
Faculty of Electrical Engineering, Mathematics and Computer Science

Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

CE-MS-2010-32

M.Sc. Thesis

3D Information Extraction Based on GPU

Ying Zhang B.Sc.

Abstract

Our project starts from a practical specific application of stereo vision
(matching) on a robot arm, which is first building up a vision system
for a robot arm to make it obtain the capability of detecting the
objects 3D information on a plane. The kernel of the vision system is
stereo matching.

Stereo matching(correspondence) problem has been studied for
a few decades; it is one of the most investigated topics in computer
vision. A lot of algorithms have been developed, but only a few can
be applied in practice because of the constraint from either accuracy
or speed requirement.

After the vision system is built, one can get some insights from it,
and determine which part of the vision system needs to be improved
through experiments. The result shows that the accuracy of current
block matching algorithm is enough to be applied in specific environ-
ment. Thus, the focus of the afterwards optimization for the currently
built vision system is mainly from speed acceleration aspect.

After measuring each stage time cost of 3D sensing part of the vi-
sion system, the most time consuming stage is from the stereo match-
ing which generates the disparity map or depth map. At last, the
stereo matching part is executed on GPU(Graphic Processing Unit)
in order to get some performance enhancement, the final result demon-
strates that GPU can make the algorithm run in real time, and it is
an ideal platform for the further application development of stereo
matching algorithm. Because the original speedup of GPU against to
CPU is round 35 times at least for desktop GPU, and the optimized
speedup of GPU against to CPU can be more than 100 times at least
for desktop GPU.

3D Information Extraction Based on GPU

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Ying Zhang B.Sc.
born in Kunming, P.R.China

This work was performed in:

Computer Engineering Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2010 Computer Engineering Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “3D Information Extraction Based on GPU” by Ying Zhang B.Sc. in
partial fulfillment of the requirements for the degree of Master of Science.

Dated: Oct. 8th, 2010

Chairman:
prof.dr.ir. Koen Bertels, CE, TU Delft

Advisors:
dr. Georgi Krasimirov Kuzmanov, CE, TU Delft

ir. Harry Broers, Vision Group, Philips AppTech

Committee Members:
assoc.prof.dr.ir. René van Leuken, CAS, TU Delft

ir. Alexander S. van Amesfoort, PDS, TU Delft

iv

Abstract

Our project starts from a practical specific application of stereo vision (matching) on a
robot arm, which is first building up a vision system for a robot arm to make it obtain
the capability of detecting the objects 3D information on a plane. The kernel of the
vision system is stereo matching.

Stereo matching(correspondence) problem has been studied for a few decades; it is
one of the most investigated topics in computer vision. A lot of algorithms have been
developed, but only a few can be applied in practice because of the constraint from
either accuracy or speed requirement.

After the vision system is built, one can get some insights from it, and determine
which part of the vision system needs to be improved through experiments. The result
shows that the accuracy of current block matching algorithm is enough to be applied in
specific environment. Thus, the focus of the afterwards optimization for the currently
built vision system is mainly from speed acceleration aspect.

After measuring each stage time cost of 3D sensing part of the vision system, the
most time consuming stage is from the stereo matching which generates the dispar-
ity map or depth map. At last, the stereo matching part is executed on GPU(Graphic
Processing Unit) in order to get some performance enhancement, the final result demon-
strates that GPU can make the algorithm run in real time, and it is an ideal platform
for the further application development of stereo matching algorithm. Because the
original speedup of GPU against to CPU is round 35 times at least for desktop GPU,
and the optimized speedup of GPU against to CPU can be more than 100 times at
least for desktop GPU.

v

vi

Acknowledgments

Firstly, I would like to express my gratitude to my supervisors Harry Broers in Philips
Apptech and Georgi Kuzmanov from CE group in TU Delft with their assistance to
me in all the time of the project and thesis writing. Especially, I would like to thank
Harry for offering me the opportunity to do my graduate project in Philips Applied
Technology. Undoubtedly, I learnt a lot during this period. In addition, I am thankful
to Harry and Georgi’s patience during the project and thesis writing, and also their
stimulating suggestion when I was confused.

Secondly, I am indebted to the people in Philips Apptech, Pieter-jan Kuyten and
Hong Liu. Thanks for Pieter-jan’s help in software tools and Hong’s suggestion from
algorithm aspect, and it is helpful. Although they were very busy, they provided the
necessary assistance to me.

Thirdly, I am really grateful to the helps coming from two PhD students in TU
Delft. Thanks for Alexander S. van Amesfoort’s support in GPUs. With the GPUs
provided by TU Delft and Vrije University Amsterdam, my experiment can have enough
data and my project can progress forwards. Also, I would like to thank another PhD
student from CE group in TU Delft, C.Gou. Every time talking with you, I can get
some inspiration, thanks.

Lastly, I would like to appreciate the encouragements and understanding from my
parents and other family members during the whole procedure of my study. I dedicate
this thesis to you. Also, I am thankful to the discussion and supports from my friends,
like C.Li, L.Zhang, and J.Xu etc, and colleagues such as two Wilco and Vikrum.

Ying Zhang B.Sc.
Delft, The Netherlands
Oct. 8th, 2010

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Stereo Vision Survey . 1

1.1.1 Stereo vision system overview 1
1.1.2 Related works . 5

1.2 Context, Motivation and Objective . 7
1.2.1 Context and Motivation . 7
1.2.2 General Objective . 7

1.3 Research Goals . 8
1.4 Contributions . 9

1.4.1 Strategy of Project Impetus . 9
1.4.2 System Description . 10
1.4.3 Results . 10

1.5 Thesis Organization . 12

2 3D Sensing Implementation 13
2.1 Overview . 13

2.1.1 Preparation . 13
2.1.2 3D sensing part implementation requirement 14
2.1.3 3D sensing part construction . 14

2.2 Disparity map generation . 15
2.3 Image segmentation (object detection) 18

2.3.1 Object segmentation based on a horizontal plane 18
2.3.2 Object segmentation based on an arbitrary plane 21

2.4 Practical application of the developed 3D sensing part 25
2.5 Conclusion . 27

3 3D Sensing Profiling & Stereo Matching Implementation on GPU 29
3.1 Evaluate 3D sensing performance from the speed aspect 29
3.2 Background . 32
3.3 GPU introduction . 33

3.3.1 CPU vs. GPU . 33
3.3.2 CUDA programming model in GPU 34

3.4 The stereo matching algorithm implementation on GPU 35
3.4.1 Introduction . 35
3.4.2 WT-algorithm . 35
3.4.3 Analysis of the time-complexity 37
3.4.4 Replace “parallel do”-statement above with thread index in CUDA 37
3.4.5 Implementing the design on GPU 38

ix

4 Experimental Results & Implementation Evaluation 43
4.1 Comparison analysis - CPU vs. GPU 43

4.1.1 Accuracy comparison . 43
4.1.2 Speed comparison . 43
4.1.3 Experiment results of both CPU and GPU 44
4.1.4 Discussion of results . 44
4.1.5 Analysis of the speedup upper bound for one GPU comparing to

one CPU . 48
4.2 Evaluate the scalability among different GPUs 51
4.3 Profiling the GPU based implementation 54

4.3.1 Experiment design . 55
4.3.2 Task measurement and Analysis 55
4.3.3 Discussion and conclusion . 67

4.4 Conclusion . 68

5 GPU Optimization 69
5.1 Principles of the optimization in CUDA 69
5.2 Threads block configuration improvement 71
5.3 Branch or Divergent branch reduction 71
5.4 Algorithm improvement . 73

5.4.1 Element based accumulation . 73
5.4.2 Column based and Row based accumulation 74

5.5 Efficient management of various memories 76
5.5.1 Minimizing the use of global memory 76
5.5.2 Coalesced accessing to global memory 77

5.6 Final results and Conclusion . 78

6 Conclusion 81
6.1 Summary . 81
6.2 General conclusion . 82
6.3 Recommendations for future work . 82

Bibliography 84

x

List of Figures

1.1 Triangulation from stereo camera . 2
1.2 Epipolar constraint . 2
1.3 Stereo camera in standform form . 3
1.4 Depth calculation . 3
1.5 Disparity map example . 4
1.6 Overview of Stereo vision system . 4
1.7 Applications of the robot arm for disabled people 8
1.8 Different application environments . 10
1.9 Semi-autonomous Robot Arm System 11
1.10 3D sensing part of the system . 11

2.1 Stereo camera applied in the project 13
2.2 The main components of 3D sensing part 15
2.3 Disparity map generation with COTS components 15
2.4 Different qualities of disparity map . 17
2.5 Combining image segmentation to the previous stereo vision part . . . 18
2.6 Camera is parallel to the plane . 18
2.7 Disparity map with stereo camera parallel to the plane 19
2.8 Binary form generated from the disparity map 19
2.9 Differentiate the blobs by labelling . 20
2.10 Objects detection with bounding box and center of gravity 21
2.11 Stereo camera position with an arbitrary angle to the plane 21
2.12 Disparity map from the stereo camera with an angle to the plane . . . 22
2.13 Illustration of two intersection lines in disparity map 22
2.14 Calculated plane with different line fitting methods 24
2.15 Stereo camera position with an arbitrary angle to the plane 25
2.16 Disparity map generation with ROI . 26
2.17 Data bandwidth requirement of each stage 26

3.1 User interface of the demo program (provided by Point Grey SDK) . . 30
3.2 Profiling of 3D sensing part . 31
3.3 Floating Point Operations per Second and Memory Bandwidth for CPU

and GPU . 33
3.4 CPU and GPU devotion . 34
3.5 Various memory spaces on a CUDA device 38
3.6 Relations between shared memory and thread block 39
3.7 The first step of shared memory preparation 40
3.8 The second step of shared memory preparation 40
3.9 The third step of shared memory preparation 41

4.1 Disparity maps generated by both CPU and GPU 44
4.2 Illustration of Time(N, P fixed) . 45
4.3 Illustration of Time(P, N fixed) . 46

xi

4.4 Illustration of Speedup(N, P fixed) . 46
4.5 Illustration of Speedup(P, N fixed) . 47
4.6 Scalability of different GPUs . 53
4.7 Profiling of the GPU based stereo matching alg. (I) 55
4.8 Profiling of the GPU based stereo matching alg. (II) 56
4.9 Illustration of the granularity of the block 59
4.10 Bank conflicts of 8×8 threads block . 60
4.11 Bank conflicts of 20×20 threads block 60
4.12 Granularity of fixed width block . 62
4.13 Coalesced global memory accessing mode 64
4.14 Uncoalesced global memory accessing modes 64
4.15 The real situation in the implementation 65
4.16 Overview of the performance distribution 66

5.1 Illustration of element based accumulation 74
5.2 Illustration of column based and row based accumulation 74
5.3 Color based accessing to memory segment 77
5.4 GPU based 3D sensing part . 80

xii

List of Tables

3.1 Results of profiling 3D sensing part . 30
3.2 Salient features of device memory . 39

4.1 The GPUs in the experiment . 44
4.2 Test results for the program - Time(P, N) (seconds) 45
4.3 Speedup (N, P fixed) = Time (384, P fixed) / T (N, P fixed) 45
4.4 Speedup (P, N fixed) = T (1, N fixed) / T (P, N fixed) 47
4.5 Overview of GPU speedup potential to CPU 49
4.6 CPU & GPU hardware parameters . 50
4.7 ‘Ec’ measurements based on local stereo matching algorithm 50
4.8 Overview of speedup potential among different GPUs 52
4.9 RealSpeedup(GPU2GPU) . 53
4.10 ‘Eg ’ measurements based on SAD local stereo match algorithm 53
4.11 Kernel function resource usage . 57
4.12 Granularity of the thread block . 58
4.13 Granularity of fixed width block . 61
4.14 Performance distribution of each part (seconds) 66

5.1 The original implementation performance 71
5.2 Optimization from threads block configuration 71
5.3 The results of branch reduction from CUDA profiler 72
5.4 Optimization from branch reduction . 73
5.5 Result of element based accumulation from CUDA profiler 74
5.6 Results of column based and row based accumulation from ‘cudaprof ’ . 75
5.7 Optimization from row based accumulation 75
5.8 Effects of texture cache and CUDA array 77
5.9 The effects when using color images as the input 77
5.10 Optimization result from management of various memories on device . 78
5.11 Final results of the improved program - Time(P, N) (seconds) 78
5.12 Improved Speedup(P, N) = T(1, N fixed) / T(P, N fixed) 79

xiii

xiv

Introduction 1
Depth estimation, as the name implies, is the task that measures the distance between
two objects. The immediate way to get the distance information is to use a ruler
to measure it, however, in computer vision there is another method can do the same
thing and it is more intelligent. Stereo vision is the intelligent one. It uses a pair
of cameras to capture the images synchronously and then calculates the distance or
depth of the object apart from the cameras through the differences between the two
images shot by the two cameras separately. In stereo vision, the kernel function is called
stereo matching which compares the differences of the two images and then generates
the depth information for each pixel in one of the images. Stereo matching is the
foundation and the start point of the whole project.

In the following part, it first makes a survey of stereo vision, next introduces the
project background (the application context of stereo vision) and motivation, and then
the research goal of the project is followed. After that, the contribution of the master
project to the whole project will be provided. Last, the organization of rest of the
thesis is given out.

1.1 Stereo Vision Survey

This section mainly makes a survey on stereo vision system including the investigation
of relevant stereo correspondence (matching) algorithms.

1.1.1 Stereo vision system overview

Stereo vision is a technique of inferring depth with two or more cameras. It is a wide
research topic in computer vision and the relevant algorithms have been developed for a
few decades. The research emphasis is on the approaches which are (hopefully) feasible
for real time implementation.

Accordingly, the kernel hardware component of stereo vision technique is stereo
camera which consists of two or more cameras. Conveniently, with two or more cameras,
if we are able to find the corresponding (homologous) points in two images, then we can
infer depth by utilizing the trigonometric relation. This idea could be simply illustrated
in Figure 1.1.

As seen from Figure 1.1, two points with different depth in a space have the same
projection in the reference image, but their corresponding points in target image have
different position, thus two points in a space and their corresponding projection in two
images consist of a triangular so that it is possible to infer the real distance between P
and Q based on this relation.

Now the open question is that how to find the corresponding points in the target

1

Figure 1.1: Triangulation from stereo camera

Figure 1.2: Epipolar constraint

image. The naive way is to search them pixel by pixel in the whole target image,
obviously it is costly. Actually, there exists an epipolar constraint which could make
the situation easier. The story of epipolar constraint could be explained in Figure 1.2.

Epipolar constraint [25] states that if the points on the same line of sight of the
left view image project into the same position of the left image plane, then their corre-
sponding points are on the (red) line on the right view image. It means that epipolar
constraint reduces the search domain for the corresponding points in the whole target
(right) image into a certain line on that image.

However, it is still not over, putting the stereo pair in standard form could further
constrain the corresponding points on the same image scan line. In standard form,
the position of the corresponding points in left and right images are only different
in horizontal direction and this situation is clarified in Figure 1.3. Now finding the
corresponding points in target (right) image becomes convenient.

With all the preparation before, it is easy to calculate the depth of the point apart
from the camera. From Figure 1.4 and based on the similar triangles (PQRQT and

2

Figure 1.3: Stereo camera in standform form

Figure 1.4: Depth calculation

Ppp’), we could get the distance value through the equation Equation 1.1:

b

Z
=

(b + xT)− xR

Z − f
=⇒ Z =

b · f
xR − xT

=
b · f
d

(1.1)

In Figure 1.4 and equation Equation 1.1 [11], Z represents the real distance of the
target point P apart from the stereo camera baseline, f is the focal length of the camera
and b is the baseline distance between two cameras. Finally, we replace (xR - xT) with
d which is called disparity .

Disparity is the difference of x coordinate between two corresponding points in the
reference image and the target image. When we get to know the disparity value of each
pixel in the reference image, we could store all these values into another image with
grey scaled format which is also called disparity map. Based on equation Equation 1.1,
it is known that the disparity has inverse proportion with the real distance, thus the
points closer to the camera (with lower Z value) have higher disparity value and also
looks brighter. Figure 1.5 illustrates this property of disparity map.

3

Figure 1.5: Disparity map example

Figure 1.6: Overview of Stereo vision system

Until now, we could generate an overview of a general stereo vision system in Fig-
ure 1.6 [11]. The stereo vision system mainly consists of three components which are
rectification, stereo correspondence and triangulation. Strictly speaking, calibration is
exclusive of the stereo vision system, as it is a procedure to extract the cameras pa-
rameters, i.e., the focal length, image center, and lens distortion parameter etc., and
then provides them for rectification before the system actually starts working.

After the stereo vision system working, as seen from Figure 1.6, the raw input
images from the stereo camera have some lens distortions, so one of the functions of
rectification is to remove them. In addition, although the stereo camera hardware is
putted in standard form, there is still very tiny error of the position and this can only

4

be overcome through software way, so another function of rectification is to really turn
the stereo camera in standard form.

Next step stereo correspondence is finding homologous points in the rectified stereo
pair which is the output of rectification stage and generates the disparity map. This
step is the kernel of the stereo vision system also called stereo matching. A lot of
algorithms have been developed to deal with correspondence problem, but only very
few can be applied in real time. The algorithm used in this step usually determines the
quality of disparity map and the performance of the stereo vision system.

Based on disparity map, base line and focal length, the last step is to compute the
position (X, Y and Z coordinates) of the correspondence in 3D space. Z could be calcu-
lated by equation Equation 1.1, and X, Y could be got through equation Equation 1.2,
where xR and yR are the horizontal and the vertical displacement of the correspondence
in the reference image respectively:

Z =
b · f
d

=⇒ X = Z · xR

f
, Y = Z · yR

f
(1.2)

1.1.2 Related works

After getting some essential insights of stereo vision system construction, it is known
that stereo correspondence (or stereo matching) is the key component of the system,
accordingly, it will be the concentration of this thesis work.

In fact, until now, a lot of stereo matching algorithms have been developed and
the research for stereo correspondence problem is still going on. Fortunately, Dniel’s
and Richard’s work [18] characterized the performance of such a large number of al-
gorithms for stereo correspondence and presented a classification of dense, two-frame
stereo methods. Also, from [18], we know that, generally most stereo algorithms per-
form the (subset of) following steps:

1. Matching cost computation

2. Cost aggregation

3. Disparity computation or optimization

4. Disparity refinement (optional)

Matching cost computation is the method used to quantify the differences of the
pixel values in two images; traditionally, SD (squared intensity differences) [15, 20]
and AD (absolute intensity differences) [1, 5] are in use for this step. After that, the
differences are aggregated in a support window surrounding the pixel for increasing
the signal to noise ratio (SNR) and the immediate ways are SSD (Sum of SD) and
SAD (Sum of AD). In Step 3, based on the previous steps computation, the disparity
for the pixel is determined. There are several strategies to get the disparity and the
simplest one is winner-takes-all (WTA), like [1, 5, 22] etc., which selects the disparity
for specific pixel based on its minimum cost aggregation. In addition, usually the
original disparities are integer values which are discrete, thus disparity refinement as

5

an option of further making the disparity map more smooth is applied from some
specific application requirement of stereo vision.

Actually, the methods used in each step are not just restricted to the mentioned
ones above and there are a lot. Usually, most stereo algorithms could be classified into
local methods and global methods based on the strategy used for computing disparity
in step 3. In the following part, we will further make a basic investigation for both
local and global approaches.

1.1.2.1 Local methods

Local algorithms commonly perform “local matching cost computation =⇒ cost aggre-
gation =⇒ disparity computation (WTA)”, which first reduce ambiguity (increasing
SNR) by aggregating matching cost over a support window and then adopt a simple
WTA (winner takes all) strategy to select the disparity. These algorithms search the
correspondence along the same scan line of the target image for the pixel in the refer-
ence image only based on the matching cost aggregation over a small region, therefore
they are called local approaches.

From [10], the author made a comparison of different local stereo matching algo-
rithms on CPU, such as census based, SSD + WTA and SAD + WTA. Overall, SSD
and SAD are better than census based solution both on SNR and speed. Between
SSD and SAD, for the standard test image Tsukuba [18], SSD and SAD have almost
the same performance on the quality of disparity map, but SAD is faster than SSD.
In addition, larger mask size for SSD and SAD has better SNR, but some details of
disparity map will be lost.

In Tangfei’s work [21], the author provided a fast block matching SAD algorithm
which can get a reduction of over 55% in computational cost without accuracy loss for
standard block matching method. Also, other local methods like variable windows [23]
and adaptive weights [4] can further improve SNR and accuracy of the disparity map
with some loss of speed.

The current state of the art local method is provided by Hosni [3] which uses geodesic
distance to distribute weights during matching cost aggregation to reduce ambiguity
and it has the best quality of disparity map among local stereo methods, but it takes
about 1 minute on standard test images on CPU.

Surprisingly, even though there are some limitations, the widely adopted stereo
matching algorithm in practice is the most basic block matching method with fixed
window, because it has its own advantages, such as easy to implement, fast and limited
memory requirement etc..

1.1.2.2 Global methods

Comparing to local methods, global methods perform “local matching cost computation
(=⇒ cost aggregation) =⇒ disparity computation (with global reasoning)”, simply
speaking, it is a procedure of global energy minimization. The energy consists of two
items, local matching cost(e.g., SD and AD in local methods) and neighbourhood smooth
item which considers the consistency of a pixel’s disparity with that of surrounding
pixels, and cost aggregation is not necessary here. Actually, each pixel has a range of

6

disparity, thus there is a huge amount of combination of disparities for all pixels in the
whole image and global methods select the combination which has the minimal global
energy through a global energy minimizing process. Obviously, global methods have
much more computation and memory requirement than local methods, thus they are
usually slower than local methods. However, global methods have better quality of
disparity map than that of local methods, the reason is that, even if the disparity of
each pixel is not determined by the minimum local matching cost among all its disparity
options, it is assigned so that the global energy of the whole image is minimum and
this is the main difference between global and local methods.

For global stereo algorithms implementation, J.Sun’s work [19] achieved it with
belief propagation. After that, Pedro and Daniel [2] improved the running time of
belief propagation strategy with some algorithmic techniques. In addition, Yang and
Wang [28] implemented a hierarchical BP on GPU to make BP based solution running
in real time, but it is just applicable to small size stereo pair with short disparity range.
The current state of the art stereo matching algorithm is a global method which is BP
based solution provided by Klaus [8] and it has the highest quality of disparity map for
standard test images but not fast accordingly.

Besides belief propagation strategy, there still are other ways of implementation of
global algorithms, like dynamic programming [6] and graph cuts [9].

In a word, in practical application especially in real time, although global methods
obtain the best quality, they currently still have more constraints than local methods.

1.2 Context, Motivation and Objective

1.2.1 Context and Motivation

During daily life, many disabled people need some assistance for living and care from
the surrounding. With the development of technology, building specific tools to help
disabled people is already no longer an impossible mission. The original objective of
the whole project is to exploit robotic technology for helping the disabled and the elder
again obtain some basic capabilities which they lost before. One of the focus areas of
this kind of technology is the application of robot arm. The blue print of the whole
project is in Figure 1.7.

We can see the different usages of robot arm from Figure 1.7. For instance, Fig-
ure 1.7(a) shows the specific application of robot arm which is used for feeding people.
For the general use, robot arm can be applied as the realistic extra arm of human as
illustrated in Figure 1.7(b): the robot arm is fixed on the wheelchair and people can
open the door, pick up objects and do something else with it.

1.2.2 General Objective

The open question is how to implement the whole task and finally to make the robot
arm recognize and pick up the targets (in real time). There are several options to
reach the objective. An extreme option is to implement a fully-controlled robot arm.
It means that each step of a specific task is dictated by the user. Obviously it will

7

(a) (b)

Figure 1.7: Applications of the robot arm for disabled people

be cumbersome, tedious, and even inaccurate. Another extreme is to realize a fully-
autonomous robot arm. This one is the most intelligent and is not controlled by user.
The system adapts to users’ needs and intentions automatically. Without doubts, in a
short time, the functionality is difficult to be achieved. An intermediate solution is a
trade off between fully-controlled and fully-autonomous. The user just needs to do the
very limited key steps and the rest of the operations will be completed by the system.
For example, during the task of picking up something, the user could just select the
object for the robot arm and rest of things like sensing the object, moving the robot
arm and how much force needed to pick up the object are done by the system itself.

In order to realize the semi-autonomous robot arm system, the key step is to provide
a specific stereo vision system with a user interface for the existing robot arm. The
stereo vision system should be able to provide the distance, shape existing and position
information of the object for the robot arm.

1.3 Research Goals

Based on the project objective, naturally, stereo matching and image segmentation
will be applied to deal with the problems. Stereo matching is responsible to generate
the 3D information of the scene and store it in an image called disparity map. After
that, image segmentation technology is applied to the disparity map to extract the
main 2D information of the objects, such as the object size and position while the
3rd dimensional information, the distance apart from the cameras, is still kept in the
disparity map.

Until now, for the stereo vision system on the robot arm, we will have several
questions to answer during the project:

• How to build up the specific stereo vision system prototype for future research

8

work?

• There is a speed constraint from the robot arm for the vision system which should
be at least 6 frames per second for processing the images, thus it is important to
know that whether the built stereo vision system could satisfy the speed require-
ment from the existing robot arm?

• After the stereo vision system is built, which part of it needs to be improved?

• How to improve the built stereo vision system?

• Is GPU suitable for the development of stereo vision application?

• Is it possible to make the built stereo vision system run in real time?

Furthermore, stereo correspondence (matching) problem has been studied for a few
decades; it is one of the most investigated topics in computer vision. A lot of algorithms
have been developed, but only a few can be applied in practice because of the constraint
from either accuracy or speed requirement. Within this project, another goal is to see
how far we can go with stereo matching on robotics.

1.4 Contributions

1.4.1 Strategy of Project Impetus

At the beginning of the project, we know nothing about how effectively the vision
system will work and we have to build it from commercial-off-the-shelf component
which is Point Grey stereo camera and its software development kit (SDK). Based on
the situation, the general principle to keep the project going ahead is to start as simple
as possible. Therefore, we have a basic assumption about the condition:

• The vision system is just set to deal with the case, which is detecting the objects
on a plane.

Because the realistic world is very complicated and it is hard to detect the targets
in a general environment, it is a reasonable way to make a progress step by step.
For example, Figure 1.8 illustrates the specific environment (Figure 1.8(a)) and the
general environment (Figure 1.8(b)), so that we can get an intuitive insight of different
environments.

In addition, there will be several image processing algorithms or other algorithms
involved in the vision system, thus it is better to make the most use of existing resources,
such as the existing algorithms or COTS (commercial-off-the-shelf) components, to
realize the vision system prototype. In fact, the main kernel algorithms in the vision
system are stereo matching and image segmentation and the final task is how to make
use of them to build a simple vision system to detect the objects on a plane.

After building up the system, we will return to evaluate the implementation and
find which part still has to be improved, and then we could do further optimization for
the vision system.

In summary, the principle for building the vision system is starting from simple and
then keeping improving it.

9

(a) Specific case (b) General case

Figure 1.8: Different application environments

1.4.2 System Description

First, we will have an overview of the semi-autonomous robot arm systems and its
construction could be illustrated in Figure 1.9. Actually, the system mainly consists
of tree parts which are 3D sensing, user interface and the robot arm and they are
controlled by the personal computer. Robot arm is already existed and it is used to
verify the vision system which contains 3D sensing and its user interface. The Msc
project will concentrate on 3D sensing part only.

3D sensing part is used to extract the targets information, such as the depth apart
from the cameras, size, and the position, and provide them to the user interface. After
that, the user could interact with the robot arm based on the object information in the
user interface. In Figure 1.10, it illustrates the main functions in 3D sensing part. 3D
sensing part is made up of three modules and they are rectification, stereo matching
and image segmentation. Rectification is a preparation step of stereo matching, it helps
stereo matching generate disparity map easily. Stereo matching is responsible to get
the 3D information of the scene, especially each pixel value of disparity map stores
the depth information. Finally, a simple image segmentation algorithm then could be
applied to detect the target object and catch its key information from the disparity
map, such as the area and the position of the target.

1.4.3 Results

The main contributions of the thesis work to the robot arm stereo vision system are
referred in the following:

1. Make a survey of stereo matching algorithm, such as how it works and what the
state of the art is.

2. Build the first half of the 3D sensing part, which is from the capturing images
stage to stereo matching stage, with Point Grey stereo camera and its SDK so

10

Figure 1.9: Semi-autonomous Robot Arm System

Figure 1.10: 3D sensing part of the system

that it can generate disparity map first.
3. Complete the whole 3D sensing part by combining a basic image segmentation

algorithm to do some processing on the disparity map, which could extract the
boundary and the position of the objects from the disparity map while the stereo
camera is parallel to the plane

4. Further improve the functionality of image segmentation stage so that it can still
extract the boundary and the position of the objects from disparity map while
the camera has an arbitrary angle with the plane.

5. Apply ROI (region of interest) method to make sure the stereo vision system
prototype speed satisfy the requirement of the robot arm, which is that the speed
should always be more than 6 fps, and also more robust.

6. Evaluate the performance of 3D sensing part from its speed aspect and find that
stereo matching, which applies the block matching method, is the most time

11

consuming stage.
7. Implement the original CPU based block matching method from scratch which is

impossible to run in real time in any case.
8. Port the above block matching method on GPU with scalability to be accelerated

with CUDA.
9. Evaluate the primary performance of the block matching method on GPU and

find the possible optimization points based on the GPU hardware architecture.
10. Further optimize the GPU solution of block matching method and achieve a sig-

nificant speedup so that the case of 640x480 image size, with block size 11X11
and 55 pixels disparity range, could run in real time on GTX 280. Especially,
when the block size is down to 5X5, the block matching method could run at
128.5 frames per second in theory with the image size 640x480 and 50 pixels
disparity range on GTX 280.

11. Compare GPU based solution of the stereo matching algorithm with its CPU based
solution and also compare the GPU based solution performance on different GPUs
with different compute capability.

12. Demonstrate that GPU is an ideal platform for further developing the stereo vision
system based on block matching method to make it run in real time or near real
time.

13. (To do) Implement a GPU based stereo vision system by replacing the stereo
matching algorithm of Point Grey camera with the developed GPU based algo-
rithm in 3D sensing part.

1.5 Thesis Organization

For the rest of the thesis, it is organized as follows:
Actually, stereo matching is the kernel function in the stereo vision system, thus in

Chapter 2, we will first discuss how to build the prototype of the stereo vision system
for the robot arm.

In Chapter 3, based on the implementation of the specific stereo vision system, we
will first evaluate its performance from speed aspect. Then we explain the implemen-
tation of the most time consuming stage of the stereo vision system, which is block
matching method algorithm, on GPU to accelerate it.

in Chapter 4, after the GPU based implementation of stereo matching algorithm,
we make a comparison of the block matching method on different platforms including
CPU and several GPUs. Furthermore, we evaluate the GPU based solution and find
the possible optimization places.

In Chapter 5, we will further optimize the GPU based solution for block matching
method based on the results from Chapter 4.

Finally, in Chapter 6, we will draw the conclusion of the whole thesis work and
discuss about the possible future work for the stereo vision system.

12

3D Sensing Implementation 2
In this chapter, the contributions made are the items from the second to the sixth
referred in Section 1.4.3 and they are:

1. Generate the disparity map with a moderate quality.
2. Build 3D sensing part when the camera is parallel to the plane.
3. Make 3D sensing part still work while the camera has an angle with the plane.
4. Make 3D sensing adapt to more practical environment with ROI method.

At the same time, the following research questions are answered:

• How to build up the stereo vision system prototype?

2.1 Overview

2.1.1 Preparation

Actually, 3D sensing part is an practical application based on stereo vision technique
and we will start its implementation from commercial-off-the-shelf (COTS) components.
In our project, the kernel components are the Point Grey stereo camera and its SDK
(refer to [17] and [16]), we could easily build up the stereo vision part easily. The
stereo camera is shown in figure 3.1 and it consists of three aligned cameras, but in the
application there are only two of them being used.

Figure 2.1: Stereo camera applied in the project

13

2.1.2 3D sensing part implementation requirement

As we explained in Section 1.4.1, our intention is to build up the 3D sensing part to
satisfy the basic requirement and then further do improvement on it.

There are several basic requirements for the capability of 3D sensing part from the
existing robot arm:

1. Extracting 3D information of the objects on a plane

From the robot arm side, it needs some basic 3D information of the targets so that
it could do the reactions with the instructions from the user. The basic objects
information includes the area, bounding box and position of the objects. The
position of the objects consists of its distance apart from the camera and the XY
coordinates information of the object center in the image.

2. Certain robustness

Also, 3D sensing part should be in the nature of certain robustness. The reason
is that, this simple vision system is going to be used as the eyes of the robot
arm, even if it is fixed in one place, it is still rotatable in a small range. Thus
3D sensing part should accordingly provide the mentioned essential information
of objects when the robot eyes rotate in a small range.

3. Speed

In addition, in order to make the robot arm react in time to finish the task, such
as picking up objects etc., the stereo vision system should provide the objects
information for the robot arm with the speed of at least 6 Hz (or frames per
second), the faster the better. Furthermore, our CPU is Xeon 5110 1.6 GHz and
the Point Grey stereo camera can capture the image with the speed of 16 Hz at
most. In current situation, we have to make the 3D sensing part run in the speed
range from 6Hz to 16 Hz with the CPU.

2.1.3 3D sensing part construction

Considering the requirements for 3D sensing part of the stereo vision system, we could
build up 3D sensing part in such a way:

For the first half of 3D sensing part, we will use stereo camera to generate the
disparity (depth) map of the objects on a plane. The disparity map only stores the
depth information of both objects and the plane. For the rest of 3D sensing part, we
will extract or segment the objects from the plane based on the differences of the depth
between objects and the plane apart from the camera in disparity map. Thus, the 3D
sensing part is different from the traditional stereo vision system (Section 1.1.1) in its
last stage, which is image segmentation.

The construction of 3D sensing part can be illustrated in Figure 2.2.

14

Figure 2.2: The main components of 3D sensing part

2.2 Disparity map generation

After getting some insights of 3D sensing part, the first step is to generate disparity
map and this will be done with COTS (commercial-off-the-shelf) components, which
are Point Grey stereo camera (Figure 2.1) and its SDK (refer to [17] and [16]). The
procedure is shown in Figure 2.3. Simply speaking, the raw images are grabbed by the
stereo camera and then are rectified, finally based on the rectified image pair, stereo
matching is used to calculate the disparity map.

Figure 2.3: Disparity map generation with COTS components

There are several steps to complete the whole procedure of disparity map generation
with the API offered by the stereo camera:

1. Open the stereo camera.
2. Initialize camera capturing context.
3. Do camera calibration - get the parameters of the stereo camera, such as focal

length, base line etc.
4. Select two of the cameras for working.
5. Set the resolution for the image which will be rectified and set the stereo matching

algorithm parameters, such as disparity range, mask size and so on.
6. While loop:

(a) Grab the raw image pair
(b) Do rectification on the image pair
(c) Do stereo matching on the rectified image pair

15

(d) Display the disparity map and the reference image.

7. Close the stereo camera.

The stereo matching algorithm used by the stereo camera is based on SAD correla-
tion in a fixed size block, which is a local method. The intuition behind the approach
does the following:

• begin
• for each pixel do

1. Select a neighbourhood of a given square size from the reference image;
2. Compare this neighbourhood to a number of s in the other image along the

same row;
3. Select the best match based on the minimum difference.

• end

Furthermore, comparison of neighbourhoods or masks is done using the following
formula:

dmax

min
d=dmin

m
2∑

i=−m
2

m
2∑

j=−m
2

| Iright[x + i][y + j]− Ileft[x + i + d][y + j] | (2.1)

Where:
dmin and dmax are the minimum and maximum disparities.
m is the mask size.
Iright and Ileft are the right and left images.

In addition, the quality of disparity map does not only determine the results of image
segmentation in the next step, but also determine the reliability of the whole 3D sensing
part. Therefore, it is important to get a disparity map with the quality as good as
possible. With the current block matching method used in the stereo camera, there are
two ways to improve the quality of disparity map. One way is to adjust the parameters
of the algorithm. Disparity range, such as minimum and maximum disparity, and
mask size are the two key factors. If the parameters are wrong, the disparity map
will be nothing, like Figure 2.4(a). Another way is adjust the environment. Through
experiments, the objects on a plane with obvious texture have cleaner disparity map
than those on a textureless plane. Figure 2.4(b) is the disparity map of the objects
on a textureless plane and there are a lot of noise (blue parts) in the disparity map,
although we could find the objects. Undoubtedly, both Figure 2.4(a) and Figure 2.4(b)
are low quality. However, Figure 2.4(c) is the disparity map of the objects on a texture
plane with correct parameters, which has a clean view and this is the one it should be.

Until now, disparity map generation is completed, afterwards the image segmenta-
tion will be applied to extract the objects information on the plane.

16

(a) wrong parameters

(b) objects on a textureless plane

(c) texture plane with correct parameters−good quality

Figure 2.4: Different qualities of disparity map

17

2.3 Image segmentation (object detection)

Disparity map only stores the depth information of the whole image in every pixel
with grey scaled value and it does not contain other information for describing the
objects, such as the position, the area and the bounding box of the objects, thus image
segmentation based on disparity map (depth information) is added to extract the basic
information of the objects. The task of this section is illustrated in Figure 2.5: 3D
sensing part is fully built up with combining an image segmentation algorithm.

Figure 2.5: Combining image segmentation to the previous stereo vision part

2.3.1 Object segmentation based on a horizontal plane

In order to make the situation simple, we first assume that the objects are on a hori-
zontal plane, which means that the stereo camera is parallel to the plane as shown in
Figure 2.6.

(a) Camera position (b) Grabbed reference image

Figure 2.6: Camera is parallel to the plane

Based on the parallel position of the stereo camera to the plane, the disparity map
generated is shown in Figure 2.7(a) and Figure 2.7(b) illustrates the disparity map in
a 3D view based on the pixel values in Matlab:

18

(a) Disparity map (b) 3D view of the disparity map

Figure 2.7: Disparity map with stereo camera parallel to the plane

From Figure 2.7, it is easily seen that, as the camera is parallel to the plane, so
everywhere of the plane has almost the same distance apart from the stereo camera
and accordingly they have almost the same pixel values. However, the objects are on
the plane and closer to the camera, so their pixels values (disparities) are larger than
those of the plane. Based on this state, the objects can be extracted easily from the
background (the plane) with their pixels values. After that, we could calculate the
basic information of the objects. There is a simple image segmentation algorithm to
complete the task. In this simple image segmentation algorithm, there are several steps
to get the area, bounding box and the center information of the objects and these steps
are in the following:

1. Extract the objects from background (plane) by setting a threshold value manu-
ally.
By setting a threshold value, the pixels below this threshold are set to zero, and
others are kept in the image, which means the plane is removed while the objects
regions are preserved. The result of this step is shown in Figure 2.8.

Figure 2.8: Binary form generated from the disparity map

19

2. Differentiate the blobs by labelling based on 8-connected neighbourhood.
Considering the filtered disparity map (Figure 2.8) by threshold, the objects can
be labelled with different values based on 8-connected neighbourhood. Generally,
around a pixel, there are 8 positions close to it shown in Figure 2.9(a), if some
of these 8 positions have the same value (non zero) with the center pixel, and
then all these pixels will be seen as being connected with a label. Finally, the
objects will be differentiated by their own labels. The labelled image is shown in
Figure 2.9(b).

(a) 8-connected neighbourhood (b) Labelled image

Figure 2.9: Differentiate the blobs by labelling

3. Get the blobs properties−area, bounding box, and center of the objects
Based on the labelled image, we could easily calculate the basic information of
the objects. For the area of the object, it is gotten by accumulating the number
of pixels with the same value (label). For the bounding box of the object, it is
define by the left most pixel, right most pixel, top most pixel, and bottom most
pixel coming from the blob in the image. Last, for the center of the object, we will
use its center of gravity to represent it. Centre of gravity is the average location
of the weight of the object and here we will use the area instead of the weight
to compute the objects center of gravity in the image. Equation 2.2 is used to
calculate the center of gravity of the object in the image. After getting the basic
information of the objects, we could locate the objects and the result is show in
Figure 2.10.

Centre(X, Y) =⇒





Xcoordinate =
Pn

i=1 xi

blobArea

Ycoordinate =
Pn

j=1 yj

blobArea

(2.2)

20

Figure 2.10: Objects detection with bounding box and center of gravity

2.3.2 Object segmentation based on an arbitrary plane

In consideration of the requirement for the certain robustness of 3D sensing part in
Section 2.1.2, the fixed stereo camera is rotatable in a small range, so the camera can
not always be parallel to the plane. When the stereo camera has an angle with the
plane (shown in Figure 2.11(a)), the disparity map will be different from the previous
one and the result is illustrated in Figure 2.12.

(a) Stereo camera with a slope (b) Reference image

Figure 2.11: Stereo camera position with an arbitrary angle to the plane

From Figure 2.12, every point of the plane does not have (almost) the same disparity
value ever, or to the stereo camera, the plane is not horizontal any longer. Right now, we
can not easily remove the plane (background) by setting a threshold, thus the previous
image segmentation can not be used directly here to extract the basic information of the
objects. Only if we could find what the plane is, then the objects could be extracted
from the background by subtracting the plane from disparity map, and the rest of
the previous image segmentation algorithm can be used to get the information of the

21

(a) Disparity map (b) 3D view of the disparity map

Figure 2.12: Disparity map from the stereo camera with an angle to the plane

objects. Thus, what we will contribute to the previous image segmentation algorithm
is mainly on its first step.

There are two ways to calculate the plane: one is to do plane fitting directly, another
one is doing line fitting to two intersection lines on the plane and then calculating the
plane from these two intersection lines. Obviously, the first method is more reliable
because it will consider all of the points (O(n2))on the plane, however it is possible to
be so slow that 3D sensing part can not be used by the robot arm. Thus we will finally
use the second method which is using line fitting (O(n)) to fit the plane and the two
intersection lines are illustrated in Figure 2.13.

(a) Two intersection lines (b) 3D view of the two intersection lines

Figure 2.13: Illustration of two intersection lines in disparity map

From Figure 2.13(a), the two selected lines are close to the boundary of the disparity
map, as most objects are close to the center region of the image, so the values of the two

22

line are not often affected by the objects. Also we assume the intersection point of the
two line is (m, m) in XY coordinate, in addition, the horizontal line is in X-direction
and the vertical line is in Y-direction. From Figure 2.13(b), we could see the 3D view
of the two lines we select from disparity map. Naturally, if we can calculate the two
lines in 3D space, then we could find the plane they locate. The way to calculate the
plane with two intersection lines is in the following:

The vertical line in 3D space is:

{
Z = a1Y + b1

X = 0
(2.3)

=⇒ Its vector is: 0~i +~j + a1
~k

The horizontal line in 3D space is:

{
Z = a2X + b2

Y = 0
(2.4)

=⇒ Its vector is: ~i + 0~j + a2
~k

Thus the normal vector of the plane including these two lines is calculated by the
cross product of the vectors of the two lines:

(0~i +~j + a1
~k)× (~i + 0~j + a2

~k) =

∣∣∣∣∣∣

~i ~j ~k
0 1 a1

1 0 a2

∣∣∣∣∣∣
= a2

~i + a1
~j − ~k

=⇒ The plane is:
a2X + a1Y − Z + c = 0 (2.5)

Substitute Equation 2.5 with Equation 2.3 or Equation 2.4 =⇒

c = b1 = b2 (2.6)

In addition, we know that the intersection point of the two lines in XY coordinate is
(m, m).
So, substitute Equation 2.5 with intersection point, Equation 2.3 and Equation 2.6,
we get:

c = b1 − a2m (2.7)

23

Therefore, substitute Equation 2.5 with Equation 2.7, the final plane is:

a2X + a1Y − Z + (b1 − a2m) = 0 (2.8)

Based on Equation 2.8, as m is a constant, so if we know a1, a2 and b1 of the two
lines, then we could calculate the plane.

Now there are two methods to do the line fitting, one is least square method ([26])
and another is RANSAC (RANdom SAmple Consensus) method ([27]).

For the least square line fitting method, it will find the best fitted line based on all
of the points. Based on Figure 2.13(b), the points do not only contain the ones on the
plane, but also take the points of the object and the noise points into account. With
the affection of the points out of the plane, the fitted line will not be the real one on
the plane. We could see the final plane we calculated from the fitted lines with least
square method in Figure 2.14(a), which is not fully fitted to the real plane. There are
obvious errors between the calculated plane and the real plane. Afterwards when we
want to extract the objects based on the calculated plane, it is hard to do it and the
result is shown in Figure 2.15(a). As the calculated plane is not fitted to the real plane
well, the binary image of removing the calculated plane contains both the information
of the objects and that of the rest of the real plane.

In addition, for RANSAC line fitting method, it can take the points on the real
plane as many as possible into account to find the optimally fitted line by ignoring the
points out of the real plane as many as possible. With this property of RANSAC line
fitting method, the fitted lines will be almost the same as the real lines on the plane,
so that the calculated plane from them is almost fitted to the real plane and the result
is shown in Figure 2.14(b). With the calculated plane, the objects could be extracted
perfectly from the real plane and the extracted image of the objects is illustrated in
Figure 2.15(b) in a binary form.

(a) Least quare method (b) RANSAC method

Figure 2.14: Calculated plane with different line fitting methods

Thus, based on the results of least square method and RANSAC method, we de-
termine to use the existing RANSAC line fitting algorithm in the first step of previous
image segmentation algorithm to extract the objects from the plane and the rest steps
of segmentation algorithm are the same as before.

24

(a) Least aqure method (b) RANSAC method

Figure 2.15: Stereo camera position with an arbitrary angle to the plane

Right now, when the camera has an angle with the plane, the image segmentation
could still get the information of the objects. Another advantage of current image
segmentation algorithm is that, because the plane can be calculated automatically,
there is no need of manual efforts to find the plane in the procedure while the camera
is parallel to the plane.

Totally speaking, the current 3D sensing part is more robust than before and it
almost satisfies the implementation requirements of the functions.

2.4 Practical application of the developed 3D sensing part

When the objects on a huge plane, 3D sensing part can satisfy the requirements from
robot arm. However, in a more practical application environment, there are something
else besides the objects and the plane, such as the case illustrated in Figure 2.1(a),
only a region in the image is pure plane and other part of the image is unrelated stuff.
Thus, in this case, it could be imagined that 3D sensing part can not work well in
this environment. In addition, in some cases, large image size could be helpful on the
accuracy of the result of 3D sensing part, but from Table 3.1, the image size with the
width of 800 or 1024 is not available with the current stereo camera because of its low
speed. Thus, the speed somewhat constraints the further application of 3D sensing
part in some cases.

Based on the two practical application requirements above, 3D sensing part needs
a certain improvement so that it could be more widely used. The solution or the trick
to solve the problems above is to set a region of interest (ROI) in the images and just
do all the processing in ROI, which is shown in Figure 2.16.

From Figure 2.16, within ROI, the case of the objects on a plane is separated from
the real environment and it returns to the state in Section 2.3 or Section 3.1 so that
3D sensing part could be used directly on the region of interest (ROI). In addition, 3D
sensing part only works on a part of the original images with ROI, so the computation
is accordingly reduced and its speed is also faster than before for all cases of different

25

(a) left image (b) right (reference) image

(c) disparity map (d) 3D view of ROI

Figure 2.16: Disparity map generation with ROI

image sizes. We could use the data bandwidth requirement of each stage of 3D sensing
part, as shown in Figure 2.17, to explain the reason.

Figure 2.17: Data bandwidth requirement of each stage

26

From Figure 2.17, different stages have different data bandwidth requirements and
they are:

1. 2 × original image resolution × 3 bytes (pixel size for color image)
2. 2 × sampled image resolution × 1 byte (pixel size for grey scaled image)
3. 2 × (ROI of) sampled image resolution × 1 byte
4. 1 × (ROI of) sampled image resolution × 1 byte
5. 1 × (ROI of) sampled image resolution × 1 byte

Original image resolution is 1280times960 which is a fixed number determined by
the CCD sensor size of the stereo camera, and sampled image resolution is changeable,
all its cases are shown in Table 3.1. ROI usage could starts from the third stage and it
accelerates 3D sensing part by reducing the data bandwidth requirement of some stages.
An intermediate result is shown in Figure 2.16(c), 3D sensing part only calculates the
disparity map of ROI, thus the time spent on stereo matching is less than that of
computing whole disparity map.

Totally speaking, ROI is helpful to current 3D sensing part, it expands its application
range without changing the hardware (camera) and without improving the function
modules in 3D sensing part.

2.5 Conclusion

Above all, first we built up the 3D sensing part only for the stereo camera parallel to
the plane. In this case, one has to manually set the threshold to find the plane and
then the objects can be detected.

Later, we applied an existing RANSAC line fitting method to make the original
3D sensing part more robust. With this line fitting method, 3D sensing part could
calculate the plane automatically. As a result, even the camera has an angle with the
plane, the objects on the plane can still be detected

Lastly, in order to make the built 3D sensing part more stable in some practical
application environment, we used ROI (region of interest) to retrieve the situation
which 3D sensing part could deal with and at the same time reduce its computation
range so that 3D sensing part there-for runs faster with the same input image resolution.

27

28

3D Sensing Profiling & Stereo
Matching Implementation on
GPU 3
This chapter concentrates on the implementation and the evaluation of the stereo
matching stage in 3D sensing part on GPU, and the main contributions of this chapter
are:

1. Evaluate 3D sensing part performance from its speed aspect.
2. Implement the original CPU based stereo matching algorithm from scratch.
3. Port the CPU based stereo matching algorithm on GPU.

From the work of this chapter, the following research questions in the first chapter are
answered or partly answered:

• Whether the built stereo vision system could satisfy the speed requirement from
the existing robot arm?

• After the stereo vision system is built, which part of it needs to be improved?

• How to improve the built stereo vision system?

3.1 Evaluate 3D sensing performance from the speed aspect

Until now, the 3D sensing part has been built up and the open question is whether its
speed could satisfy the requirement from robot arm. For the robot arm, the 3D sensing
part have to run at more than 6 Hz which means it should process the images at least
6 frames per second. In addition, if the speed of 3D sensing part is not fast enough, we
have to know where the bottleneck is. In order to get the information of 3D sensing
part performance (speed and time), we measure it in the following way:

Firstly, we put 3D sensing part into a demo program (Triclops Demo) provided by
Point Grey SDK(e.g., [17] and [16]), in that demo program (shown in Figure 3.1), there
are a user interface which could control function modules in 3D sensing part and a
timer which could measure the speed of the program in the form of FPS. With this
demo program, we can make a profiling of 3D sensing part.

Secondly, with the demo program, we will measure the speed of 3D sensing part in
different image resolutions, while for stereo matching stage, the mask size is fixed at 11
and the disparity range is less than or equal to 50.

Thirdly, for each image resolution, we will use the user interface to turn on or off
the function module of 3D sensing part, such as rectification, stereo processing and
image segmentation shown in Figure 2.2, measure the variation of the speed of 3D
sensing part, and finally calculate the time cost of each stage in 3D sensing part. The

29

Figure 3.1: User interface of the demo program (provided by Point Grey SDK)

Table 3.1: Results of profiling 3D sensing part

Resolution Grabbing Rectification Stereo Segmentation Total Speed
(ms) (ms) match (ms) (ms) time (ms) (Hz)

160x120 62.5 0.0 0.0 24.5 87.0 11.5
256x192 62.5 0.0 0.8 31.0 94.3 10.6
320x240 62.5 0.0 7.4 31.1 101.0 9.9
400x300 62.5 0.0 10.5 34.5 107.5 9.3
512x384 62.5 3.3 28.6 37.2 131.6 7.6
640x480 62.5 7.9 50.1 43.5 163.9 6.1
800x600 62.5 22.2 97.1 45.5 227.3 4.4
1024x768 62.5 34.6 159.3 56.1 312.5 3.2

profiling results of 3D sensing part in different resolution are recorded in Table 3.1 and
illustrated in Figure 3.2.

From Table 3.1, we see that, except the cases of 800times600 and 1024times768
images, others could make 3D sensing part run above 6 fps (Hz). Also, through the

30

Figure 3.2: Profiling of 3D sensing part

experiment we found that, for 160times120 and 256times192 cases, as the images are so
small that their results are not stable and not accurate enough, thus in real application
only the image size with the width from 320 to 640 is available with current 3D sensing
part.

In addition, from Figure 3.2, we could get an insight of the time contribution of
each component in 3D sensing part. The grabbing time is almost the same for every
image resolution. In fact, the stereo camera has a color CCD sensor with the fixed
resolution 1280times960 and the camera is connected to PC with Fireboard-800, which
is an IEEE-1394b to PCI OHCI compliant adapter capable of 800Mbit/sec performance,
these two factors make the stereo camera grab the image at the speed of 16 Hz (frames
per second). Accordingly, when the software section of 3D sensing part is combined
with the hardware (stereo camera), the whole system can not run faster than 16 Hz.
Thus, the stereo camera itself is one of the bottlenecks of 3D sensing part and the
immediate improvement for it is to change a faster camera.

Another bottleneck of 3D sensing part is undoubtedly stereo matching component.
When the image size increases, the time spent on stereo matching will be the most and
increases faster than other components. For segmentation component, the variation of
image size has a little effect on it. For rectification component, it consumes the least
time in 3D sensing part.

Above all, if we can accelerate current stereo matching component, then the whole
3D sensing part with current stereo camera will get a significant performance enhance-
ment. Based on the current stereo matching algorithm used in the camera, which is
just known a local method, as its processing on each pixel of the image is independent,
so it could have a large amount of data parallelism. In addition, current NVIDIA GPU
is a typical SIMD platform which is suitable for massive data parallel programming
with CUDA. Therefore, our further improvement on 3D sensing part in next section
will consider implementing the stereo matching algorithm on GPU to see whether GPU
is a suitable platform for future development of 3D sensing part.

31

3.2 Background

From results of Section 3.1, it is known that, besides the constraint of the speed from the
hardware itself (bandwidth between stereo camera and PC), another critical bottleneck,
shown in Table 3.1 and Figure 3.2, is from stereo matching component in 3D sensing
part which belongs to the software aspect. Thus, in order to get further performance
enhancement for 3D sensing part, the immediate way is to reduce the time spent on
stereo matching stage. As the stereo matching algorithm provided by Point Grey SDK
is a local method which calculates the disparity map pixel by pixel and it means the
computation on each pixel is independent, so this algorithm has high potential data
parallelism. If we could realize the parallel execution of the local method, then the
time spent on stereo matching component will be reduced.

Currently, there are two kinds of platform supporting parallel computing, one is
GPU and another one is FPGA. We will choose Nvidia GPU as the target platform for
running local stereo matching algorithm and there are several reasons in the following:

Firstly, GPU is intrinsically SIMD architecture, so the stereo matching algorithm
with massive data parallelism is suitable to it.

Secondly, with the help of CUDA (computing unified device architecture) from
Nvidia GPU, it is very flexible to implement the algorithm on GPU without considering
how to design the hardware architecture like FPGA development. For example, if
someone wants to change the implementation, with GPU, he or she does not need
redesigning the hardware architecture and this could save the developing time.

Thirdly, as GPU is one part of PC, so we could use it directly without appending a
new hardware. Furthermore, usually GPU has lower price than FPGA with the similar
computing capability.

Fourthly, although FPGA is suitable for embedded application with low power, as
the 3D sensing part for the robot arm faces to desktop application at the beginning, so
there are no needs to consider the power consumption for it in current time.

After determining GPU as the platform for running stereo matching component in
3D sensing part, the open question is how to do it. Unfortunately, the stereo matching
algorithm applied by Point Grey stereo camera is not open source, so we cannot port
it on GPU directly. However, it is known that the stereo matching algorithm is a local
method based on SAD correlation in a fixed size block. With this limited information,
the GPU work will be:

1. Implement the CPU based stereo matching algorithm from scratch with the same
fundamental features as the algorithm used by Point Grey camera.

2. Port this CPU based algorithm on GPU to make it run as fast as possible.
3. Consider whether this GPU based stereo matching algorithm could replace the

original one in stereo camera with higher speed.
4. Consider whether GPU is suitable for the further development of 3D sensing part

on robot arm

32

3.3 GPU introduction

Before starting the GPU work, we will first get some intuitive insights about GPU
capability (reference to [13]).

3.3.1 CPU vs. GPU

Figure 3.3: Floating Point Operations per Second and Memory Bandwidth for CPU and GPU

Figure 3.3 illustrates the technology progress of CPU and GPU in recent years,
it is seen that the discrepancy in floating point capability and memory bandwidth
between the CPU and the GPU is larger and larger. For floating point capability,

33

comparing to the sequential execution in CPU, GPU is specialized in compute-intensive,
highly parallel computation and therefore designed so that more areas are devoted in
data processing rather than data caching and flow control like CPU. The devotion
of CPU and GPU is shown in Figure 3.4. More specifically, the GPU is especially
good at dealing with data-parallel computations, as it is SIMD architecture which is
that the same program (thread) is executed on many data elements in parallel. Thus
applications that process large data sets independently in a same way can use a data-
parallel programming model to accelerate the computation.

Figure 3.4: CPU and GPU devotion

For memory bandwidth, as the GPU provides the usage of various memory with
parallel accessing pattern, so it makes the memory bandwidth of GPU larger and larger
than that of CPU recently. For example, the shared memory on GPU is split into 16
banks (for compute capability 1.x) which can be accessed in parallel. Also in coalesced
accessing mode, global memory can feed several threads together not one by one. In
addition, as the memory access latency can be hidden with calculation, so the memory
could have high toleration for much accessing.

3.3.2 CUDA programming model in GPU

CUDA is a general purpose parallel computing architecture, and the developer can
achieve massive data parallel programming with it. Actually, CUDA program expresses
data level parallelism (DLP) in terms of thread level parallelism (TLP) and then hard-
ware converts TLP into DLP at run time. The whole procedure of CUDA program is
like this:

Firstly, it creates as many as possible parallel threads to represent the parallel data
elements.

Secondly, as all the threads will execute in a same way, so it just needs to write the
program for one thread and then all of threads can make use of this program based on
the threads indices.

Lastly, during run time, all these threads will be automatically distributed to dif-
ferent processor cores in GPU to run in parallel. It means, with more processor cores
in GPU, the threads can get more parallelism and the program can be executed in less
time. In summary, CUDA program can transparently scales its parallelism to leverage
the increasing number of processor cores.

34

After knowing the principle traits of CUDA GPU, the rest of work is to implement
a local stereo matching algorithm with high potential data parallelism on CUDA GPU.

3.4 The stereo matching algorithm implementation on GPU

3.4.1 Introduction

a) Problem requirement:

Design and implement an efficient parallel stereo matching algorithm with block
matching method on CUDA GPU to generate the disparity (or depth) map in
real time or near real time.

b) Algorithm description:

The inputs are two MtimesN rectified grey scaled images, which are generated
from stereo camera. The output is a disparity map which is calculated based on
x-coordinate difference between the correspondences in the two images. Here we
assumed the left image as the reference and the right image as the target one for
finding the correspondences.

First, calculate the fixed window SAD (sum of absolute difference) of one pixel
in the valid range of disparity. Second, find the minimum SAD under specific
disparity and then set the pixel value in output image with the disparity which
has the minimum SAD. Finally, do the same task to all pixels in reference image.

c) Algorithm proof:

Because for a pixel or an object in the reference image, if we want to find its
correspondence in the target image, then it is true that the pixel or the object
should have the least or even no difference with its correspondence.

So we have:

if SADmin = SAD(k), where disparitymin ≤ k ≤ disparitymax;

then Disparity(ipixel) := k.

3.4.2 WT-algorithm

We will use the WT-paradigm as assistance to simply analyse the time complexity of
the stereo matching algorithm.

For simplifying complexity analysis (but not affect the conclusion), we assume the
image (Left or Right image) resolution is n× n, the mask (block or fixed window) size
is m×m and the disparity range is l.

Firstly, the CPU based solution for the stereo matching algorithm is implemented
in the following way; it is a very basic one:

a) - CPU based version

b) - GPU based version

35

Algorithm 1 Sequential stereo matching
Require: L(n× n), R(n× n),m = 2k + 1, k ≥ 0
Ensure: D = stereomatch(L, R)

for 1 ≤ row, col ≤ n do
for d = 1 to l do

for 1 ≤ x, y ≤ m do
SAD+ = abs(L[row + y][col + x]−R[row + y][col + x− d]);

end for
if SADmin > SAD then

SADmin := SAD;
Disparity true := d;

end if
end for
D[row][col] := Disparity true;

end for

After the CPU based stereo matching algorithm is implemented, we will port it on
GPU. For parallelizing the CPU based solution, we have several choices:

1. Parallelize the first for loop only.
2. Parallelize the second for loop only.
3. Parallelize the third for loop only.
4. Parallelize both the first and the second for loop together.

At first glance, the fourth option seems the best, as it can parallelize the CPU
solution mostly. In order to achieve it, we have to build up a 3D thread block to hold
the necessary information for computing. It can be like this, two dimensions represent
the width and the height of the image and the 3rd dimension store the image information
in different disparity value. Unfortunately, the CUDA only provides the maximum of
64 in z-dimension, but in usual cases, the disparity exceeds 64 sometimes. In addition,
if we build up 3D computing architecture for parallel processing, the communication
overhead among different elements will be too much to improve the performance. Thus,
the fourth option should be denied.

Secondly, for the second or third option, we can easily reduce their time complexity
from O(l) or O(m2) to O(log(l)) or O(log(m)) with balanced tree technology through
the parallel architecture on GPU. If we do like this, we can parallel deal with the
computation for each pixel, but all pixels should be processed sequentially. Generally,
n is much greater than l or m, so parallelizing the computation on each pixel is not a
wise strategy.

Based on the above discussion, the rest we can do is the first option which is that
all pixels run concurrently, but within each pixel the procedure is sequential. Now we
could have the following algorithm which runs on GPU:

36

Algorithm 2 Parallel stereo matching
Require: L(n× n), R(n× n),m = 2k + 1, k ≥ 0
Ensure: D = cuda stereomatch(L, R)

for all i, j = 1 to n parallel do
for d = 1 to l do

for 1 ≤ row, col ≤ m do
SAD+ = abs(L[row + y][col + x]−R[row + y][col + x− d]);

end for
if SADmin > SAD then

SADmin := SAD;
Disparity true := d;

end if
end for
D[row][col] := Disparity true;

end for

3.4.3 Analysis of the time-complexity

Based on the above CPU- and GPU-based stereo matching algorithms, the analysis for
their time and work complexities are discussed in the following:

a) CPU based version
Time = n2 × l ×m2 + 2× l × n2 + n2 = O(n2 · l ·m2);
Work = n2 × l ×m2 + 2× l × n2 + n2 = O(n2 · l ·m2);

b) GPU based version
Time = l ×m2 + 2× l + 1 = O(l ·m2);
Work = n2 × l ×m2 + 2× l × n2 + n2 = O(n2 · l ·m2);

Because the CPU based algorithm is sequential and we see the GPU based parallel
algorithm has the same work complexity with CPU based sequential algorithm, GPU
based solution is work efficient.

3.4.4 Replace “parallel do”-statement above with thread index in CUDA

In order to make the algorithm run in parallel, an appropriate approach for processing
the input images with thread block is needed.

For the special case in the algorithm which is to use one thread to compute one
pixel value of the disparity map, as the maximum threads in one thread block are 512
and 1024 for compute capability 1.x and 2.0 device respectively, which is even far less
than a small image with 320× 240 pixels, so a hierarchy of multiple 2D thread blocks
is needed to cover all pixels of the image so that one pixel can be controlled by one
thread.

In addition, for each thread block, we will use a 16× 16 square thread block as the
unit of thread groups (reference to [7]). For 16 × 16, we have 256 threads per block.
Since each streaming multiprocessor in GPU can take up to 768 threads, it can take
up to 3 blocks to achieve full capacity.

37

With the above thread block configuration, all the threads can run parallel to gen-
erate all pixel values of the output image together.

3.4.5 Implementing the design on GPU

a) Implementation strategy

The stereo match algorithm does that, for each pixel in the reference image, it will
search for its correspondence in the target image within a certain disparity range. It
means that the information of reference image is static and we should shift the target
image in a range to make all pixels in reference image find their correspondence. Simply
speaking, we should update the information of target image by shifting it.

In addition, GPU provides various memory spaces for the application show in Fig-
ure 3.5 (reference to [12]), such as the off-chip memories, which are local, global, con-
stant and texture memory, and the on-chip memories, which are register and shared
memory. Different memories have different features which are shown in Table 3.2. One
could get performance improvement for the application by making a good use of dif-
ferent memories. Usually, the usage of register and local memory are done by nvcc
compiler of GPU. Accordingly, for other memory spaces based on Table 3.2, global
memory accessing is the slowest while shared memory accessing is the fastest, because
shared memory is closer to multiprocessor. Therefore it is better to access global mem-
ory as few as possible.

Figure 3.5: Various memory spaces on a CUDA device

Because the images are stored in global memory after being transferred from host
memory, in order to avoid frequent read/write operations in device (global) memory, we
should first transfer the images data to shared memory in each thread block, because
the performance improves with the use of shared memory which can be accessed faster
than the device memory (global memory).

Based on the above memory usage, the actual procedure on GPU is:

1. Download the two input images to GPU global memory.

38

Table 3.2: Salient features of device memory

Memory Speed Rank Location Cached Access Scope Lifetime
on/off chip

Shared 1 On No R/W 1 block Block
Register 2 On No R/W 1 thread Thread
Constant 3 Off Yes R all threads + host Host allocation
Texture 4 Off Yes R all threads + host Host allocation
Local 5 Off CC 2.0 R/W all threads + host Host allocation
Global 6 Off CC 2.0 R/W all threads + host Host allocation

2. Tile the reference image to each thread block shared memory.
3. Tile the shifted target image to each thread block shared memory under certain

disparity.
4. Each thread computes SAD, finds the minimum SAD and then stores the disparity

which has the minimum SAD into register.
5. Go to 3 until the target image is shifted out of the valid disparity range. (step

3 step 5 runs parallel for all threads).
6. Write the final disparity of each pixel to global memory parallel.
7. Upload the output image to CPU.

b) Shared memory management

Until now, the only open question is that how to manage shared memory in each
thread block. As we know, for every pixel, we have a fixed-size window to cover it
including its surrounding ones for computing SAD. If the number of image data hold
in the shared memory of each thread block equals the number of threads in each block,
then when computing SAD at the boundary pixels, there will not be enough information
for them. For short, at the boundary of each thread block, it will cause errors. The
situation can be illustrated in the following Figure 3.6:

Figure 3.6: Relations between shared memory and thread block

As we see, it is obvious that the number of elements in shared memory should be
more than that of its thread block. Their relations are:

• Thread block size: tile width× tile width

39

• Shared memory size: (tile width + mask − 1)× (tile width + mask − 1)

After that, we will evaluate the shared memory through several steps:

Step 1: Evaluate the central part of shared memory with all threads in all thread
blocks. The procedure and the intermediate result are illustrated in Figure 3.7.

(a) Threads behaviour (b) Result

Figure 3.7: The first step of shared memory preparation

Step 2: Evaluate the upper (left) and the lower (right) part of shared memory with
upper (left) threads in all thread blocks. The procedure and the intermediate
result are illustrated in Figure 3.8.

(a) Threads behaviour (b) Result

Figure 3.8: The second step of shared memory preparation

Step 3: Evaluate the rest of four corners of shared memory with the upper left threads
in all thread blocks. The procedure and the intermediate result are illustrated in
Figure 3.9.

40

(a) Threads behaviour (b) Result

Figure 3.9: The third step of shared memory preparation

41

42

Experimental Results &
Implementation Evaluation 4
After the stereo matching algorithm is implemented on GPU, we will make a evaluation
about the quality of the GPU based solution through several aspects, for example,
firstly, we will make a comparison of performance between CPU and GPU; secondly, we
will make a comparison of performance among different GPUs; after that, we will profile
the GPU based solution to find whether there exists some possible further optimization
places in GPU.

Thus, this chapter concentrates on the evaluation of the stereo matching stage in
3D sensing on GPU, and the main contributions of this chapter are:

1. Comparing GPU based solution of the stereo matching algorithm to the CPU
based solution and to other GPUs with different compute capability.

2. Profile the GPU based implementation of stereo matching algorithm and find the
possible optimization places based on the GPU hardware architecture.

From the work of this chapter, the following research questions in the first chapter are
answered or partly answered:

• Is GPU suitable for the development of stereo vision application?
• Is it possible to make the built stereo vision system run in real time?

4.1 Comparison analysis - CPU vs. GPU

4.1.1 Accuracy comparison

In fact, the CPU output and the GPU output have the same accuracy, as they use the
same algorithm and the same data type which is just integer data. In addition, we
compared the disparity maps generated by CPU and GPU respectively pixel by pixel
and found that they had the same pixel values. The disparity maps of the standard
test image pair “tsukuba” and the experiment image pair from both CPU and GPU
are shown in Figure 4.1.

4.1.2 Speed comparison

Here for simplification, we will just use Intel Xeon 5110 1.6 GHz dual core CPU as the
PC based reference, and then we are going to use different NVidia GPUs with different
cores and computability to do speed comparison with the CPU. Note that, for the
users, they are not allowed to just use some of the CUDA cores in one GPU, as it is not
provided to do so and all of the CUDA cores in one graphic card always run together.
Thus, we can just increase or decrease the number of CUDA cores we use by changing
a new GPU. Additionally, from the CPU side, it is just single thread in single core.

43

(a) 384×288 (b) 640×480

Figure 4.1: Disparity maps generated by both CPU and GPU

Table 4.1: The GPUs in the experiment

GPU name Compute # of # of
Capability Multiprocessors CUDA cores

Tesla C1060 1.3 30 240
GeForce GTX 280 1.3 30 240
GeForce 8800 GTX 1.0 16 128
Quadro FX 3700 1.1 14 116

GeForce 8400M GS 1.1 2 16

Furthermore (reference to [12, 14]), in order to get an exact executing time on GPU,
we have to synchronize the CPU thread with the GPU by calling cudaThreadSynchro-
nize() immediately before starting and stopping the CPU timer. Because many CUDA
API functions are asynchronous; that is, they return control back to the calling CPU
thread prior to completing their work. cudaThreadSynchronize() blocks the calling
CPU thread until all CUDA calls previously issued by the thread are completed.

4.1.3 Experiment results of both CPU and GPU

In our experiments, we will use four pairs of image with different resolutions as the
input. They are 384×288, 512×384, 640×480 and 1282×1110. We use the problem
size N to represent their width information and use P as the number of multiprocessors.
Then we will see the relation between N and P for the algorithm and the scalability of
GPU in Table(4.2, 4.3 and 4.4) and Figure(4.2, 4.3, 4.4 and 4.5).

4.1.4 Discussion of results

a) From Table 4.2: We can see that only the green data satisfy the real time require-
ment. What we can predict is that, in current situation without modifying the

44

Table 4.2: Test results for the program - Time(P, N) (seconds)

HHHHHHP
N

384 512 640 1282

1 1.23378 3.26514 6.54967 92.12514
2 (16) 0.34954 0.97243 2.07805 28.80753

14 (112) 0.03042 0.08353 0.17912 2.48310
16 (128) 0.02114 0.05922 0.12526 1.72098

30 (240-G) 0.01052 0.02828 0.05923 0.81743
30 (240-T) 0.00968 0.02605 0.05450 0.75095

Figure 4.2: Illustration of Time(N, P fixed)

Table 4.3: Speedup (N, P fixed) = Time (384, P fixed) / T (N, P fixed)

HHHHHHN
P

1 2 (16) 14 (112) 16 (128) 30 (240-G) 30 (240-T)

384 1 1 1 1 1 1
512 0.378 0.359 0.364 0.362 0.372 0.372
640 0.188 0.168 0.170 0.171 0.178 0.178
1282 0.013 0.012 0.012 0.012 0.013 0.013

code, more powerful GPU should be used for the larger problem size and this is
the only way of achieving the real time requirement further. Additionally, the red

45

Figure 4.3: Illustration of Time(P, N fixed)

Figure 4.4: Illustration of Speedup(N, P fixed)

data is reasonably estimated based on the other data which are from experiment,
because the stall of GPU happens when very large data is running on the weak
laptop GPU and it is impossible to get the exact elapsed time of GPU.

b) T (N, P fixed): Totally, based on the graph, the result is what we expect. The
time increases with the increment of problem size under fixed number of proces-
sors. Note that, with increasing the number of multiprocessors, the time decreases

46

Table 4.4: Speedup (P, N fixed) = T (1, N fixed) / T (P, N fixed)

HHHHHHP
N

384 512 640 1282

1 1.00 1.00 1.00 1.00
2 (16) 3.53 3.36 3.15 3.20
14 (112) 40.56 39.09 36.56 37.10
16 (128) 57.63 55.14 52.29 53.53
30 (240-G) 117.28 115.46 110.58 112.70
30 (240-T) 127.46 125.34 120.18 122.68

Figure 4.5: Illustration of Speedup(P, N fixed)

significantly. Although all the multiprocessors in GPU work parallel, there is no
communication among them which is determined by the algorithm and the warp
scheduling is zero-overhead in each of the multiprocessors in GPU. Additionally,
only a few synchronization in the algorithm and a few block scheduling over-
head, thus totally, without communication overhead, with a little synchronization
among different threads and with some block scheduling overhead but not much,
we can see a significant performance improvement with increasing the number of
multiprocessors in GPU.

c) T (P, N fixed): As we see from the graph, for the fixed problem size, when we
use more multiprocessors, naturally more time for computation will be decreased.
Note that, if the problem size is larger, then the effectiveness for decreasing the

47

time is more obvious.

d) Speedup (N, P fixed): The result is normal. If we do not change the hardware,
there is no speedup when we increase the problem size. In fact, the trends of
performance decrement while increasing the problem size in different hardware
are almost the same from the graph.

e) Speedup (P, N fixed): The truth from the graph is that, whatever the problem
size is small or large, the speedup trends with increasing the number of the multi-
processors are almost the same, which is that more multiprocessors result in more
speedup. Furthermore, we can see that the speedup value is less than the number
of CUDA cores. However, it does not mean that, for one GPU, the upper bound
speedup to CPU it can achieve is less than or equal to the number of CUDA cores
it has.

Here we can extract two questions:

1. How much speedup potential to CPU can one GPU achieve?

2. Among different GPUs, what is the scalability for them?

4.1.5 Analysis of the speedup upper bound for one GPU comparing to one
CPU

a) From algorithm level

Based on the time complexity analysis in Section 3.4.3 of both CPU and GPU, we
can see that the GPU speedup can reach that:

AlgorithmSpeedup =
O(n2 × l ×m2)

O(l ×m2)
= O(n2) (4.1)

In Equation 4.1, it is assumed that every pixel of the image can be generated
synchronous. For example, if the expected image resolution is 384×288, then the
speedup achieved will be equal to the product of width and height of the image which
is around 105 times ideally.

b) From hardware specification level

From the theory analysis above, although there is a large speedup potential, because
of the hardware specification constraints, such as the number of multiprocessors in
GPU, bandwidth between CPU and GPU, frequency difference between CPU and GPU
and etc., all of these hardware features make achieving the theory speedup potential
level impossible in actual applications.

In an empirical way, taking two main factors for consideration, which are the the-
oretical peak GFLOPS and the memory bandwidth of both CPU and GPU, we could

48

have an equation to calculate the GPU speedup potential to a CPU roughly. The
empirical equation is:

PotentialSpeedup =
GFLOPSGPU ·MemoryBandwidthGPU

GFLOPSCPU ·MemoryBandwidthCPU

× (4.2)

In Equation 4.2, GFLOPS is a way of measuring the calculation power of both CPU
and GPU, in addition Memory bandwidth determines the r/w operation speed. As most
of the time, r/w operations and calculating operations exist together, so we can simply
use the product of their speed to get the total speed of the whole operation. With this
equation, we could easily skip mass of hardware details and reasonably calculate the
GPU speedup potential to the CPU we used in experiments.

Table 4.5: Overview of GPU speedup potential to CPU

CPU(Xeon5110) G8400M Q3700 G8800 G280 TC1060
Mem bandwidth

(GB/s) 5.3 9.6 51.2 86.4 141.6 102.4
Peak performance

(GFLOP/s) 6.4 38.4 420.0 518.4 933.1 933.1
Potential c (x) 1 11 630 1313 3873 2801

Here the equations used for calculating CPU and GPU memory bandwidth and
peak performance are:

Mem bandwidth(GPU) =
memFreq(MHz)×memWidth(Byte)× 2

109
= GB/sec

(4.3)
In Equation 4.3, 2 is due to the double data rate, which means data is transferred

on both the rising and falling edges of the clock signal within computer bus operations.
Take Quadro FX 3700 as an example, memFreq is 800 MHz, memWidth is 256 bits (32
Bytes), and thus its memory bandwidth is:

Mem bandwidth(Q3700) =
800× 106 × 256× 2

109 × 8
= 51.2GB/sec

For the CPU memory bandwidth in our experiment, it uses PC2-5300 which is Fully
Buffered DDR2 SDRAM and its peak (theoretical) transfer rate runs at 5.33 GB/s.

In addition, the peak performance is calculated in the following equation both for
CPU and GPU:

Peak = #core× coreFreq × flop issue rate (4.4)

In our case, the parameters of both CPU and GPU are in Table 4.6.
In our CPU based solution, the program is purely sequential and there is only one

CPU core running for it, thus in Table 4 the CPU peak performance considered is just
one sixteenth of that in Table 4.6.

49

Table 4.6: CPU & GPU hardware parameters

Hardware CPU(Xeon) G8400M Q3700 G8800 G280 TC1060
#core 4 16 112 128 240 240

coreFreq(GHz) 1.600 0.800 1.250 1.350 1.296 1.296
flop issue rate 4 3 3 3 3 3

Peak (GFLOP/s) 25.6 38.4 420.0 518.4 933.1 933.1

c) From real implementation case

Although there is a high speed up potential in a GPU, it is not easy to fully exert its
capability. Actually, in our real implementation case, only less than 10% capability is
activated except the weakest GPU. Here we use Ec to represent the efficiency of practical
implementation on GPU to that on CPU. It defines how much capability of GPU is
activated for one implementation case comparing its CPU version implementation. It
can be calculated by Equation 4.3.

Ec =
RealSpeedup

Potential c
× 100% (4.5)

For Equation 4.5, we can get the average RealSpeedup value from Table 4.4 and get
the Potential c from Table 4.5; then we could get the efficiency of our implementation
case which is showed in Table 4.7:

Table 4.7: ‘Ec’ measurements based on local stereo matching algorithm

G8400M Q3700 G8800 G280 TC1060
RealSpeedup

(x) 3 38 55 114 124
Potential c

(x) 11 630 1313 3873 2801
Ec (%) 30.6 6.1 4.2 2.9 4.4

We can see from Table 4.7 that, the efficiency of our implementation case on GPUs to
CPU is 3%∼6% which is very low. In fact, there are several factors constrain activating
the full capability of GPU, some can be easily overcome but some cannot and they are:

1. Whether the algorithm is implemented with work efficient?

Actually, the work overhead happens when the input data is prepared in different
memory spaces, for instance, data transferring between host memory and device
(global) memory, data transferring between global memory and shared memory
on GPU and etc.

2. Whether the maximum number of threads, which can run simultaneously on each
of GPU multiprocessors, is fully activated in real implementation to hide global
memory latency?

50

There are three factors can determine the number of active threads on each GPU
multiprocessor finally: number of threads per block, shared memory usage per
block and number of registers in use per thread. It is beneficial to make a trade-
off among them to get a high parallelism on GPU.

3. In the usage of shared memory, if there are bank conflicts, they will make parallel
threads executed serially, thus reducing bank conflicts can improve the perfor-
mance.

4. As global memory accessing has the longest latency on GPU, so reducing the
times of global memory accessing can help save the total latency.

5. Thread blocks are scheduled among different multiprocessors by GPU itself. It
can produce some overhead.

6. It is not certain that, warps in different multiprocessors run synchronously. Be-
cause a common GPU is responsible for monitor controlling and computation at
the same time, thus the time for computation is mixed with some monitor task.
It means that monitor control could distribute some performance of GPU.

7. In practical case, it is hard to achieve CPU and GPU theoretical memory band-
width and peak performance, because theoretical value only happens when the
right operations with right sequence running on the platform at the right time.

Thus, the factors above make the low efficiency of application running on GPU
comparing with running on CPU. In spite of low efficiency between GPU and CPU,
because GPU has massive parallelism, it can still make the application achieve a sig-
nificant performance improvement comparing with CPU.

4.2 Evaluate the scalability among different GPUs

We can also clarify this problem from two aspects: one is from hardware specification
and another is from real implementation case. The situation is simpler and closer to the
truth when we discuss the performance of the implementation among different GPUs
than discussing that between GPUs and CPU. Because the GPUs in our hands have
almost the same hardware architecture and they are only different from the amount of
resource and the compute capability with each other, for example they have different
number of multiprocessors, different upper bounds of warps per multiprocessor and etc;
so we can easily get the insight of scalability of different GPUs.

a) From hardware specification

In our hands, there are five NVIDIA graphic cards which are showed in Table 4.1.
We will select the weakest one GeForce 8400M GS as the reference (GPU ref) and
compare it with others from memory bandwidth and peak performance. Here we will

51

use an equation, similar to Equation 4.2, to calculate the potential speedup among
different GPUs:

PotentialSpeedup =
GFLOPSGPU ·MemoryBandwidthGPU

GFLOPSGPU ref ·MemoryBandwidthGPU ref

× (4.6)

The calculations of Memory bandwidth and GFLOPS are the same as Equation 4.3
and Equation 4.4 respectively. And also we can easily get these two values from Ta-
ble 4.5, then we have Table 4.8.

Table 4.8: Overview of speedup potential among different GPUs

G8400M Q3700 G8800 G280 TC1060
Mem bandwidth

(GB/s) 9.6 51.2 86.4 141.6 102.4
Peak performance

(GFLOP/s) 38.4 420.0 518.4 933.1 933.1
Potential g (x) 1 58 121 359 259

b) From real implementation case

From Table 4.8, GPUs peak performance and memory bandwidth are theoretically
calculated, thus the potential speedup values of different GPUs in Table 4.8 are also
theoretical ones. In practical cases, as declared previously, the theoretical values are
just adapting to specific situations, such as specific datas, specific sequence of specific
operations at specific time and so on. Empirically, after optimization, the real perfor-
mance can achieve 70%∼80% of theory value ideally in some cases. While in another
cases, because some specific features are inherent to the algorithm or application, real
performance can just achieve 60% of theory value or even less.

In our experiments, in order to measure other GPUs speedup values comparing to
the reference GPU; we can just calculate them with the following equation:

RealSpeedup(GPU2GPU) =
RealSpeedup(GPU)

RealSpeedup(GPU ref)
× (4.7)

In Equation 4.7, RealSpeedup(GPU) and RealSpeedup(GPU ref) are both from Ta-
ble 4.4, and GPU ref is GeForce 8400M GS which has only two multiprocessors. Then
we have Table 4.9.

We could illustrate Table 4.9 with Figure 4.6:
In addition, we will use ‘Eg ’ to represent the efficiency of our implementation case

running on different GPUs. ‘Eg’ defines the ratio of real speedup to theory speedup of
one GPU when comparing to the reference GPU. It can be computed with:

Eg =
RealSpeedup(GPU)

Potential g
× 100% (4.8)

52

Table 4.9: RealSpeedup(GPU2GPU)

PPPPPPPPPN
GPU

G8400M Q3700 G8800 G280 TC1060

P 2 14 16 30 30
Potential g 1 58 121 359 259

384 1 11. 14 29 30
512 1 11 14 31 31
640 1 11 14 31 32
1282 1 11 14 31 32

Figure 4.6: Scalability of different GPUs

Table 4.10: ‘Eg ’ measurements based on SAD local stereo match algorithm

Q3700 G8800 G280 TC1060
RealSpeedup

(x) 11.6 16.5 34.5 37.5
Potential g (x) 58 121 359 259

Eg (%) 19.8 13.6 9.6 14.5

In Equation 4.8, Potential g is from Table 4.8 and RealSpeedup(GPU) is the average
speedup of different problem size cases of one GPU from Table 4.9.

53

When the real implementation is running on different GPUs without any modifi-
cation, we can get some insight of the GPUs scalability. The positive aspect is that
it can obtain more speedup with upgrading the hardware accordingly. For the nega-
tive aspect, from Figure 4.6, it illustrates that the gap between potential speedup and
real speedup becomes larger and larger with increasing the GPU computing capabil-
ity and from Table 4.10 we see that the GPU speedup efficiency stays at a low level
which is less than 20%. The reasons behind it are almost the same as those of the
end of Section 4.1.5. Another thing we should note is that, the potential speedup of
GTX280 is better than that of Tesla C1060, but in our real test Tesla C1060 behaves
better than GTX280. One reasonable explanation is that, because Tesla C1060 is not
a normal graphic card with display but the one with a pure computing capability, in
spite of somewhat weaker potential speedup than GTX280, Tesla C1060 can work more
efficient on computing task than GTX280.

In summary of Section 4.1 and Section 4.2, we can find that our current local stereo
matching algorithm implementation on GPU is not optimal one, but it can scale with
the hardware which means its performance can be improved naturally by increasing the
hardware computing capability. From the increasing gap between potential speedup
and real speedup in Figure 4.6 and the low efficiency from Table 4.7 and Table 4.10, it
shows that there is still large space for optimization to reduce the gap and increase the
efficiency. Additionally, if the implementation scalability is improved, we can get more
beneficial, such as more performance improvement, when we scale the hardware.

Thus, the rest of the work is to find the task bottle neck and then optimize it. We
will design experiments in the following Section 4.3 to profile the task and find where
the problems or optimization places are.

4.3 Profiling the GPU based implementation

Before one starts profiling the implementation, it is supposed to select the platform
and the case of specific problem size first. Here in the experiment, Quadro FX3700
(compute capability 1.1) will be used as the platform, because first it possesses such
enough capability that all the cases of different problem sizes can run on it; Secondly,
it is the second weakest GPU in hands, if one finds the bottle neck of the task and
do optimization for the GPU, then when the optimized code runs on more powerful
GPUs, it will certainly get more speedup according to the scalability of GPUs discussed
in Section 4.2.

For the case selection about specific problem size, the one 640×480 will be consid-
ered. First as we see from Table 4.2, it is not in real time and still has space for further
optimization, so it is significant to find its bottleneck. Secondly, this problem size is
very common in real application, if it can satisfy the real time requirement, then it will
have wide application prospect.

In order to get the insight of local stereo matching algorithm implementation on
GPU, we have the following experiment.

54

4.3.1 Experiment design

In the experiment, the applied measurement tool is CUDA Visual Profiler. It can mea-
sure the task execution time, the amount of resources used during the kernel function
running on GPU, such as the size of the used shared memory per block, the number of
registers used in each thread and etc. Based on the data measured with CUDA Visual
Profiler, we can find the bottle neck of the task from data analysis.

The procedure of the experiment is not complicated, we just need to compile the
CUDA code and generate the execution file, and then we launch it on the selected GPU
with its CUDA Visual Profiler. After that, the profiler will generate the profiler output
table which contains all the necessary information taking place on that platform.

In addition, the profiler can just measure the time of data transfer between host
(CPU) and device (GPU) and that of task executed on device (GPU). If one would
like to know how much time each step of the task spends, he / she should design the
experiment (him) herself. For example, one can use the difference of the executing time
of the task between with the specific step and without it to obtain the actual time spent
by the step.

4.3.2 Task measurement and Analysis

(i) Bottleneck of the whole task

For 640×480 case, after measuring the time of data transfer between CPU and GPU
and the time of the kernel function running on different GPUs, one can get an overview
of performance distribution among them from the following figures.

Figure 4.7: Profiling of the GPU based stereo matching alg. (I)

From Figure 4.7, because the data transfer time between CPU and GPU is so
tiny that it is not displayed well. However, we can easily calculate the corresponding

55

percentage of each part taking up the whole task, and it is illustrated in Figure 4.7 in
a more obvious way:

Figure 4.8: Profiling of the GPU based stereo matching alg. (II)

As seen from Figure(4.7 and 4.8), for all platforms, the whole task bottleneck is
not data transfer between host and device but the execution on device. Then the rest
experiment will just concentrate on this case (640×480) running on Quadro FX3700
GPU, because it is enough to represent the behaviours on other GPUs, and additionally,
other relevant reasons has been explained at the beginning of Section 4.3.

Analysis

One can easily find that, to 640×480 case, whatever the GPU it is, the time of
data transfer between host and device is always less than 1 millisecond. In addition,
comparing the execution part, the percentage of data transfer between CPU and GPU
is less than 1% in total so that it can be reasonably ignored. The results from the
figures demonstrate that the way of putting the whole algorithm on GPU is correct,
because it effectively avoids accessing the host frequently. It is known that the memory
bandwidth between CPU and GPU is 8 GB/sec (PCIe×16 Gen2) which is far below
the memory bandwidth on GPU such as 51.2 GB per second for Q3700.

(ii) GPU resource usage from CUDA prof.

After profiling the task on Q3700 platform (compute capability 1.1), we can get the
resource usage information of the kernel function executed on the device in Table 4.11.

The multiprocessor occupancy is the ratio of active warps to the maximum number
of warps supported on a multiprocessor of the GPU. In the selected device (computabil-
ity 1.1), the max number of warps supported on each multiprocessor is 24. Occupancy
is determined by the number of threads per block, size of used shared memory per

56

Table 4.11: Kernel function resource usage

#Block #Threads Static shared mem #regs per Occupancy #active
per Grid per block per block thread warp

40×30 16×16 5460 18 0.333 8 / mp

#instructions gld uncoalesced gst uncoalesced Total global #instr /
access global

48399546 6627504 88064 6715568 7.3

Branch Divergent branch
7005652 58870

block including both dynamic one and static one, and the number of registers used per
thread, because these tree kinds of resource are limited on each multiprocessor. In our
case, dynamic shared memory is not used.

In addition, “#instr / global” means the average number of instructions executed
for every one global memory access. It equals #instructions divided by total number
of global access which is the sum of global load (gld) times and global store (gst) times.
In our case, all global accesses are uncoalesced and no coalesced ones.

Analysis

From the data above, one could know something:
Firstly, the current occupancy of GPU is 33.3% and the maximum warps of each

multiprocessor are 24. Thus, the number of active warps on each multiprocessor is equal
to the product of multiprocessor occupancy and the maximum warps per multiprocessor
which is 8 displayed in Table 4.11.

Secondly, each multiprocessor on GPU implements zero-overhead warp scheduling
which means that once the operands of next instruction for the specific warp are ready,
the warp is eligible for execution. In addition, although one global access is time
consuming which is about 200-cycle memory latency on the device (1.0 or 1.1), because
of zero-overhead warp scheduling and the support for parallel execution of multiple
warps, the global memory latency is possible to be hidden. For example, in our case,
it needs 4 clock cycles to dispatch the same instruction for all threads in a warp in
the GPU with computability 1.1. It is known from Table 4.11 that every one global
memory access needs 7.3 instructions in average and now each multiprocessor has 8
active warps running in parallel. Thus time spent on executing 7.3 instructions on 8
warps is:

time =
4 cycle

instr
× 7.3 instr

warp
× 8warp = 223.6 cycles > 200 cycles

It is enough to fully tolerate 200-cycle memory latency! However, one should note
that it cannot improve performance by simply enhancing the occupancy such as chang-
ing the granularity of the threads block, and the effect of granularity will be discussed
in the next part.

57

Thirdly, because there are just un-coalesed accesses to global memory seen from the
table, these will be very costly. In order to know un-coalesed accessing pattern clearly,
we will explain how it happens and how it affects the memory bandwidth in “Effective
memory bandwidth” part.

Lastly, branch or divergent branch is caused by the flow control statement (e.g. if,
switch, for, while) and it significantly affects the total number of instructions executed
for specific warp, because branches make the threads of the same warp have different
execution paths which must be serialized. Generally, avoiding different execution paths
in the same warp could enhance the performance.

(iii) Granularity of the threads block

In this part, we will get an insight about the relation among the number of threads
per block, multiprocessor occupancy and kernel function performance (CPU time) when
executing on the device. After measuring the task through CUDA visual profiler, we
have Table 4.12:

Table 4.12: Granularity of the thread block

#Threads Static shared mem #regs per Occupancy Warp Exec time
per block per block (bytes) thread % serialized (seconds)

8×8 2644 18 41.7 24817509 0.19234
10×10 3252 18 50.0 33967079 0.24173
12×12 3924 18 41.7 25926330 0.20547
14×14 4660 18 29.2 26433219 0.23632
16×16 5460 18 33.3 0 0.17725
18×18 6324 18 45.8 18895667 0.21407
20×20 7252 18 54.2 14870430 0.19831

Additionally, their relation can be illustrated through Figure 4.9:
Based on Table 4.12 and Figure 4.9, it is easily seen that the best performance taking

place when the threads block size is 16×16. At 16×16, there are no serialized warps
and it spends the least time even if its multiprocessor occupancy is not the highest.

Analysis

Based on Figure 4.9, it is easily to conclude that high occupancy does not mean
high performance, for example, at 16×16, its occupancy is not the highest but its per-
formance is the best among these cases, however 20×20 obtains the highest occupancy
while its performance is optimal. In addition, during the range less than 14×14, high
occupancy even corresponds to low performance. The reason behind it is that although
the occupancy is increased, at the same time it leads to other factors which are harmful
to the performance.

In our case, the harmful factor driven by the configuration of threads block is the
serialized warps. They are caused by the shared memory bank conflicts which can make

58

Figure 4.9: Illustration of the granularity of the block

parallel warps executed sequentially. The results in Figure 4.9 demonstrate the effect
of the serialized warps.

In Figure 4.9, the number of serialized warps has almost the same trend with the
performance which means that more serialized warps make worse performance, how-
ever, when the number of serialized warps drops to 0, the kernel function has the best
performance.

In addition, how do shared memory bank conflicts happen in the cases above? Can
we avoid them? In order to give the answers of these two questions, one should know
what shared memory bank conflict is. In fact, in order to obtain a high memory
bandwidth, shared memory is divided into several banks (memory modules) with equal
sized (32-bit for the devices with computability 1.x) width for each one so that shared
memory can be accessed simultaneously. One memory bank can serve one thread once,
thus if more than one threads access the same bank simultaneously, then there will be
conflicts, which is also called the bank conflicts, among the threads. In order to avoid
bank conflicts, the treads in a warp will be serialized.

For the cases above, the cause of their bank conflicts is from the array mode of
threads block. Firstly, the computability of the GPU (Q3700) in experiment is 1.1 and
its shared memory has 16 memory banks. The shared memory block, accessed by its
threads block, spreads on the banks in row wise. Figure 4.10 and Figure 4.11 explain
how bank conflicts happen in the cases of threads block with configuration 8×8 and
20×20, and the rest of cases have the similar explanation to 8×8 and 20×20 for the
reason of their bank conflicts.

In the case of 8×8 threads block, as the threads block width is shorter than the
number of banks, it makes each of the first 8 banks accessed by 2 threads in half warp
simultaneously and then the bank conflicts are present.

In the case of 20×20 threads block, the threads block width is longer than the

59

Figure 4.10: Bank conflicts of 8×8 threads block

number of banks, thus the bank conflicts take place in the end of each row of the
threads block with the beginning of the next row. Figure 4.11 illustrates the situation.

Figure 4.11: Bank conflicts of 20×20 threads block

Above all, one can conclude that only if the thread block width is equal to or multiple
times of the number of banks (16 in this case), then there will no bank conflicts and
the threads in a warp will not be serialized so that the kernel function can maintain
its performance. For the device used, the width 16 or 32 is suitable. We will use 16 as
the threads block width, because it is more fitted to the number of banks which is 16.
Until now, the rest parameter still needed to be determined is the height of the thread
block.

60

There are several alternatives for the height. Firstly the height should be an even
number, as warps (32 threads per warp) are scheduling units in streaming multiproces-
sor of GPU; if the height is odd number, there will be half idle threads in some warps.
Additionally, the upper bound of height should less than or equal to 28 based on the
CUDA occupancy calculator and its lower bound should be 6 considering when the
fixed size (11×11) window for computing SAD on the boundary of the image.

Based on the following experiment results, one could find the optimal combination
of width and height to the threads block.

Table 4.13: Granularity of fixed width block

#Threads Static shared mem #regs per Occupancy Warp Exec time
per block per block (bytes) thread % serialized (seconds)

6×16 3380 18 37.5 0 0.16270
8×16 3796 18 50.0 0 0.15694
10×16 4212 18 41.7 0 0.16114
12×16 4628 18 50.0 0 0.15881
14×16 5044 18 29.2 0 0.18571
16×16 5460 18 33.3 0 0.17696
18×16 5876 18 37.5 0 0.17693
20×16 6292 18 41.7 0 0.17434
22×16 6708 18 45.8 0 0.17234
24×16 7124 18 50.0 0 0.17181
26×16 7540 18 54.2 0 0.17601
28×16 7956 18 58.3 0 0.17698

And Figure 4.12 illustrates Table 4.13.
As seen from the experiment results, first, it demonstrates that the threads block

width fixed at 16 can promise no bank conflicts as the number of serialized warps
right now is 0. In this situation, the optimal performance is never 16×16 setting for
the threads block. At this time, all cases with different heights of threads block can
be divided into two cliques, one is when the height is larger than and equal to 14 and
another is when the height is less than 14. Generally, the latter cliques (fine grains) have
better performance than the previous ones (coarse grains). Also the best performance
is present at the height 8.

One could find that, in coarse grains, the performance keeps almost constant with
the increment of occupancy. While, in fine grains, the occupancy is related to the
performance, and the results show that higher occupancy is with better performance.

Therefore, the optimal size of threads block for the kernel function is that the width
is 16 and the height is 8.

(iv) Effective memory bandwidth

Bandwidth is the rate at which data can be transferred. It is one of the most
important gating factors for performance. To measure performance accurately, it is

61

Figure 4.12: Granularity of fixed width block

useful to calculate theoretical and effective bandwidth. When the latter is much lower
than the former, design or implementation details are likely to reduce bandwidth, and
it should be the primary goal of subsequent optimization efforts to increase it. Device
theoretical bandwidth is calculated with Equation 4.3, however its effective bandwidth
is calculated by timing specific program activities and by knowing how data is accessed
by the program. It is given by Equation 4.9:

Effective bandwidth =
Br + Bw

109 × time
(4.9)

Here, the effective bandwidth is in units of GB/sec, Br is the number of bytes read
from global memory per kernel, Bw is the number of bytes written to global memory
per kernel, and time , spent by the kernel function on device, is given in seconds.

In our case, the theoretical bandwidth is 51.2 GB/sec calculated before and the
effective bandwidth is calculated below:

Firstly, in our case, the number of threads per block is 16×16, thus from Table 4.12,

time = 0.17725 seconds.

Secondly, the image resolution in experiment is “640×480” and the image format
is based on pgm (each pixel of the image is one byte). The kernel function only writes
global memory once for storing the disparity value to global memory. Thus,

Bw = 640× 480 = 307200 bytes

Furthermore, the global memory loading happens when the kernel function copies
the two images information from global memory to shared memory. For the left or
reference image, it is only read once from global memory. For another (right) image,

62

based on the implementation strategy, the times read by kernel function is equal to
the disparity range determined by setting and in our case it is 55. In addition, the
bytes of each image read by the kernel is actually more than the original image size,
because the shared memory resolution used for one block is larger than that of threads
block which is explained in the part “shared memory management”. Based on “shared
memory management”, for a 16×16 thread block, it actually reads 26×26 bytes from
global memory, and for each image it has 40×30 blocks got from cudaprof. Thus, the
total number of bytes read from global memory should be:

Br = (26× 26)× (40× 30)× (1 + 55) = 45427200 bytes

Therefore,

Effective bandwidth =
45427200 + 307200

109 × 0.17725
≈ 0.258 GB/sec

Analysis

From the result above, one could find that the achieved effective memory bandwidth
on GPU is very low in real implementation. And we will use the following equation
to evaluate how efficiently we apply the memory bandwidth which is offered by the
hardware (GPU).

Emem bw =
Effective bandwidth

Theoretical bandwidth
× 100% (4.10)

In Equation 4.10, Theoretical bandwidth is calculated through Equation 4.3 and,
for the device used in the experiment, it is 51.2 GB/sec. Thus, with Equation 4.10, one
could have:

Emem bw =
0.258 GB/sec

51.2 GB/sec
× 100% ≈ 0.5%

Based on the efficiency, it means that the implementation does not effectively use
the high memory bandwidth on GPU and it could be preliminarily estimated that there
is still a large space to improve the usage of the memory bandwidth on GPU.

As a matter of fact, from the data in table 10, one could get some clews. The CUDA
visual profiler shows that all of the global memory access are un-coalesced which means
that, usually the kernel function can complete the data transferring by accessing the
corresponding memory segment once, but in an un-coalesced pattern, it does it with
many times. Obviously, un-coalesced global memory accessing is very costly.

How does un-coalesced global memory access happen in the implementation? The
explanation will be given in the following part:

Firstly, for the GPU (compute computability 1.1) used in the experiment, its global
memory is made up of fixed size memory segments and each one is 64 bytes. Every
memory segment consists of sixteen 32-bit (4 bytes) words.

Secondly, based on the cognition to global memory construction (reference to [24]),
the coalesced accessing mode can be achieved when the k-th thread in a half warp

63

Figure 4.13: Coalesced global memory accessing mode

(16 threads in total) aligns with the k-th word in a memory segment, however not all
threads need to be present. The coalesced mode can be illustrated by Figure 4.13.

The Advantage of coalesced accessing mode is that, all of the threads in a half warp
can be fed within one transaction of the memory segment.

Thirdly, if at least one of the thread in a half warp does not access the corresponding
word in a segment, such as out of order case or misaligned case, then the un-coalesced
accessing to global memory will happen and it leads to a separate transaction requested
by each thread in a half warp which are 16 transactions in total for one segment. Ob-
viously, un-coalesced accessing mode increases the times of global memory accessing
extensively which will be very costly. Therefore, it is wise to avoid un-coalesced ac-
cessing to global memory as many as possible. Figure 4.14 illustrates the cases of
un-coalesced accessing modes.

Figure 4.14: Uncoalesced global memory accessing modes

After understanding the reason of un-coalesced global memory accessing, now it is
easy to explain how un-coalesced accessing mode happens in the real implementation.
As described before, the input images of the algorithm are grey scaled images (.pgm
format), thus each pixel size of the grey scaled image is one byte. In addition, based on
the implementation itself, one thread accesses one pixel, so it accesses one byte. When
the input image stores in global memory, every four pixels can hold one 32-bit word
which is the basic element of memory segment. At this time, four threads access one
word and 16 threads access the first four words of one memory segment for sure. The
situation is illustrated by Figure 4.15.

Based on the situation in Figure 4.15, obviously, a half warp is impossible to be

64

Figure 4.15: The real situation in the implementation

aligned with one memory segment. Furthermore, during accessing the shifted target
image in the algorithm, the threads in a half warp are also misaligned with the memory
segment. Therefore un-coalesced accessing to global memory in the real implementation
is inevitable.

Fortunately, there are some ways to improve current situation. For example, using
texture cache fetch instead of global memory load could avoid global memory accessing
with some extent and save the time of reading data from the input images as texture
cache is on chip which means it is more closed to the multiprocessors. For un-coalesced
writing to global memory, it is inherent in programming, it is not easy to make it
coalescable. In addition, replacing grey scaled input image with its color version (32
bits or 4 bytes per pixel) can apply coalesced global memory accessing mode better,
because in this way, the threads in a half warp can be aligned with the word in a
memory segment.

(v) Bottleneck of the execution part running on GPU

Based on previous experiment results and analysis, one can know that for the whole
task, the part of data transferring between host and device can be ignored as it just
takes up less than 1% of the total time, and the execution part running on GPU is the
bottle neck of the whole task. For the execution part, it is still not clear about the
detail of construction of the time for each step in the algorithm. Because the global
memory is accessed in an un-coalesced way which is very costly, it is natural to divide
the execution part into two; one is the time spent on global memory load and store,
another one is the pure computation including both SAD (sum of absolute difference)
and WTA (winner takes all) on each thread.

In order to know how much time is spent on global memory load and store, the
computation of WTA and SAD could be removed temporarily and then the measured
execution time for the modified kernel function is that of global memory accessing. Fur-
thermore, the difference of the time between whole execution part and global memory
accessing is the cost for the pure computation. In this way, one can get the data in
Table 4.14.

One could get an insight of the percentage for each part in the above table through
Figure 4.16.

Analysis

Regardless of data transferring between host and device, from the previous analysis
about the effective memory bandwidth, one finds that the time spent on un-coalesced

65

Table 4.14: Performance distribution of each part (seconds)

Host2Device Device2Host Global mem WTA&SAD
accessing

0.00055 0.00041 0.03447 0.14370

Figure 4.16: Overview of the performance distribution

global memory accessing should be much. As a matter of fact, from the data above,
it demonstrates the estimation about un-coalesced global memory accessing, because
it consumes 19% of the total time. However, it is still not the most time consuming
part, as the time cost of the pure computation is four times of that of global memory
accessing. Thus, although global memory accessing is somewhat expensive, the pure
computation of WTA and SAD is the real bottle neck of the execution part on GPU
which takes up 80% of the total execution time and the optimization on WTA and
SAD can bring more significant improvement of the performance than that on global
memory accessing.

Because all of operations in one thread are totally sequential and the computation
of WTA and SAD is threefold iterative operation, time complexity of computing WTA
and SAD is equal to its work complexity which is O(l · m2) calculated before. “l”
is the disparity range in computing WTA and “m2” is the size of the fixed window
size for computing SAD. They both are the inherent features of the algorithm and its
implementation. Based on the discussion of global accessing, it is possible to improve
it without changing the algorithm. However, for the computing part, it is not easy
to reduce its time cost just by code transformation unless the algorithm itself can be
modified or optimized correspondingly.

Actually, there exists a solution to reduce the computation without affecting the

66

accuracy of the results. This will be explained in detail in the chapter of Further
Optimization on GPU.

4.3.3 Discussion and conclusion

Until now, the profiling for the task is completed. After that, one can have a deeper
insight of the whole task. From the experiments, the problems that impede the perfor-
mance have been found, and some possible optimizations are provided.

In summary, the problems existed and the corresponding solutions are extracted
from the topics above:

(i) Bottleneck of the whole task

The result shows that data transferring between host and device has little effect on
the performance. The decision of running the whole algorithm on GPU is correct and
it can maximize parallel execution.

(ii) GPU resource usage

The data indicates that, firstly, the current number of active warps on each mul-
tiprocessor is enough to hide the global memory latency. In addition, there is only
un-coalesced global memory accessing and the number of branch in all of the warps is
somewhat large. Thus the possible optimization should be focus on improving the way
of global memory accessing and decreasing the number of branches in warps if possible.

(iii) Granularity of the threads block

Based on the experiment, multiprocessor occupancy has no direct relation to the
performance. And 16×16 threads block is not the optimal choice. The optimal one
is 8times16 for the device with compute capability 1.0 or 1.1 and 6×32 for device 1.2
or 1.3. To the fine grain of the threads block, higher multiprocessor occupancy could
achieve a little better performance.

(iv) Effective memory bandwidth

After getting to know the effective memory bandwidth of the real implementation, it
is far away from the theoretical one and still needs being improved further. The problem
is the un-coalesced way of global memory accessing. One possible optimization is to use
texture fetch instead of global memory reading. However, un-coalesced global memory
writing, which happens during writing the results into global memory, is inherent in
programming, thus it is inevitable. Another solution is to change the format of grey
scaled input image into its color version to make it stored in global memory more
adaptable. Of course, the combination of these two solutions is also probable.

(v) Bottleneck of the execution part running on GPU

After splitting the execution part executed on GPU into global memory accessing
and pure computation, pure computation shows more time consuming than current
un-coalesced global memory accessing and pure computation is inherently determined
by the algorithm itself. Therefore, the improvement of algorithm is the intrinsic way
for the performance optimization.

67

4.4 Conclusion

In fact, for the original implementation of the algorithm, it achieved the real time
requirement in some cases. For example, the green data in Table 4.2 represents the real
time cases, but others are not in real time. Based on the experiments and analysis, one
could know that there is still space to improve the performance, thus more data could
turn green in Table 4.2. The moderate goal for the further optimization is that one can
make 640×480 input images running in real time on Q3700 GPU.

After experiment, the most important result is that the possible optimization has
been found and they are:

1. Apply the optimal configuration for the threads block which is 8×16 to the device
with compute capability 1.0 or 1.1.

2. Reducing the number of branch and divergent branch if possible.
3. Algorithm improvement on the computation of WTA and SAD if possible.
4. Use texture cache fetch instead of global memory loading.
5. 2D array arrangement for threads block.
6. Change the grey scaled image with its color version to make it more fitted to the

memory segment of global memory.

Therefore, the next chapter will complete the provided optimization to see how fast
we can achieve for the application, and then fully answer the questions that whether
GPU is suitable for the development of stereo vision application and whether it is
possible to make the built stereo vision system run in real time.

68

GPU Optimization 5
The contributions of this chapter are:

1. Further optimize the GPU based stereo matching algorithm and make more cases
with the GPU based solution run in real time or near real time. Especially, when
the block size for computing SAD is down to 5×5, the block matching method
could run at 128.5 frames per second in theory with the image size 640×480
and 50 pixels disparity range on GTX 280.

2. Demonstrate that GPU is an ideal platform for further developing the stereo vision
system based on block matching method to make it run in real time or near real
time.

3. (To do) Implement a GPU based 3D sensing part with the develop GPU based
stereo matching algorithm.

Also in this chapter, the following research questions are answered:

1. Is GPU suitable for the development of stereo vision application?
2. Is it possible to make the built stereo vision system run in real time?

5.1 Principles of the optimization in CUDA

From CUDA Best Practices 3.0 [12], it provides some recommendations for the opti-
mization on CUDA application. In our case, high-priority and medium-priority recom-
mendations are the main concentration and they are:

High-priority:

H1. Maximize parallel execution.
H2. Use the effective memory bandwidth as the metric of performance and optimiza-

tion benefits.
H3. Minimize data transfer between the host and the device.
H4. Ensure coalesced accessing to global memory whenever possible.
H5. Minimize the use of global memory.
H6. Avoid different execution paths with the same warp.

Medium-priority:

M1. Access to shared memory without bank conflicts.
M2. Use shared memory to avoid redundant transfers from global memory.
M3. Maintain approximately 25% occupancy as a minimum

69

M4. The number of threads per block should be a multiple of 32 threads for optimal
computing efficiency and facilitating coalescing.

M5. Use fast math library whenever speed is more important than precision.

For H1, it has been discussed in Section 3.4.2(b) and implemented for our stereo
matching algorithm.

Additionally, H2 will be continually applied in this chapter and its computation is
based on Equation 4.9.

For H3, firstly, the data transfer between the host and the device only happens
when input images are download from CPU to GPU and the output image is uploaded
from GPU to CPU. Secondly, based on the experiment results in Section 4.3.2(i), data
transfer between the host and the device has little effects on the performance. Thus,
H3 will not be considered in the afterwards optimization.

For medium-priority recommendations, in Section 4.3.2(iii), it was found that how
to avoid bank conflicts while accessing shared memory and how to configure the threads
block to get an optimal computing efficiency. Furthermore, based on the original imple-
mentation which applies 16×16 threads block configuration, it is done by using shared
memory explained in Section 3.4.5(a) and its occupancy of the multiprocessor from Ta-
ble 4.11 is 33.3%. Therefore, from M1 to M4, they are already achieved; however, as M5
is not necessary in our specific implementation which has no complicated calculation,
so M5 will not be considered too.

Until now, the rest of the recommendations are from H4 to H6. Actually, based
on the conclusion of Chapter 4, the possible optimization places are matched with H4
to H6, thus the optimization work in this chapter will follow the results of chapter 4
and H4 to H6, and be implemented on the device Quadro FX 3700 for 640×480 images
so that the results after optimization could be compared with the original result of
16×16 in Table 4.12 and Section 4.3.2(iv) which are also based on Quadro FX 3700
with 640×480 images.

As a start point, adopting the time and effective memory bandwidth as metrics,
Table 5.1 presents the performance of the original implementation “Kernel 1” which is
the case with 16×16 threads block for 640×480 images. When there is a new improve-
ment with the optimization method in the rest sections of this chapter, we will call
the improved kernel as “Kernel i (the applied method)”. For instance, in this chapter,
there will be five kernels, the later the better. They are:

• Kernel 1: the original solution.
• Kernel 2: with new threads block configuration.
• Kernel 3: with branch reduction method.
• Kernel 4: with algorithm improvement of row based accumulation reduction.
• Kernel 5: with CUDA array for 2D data storage.

For simplification, in the rest of this chapter without specific declaration, the ex-
periment results are all for 640×480 images on the device Quadro FX 3700 with fixed
parameters of mask size 11 and disparity range 55 from stereo matching algorithm.
Also, time and effective memory bandwidth (calculated by Equation 4.9) are adopted
as the metrics of performance.

70

Table 5.1: The original implementation performance

Case Time (seconds) Effective Memory
Bandwidth (GB/sec)

Kernel 1 (16x16) 0.17725 0.258

5.2 Threads block configuration improvement

From the discussion about the granularity of the threads block in Section 4.3.2(iii), the
results showed that 16×16 threads block was not the optimal case, even if it accessed to
shared memory without bank conflicts and could make an efficient use of the threads
in one multiprocessor. In fact, the best performance took place at the case of 8x16
threads block configuration, as it had finer granularity than that of 16×16 threads
block configuration to make the multiprocessor have higher occupancy.

Thus, the first optimization for the CUDA program is to set the threads block from
16×16 to 8×16 and then we could see the result after improvement in Table 5.2.

Table 5.2: Optimization from threads block configuration

Case Time (seconds) Effective Memory Step Cumulative
Bandwidth (GB/sec) Speedup Speedup

Kernel 1 (16x16) 0.17725 0.258 1 1
Kernel 2 (8x16) 0.15694 0.291 1.13× 1.13×

In Table 5.2, “Step Speedup” and “Cumulative Speedup” are used to compute how
much performance enhancement got from the optimization method and they can be
calculated by the following formulas:

Step Speedup =
Bandwidthi

Bandwidthi−1

× =
Timei−1

Timei

× (5.1)

Cum Speedup =
Bandwidthi

Bandwidth1

× =
Time1

Timei

× (5.2)

5.3 Branch or Divergent branch reduction

Usually, flow control statements (if, switch, do, for, while) can increase the number of
branches and divergent branches if branch conditions are explicitly or implicitly related
to the threads. “explicit relation” represents that the control flow is directly determined
by the thread ID, while “implicit relation” means the control flow is determined by the
specific result in the thread which will be further explained in Section 5.4. The incre-
ment of branches will increase the number of executed instructions and consequently
reduce the instruction throughput of the GPU. In addition, if the threads of the same
warp diverge caused by the branch, then different execution paths must be serialized,

71

consequently increasing the total number of instructions executed for this warp. Thus,
if one can reduce the number of branches or divergent branches, the application per-
formance will be improved.

In our case, the place of reducing branches is from the computation of SAD in a
fixed size window around the pixel to be computed.

The original SAD computation is:

1 int e_row = threadIdx . y + MASK ;
int e_col = threadIdx . x + MASK ;

for (int j = threadIdx . y ; j < e_row ; j++){
for (int i = threadIdx . x ; i < e_col ; i++)

6 res += abs (Mds [j] [i] − Nds [j] [i]) ;
}

It is easily seen that, in the original SAD computation, the ‘for ’ statement condition
is explicitly related to thread ID. Thus, it will increase the number of branches in the
kernel. Actually, the accumulation is in the whole fixed window and just determined
by the size of the window, so the computation is independent to the thread itself. With
this consideration, the original SAD computation could be implemented in the following
way.

The improved SAD computation is:

for (int j = 0 ; j < MASK ; j++){
for (int i = 0 ; i < MASK ; i++)

3 res += abs (Mds [threadIdx . y+j] [threadIdx . x+i] − Nds [threadIdx . y+j
] [threadIdx . x+i]) ;

}

In order to see the effect of the improvement, the difference of original SAD and
improved SAD are shown in Table 5.3.

Table 5.3: The results of branch reduction from CUDA profiler

State # of Branch # of Instructions Time Speedup
Divergent Branch (seconds)

Orginal SAD 7025252 78474 49241645 0.15694 1.00×
Improved SAD 1053412 78474 24088026 0.08355 1.88×

From Table 5.3, the number of branch and the executed instructions in improved
SAD are both significantly less than those of original SAD, so that the performance is
enhanced. In addition, as each thread of the same warp does the same computation in
a fixed range, so there are no divergent branches in a warp.

With branch reduction, the whole optimization result is shown in Table 5.4.

72

Table 5.4: Optimization from branch reduction

Case Time (seconds) Effective Memory Step Cumulative
Bandwidth (GB/sec) Speedup Speedup

Kernel 1 (16x16) 0.17725 0.258 1 1
Kernel 2 (8x16) 0.15694 0.291 1.13× 1.13×
Kernel 3 0.08355 0.547 1.88× 2.12×
(branch reduction)

5.4 Algorithm improvement

From Figure 4.16, it is known that the bottleneck of the implementation is actually
from the computation of WTA and SAD not from global memory accessing. Thus, if
one could reduce the time of SAD or WTA computation, then the performance of the
parallel stereo matching algorithm will be improved.

Based on the design discussion in Section 3.4.2(b), the SAD and WTA computation
are in one thread, thus they are sequential and cannot run parallel. Fortunately, there
is a method can save the time of computing SAD without affecting the accuracy of the
final result and the inspiration is from Tangfei’s work [21]. The method is that:

Firstly, in a disparity range, different disparity has different SAD value and stereo
matching algorithm is responsible to find the minimum SAD value and record its dis-
parity value.

Secondly, once the minimum SAD is found, there is no need to accumulate all the
AD (absolute difference) in the block when computing other SAD. The reason is that,
now that other SAD from non optimal disparity is larger than the minimum one, so
the accumulation from part of its block is probably larger than the minimum SAD.
Thus, when computing non-minimum SAD, it could stop earlier to avoid unnecessary
computation. The mathematical demonstration is published in Tangfei’s work [21].

In real implementation, there are three possibilities to achieve the idea above and
they are element based, column based and row based accumulation.

5.4.1 Element based accumulation

Element based solution is illustrated in Figure 5.1.
As shown in Figure 5.1, element based accumulation is that, for computing SAD in

a block, once it accumulates one element of the block, then compare the intermediate
SAD with the minimum SAD. If the intermediate SAD is larger than the minimal one,
then stop accumulating the rest of elements of the block and start computing next
block SAD.

With element based accumulation, its result from CUDA profiler is shown in Ta-
ble 5.5.

From Table 5.5, element based accumulation led to a lot of branch and divergent
branch, and generated a large amount of instructions, consequently the performance
descended. As every element accumulation makes a comparison between current SAD

73

Figure 5.1: Illustration of element based accumulation

Table 5.5: Result of element based accumulation from CUDA profiler

State # of Branch # of Instructions Time Speedup
Divergent Branch (seconds)

Kernel 3 1053412 78474 24088026 0.08355 1.00×
Element based 7564030 672048 46953608 0.13828 0.60×

and the minimal SAD to determine whether to stop accumulating or not and the
minimal SADs of the threads are different from each other which are implicitly related
to the threads, thus the threads of the same warp diverge and the number of executed
instructions is increased.

The result of Table 5.5 demonstrated that element based accumulation is not a good
choice.

5.4.2 Column based and Row based accumulation

Comparing to element based accumulation, the column and row based accumulation
are illustrated in Figure 5.2.

(a) Column based (b) Row based

Figure 5.2: Illustration of column based and row based accumulation

74

As show in Figure 5.2, column (or row) based accumulation compares the interme-
diate SAD with the minimal SAD when every column (or row) accumulation is over.
Thus the number of branch and divergent branch brought by column (or row) based
accumulation is O(n) obviously less than that of element based accumulation which is
O(n2).

With column (or row) based accumulation, their results from CUDA profiler is
shown in Table 5.6.

Table 5.6: Results of column based and row based accumulation from ‘cudaprof ’

State # of Branch # of Instructions Time Speedup
Divergent Branch (seconds)

Kernel 3 1053412 78474 24088026 0.08355 1.00×
Column based 1302330 191906 21961034 0.07222 1.16×

Row based 1285852 182602 18786280 0.06886 1.21×

An interesting result from Table 5.6 is that, the number of branch and divergent
branch is increasing but the number of executed instruction and the performance are
decreased and improved respectively. The reason is that, as column (or row) based
accumulation could bring less branch (or divergent branch) than element based accu-
mulation, therefore the number of increased instructions is less than the computation
saved by column (or row) based accumulation and then in total the number of instruc-
tions is actually decreased.

In addition, it is easy to find that row based accumulation is better than column
based accumulation from the results of Table 5.6. Another reason is that row based
accumulation has better spatial locality than column based accumulation, so it makes
row based accumulation obtain better performance.

Above all, row based accumulation will be the optimization choice and its result is
shown in Table 5.7.

Table 5.7: Optimization from row based accumulation

Case Time Effective Memory Step Cumulative
(seconds) Bandwidth (GB/sec) Speedup Speedup

Kernel 1 (16x16) 0.17725 0.258 1 1
Kernel 2 (8x16) 0.15694 0.291 1.13× 1.13×
Kernel 3 0.08355 0.547 1.88× 2.12×
(branch reduction)
Kernel 4 0.06886 0.664 1.21× 2.57×
(row based accu)

75

5.5 Efficient management of various memories

From the result of Figure 4.16, it shows that global memory accessing of the implemen-
tation takes up 19% of the total performance. Although global memory access is not
the bottleneck of the task, its influence to the whole performance cannot be ignored.
For this reason, if the global memory accessing could be further improved, it will be
beneficial to the total performance. Also, the results from Table 4.11 reflect that there
are a large amount of un-coalesced global memory accessing, thus there is still some
space for optimizing the usage of global memory.

In fact, generally speaking, there are two possible ways in making a better use of
global memory. One is the recommendation H5 in Section 5.1 which is to minimize
the use of global memory. Another one is the recommendation H4 which is to ensure
coalesced accessing to global memory whenever possible. These two ways are discussed
in the following sections.

5.5.1 Minimizing the use of global memory

Based on Section 3.4.5(a), the use of global memory only happens when the threads
load the image data from global memory to shared memory and store the disparity
results from the multiprocessors to global memory. As the global memory writing is
inherent in the program, thus it is inevitable. However, for global memory reading,
there is a way to minimize the times of accessing to global memory, which is to apply
the cache of read-only texture memory space to load the image data in device memory
instead of directly reading the data from global memory.

From Figure 3.5 in Chapter 4, it shows the hierarchy of the memory on the device,
as texture cache is closer to the multiprocessor, so if the cache is hit, texture fetch will
spend less time than global memory read. A texture fetch costs one device memory
read only on a cache miss. In addition the texture cache is optimized for 2D spatial
locality, so threads of the same warp that read texture addresses that are close together
will achieve best performance. This feature of texture cache is very suitable to our
implementation that reads the image data.

Based on Figure 3.5, constant memory is also cached. As constant memory space,
which is 64KB, is too limited to store the whole images data and constant cache does
not obtain suitable features for our implementation, thus constant cache for loading
the image data is not considered.

Furthermore, as 2D CUDA array is a opaque memory layout optimized for texture
fetching, so it will be used to store the image data in device memory.

With the use of texture cache and 2D CUDA array, their effects from CUDA profiler
are present in Table 5.8.

From Table 5.8, it shows that, with texture cache, global memory load is replaced
by texture cache hit/miss and the times of accessing to device memory are significantly
reduced so that the performance is totally improved. Additionally, with CUDA array,
it enhances the texture cache hit rate, but the total time almost has no changes. Until
now, with texture cache and CUDA array, global memory read is minimized.

76

Table 5.8: Effects of texture cache and CUDA array

Case Branch Divergent Instructions Gld Gst Time
branch un-coalesced un-coalesced (seconds)

Row based accu 1285852 182602 18786280 9149868 87808 0.06886

Case Branch Divergent Instructions Tex Tex Gst Time
branch cache hit cache miss un-coalesced (seconds)

Texture 1271924 168014 18610599 1382089 25545 87808 0.06179
CUDA array 1271924 168014 18610605 1383666 24229 87808 0.06186

5.5.2 Coalesced accessing to global memory

From Table 5.8, although global memory read is minimized, global memory write is
still not improved, especially it is un-coalesced accessing which is costly. From Sec-
tion 4.3.2(iv), un-coalesced accessing to global memory is caused by the mismatch
between pixel size (1 byte) and the element size (4 bytes) of the global memory seg-
ment shown in Figure 4.15, so the threads from half warp cannot be aligned with the
memory segment. An immediate way to solve this problem is to expand the pixel size to
4 bytes each which means the images are no longer grey scaled but colourful. If the im-
ages become colourful, then the threads of half warp could be aligned with the memory
segment when accessing the image data and the situation is shown in Figure 5.3.

Figure 5.3: Color based accessing to memory segment

The effect of using color version images could be shown in Table 5.9 from CUDA
profiler.

Table 5.9: The effects when using color images as the input

Case Branch Divergent Instructions Tex Tex Gst Time Speedup
branch cache hit cache miss un-coalesced (seconds)

CUDA array 1271924 168014 18610605 1383666 24229 87808 0.06186 1.00×
Color images 1386264 179847 21282483 1205511 202349 11532 0.07435 0.83×

(coalesced)

From Table 5.9, it is easily seen that, the times of global memory writing are sig-
nificantly reduced and they are coalesced. However, as the pixel size of color images
is larger than that of grey scaled images, so the computation on color images is more
costly than grey scaled images and also the time spent on data transferring between

77

host and device for color images is more than that of grey scaled images. Therefore,
color images just make the global memory accessing more efficient with the increased
expense of computation from other aspects. One could conclude that it is not a wise
way to use color images instead of grey scaled images in our case.

Above all, the effective optimization method in this section are the use of texture
cache and CUDA array, the optimization result is shown in Table 5.10.

Table 5.10: Optimization result from management of various memories on device

Case Time Effective Memory Step Cumulative
(seconds) Bandwidth (GB/sec) Speedup Speedup

Kernel 1 (16x16) 0.17725 0.258 1 1
Kernel 2 (8x16) 0.15694 0.291 1.13× 1.13×
Kernel 3 0.08355 0.547 1.88× 2.12×
(branch reduction)
Kernel 4 0.06886 0.664 1.21× 2.57×
(row based accum)
Kernel 5 0.06186 0.739 1.11× 2.87×
(CUDA array)

Until now, all the optimizations for the GPU are completed. The results demon-
strated that the optimization possibilities provided in the conclusion of Chapter 4 are
effective except using the color version of the input images instead of grey scaled images.

5.6 Final results and Conclusion

Based the optimized GPU program, when it runs on different GPUs for the cases of
different image size, one could get an overview of its performance. The results are
shown in Table 5.11 and Table 5.12 respectively.

Table 5.11: Final results of the improved program - Time(P, N) (seconds)

HHHHHHP
N

384 512 640 1282

1 1.23378 3.26514 6.54967 92.12514
2 (16) 0.10605 0.26352 0.65013 7.28144
14 (112) 0.01138 0.02715 0.06247 0.71293
16 (128) 0.00892 0.02726 0.05205 0.62388
30 (240-G) 0.00469 0.01214 0.02649 0.30854
30 (240-T) 0.00457 0.01183 0.02578 0.29969
GTX295 (60) 0.00485 0.01256 0.02656 0.31481
GTX480 (Fermi) 0.00288 0.00694 0.01611 0.18297

78

Table 5.12: Improved Speedup(P, N) = T(1, N fixed) / T(P, N fixed)

HHHHHHP
N

384 512 640 1282

1 1 1 1 1
2 (16) 11 12 10 12
14 (112) 108 120 104 129
16 (128) 138 119 125 147
30 (240-G) 263 269 247 298
30 (240-T) 270 276 254 307
GTX295 (60) 254 260 246 292
GTX480 (Fermi) 428 470 406 503

The GPU based stereo matching algorithm in Table 5.11 is with the block size
11×11 and more than 50 disparity range for computing SAD which is costly, actually
5×5 block is also suitable for the images sizes less than or equal to 640×480. With
5×5 block size and 50 disparity range, the GPU based stereo matching could run much
faster, for example, for 640×480 images, the GPU based program just spend 7.78 ms
which is 128.5 fps in theory on GTX280 !

Comparing Table 5.11 with Table 4.2, there are more cases (the green data) could
run in real time, CUDA program made the stereo matching algorithm, which is impos-
sible to run in real time on CPU, run in real time on GPU. From Table 5.12, except
the laptop GPU (P = 2(16)), other desktop GPUs accelerate the CPU based stereo
matching algorithm for more than 100 times. Thus, the results of both Table 5.11
and Table 5.12 demonstrate the high potential of using GPU to speed up data parallel
algorithm, and also demonstrate that GPU is suitable for further development of stereo
vision application and is possible to make the built vision system run in real time.

In addition, from the results of Table 5.11, with GTX280 or Tesla C1060, the stereo
matching is running faster than that from Point Grey stereo camera shown in Table 3.1,
thus if the stereo matching algorithm used in Point Grey stereo camera is replaced with
the GPU based stereo matching, the performance of the built 3D sensing part before
will be improved and the GPU based 3D sensing part is shown in Figure 5.4.

79

Figure 5.4: GPU based 3D sensing part

80

Conclusion 6
6.1 Summary

Until now, all of the work has been done. Based on the results from previous chapters,
one could get an insight of the developed 3D sensing part. Actually, the efforts to the
project in previous chapters are clarified as below:

From Chapter 1, a survey for the kernel of the developed 3D sensing part, which is
the stereo matching algorithm for computing the depth information, is made. Through
this survey, one could get an overview of the progress in stereo vision area, such as the
basic concepts in stereo vision, the specific features of different methods and the state
of the art stereo matching algorithm etc. Additionally, in consideration of the project
context and motivation, the range (3D sensing part of the Semi-autonomous Robot
Arm System) and the research goals of this Msc project were put forward. After that,
the implementation of the project is carried on in the following chapters.

In Chapter 2, the prototype of 3D sensing part was implemented with COTS
(commercial-off-the-shelf) components which satisfied the constraints from robot arm.
Simply speaking, it was the combination of stereo matching algorithm and image seg-
mentation algorithm. Furthermore, with importing ROI (Region Of Interest) into 3D
sensing part, 3D sensing part could be applied in a more complex environment.

In Chapter 3, the prototype was profiled from speed aspect. The results showed
the bottleneck of the system which needed further improvement afterwards. GPU was
selected for improving the developed 3D sensing part.

In Chapter 4, through porting the stereo matching component on GPU, its perfor-
mance was enhanced comparing its CPU based solution. After that, GPU based stereo
matching was profiled to see whether it could be further accelerated and the results
showed the possible optimization places.

Lastly, in Chapter 5, based on the results in Chapter 4, the recommendations for
further optimizing GPU based stereo matching algorithm were verified. The improved
GPU program had a significant performance enhance and could be used in real time for
most test cases. The result demonstrated the GPU based stereo matching algorithm
was faster than the original stereo matching component in 3D sensing, and also demon-
strated the potential of GPU for further development of 3D sensing part. Finally, a
GPU based 3D sensing part was implemented.

Totally speaking, the research goals provided in the first chapter are all achieved
and the results are offered as the essential reference for future work of developing the
vision system for the Semi-autonomous Robot Arm System.

81

6.2 General conclusion

Throughout the work, it is seen that image segmentation based on disparity map gener-
ated by usual stereo vision system can not only successfully extract the 3D information
of objects on a plane, but also has high potential improvement. One kind of im-
provement from speed aspect is implemented in this project which is applying GPU
capability of massive data parallelism. At the same time, though the implementation
of GPU based stereo matching algorithm, one could see that GPU is suitable for the
development of specific stereo vision system in our case.

However, we also notice that, as the GPU is a desktop platform, it consumes sig-
nificant power, thus currently GPU is hard to be used in embedded application. If we
want to consider bring our application to embedded system area, we should consider
other alternatives for speed up the application.

6.3 Recommendations for future work

Although the primary research goals are achieved, there is still a lot of work to do
through observing and analysing the results of the experiments. The recommendations
for future work are mainly from two aspects as below:

1. From function aspect:

Through the observation of experiments, the quality of the disparity map, generated
by currently used stereo matching algorithm, mainly depends on the parameters setting
and the environment which cannot be little texture. Thus, in order to generate disparity
map more reliably, it is better to use a more robust stereo matching algorithm instead of
the current one, for example, it could consider using a global stereo matching algorithm.

In addition, for segmentation component, as it directly extracted the blobs after
thresholding the disparity map, thus the noise information will also be extracted so
that the procedure of labelling the blobs is not stable. Therefore, in order to get stable
labels for the blobs, after thresholding, it is better to clean up the thresholded image
first by means of morphological operation.

2. From speed aspect:

As in this master project, it just accelerated the stereo matching component with
GPU, in order to make 3D sensing part faster, other component should also be acceler-
ated. Based on the investigation, rectification component in 3D sensing could also run
very fast on GPU if it uses texture memory, thus one could consider porting rectifica-
tion part on GPU. In addition, for segmentation part, although it is somewhat more
complex, one could profile it first to find the most time consuming part. If the most
time consuming part in segmentation algorithm has data parallelism possibly, then one
could accelerate this part with GPU too.

Another obvious result is that, the grabbing speed of currently used stereo camera
is so slow that it could make the application run at 16Hz at most. Thus, replacing
current camera with a faster one can also speed up 3D sensing part.

82

Lastly, coming back to currently developed GPU based basic stereo matching
algorithm, in order to accelerate it further, one possible way is to run a separable box
filtering based method on GPU.

With the above recommendations, 3D sensing part could be more robust and
faster.

83

84

Bibliography

[1] Aaron F. Bobick and Stephen S. Intille. Large occlusion stereo. International
Journal of Computer Vision, 33:181–200, 1999.

[2] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for
early vision. In In CVPR, pages 261–268, 2004.

[3] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using
geodesic support weights. pages 2093–2096, 2009.

[4] Kuk jin Yoon and In So Kweon. Adaptive support-weight approach for correspon-
dence search. IEEE Trans. PAMI, 28:650–656, 2006.

[5] T. Kanade. Development of a video-rate stereo machine. pages I:549–557, 1994.

[6] Jae Chul Kim, Kyoung Mu Lee, Byoung Tae Choi, and Sang Uk Lee. A dense stereo
matching using two-pass dynamic programming with generalized ground control
points. In Proceedings IEEE International Conference on Computer Vision and
Pattern Recognition, Vol. II, pages 1075–1082. IEEE Computer Society, 2005.

[7] David Kirk/NVIDIA and Wen mei Hwu. Slides of Course ECE498AL. University
of Illinois in Urbana-Champaign.

[8] Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-based stereo match-
ing using belief propagation and a self-adapting dissimilarity measure. In ICPR ’06:
Proceedings of the 18th International Conference on Pattern Recognition, pages
15–18, Washington, DC, USA, 2006. IEEE Computer Society.

[9] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence with
occlusions via graph cuts. In International Conference on Computer Vision, pages
508–515, 2001.

[10] Annika Kuhl and Technische Universität Ilmenau. Comparison of stereo matching
algorithms for mobile robots, 2004.

[11] Stefano Mattoccia. Stereo vision: algorithms and applications. April 2009.

[12] NVIDIA Corporation, Santa Clara, CA 95050. CUDA Best Practices Guide, Febru-
ary 2010. Version 3.0.

[13] NVIDIA Corporation, Santa Clara, CA 95050. CUDA Programming Guide, Febru-
ary 2010. Version 3.0.

[14] NVIDIA Corporation, Santa Clara, CA 95050. CUDA Reference Manual, February
2010. Version 3.0.

[15] M. Okutomi and Takeo Kanade. A locally adaptive window for signal matching.
In Proceedings of the Third International Conference on Computer Vision (ICCV
’90), pages 190–199, December 1990.

85

[16] Point Grey Research Inc. TRICLOPS Software Development Kit (SDK), 2003.
Version 3.1.

[17] Point Grey Research Inc., 8866 Hudson Street, Vancouver, BC, Canada. FlyCap-
ture API Programming Reference, October 2006. Version 1.6.

[18] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. INTERNATIONAL JOURNAL OF
COMPUTER VISION, 47(1–3):7–42, April 2002.

[19] J. Sun, H.Y. Shum, and N.N. Zheng. Stereo matching using belief propagation.
page II: 510 ff., 2002.

[20] Hai Tao, Harpreet S. Sawhney, and Rakesh Kumar. A global matching framework
for stereo computation. Computer Vision, IEEE International Conference on,
1:532, 2001.

[21] Tangfei Tao, Ja Choon Koo, and Hyouk Ryeol Choi. A fast block matching algo-
rthim for stereo correspondence. pages 38 –41, sep. 2008.

[22] Olga Veksler. Stereo matching by compact windows via minimum ratio cycle. In
In ICCV, vol. I, pages 540–547, 2001.

[23] Olga Veksler. Fast variable window for stereo correspondence using integral images.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 556–561,
2003.

[24] Peng Wang. OpenCL Optimization. NVIDIA Corporation, October 2009. GPU
Technology Conference.

[25] Wikipedia. Epipolar geometry. http://en.wikipedia.org/wiki/Epipolar

geometry, May 2010.

[26] Wikipedia. Least squares. http://en.wikipedia.org/wiki/Least squares,
September 2010.

[27] Wikipedia. Ransac. http://en.wikipedia.org/wiki/RANSAC, July 2010.

[28] Q.X. Yang, L. Wang, and R.G. Yang. Real-time global stereo matching using
hierarchical belief propagation. page III:989, 2006.

86

