
Dependent Type-Checking Modulo
Associativity and Commutativity

Version of July 21, 2023

Lucas Holten

Dependent Type-Checking Modulo
Associativity and Commutativity

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Lucas Holten
born in Rotterdam, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Lucas Holten.

Cover picture: Comparing bags.

Dependent Type-Checking Modulo
Associativity and Commutativity

Author: Lucas Holten
Student id: 4903692
Email: lhc.holten@gmail.com

Abstract

Writing software that follows its specification is important for many applications.
One approach to guarantee this is formal verification in a dependently-typed program-
ming language. Formal verification in these dependently-typed languages is based on
proof writing. Sadly, while proofs are easy to check for computers, writing proofs can be
tedious for developers. One particular proof component that currently requires develop-
ers attention in many systems, is associative and commutative (AC) reasoning.

We contribute an extension of dependent type-systems to fully automate AC rea-
soning. This alleviates developers from this task and allows them to concentrate on
other proof components. Our approach works by modifying the conversion checker and
doesn’t compromise soundness or completeness. Furthermore, our approach reuses ex-
isting type-checking components, making it easier to implement. We also implemented
our theory as an extension of the Agda type-checker. This allowed us to use this imple-
mentation to experiment with some example programs.

This thesis can help language designers decide if they want automatic AC reasoning
in their language. For language users it can serve as inspiration on how to use such a
type-system and finally for researchers we have ideas for future work.

Thesis Committee:

Chair: Prof.Dr. M. M. de Weerdt, Faculty EEMCS, TU Delft
Committee Member: Dr. J. G. H. Cockx, Faculty EEMCS, TU Delft
Committee Member: PhD-student L. F. B. Escot, Faculty EEMCS, TU Delft

lhc.holten@gmail.com

Preface

I would like to thank everyone that supported me during the writing of this thesis. Special
thanks to Jesper Cockx and Lucas Escot for their amazing feedback and for answering my
questions. This work is definitely much better because of them and everyone else who gave
me feedback.

Lucas Holten
Delft, the Netherlands

July 21, 2023

iii

Contents

Preface iii

Contents v

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 2

2 Background 3
2.1 Agda Syntax . 3
2.2 Equality . 6
2.3 Rewrite Rules . 7
2.4 Meta-Theory of Type Systems . 7
2.5 Type-Checkers . 8
2.6 Limitations of AC Rewriting . 8

3 Theory 11
3.1 Lambda Pi Calculus . 11
3.2 Lambda Pi modulo AC . 16
3.3 Lambda Pi modulo AC and Rewrite Rules . 18

4 Implementation 25
4.1 Agda Type Checking Overview . 25
4.2 Scope of Implementation . 26
4.3 Normalization . 26
4.4 Conversion Checking . 27
4.5 Injectivity Analysis . 28

5 Usage Examples 31
5.1 Sorting Algorithms . 31
5.2 Bags . 33
5.3 Effect Systems . 35

6 Related work 37
6.1 Implemented in the Type System . 37
6.2 Non-Dependent Type Systems . 37
6.3 Implemented with Macros . 37

7 Discussion 39

v

CONTENTS

7.1 Future work . 40

Bibliography 41

Acronyms 45

A Improved Injectivity Analysis 47

B Green Slime 49
B.1 With-Abstraction and Instance Arguments . 50

C Example Code 51
C.1 Sorting Algorithms . 51
C.2 Bag of Nats . 54
C.3 Effect Rows . 55

vi

Chapter 1

Introduction

Writing tests gives us confidence that our software is correct. Other techniques like fuzzing
can improve this confidence further. We get most confidence from formal verification, be-
cause it removes any doubt that software follows its implementation (Leino 2010; Rondon,
Kawaguci, and Jhala 2008). Writing a proof in a dependently-typed language (Martin-Löf
1975b) is one method of formal verification. While it is especially light on computation com-
pared to some other methods, it shifts the burden to the writer of the proof (Bruijn 1994).

This is why automatic proof writing tools, such as tactics1 andmacros2, are used to make
proofwriting faster. It is even better however, to remove the need for a proof entirely, and this
is sometimes possible by extending the type theory. Research in this direction has resulted in
‘rewrite rules’, that allow automating some equational reasoning (Cockx 2019). While this is
already extremely useful, rewrite rules can not be used to perfectly capture associative and
commutative (AC) functions. This is problematic because AC functions such as +, *, minimum,
&& and union are quite common.

Our goal is to make it possible and straightforward to extend existing dependent type
systems with the theory of AC functions. The approach that we take is to first define a min-
imal calculus that handles AC functions automatically. This calculus is then extended with
rewrite rules to study the interaction between AC functions and rewrite rules. We include
detailed explanations of type-checking procedures and justification of why these procedures
are sound and complete.

To test the effectiveness and difficulty of adding the new theory into an existing type-
system,we test it onAgda. Agda is a dependently-typed functional programming language.3,4
It is a good project to extendwith new ideas because of its research focus, but the source code
is quite large and difficult for new contributors to modify. Thus the modifications were kept
to a minimum and existing procedures were reused where possible. Agda also has meta-
variables and we discuss their interaction with AC functions. The final implementation can
be used to write code like this:

{-# COMMASSOC +-comm +-assoc #-}

swap-length : (A : Set) -> (m n : Nat) -> Vec A (m + n) -> Vec A (n + m)
swap-length A m n xs = xs

This code implements a cast between two Vec types that are indexed by syntactically dif-
ferent expressions. The type checker needs to verify that these expressions are equal in value
before it can allow the cast. Normally, Agda is unable to automatically verify this require-
ment, but it can do so with the COMMASSOC pragma.

1https://coq.inria.fr/refman/proof-engine/tactics.html
2https://agda.readthedocs.io/en/latest/language/reflection.html#macros
3https://wiki.portal.chalmers.se/agda/pmwiki.php
4An introduction to Agda is presented in Chapter 1

1

https://coq.inria.fr/refman/proof-engine/tactics.html
https://agda.readthedocs.io/en/latest/language/reflection.html#macros
https://wiki.portal.chalmers.se/agda/pmwiki.php

1. INTRODUCTION

We use the new Agda extension to formally verify some sorting functions. This is done
without writing any proofs and without helping the type-checker in any way other than
marking the correct functions as AC and adding the right rewrite rules. We also implement
a simple effect system. This effect system uses the COMMASSOC pragma to build effect rows that
have unordered effects.

1.1 Research Questions
Our main research questions is: ”Can user-defined AC equalities be effectively integrated
into the conversion checker of an existing dependently-typed language?”. To answer this
question we will first answer these other sub-questions:

• How do we formalize a dependent type theory with AC functions? Chapter 3.

• What are the procedures required to type-check this theory? Chapter 3.

• What is the interaction of AC functions and meta-variables in Agda? Chapter 4.

• How can we make use of Agda with AC functions? Chapter 5.

1.2 Contributions
Our contributions are mostly of interest to language designer who consider adding AC func-
tions to their type theory. Others who might be interested are those who want to use a
language with AC functions and want to know what the limitations are and how to build
around them. This is a selection of our contributions:

• A minimal lambda calculus with AC functions. Section 3.2.

• Discussion of the required algorithms to type-check this calculus. Section 3.2.

• A fragment of rewrite rules on AC functions that is easy to execute. Section 3.3.2.

• An algorithm to check confluence of our rewrite rule fragment. Section 3.3.5.

• A formally verified sorting algorithm without proofs. Section 5.1.

• An AC Bag data-structure for natural numbers. Section 5.2.

• A proof of concept effect system with row-polymorphism. Section 5.3.

• An improved injectivity analysis procedure. Appendix A.

The source code for our Agda implementation of defintional AC functions is available on
GitHub: https://github.com/LHolten/agda-commassoc.

2

https://github.com/LHolten/agda-commassoc

Chapter 2

Background

Beforewe can investigate how to extend a dependent type systemwithAC rules, we first have
to investigate how existing dependent type systems without AC rules work. This chapter
gives an overview of dependent type systems, rewrite rules and meta-theory. Finally we
explain why rewrite rules are not enough for AC functions.

Dependent types make a type system much more expressive. This is because dependent
types are allowed to depend on run-time values (variables). This means, for example, that
the output type of a function can depend on its input. An example is (x : Nat) Ñ Vec Nat x,
which is the type of a function that takes a natural number as argument and returns a list of
that many elements.

One use of dependent types is to express guarantees of algorithms as types. The type sys-
tem is then able to check a proof that the code follows the specification. This makes projects
such as CompCert C1 possible. Dependent types also make a programming language useful
as a proof assistants; the expressive type system allows expressing theorems as types and
proofs as programs.2 An example of a big proof written in a proof assistant is the Odd Order
Theorem (Gonthier et al. 2013).

These seemingly different uses turn out to be closely related. The Curry-Howard corre-
spondence states that programs and proofs are the same (Curry 1934). A dependently-typed
language just has a type system powerful enough to express interesting propositions.

2.1 Agda Syntax
This section serves as an introduction to the Agda syntax. The intended purpose is to give
an idea of how a dependently-typed language is used and the Agda syntax will be used
throughout the rest of this thesis. More detailed description of Agda can be found in the
Agda language reference3. Agda is a dependently-typed functional programming language
that looks similar to Haskell. You can use it to write programs like the following:

data Nat : Set where
zero : Nat
suc : Nat → Nat

+ : Nat → Nat → Nat
zero + y = y
(suc x) + y = suc (x + y)

1CompCert C is a formally verified C compiler https://compcert.org/
2Also see ‘Why dependent types matter’ by Altenkirch, McBride, and McKinna (2005)
3https://agda.readthedocs.io/en/latest/

3

https://agda.readthedocs.io/en/latest/

2. BACKGROUND

First we use the data syntax to declare a new inductive datatype called Nat. This Nat type
represents our natural numbers. Nat has type Set, where Set is the type of types in Agda.4
The Nat datatype is declared to have two constructors. The first constructor zero has no
arguments and constructs a Nat. The second constructor suc has one argument of type Nat
and also produces a Nat. Writing down what each constructor produces is redundant here,
but it will be necessary for indexed data types such as Vec.

Next we define a function called _+_. Using underscores in a function name like this
makes the function an infix operator. This allows us to write the + operator between its ar-
guments. The function is defined through pattern matching. The first argument is split into
the possible constructors and in each case we give the result.

Now let us look at some more complicated data types:

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

data Vec (A : Set) : Nat → Set where
[] : Vec A zero
:: : {n : Nat} → A → Vec A n → Vec A (suc n)

Wedeclare a new datatype constructor List, it is parameterized by a basic type (A : Set).
Parameters like this are required to be given a name. The two constructors have the parameter
name A in scope and need to produce a value of type List A.

The dependent Vec datatype however, while also parameterized by (A : Set), has an ad-
ditional index. This is indicated by the fact that the sort is now Nat → Set instead of Set. The
fact that the index is a value Nat instead of another type Set is what makes Vec a dependent
type. The index does not have to be given a name, and is also not in scope for the constructors.
Now every constructor is allowed to choose the value of the index. For example, the Vec.[]
constructor produces a value of type Vec A zero, indicating that it has zero length. The other
constructor Vec._::_ takes a vector of any length and produces a vector that is one element
longer.

Note that the second constructor of Vec has a named argument {n : Nat}. The value
of this argument is in scope for the rest of the type signature. This is another example of
a dependent type. Arguments that use curly braces like this are implicit arguments. This
means that they do not need to be written down while pattern matching or when calling the
function.

We can sum both List Nat and Vec Nat n types like this:

sum : List Nat → Nat
sum [] = zero
sum (x :: xs) = x + sum xs

sumv : {n : Nat} → Vec Nat n → Nat
sumv [] = zero
sumv (x :: xs) = x + sumv xs

Weneed to use {n : Nat} tomake the sumv functionwork for vectors of any length. To explain
the benefits of indexed data types and dependent functions, here is the head function:

data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A
4Set is only the first universe level.

4

2.1. Agda Syntax

head : {A : Set} → List A → Maybe A
head [] = nothing
head (x :: xs) = just x

headv : {A : Set} {n : Nat} → Vec A (suc n) → A
headv (x :: xs) = x

The head function takes the first element of a list. However, because the list might be empty,
it can not guarantee that there is a first element. It thus has to return a Maybe A.

The function headv indexes the Vec datatype with a length of suc n to require a vector
of length at least one. This means that it is unnecessary to consider the empty vector. The
type-checker guarantees that there is always a first element, thus the function can returns
just A.

++ : {A : Set} {n m : Nat} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Another example that shows the usefulness of dependent types is vector concatenation (_++_).
To understand why this example type-checks it is necessary to look at each branch in depth:

Looking at the first branch, Agda sees that the first argument is the empty vector and
thus it knows that n = 0. The length of the second argument is m and the result should have
length n + m = 0 + m. We have defined additionwith a rule 0 + y = y, so the required length
computes to 0 + m = m. The length of the value ys that we return is also m, so this branch type-
checks.

The second branch is similar, the length of the first argument is n = suc k, where k is
the length of xs. The length of the second argument is m. The required result length is
n + m = (suc k) + m, we have defined addition with a rule (suc x) + y = suc (x + y), so
the required length is (suc k) + m = suc (k + m). Indeed, if we calculate the length of the
actual returned value x :: (xs ++ ys), wewill see that it is the same. Thus the second branch
also type-checks.

Notice that the required computations line up perfectly with the computation rules of
addition. This is the only reason that this works, if we define addition to split on the second
argument we get this error:

m != zero + m of type Nat
when checking that the expression ys has type Vec A (zero + m)

If we change addition back to split on the first argument and define concatenation to
return Vec A (m + n) instead of Vec A (n + m), we get a similar looking error:

m != m + zero of type Nat
when checking that the expression ys has type Vec A (m + zero)

Finally if we do both modifications we get this error:

m != zero of type Nat
when checking that the expression ys has type Vec A (m + zero)

For this last error, the injectivity analysis makes an assumption based on our implemen-
tation, which makes the error more confusing. In general, these valid modifications are not
accepted, because their types can not be checked automatically.

5

2. BACKGROUND

2.2 Equality
In order to check your work, a type-checker needs to check that each term has the expected
type. For a dependent type system this means checking the equality of terms depending on
variables. Thus a dependent type theory requires rules about which terms with variables
can be considered equal. Deciding all equal terms is unfeasible, because it would require
proving arbitrary theorems. Instead it is common to carefully extend the set of equalities,
that are checked automatically, with a decidable set of rules.

Definitional Equality

The equalities that are checked automatically are called ‘definitional’. When this works we
get the frictionless typing that can be seen in the concatenation example from section 2.1.
Two definitional equalities that are relevant to this thesis are α-conversion and β-reduction.
α-conversion is definitional in every dependent lambda calculus:

λx.M = λy.M [x := y]

This makes it so that the names of variables do not matter. An example would be:

λx.xz = λy.yz

β-reduction is also definitional in most5 dependent type theories:

(λx.M)V = M [x := V]

The left side of the equivalence is called a β-redex and this equality is what makes lambda
expressions compute inside types. An example reduction would be:

(λx.xz)f = fz

Next to α-conversion and β-reduction, Agda also has η-expansion and δ/ι-reduction. These
are not relevant to this thesis and we will thus not describe them.

Propositional Equality

Where definitional equalities only include those that the type-checker can prove automati-
cally, propositional equalities do not have such restriction. Propositional equalities include
all equalities that are provable. To build these proofs we use the principle of propositions as
types. The dependent equality type a ” b represents the proposition that a is equal to b and
any value of this type is proof that the equality holds. In Agda we can define the equality
type like this:

data _”_ {A : Set} : (x y : A) -> Set where
refl : {v : A} -> v ” v

The constructor of this type, refl, asserts that the two arguments of the type are definition-
ally equal. An instance of an equality type can then be destructed to make its arguments
definitionally equal again.6 This allows building proofs based on congruence, induction and
case analysis. The example below shows how to prove x+ 0 ” x for all x:

cong : @ {A B : Set} (P : A → B) {x y : A}
→ x ” y → P x ” P y
5Zombie does not have definitional β-reduction, instead it has definitional congruence closures (Sjöberg and

Weirich 2015).
6This does not always work as described in appendix B.

6

2.3. Rewrite Rules

cong _ refl = refl

x+0”x : (x : Nat) → (x + zero) ” x
x+0”x zero = refl
x+0”x (suc x) = cong suc (x+0”x x)

x+0”x is a single symbol which we use as the name of the propositional proof. Our proof is
by induction over the first argument. The base case is resolved with refl and the induction
step is proven with congruence and the induction hypothesis x+0”x x. This proof can then
be used to type cast between the relevant types:

cast : @ {A : Set} (P : A → Set)
{x y : A} → x ” y → P x → P y

cast _ refl x = x

cast-vec : {A : Set} {x : Nat} → Vec A (x + zero) → Vec A x
cast-vec {A} {x} v = cast (Vec A) (x+0”x x) v

2.3 Rewrite Rules
Even with the definitional equalities from section 2.2, there are still a lot of propositional
proofs that need to invoked manually. This is why Agda has rewrite rules. Rewrite rules
allow invoking propositional proofs automatically, effectively making them definitional.

For our running example, we might want Agda to be able to see that Vec Bool (a + 0)
is the same type as Vec Bool a. Agda does not know about this equality by default, be-
cause addition is defined to pattern match on the first argument like this: 0 + x = x. We
can add the propositional proof x+0”x from section 2.2 as a rewrite rule to the theory with
{-# REWRITE x+0”x #-}. With the rewrite rule added to the theory, Agda can now see that
the two types are equal, without manual invocation of the proof. Thus the cast-vec example
from section 2.2 can be written as:

{-# REWRITE x+0”x #-}

cast-vec' : {A : Set} {x : Nat} → Vec A (x + zero) → Vec A x
cast-vec' v = v

2.4 Meta-Theory of Type Systems
Meta-theory studies the properties of type theories themselves. Some of these properties
are important to make a type theory useful in practice. The ones that we will discuss are
consistency and subject reduction.

Consistency

Consistency means that it is impossible to prove contradictions. The Curry-Howard corre-
spondence says that a proposition is provable if and only if the corresponding type is inhab-
ited. A type is inhabited if there exists an expression with that type. Without an uninhabited
type, every proposition would be provable. The existence of an uninhabited type is thus
required for consistency. However, the existence of an uninhabited type is also sufficient for
consistency. This is because a provable contradiction would prove any other proposition and
leave no uninhabited types.

7

2. BACKGROUND

The required uninhabited type is often denoted with the symbol K, called bottom. K can
be used to write negations like ␣P = P Ñ K. When algebraic data types are available, it
is possible to define K as the data type without any constructors. A function that returns a
value of any type disproves the existence of an uninhabited type and thus also makes a type
system inconsistent. The signature of such a function would be (T : Type)Ñ T . A function
type like this should thus also be uninhabited in a consistent type theory. This means that a
consistent type theory can not have general recursion or infinite loops, because that would
allow implementing a function of type (T : Type)Ñ T .

If we make all propositional equalities definitional, then we get an extensional type the-
ory. The reason why we do not use an extensional type theory is because type-checking ex-
tensional type theory is undecidable. However, an important result is that extensional type
theory is consistent (Martin-Löf 1975a). This means that if we are able to prove an equal-
ity in a consistent type theory, then we can make that equality definitional without losing
consistency.

Subject Reduction

Subject reduction means that every reduction step preserves the type definitionally. This
means that if ahas some typeT and a reduces to some value b, then b also has typeT . Without
subject reduction, it would not be possible to guarantee that after computation, the term
still type-checks against its original type. We have subject reduction if and only if we have
well-typedness and ‘product compatibility’. Of which product compatibility can be proven
through the stronger property of confluence. (Saillard 2015). Well-typedness and confluence
will be discussed in chapter 3.

If one wants to preserve subject reduction while adding rewrite rules, it is sometimes
necessary to make additional propositional equalities definitional. This can require a combi-
nation or rewrite rules and the definitional AC functions as described in this thesis.

2.5 Type-Checkers
Manually verifying the correctness of proofs written in a dependent languagewould be error
prone and extremely time consuming. Thus, for practical use, a good type-checker is vital.
This type-checker needs to be sound and complete:

• Soundness means that the type-checker never accepts a program that is not correct
according to the type system. This ensures that we can trust that if a program is verified
by a type-checker, then it is also correct according to the type system.

• Completeness means that the type-checker always accepts a program that is correct
according to the type system. This ensures that if we write a correct program, then it
will always be accepted by the type-checker.

Note that this only requires the type-checker to be a semi-decision procedure. It might
still run forever for incorrect programs and proofs. This is less of a problem, because the
program or proof can be fixed if there is suspicion that the type-checker might be stuck.

2.6 Limitations of AC Rewriting
Applying rewrite rules exhaustively is preferably terminating for well-typed terms. Other-
wise the type checker can not guarantee completeness by just exhaustively applying rewrite
rules. Since commutativity (a b : Nat) → a + b ” b + a is symmetric, adding it as a rewrite

8

2.6. Limitations of AC Rewriting

rule would make the rewrite system non-terminating. It would thus make the type-checker
non-terminating when it tries to apply this rule exhaustively.

Associativity (x y z : Nat) → (x + y) + z ” x + (y + z) is also not perfectly suitable
as a rewrite rule. Although it does not make the rewrite system non-terminating, there are
combinationswith other associative properties that can not be expressedwith a finite number
of rules (Peterson and Stickel 1981).

9

Chapter 3

Theory

The previous section gave some background knowledge and motivated the need for a type-
checker with definitional AC functions. In order to implement such a type-checker, we first
need to establish the core theory that it should abide by. In this chapter we will thus present
a minimal type theory, enabling us to declare specific functions as definitionally AC.

Lambda Pi (λΠ) (Harper, Honsell, and Plotkin 1993) is used as a foundation for our
calculus, because of its simplicity and its natural support for extensions. To extend this cal-
culus with AC functions, we add a few inference rules to our λΠ foundation. Finally, we add
rewrite rules to the calculus in order to approximate existing, practical type theories.

The presentation of inference rules is targeted at language designers, who want to imple-
ment the calculus or extend another calculus with the theory of AC functions.

3.1 Lambda Pi Calculus
The λΠ calculus, also known as the Edinburgh Logic Framework or LF, is a minimalist de-
pendently typed lambda calculus. As an example of its generality, it is possible to represent
first- and higher-order logic in λΠ (Harper, Honsell, and Plotkin 1993). The calculus works
with so called ‘constants’, that encode the relevant theory in the context. These constants can
be thought of as axioms or postulates. The focus on encoding theory in the context is what
makes λΠ a good foundation to build an extension that support the theory of AC functions.
In this section we will thus give an overview of λΠ with its typing judgements.

objects types kinds
10 : nat : Type : Kind

λx. x : Πx : nat. nat : Type : Kind
λx. bitvec x : Πx : nat. Type : Kind

Terms in λΠ can be separated into three distinct groups: objects, which are assigned a
type, types which themselves are assigned a kind and finally kinds. Object level terms are
the only ones that can be used as arguments to functions.

For the notation of λΠ , we use a mix of the conventions from Boespflug, Carbonneaux,
and Hermant (2012). Our notation has a context, but does not have type annotations in
lambda expressions. The grammar consists of a single production rule for terms:

K,A,B,M,N ::= x | Type | Kind | Πx : A. K | λx. B |M N

11

3. THEORY

In this calculus there is an infinite number of lowercase names x, y, z. Lowercase names
are used for both variables bound in lambda terms λx.x and for constants that are given a
type in the context. As can be seen later in the inference rules, variables become constants
in the body of the lambda term where they are defined. α-conversion is only relevant for
notation, so it is assumed to be automatic in all of the inference rules. An example of α-
conversion is show in section 2.2.

• The notationΠx : A.K is used for dependent function types, the samewould bewritten
(x : A)Ñ K in Agda. We also refer to Π as the dependent product.

• The notation λx. B is used for lambda expressions. Here the type of the argument is
not written. The type of the argument can be inferred with bidirectional type checking
as described in 3.1.1.

• The notation M N is used for function application.

• The notation AÑ K is used as a shorthand notation for Πx : A. K when x is not used
in K.

As an example, the type of concatenation of bit-vectors indexed by their length could be
written as:

Πm : nat. Πn : nat.

bitvec mÑ

bitvec nÑ

bitvec (plus m n)

The sub-terms nat, bitvec and plus would be either variables or constants. Note that we can
not write vec bool, because all arguments must be objects and bool is a type.

3.1.1 Bidirectional Type Checking
Bidirectional typing is split into two procedures. This separation is necessary because there
are two cases that can occur during type checking. The first one is that we know what the
type of the terms should be, but the termdoes not necessarily have a unique type. The second
one being that we do not know what the type of the term should be, but we know that the
term has a unique type.

These two procedures are called ‘checks-against‘ for the case where we know what the
type should be and ‘synthesizes-to‘ for the case where we know that the term has a unique
type. For both procedures we have a typing judgement with inference rules that specifies
what types the procedure is allowed to accept or produce. The inference rules are such that
there is always only one that can be used. This means that it is unnecessary to do any back-
tracking and makes implementation straightforward.

• The ‘checks-against’ judgement Γ $M ð A says that in context Γ, the termM has type
A. Checks-against works on the assumption that context Γ is well-formed and term A
is well-typed in Γ.

• The ‘synthesizes-to’ judgement Γ $ M ñ A says that in context Γ, the term M has a
unique type A. Synthesizes-to works on the assumption that context Γ is well-formed.

The inference rules of the above two type judgements depend on two extra relations. The
following judgements represent these relations between terms:

12

3.1. Lambda Pi Calculus

• The ‘reduction’ relationM ÝÑβΓ N says thatwith the rewrite rules inΓ andβ-reduction,
the termM reduces toN in one step. Reductionworks on the assumption that Γ is well-
formed and M is well-typed in Γ.

• The ‘equivalence’ relation M „Γ N says that with the AC rules in Γ, the terms M and
N are equal in one step. Equivalence works on the assumption that Γ is well-formed
and M and N are well-typed in Γ.

The previous judgements work on the assumption that context is well-formed and/or some
terms are well-typed. These properties are again judgements of which the definition is a set
of inference rules.

• The ‘well-formed’ judgement $ Γ says that context Γ is well-formed.

• The ‘well-typed’ judgement Γ $ A says that term A is well-typed in context Γ. Well-
typedness works on the assumption that Γ is well-formed.

A type-checker implementation would first check that the context is well-formed, then it
would check that the type term is well-typed and finally it would use the checks-against
procedure to check the object term against the type term.

3.1.2 Inference Rules
Each judgement has a set of inference rules. An inference rule looks like this:

RULE-NAME
premise1 ... premiseN

conclusion

These rules can be used to implement an algorithm that tries to find a proof for a judgement.
This can be as straightforwards as matching the conclusion of each inference rule with the
judgement that needs to be proven. Then, if only one inference rulematches, the type-checker
tries to find a proof for each premise of that rule.

Rules for Well-Formed Contexts
EMPTY

$ xy

CONSTANT
$ Γ Γ $ Añ s x R dom(Γ)

$ Γ, x : A
s P tType,Kindu

The context contains all the constants. These ought to be considered as either postulates in
your theory, or previous declarations that are opaque to the typing judgement of interest.
The context is what defines the theory that we are working with. It is the responsibility of
the user to only type-check in a consistent context as described in section 2.4 . In order to
guarantee subject reduction, it is enough to check that the constants are well-typed (Saillard
2015).

Rules for Well-Typed Terms

KIND

Γ $ Kind

TYPED-TERM
Γ $ Añ s

Γ $ A
s P tType,Kindu

The only requirement for the well-typed judgement is that the context is well-formed. For
a term to be well-typed it needs to synthesize-to Type or Kind or it needs to be Kind itself.
This is equivalent to requiring a chain of types up to Kind, but it does not allow function
terms, because those would have a product type.

13

3. THEORY

Rules for ‘checks-against’
ABSTRACTION
Γ, x : A $ B ð K C ÝÑ˚

βΓ (Πx : A.K) x R dom(Γ)

Γ $ (λx.B)ð C

CONVERSION
Γ $ Añ C C ÝÑ˚

βΓ K C 1 ÝÑ˚
βΓ K 1 K „˚

Γ K 1

Γ $ Að C 1

All terms can be checked against a type. The only requirement is that the context is well-
formed and that the type is well-typed.

• The ABSTRACTION rule is the first that uses the reduction relation A ÝÑβΓ B. The re-
duction relation will be described later. In the case of the ‘abstraction’ rule it is used to
extract the argument type. So that it is possible to type-check the lambda expression.
The ABSTRACTION rule also needs to check that x R dom(Γ) in order to guarantee that
the context is well-typed when checking the function body. Note that we assume au-
tomatic α-conversion, so it is always possible to choose a fresh variable name to make
this condition pass.

• The CONVERSION rule can be used to check terms that synthesize to a unique type. The
CONVERSION rule will first reduce both types and then use the equivalence relationA „Γ

B to check if the reduced forms of the types are equal.

Remark. Both the reduction relation and the equivalence relation are used with a star (˚).
This means that the relation can be applied multiple times, which is called the reflexive and
transitive closure.

Rules for ‘synthesizes-to’

SORT

Γ $ Typeñ Kind

VARIABLE
x : A P Γ

Γ $ xñ A

PRODUCT
Γ $ Añ Type Γ, x : A $ K ñ s

Γ $ (Πx : A.K)ñ s
s P tType,Kindu

APPLICATION
Γ $ Añ C C ÝÑ˚

βΓ (Πx : B.K) Γ $M ð B

Γ $ AM ñ K[x := M]

The ‘synthesizes-to’ judgement can be used to get the type for any neutral term. Neutral
terms are those that will not create a β-redex when used as the first term in an application.
Our definition of neutral terms also includes terms that do not have a product type and can
thus not occur as the first term in an application at all. Conveniently this includes all terms
that are the type of some other term. This is why we can use the ‘syntesizes-to’ judgement
to check well-typedness and to check the types in a product term.

This judgement gives a unique type to these terms and only requires the context to be
well-formed. It guarantees that the term has the specific type and that the type itself is well-
typed. The APPLICATION rule requires that the left side synthesizes to a type that reduces to a
Π term. This reduction is required, because the argument type is used to check the argument
and the return type is used as the type of the application.

14

3.1. Lambda Pi Calculus

Rules for the Reduction Relation

PRODUCT-LEFT
A ÝÑβΓ A1

(Πx : A.B) ÝÑβΓ (Πx : A1.B)

PRODUCT-RIGHT
B ÝÑβΓ B1

(Πx : A.B) ÝÑβΓ (Πx : A.B1)

APPLICATION-LEFT
M ÝÑβΓ M 1

MN ÝÑβΓ M 1N

APPLICATION-RIGHT
N ÝÑβΓ N 1

MN ÝÑβΓ MN 1

BETA

(x.M)N ÝÑβΓ M [x := N]

ABSTRACTION
A ÝÑβΓ A1

(λx.A) ÝÑβΓ (λx.A1)

The reduction relation is single step β-reduction, where β-reduction is applied to one β-redex
at a time. The only requirement is that the term is type-checked before reduction. In that case
β-reduction has been proven to be strongly normalizing in λΠ (Harper, Honsell, and Plotkin
1993). So applying this relation exhaustively always gives the same normal form.

Rules for the Equivalence Relation

PRODUCT-LEFT
A „Γ A1

(Πx : A.B) „Γ (Πx : A1.B)

PRODUCT-RIGHT
B „Γ B1

(Πx : A.B) „Γ (Πx : A.B1)

APPLICATION-LEFT
M „Γ M 1

MN „Γ M 1N

APPLICATION-RIGHT
N „Γ N 1

MN „Γ MN 1

ABSTRACTION
A „Γ A1

(λx.A) „Γ (λx.A1)

For now the reflexive and transitive closure of the equivalence relation is just syntactic equal-
ity. Checking if two terms are equivalent is decidable, the algorithm only needs to recursively
check syntactic equality.

3.1.3 Conversion Checking

The conversion checking procedure corresponds precisely to the ‘conversion’ rule from the
‘checks-against’ relation. To reach its goal it uses a combination of the reduction rules and
equivalence rules. The general method is quite straightforward: Start out by applying the
reduction rules exhaustively. This results in a term that is normalized. Then check for equiv-
alence using the rules from the equivalence relation.

The procedure is sound, because it uses steps that are justified by rules from the reduc-
tion and equivalence relation. The procedure is also complete, because λΠ has been proven
strongly normalizing. After normalizing, all that remains is to check for syntactic equality,
which is also sound and complete.

Remark. Soundness here means that the conversion checker never accepts terms that are not
definitionally equal. Completeness here means that the conversion checker always accepts
terms that are definitionally equal. See section 2.5.

15

3. THEORY

3.2 Lambda Pi modulo AC
In the previous section we have define the base for our calculus. In this section we extend the
theory to create a minimal dependent type systemwhere terms can be defined as associative
and commutative.

Rules for Well-Formed Contexts
COMMASSOC
$ Γ f : P0 Ñ ¨ ¨ ¨ Ñ Pn Ñ (T Ñ T Ñ T) P Γ

$ Γ,ACn(f)

Remark. We write P0 Ñ ¨ ¨ ¨ Ñ Pn Ñ T to indicate a function that first takes n parameters of
some type and then returns a T .

We extend the definition of well-formed context to allow functions to be declared as asso-
ciative and commutative with the COMMASSOC rule. The only functions that we allow declar-
ing AC are constants like f applied to some number n of parameters. There are two reasons
why we do not allow specifying for which parameters a function is AC:

• General patterns would require general matching in order to check if a function is AC.
Because functions can nowbe declared as definitionallyAC, itwould requireACmatch-
ing. AC matching can be expensive so we would like to avoid it.

• When we add rewrite rules to our calculus, we would like to know which functions in
the rewrite rule patterns are AC. Since pattern can contain free variables, this would
not be possible with functions that are only declared to be AC for some parameters.

Definition 3.2.1. An AC function is an application of a constant f to n parameters where
ACn(f) P Γ. An AC function thus has type T Ñ T Ñ T for some T and is definitionally
associative and commutative.

Definition 3.2.2. An AC term is an application of an AC function to two arguments.

Definition 3.2.3. Two sub-terms are interchangeable if they can be swapped such that the re-
sulting term is related to the original using the reflexive and transitive closure of the equiva-
lence relation: original „˚

Γ swapped.

Definition 3.2.4. The elements of an AC term B are the sub-terms that are interchangeable
with the last two arguments of B and that are themselves not applications of the same AC
function as B.

Rules for the Equivalence Relation
COMMUTATIVE
ACn(f) P Γ M = f A0 . . . An

M X Y „Γ M Y X

ASSOCIATIVE-LEFT
ACn(f) P Γ M = f A0 . . . An

M X (M Y Z) „Γ M (M X Y) Z

ASSOCIATIVE-RIGHT
ACn(f) P Γ M = f A0 . . . An

M (M X Y) Z „Γ M X (M Y Z)

Remark. We use the notation X = Y for syntactic equality between X and Y .
To make commutativity and associativity definitional, we extend the equivalence rela-

tion with the COMMUTATIVE, ASSOCIATIVE-LEFT and ASSOCIATIVE-RIGHT rules. These are the only
rules in the equivalence relation that actually do something, whichmeans that we can decide
equivalence by flattening and sorting the elements in each AC term. This is used in section
3.2.1 for a conversion checking procedure.

16

3.2. Lambda Pi modulo AC

+

min

x y

+

c suc a

ñ + [min x y, c, suc a]

Figure 3.1: Flattening an AC-term using + function.

3.2.1 Conversion Checking Modulo AC
The conversion checking algorithm from section 3.1.3 for λΠ without AC is not complete
if the theory contains AC terms. The recursive equivalence check on arguments can miss
solutions where the order of the elements is changed.

Instead we will now use the following algorithm:

1. Both terms are reduced completely using the reduction relation as before. This gives
us normalized terms.

2. We will turn these normalized terms into canonical terms by flattening each AC term
application and sorting the elements.
Remark. f [a, b, c] is the notation of a flattened AC function f that is applied to some
number of elements a, b, c.

An application of an AC function can be flattened by comparing the function to the
function in each argument and then taking the arguments of equal functions recur-
sively. This gives us all elements as can be seen in figure 3.1

Definition 3.2.5. Sorting terms is defined to be in any total order that is syntactic. This
means that terms that are not syntactically equal will always have the same ordering
between them.

For example, the term f a (f c b) would be flattened into f [a, c, b] which is then
sorted to become f [a, b, c]. This procedure is performed in a bottom up fashion,
because sorting is only possible if the subterms are also in canonical form. Similarly it
is necessary to canonicalize the function terms before flattening. Otherwise flattening
can miss some definitionally equal functions.

3. When both terms are in canonical form, it is only necessary to check them for syntactic
equality.

Lemma 3.2.1. The conversion checking algorithm is sound.

Proof. The algorithm is sound if every step it takes is justified by the theory. The first step of
of applying reduction exhaustively is sound, because of the rules in the reduction relation.
The second step of flattening the AC function applications and sorting their elements is also
sound. This is justified because AC function symbols have definitional commutativity and
associativity, which allows reordering their elements. If the canonical forms are equal, then
the terms are also definitionally equal. Thus the algorithm is sound.

Lemma 3.2.2. The conversion checking algorithm is complete.

Proof. The algorithm is complete if all definitionally equal terms convert successfully. Be-
cause β-reduction is strongly normalizing, we know that terms modulo β will have the same
normal form. Themost general structure that is associative and commutative is themulti-set.
We know that sorted lists are a canonical form of multi-sets, so sorting the element list will
make terms equal modulo AC syntactically equal. If the terms are definitionally equal, then
the terms have equal canonical forms. Thus the algorithm is complete.

17

3. THEORY

3.3 Lambda Pi modulo AC and Rewrite Rules
Now that we have our minimal calculus with AC, it is useful to know how we can make it
closer in expressiveness to full dependent programming languages like Agda. This gives
insight in how AC interacts with the remaining features. The extension we chose to add to
the core calculus is rewrite rules.

Definition 3.3.1. Rewrite rules are written using the notation A ãÑ B. This says that terms
matching the pattern A will rewrite to B.

Definition 3.3.2. Free variables are variables that are not bound by the context or any lambda
or product constructor. To make the distinction easier, we will prefix free variables by an
underscore such as _1.

Definition 3.3.3. We define patterns to be terms that can contain free variables.

Rewrite rules have been a common extension of λΠ in previous research (Blanqui 2020;
Boespflug, Carbonneaux, and Hermant 2012). This is because rewrite rules can simulate
many desirable features from programming languages. For example they allow embedding
any pure type system (Cousineau and Dowek 2007). Two other examples of features that are
made possible with rewrite rules are presented below:

Type Polymorphism

Onemight want to encode a Type family, like List, that takes another Type as first argument.
The problem is that a direct representation is not possible in λΠ , because functions only take
objects as arguments. Instead we can define an embedding of types into objects, that we call
a universe. The only thing needed then is a function that lifts these objects back to the type
level. This function El is defined with rewrite rules. As an example we can have this theory:

Set : Type
El : SetÑ Type
Nat : Type
nat : Set

El nat ãÑ Nat

List : SetÑ Type

Here Set is our universe and it contains the embedding nat for the actual type Nat. With
this we can express the type of cons:

cons : Πt : Set. El tÑ List tÑ List t

Pattern matching

Rewrite rules can also be used to emulate pattern matching by first building a case tree to
get a set of non-overlapping patterns. This is necessary tomake first-match patternmatching
definitional. As an example, consider a function defined in Agda like this:

min : Nat -> Nat -> Nat
min zero y = zero
min x zero = zero
min (suc x) (suc y) = suc (min x y)

18

3.3. Lambda Pi modulo AC and Rewrite Rules

We could add it to the theory with rewrite rules like this:

Nat : Type
zero : Nat

suc : NatÑ Nat

min : NatÑ NatÑ Nat

min zero _1 ãÑ zero

min (suc _1) zero ãÑ zero

min (suc _1) (suc _2) ãÑ suc (min _1 _2)

Notice that min (suc _1) zero ãÑ zero requires the first argument to be suc _1 in order to
give first match semantics. Alternatively, it is also possible to discard the first-match se-
mantics of pattern matching. This idea is explored in the paper about ‘Overlapping and
Order-Independent Patterns’ (Cockx, Piessens, and Devriese 2014).

3.3.1 Inference Rules
Now that we have seen some use cases, we take a look at the inference rules that are required
to extend our calculus with rewrite rules.

Definition 3.3.4. A substitution σ maps free variables to terms. Applying a substitution to a
pattern A is written A[σ] and replaces free variables in A by the terms that they are mapped
to.

Definition 3.3.5. If a pattern P matches a term A then there exists a substitution of the free
variables σ that makes the pattern equal to the target, written as P [σ] = A.

Rules for Well-Formed Contexts
REWRITE
$ Γ Γ $ A[σ]ð T ùñ Γ $ B[σ]ð T

$ Γ, A ãÑ B

Just as with the COMMASSOC and CONSTANT rules, we can extend the theory by adding
rewrite rules to the context using the REWRITE rule. To preserve subject reduction, we require
well-typedness of the rewrite rules and confluence. Confluence checking will be described
in section 3.3.5.

Well-typedness requires that every rewrite rule is type-preserving. Formally if Γ $

A[σ] ð T and Γ $ A ãÑ B, then Γ $ B[σ] ð T for all Γ, A, B, T and σ. This is checked
by the REWRITE inference rule for well-formed contexts. Note that A and B here are patterns,
which means that they can contain free variables.

If we want the resulting theory to be consistent, then new rewrite rules also have to be
consistent with the theory.

Rules for the Reduction Relation
REWRITE-REDUCE
M „˚

Γ A[σ] A ãÑ B P Γ

M ÝÑβΓ B[σ]

REWRITE-REDUCE-EXTENDED
AC(F) P Γ M „˚

Γ F A[σ] X A ãÑ B P Γ

M ÝÑβΓ F B[σ] X

The new reduction rules REWRITE-REDUCE and REWRITE-REDUCE-EXTENDED are used to make
rewrite rules definitional. They require the left hand side (LHS) of a rewrite rule to match
the target term or a subset of the targetmodulo equivalence. Thismeans that rewrite rules on

19

3. THEORY

AC terms will require AC-matching to see if the rewrite rule applies. This check is described
in section 3.3.3. The REWRITE-REDUCE-EXTENDED corresponds neatly to rewrite rule extensions
as describe by Peterson and Stickel (1981). The difference is that instead of extending the
rewrite rules, we extend the reduction relation.

3.3.2 Pattern Fragment
For this thesis, we are not interested in a fully general type-checking procedures for rewrite
rules modulo AC. Instead we will focus on a fragment of patterns that is easy to match. The
goal is to reuse rewrite rule matching and unification procedures of patterns without AC
functions. To achieve this we introduce four restrictions on the LHS pattern of rewrite rules.

1. To prevent matching on potential β-redexes, every application in a pattern has the
shape fx̄, where x̄ is a list of arguments and f is not a free variable. Furthermore,
the pattern root must be such an application to make sure that it does not match inside
potential β-redexes.

2. AC sub-terms in our patterns must have at most two elements.
We know which terms are AC, because all applications in a pattern have non free head
symbol and for each head symbol we can check if they are ACn for any n.
To check if AC sub-terms have at most two elements, we thus need to check that nested
AC function applications either do not have the same head-symbol, or are applications
of non-unifiable parameters.

3. AC sub-terms that are not at the root of the pattern must not require commutativity or
associativity to apply.
In order to guarantee that associativity is not required for sub-terms, it is enough to
restrict AC sub-terms to have at most two elements as before. To make sure that com-
mutativity is not required, it is enough to check that the two elements are identical
except for pairs of independent free variables between the arguments.

4. If two sets of free variables are interchangeable in the LHS, then they must also be
interchangeable in the right hand side (RHS).
Two sets of free variables are ‘interchangeable’ if they can be swapped without chang-
ing the LHS modulo AC. Because commutativity must not be required to match AC
sub-terms in a pattern, it will be possible to swap the independent free variables be-
tween the two elements of these sub-terms. When this happens we must check that
swapping the same sets of free variables does not change the RHS modulo AC.

These restrictions make it possible to do pattern matching with O(n2) complexity, where n
is the size of the terms. This is described in section 3.3.3.

3.3.3 Rewriting Rule Matching Modulo AC
To apply rewrite rules, it is first necessary to findwhere the rules can be applied, this is called
rewrite rule matching. Defining AC functions in the context means that rewrite rule match-
ing becomes more complex. This is visible from the REWRITE-REDUCE and REWRITE-REDUCE-
EXTENDED inference rules, in which„˚

Γ is used to compare the pattern term to the target term.
Since „˚

Γ compares terms modulo AC, we also have to do this during pattern matching.
In order for our reduction to be exhaustive, we need to make sure that we apply all pos-

sible rewrite rules. We have restricted AC rewrite rules to have at most two elements at the
root. This makes matching as simple as finding all pairs of elements in any target AC term.
For each pair we use regular pattern matching with normal and swapped elements.

20

3.3. Lambda Pi modulo AC and Rewrite Rules

A

B

B1

C

C 1

ÝÑβΓ

ÝÑβΓ

ÝÑ˚
βΓ

ÝÑ˚
βΓ

„˚
Γ

Figure 3.2: Local confluence.

A

B

B1

C

C 1

ÝÑ˚
βΓ

ÝÑ˚
βΓ

ÝÑ˚
βΓ

ÝÑ˚
βΓ

„˚
Γ

Figure 3.3: Global confluence.

Lemma 3.3.1. The algorithm is sound.

Proof. If the target term has only two elements, then this corresponds to the REWRITE-REDUCE
rule, and if the target has more than two elements, then it corresponds to the REWRITE-REDUCE-
EXTENDED rule.

Lemma 3.3.2. The algorithm applies all possible rewrite rules modulo AC.

Proof. Any AC term at the root of a LHS pattern must have at most two elements. Thus, the
only way that such a pattern can match on an AC term with more than two elements is if
some of the elements in the pattern are free variables. For example the patternsM X _1 and
N _1 _2, where M and N are AC functions, could match an AC term with more than two
elements. For every such match it is possible to match just two elements by substituting each
free variable with a single element from the elements that it matched previously.

We thus have that it is impossible to have a term that is not completely reduced and cannot
be reduced further by matching two elements.

3.3.4 Confluence
There are two related confluence properties, local confluence and (global) confluence. Local
confluence requires that given two initial reductions A ÝÑβΓ B and A ÝÑβΓ B1, there must
be some sequence of reductions from each term B ÝÑ˚

βΓ C and B1 ÝÑ˚
βΓ C 1 that result in

the same term modulo AC: C „˚
Γ C 1. This is shown in figure 3.2. The stronger property of

global confluence requires the same property after any number of initial reductions as can
be seen in 3.3.

Local confluence is enough to guarantee that there is at most one normal form for each
term, but it does not guarantee subject reduction. Furthermore, neither property is enough
to guarantee completeness of our conversion checking procedure. To guarantee complete-
ness we need the rewrite system to be terminating. Termination checking is difficult and
that is why we might want to check global confluence so that we can at least guarantee sub-
ject reduction. For the purpose of this thesis however, we make termination checking the
responsibility of the user. This means that local and global confluence are identical and both
guarantee completeness and subject reduction.

3.3.5 Local Confluence Checking
This section describes how we can check local confluence as described in 3.3.4. To guarantee
local confluence we have to consider all pairs of reductions. Rewrite rules can not match
at potential β-redexes, so we know that at least rewrite rules are confluent with β-reduction.
However, we do not know if rewrite rules are confluentwith each other. In order to guarantee

21

3. THEORY

this, we first need to find all critical pairs. As stated by the REWRITE-REDUCE and REWRITE-
REDUCE-EXTENDED rules, we are allowed to use the equivalence relation to apply rewrite rules.
For this reason the definition of critical pairs depends on overlap and the definition of overlap
uses the equivalence relation.

Definition 3.3.6. We define Pos(X) to be the set of all positions of sub-terms inside the term
X . It is possible to replace a sub-term at position p in X with another term Y using the
notation Xp|Y .

Definition 3.3.7. Let there be two patterns X and Y and a position p P Pos(X). We have
that X overlaps Y at position p if there exists substitutions σ1 and σ2 such that X[σ1] „

˚
Γ

Xp|Y [σ2]. If we also have two rewrite rulesX ãÑ X 1 and Y ãÑ Y 1, then we have a critical pair
(X 1[σ1], Xp|Y 1 [σ2]).

Definitionally AC function allow for a new kind of overlap between patterns that we call
partial overlap:

Definition 3.3.8. Let there be two patterns X and Y and two positions p P Pos(X) and
q P Pos(Y). We have partial overlap between these two patterns if there exists substitutions
σ1 and σ2 such that Yq|X [σ1] „

˚
Γ Xp|Y [σ2]. If we also have two rewrite rules X ãÑ X 1 and

Y ãÑ Y 1, then we have a critical pair (Yq|X 1 [σ1], Xp|Y 1 [σ2]).

Definition 3.3.9. A critical pair is the result of applying two rewrite rules to the unification
of their LHSs with some overlap as defined in 3.3.7 and 3.3.8.

Definition 3.3.10. A critical pair (A,B) is more general than another critical pair (X,Y), if
there exists a substitution σ such that (A[σ], B[σ]) = (X,Y) or (A[σ], B[σ]) = (Y,X).

Definition 3.3.11. A complete set of critical pairs contains for each critical pair at least one
more general critical pair.

For the purpose of this thesis, we assume that there is already a ‘normal’ unification
procedure implemented, which handles AC terms as if they have no extra equivalences. This
unification procedure is also guaranteed to return themost general unifier, whichmeans that
the associated critical pair is more general than any other critical pair for the same unification
problem.

The definition of critical pairs above uses overlap which uses the equivalence relation.
This meant that in order to naively find critical pairs we would have to do AC unification.
We show that for our pattern fragment and calculus, we can actually find a complete set of
critical pairs using the ‘normal’ unification procedure. First wewill find all critical pairs with
full overlap and then those with partial overlap.

Full Overlap at Internal Position

We know that rewrite rules in our fragment are not allowed to require AC rules for matching
at positions other than the root. We also know that interchangeable free variables in the LHS
must be interchangeable in the RHS. These two restrictions together mean that we do not
have to consider AC rules when creating critical pairs at positions other than the root.

This means that if we have two rewrite rules X ãÑ X 1 and Y ãÑ Y 1 and some position
p P Pos(X). Then we can always create at most one critical pair, no matter if some term at
the root of Y is AC. If unification gives us some σx and σy such that X[σx] = Xp|Y [σy], then
we have critical pair (X 1[σx], Xp|Y 1 [σy]).

22

3.3. Lambda Pi modulo AC and Rewrite Rules

Full Overlap at the Root

We assume that we are creating critical pairs for two rewrite rulesX ãÑ X 1 and Y ãÑ Y 1. We
can have up to two critical pairs with full overlap:

• Whether or not our rewrite rules have an AC term at the root, we need to try creating
a critical pair by just unifying X with Y . Formally, if we have X[σx] = Y [σy] for some
σx and σy, then the critical pair is (X 1[σx], Y

1[σy]).

• If a term at the root of our rewrite rules is AC, we need to unifyX with everyACpattern
M and swap the arguments before unifying with Y . Formally, if we haveM [σm]AB =
X[σx] and M [σm] B A = Y [σy] for some A,B, σm, σx and σy, then the critical pair is
(X 1[σx], Y

1[σy]).

Definition 3.3.12. An AC pattern M is an ACn constant f applied to n independent free
variables. This would look like f _1 ¨ ¨ ¨ _n.

Partial Overlap at the Root

Againwe assume thatwe are creating critical pairs for two rewrite rulesX ãÑ X 1 andY ãÑ Y 1.
There is potential for partial overlap in case both rewrite rules have an AC term at the root.
For every AC pattern M there are four cases, corresponding to the combinations of left and
right arguments overlapping between the two patterns. Formally, we need the following two
conditions for some A,B,C, σm, σx and σy:

• M [σm] A B = X[σx] or M [σm] B A = X[σx]

• M [σm] B C = Y [σy] or M [σm] C B = Y [σy]

If we have both of these conditions, then the rewrite rules can overlap at B and we have the
critical pair (M [σm] C X 1[σx],M [σm] A Y 1[σy]).

Confluence

Now that we know how to compute a complete set of critical pairs, all that remains is to
check local confluence for each critical pair. Local confluence only require that the two terms
convert to one another. This is checked using the conversion checkermoduloAC as described
in section 3.2.1.

Lemma 3.3.3. If every critical pair in a complete set is confluent, then the reduction relation
is confluent.

Proof. There can not be any critical pairs between rewrite rules and β-reduction, because
rewrite rule patterns do not match at potential β-redexes. Rewrite rules that apply to the
same term without any overlap are trivially confluent. This is because applying one rewrite
rule can not influence the applicability of the other rewrite rule and the results are equal
because of congruence. Finally, it is only necessary to check the most general critical pairs,
because the confluence of other critical pairs follows from the more general ones.

23

Chapter 4

Implementation

This chapter explains how the ideas from the core calculus presented in Chapter 3 have been
applied to Agda. The Agda compiler is a big project, so we won’t describe how the parts
work that are irrelevant to this thesis. This is a high level overview of the steps used for
type-checking:

• The source code is parsed into an abstract syntax tree (AST).

• The AST is desugared into a core AST.

• The core AST is type-checked.

– Bidirectional type-checking is used to gather constraints.
– Constraints are solved using the conversion checker.

First we give some background knowledge on type-checking in Agda and the scope of
implementation in section 4.1 and 4.2. Then we continue with descriptions of the different
procedures used for type-checking that are affected by the addition of definitional AC func-
tions in section 4.3, 4.4 and 4.5.

4.1 Agda Type Checking Overview
Agda type-checking extends bidirectional type-checkingwithmeta-variables. Meta-variables
are used for implicit arguments as shown in section 2.1. When calling a function, all implicit
arguments are substituted with meta-variables.

Bidirectional type-checking is only the first step in type-checking with meta-variables. It
is used to gather conversion constraints that are later solved by the conversion checker. Con-
version constraints are pairs of terms that should convert to one another. Terms in these con-
straints can contain meta-variables, and this can block conversion checking. When this hap-
pens, the conversion checker moves on to the next constraint and when more meta-variables
are solved it can retry constraints that have previously failed.

The type-checker is allowed to give each meta-variable a value as required, but only if it
is guaranteed that all solutions are definitionally equal. So for example if a+0 and a are the
only solutions, and we have a+ 0 ÝÑ˚

βΓ a, then they are both valid substitutions.
We do not solve meta-variables that have multiple solutions, because the number of solu-

tions can reduce after solving other meta-variables. In this case we might need to backtrack
and essentially try every solution. This is infeasible for meta-variables with many solutions.
Remark. When we need to write down meta-variable names in this thesis, we prefix them
with question marks (e.g., ?1, ?2).

25

4. IMPLEMENTATION

Core AST Representation

Agda uses spinal β-normal form to represent terms in its core AST. This means that not only
are there no β-redexes, but multiple applications have been combined into a single function
symbol with a list of arguments. As an example, the application f a b c would not be rep-
resented with three APP(func, arg) nodes, but instead a single APP(func, arg_list). The
func in such nodes is called the head symbol and can only be a variable or constant. This is
because if func is an application then the term is not spinal, and if func is an abstraction then
the term is not β-normal. β-normal form makes it possible to type-check with bidirectional
typing and spinal form makes the representation more efficient and easier to reason about.

4.2 Scope of Implementation
Even with the concise theory that we want to implement, there was not enough time to im-
plement everything. The two missing features are confluence checking and parameterised
AC constants. Both of these features are not necessary for the examples. The next chapters
will describe how the theory was implemented.

4.3 Normalization
Normalizing terms is important for the type-checker, it is used a lot in the conversion checker.
We already know how normalization works with definitionally AC function as described in
chapter 3. Agda has a second normal form however, it is called weak head normal form
(WHNF) and is used because it is much cheaper to compute.

Weak Head Normal Form

An application term is in WHNF if the head is completely normalized. This means that no
rewrite rule is allowed to match on the root of the term. This has the convenient result that
the arguments of the term head can no longer interact. Interaction between arguments here
means that it is possible to have a rewrite rules match on two arguments at once.

When the term head is AC, this definition does not really change and the representation
of terms does not change either. However, now we want all elements of the AC term to no
longer interact. We thus need to check that no rewrite rule can ever apply to any pair of
elements as described in section 3.3.3.

Lemma 4.3.1. The head symbol of a term in WHNF can be assumed to be injective with
respect to definitional equality.

Proof. By contradiction: assume we have some definitional equality f ā = f b̄, where both
terms are in WHNF and the argument lists are not definitionally equal ā ‰ b̄. For the two
terms to be definitionally equal, we must have some reduction from either term. However,
both terms are in WHNF, so there can be no such reduction. Thus we have a contradiction
and the only possible conclusion is that f ā = f b̄ ùñ ā = b̄.

Normalization Procedures Modulo AC

Agda has two important procedures for evaluation, Reduce and Normalize. Normalize nor-
malizes terms to their normal form and Reduce only normalizes to WHNF. Both procedures
follow similar steps, the only difference is that Reduce unflattens after AC matching, because
at this point the head symbol of the term is known and the elements can no longer interact.
The steps of normalizing an AC term can be seen in figure 4.1 and every step is explained
below:

26

4.4. Conversion Checking

+

+

c zero

+

b suc a

ñflatten

+ [c, zero, b, suc a] ñac´match

suc (+ [c, b, a]) ñrecurse

suc (+ [c, b, a]) ñsort

suc (+ [a, b, c]) ñunflatten

suc

+

a +

b c

Figure 4.1: Normalising an AC-term.

• Flattening an AC term gathers all the elements into a list. This requires comparing the
head symbol of the root with the head symbol of each argument recursively. Checking
the head symbol of an argument requires reducing first. SinceAgda hasmeta-variables,
we might not be able to flatten a term until some meta-variables have been resolved.

• AC matching every pair of elements is necessary to make sure that the elements do
no longer interact. This is where the Reduce procedure would stop and unflatten the
elements back into a tree.

• Recursively normalizing the elements needs to be done before sorting in order to make
sure that the syntactic order is consistent.

• Sorting the elements in an AC term is done syntactically. It is important to not use
any irrelevant details on the terms for sorting, because this might make equal elements
non-adjacent.

• Unflatteningputs the elements back in a tree structure. This tree ismade right-associative
and uses the order from the sorted list. This means that the tree is canonical just like
the sorted list.

It is not possible to sort argument in the Reduce procedure, because the sorting might not
be correct. This means that the element order as returned by Reduce can not be trusted. We
have to call Normalize explicitly in all places where the term head is AC and the order of the
elements matters.

4.4 Conversion Checking
Conversion checking is themost important procedure that needs to bemodifiedwhen adding
support for definitional AC functions. So in this sectionwe give an overview ofmodifications
that need to be made.

4.4.1 General Conversion Checking Procedure
We first describe how conversion checking with meta-variables works without definitional
AC functions:

• The simplest case in the conversion checker is when one of the terms it tries to convert
is a meta-variable. In this case the meta-variable is immediately instantiated with the
other term.

• If neither term is a meta-variable then we distinguish three cases based on how many
of the terms can be reduced to WHNF:

27

4. IMPLEMENTATION

– When both terms reduce to WHNF, the only way type checking can succeed is if
between both sides the heads are equal and the arguments convert. This is because
WHNF guarantees that the head of the term can not change and can be assumed
to be injective with respect do definitional equality.

– When neither term reduces to WHNF, then the conversion checker checks if the
head and arguments can be converted between both terms without solving any
meta-variables. If it succeeds then we know that both sides are indeed equal and
we have not lost any solutions. Allowing the conversion checker to solve meta-
variables here could lose solution because we can not assume the term heads to
be injective.

– Agda supports one more case, which is when one term can be reduced to WHNF
and the other term can not. A term that can not be reduced to WHNF is called
‘blocked’. In this case injectivity analysis can sometimes still refine the shape of
meta-variables in the blocked term or solve them completely. How this worked
will be described in section 4.5.

4.4.2 Conversion Check Modulo AC
Now that we know how conversion checking with meta-variables works in Agda, we can
describe the changes that need to be made to support AC functions.

All the same rules from regular conversion checking apply. The only difference is that in
the case where both terms reduce to WHNF with equal head symbol that is AC, we can no
longer just conversion check the arguments. Whatwe do instead is flatten bothAC terms into
element lists. Because both sides are in WHNF, we know that the elements can not interact.
Now if both sides have at least two elements each, we proceed with a new algorithm:

First we normalize both element lists and remove equal elements between both sides.
Note that both lists always start with at least two elements before removing equal elements.
Afterwards we will have one of the following cases:

• Both element lists are empty, in this case the two terms were equal and conversion
succeeds.

• One of the element lists is empty, but the other list is not. In this case type-checking
has failed. This is because there can not be a definitional unit element. The existence
of such an element would prevent the larger term from being in WHNF. Thus there is
no solution for the non empty element list.

• One of the element lists has one element and the other list is not empty. In this case we
check conversion of the single element with the AC term constructed from the other
element list. This does not cause infinite recursion in the conversion checker, because
the single element is a subset of the original element list.

• Both sides havemore than two elements. In this case we do not know how tomatch the
elements to each other without more in depth analysis. We are stuck on this constraint
and proceed with the next constraint.

4.5 Injectivity Analysis
It turns out that when you no longer have to prove AC equalities, the most annoying thing is
that you need to specify the values of many arguments that could be inferred. This is where
injectivity analysis is very important, and that is why we dedicated quite some time to figur-
ing out how injectivity analysis works and how to make this better. The current injectivity

28

4.5. Injectivity Analysis

analysis that is implemented in Agda cannot handle rewrite rules. So what we do here is
describe how it is made to work with rewrite rules. In appendix A, we will describe more
enhancements that make the injectivity analysis able to infer more meta-variables.

4.5.1 Injectivity Analysis with Rewrite Rules

Wewill first describe injectivity analysis with rewrite rules, but without definitional AC func-
tions. Note that injectivity analysis is part of conversion checking and if this procedure gets
stuck at any point the type-checker will continue with the next constraint as described in 4.1.

Remember that injectivity analysis is applied in the conversion checker when one side is
in WHNF and the other side is blocked on some meta-variable. We discern two cases here:
either the term head symbols are equal, or they are not. These cases have different solutions
as described below:

Injectivity Analysis without Equal Heads

Because the heads of both terms are not equal, we know that some reduction must happen
on the blocked term in order to make conversion checking succeed. To decide which reduc-
tions are possible, the injectivity analysis looks at the RHSs of the computation rules of the
blocked term. Some RHSs might have an unknown head, in that case we assume every head
is possible. If only one rule has the correct head as possibility in the RHS, then that is the
computation rule that must execute. We can refine the meta-variables in the blocked term
to make the blocked term match the computation rule LHS. If more than one rule has the
correct head as a possibility in the RHS, then we do not know which rule needs to execute
and we are stuck. Finally, if no rule can possibly rewrite to the correct head, then we know
type-checking has failed.

Injectivity Analysis with Equal Heads

When the head of both terms is equal, but one side is blocked. Then we can not assume
that a reduction is necessary. We can thus also not refine the blocked side to something that
reduces. In this case, we check if it is possible for the blocked side to reduce to a termwith the
same head. If this is not possible, then the only way both sides are going to be equal is if all
the arguments are equal. In this case we can proceed by conversion checking the arguments.
If instead it is possible for the blocked term to reduce to a term with the same head, then we
are stuck.

4.5.2 Injectivity Analysis modulo AC

Injectivity analysis with definitional AC functions is much more difficult:

Without Equal Heads

The only way for an AC term to produce a different head symbol is if the list of elements
reduces to just two elements. This is because rewrite rules are only applied to two elements
at once as described in 3.3.3.

If the AC term has exactly two elements, then we can assume that one of the rewrite rules
needs to be applied in normal or swapped order. If there are more than two elements, then
we do not know if the current split of elements over the arguments at the root of the AC term
reduces to the two elements that we need. Thus we can not easily apply injectivity analysis
in this case and we are stuck.

29

4. IMPLEMENTATION

With Equal Heads

With equal heads there is the possibility that no reduction is necessary at all. We would like
to do something similar to conversion checking with two terms in WHNF. It is however not
easy to guarantee that this is allowed. How to do this is left as future work. For now we are
just stuck when checking injectivity of an AC term with equal head symbols.

30

Chapter 5

Usage Examples

This chapter is about reviewing the theory and Agda implementation to see if it is possible
to automatically write proofs involving commutativity and associativity. We prove some
properties of sorting functions in section 5.1, define a Bag data-structure for natural numbers
in section 5.2 and finally implement a simple effect system with effect rows in section 5.3.

5.1 Sorting Algorithms
There are two approaches to formally verifying functions in a proof assistant: the extrinsic
approach and the intrinsic approach. Here we demonstrate both approaches for a sorting
function on lists. The extrinsic approach is to have a generic signature and then have separate
proofs like this:

sort : List Nat → List Nat
sort = ?

preserves-items : (list : List Nat) → items list ” items (sort list)
preserves-items = ?

sorts-items : (list : List Nat) → is-sorted (sort list) ” true
sorts-items = ?

The proofs and the function can be bundled together to make the function interchangeable
with other sorting function. The tuple that bundles these things togetherwould look like this:
(sort, preserves-items, sorts-items). Note that it is also possible to ignore the proofs and
treat the sorting function as a more abstract function on lists.

The intrinsic approach to formally verify a sorting function is with intrinsic data-types.
Lets leave sorts-items for now and only verify preserves-items: we want to model that the
elements in the input list are the same as the elements in the output list. The data-structure
that contains just information about included items is the multi-set. We thus define a multi-
set for natural numbers and call it Bag. Now we can add an implicit argument to our sorting
function that specifies the included elements so that we can refine the input and output list
to have these elements. This refinement requires a list data-structure that is indexed by a
Bag, which we will call UnSorted. Taking all of this together results in the following type for
sorting functions:

postulate
Bag : Set
H : Bag
bag : Nat → Bag

31

5. USAGE EXAMPLES

-- disjoin union: returns a bag containing all items from both bags
__ : Bag → Bag → Bag

H\xs : (xs : Bag) → H \ xs ” xs
xs\H : (xs : Bag) → xs \ H ” xs

\-comm : (xs ys : Bag) → xs \ ys ” ys \ xs
\-assoc : (xs ys zs : Bag) → (xs \ ys) \ zs ” xs \ (ys \ zs)

data UnSorted : Bag → Set where
[] : UnSorted H
:: : (x : Nat) {xb : Bag} → UnSorted xb

→ UnSorted (bag x \ xb)

sort' : {xs : Bag} → UnSorted xs → UnSorted xs
sort' = ?

All implementations of this sorting function must preserve the items exactly. This is
checked by the type-system and does not require separate proof. The sorting function is also
immediately interchangeable with other functions that preserve items. However, if we want
to use this function in the place of an abstract function on lists, then we must write adapters
to and from our indexed UnSorted to normal List.

For the implementation of the sort function to be easy, it is essential that Bag has defini-
tionally AC disjoint union (\). To see why, let us look at an insert function that one might
use to implement sort. Without definitionally AC disjoint union, it would look something
like this:

swap-left : @ x y ys → y \ (x \ ys) ” x \ (y \ ys)
swap-left = ?

insert : (x : Nat) → {xs : Bag Nat} → UnSorted xs → UnSorted (bag x \ xs)
insert x [] = x :: []
insert x (y :: ys) = case x < y of \where

true → x :: y :: ys
false → cast swap-left (y :: insert x ys)

Note that it requires proving and invoking a new theorem swap-left. This can be left to the
type-checker with the AC pragma:

{-# COMMASSOC \-comm \-assoc #-}

insert' : (x : Nat) → {xs : Bag Nat} → UnSorted xs → UnSorted (bag x \ xs)
insert' x [] = x :: []
insert' x (y :: ys) = case x < y of \where

true → x :: y :: ys
false → y :: insert' x ys

If we want to intrinsically check sorts-items, then we need a new Sorted list type that
refines the elements in the Bag. How to refine elements in a bag is described in section 5.2.
Appendix C.1 has a fully verified implementation of two sorting algorithms: Insertion sort
and merge sort. These algorithms have been implemented without any proof writing that is
specific to each sorting algorithm. The only things that were proven were general properties
of Bag and comparisons. This shows that it is a viable development strategy of which I hope
to see more in the future.

32

5.2. Bags

5.2 Bags
When designing a Bag data-structure, the most important properties for usability are the
supported operations, rewrite rules and injectivity analysis. That is why this chapter will
focus on these aspects.

5.2.1 Mapping Bags
An important design consideration is support for refining the elements of the bag as a whole.
For example, in the case of sorting algorithms, it can be very useful to refine elements in a
bag to be lower bounded by some number. This can be achieved by refining the numbers to
be additions of the lower bound and some new value. For example y ” x + d could be used
to refine a single number y. To refine all elements in a Bag, we would need a map function, so
that we can write xs ” map (\d → x + d) ds. If we define a map function for Bag however,
we must make sure that map is reduced away when possible. This requires the following
propositional equalities as rewrite rules:

postulate
map : (Nat → Nat) → Bag → Bag
rew1 : @ f xs ys → map f (xs \ ys) ” map f xs \ map f ys
rew2 : @ f x → map f (bag x) ” bag (f x)
rew3 : @ f → map f H ” H

The problem with these rewrite rules is that the conversion checker can not find the solution
for a constraint like map f xs \ map f ys = map f ?1. It can use injectivity analysis to refine
the meta-variable with ?1 ” ?2 \ ?3, but this will then reduce with rule rew1 and we end
up with the constraint map f xs \ map f ys = map f ?2 \ map f ?3. This constraint has
multiple solutions and can thus not be solved without the risk of losing the right solution.

What happened is that splitting the meta-variable lost the information that the two meta-
variables are always used together and thus it doesn’t matter which side we assign to which
value. Keeping track of which variables are interchangeable would allow the conversion
checker to assign a value to each in any order it wants.

It seems there is a balance, more conversion rules means that injectivity analysis becomes
harder. This is why definitional AC breaks injectivity analysis here. The analysis would have
worked if \was not definitionally AC.

A similar problem to the previous one occurs when we add the rewrite rule
map f (map g xs) ” map (\x → f (g x)) xs. This rewrite rule can rewrite map f ?1 to some
map f ?2, preventing injectivity analysis on equations like map f x = map f ?1. The only way
we can know that map f is injective is if f itself is injective. This is yet another check that could
be implemented in injectivity analysis.

5.2.2 Nat Bag Without Postulates
Even thoughwe only care about the rewrite rules and injectivity analysis of a Bag for usability,
it is useful to have an implementation that is not postulated. This would prove that the data-
structure is not inconsistent, which is why we have implemented a bag of natural numbers
without postulates.

A bag of natural numbers is useful for sorting algorithms, but at a minimum it needs to
have a raise function or constructor. raise is equivalent to the map, but it can only be used to
add a value to all elements to create a lower bound. For example, one might want to write
raise x ?1 for a bag that is lower bounded by x. It would be best if raise was a constructor,
because that would mean that all bags reduce to have a lower bound.

33

5. USAGE EXAMPLES

The other design consideration for bags is that there needs to be an empty bag. This
means that raise can not be a data constructor, because it is not injective for bags that can be
empty. This gives us the following design:

data Bag : Set where
-- the empty bag
H : Bag
-- add zero to the bag and raise with the specified Nat
Ò : Nat → Bag → Bag

raise : Nat → Bag → Bag
raise x H = H
raise x (y Ò ys) = (x + y) Ò ys

It canmodel empty bags and raise is defined as a function. Sadly thismeans that the reduced
form of bags does not have a nice lower bound. To make it work satisfactorily we need the
following rewrite rules:

variable
x y d : Nat
xs ys : Bag

postulate
rew1 : x Ò xs \ (x + d) Ò ys ” x Ò d Ò (xs \ ys)
rew2 : raise x xs \ (x + d) Ò ys ” raise x (xs \ d Ò ys)
rew3 : raise (y + d) xs \ y Ò ys ” y Ò (raise d xs \ ys)
rew4 : raise x xs \ raise (x + d) ys ” raise x (xs \ raise d ys)

Because raise is not a constructor, every combination of raise and Ò needs to be handled
separately. If addition is marked as AC, then all of these are multi-level AC rewrite rules that
are not part of our rewrite rule fragment. If we want to work around that then we can define
custom addition which is not AC for use with raise and add more rewrite rules for when d
is zero.

Implementation Using Bag1

An alternative implementation is to first define a Bag1 data-structure that is not empty. This
can then be used to define Bag as either Bag1 or the empty bag:

data Bag1 : Set where
-- bag with just the zero element in it
[zero] : Bag1
-- add the zero element to the bag
zero : Bag1 → Bag1
-- increment all elements in the bag by one
suc : Bag1 → Bag1

data Bag : Set where
-- the empty bag
H : Bag
-- the non-empty bag
just : Bag1 → Bag

The constructor suc is like raise 1 and zero adds another zero element to the bag. raise is still
not a constructor, but the advantage of this implementation is that Agda can automatically
check termination of the disjoint union function. The full source code for this data-structure
is provided in appendix C.2.

34

5.3. Effect Systems

5.3 Effect Systems
The final use case that we explored is effect systems. In pure type systems it is common to
model side effects throughmonads and do notation. Multiple effects can be used at the same
time with a stack of monad transformers, but when many effects are used at the same time
this can become unwieldy. Effect rows are an alternative to these monad stacks that make it
easier to work with many effects by making them unordered.

Previouswork by Bach Poulsen andRest (2023) has used overlapping instance arguments
to implement effect rows1, butwewill showhere that this is also possiblewith theACpragma.
The implemented effect system only aims to demonstrate the composition of effects and that
they are unordered. The full source code for this is provided in the appendix C.3.

-- The universe of two writer effects
data Eff : Set where

Bools : Eff
Nats : Eff

-- embedding of universe into types
get-eff : Eff → Set
get-eff Bools = List Bool
get-eff Nats = List Nat

-- Encoding of required Eff in the environment
Cond : Set
Cond = List Eff → Bool

-- data representing effectfull computation
data WithEff : @ {L : List Eff} (v : Bool) (O : Set) → Set₁ where

pure : @ {v O} → O → WithEff {[]} v O
emit : @ {L E v} → get-eff E → WithEff {E :: L} v J
inc : @ {L E v O} → WithEff {L} v O → WithEff {E :: L} v O
>>= : @ {L v X O} → WithEff {L} v X → (X → WithEff {L} v O) → WithEff {L} v O
fail : @ {L O} → WithEff {L} false O

How it works is that WithEff is indexed by an environment of available effects and the result
of some Cond on that environment. This prevents problems from green slime by moving all
problems into the fail constructor. After everything is worked out we can write code like
this:

test : WithEff' (eff Nats && eff Bools) J
test = do

smart-emit {Nats} (10 :: [])
smart-emit {Bools} (true :: [])
smart-emit {Nats} (42 :: [])

main : List Nat
main = eval do

(nats , bools) ← handle {Bools} do
(tt , nats) ← handle {Nats} test
smart-pure nats

smart-pure nats

1https://github.com/heft-lang/POPL2023/blob/master/src/Free.agda

35

https://github.com/heft-lang/POPL2023/blob/master/src/Free.agda

5. USAGE EXAMPLES

main1 : WithEff' (eff Bools) (List Nat)
main1 = do

(tt , nats) ← handle {Nats} test
smart-pure nats

test2 : WithEff' (eff Nats && eff Bools) J
test2 = do

_ ← smart-raise main1
smart-pure tt

Normally whenever you would used smart-emit, the AC checker would fail to find what to
use for the remainder of the effects. Our workaround is to use the fact that the output type of
the function can almost always be inferred from its call-site. The requirements of the output
are stored in v and we require an instance argument to prove that eff E xs is a subset.

smart-emit : @ {E v xs} → {{v &&' eff E xs ” v}} → get-eff E → WithEff {xs} v J
smart-emit {E} {v} {xs} {{p}} e = cast (λ x → WithEff x J) p (emit-idx {v} (idx E xs) e)

36

Chapter 6

Related work

This section reviews some of the relatedwork. We are interested in alternatives that automate
reasoning about AC functions. These works are organized by their method of implementa-
tion.

6.1 Implemented in the Type System
The paper about CoqMT (and CoqMTU) proves that it is possible to extend an impredica-
tive type-system with universe levels and inductive data-types, such as Coq, with first order
theories. The paper does not explain how to extend an implementation with such a theory,
but the repository1 does have the theory of natural numbers implemented for Coq. Thus it
has a good theoretical result, but does not describe how to let users add their own theories.
Rewrite rules and AC definitions from this thesis aim to define and implement a system for
users to use the theory that they want.

Dedukti also has some definitional AC functions. While we were not able to find any
documentation, the source code is available2.

6.2 Non-Dependent Type Systems
ELAN (Borovanský et al. 2002) is a logic-based rewriting system with support for AC func-
tion symbols and conditional rewriting. Other related systems are Maude 2.0 (Clavel et al.
2002) and CafeObj (Diaconescu and Futatsugi 2002), both of which have support for AC
function symbols. While it is possible to prove properties in these systems, they are not de-
pendently typed and can thus not be used as generally as the type system described in this
thesis.

6.3 Implemented with Macros
Another project that is related to ours is Frex (Allais and Brady 2022), it is a library and the
approach can thus be used for any dependent language. Their approach is to let users define
the simplifiers for any theory and it will give you procedures to automatically write proofs
about those theories. The simplifiers can be build modularly and are verified by the type-
checker to be sound and complete. This is an alternative approach to rewrite rules that does
not require confluence checking. The approach used by Frex is able to handle associativity
and commutativity, because it represents terms with a data structure that allows ordering
terms. The biggest downside is that it requires explicit invocation of the macro and it is also

1https://github.com/strub/coqmt
2https://github.com/Deducteam/Dedukti/blob/abbe11318189c32ae236671ccd8dcf3c89525065/kernel/ac.ml

37

https://github.com/strub/coqmt
https://github.com/Deducteam/Dedukti/blob/abbe11318189c32ae236671ccd8dcf3c89525065/kernel/ac.ml

6. RELATED WORK

not clear how one would make rewrite rules match on terms that are only AC inside the
macro.

Agda modulo AC Agda Macros (Frex)
AC conversion automatic invoked

AC rewrite rule matching yes no
User defined theories no yes
Meta variable inference partial ?

Adding AC to the type-checker has the primary benefit that it does not require invocation
of macros like Frex and it allows interaction with rewrite rules. A macro system has the
benefit that it allows users to define their own theories. It is unclear how well macros can
infer meta-variables, but it is likely to be worse than what is possible in the type-checker. In
conclusion, both approaches are useful and it would be interesting to see if their advantages
can be combined.

38

Chapter 7

Discussion

From chapter 5 we know how the new AC pragma in Agda can be used and this chapter will
discuss the results. There is also a list of future research directions that we think could be
interesting.

Theory

Adding AC function equalities to λΠ was not that difficult and fits really well as can be seen
in chapter 3. By splitting the conversion check into a reduction and equivalence relation,
everything stays neatly organized. The starting formalization of λΠ uses the context for con-
stants and this is easily extended with AC neutral terms and rewrite rules. Adding rewrite
rules is useful because it makes λΠ similar in expressiveness to other dependently typed lan-
guages. We were able to describe a fragment of rewrite rules that are easy to apply and to
check confluence of. This greatly helped with the next step of implementing AC functions
in Agda.

Implementation

Adding AC conversion checking to Agda is doable with the restrictions that we described in
section 3.3.2. The restrictions allow a simple wrapper for existing rewrite rule matching with
quadratic run-time in the size of AC terms. To support rewrite rules outside of our fragment
it would be necessary to modify the NonLinMatch procedures in Agda which is quite compli-
cated. It would also require more advanced algorithms to keep up the matching speed for
complicated rewrite rules. Although the scope of our implementation was slightly limited
as described in section 4.2, the implementation is complete enough to type-check our exam-
ples. The final implementation is thus a minimum viable product that should only be used
to check if this feature is something that is desired.

The biggest hurdle in the implementation was integration with meta-variables. Agda
has a system for meta-variables that is undecidable. This is because it requires higher order
unification which has been proven undecidable (Spies and Forster 2020). We noticed that
it is possible to put a lot of time in improvements to the inference of meta-variables. Some
examples from this thesis are improvements to the injectivity analysis and elimination of
common AC sub-terms in the conversion checker. This was not part of the core calculus and
is not essential, since one can always provide explicit arguments instead of relying on meta-
variables. Thus for future research I think it is important to limit the scope of meta-variable
inference.

Usage Examples

As shown in chapter 5, the theory of AC functions is very useful for some use-cases. Where
previously one would need to use overlapping instances or macros, AC reasoning can now

39

7. DISCUSSION

be done automatically by the type-checker. Even though examples have been shown regard-
ing sorting algorithms and effect systems, there is still a lot of research needed to find all
the possible applications and limitations. We imagine that with support for definitional AC
functions in the type-checker it is viable to implement a full effect system as a library . An-
other use-case that was not explored in this thesis is a simpler implementation of ‘data types
à la carte’ (Swierstra 2008).

7.1 Future work
This is a list of research directions and improvement to the current implementation that are
left as future work:

• The Agda implementation completely normalizes AC terms in order to compare them.
Instead, it should be possible to normalise them just enough for comparison. It could
even make sense to refactor the conversion checker to return an ordering between its
input terms.

• The AC pragma in Agda only works with --no-fast-reduce flag. This flag turns the
Agda Abstract Machine (AAM) off. Future work could integrate AC conversion check-
ing into the AAM.

• With the current implementation it is only possible to mark a function as being both
commutative and associative at the same time. Itwould be preferable if these properties
had separate pragmas that could be combined. Solving this in a modular way would
allow adding more properties like unit element or idempotence. The importance of
which in the presence of rewrite rules is also unclear.

• Similarly, there is currently no support for commutativity of cons-like operators. These
are operators that add an element of type A, to a structure of type B, and return a struc-
ture of type B. While operators like this are not commutative or associative, they can
behave like multi-sets in the same way that AC functions do. Maybe this is not that
important, because it is often possible to turn elements into singleton data structures
that can then be combined using a normal commutative operator.

• The current implementation only supports definitional AC symbols. However, the the-
ory presented in this thesis allows parameterised symbols to be definitionally AC. This
would be useful for a polymorphic __ : (A : Set) -> Bag A -> Bag A -> Bag A that
is defined to be AC for all A. The current implementation also doesn’t support AC terms
that return a function. This would be something like
&& : (Bag -> Bool) -> (Bag -> Bool) -> (Bag -> Bool). It should not be too diffi-
cult to extend the current implementation to support these.

• Itmight be possible to use the newAC support to replace the universe levelmachinery1.
This would simplify the Agda implementation. In theory all that is necessary is tomark
the maximum operator on universes as AC and remove the special case code from the
compiler.

• It could be useful to explore an alternative direction where you have A builtin data-
structures for multi-sets. This builtin multi-set can then be used as function input to
indicate that the function is associative and commutative. This would remove the need
for the COMMASSOC pragma, but it is unclear how youwould patternmatch on this builtin
multi-set.

1https://agda.readthedocs.io/en/v2.6.3/language/universe-levels.html

40

https://agda.readthedocs.io/en/v2.6.3/language/universe-levels.html

Bibliography

Allais, Guillaume and Edwin C. Brady (2022). “Frex: dependently-typed algebraic simplifi-
cation”. In: URL: https://www.semanticscholar.org/paper/Frex%3A-dependently-typed-
algebraic- simplification- Allais- Brady/169245998d755fc319f53348e2c9c3f11234b8bb
(visited on 02/02/2023).

Altenkirch, Thorsten, Conor McBride, and James McKinna (2005). “Why Dependent Types
Matter”. en. In.

Bach Poulsen, Casper and Cas van der Rest (Jan. 2023). “Hefty Algebras: Modular Elabora-
tion of Higher-Order Algebraic Effects”. In: Proceedings of the ACM on Programming Lan-
guages 7.POPL, 62:1801–62:1831. DOI: 10.1145/3571255. URL: https://dl.acm.org/doi/10.
1145/3571255 (visited on 07/07/2023).

Blanqui, Frédéric (Oct. 2020). Type safety of rewrite rules in dependent types. arXiv:2010.16111
[cs]. DOI: 10.4230/LIPIcs.FSCD.2020.13. URL: http://arxiv.org/abs/2010.16111 (visited
on 03/09/2023).

Boespflug, Mathieu, Quentin Carbonneaux, and O. Hermant (2012). “The λΠ-calculus Mod-
ulo as a Universal Proof Language”. In: URL: https://www.semanticscholar.org/paper/
The-%CE%BB%CE%A0-calculus-Modulo-as-a-Universal-Proof-Boespflug-Carbonneaux/
56419ea95a4ebbaa7128b489f7f551b006eb5616 (visited on 04/13/2023).

Borovanský, Peter et al. (Aug. 2002). “ELAN from a rewriting logic point of view”. en. In:
Theoretical Computer Science. Rewriting Logic and its Applications 285.2, pp. 155–185. ISSN:
0304-3975. DOI: 10.1016/S0304-3975(01)00358-9. URL: https://www.sciencedirect.com/
science/article/pii/S0304397501003589 (visited on 05/09/2023).

Bruijn, N. G. de (Jan. 1994). “A Survey of the Project Automath**Reprinted from: Seldin, J. P.
and Hindley, J. R., eds., To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, p. 579-606, by courtesy of Academic Press Inc., Orlando.” en. In: Studies
in Logic and the Foundations of Mathematics. Ed. by R. P. Nederpelt, J. H. Geuvers, and R. C.
de Vrijer. Vol. 133. Selected Papers on Automath. Elsevier, pp. 141–161. DOI: 10 . 1016 /
S0049-237X(08)70203-9. URL: https://www.sciencedirect.com/science/article/pii/
S0049237X08702039 (visited on 07/20/2023).

Clavel, M. et al. (Aug. 2002). “Maude: specification and programming in rewriting logic”. en.
In: Theoretical Computer Science. Rewriting Logic and its Applications 285.2, pp. 187–243.
ISSN: 0304-3975. DOI: 10.1016/S0304-3975(01)00359-0. URL: https://www.sciencedirect.
com/science/article/pii/S0304397501003590 (visited on 05/09/2023).

Cockx, Jesper (2019). “Type Theory Unchained: Extending Agda with User-Defined Rewrite
Rules”. en. In.

Cockx, Jesper, Frank Piessens, and Dominique Devriese (2014). “Overlapping and Order-
Independent Patterns”. en. In: Programming Languages and Systems. Ed. by Zhong Shao.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 87–106. ISBN: 978-3-
642-54833-8. DOI: 10.1007/978-3-642-54833-8_6.

41

https://www.semanticscholar.org/paper/Frex%3A-dependently-typed-algebraic-simplification-Allais-Brady/169245998d755fc319f53348e2c9c3f11234b8bb
https://www.semanticscholar.org/paper/Frex%3A-dependently-typed-algebraic-simplification-Allais-Brady/169245998d755fc319f53348e2c9c3f11234b8bb
https://doi.org/10.1145/3571255
https://dl.acm.org/doi/10.1145/3571255
https://dl.acm.org/doi/10.1145/3571255
https://doi.org/10.4230/LIPIcs.FSCD.2020.13
http://arxiv.org/abs/2010.16111
https://www.semanticscholar.org/paper/The-%CE%BB%CE%A0-calculus-Modulo-as-a-Universal-Proof-Boespflug-Carbonneaux/56419ea95a4ebbaa7128b489f7f551b006eb5616
https://www.semanticscholar.org/paper/The-%CE%BB%CE%A0-calculus-Modulo-as-a-Universal-Proof-Boespflug-Carbonneaux/56419ea95a4ebbaa7128b489f7f551b006eb5616
https://www.semanticscholar.org/paper/The-%CE%BB%CE%A0-calculus-Modulo-as-a-Universal-Proof-Boespflug-Carbonneaux/56419ea95a4ebbaa7128b489f7f551b006eb5616
https://doi.org/10.1016/S0304-3975(01)00358-9
https://www.sciencedirect.com/science/article/pii/S0304397501003589
https://www.sciencedirect.com/science/article/pii/S0304397501003589
https://doi.org/10.1016/S0049-237X(08)70203-9
https://doi.org/10.1016/S0049-237X(08)70203-9
https://www.sciencedirect.com/science/article/pii/S0049237X08702039
https://www.sciencedirect.com/science/article/pii/S0049237X08702039
https://doi.org/10.1016/S0304-3975(01)00359-0
https://www.sciencedirect.com/science/article/pii/S0304397501003590
https://www.sciencedirect.com/science/article/pii/S0304397501003590
https://doi.org/10.1007/978-3-642-54833-8_6

BIBLIOGRAPHY

Cousineau, Denis and Gilles Dowek (2007). “Embedding Pure Type Systems in the Lambda-
Pi-CalculusModulo”. en. In: Typed Lambda Calculi and Applications. Ed. by Simona Ronchi
Della Rocca. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 102–
117. ISBN: 978-3-540-73228-0. DOI: 10.1007/978-3-540-73228-0_9.

Curry, H. B. (Nov. 1934). “Functionality in Combinatory Logic”. In: Proceedings of the National
Academy of Sciences of the United States of America 20.11, pp. 584–590. ISSN: 0027-8424. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076489/ (visited on 07/21/2023).

Diaconescu, Răzvan and Kokichi Futatsugi (Aug. 2002). “Logical foundations of CafeOBJ”.
en. In: Theoretical Computer Science. Rewriting Logic and its Applications 285.2, pp. 289–
318. ISSN: 0304-3975. DOI: 10.1016/S0304-3975(01)00361-9. URL: https://www.sciencedirect.
com/science/article/pii/S0304397501003619 (visited on 05/09/2023).

Gonthier, Georges et al. (2013). “A Machine-Checked Proof of the Odd Order Theorem”.
en. In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-Mohring, and
DavidPichardie. LectureNotes inComputer Science. Berlin,Heidelberg: Springer, pp. 163–
179. ISBN: 978-3-642-39634-2. DOI: 10.1007/978-3-642-39634-2_14.

Harper, Robert, Furio Honsell, and Gordon Plotkin (Jan. 1993). “A framework for defining
logics”. en. In: Journal of the ACM 40.1, pp. 143–184. ISSN: 0004-5411, 1557-735X. DOI: 10.
1145/138027.138060. URL: https://dl.acm.org/doi/10.1145/138027.138060 (visited on
03/23/2023).

Leino, K. Rustan M. (2010). “Dafny: An Automatic Program Verifier for Functional Correct-
ness”. en. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by Edmund
M. Clarke and Andrei Voronkov. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, pp. 348–370. ISBN: 978-3-642-17511-4. DOI: 10.1007/978-3-642-17511-4_20.

Martin-Löf, Per (Jan. 1975a). “About Models for Intuitionistic Type Theories and the Notion
of Definitional Equality”. en. In: Studies in Logic and the Foundations of Mathematics. Ed. by
Stig Kanger. Vol. 82. Proceedings of the Third Scandinavian Logic Symposium. Elsevier,
pp. 81–109. DOI: 10.1016/S0049-237X(08)70727-4. URL: https://www.sciencedirect.com/
science/article/pii/S0049237X08707274 (visited on 07/13/2023).

— (Jan. 1975b). “An Intuitionistic Theory of Types: Predicative Part”. en. In: Studies in Logic
and the Foundations of Mathematics. Ed. by H. E. Rose and J. C. Shepherdson. Vol. 80. Logic
Colloquium ’73. Elsevier, pp. 73–118. DOI: 10.1016/S0049-237X(08)71945-1. URL: https://
www.sciencedirect.com/science/article/pii/S0049237X08719451 (visited on 07/20/2023).

Peterson, Gerald E. and Mark E. Stickel (Apr. 1981). “Complete Sets of Reductions for Some
Equational Theories”. en. In: Journal of the ACM 28.2, pp. 233–264. ISSN: 0004-5411, 1557-
735X. DOI: 10.1145/322248.322251. URL: https://dl.acm.org/doi/10.1145/322248.322251
(visited on 03/16/2023).

Rondon, PatrickM.,MingKawaguci, andRanjit Jhala (June 2008). “Liquid types”. In:Proceed-
ings of the 29th ACMSIGPLANConference on Programming Language Design and Implementa-
tion. PLDI ’08. New York, NY, USA: Association for Computing Machinery, pp. 159–169.
ISBN: 978-1-59593-860-2. DOI: 10.1145/1375581.1375602. URL: https://doi.org/10.1145/
1375581.1375602 (visited on 07/20/2023).

Saillard, Ronan (Sept. 2015). “Typechecking in the lambda-Pi-CalculusModulo : Theory and
Practice”. en. PhD thesis. Ecole Nationale Supérieure des Mines de Paris. URL: https://
pastel.archives-ouvertes.fr/tel-01299180 (visited on 05/08/2023).

Sjöberg, Vilhelm and Stephanie Weirich (Jan. 2015). “Programming up to Congruence”. en.
In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. Mumbai India: ACM, pp. 369–382. ISBN: 978-1-4503-3300-9. DOI: 10.
1145/2676726.2676974. URL: https://dl.acm.org/doi/10.1145/2676726.2676974 (visited
on 02/02/2023).

Spies, Simon and Yannick Forster (Jan. 2020). “Undecidability of higher-order unification
formalised in Coq”. en. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs. New Orleans LA USA: ACM, pp. 143–157. ISBN: 978-1-

42

https://doi.org/10.1007/978-3-540-73228-0_9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076489/
https://doi.org/10.1016/S0304-3975(01)00361-9
https://www.sciencedirect.com/science/article/pii/S0304397501003619
https://www.sciencedirect.com/science/article/pii/S0304397501003619
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://dl.acm.org/doi/10.1145/138027.138060
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/S0049-237X(08)70727-4
https://www.sciencedirect.com/science/article/pii/S0049237X08707274
https://www.sciencedirect.com/science/article/pii/S0049237X08707274
https://doi.org/10.1016/S0049-237X(08)71945-1
https://www.sciencedirect.com/science/article/pii/S0049237X08719451
https://www.sciencedirect.com/science/article/pii/S0049237X08719451
https://doi.org/10.1145/322248.322251
https://dl.acm.org/doi/10.1145/322248.322251
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://pastel.archives-ouvertes.fr/tel-01299180
https://pastel.archives-ouvertes.fr/tel-01299180
https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1145/2676726.2676974
https://dl.acm.org/doi/10.1145/2676726.2676974

Bibliography

4503-7097-4. DOI: 10.1145/3372885.3373832. URL: https://dl.acm.org/doi/10.1145/
3372885.3373832 (visited on 06/20/2023).

Swierstra, Wouter (July 2008). “Data types à la carte”. en. In: Journal of Functional Program-
ming 18.4. Publisher: CambridgeUniversity Press, pp. 423–436. ISSN: 1469-7653, 0956-7968.
DOI: 10 . 1017 / S0956796808006758. URL: https : / / www . cambridge . org / core / journals /
journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
(visited on 06/20/2023).

43

https://doi.org/10.1145/3372885.3373832
https://dl.acm.org/doi/10.1145/3372885.3373832
https://dl.acm.org/doi/10.1145/3372885.3373832
https://doi.org/10.1017/S0956796808006758
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409

Acronyms

AST abstract syntax tree

AC associative and commutative

LF Edinburgh Logic Framework

LHS left hand side

RHS right hand side

WHNF weak head normal form

45

Appendix A

Improved Injectivity Analysis

In section 4.5 we have described how we made the injectivity analysis work with rewrite
rules. However, we also made the injectivity analysis stronger in general, as is described in
this appendix.

For some operators like the minimum operator(X), the injectivity analysis as described
in section 4.5 is sufficient. As an example suc _x X suc _y ãÑ suc(_x X _y) is the only rule
with suc as a possible RHS head. So, assuming we have not made X definitionally AC, the
old injectivity would be able to solve ?1 X ?2 = suc ?3. However, this simple algorithm fails
when there are multiple rewrite rules with the correct RHS. This happens for example with
addition, where both have suc as a possible RHS head:

suc _x+ _y ãÑ suc(_x+ _y)
_x+ suc _y ãÑ suc(_x+ _y)

The injectivity analysis would not be able to solve a + ?1 = suc a, even though only one of
the rules has a LHS that can match. We solve this limitation and more with the following
enhancements:

• Rules are filtered based on both RHS and LHS, allowing some more cases of injectivity
analysis on addition as described above.

• Themost general rule is usedwhenmultiple overlapping rewrite rules apply. If no rule
is most general, then injectivity analysis is stuck like before.

New Injectivity Analysis without Equal Heads

As a first step, we define which rules are potential candidates for reducing the blocked term.
No rewrite rule can match directly, because then the term would not be blocked. Potential
reducers are rewrite rules that are stuck on some meta-variable. This excludes rewrite rules
that can never match, those would not be stuck and just fail. From the potential reducers,
we can remove all rules that result in the wrong head symbol. Applying any of those would
make type-checking fail. Note that the RHS head symbol might be refined by the rewrite
rule matching. For example the rewrite rules _x+ zero ãÑ _x, will take its RHS head symbol
from the LHS matching result.

Now that we have a list of rewrite rules that can potentially reduce the blocked term. We
know that wemust have at least one of them apply tomake type-checking succeed. However,
we do not want to make refinements that turn out to be wrong. Thus the only option here is
to check if one of the LHSs is most general.

The implementation of this check instantiates every LHS with new variables and checks
if one of the rules matches on every instantiated LHS. If there is a LHS that matches on all

47

A. IMPROVED INJECTIVITY ANALYSIS

instantiated LHSs, then it is most general. The most general LHS can be used to refine the
blocked term without losing any solution. To apply the refinement, each argument of the
blocked term is conversion checked with the most general LHS.

If the blocked term has its arguments successfully refined, then one of the computation
rules can now reduce the refined term. This means that it is now possible to retry conversion
checking of the refined termwith theWHNF term. Every step of injectivity does a reduction
and typed-checked terms are finite in size, so this cycle is guaranteed to terminate.

48

Appendix B

Green Slime

Having a UnSorted list indexed by some Bag as defined in section 5.1, we might want to make
use of our knowledge of items in the list. We would like to write a function idx that locates
the position of an item that we know is in a list.

However, there is a phenomenon, which is sometimes called ‘green slime’. This is when
a data-structure has a function call as an index to a type constructor. And our UnSorted list
data-structure is a good example:

data UnSorted : Bag → Set where
[] : UnSorted H
:: : (x : Nat) {xb : Bag} → UnSorted xb

→ UnSorted (bag x \ xb)

idx1 : @ y {xb : Bag} → UnSorted (bag y \ xb) → Nat
idx1 y (x :: xs) = ?

The _::_ constructor has a result type UnSorted (bag x \ xb), which is indexed by a call
to the function __. This currently makes it impossible in Agda to pattern match on values
of type UnSorted b, where b is not just a variable. The above code gives the following error
message:

I'm not sure if there should be a case for the constructor _::_,
because I get stuck when trying to solve the following unification
problems (inferred index ?

= expected index):
bag x \ xb ?

= bag y \ xb₁
when checking that the pattern x :: xs has type UnSorted (bag y \ xb)

The reason for this is that patternmatching needs to be exhaustive, but also needs tomake
the argument definitionally equal to the pattern. To make the argument and the pattern
equal, Agda uses a unifier. To make the unifier exhaustive, it can only unify function calls
if the functions are guaranteed injective. Currently the only functions that Agda guarantees
to be injective are constructors. It is thus impossible for this unifier to unify an arbitrary
function application with something that is not just a variable.

I think it could be interesting if instead of substituting the variables, pattern matching
just adds a new equality to the context. A type theory based on congruence closures (or
equality reflection) as described by Sjöberg and Weirich (2015) would make these equalities
definitional. As there is no need to find a substitution of the variables anymore, green slime
could be solved completely. The downside is that beta-reduction can not bemadedefinitional
at the same time as congruence closures.

49

B. GREEN SLIME

B.1 With-Abstraction and Instance Arguments
Despite the green slime, it is possible to get the idx function working in Agda, without any
proof writing. First we need to move the offending propositional equality into a separate
argument to make pattern matching possible:

idx2 : @ y {xb yb : Bag} → (xs : UnSorted xb) → (xb ” bag y \ yb) → Nat
idx2 y (x :: xs) p = ?

Byweakening the invariant from xb ” bag y \ yb to y P xb, wemake the inductive step eas-
ier. This is where with-abstraction allows us to abstract over an expression such as y == x
and replace all occurrences by the possible values. This is enough tomake the idx implemen-
tation work without any proof writing:

|| : Bool → Bool → Bool
false || x = x
true || x = true

postulate
x||true : @ x → x || true ” true
x||false : @ x → x || false ” x
x==x : @ x → (x == x) ” true

{-# REWRITE x||true x||false x==x #-}

postulate
P : Nat → Bag → Bool
P-dist : @ x xs ys → x P (xs \ ys) ” (x P xs) || (x P ys)
xPH : @ x → x P H ” false
xPbag-y : @ x y → x P bag y ” (x == y)

{-# REWRITE P-dist xPH xPbag-y #-}

idx : @ x {@0 xb : Bag} → (xs : UnSorted xb) → {{p : x P xb ” true}} → Nat
idx y (x :: xs) with (y == x)
... | true = zero
... | false = suc (idx y xs)

By making the new requirement y P xb ” true into an instance argument, it is passed au-
tomatically to the recursive call. The instance argument also makes it possible to call idx in
any context where the requirement can be resolved with refl. Because of x==x, this is the
case for the original function signature and we can thus write:

idx' : @ x {xb yb : Bag} → (xs : UnSorted (bag x \ yb)) → Nat
idx' y xs = idx y xs

With-abstraction is not magic, the implementation needs to search for all occurrences of the
abstracted expression and replace them by a new parameter. The above idx function gets
desugared into something like the following:

mutual
idx : @ y {xb : Bag} → (xs : UnSorted xb) → {{p : y P xb ” true}} → Nat
idx y (x :: xs) = idx-aux y x xs (y == x)

idx-aux : (y x : Nat) {xb : Bag} (xs : UnSorted xb) (y==x : Bool)
→ {{p : y==x || (y P xb) ” true}} → Nat

idx-aux y x xs true = zero
idx-aux y x xs false = suc (idx y xs)

50

Appendix C

Example Code

C.1 Sorting Algorithms
Two sorting functions are formally verified to preserve items and sort elements. This is done
with an intrinsic approach as described in section 5.1.

{-# OPTIONS --rewriting --no-fast-reduce #-}

open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

case_of_ : @ {l₁ l₂} {A : Set l₁} {B : Set l₂} → A → (A → B) → B
case x of f = f x

data Rem : Set where
just : Nat → Rem

unrem : Rem → Nat
unrem (just x) = x

unrem-eq : @ d → just (unrem d) ” d
unrem-eq (just x) = refl

{-# REWRITE unrem-eq #-}

infixr 22 _‘_
‘ : Nat → Rem → Nat
zero ‘ just d = d
suc x ‘ d = suc (x ‘ d)

First we define a new operator on natural numbers, written ‘. This operator behaves like
addition, but we will not make it commutative. We make the second argument a newtype to
enforce this.

data Compare : Nat → Nat → Set where
ď : @ {x d} → Compare x (x ‘ d)
ě : @ {x d} → Compare (x ‘ d) x

cmp : (x y : Nat) → Compare x y
cmp zero y = ď

51

C. EXAMPLE CODE

cmp x zero = ě
cmp (suc x) (suc y) = case (cmp x y) of \where

ď → ď
ě → ě

Comparisons use Agdas limited pattern matching unification to refine numbers into appli-
cations of‘. Every number can only be refined once with this method, but that is enough to
verify our sorting functions.

infixl 20 __
infixr 21 _Ò_
postulate

Bag : Set
H : Bag
[zero] : Bag
-- disjoin union: takes the sum of the number of elements in each bag
__ : Bag → Bag → Bag
-- add a number to all elements of the bag
Ò : Nat → Bag → Bag

Ò-comb : @ x xs ys → (x Ò xs) \ (x Ò ys) ” x Ò (xs \ ys)
Ò-dist : @ x y xs → (x ‘ y) Ò xs ” x Ò (unrem y Ò xs)
xÒH : @ x → x Ò H ” H

xs\H : @ xs → xs \ H ” xs
H\xs : @ xs → H \ xs ” xs

\-comm : (xs ys : Bag) → xs \ ys ” ys \ xs
\-assoc : (xs ys zs : Bag) → (xs \ ys) \ zs ” xs \ (ys \ zs)

{-# REWRITE H\xs xs\H xÒH Ò-comb Ò-dist #-}

bag : Nat → Bag
bag x = x Ò [zero]

{-# COMMASSOC \-comm \-assoc #-}

Unfortunately we can only postulate our Bag datastructure. This is because the normal form
that we want can not be expressed with data. We want everything to reduce to applications
of Ò, but this function is not injective.

infixr 5 _::_
data UnSorted : @0 Bag → Set where

[] : UnSorted H
:: : (x : Nat) {@0 xb : Bag} → UnSorted xb

→ UnSorted (bag x \ xb)

data Sorted : @0 Bag → Set where
[] : Sorted H
:: : (x : Nat) {@0 xb : Bag} → Sorted (x Ò xb)

→ Sorted (bag x \ x Ò xb)

Our Sorted list data-structure refines the bag of the remainder. This sets a lower bound on
the numbers in that bag and guarantees that the list is sorted.

52

C.1. Sorting Algorithms

insert : (x : Nat) {@0 yb : Bag} (ys : Sorted yb)
→ Sorted (bag x \ yb)

insert x [] = x :: []
insert x (y :: ys) = case (cmp x y) of \where
ď → x :: y :: ys
ě → y :: insert x ys

insert-sort : {@0 xb : Bag} (xs : UnSorted xb) → Sorted xb
insert-sort [] = []
insert-sort (x :: xs) = insert x (insert-sort xs)

With everything in place, insertion sort is straightforward.

{-# TERMINATING #-}
merge : {@0 xb : Bag} (xs : Sorted xb) {@0 yb : Bag} (ys : Sorted yb)

→ Sorted (xb \ yb)
merge [] ys = ys
merge xs [] = xs
merge xxs@(x :: xs) yys@(y :: ys) = case (cmp x y) of \where

ď → x :: merge xs yys
ě → y :: merge xxs ys

data Tree : @0 Bag → Set where
empty : Tree H
leaf : (x : Nat) → Tree (bag x)
node : {@0 xb yb : Bag} → Tree xb → Tree yb → Tree (xb \ yb)

insertT : {@0 xb : Bag} → (x : Nat) → Tree xb → Tree (bag x \ xb)
insertT x empty = leaf x
insertT x (leaf y) = node (leaf x) (leaf y)
insertT x (node xs ys) = node ys (insertT x xs)

dealT : {@0 xb : Bag} → (xs : UnSorted xb) → Tree xb
dealT [] = empty
dealT (x :: xs) = insertT x (dealT xs)

mergeT : {@0 xb : Bag} → Tree xb → Sorted xb
mergeT empty = []
mergeT (leaf x) = x :: []
mergeT (node xs ys) = merge (mergeT xs) (mergeT ys)

merge-sort : {@0 xb : Bag} (xs : UnSorted xb) → Sorted xb
merge-sort xs = mergeT (dealT xs)

Our merge-sort works by first building a balanced tree structure and then merging branches.
The tree allows structural recursion so that termination checking is easierAltenkirch,McBride,
andMcKinna 2005. Note that the ‘merge‘ function had to be annotatedwith {-# TERMINATING #-}.
This is because the termination checker gets confused by the variable refinements made by
the pattern matching unifier. The error message mentions the two recursive calls as prob-
lematic:

merge xs (x ‘ d :: ys)
merge (y ‘ d :: xs) ys

53

C. EXAMPLE CODE

C.2 Bag of Nats
This bag data-structure without postulates as described in section 5.2.2.

{-# OPTIONS --rewriting --no-fast-reduce #-}

open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

cong : @ {A B : Set} (P : A → B) {x y : A}
→ x ” y → P x ” P y

cong _ refl = refl

-- this is always not empty
data Bag1 : Set where

[zero] : Bag1
zero : Bag1 → Bag1
suc : Bag1 → Bag1

infixl 20 _\'_
\' : Bag1 → Bag1 → Bag1
[zero] \' ys = zero ys
zero xs \' ys = zero (xs \' ys)
xs \' [zero] = zero xs
xs \' zero ys = zero (xs \' ys)
suc xs \' suc ys = suc (xs \' ys)

\'-[zero] : (xs : Bag1) → xs \' [zero] ” zero xs
\'-[zero] [zero] = refl
\'-[zero] (zero xs) = cong zero (\'-[zero] xs)
\'-[zero] (suc xs) = refl

\'-zero : (xs ys : Bag1) → xs \' (zero ys) ” zero (xs \' ys)
\'-zero [zero] ys = refl
\'-zero (zero xs) ys = cong zero (\'-zero xs ys)
\'-zero (suc xs) ys = refl

{-# REWRITE \'-[zero] \'-zero #-}

\'-comm : (xs ys : Bag1) → xs \' ys ” ys \' xs
\'-comm [zero] ys = refl
\'-comm xs [zero] = refl
\'-comm xs (zero ys) = cong zero (\'-comm xs ys)
\'-comm (zero xs) ys = cong zero (\'-comm xs ys)
\'-comm (suc xs) (suc ys) = cong suc (\'-comm xs ys)

\'-assoc : (xs ys zs : Bag1) → (xs \' ys) \' zs ” xs \' (ys \' zs)
\'-assoc [zero] ys zs = refl
\'-assoc xs [zero] zs = refl
\'-assoc xs ys [zero] = refl
\'-assoc (zero xs) ys zs = cong zero (\'-assoc xs ys zs)
\'-assoc xs (zero ys) zs = cong zero (\'-assoc xs ys zs)
\'-assoc xs ys (zero zs) = cong zero (\'-assoc xs ys zs)

54

C.3. Effect Rows

\'-assoc (suc xs) (suc ys) (suc zs) = cong suc (\'-assoc xs ys zs)

{-# COMMASSOC \'-comm \'-assoc #-}

bag1 : Nat → Bag1
bag1 zero = [zero]
bag1 (suc x) = suc (bag1 x)

-- this bag can be empty
data Bag : Set where
H : Bag
just : Bag1 → Bag

infixl 20 __
__ : Bag → Bag → Bag
H \ ys = ys
xs \ H = xs
just xs \ just ys = just (xs \' ys)

\-H : (xs : Bag) → xs \ H ” xs
\-H H = refl
\-H (just x) = refl

{-# REWRITE \-H #-}

\-comm : (xs ys : Bag) → xs \ ys ” ys \ xs
\-comm H ys = refl
\-comm xs H = refl
\-comm (just xs) (just ys) = refl

\-assoc : (xs ys zs : Bag) → (xs \ ys) \ zs ” xs \ (ys \ zs)
\-assoc H ys zs = refl
\-assoc xs H zs = refl
\-assoc xs ys H = refl
\-assoc (just xs) (just ys) (just zs) = refl

{-# COMMASSOC \-comm \-assoc #-}

bag : Nat → Bag
bag x = just (bag1 x)

C.3 Effect Rows
This is the full code for the effect example from section 5.3.

{-# OPTIONS --rewriting --no-fast-reduce #-}

open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.Maybe
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

55

C. EXAMPLE CODE

cong : @ { a b} { A : Set a } { B : Set b }
(f : A → B) {m n} → m ” n → f m ” f n

cong f refl = refl

case_of_ : @ {l₁ l₂} {A : Set l₁} {B : Set l₂} → A → (A → B) → B
case x of f = f x

cast : @ {l m} {A : Set l} (P : A → Set m)
{x y : A} → x ” y → P x → P y

cast _ refl x = x

data Eff : Set where
Bools : Eff
Nats : Eff

get-eff : Eff → Set
get-eff Bools = List Bool
get-eff Nats = List Nat

cmp : (x y : Eff) → Maybe (x ” y)
cmp Nats Nats = just refl
cmp Bools Bools = just refl
cmp _ _ = nothing

record Monoid (A : Set) : Set where
field

mempty : A
<> : A → A → A

open Monoid {{...}}

infixl 20 _&&'_
&&' : Bool → Bool → Bool
true &&' x = x
false &&' _ = false

x&&'true : @ x → x &&' true ” x
x&&'true false = refl
x&&'true true = refl

&&'false : @ x → x &&' false ” false
&&'false false = refl
&&'false true = refl

x&&'x : @ x → x &&' x ” x
x&&'x false = refl
x&&'x true = refl

{-# REWRITE x&&'true &&'false x&&'x #-}

&&'-comm : @ (x y : Bool) → x &&' y ” y &&' x
&&'-comm false y = refl
&&'-comm true y = refl

&&'-assoc : @ (x y z : Bool) → (x &&' y) &&' z ” x &&' (y &&' z)

56

C.3. Effect Rows

&&'-assoc false y z = refl
&&'-assoc x false z = refl
&&'-assoc x y false = refl
&&'-assoc true true true = refl

{-# COMMASSOC &&'-comm &&'-assoc #-}

Cond : Set
Cond = List Eff → Bool

infixl 20 _&&_
&& : Cond → Cond → Cond
p && q = λ x → (p x) &&' (q x)

++ : {A : Set} → List A → List A → List A
[] ++ r = r
(x :: l) ++ r = x :: (l ++ r)

xs++[] : @ {A} (xs : List A) → xs ++ [] ” xs
xs++[] [] = refl
xs++[] (x :: xs) = cong (_::_ x) (xs++[] xs)

{-# REWRITE xs++[] #-}

data WithEff : @ {L : List Eff} (v : Bool) (O : Set) → Set₁ where
pure : @ {v O} → O → WithEff {[]} v O
emit : @ {L E v} → get-eff E → WithEff {E :: L} v J
inc : @ {L E v O} → WithEff {L} v O → WithEff {E :: L} v O
>>= : @ {L v X O} → WithEff {L} v X → (X → WithEff {L} v O) → WithEff {L} v O
fail : @ {L O} → WithEff {L} false O

>> : @ {L v O} → WithEff {L} v J → WithEff {L} v O → WithEff {L} v O
left >> right = left >>= λ tt → right

WithEff' : (c : Cond) (O : Set) → Set₁
WithEff' c O = {xs : List Eff} → WithEff {xs} (c xs) O

raise : @ {B v L O} → WithEff {L} true O → WithEff {B ++ L} v O
raise {[]} {false} s = fail
raise {[]} {true} s = s
raise {E :: L} {v} s = inc (raise {L} {v} s)

smart-pure : @ {B v O} → O → WithEff {B} v O
smart-pure {B} {v} o = raise {B} {v} (pure o)

data Index (x : Eff) : (List Eff) → Set where
here : @ {xs} → Index x (x :: xs)
there : @ {y xs} → Index x xs → Index x (y :: xs)
nvm : Index x []

idx : @ x xs → Index x xs
idx y [] = nvm
idx y (x :: xs) = case (cmp x y) of λ where

(just refl) → here

57

C. EXAMPLE CODE

nothing → there (idx y xs)

eff-idx : @ {x xs} → Index x xs → Bool
eff-idx here = true
eff-idx (there i) = eff-idx i
eff-idx nvm = false

eff : (E : Eff) → Cond
eff E = λ xs → eff-idx (idx E xs)

emit-idx : {v : Bool} → @ {x xs} → (i : Index x xs) → get-eff x
→ WithEff {xs} (v &&' eff-idx i) J

emit-idx here e = emit e
emit-idx {v} (there i) e = inc (emit-idx {v} i e)
emit-idx nvm e = fail

smart-emit : @ {E v xs} → {{v &&' eff E xs ” v}} → get-eff E → WithEff {xs} v J
smart-emit {E} {v} {xs} {{p}} e = cast (λ x → WithEff x J) p (emit-idx {v} (idx E xs) e)

smart-raise : @ {L v w O} → {{v &&' w ” v}} → WithEff {L} w O → WithEff {L} v O
smart-raise (pure x) = pure x
smart-raise (emit x) = emit x
smart-raise (inc xs) = inc (smart-raise xs)
smart-raise (xs >>= f) = (smart-raise xs) >>= (λ x → smart-raise (f x))
smart-raise {{refl}} fail = fail

data Handle (O E : Set) : Set where
, : O → E → Handle O E

handle : @ {e L O v} → {{f : Monoid (get-eff e)}} → WithEff {e :: L} v O
→ WithEff {L} v (Handle O (get-eff e))

handle fail = fail
handle (emit e) = smart-pure (tt , e)
handle (inc s) = do

r ← s
smart-pure (r , mempty)

handle (s1 >>= s2) = do
(l , e1) ← handle s1
(r , e2) ← handle (s2 l)
smart-pure (r , (e1 <> e2))

eval : @ {O} → WithEff {[]} true O → O
eval (pure x) = x
eval (s1 >>= s2) = eval (s2 (eval s1))

instance
ListMonoid : @ {A} → Monoid (List A)
mempty {{ListMonoid}} = []
<> {{ListMonoid}} xs ys = xs ++ ys

test : WithEff' (eff Nats && eff Bools) J
test = do

smart-emit {Nats} (10 :: [])
smart-emit {Bools} (true :: [])

58

C.3. Effect Rows

smart-emit {Nats} (42 :: [])

main : List Nat
main = eval do

(nats , bools) ← handle {Bools} do
(tt , nats) ← handle {Nats} test
smart-pure nats

smart-pure nats

main1 : WithEff' (eff Bools) (List Nat)
main1 = do

(tt , nats) ← handle {Nats} test
smart-pure nats

test2 : WithEff' (eff Nats && eff Bools) J
test2 = do

_ ← smart-raise main1
smart-pure tt

59

	Preface
	Contents
	Introduction
	Research Questions
	Contributions

	Background
	Agda Syntax
	Equality
	Rewrite Rules
	Meta-Theory of Type Systems
	Type-Checkers
	Limitations of AC Rewriting

	Theory
	Lambda Pi Calculus
	Lambda Pi modulo AC
	Lambda Pi modulo AC and Rewrite Rules

	Implementation
	Agda Type Checking Overview
	Scope of Implementation
	Normalization
	Conversion Checking
	Injectivity Analysis

	Usage Examples
	Sorting Algorithms
	Bags
	Effect Systems

	Related work
	Implemented in the Type System
	Non-Dependent Type Systems
	Implemented with Macros

	Discussion
	Future work

	Bibliography
	Acronyms
	Improved Injectivity Analysis
	Green Slime
	With-Abstraction and Instance Arguments

	Example Code
	Sorting Algorithms
	Bag of Nats
	Effect Rows

