zsemi-∞,TE +Zs , Zsemi-∞layer,TM = Zsemi-∞,TM +Zs
(3.23)

where

Z∞,TE =
1

Y∞,T E
, Z∞,TM =

1
Y∞,T M

Zsemi-∞,TE =
1

Ysemi-∞,T E
, Zsemi-∞,TM =

1
Ysemi-∞,T M

(3.24)

with the admittances of the layer separated into infinite and semi-infinite terms to account for the
middle layers and the layers at the edges. Accounting for the truncation improves the accuracy of the
analytical solutions. The layer admittance terms are also defined for both the TE and TM modes. Anal-
ogous to the lossy single layer, the admittance of the layer is not a pure susceptance term.

The admittance of a layer embedded in a periodic multi-layer environment can be written as

Y∞,T E ≈−2 j ∑
my 6=0
|sinc(kym

wy

2
)|2(

k2
x0

2k2
ρm

(
ζ0

k0

kzm
+2ZsS∞

)−1

+
k2

ym

k2
ρm

(
ζ0

kzm

k0
+2ZsS∞

)−1
)

S∞

Y∞,T M ≈−2 j ∑
mx 6=0
|sinc(kxm

wx

2
)|2(

k2
y0

k2
ρm

(
ζ0

k0

kzm
+2ZsS∞

)−1

+
k2

xm

k2
ρm

(
ζ0

kzm

k0
+2ZsS∞

)−1
)

S∞

(3.25)

and the admittance for the layer placed at the edge (last and first layer) is

Ysemi-∞,T E ≈−2 j ∑
my 6=0
|sinc(kym

wy

2
)|2(

k2
x0

2k2
ρm

(
ζ0

k0

kzm
+2ZsSsemi-∞

)−1

+
k2

ym

k2
ρm

(
ζ0

kzm

k0
+2ZsSsemi-∞

)−1
)

Ssemi-∞

Ysemi-∞,T M ≈−2 j ∑
mx 6=0
|sinc(kxm

wx

2
)|2(

k2
y0

k2
ρm

(
ζ0

k0

kzm
+2ZsSsemi-∞

)−1

+
k2

xm

k2
ρm

(
ζ0

kzm

k0
+2ZsSsemi-∞

)−1
)

Ssemi-∞

(3.26)

where mx and my are the indexes of the Floquet modes, kxm = kx0−2πmx/dx and kym = ky0−2πmy/dy

are the Floquet wavenumbers which determine kzm =
√

k2
0− k2

xm− k2
ym and kρm =

√
k2

xm + k2
ym. The prop-

agation constants along x, y, and z are kx0 = k0 sinθcosφ, ky0 = k0 sinθsinφ, and kz0 = k0 cosθ, where k0

is the free-space wavenumber. The terms S∞ and Ssemi−∞ are the terms defined in (3.13) and (3.14).
Figure 3.16 shows the equivalent circuit representation of the impedance, including the Zs contri-

bution. Similar to the case in single layer of periodic patches, the finite conductivity introduces an
impedance term (Zs) that is in series with the layer impedance. This representation alsp described the
lossless case, for which the impedance Zs is zero and equal to a short circuit. Moreover, the resistance of
the layer is not only represented by the series load Zs, but an additional resistive contribution also occurs
in the terms Z∞ and Zsemi-∞, which are complex.
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Figure 3.16: Equivalent circuit representation of the ADL composed of 5 layers with finite conductivity
for TE and TM component.

Figure 3.17: Comparing loss (in dB) calculated based on analytical solution and HFSS simulation. The
plane wave incident on an ADL with finite conductivity (σ = 1000 S/m) with angle of incidence θ = 60◦,
φ = 0◦. The geometrical parameters of layer of patches are dx = dy = 0.095λ0, wx = wy = 0.01λ0,
dz = 0.02λ0, and shift (a) sx = sy = 0 (aligned); (b) sx = sy = dx/2, with λ0 being the wavelength at 300
GHz.

Full-wave HFSS [39] simulations are made to validate the analytical solution. An extreme case with
σ = 1000 S/m is taken due to the low losses that the structure exhibits. The single layer of patches
geometrical parameters are dx = dy = 0.095λ0, wx = wy = 0.01λ0, and dz = 0.02λ0, with λ0 being the
wavelength at 300 GHz. The incident plane wave is coming from oblique angle (θ = 60◦ φ = 0◦). An
aligned and shifted case are considered.

In Fig. 3.17 and Fig. 3.18, the comparison between analytical solution and simulation result are
shown. A good agreement of the scattering parameters can be seen for the cases investigated. Moreover,
the shift does not introduce significant increase of losses. It is worth to mention that the loss for TE
incidence shown in Fig. 3.17 appear not to increase with the frequency as the TM case. This observation
can be explained with the fact that the transmission coefficient for the TE case decreases significantly
as the frequency grows, as shown in Fig. 3.18. The low transmission signifies that most of the incident
wave is reflected at the interface between the air and the ADL, thus interacts less with the lossy metal
patches. Figure 3.19 shows the example of case where the ADL is designed so the total height of the
slab becomes near resonant at certain frequency. This is done in order to showcase that the transmission
coefficient has an effect on the losses. It can be seen from Fig. 3.19(a) that at 220 GHz, the reflection
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Figure 3.18: Comparison between analytical solution and HFSS simulation of amplitude and phase of
the reflection and transmission coefficients of a plane wave incident on a single layer of patches with
finite conductivity (σ = 1000S/m), with angle of incidence θ = 60◦, φ = 0◦ (a) TE incidence sx = sy = 0
(aligned) (b) TM incidence sx = sy = 0 (aligned), (c) TE incidence sx = sy = dx/2 (d) TM incidence
sx = sy = dx/2. The geometrical parameters are dx = dy = 0.095λ0, wx = wy = 0.01λ0, and dz = 0.02λ0,
with λ0 being the wavelength at 300 GHz.

coefficient is near zero, thus the transmission coefficient is close to 1. At the same point, the losses,
depicted in Fig. 3.19(b), is at the highest.
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Figure 3.19: (a) Scattering parameters magnitude and phase, and (b) losses in dB for a TE incidence
impinging on a 5 layers aligned-ADL with finite conductivity (σ = 106 S/m) with angle of incidence θ =

60◦, φ = 0◦. The geometrical parameters of layer of patches are dx = dy = 0.095λ0, wx = wy = 0.01λ0,
dz = 0.15λ0, with λ0 being the wavelength at 300 GHz.
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Chapter 4

Effective Parameters and Tolerance Study
of ADL

4.1 Attaining Effective Permittivity and Permeability

Artificial dielectric layer (ADL) synthesizes an equivalent material that can be represented with its ef-
fective parameters, i.e. permittivity and permeability. The retrieval of the effective permittivity and
permeability is often denoted as homogenization process. Homogenization techniques using the scat-
tering parameters of an incident plane wave from the material are the most commonly used methods
and have been reported in several articles [36, 40–45]. This allows to model the ADLs as an equivalent
homogenous, anisotropic slab with a finite height.

The AD composed of stacked layers of periodic patches (ADL) is anisotropic because the refractive
index is a function of the propagation direction and polarization of the wave. Therefore its effective
permittivity and permeability are described by second rank tensors: ε and µ

ε = ε0

εx 0 0
0 εy 0
0 0 εz

 , µ = µ0

µx 0 0
0 µy 0
0 0 µz



where ε0 and µ0 are the permeability and permeability of the vacuum, respectively. The unknowns εx,
εy, εz, µx, µy, and µz are quantities without dimensions that represent the effective relative permittivity and
permeability tensors.The matrices are in general non-diagonal and symmetric, i.e ε =

(
ε
)T

and µ =
(
µ
)T

as a consequence of the Maxwell equations. However, a coordinate system exists for which diagonal
tensors can be defined. For the geometry under analysis, the Cartesian coordinate system constitutes the
principal axes for the elements of the diagonal tensor. For a linear isotropic material, all the diagonal
elements have the same value, which implies that such medium is uniform in all directions.

Using the equivalent circuit that is derived for ADL in chapter 3, the scattering parameters under plane
wave illumination can be calculated. As elaborated in [46], for any slab with thickness d, (illustrated in
Fig. 4.1) the effective parameters can be calculated based on its scattering parameters. This method calls
for the scattering parameters that are derived from normal and oblique incidence, for each TE and TM
polarization. Applying the method in [46] to the structure that is presented in this thesis, the ε and µ can
formulated as
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Figure 4.1: Illustration of an anisotropic slab (characterized by ε and µ) illuminated by electromagnetic
field coming from oblique incident angle θi.

εx =
nT M

θi=0

ηT M
θi=0

, µx = nT E
θi=0η

T E
θi=0

εy =
nT E

θi=0

ηT E
θi=0

, µy = nT M
θi=0η

T M
θi=0

εz =
εxsin2

θi

sin2
θi− (nT M)2 +(nT M

θi=0)
2
, µz =

µxsin2
θi

sin2
θi− (nT E)2 +(nT E

θi=0)
2

(4.1)

where the wave impedances η and refraction indices n are evaluated from

η
T E =±

√
(1+ST E

11 )2− (ST E
21 )2

(1−ST E
11 )2− (ST E

21 )2 secθi, η
T M =±

√
(1+ST M

11 )2− (ST M
21 )2

(1−ST M
11 )2− (ST M

21 )2 cosθi

ζT E =
ST E

21

1−ST E
11 (ηT Ecosθi−1)/(ηT Ecosθi +1)

, ζT M =
ST M

21

1−ST M
11 (ηT Mcosθi−1)/(ηT Mcosθi +1)

nT E =

√
(

ln(|ζT E |)+ j(∠(ζT E))

− jk0d
)2 + sin2

θi, nT M =

√
(

ln(|ζT M|)+ j(∠(ζT M))

− jk0d
)2 + sin2

θi .

(4.2)

To validate the method, a CST [22] simulation is established to simulate a non-aligned ADL as
shown in Fig. 4.2(a). The ADL is composed of 5 layers of perfectly conducting square patches with
dx = dy = 0.0785λ0, dz = 0.012λ0, wx = wy = 0.01λ0, sx = sy = 0.5dx, with λ0 being the wavelength
at the calculation frequency f0. The scattering parameters (normal and oblique incidence) from the
simulated geometry are used to calculate its effective parameters, ε and µ. Another simulation is made
to simulate a slab, Fig. 4.2 (b) that is defined as an equivalent anisotropic material with the estimated
effective ε and µ.

The scattering parameters from the slab are then compared to the scattering parameters from the
ADL. Note that both structures are illuminated under a plane wave incidence with θ = 60◦ and φ = 0◦.
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Figure 4.2: (a) Unit cell of an ADL composed of 5 non-aligned layers. The ADL is consisted of layers of
perfectly conducting square patches with dx = dy = 0.0785λ0,dz = 0.012λ0,wx = wy = 0.01λ0,sx = sy =

0.5dx, with λ0 being the wavelength at the calculation frequency. The patches are embedded in material
with εhost = 1. (b) An anisotropic slab with the same height and effective parameter as aforementioned
ADL.

Figure 4.3: Scattering parameters comparison between ADL and its equivalent slab. (a) TE and (b) TM
polarization of incidence plane wave arriving from oblique angle θ = 60◦ and φ = 0◦.

The comparisons are shown in figure 4.3 for both TE and TM polarization. A good matching can be
implied from this result, signaling that the method of homogenization is valid for structure studied in this
thesis.
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4.2 Dependence of the Effective Parameters on the Geometry
of the Structure

The described analytical method of homogenization means that the process of calculating the effective
parameters can be done faster than a full-wave simulation without penalty in accuracy. Sweeping of
parameters is also an hassle-free process. Furthermore, the analytical method can be used to give insight
towards the dependence of the ADL structure on its effective parameters, such as the periods, the inter-
layer distance, the slot width, or the shift between the layers.

The variation of the εx and µz as a function of the shift is reported in Fig. 4.4. The curves are shown
for different values of the slot width (wx = wy = w), different periodicity of the patches (dx = dy = d),
and different values of the inter-layer distance (dz). It can be noted that the permittivity components εx

and εy increase with the shift, because of the raised mutual capacitance between layers. An opposite
behavior is observed for the permeability component µz, which decreases as a function of the shift.

For square ADL (dx = dy = d,wx = wy = w) with equal shift in x and y (sx = sy) that is studied in
this thesis, the condition εx = εy is satisfied, confirming that the structure holds uniaxial property. It is
also evident that the value of εz is the same as the host permittivity of the ADL, εhost , because the z-
component of the electric field does not interact with the horizontal patches hosted in the medium. It can
be noted that the permittivity components εx and εy increase with the shift, because of the raised mutual
capacitance between layers. A larger size of the patches also brings higher permittivity components.
Moreover, smaller values of inter-layer distance dz lead to larger variation of permittivity as a function of
the shift. Thus, for small inter-layer distances, very wide ranges of permittivity values can be synthesized
by only varying the shift.

An opposite behavior is observed for the permeability component µz, which decreases as a function
of the shift. The value of µz in ADL with finite height along the z axis is consistently < 1, which is lower
than relative permeability of vacuum. This implies that strong diamagnetic effects are occurring in the
case of TE incidence, for which the incident magnetic field has a non-zero z-component. A structure with
diamagnetic property creates an induced magnetic field in a direction that is opposite to the incidence
magnetic field. Indeed, in TE incidence case, the patches support loop currents that produce a magnetic
field (magnetization) opposite to the incident one (illustrated in Fig. ??). Therefore, the total magnetic
field inside the ADL is reduced compared to the external one (i.e., µz < 1). The other components of the
permeability tensors are µx = µy = 1.

4.3 Refractive Index of ADLs
The index of refraction, n, as a function of the angle of incidence is important to describe the property of
the ADL. As mentioned in chapter 1, the ideal material to tackle the surface-wave problem with current
planar antennas is a material whose refractive index goes lower as the angle of incidence grows to the
grazing angle. To obtain the refractive index as a function of angle for both TE and TM incidence, the
following expressions are used [46]:

nT E =
√

εyµx +(1−µx/µz)sin2
θ1

nT M =
√

εxµy +(1− εx/εz)sin2
θ1 .

(4.3)

Figure 4.6 shows the square of the refractive index n2, over the angle of propagation of a plane wave
inside the ADL. It is visible that the n2 goes lower as the angle grows, and for broadside incidence, TE
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Figure 4.4: Equivalent x- and y- components of the relative permittivity tensor and equivalent z-
component of the relative permeability tensor, as a function of the shift. The ADL is composed
of 5 perfectly conducting layers of patches embedded in a medium with εr,host = 1, where: (a)-(b)
dx = dy = 0.0785λ0, dz = 0.012λ0, and different slot widths, (c)-(d) wx =wy = 0.01λ0, dz = 0.012λ0, and
different periodicity, (e)-(f) dx = dy = 0.0785λ0, wx = wy = 0.01λ0, and different inter-layer distance,
with λ0 being the wavelength at the calculation frequency.

and TM incidence have the same refractive index. For TM incidence, the number reduces to the n2 of
the host for grazing angles, since the electric field becomes orthogonal to the patches and only feels the
hosting medium. The TE case instead yields a refractive index enhancement also for grazing angles, for
which the field is still parallel to the patches. In Fig. 4.6, the term ‘angle in ADL’ is mentioned. This
is done to distinguish the angle of incidence in the free space and the resulting angle of propagation in
the ADL due to refraction that happens at the interface. The angle in ADL can be simply calculated
using Snell’s law of refraction. Figure 4.7 shows an example on how the incident wave refracts and
the resulting angle of the wave propagating in the ADL. Since the refractive index is dependent on the
modes, the angle in ADL is different for the two modes.

Figure 4.8 highlights the broadband property of the ADL, taking ADLs with different inter-layer
distances and plotting its broadside n2 over frequency. The refractive index of the ADL shows that, under
the assumption of sub-wavelength patches, the equivalent parameters are essentially constant with the



48 4.3. REFRACTIVE INDEX OF ADLS

Figure 4.5: Illustration upon the diamagnetism of ADLs. For TE incidence, the induced electric field
distribution in the layer creates electric current loops on the metal patches. The loops are inducing
magnetic field with the opposite sign of the incident magnetic field, hi.

Figure 4.6: Square of refraction index, evaluated from equation (4.3), over angle of incidence in ADL.
The ADL is composed of 5 layers of PEC patches with dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz =

0.012λ0, and sx = sy = 0.5dx where λ0 is the wavelength at the calculation frequency. The ADL is hosted
in a material with εr,host = 1.

frequency. Dispersive behavior will occur at higher frequencies, when the patches become comparable
to the wavelength. However, the formulas derived in this thesis are valid only under the assumption of
sub-wavelength patches, which is always the case in practical ADL designs.

The refractive index of ADLs are related to the permittivity and permeability, thus naturally it is
linked to the structure geometry. Figure 4.9 shows the range of resulting n2 with tolerance applied in the
geometrical parameters over the angle of incidence in the ADLs. This information is relevant to identify
the most critical parameters in a manufacturing process and the tolerances associated with the practical
fabrication of ADLs.
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Figure 4.7: Angle in ADL over the angle of incidence. The ADL is hosted in free-space and is composed
of 5 layers with dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz = 0.012λ0, and sx/dx = sy/dy = 0.5, where
λ0 is the wavelength at the calculation frequency at 300 GHz.

Figure 4.8: Square of refraction index over frequency. The ADL is composed of 5 layers of patches with
dx = dy = 0.2λ0, wx = wy = 0.01λ0, and sx = sy = 0.5dx where λ0 is the wavelength at the calculation
frequency. The ADL is hosted in a material with ε = 1.

4.4 Representation of Losses in Effective Parameters
The permittivity and permeability parameters are generally complex numbers. The imaginary part of the
permittivity accounts for losses in the medium due to the damping of the vibrating dipole moments [47].
Dielectrics are usually characterized by the real part of the permittivity, and the loss tangent, tanδ, at a
certain frequency. The relation of the loss tangent and the complex permittivity is given by

ε = ε
′− jε′′ = ε

′(1− j tanδ) (4.4)

with ε′ and ε′′ are the real and imaginary parts of the permittivity.
The imaginary part of the permeability is also related to the loss due to the damping process [47,48].

Thus, the magnetic loss tangent can be introduced as

µ = µ′− jµ′′ = µ′(1− j tanδm) (4.5)

where µ′ and µ′′ are the real and imaginary parts of the permittivity. The loss tangents are frequency
dependent. The presence of magnetic loss tangent is related to the fact that ADLs studied in this thesis



50 4.4. REPRESENTATION OF LOSSES IN EFFECTIVE PARAMETERS

Figure 4.9: Square of index refraction (n2) as function of angle incidence in ADL for TE and TM
incidence. The plot has certain range that shows 5% tolerance in the (a) shift (b) inter-layer distance (c)
periodicity (d) slot width (e) all geometrical parameters aforementioned. The ADL composed of 5 layers
with dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz = 0.012λ0, and sx/dx = sy/dy = 0.5, where λ0 is the
wavelength at the calculation frequency at 300 GHz. The patches is hosted in the free-space.

is a diamagnetic material. There are losses introduced by the magnetization when the patches are not
perfectly conducting.

The previous section considered ADLs made of perfectly conducting patches, thus the permittiv-
ity and permeability only have the real values. Introducing the finite conductivity of the metal cause
the permittivity and permeability to have complex values. These complex quantities can be analyti-
cally calculated from the scattering parameters using the same method as explained in the previous sec-
tion. To evaluate that the method is valid, a simulation is made via CST [22] to simulate an anisotropic
slab with complex permittivity and permeability that are analogous to an ADL composed of 5 layers
of lossy patches (σ = 1000 S/m) with geometrical parameters dx = dy = 0.095λ0, wx = wy = 0.01λ0,
and dz = 0.02λ0, where λ0 being the wavelength at calculation frequency. The scattering parameter of
the anisotropic slab is compared to the analytically calculated scattering parameters of the correspond-
ing ADL, shown in Fig. 4.10. The comparison shows an excellent agreement, indicating the analytical
solution is rigorous.

In Fig. 4.11, the analytical complex permittivity and permeability are shown. An unrealistic case
with σ = 1000 S/m is taken due to the low losses of the realistic ADLs. The complex values are carried
by εx, εy, and µz. The εz for structure studied in this thesis is related to the propagation in the host
material (without the patches), thus having only real values when the dielectric is assumed to be lossless.
The tangent deltas are shown in Fig. 4.12 as function of frequency, showing that these quantities are
frequency dependent. It is also evident that smaller size of the patches results in lower tangent deltas, a
phenomenon that is reasonable: the size of the patches relates to the loss that is supported by them.
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Figure 4.10: Comparison between CST simulations of the real and equivalent ADL slabs, in terms
of the amplitude and phase of the reflection and transmission coefficients of a plane wave incident on
5-layers-ADL with finite conductivity (σ = 1000S/m), with angle of incidence θ = 60◦, φ = 0◦ (a) TE
incidence (b) TM incidence. The geometrical parameters are dx = dy = 0.095λ0, wx = wy = 0.01λ0, and
dz = 0.02λ0, with λ0 being the wavelength at 300 GHz.

Figure 4.11: (a) Equivalent x- and y- components of the complex relative permittivity tensor and (b)
equivalent z-component of the complex relative permeability tensor, as a function of the shift. The ADL
is composed of 5 layers embedded in a medium with εr,host = 1, with dx = dy = 0.0785λ0, wx = wy =

0.01λ0, with λ0 being the wavelength at the calculation frequency. Two different inter-layer distances
are investigated. The patches have finite conductivity σ = 1000 S/m.



52 4.5. GUI BASED ON ANALYTICAL SOLUTIONS FOR ADL DESIGN

Figure 4.12: (a) Tangent delta and (b) magnetic tangent delta over frequency. The ADL is composed
of 5 layers embedded in a medium with εr,host = 1, with dx = dy = 0.0785λ0, wx = wy = w = 0.01λ0,
sx = sy = 0.5dx with λ0 being the wavelength at the calculation frequency. Three different sizes of patches
with finite conductivity σ = 1000 S/m are investigated.

Figure 4.13: Snippet of the GUI developed to characterize ADLs.

4.5 GUI based on Analytical Solutions for ADL Design
ADLs are versatile structure that are exploitable for enhancing the performance of integrated antennas,
thus in foreseeable future more designs will be made. A graphical user interface (GUI) that performs the
analytical solutions for the ADLs can be an aid in the design process. GUI based on analytical solutions
performs faster than a full-wave commercial simulator. Analytical solutions of the square ADLs that
are reported in this thesis have been shown to be accurate when compared to the commercial simula-
tor. Therefore, in this thesis, a GUI that implements all the analytical solutions previously presented is
developed, with the aim of rendering the analysis and the design as user friendly as possible.

The beta version of the GUI that is developed is shown in Fig. 4.13. The GUI takes the structure
geometries as input and gives the effective parameters as output. It provides the permittivity and perme-
ability as tensors and the square of refractive index plot over the angle (incidence angle or angle in ADL).
The tangent deltas are also shown. The user also has a choice of giving information about tolerances of
the geometrical input.
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Besides the analysis, the tool also implements the synthesis, by retrieving a possible set of geometrical
parameters, given certain effective parameters. This synthesize function is a relevant feature that will
allow ease in design process, another plus that is not achievable by using commercial solver. The user
can also give to certain parameters a fixed value, and the code will optimize for the remaining parameters
that are free. This feature is deemed to be necessary due to the possibility of specific limitation on the
manufacturing process. The GUI also shows three dimensional model of the ADL’s unit cell which can
be an aid in visualizing the structure. With this GUI, knowing an ADL’s effective parameters or designing
one given the target electrical properties is achievable within seconds.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions
This thesis discussed Artificial Dielectric Layers (ADLs), expanding the work that was done in the litera-
ture to accommodate the alternate shift between layers (shifted ADLs) and the effect of finite conductivity
of the patches composing the ADLs. Those two attributes are deemed to be relevant for the design of
ADLs: the shift introduces another significant degree of freedom and the finite conductivity relates to
the losses that occur in the structure. Closed-form solutions were given along with the analytical model
of the ADL. Those solutions were shown to be accurate when compared with full wave simulations. The
effective parameters of the ADLs were also extracted and studied to complete the understanding of the
ADL as a type of metamaterial.

The analysis of the single layer of periodic square patches was done in chapter 2, aiming at providing
the description of the interaction between the structure and a generic plane wave, both for the lossless
case and the lossy case. Magnetic field integral equations were defined for these problems, containing
magnetic currents as unknowns. The solution is found by expanding the magnetic currents into four
basis functions defined over the entire unit cell. The terms of the admittance matrix are calculated in the
spectral domain, with the spectral domain Green’s function that is appropriate for each of the cases. The
analysis leads to an equivalent circuit that is rigorous to describe the scattering property of the structure.
The decoupling property of the TE and TM modes is observed, along with the azimuthal independence
property of the structure.

In chapter 3, the stacked layers of periodic square patches, creating the ADL, was studied. The
analysis of the single layer is extended to the three-dimensional multi-layer case. The reactive coupling
due to the small inter-layer distance is considered. The finiteness effects of the ADL height are also taken
into account with the by employing with the semi-infinite cascade solutions for the edge layers. The
inclusion of the shift is analyzed, modifying the integral equations to account the shift between adjacent
layer. The closed-form solutions are formulated by solving the integral equations, accounting for the
inter-layer reactive coupling. Furthermore, the finite conductivity is also introduced in the analysis of the
ADLs, extending the solutions to inlcude the surface impedance. The equivalent circuit representation
of the ADL is given and the results are compared with commercial solvers to shows the validity of the
formulas.

The representation of an ADL by its effective parameters was done in chapter 4. The ADLs can be
represented by the tensors of permittivity and permeability. The effective permittivity and permeability
is attained from the scattering parameters which can be gained from the solutions presented in chapter 3.
The effective parameters reveal that the ADLs are indeed equal to anisotropic materials and present
diamagnetic properties. ADLs that are made of square patches also show uniaxial characteristic. The
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broadband properties of the ADLs is also discussed, alongside the effect of the structure geometry and
the tolerances on the effective parameters. Furthermore, the representation of the losses is also included
in the effective parameters. A graphical user interface was implemented based on this thesis torender all
the formulas given of immediate use for design.

5.2 Future Work
This thesis extends the analysis of the ADLs to a certain degree. Considering the prospect of the ADL
in the future to enable high frequency applications, a continuous research of the structure should be
conducted. Possible future analysis that can provide more development of the concept are enlisted:

1. The losses studied in this thesis are limited to one incoming plane-wave that illuminates the struc-
ture. Thus, losses can be further investigated by considering a near source radiating in the presence
of the ADL, which is a typical configuration for ADL applications. The field radiated by the source
can be expanded in a spectrum of plane-waves, so the total losses can be found by integrating the
contribution of each plane wave over such spectrum.

2. ADLs are made of metal patches hosted in a host medium. The analysis of losses introduced by
the patches has been included in this thesis. However, the losses introduced by the dielectric where
these patches hosted can be also included as an useful information to assist the design process.

3. Another interesting generalization could be the case when the shift itself is not periodic but it
changes for each layer. This would lead to a local variation of the equivalent impedance of the
layers (inhomogeneous dielectric) that can further improve the design flexibility, for example for
artificial lens designs.

4. The GUI is still under development. A project called AD-HOC is ongoing within the Terahertz
Sensing group, which aims at optimizing the fabrication of ADLs in the Else Kooi Lab. This
project will provide some technological limitations on the ADLs that can be manufactured, and
such information will be included in the GUI. Extensive testing of the software should also be
performed to ensure that all codes are debugged and also to set the validity bounds of the assumed
approximations.

5.3 Publications
The work performed in this thesis has lead to the following publications:

Journal paper:

1. D. Cavallo and C. Felita “Analytical formulas for artificial dielectrics with non-aligned layers"
IEEE Transactions on Antennas and Propagation, to appear in Vol. 65, No. 10, 2017.

Conference papers:

1. D. Cavallo and C. Felita “Analytical models for artificial dielectrics with non-aligned layers,"
IEEE Antennas and Propagation Society International Symposium, San Diego, California, USA,
July 9-14, 2017.
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2. D. Cavallo and C. Felita “Analysis of artificial dielectrics composed of non-aligned layers," 11th

European Conference on Antennas and Propagation, Paris, France, March 19-24, 2017 (received
the Best Paper Award in Electromagnetics and Antenna Theory).
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Appendix A

Solutions of the Admittance Matrix

A.1 Spectral Domain Expression of the Admittances
In this appendix, the self and mutual admittances are defined in the spectral domain, to allow for closed-
form solution of the integral equation (2.3). The Fourier transforms of basis functions in (2.8) are given
by

F1(kxm,kym) = dxδ(mx)sinc(kymwy/2)x̂
F2(kxm,kym) = dyδ(my)sinc(kxmwx/2)ŷ
F3(kxm,kym) = Bd,x(kxm)sinc(kymwy/2)x̂
F4(kxm,kym) = Bd,y(kym)sinc(kxmwx/2)ŷ .

(A.1)

where kxm = kx0− 2πmx/dx and kym = ky0− 2πmy/dy are the Floquet wavenumbers, Bd is the Fourier
transform of the doublet function and it is given by eq. (39) in [14], and δ is a Kronecker delta-function.

The terms of the admittance matrix are computed in the spectral domain as

Yqp =−
1

dxdy
∑
mx

∑
my

F∗q(−kxm,−kym)G(kxm,kym) ·Fp(kxm,kym)S(kxm,kym) (A.2)

while the forcing terms are given by

iq =
1√
dxdy

2hiĥ ·F∗q(−kx0,−ky0) = 0 (A.3)

where ‘p’ and ‘q’ are the indexes of the basis and the test functions, respectively, and hi and ĥ are the
amplitude and the unit vector orientation of the incident magnetic field, respectively. Assuming that the
ADLs are hosted in a homogeneous medium, in (A.2) we used the following property of the spectral
dyadic Green’s function G:

G(kxm,kym,nzdz) = G(kxm,kym)e− jkzm|nz|dz (A.4)

and all the sums on the nz indexes are included in the following term:

S(kxm,kym)= ∑
nzeven

e− jkzm|nz|dz− e j(kxm−kxs)sxe j(kym−kys)sy ∑
nzodd

e− jkzm|nz|dz . (A.5)

From (B.10) and (B.11) in Appendix B, we can also express S(kxm,kym) in closed form as

S(kxm,kym) =− j cot(kzmdz)+ j csc(kzmdz)e j(kxm−kxs)sxe j(kym−kys)sy . (A.6)
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64 A.2. REDUCTION OF THE NUMBER OF UNKNOWNS

A.2 Reduction of the Number of Unknowns
The system of equations Ya = i starts as:

a1Y11 +a2Y12 +a3Y13 +a4Y14 = 0
a1Y21 +a2Y22 +a3Y23 +a4Y24 = 0
a1Y31 +a2Y32 +a3Y33 +a4Y34 = 0
a1Y41 +a2Y42 +a3Y43 +a4Y44 = 0 .

(A.7)

This equations (A.7) can be simplified by assuming, as in [14], that Bd,x(kx0) and Bd,y(ky0) are approx-
imately 0. Such a condition applies because the projection of a progressive phase distribution (plane
wave) onto an anti-symmetric function is negligible for electrically small periods. This assumption al-
lows to neglect some terms of the admittance matrix Y13 ≈ Y31 ≈ Y24 ≈ Y42 ≈ 0.

a1Y11 +a2Y12 +a3Y13+a4Y14 ≈ 0
a1Y21 +a2Y22 +a3Y23+a4Y24 ≈ 0
a1Y31+a2Y32 +a3Y33 +a4Y34 ≈ 0
a1Y41 +a2Y42+a3Y43 +a4Y44 ≈ 0 .

(A.8)

Solving (A.8) for a3 and a4 gives:

a3 =−a2
Y32Y44

Y33Y44−Y34Y43
+a1

Y41Y34

Y33Y44−Y34Y43

a4 =−a1
Y41Y33

Y33Y44−Y34Y43
+a2

Y32Y43

Y33Y44−Y34Y43

(A.9)

which can be substituted back to (A.8), resulting in two linear equations instead of original four.

a1

(
Y11−

Y41Y33Y14

Y33Y44−Y34Y43

)
+a2

(
Y12 +

Y32Y43Y14

Y33Y44−Y34Y43

)
≈ 0

a1

(
Y21 +

Y41Y34Y23

Y33Y44−Y34Y43

)
+a2

(
Y22−

Y32Y44Y23

Y33Y44−Y34Y43

)
≈ 0

(A.10)

resulting in a reduced admittance matrix as

Yr =

Y11− Y41 Y14 Y33
Y33Y44−Y34 Y43

Y12− Y32 Y43 Y14
Y33Y44−Y34 Y43

Y21− Y41 Y23 Y34
Y33Y44−Y34 Y43

Y22− Y32 Y23 Y33
Y33Y44−Y34 Y43

 (A.11)

which satisfies the relation

Yr

(
a1

a2

)
=

(
0
0

)
. (A.12)

A.3 Simplified Admittance Matrix
The reduced admittance matrix can be further processed as shown in ??. To investigate the ADL structure
under TE and TM plane-wave incidence, it is convenient to project the equations on the TE and TM
vectors. This can be done by introducing the rotation matrix

R =

(
cos(φ) sin(φ)
−sin(φ) cos(φ)

)
. (A.13)
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Pre-multiplying both the left and right hand sides of (A.12) by R and noting that RTR is equal to the
identity matrix I, we can write

R Yr RT R

(
a1

a2

)
= 0 (A.14)

or

YTETM

(
aTE

aTM

)
=

(
0
0

)
(A.15)

where we define YTETM = RYrRT. In the case of different shifts sx 6= sy, all the elements of the matrix
are different from 0, thus the TE and TM component of the plane wave are coupled. Based on the result
in ??, the admittance matrix can be written as the sum of two contributions

YTETM = YTL +YADL . (A.16)

The first term is diagonal and represents the transmission lines describing the propagation of the plane
wave through the ADL structure:

YTL =

2 j tan(kz0
dz
2 )

Z0TE
0

0
2 j tan(kz0

dz
2 )

Z0TM

 (A.17)

where Z0TE = ζ0k0/kz0,Z0TM = ζ0kz0/k0 are the characteristic impedances of the TE and TM trans-
mission lines representing the plane-wave propagation; moreover, kz0 = k0 cos(θ), and k0, ζ0 are the
free-space wavenumber and impedance, respectively. For an infinite cascade of ADLs, YTL represents
two pairs of open stubs of length equal to half of the inter-layer spacing, as shown in Fig. A.1. The
second matrix is the equivalent admittance of the layer and account for the coupling between TE and TM
modes.

Figure A.1: Equivalent admittance of one layer of the ADLs embedded in an infinite cascade: (a) unit
cell and (b) equivalent representation of the admittance matrix.

However, for sx = sy, it is shown in ??that the non-diagonal terms of YADL are approximately 0 and the
matrix can be simplified as follows

YADL ≈

[
jB∞(1− sin2(θ)

2 ) 0
0 jB∞

]
(A.18)
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where we define the slot susceptance as

B∞ ≈
jk0dy

ζ0π
∑

m6=0

|sinc(πm wy
dy
)|2

|m|
·
(
−cot(− j2π|m| dz

dy
)+ e j2πm sy

dy csc(− j2π|m| dz
dy
)
)
. (A.19)



Appendix B

Closed Form Solutions for Infinite and
Semi-Infinite Sums

This appendix contains the closed form expression for the infinite and semi-infinite cascade of ADL.
Those sums are included in function S(kxm,kym), that is defined in eq.(). This function is part of the
spectral domain integral equations and it contains sums over even and odd indexes.
The expression of the sum can be written as

∑
nz

e− jkzm|nz|dz = ...+ e− jkzm0dz + e− jkzm1dz + e− jkzm2dz + ...

= ∑
nz,even

e− jkzm|nz|dz + ∑
nz,odd

e− jkzm|nz|dz .
(B.1)

The semi-infinite sums over even indexes (from 0 to +∞) and odd indexes (from 1 to +∞) are given by

∞

∑
nz(even)=0

e− jkzm|nz|dz = 1+e− jkzm2dz+e− jkzm4dz + ... (B.2)

∞

∑
nz(odd)=1

e− jkzm|nz|dz = e− jkzmdz+e− jkzm3dz + ... . (B.3)

With the change of variable n′z = nz/2, (B.2) can be expressed as

∞

∑
nz(even)=0

e− jkzm|nz|dz = 1+
∞

∑
n′z=1

e− jkzm2|n′z|dz . (B.4)

From [10], these following identities can be used

∞

∑
n=1

e jnx =−1
2
+

j
2

cot
x
2
,

∞

∑
x(odd)=1

e jnx =
j
2

cscx (B.5)

so that (B.4) and (B.3) can be evaluated as

∞

∑
nz(even)=0

e− jkzm|nz|dz =
1
2
− j

2
cot(kzmdz) (B.6)

∞

∑
nz(odd)=1

e− jkzm|nz|dz =− j
2

csc(kzmdz). (B.7)

The solution for the infinite sums can be derived from the semi-infinite ones by noting that an infinite
sum basically consists of two of a semi-infinite sum.
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∑
nz,even

e− jkzm|nz|dz = 2
∞

∑
nz(even)=0

e− jkzm|nz|dz−1 (B.8)

∑
nz,odd

e− jkzm|nz|dz = 2
∞

∑
nz(odd)=1

e− jkzm|nz|dz . (B.9)

This leads to the solution for the infinite sums. They can be written as

∑
nz,even

e− jkzm|nz|dz =− j cot(kzmdz) (B.10)

∑
nz,odd

e− jkzm|nz|dz =− j csc(kzmdz) . (B.11)



Appendix C

Solutions for Current in ADL with Layer
Composed of Lossy Patches

Figure C.1: Equivalent transmission line to the unit cell.

This appendix contains the solutions for the ADL composed by metal with finite conductivity described
in chapter 3. The goal here is to find the definition the current on the layer z = 0 from the unit cell’s
transmission line depicted in C.1 in order to be able to reconstruct the Green’s Function for the problem.
The magnetic current densities are represented as voltage generators. In the layer z = 0, the voltage
generator is equal to 1V. The generators placed in z= dz and z=−dz are assumed to be equal in amplitude
and differ only in phase with generator at z = 0. The phase difference comes from a spatial displacement
e− jkρs·s and a phase term e∓ jkzsdz . The vector s = sxx̂+ syŷ is indicating the shift and kρs = kxsx̂+ kysŷ is
an unknown wave vector describing the transverse propagation between adjacent layers.
To solve the transmission lines, superposition theorem is used. Due to the superposition theorem in
circuit, it is possible to separate transmission line depicted in Fig. C.1 into two transmission lines (Fig.
C.2) where each of them has two voltage generators. Furthermore, the transmission line marked as 1 in
Fig. C.1 can be represented as Fig. C.3 where Zin is the input impedance seen from z = 0. The input
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Figure C.2: Two transmission lines that are derived from 3.13.

+-
Zs

+-

Zin

Zin

z=0

I1

I2

Figure C.3: Equivalent circuit for transmission line marked as 1 in figure 3.13.

impedance from the upper and lower region of this transmission line are the same because the structure
is symmetric. The Zin is given by:

Zin = Z0
2Zs + jZ0 tan(kzdz)

Z0 + j2Zs tan(kzdz)
(C.1)

where Z0 is the characteristic impedance of the transmission line, and kz is propagation wavenumber
describing propagation along z.
In order to find the current in the z = 0, the Kirchhoff’s loop rule is used

−1+(I1− I2)Zs + I1Zin = 0
1+(I2− I1)Zs + I2Zin = 0,

(C.2)

with knowledge that at z = 0: Iz=0 = I1− I2, equation (C.2) can be solved so that the current at z = 0 for
the transmission line marked as 1 in Fig. C.1 can be written as

i1(z = 0) =
2

2Zs +Zin
. (C.3)

Transmission line marked as 2 in Fig. C.1 can be solved by applying Thévenin’s theorem. It is illustrated
in Fig. C.4(a) that the transmission line is represented as a circuit similar to Fig. C.3 but with Thévenin’s
equivalent circuit impedance and voltage generator. Fig. C.4(b) shows the relation of the original circuit
and its Thévenin’s equivalent circuit voltage generator. In the other hand, the Thévenin’s equivalent
circuit impedance is no other than Zin.
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Figure C.4: (a) The equivalent Thévenin’s circuit equal to transmission line marked as 2 in figure 3.13.
(b) Definition of the Thévenin’s equivalent circuit voltage generator for the problem.

Therefore, similar to the previous transmission line, the current that flows into the impedance Zs at z = 0
depicted in Fig. C.4(a) is

i(z = 0) =
Vth_up +Vth_lw

2Zs +Zin
, (C.4)

and the Thévenin’s equivalent circuit voltage generator can be calculated from the total voltage and
current waves on the line.

V (z) =V+
0 e− jkzz +V−0 e jkzz and I(z) =

V+
0

Z0
e− jkzz−

V−0
Z0

e jkzz (C.5)

where V+
0 e− jkzz is the wave generated from source at z = 0 propagating towards z+, and the vice versa

for V−0 e jkzz.
At z = 0, or the open circuit point, the voltage and current can be written as:

I(z = 0) =
V+

0
Z0
−

V−0
Z0

= 0 (open circuit) →V+
0 =V−0

V (z = 0) =Vth =V+
0 +V−0 = 2V+

0

(C.6)

which relates Vth_up to V+
0 . The unknown V+

0 is can be related to the the voltage at z = 0, seen by the
generator at z = dz, which is given by

Vz=0 =V+
0 e jkzdz +V−0 e− jkzdz =V+

0 (e jkzdz + e− jkzdz) = 2V+
0 cos(kzdz) (C.7)

and the voltage divider can be applied to know the voltage drop at z = 0:

Vz=0 =
Zoc

Zoc +2Zs
e− jkzsdze− jkρs·s (C.8)

where Zoc = − jZ0 cot(kzdz) is the impedance of the open circuit. Therefore, solving equation (C.7) to
obtain V+

0 and substitutes it to equation (C.6) will give:

Vth_up =−
− jZ0 cot(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkzsdze− jkρs·s sec(kzdz). (C.9)

The Vth_up and Vth_lw in Fig. C.4(a) is equal in amplitude, but differs in the phase term. The phase terms
represent the transverse propagation which is opposite to each other; i.e. e− jkzdz for the upper region,
and e jkzdz for the lower region of the circuit. The phase term indicating the shift is the same, e− jkρs·s, for
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both. Thus, the transverse propagation terms vanishes, due to when the distance dz is electrically small
e± jkzsdz ≈ 1± jkzsdz.
Substituting Vth_up and Vth_lw into equation (C.4) to find the current at z = 0 will result in:

i2(z = 0) =− 2
2Zs +Zin

− jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s. (C.10)

Total current that flows at z = 0 at the original problem (figure C.1) can be seen as an addition of currents
that are given by equation (C.3) and (C.10) which is

itot(z = 0) =
2

2Zs +Zin
− 2

2Zs +Zin

− jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s. (C.11)

It can be proved that equation (C.11) simplifies to:

itot(z = 0) =
2S

Z0 +2ZsS
,where S =− j cot(kzdz)+ j csc(kzdz)e− jkρs·s. (C.12)

Proof of equation (3.22)

Starting from equation (3.21):

itot(z = 0) =
2

2Zs +Zin
− 2

2Zs +Zin

− jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s

=
2

2Zs +Zin

(
1− − jZ0 csc(kzdz)

− jZ0 cot(kzdz)+2Zs
e− jkρs·s

)
=

2
2Zs +Zin

(
− jZ0 cot(kzdz)+2Zs + jZ0 csc(kzdz)e− jkρs·s

− jZ0 cot(kzdz)+2Zs

)

=
2

2Zs +Zin

(
Z0
(
− j cot(kzdz)+ j csc(kzdz)e− jkρs·s

)
+2Zs

− jZ0 cot(kzdz)+2Zs

)
(C.13)

Defining S as S = − j cot(kzdz) + j csc(kzdz)e− jkρs·s and substituting expression of Zin (equation
(C.1)) into equation (C.13) give:

itot(z = 0) =
2

2Zs +Z0
2Zs+ jZ0 tan(kzdz)
Z0+ j2Zs tan(kzdz)

(
Z0S+2Zs

− jZ0 cot(kzdz)+2Zs

)

=
2(Z0S+2Zs)

2Zs(− jZ0 cot(kzdz)+2Zs)+Z0(− jZ0 cot(kzdz)+2Zs)
2Zs+ jZ0 tan(kzdz)
Z0+ j2Zs tan(kzdz)

=
2(Z0S+2Zs)

2Zs(− jZ0 cot(kzdz)+2Zs)+Z0(− jZ0 cot(kzdz)+2Zs)
2Zs+ jZ0 tan(kzdz)
Z0+ j2Zs tan(kzdz)

,

(C.14)



APPENDIX C. SOLUTIONS FOR CURRENT IN ADL WITH LAYER COMPOSED OF
LOSSY PATCHES 73

where the denominator can be simplified as:
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(((

((((
((

(Z0 +2 jZs tan(kzdz))
2Zs + jZ0 tan(kzdz)

((((
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S
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to give:

itot(z = 0) =
2(Z0S+2Zs)

4Z2
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2���

���(Z0S+2Zs)

��
���

�
(2Zs +Z0S)(2Zs +
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S )

itot(z = 0) =
2S

(Z0 +2ZsS)
.
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