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Executive Summary

The inland waterway once enabled an industrial revolution, yet the emergence of coalescent road networks has
seen its true worth be all but disregarded. Despite the amenity of unimodal travel being compelling, grow-
ing awareness for sustainability has reignited interest in more fuel efficient modalities for transportation. Au-
tonomous shipping has the potential to increase efficiency, reliability and safety and will arguably play a major
role in the evolving transport revolution, returning the transport modality to its former glory.

The main objective of this research is to cater a collision avoidance strategy to the inland waterway through the
development of tailored Guidance and Navigation Systems. An approach to local path planning is introduced to
handle the challenges of collision avoidance on the inland waterway and a better understanding of the primary
role that stereovision sensors could assume in enabling inland autonomy is gained. Achieving this objective
requires first a reflection upon existing work through a study into the state-of-the-art. Subsequently, the Guidance
and Navigation Systems are developed and implemented on a scale test vessel. Finally experimental testing is
conducted for the evaluation of the developed system performance.

Literature Study
Maritime autonomy has been widely researched, however a focus has only recently emerged on inland applica-
tions and the specific challenges the environment presents. It was found that a number of sensors are typically
utilised onboard autonomous vessels, particularly inland vessels. The closer interactions between vessels in this
environment requires low-mid range sensor coverage. Whilst stereovision is one of the sensor types utilised, it
takes a back seat role with LiDAR remaining the favoured choice. Despite this, it was discovered that autonomous
cars have developed a preference for vision based technology as a primary source of sensor data. The automo-
tive industry has turned to multi-device setups to achieve sufficient coverage using vision sensors, dropping the
dependency on the expensive, unsightly LiDAR sensor technology. A gap was identified in inland autonomous
research to this regard, with the possibility that vision sensors could provide a lucrative research direction to the
field in the same way the technology has assisted in the evolution of autonomous ground vehicles.

A number of collision avoidance approaches were identified in the literature for autonomous vessels, with open-
water applications being particularly well covered. Inland applications however have not received the same
research focus. Furthermore, the restricted channels synonymous with the inland waterway hinder the direct
application of existing open-water techniques for conflict detection and resolution. An additional gap was high-
lighted here, whereby further research was required to tailor a collision avoidance procedure to the inland water-
way environment. The importance of experimental testing was also highlighted in the review and a number of
suitable key-performance-indicators were selected to assist in the evaluation of Navigation and Guidance System
performance.

Navigation and Guidance
The Navigation System developed is based around a multi-device stereovision setup to provide low-mid range
perception and localisation onboard autonomous inland vessels. Four perception devices positioned around the
vessel enable a constant lookout to be maintained. The utilisation a convolutional neural network to conduct
object detection has demonstrated its suitability to the autonomous inland vessel application. Not only does
this approach provide obvious advantages over arbitrary object detection but does so at impressive inference
rates, even when computationally limited to a small form-factor computer onboard a scale vessel. A refined
approach to the acquisition of stereovision depth data avoids the unnecessary post-processing and manipulation
of dense point clouds. The utilisation of a Visual Inertial Odometry approach provides localisation using only
stereovision and IMU data. The offloading of the task to a singular compact device, allows a significant boost to
small scale applications and yet the VIO approach also lends itself well to larger application setups. Secondary
processing of the perception and localisation data through a mapping procedure provides a coalescent output for
the Navigation System, specifically configured to provide pertinent information for onward collision avoidance
procedures.
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The Guidance System incorporates a collision avoidance protocol capable of handling the specific challenges of
the inland waterway. A new configuration for conflict detection regions has been proposed to overcome the issues
that arise from the inland waterway architecture and the subsequent nature of the interactions that take place. The
approach sees the use of rectangular vessel domain regions whose dimensions are influenced by a function of
the vessel speed. The collision resolution approach integrates collision regulations and a secondary emergency
procedure within a rule-based implementation compatible with the data available from the stereovision based
Navigation System. This two tier system prevents the AV from blindly following the collision regulations when
a contact vessel is recognised to be non-compliant or when an extremely close encounter requires additional
action to be taken. The local path planner incorporates a roll-out-trajectory generation technique that has been
adapted and optimised for application on an inland autonomous vessel.

The Guidance and Navigation systems have been implemented in a manner to promote open-source accessibility
and software standardisation. This has been done with a view towards creating a strong foundation for ongoing
research developments in inland autonomy. The implementation utilises the ROS middleware framework, which
provides a standardised communications protocol and package-based structure. Programming follows a consis-
tent approach, with Python being used throughout and a modular sub-structure creates an ideal framework for
future developments and potential application to other vessels.

Experimental Evaluation
The Navigation System was independently evaluated through experimental testing of the perception and localisa-
tion tasks to provide a qualitative and quantitative indication of attainable performance. The perception solution
was evaluated with a focus upon the robustness of obstacle detection and the accuracy of positioning. Under the
defined precision/recall key performance indicators, the obstacle detection procedure was found to be capable of
maintaining high precision with increasing recall, indicating good detection performance. However the signifi-
cance of this result is limited to the specific experimental environment. The accuracy of obstacle positioning was
found to be reasonable with a root mean square position error of 0.31 metres being found.

Experimental testing to evaluate localisation performance was conducted using two path types, a slalom/zigzag
style path and a straight path. Along a 15m length, the position error metric was found to be 0.129m and the
heading error to be 5.3±. A variation in localisation performance was however demonstrated along the path
length, with the performance decreasing with an increase in length. These quantitative evaluations were made
under normal operational cases, however the localisation system was also observed on multiple occasions to be
susceptible to the impact of the kidnapped robot problem.

Collision avoidance experiments provided an evaluation of the combined Guidance and Navigation System per-
formance. Across all of the thirty tests conducted, an average avoidance success rate of 90% was achieved,
meaning that 10% of interactions resulted in collision due to insufficient action. Of the successful tests how-
ever, only 40 out of the total 90% percent saw fully compliant avoidance with the remainder seeing either the
premature activation of emergency procedure or the incorrect COLREG mode being activated.

The experimental testing highlighted that whilst the Guidance System performed exceptionally well under sim-
ulated testing, with real world data supplied from the stereovision devices this same performance could not be
accomplished. The weakest link in the entire network during this combined testing appeared to be the localisation
system which was prone to sudden failures. It is concluded that further developments are required to improve
Navigation System performance and/or tune the collision avoidance parameters better to suit the quality of data
available from the sensors.
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Introduction

The inland waterway once enabled an industrial revolution, yet the emergence of coalescent road networks has
seen its true worth be all but disregarded. Despite the amenity of unimodal travel being compelling, growing
awareness for sustainability has reignited interest in more fuel efficient modalities for transportation. Traffic
congestion remains a persistent issue in urban areas and logistical hubs and fixed infrastructure links do not
always offer expedient options to cross waterways. Increased utilisation of the inland waterways could offer a
solution to achieving emissions targets, easing congestion and providing alternative crossing solutions. Attaining
said utilisation and future-proofing the market share of the inland waterway does however require innovative
solutions.

Concepts such as synchromodality have presented approaches to enable a modal shift in hinterland freight trans-
portation through the creation of an interconnected, integrated and cooperative freight transportation network
[1]. However its adaptive nature demands high efficiency and reliability from the inland waterway network. Au-
tonomous shipping has the potential to increase efficiency and reliability and will arguably play a major role in
the evolving transport revolution, returning the transport modality to its former glory.

When reviewing literature, one encounters a whole host of terms used to describe vessels with various levels of
automation and determining the most suitable term for onward use presents a challenge. The term Unmanned
Surface Vehicle (USV) is perhaps most prevalent, however it can refer to both a vessel that navigates indepen-
dently and a vessel that is controlled remotely by a human operator, it only states that no crew are required
onboard. The terms Autonomous Surface Vehicle (ASV) and Maritime Autonomous Surface Ship (MASS) are
also encountered which appear to be adaptions of USV only placing emphasis towards autonomy. These terms
are encountered in literature describing vessels with various levels of autonomy and there remains some debate
as to the exact definition of autonomous and its relation to automated [2].

For clarity, this thesis will consider autonomous to describe full automation whereby operation requires neither
human decision making, nor intervention. This research will focus on the application of autonomy tailored for
surface vehicles on the inland waterway environment and will refer to said craft throughout as an Autonomous
Vessel (AV). The author refrains from using the term unmanned as some potential passenger applications may still
require crew for stewarding tasks in the initial adoption stage. Whist numerous tasks may require on board staff,
presence would primarily be to assume responsibility for passenger safety in emergency scenarios, particularly
during the transitional stages of autonomy.

It would be fair to conclude from the wealth of literature that autonomous vessels have been a topic of interest
over the past two decades. The research conducted has shown significant advancements, yet there still remains
incentive for further studies. This particular study will aim its focus towards the application of autonomy to
inland vessels where despite recent attention, there still remains significant gaps for further research. Prior to
divulging the scope of this thesis, it seems prudent to first detail the primary incentives which motivate research
into autonomous inland vessels.

1
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Ports and hinterland networks have recently turned focus away from raw capacity incentives towards the pursuit
of efficiency, a switch that can partially be attributed to sustainability objectives. With road transportation being
the dominant modality for hinterland logistics, the more sustainable alternatives of barge and rail transport are
now starting to have a growing appeal. The Port of Rotterdam Authority for instance have set an objective to
reduce onward hinterland transport by road to 35% by 2035, a reduction of 20% from the 2010 figure [3]. Auton-
omy on the inland waterway could help in securing this objective due to anticipated performance improvements
through the close adherence to instruction.

Beyond freight transportation, inland waterways also provide an option for alleviating passenger transport from
road traffic networks. Ferries, water busses and water taxis all represent alternative modalities, which have
the capacity to reduce road congestion and travel times. In some cases even providing an alternative to hard
infrastructure where a bridge or tunnel is not feasible or affordable. Autonomy could provide the framework
for a greater utilisation of these passenger services by increasing capacity and service frequency. However
these smaller applications do not benefit from quite the same economy of scale as larger inland freight vessels,
lessening the capacity for investment in automation. There is also a larger intrinsic risk factor to safety, as humans
on board the vessel yields further complications during hazard analysis [4].

The removal of human error is frequently acknowledged as one of the key incentives of autonomy. The European
inland waterway network however exhibits a rather exemplary safety record, meaning it would be unfair to say
that there already exists a major incentive to this end. The increase in traffic that would arise from a modal shift
however may infringe on the networks safety record. Currently the inland waterway is arguably underutilised
and so a significant increase in traffic would push the network towards its capacity, especially in the bottleneck
regions. The likelihood of an accident occurring increases significantly when approaching capacity limits leading
to it being anticipated that the current safety record would not hold with the increased traffic. Autonomy perhaps
offers a solution here as safety is one of the key factors influencing waterway capacity [5]. Autonomous vessels,
particularly those sailing in cooperative fleets bare the potential to safely operate in denser waterways than their
conventional counterparts. This means that current limit to capacity could be tried, increasing traffic without
warranting the same safety concerns.

The consequential increase in demand from the modal shift would also lead to an anticipated shortage of appro-
priately skilled crew. A fully autonomous vessel could be partially or entirely unmanned, which helps bi-pass
labour issues along with a host of secondary benefits. The risk of workplace injuries would be reduced and the
working environment of employees significantly improved. An unmanned vessel could further allow for sim-
plified ship designs, increasing cargo capacity and reducing manufacture costs through the removal of crew and
safety facilities. Despite the higher initial investment that could be anticipated with an autonomous vessel, the
ongoing costs that could be associated with paying personnel would also not prevail, sparing operating expenses
in the long run.

Verberght and van Hansell [2] present a comprehensive analysis on the potential of a fully automated and un-
manned vessel for inland freight transportation. The paper conducts a two-fold analysis to provide a good indi-
cation of the current state of autonomous inland vessels and the challenges that still need to be overcome. From
an economic perspective, cashflow comparisons of autonomous inland vessels and their manned equivalents in
various scenarios yielded some promising results. The results suggest that autonomous vessels do present a po-
tentially viable business case on European inland waterway network. Infrastructure investments are expected
to rise approximately 25% to enable autonomy in Europe (lock mooring), yet the anticipated performance su-
periority of autonomous vessels would level off its cost to society. On average however, it was found that an
autonomous vessel only exhibited a superior business case when the conventional vessel had a crew in excess
of six members. This significantly limits the financial benefit of autonomous vessels over their conventional
counterparts.

Summarising, there are numerous incentives for a modal shift to the inland waterway and autonomy has the
potential to enable the transfer, bringing with it sustainability and efficiency benefits. It may be argued that the
current benefits of autonomy on are not overwhelming certainly not from an economic perspective, however
development is still very much in its infancy. On a performance front autonomy has a number of a benefits
over human based control, most notably being better informed and consistently decisive. Furthermore, should
alternative modalities advance their performance through automation, the market share of the inland waterway
network could diminish all together if it fails to keep up. To remain competitive, it is essential that inland vessels
evolve with the times and to do so applications require an accessible means to achieve autonomy.
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1.1. Problem Statement
This study aims to further the research into collision avoidance for autonomous inland vessels. It is recognised
that achieving autonomous collision avoidance is reliant upon a robust Guidance, Navigation and Control system.
The Control branch remains predominantly outside of the scope of this project as the existing system of the test
vessel will be used for testing the Guidance and Navigation Systems with only a few minor alterations. The
Guidance and Navigation branches instead shall form the main focus and the following challenges have been
highlighted

Navigation solutions for perception and localisation that were encountered for inland waterways incorporate a
host of sensors, which whilst useful during developmental testing could eventually prove to be a barrier to adop-
tion. The restricted nature of the inland waterway network leads to the requirement of close range perception.
For gathering near range depth perception, LiDAR is arguably the most popular choice, with stereovision playing
a secondary role if any. In the automotive sector, where near range perception is also critical, imaging sensors are
assuming a leading role with LiDAR being left out entirely. The motivation behind this choice is predominantly
due to expense, something seldom considered in maritime research, with the exception of a low-cost radar solu-
tion for collision avoidance [6]. Sensor affordability could too play a vital role in making autonomous technology
accessible to a wider range of inland vessel applications in the future. Imaging sensors can provide solutions to
both perception and localisation tasks using stereovision setups, making it beneficial to study the potential that
this solution can provide to the navigation sub-system of autonomous inland vessels.

It was found in the literature that many guidance solutions often converged on local optima, therefore care should
be taken when designing a guidance system to ensure that the local avoidance does not greatly impact the optimal-
ity of the global plan. Existing global planners for inland waterways appear to already offer sufficient solutions,
with tailored techniques having been developed to optimise for the shortest path and for fuel efficiency. Whilst
global planning can undoubtedly be further optimised, local planning solutions for inland waterways require far
more attention as they still lack basic functionalities. Static obstacle avoidance solutions have been implemented,
however avoiding collisions with dynamic obstacles considering COLREGs remains an ongoing topic of research
for inland applications. Although strategies for motion planning, conflict detection and conflict resolution can
potentially be adopted from non-inland research, the selection of these techniques or adaptations of must be
compatible with the inland environment and the specific challenges its restricted waterways present. Therefore,
this study also aims to propose a strategy for collision avoidance that is suited to the inland waterway.

The implementation of the entire Guidance Navigation and Control system should ideally be conducted in a way
to promote open-source accessibility and software standardisation. It is common during research directions to
focus on the sub-system optimality of implementation, without considering the global system architecture despite
this being critical to the realisation of full autonomy. Therefore, when developing the Guidance, Navigation and
Control system, a modular structure is preferable with a consistent programming language and communications
protocol. An open source GNC system to act as a basis for research into autonomous inland vessels would
provide a significant boost to development in the field.

System evaluation is critical in understanding the performance of the sub-systems, which leads to the problem
encountered. A guidance sub-system can be tested using simulations, however the navigation sub-system re-
quires experimental testing in order to assess its performance. Furthermore when considering the real-world
performance, a guidance system is only as good as the information its receives. Experimental testing of collision
avoidance was found to be lacking in many studies yet generally considered of high importance. Through such
testing, major bottlenecks can be highlighted to help focus future research directions and developments towards
achieving inland autonomy.
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1.2. Research Scope
The main objective of this research is to cater a collision avoidance strategy to the inland waterway through the
development of specifically designed Guidance and Navigation Systems. Global path planning is not addressed,
however a local path planning approach to handle the challenges of collision avoidance on the inland waterway
is proposed. Inspiration is taken from the ever-evolving role that vision systems play in the field of automotive
autonomy with research focus being applied to gaining a better understanding of the role that stereovision sensors
could assume in enabling inland autonomy.

Main Question
How can collision avoidance be achieved by autonomous inland vessels using stereovision?

Research Questions
1. What is the state-of-the-art in inland autonomy and collision avoidance?

(a) What sensors are currently used in autonomous vessel navigation systems and what potential does
exist for stereovision sensors?

(b) How is collision avoidance currently achieved by guidance systems and what are the requirements
for collision avoidance on the inland waterway?

(c) What are the most appropriate KPIs for the evaluation of (sub-)system performance?

2. How can perception and localisation tasks be achieved by a navigation system using stereovision?

(a) How can stereovision provide mid-range perception onboard a vessel?

(b) How can stereovision sensors be applied to accomplish localisation?

3. How can a guidance system avoid collisions with dynamic obstacles within an inland waterway environ-
ment?

(a) How can collision conflict be detected between an autonomous inland vessel and a contact vessel?

(b) How can a local path planner be configured to handle conflict resolution and collision avoidance in
an inland environment?

4. How can the guidance and navigation modules be implemented towards software standardisation and ac-
cessibility?

5. How well do the guidance and navigation systems perform under experimental testing and what are their
limitations?

(a) How does the stereovision based perception system fair under precision/recall testing and position
error KPIs?

(b) How well does the stereovision based localisation perform under the KPIs of position and heading
error?

(c) Can the developed guidance and navigation systems enable the autonomous avoidance of collisions
under various staged scenarios?

The approaches taken to address these research questions are as follows. Firstly, the state-of-the-art in inland
autonomy and collision avoidance is studied through topic-focused reviews of literature and regulation. The re-
search gaps that this thesis aims to fill shall be highlighted through this approach. Secondly, methods to achieve
mid-range perception and localisation using stereovision are developed within the Navigation system using com-
puter vision techniques tailored to the application and sensor set. Thirdly, techniques to detect and resolve
collision conflict between inland vessels are proposed through the tailored application of existing maritime and
automotive approaches, The approach towards implementation favours a standardised and modular structure so
to ensure that the research conducted is accessible to future projects. This way the developed system can act as
foundation for ongoing research developments in inland autonomy. Simulations are utilised as a means to verify
and validate the collision avoidance procedure within the Guidance system. Whereas the approach to test the
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Navigation system and the combined system performance, an experimental testing approach is taken. Evaluation
is formally conducted using appropriate performance metrics.

1.3. Report Structure
The main body of this report is structured as seen in Table.1.1, with the research questions introduced in the
previous section being addressed as indicated. The second Chapter focuses on reviewing the current state of
research into inland autonomy and collision avoidance, as well as covering other areas of important background
research. The report from this point, turns it attention away from knowledge expansion and towards the presen-
tation of the conducted work. Chapter three provides an overview of the autonomous vessel, its hardware and
the implemented software structure, with which answering research question four. The proposed stereovision
based Navigation system is presented in detail in Chapter four following this overview, detailing specifically the
implementation of perception and localisation tasks that form the focus of question two. The developed collision
avoidance procedure for the inland environment is expanded upon in Chapter five which covers the Guidance
system. The last research focus is covered in Chapter six where the developed systems are evaluated through
addressing question five. Finally the main body of the report is closed of with conclusions being drawn and
proposals for future research being made.

Chapter Contents Questions Addressed

1. Introduction Problem Statement and Research Scope -

2. Inland Autonomy and
Collision Avoidance

Background research into the current state-of-the-
art.

Q1

3. The Autonomous Vessel Introduction to the Autonomous Vessel hardware
and software structure

Q4

4. Stereovision Based
Navigation System

The implementation of a stereovision based per-
ception and localisation for inland autonomous
vessels.

Q2

5. Collision Avoidance for an
Autonomous Inland Vessel

The implementation of a collision avoidance pro-
cedure for the guidance system of an inland au-
tonomous vessel.

Q3

6. Results Evaluation of the developed Navigation and Guid-
ance Systems

Q5

7. Conclusions and
Recommendations

Recapitulation of conducted research, results and
recommendations for future work

-

Table 1.1: Structure of Thesis Report and Research Questions Addressed

A three-part appendix can be found at the end of the report. The first of the appendices includes a scientific
research paper summarising the thesis project work. The second and third of these appendices supplements the
results section of the main body by expanding upon results gained through simulation and experimental testing
respectively.
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Inland Autonomy and Collision Avoidance

Most of the research into autonomy for maritime surface vehicles has been conducted with an arbitrary view to-
wards application or with focus on sea going vessels. However this thesis is not alone in its vision of autonomous
vessels on inland waterways. Recent developments by researchers in Belgium [7] have focused directly on au-
tonomous inland barges and the Roboat research initiative [8] is exploring the use of autonomous vessels for
transporting goods and people on Amsterdam’s dense narrow waterways. Nonetheless, whilst of particular inter-
est, this review will not be limited to the advancements in inland autonomy. Rather it will include findings from
all maritime applications and research from the generic robotics community.

This chapter shall answer the first four research question concerning the current state of research alongside
background study into applicable regulation and methodology. The specific question What is the state-of-the-art
in inland autonomy and collision avoidance? and the four sub-questions are listed below, along with a link to
the relevant section which addresses them.

1a What sensors are currently used in autonomous vessel navigation systems and how ? (Section 2.2)

1b How is collision avoidance currently achieved by guidance systems and what are the requirements for
collision avoidance on the inland waterway? (Section 2.3 & 2.4)

1c What are the most appropriate KPIs for the evaluation of (sub-)system performance? (Section 2.5)

2.1. Guidance Navigation and Control System
An autonomous vehicle needs a Guidance, Navigation and Control System (GNC) to assume responsibility in
the absence of the usual human operator. Figure 2.1 provides a breakdown of the system architecture and details
the sub-tasks of each branch.

Control is managed by an autopilot system which determines and executes suitable actuation based upon the
references received from the guidance branch. Whilst imperative for the successful execution of collision avoid-
ance, control will not be investigated further in this study. Attention will instead be focused upon guidance which
determines suitable routes and the navigation sub-tasks which supply the information for this decision making
process.

2.2. Navigation
The navigation branch of a GNC is responsible for establishing the current state of the vessel and its environment.
Perception and localisation tasks must provide coherent data to the guidance and control subsystems to ensure
successful collision avoidance be achieved. Subsequently, suitable sensor selection is imperative.

Localisation concerns the determination of the vessel’s own current location. This location is particularly impor-
tant for the guidance tasks when generating paths as well as for the control system when generating reference
headings and correcting path deviation errors. In the absence of accurate localisation, an autonomous vessel will
struggle to remain on its path.

7



8 2. Inland Autonomy and Collision Avoidance

Figure 2.1: Typical components of a Global Navigation System

In maritime applications, localisation is predominately achieved using satellite navigation (GPS) and Inertial
Measurement Units (IMU). GPS accuracy is typically sufficient for full size vessels however this accuracy does
not scale for smaller USVs and model vessels, furthermore it is not suitable for indoor testing environments.
IMUs play an important role in supplying measured angular velocities and linear accelerations which help track
movement and orientation. IMU data is frequently combined with GPS data to provide more accurate localisa-
tion, particularly regarding orientation.

Simultaneous Localisation and Mapping (SLAM) algorithms can also be used for localisation as they determine
pose within the configuration space. SLAM combines perception data from LiDAR and/or stereovision devices
with the data from inertial measurement units (IMU). Unlike GPS, this localisation approach does lend itself to
smaller, indoor applications. Localisation using SLAM can provide a higher level of precision than GPS, making
it appealing for inland waterways, however robustness can usually only be achieved when using a combination
of sensors and Kalman filtration to improve accuracy of positioning [8].

Perception involves the detection of obstacles and consequently determination of obstacle position and state. A
key requirement in perception is the ability to measure depth as this additional dimension is critical for under-
standing the environment. There are numerous sensor variants which integrate the measurement of depth. Table
4.2 provides a summary of the most frequently utilised sensors and some key performance indicators.

Sensor Range Data
Frequency

Light & Visibility
Sensitivity

Cost Error/noise
Susceptibility

Radar High Low Low Mid Water reflectivity
error

LiDAR Mid Mid High High Vertical noise
Imaging Low-Mid High High Low Non-linear range

error
Sonar Low-Mid Mid N/A Mid Near-surface

noise

Table 2.1: Comparison of Perception Sensors
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Radar is perhaps the primary choice for perception tasks due to its proven, dependable reputation from decades
of being used as a navigation aid. In terms of sea focused applications, radar is undoubtedly the most popular
sensor selection for autonomous vessels. Radar range and frequency is more than sufficient for open-water
environments as interactions rarely occur in close quarters. Inland vessels however tend to be subject to closer
interaction between vessels, meaning that they have a greater need for close proximity depth and an increase
in data frequency. In Table 2.2 this is highlighted by the disparity in sensor selections between sea and inland
applications.

Inland applications tend towards sensors which provide near-range perception. LiDAR is typically the go to
solution as it provides dense 3D point clouds of the nearby surroundings at a reasonable frame rate. LiDAR
works by emitting lasers and recording the time of flight until the beam returns, indicating distance. Whilst being
subject to noise, the sensor is only susceptible to a manageable linear error and can cover a good range. The
limitation of LiDAR is primarily due to its cost especially when a 3D sensor is used, which is highly preferable
for a vessel application which has freedom in pitch and roll. Further limitations of LiDAR are its longevity
due to moving components which can lead to mechanical failures and its measurement sensitivity to motion and
vibrations.

Imaging sensors offer another means of collecting depth data through stereovision, which works by manipulating
data from two cameras located at a fixed distance from one another called the baseline. The overlapping region
between the captured frames can be assessed using disparity to interpret depth. An obvious advantage of this
choice is its two-dimensional field-of-view which offers 3D perception, albeit without a 360± horizontal coverage.
Range is also limited as stereovision is subject to a quadratic depth error meaning that reliable perception is
limited to a region determined by the baseline of the sensors. The cost of imaging sensors is however low in
comparison to the other sensor options and the monocular image data can also prove very useful in supporting
perception tasks such as object detection.

Whilst sonar sensors are to be expected to be encountered in underwater vehicles, they are also occasionally
used by surface vehicles for perception and localisation tasks. Use in perception is however limited due to the
challenges of automatic object detection and surface noise proving a major obstacle in identifying vessels with a
low draft. Scanning the waterway bed can however prove useful as the sonar data can be run through a SLAM
algorithm to localise the vessel in its environment.

Citation Application Sensors Avoidance COLREGs Verification
[7] Inland GPS, IMU,

LiDAR, Imaging
Interval Programming No Experiment

[8] Inland IMU, LiDAR,
Imaging

Rollout Trajectory
Generation

No Experiment

[9] Sea Radar Velocity Obstacle,
Re-planning

Yes Simulation

[10] Sea Radar Re-planning Yes Simulation
[11] Sea Radar Velocity Obstacle Yes Simulation
[12] Sea Radar, Imaging Model Predictive

Control
Yes Both

[13] Sea GPS, Radar,
Sonar, Imaging

Collision Cone No Simulation

[14] Sea Radar Velocity Obstacle No Experimental
[15] Sea Radar, GPS Artificial Potential Field Yes Simulation
[16] Sea Radar Dynamic Window No Experimental

Table 2.2: Typical Maritime Collision Avoidance Systems

Autonomous Inland Vessels perhaps exhibit perception requirements closer to those of autonomous ground ve-
hicles as opposed to their sea-based counterparts. In the automotive industry, LiDAR has also been the most
popular sensor choice for achieving near range perception and was long considered a necessity. However of late
some autonomous cars have deviated from this preference. Perhaps the most infamous enablers of autonomous
travel, Tesla, opts for imaging techniques. A study by researchers at Cornell University has shown the capability
of stereovision to conduct the tasks previously assumed only possible using LiDAR [17].
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The inland systems in Table 2.2 both utilise LiDAR and stereovision, however in both cases stereovision takes
a back seat role. Roboat [8] uses stereovision as a secondary input for localisation tasks and the work of Slaets
et al. [7] supports LiDAR data with stereovision data to complement the forward facing point cloud. The latter
study also uses the monocular frames from the individual stereo cameras to assist in perception sub-tasks such
as object detection.

The emerging choice of imaging sensors over LiDAR in the automotive industry comes primarily due to the cost
of the sensor, with the former providing a far more affordable solution. Imaging based perception relies heavily
on intelligent computer vision techniques to enable functionality and require a multi-sensor setup in order to
provide the 360± horizontal field of view that is standard with LiDAR. Secondary perception sensors are also
required in poor visibility and very close quarters conditions. Tesla for example use the sensor setup in Figure
2.2 to achieve perception. Whilst inland vessels are arguably not restricted by the same necessity for consumer
accessibility, reducing the initial investment cost has the potential to catalyse adoption.

Figure 2.2: Sensor setup for Tesla Autopilot [18]

2.3. Guidance
Global planning for autonomous vessels typically involves the use of algorithms which select the shortest path to
be optimal. Adapted versions of the well-known A* search algorithm are frequently implemented to carry out this
task [10][19][20]. One proposal worthy of particular mention is that of Chen et al.[21] which sees the adaption
of the A* algorithm specifically to enhance global planning performance for inland waterway networks. Whilst
the algorithm developed in this study yields a performance improvement over other variations, it is questionable
as to whether the minimisation of path length is the most suitable goal for maritime path planning.

The A* search algorithm was evolved for use on road networks, where the shortest path can be assumed op-
timal. Unlike ground vehicles however, marine vehicles must navigate through a dynamic body with varying
influences and consequential resistance. The impact of which is particularly prominent on inland waterways due
to inconsistent waterway depths and currents. The direction and magnitude of the current at a particular point on
a waterway intuitively has an influence on the water resistance acting on a vessel. Perhaps less intuitively, the
channel depth has a significant influence due to its relation with the squat effect which is caused by an increase in
velocity as the distance between the hull of a vessel and the waterway bed gets smaller. The higher velocity sees
a reduction in pressure, impacting on the buoyancy equilibrium, causing the sinkage of the vessel and giving the
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phenomenon its ’squat’ characteristic. Squatting impacts the speed and hinders the manoeuvrability of a vessel
whilst also increasing the risk of groundings. A deeper waterway depth is as such favourable to reduce the impact
of the squat effect and typically the deepest part of a channel is situated around centre of a waterway.

Despite the similarities in traffic behaviour and architecture, global path planning for the inland waterway cannot
always be conducted in the same intuitive manner as road networks. Given the varying channel depths and
currents that can be encountered, the shortest path doesn’t necessarily yield an optimal route. This means that
in the case of many inland vessels, the optimal route may in fact be the most fuel efficient, especially given that
sustainability is a key incentive securing market share of inland freight transportation. The EconomyPlanner[22]
was developed to solve this very issue on the European inland waterway network. The planner optimises by
minimising the fuel consumption rather than distance, finding the best route to based upon real-time waterway
depths and currents. In addition to the route, the planner also advises on optimal engine speed to ensure timely
arrival at the destination and the maximum allowable loading condition to ensure safe transit given current water
depths.

Despite the absence of fixed traffic lanes, inland waterways should not be considered as disorderly highways
with vessels travelling in both directions competing for the path of least resistance. The results from a study into
waterway capacity at the Port of Rotterdam [23] highlight that vessels do tend to follow similar, ordered paths that
can be more or less divided by the two travel directions on each waterway (see Fig.2.3). The ordered behaviour
can be attributed to the adherence to rule nine of the International Regulations for Preventing Collisions at Sea
(COLREGs) which states that a vessel should travel on the starboard side of the waterway. Given that the water
depth is typically greatest at the centre, vessels thus tend to travel starboard of the waterway centre.

Figure 2.3: Typical Directional Paths [23]

The guidance branch of a GNC also encompasses the task of local planning. This topic has been the main focus
of research into maritime autonomy to date as it involves the execution of the protocol for avoiding collisions.
The typical procedure for collision avoidance is well covered in a comprehensive review of the state-of-the art by
Huang et al. [24]. Unlike other reviews, this paper covers research from both manned and unmanned applications
to create requisites for collision avoidance. A useful breakdown is provided of the typical sub-tasks involved,
which are neatly divided into motion prediction, conflict detection and conflict resolution.

Motion prediction is fundamental to achieving collision avoidance in an environment with dynamic obstacles.
Unlike with static obstacles, the motion behaviour of each target vessel needs to be assessed so that a forthcoming
trajectory can be predicted and there is a number of ways that this is achieved. In some cases, simple Physics-
based predictions are made by assuming the current course and speed of a contact vessel will be maintained.
Although this technique offers low complexity, the straight line predictions supply unrealistic predictions outside
of a close proximity range. A slightly more advanced technique is manoeuvre-based prediction which estimates
a vessel’s intentions based upon regulations and other decision variables. Despite the potential to create a more
accurate estimation, the downside of this prediction type is that any miscalculation of intention in close quarters
could lead to a collision. Arguably the most robust solution is an interaction-aware approach which relies upon
cooperative data sharing between vessels, ideally of their intended paths. Whilst this approach would provide the
most accurate trajectory prediction, realising this cooperation between all vessels on the waterway would carry
heavy overhead burdens and likely take a long time to implement.
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Conflict detection is the procedure that follows thereafter. Its role is to utilise predicted trajectories to determine
whether the motion presents a risk to the autonomous vessel. The closest point of approach (CPA) is among
the popular metrics used for assessment of risk [25] [26]. Risk assessment using the graphical or numerical
metrics may be conducted using model-based methods with binary or probability decision making. Alternatively,
experts’ knowledge may be employed to configure input parameters for numerical risk analysis [24]. Whilst many
solutions can be encountered, regardless of technique or metric, accurately quantifying and assessing risk is an
extremely difficult task. Assessments will always remain estimations and it is arguably impossible to conduct
this task without there existing an element of doubt, even for an experienced human operator.

The incorporation of radial safety regions or vessel domains during conflict detection tasks are popular in mar-
itime solutions to autonomy [9][11][27][12][28][10][13]. Vessels travelling on the narrow channels of inland
waterway networks are however frequently subject to close side-side interactions with one another. This ren-
ders the direct application of radial regions less suitable, particularly in the case of larger vessels. The elliptical
regions presented in [29] or the rectangular uncertainty zones presented in [30] perhaps offer more eloquent
solutions to inland vessel applications.

Conflict resolution is the final stage of local planning and the cornerstone of collision avoidance. Its responsi-
bility lies in determining a suitable collision free path based upon all the information available from preceding
tasks. Artificial potential field, collision cone and velocity obstacle approaches are some of the most frequently
encountered techniques for managing local routing [31]. Yet of late, research into maritime collision avoidance
has been further advancing in its maturity. More recent work includes the proposal of hybrid solutions to local
planning [9] [11] [29] and emergency contingency when normal avoidance is not possible [10]. Moreover, focus
has even turned away from the generation of merely feasible avoidance and towards optimised avoidance by
using a rolling horizon technique to select optimal heading angles [32]. Advancements in artificial intelligence
have also lead to their consideration in solving the problem of maritime collision avoidance [33][34][26].

The importance of COLREG integration within the conflict resolution stage is unquestionable. For autonomous
vessels to be realised, the navigation system must be compliant with these rules. Multiple techniques have been
proposed to integrate COLREG compliance into the local planner. Fuzzy rules have been integrated into a modi-
fied Virtual Force Field approach [27] which showed promising results during simulation, but the complexity of
the system and unwavering adherence to the regulations make the technique less appealing. Benjamin et al. [35]
recognise that compliance is not a binary problem and the interval programming approach allows for decisions
to be made by solving an optimisation problem with weighted functions. This technique has further matured and
is now implemented as a module [25] in the open source MOOS-IvP platform [36], a platform which has been
utilised in many applications, including the inland waterway [7].

As with global planning, many of the solutions for maritime collision avoidance have been adopted from other
sectors. In some cases, these solutions have seen adaption and evolution prior to implementation, in other cases
they have been more directly implemented. For example, the open source local path planning technique of [37]
designed for ground vehicles has been utilised for inland surface vehicles on the canals of Amsterdam [8].

2.4. Collision Regulations
The navigation rules on waterways worldwide are governed by the International Regulations for Preventing
Collisions at Sea (COLREGs) [38]. Local exemptions to the rules are rare and only put forward in exceptional
circumstances so to avoid confusion by maintaining the global standard. A total of thirty-eight rules are present
within the regulations, however only those deemed of main importance for the developmental application will be
further divulged hereon. The rules will be detailed textually and the number of the rule shall follow in brackets.
It is noteworthy to mention that this summary only considers interactions between powered vessels and neglects
the special rules regarding interactions with sailing boats. Figure.2.4 provides a graphical aid to the text and
includes the key interactions.

The preliminary attention of the regulations is focused on detailing the applicability of the rules (rule 1) and
the responsibility of all parties(rule 2), along with the main definitions(rule 3). To summarise the application of
the forthcoming, the rules apply to all vessels navigating on waters navigable by seagoing vessels, however on
some inland waterways special rules may apply for which the skipper should pay attention. Special rules will
however rarely contradict or interfere with this protocol. On the topic of responsibility, it is stated that the rules do
not exonerate any party from the consequences entailed when neglecting to consider exceptional circumstances
during the adhesion to this standards.
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Figure 2.4: Applicable Collision Regulations.

In any condition of visibility (rule 4), a vessel should have a consistent means of perception so that a full appraisal
of the current situation can be made (rule 5). Necessary equipment should be present, in working condition
and used correctly so to ensure that the vessel is in a position to best avoid a collision given the prevailing
circumstances (rule 6). The speed at which the vessel proceeds should also at all times be appropriate to these
prevailing conditions, so that she can avoid collisions or stop within a reasonable distance (rule 7).

To avoid a collision, action should be taken in good time according to the rules. If the scenario permits, the action
taken should be significant enough to be noticeable to other vessels, small successions of alterations should be
avoided. If possible, course should be altered to avoid close quarter encounters and when these encounters are
unavoidable a safe distance should be exercised until clear. If a clear decision cannot be made immediately,
the vessel speed should be reduced until greater clarity is attained and an informed decision can be made (rule
8). In narrow waterways, a vessel should travel as near to the outer limit of starboard side channel as is safe
and practicable (rule 9). A vessel should adhere to traffic separation schemes (TSS) as applicable. The vessel
should remain in her lane, follow the general direction of traffic flow and stay clear of the separation line as far
as possible. When joining a traffic lane, the vessel should do so at an angle as close to parallel as practical (rule
10).

The action taken in visibility conditions where two vessels are in clear sight of one another (rule 11) are con-
sidered for this project, other scenarios will be neglected at this stage of development. A vessel conducting an
overtake manoeuvre must keep out of the way of the vessel being overtaken, which may maintain its course (rule
13). Two vessels which are approaching one another head-on shall each shall alter her course to starboard so that
they pass port-to-port (rule 14). In inland waterways of course, a vessel is limited to furthest extremity of the
navigable channel on its starboard side and so the respective traffic separation scheme should be referred to by
both parties when deciding on action.
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In a cross-over scenario, the vessel which has the other on her starboard side must keep out of the way and should
avoid crossing the front of the vessel. Instead taking action to navigate behind the other vessel if required (rule
15). For clarity, this rule does not hold for overtaking vessel, as even in the case of bearing changes, the vessel
overtaking remains responsible for clearing the vessel that is being overtaken. I.e. if being overtaken from her
starboard side, a vessel is not expected to take action based upon rule 15, the overtaking vessel has a duty to
achieve clearance during the manoeuvre.

The give-way vessel is required to, so far as possible, take timely and substantial action to keep well clear of the
stand-on vessel (rule 16). The specific action of the give-way vessel should be in accordance with the rules of
this set of regulations. The stand-on vessel is required to maintain her speed and course during an encounter, so
to allow the give-way vessel to take predictable action (rule 17). If it becomes apparent to the stand-on vessel
that the give-way vessel has not acted appropriately to avoid collision, she shall take such action as will best aid
collision-prevention. Any action taken by the stand-on vessel to this end, does not however relieve the give-way
vessel of her duty in the encounter. Except where rules 9, 10 and 13 contradict, a vessel should always keep out
of the way of any vessel not under command, e.g. a moored vessel (rule 18).

2.5. Performance Evaluation
With stereovision taking a pivotal role within this research focus, it is important to understand the quality of
the Navigation data that can be provided by the sensor technology. This assessment can best be made through
applying key performance indicators to the perception and localisation systems themselves. Evaluation metrics
deemed appropriate for these tasks are introduced in subsections 2.5.1 and 2.5.2. Evaluation metrics are also
selected and proposed in subsection 2.5.3 for the assessment of collision avoidance performance during experi-
mental testing.

2.5.1. Localisation System
From the pose data obtained from a localisation sensor, there exist two main data sets of interest. Primarily that
of position, which for a surface vessel is within a two dimensional reference frame. Secondly, the yaw rotation
angle is of interest as it is directly used to calculate the heading of the vessel.

As the localisation data has a direct influence upon the collision avoidance behaviour, sufficient data is critical.
Consistency in measurement is arguably more important than high accuracy as knowing location to within a
millimetre will have little impact upon avoidance performance, whereas large errors in measurement, regardless
of how infrequent could have critical consequences. Therefore rather than utilising a simple metric taking the
mean deviation error, the root mean square error shall instead be taken. This metric has a sensitivity to outlying
measurements [39] therefore highlighting the occurrence of large errors which would be detrimental to collision
avoidance performance.

The procedure of Zhang et al. [40] presents a particularly well-suited method for acquiring evaluation metrics
from Visual-SLAM approaches, with the absolute and relative trajectory errors providing apt means for perfor-
mance evaluation. The relative position and rotation errors can be evaluated in box plot form with measures
covering multiple trajectory distances to highlight the impact of localisation drift. The absolute trajectory error
(ATE) describes the aforementioned root mean square position and rotation error and can be used to quantify the
quality of the whole trajectory estimation. The definitions the two ATE metrics can be defined below in Eq. 2.1
and 2.2 relating to the position and rotation error respectively with p̂i and ŷi being the ground truth values, pi

and yi being the measurement values and N being the number of samples.

AT Epos =

sP
N

i=1(p̂i °pi )2

N
(2.1)

AT Er ot =

sP
N

i=1(ŷi ° yi )2

N
(2.2)

2.5.2. Perception System
The two main tasks of the perception system is to detect obstacles and determine their position. The position of
an obstacle determined by a navigation system can be evaluated by comparing the obtained result to that of the
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accepted ground truth. The deviation of the attained position and the ground truth value provides an indication
of accuracy and can quantified by calculating the root mean square error from a range of measurements in the
same way as the localisation absolute trajectory error. The definition of obstacle position error is given in Eq. 2.3
below with ôi referring to the ground truth position of the obstacle, oi being the measured position value and N
being the number of samples.

RMSEpos =

sP
N

i=1(ôi °oi )2

N
(2.3)

One of the most prevalent metrics for evaluating detection performance is the relation between precision and
recall which can be illustrated by a graphical curve [41]. If the precision of an object detector remains high
whilst the recall increases, performance can be considered to be high. Precision and recall are defined as shown
in Equations 2.5 and 2.6 respectively. The IOU threshold stated in the definitions is used to limit the acceptable
precision of a detection and is quantified by means of a ratio using the relation in Eq. 2.4. IOU stands for
Intersection over union and measures the overlap that exists between the object bounds detected and the ground
truth bounds as illustrated in Fig. 2.5. Three standard thresholds are used, 0.5, 0.75 and 0.95, which are listed in
ascending order of accuracy.

IOU = ar ea o f over l ap

ar ea o f uni on
(2.4)

Pr eci si on = cor r ect pr edi ct i ons

al l pr edi ct i ons
= T P

T P +F P
(2.5)

Recal l = cor r ect detect i ons

al l g r ound tr uths
= T P

T P +F N
(2.6)

wher e :

• TP = True Positive: A correct detection above IOU threshold.

• FP = False Positive: An incorrect detection outside of IOU threshold.

• FN = False Negative: A missed detection.

(a) Intersection region (b) Union region

Figure 2.5: Illustration of Intersection over Union [41]. Green box represents ground truth, red box represents detection result.

2.5.3. Collision Avoidance
Applicable key performance indicators for collision avoidance were selected by referring to the paper of Nous
et al. [42]. As the scope of testing in this project will be limited to collision avoidance with a single contact
vessel and a consistent environment, only two of the performance metrics from the paper will be applied in
this research project. Furthermore the exact definitions of the avoidance metrics are adapted to better meet the
specific maritime application as opposed to the original UAV application.

The two performance metrics that will be used to evaluate the performance of the collision avoidance system are
success rate and path optimality. The success rate provides an indication of a systems fundamental capability to
avoid collision. Whereas the path optimality reviews how close the path selected by the avoidance system was
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to a most desirable selection. A hierarchy exists between the former and latter metric as the path optimality is
dependent upon a successful avoidance case for the assignment of an optimality value.

The success rate in this application shall be divided by three outcomes, in the same way as the reference with each
carrying a percentage value relating to occurrence. Rather than following the direct success definitions however,
this paper shall apply a new interpretation based upon the integration of maritime collision regulations in the
success evaluation. Consequently the outcomes are selected to be: compliant collision avoidance (compliant that
is with expected protocol), semi-compliant collision avoidance (collision avoided but procedure not adhered to
exactly as expected) and finally failed avoidance that would lead to a collision.

Path optimality will be divided into two secondary measures and manipulated to form a single metric. One
concerning the additional distance the local avoidance path has added to the global route and the other focusing
on the collision risk that the path resulted in, quantified by the shortest distance between the autonomous vessel
and obstacle during avoidance. As these two optimality metrics are correlated to one another, a simple optimality
factor can be created as a metric to quantify this relation and define an overall optimality. The definition for
said metric can be found in Eq. 2.7, where the numerator refers to the added distance that the avoidance path
has added and the denominator states the closest point of encounter between the vessel and the obstacle during
avoidance. A lower metric value indicates optimality.

Path Opti mali t y = Addi ti onal Path Di st ance (m)
Col l i si on V i ci ni t y (m)

(2.7)

2.6. Conclusion
This Chapter has addressed the research question What is the state-of-the-art in inland autonomy and collision
avoidance research?. Maritime autonomy has been widely researched however a focus on inland applications
and the specific challenges the environment presents has only recently emerged. It was found that a number of
sensors are typically utilised onboard autonomous vessels, particularly inland vessels which require due to closer
interactions require low-mid range coverage. Whilst stereovision is utilised, the sensor takes a back seat role with
LiDAR still being the preferable choice. It was however discovered that autonomous cars of late favour vision
based technology as a primary source of sensor data, using multi-device setups to achieve sufficient coverage and
dropping the dependency on LiDAR. A gap was identified in inland autonomous research to this regard, with the
possibility that vision sensors could provide a lucrative research direction to the field in the same way they have
assisted in the evolution of autonomous ground vehicles.

A number of guidance approaches were identified in the literature for autonomous vessels, with open water
applications being well covered. The restricted channels synonymous with the inland waterway however do not
allow for the direct application of existing techniques for conflict detection and resolution. A further gap was
highlighted here, whereby further research was required to tailor a collision avoidance procedure to the inland
waterway environment. The importance of experimental testing was highlighted in the review and a number of
suitable key-performance-indicators were further selected to assist in the evaluation of navigation and guidance
system performance. The most applicable evaluation metrics were selected for stereovision based perception and
localisation and metrics were identified for quantifying the collision avoidance performance.
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The Autonomous Vessel

The realisation of inland autonomy requires a vessel with a confluent hardware and software structure. The
Guidance, Navigation and Control System structure that was introduced in the previous chapter sees continued
use throughout this Chapter and thesis. This Chapter is specifically dedicated to providing an overview of the
autonomous vessel system, introducing both the hardware components utilised and the approach to software
implementation. The latter attention to software implementation also answers the fourth research question: How
can the guidance and navigation modules be implemented towards software standardisation and accessibility?
and is covered in Section 3.2.

3.1. System Hardware
The developments made in this project shall be applied and tested on a model scale test vessel provided by
the Researchlab Autonomous Shipping. The ’Grey Seabax’ vessel in question can be seen below in Fig. 3.1a.
Albeit a model of a seagoing vessel, the length to beam ratio of the vessel can be comparable with a number of
commercial inland vessels and subsequently deemed suitable for this level of research. The vessel has a length
of approximately 1.4m and a beam of 0.3m and is actuated by means of four azimuth thrusters located at the bow
and stern of the craft. Actuation is managed by an Arduino control unit onboard the vessel that communicates
with the high-level control system running aboard a host PC via the ROS network, using a Raspberry Pi 3b as a
communications bridge.

As the new Navigation System shall utilise stereovision as its primary sensor set, as well as the addition of new
sensors to the system hardware, an onboard processing unit is also required to acquire data and handle on board
processing. To enable the processor and sensors to operated, a number of ancillary devices were also required to
handle power and data supplies. A full list of the hardware editions to the vessel can be found below, with further
discussion thereafter.

• NVIDIA Jetson TX2 Development Kit (stock)

• Power Adaptor - On-board battery to TX2 - 12V to 19V, 4.74A (90W)

• PCIe Expansion Card - 4 ports USB3.0 - SATA power

• Four Intel RealSense D435i Depth Camera

• One Intel RealSense T265 Tracking Camera

The sensors selected for gathering environmental information are all part of the Intel RealSense stereovision
range. Each of these stereovision devices encompasses multiple visual sensors and an inertial measurement
unit. The devices are provide a near out-of-the-box solution to stereovision by using built in processing units
to deliver processed data directly to the host. For perception tasks, the D435i devices were selected to provide
high level depth accuracy along with a supplementary colour stream. For localisation, the T265 tracking camera
has been selected for its optimality at performing localisation tasks. The depth device executes stereo algorithms
on board, allowing the disparity frame to be directly accessed from the device. The tracking camera, performs
Visual-SLAM on board and provides a direct stream of pose data to the host. The selection of devices which
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perform these primary processing tasks on board provides a significant head-start to such a navigation system
and enables the focus to be transferred to more critical secondary processing challenges.

(a) The Vessel, its Onboard Sensors and Passive Tracking Marker

(b) On-board Processing Unit and Ancillaries

Figure 3.1: The Grey Seabax Autonomous Vessel
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An onboard processing unit is required to receive and process all the sensor data and the device selected for this
task is the NVIDIA Jetson TX2 Development Kit. The main reason for its selection come as a consequence of
its small form factor and high graphical processing power, ideal for artificial intelligence tasks. All the stereo
devices need to be connected to the Jetson via USB bus, yet only one port is provided as stock, meaning an extra
four ports are required. As the RealSense devices are relatively power and data intensive, the additional ports
must also be capable of providing USB3.0 standard power and data transfer rates. To achieve this a PCI-Express
card has been added, drawing power from the SATA power supply. For the Jetson to operate at full computational
capacity, it requires a power supply of 19v and 4.74A usually supplied by a mains adaptor. The Seabax vessel
which the Jetson will be mounted upon however has an onboard battery which supplies 12V. To overcome this
power supply issue, a power adaptor is used to step up the voltage and manage the current to supply a max output
of 90W, thus allowing the board to run without operational constraint. An overview of the processing setup on
board the vessel can be seen in Fig. 3.1b.

As well as an onboard processing unit, a host PC is also required for the vessel to be operational. Although an
entirely decentralised setup is feasible, with this stage of development and this scale of vessel it is most logical
to maintain the host PC as the core unit. The host PC used for this project is a MacBook Pro A1278, which has
a 2.5GHz Intel Core i5 processor and 8GB of 1600MHz RAM. The specific roles of the on-board processor and
the host processor shall be discussed within the following section.

3.2. Software Structure
The fourth research question regarding the implementation approach towards software standardisation is ad-
dressed within this section. Subsection 3.2.1 reviews the potential implementation approaches suitable for the
application and which selections are made for existing autonomous software platforms. Subsection 3.2.2 then
discusses the selected implementation approach for this application with the remaining subsections detailing the
individual sub-system structures.

3.2.1. Background Research
The procedure for implementation of an autonomous vehicle system requires two fundamental decisions to be
made. Firstly, regarding the selection of a suitable middleware and secondarily the selection of a primary pro-
gramming language. During the development of open-source software is it is important that one considers future
accessibility to the wider community as opposed to purely the preference of the researcher. The structure that is
then built around this foundation should ideally be configured in a well-ordered modular manner so to expand
potential use cases and make the system adaptive to ongoing developments.

Regarding the selection of middleware, two main contenders present themselves for this use case within the field
of autonomous shipping, MOOS and ROS. The Mission Oriented Operating Suite (MOOS) was developed at the
University of Oxford by the Mobile Robotics Group and integrates a publish–subscribe style framework as well
as applications specific to both land and marine robotics applications. The MOOS-IvP application for collision
avoidance that was introduced earlier in this chapter makes use of this middleware framework. The MOOS-IvP is
a collection of open source modules developed to provide autonomy for robotic platforms, in particular unmanned
marine vehicles. These modules form a MOOS Application which can be run within a MOOS Community to
make use of a communications protocol with other application processes within the community.

The Robot Operating System (ROS) provides another middleware framework, again offering a standardised
communications protocol as well as additional tools and capabilities making it a very popular choice throughout
all branches of the robotics field. As well as a robust communications network, there are a host of additional
tools for the system developer, not to mention a large open source community where custom packages are made
available. Furthermore, ROS offers good support to both Python and C++ programming languages through
specialist packages. ROS is for example the chosen middleware of the Autoware project for autonomous ground
vehicles who offer a modular structure of ROS packages with the language of choice again being C++.

Despite the two example cases choosing to utilise C++ as the programming language of choice for their au-
tonomous application frameworks, it is recognised that other programming contenders exist, even if they do not
offer the same execution speeds. When considering the best programming language to use for the implementa-
tion of an autonomous vessel applications, it can be best to consider the accessibility to ongoing research. The
more people who can access and fully utilise an open source project, the greater the effective contribution could
be to the field in the long term.
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A study of over one hundred thousand open-source projects found Python to be the second most popular main
programming language overall [43]. Furthermore when considering the background of researchers working
within the field of autonomous shipping, the majority belong to maritime/mechanical engineering departments.
Within the mechanical field, degree curriculum’s have recognised the crucial role computing and programming
skills serve. Particularly since the advent of Industry 4.0, the integration of Python as well as MATLAB courses
within the education programs has become the norm[44]. Even within the field of computer science, Python
appears to be the primary choice for inclusion within education programs [45].

Python is the frequently the top choice for data analysis and processing tasks. Machine learning, artificial intelli-
gence and deep learning tasks are far more accessible due to the wealth of libraries that are available to the user.
These technical domains present a plethora of opportunity within the field of autonomy and it can be expected
that maritime research within this area shall continue to move in this direction, with advancements already being
underway. Furthermore, from a broader perspective, Python has a reputation for being particularly user friendly,
with its simple syntax making it very readable and the approach of object orientated programming being flexible
and intuitive. The interpreter framework does offer the user simplicity over the use of compilers however does
so with a reduction in execution speed. Nonetheless, for particularly demanding tasks a superset of Python could
be used to benefit from compiled speeds from within the Python environment [45].

3.2.2. Selected Approach
The devised software structure is introduced hereon based upon conclusions drawn from the previous subsection
and the challenges of the specific application. The favoured Guidance, Navigation and Control structure also
forms the framework of the software implementation, with the system applications being built underneath each
of the main topics. A total system overview can be seen in Fig. 3.2 and the rest of this subsection is dedicated to
detailing the chosen implementation approach.

Due to the plethora of existing tools and capabilities, the Robot Operating System has been selected as the ideal
middleware for this system and future developments of it. The NVIDIA Jetson TX2 on-board the vessel is flashed
with Jetpack 4.4 and runs on the stock install of Ubuntu 18.04 with an install of ROS Melodic. The host PC runs
on Ubuntu 16.04 and and install of ROS Kinetic. The ROS1 framework has been utilised at this stage as it carries
Long Term Support and provides the best compatibility with the majority of tools and packages. It is however
noted for future versions that a migration to ROS2 would be beneficial, not least due to the fact that a number of
the packages require the use of Python 3 for operation which is not officially supported by ROS1.

The ROS network allows for communications links to be setup between various sub-systems and devices through
a publisher/subscriber protocol. The host PC acts as the ROS Master during operations, with the other boards
acting as slaves within the network. As seen in Fig. 3.2, the Guidance and Navigation Systems have ROS
packages to handle the major tasks that benefit from being kept independent of one another. This represents
a key modular aspect of this implementation whereby one package within the system can be utilised without
the full GNC having to be online, expanding the possibilities of future application within other open-source
projects.

It can be noted that the Control System is not implemented within a ROS package as this sub-system is not a
research focus of this project. The control system does nonetheless utilise the ROS network to handle commu-
nications from the Guidance and Navigation Systems whereby it receives setpoints. Further communication is
handled by ROS between the control system on the host PC and the onboard low level control system. The
control system and its composition shall be further discussed in the third sub-section.

The implementation of the Guidance and Navigation systems in this project are written using Python and as
briefly mentioned, embedded within ROS packages, four to be precise. To enable future research developments
within the ResearchLab Autonomous Shipping and the wider research community, it was concluded from the
literature review that Python offered the optimal programming language for the use case. It can further be
observed that the software modularity continues even at a sub-package level, again further promoting future
research development by allowing focus on the optimality of specific tasks as opposed to the development of an
entire system. The packages themselves shall be further discussed in the next two sub-sections.
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3.2.3. Navigation System Software
An overview of the software structure seen in Fig. 3.2, illustrates the Navigation System and its three main
branches for the ROS packages covering the tasks of perception, localisation and mapping. Within the packages
are executable Python scripts which are used to conduct specific sub-tasks. The procedure of individual sub-tasks
within the navigation system will be detailed within the following. The remainder of this subsection shall provide
an overview of the software structure, all of which is implemented in Python and utilises the ROS middleware.
A detailed explanation of the executables and module roles shall be provided in Chapter 4.

Figure 3.3: Navigation System Software Setup

The navigation system software contains a total of three ROS packages together covering the major tasks of
perception, localisation and mapping. The perception and localisation systems are responsible for gathering
and processing of sensor data from the cameras and remain independent as they have potential applications
independently to one another. The mapping system is in charge of translating the data from these two packages to
locate both the autonomous vessel and any obstacles into local and global frames before determining the derived
attributes and streaming this data as the Navigation System output. Fig. 3.3 provides a secondary breakdown of
the Navigation System structure detailing the processing unit where each package is stored and run on.

The perception and localisation packages could be directly applied to any other system utilising the same sensors,
meaning that other vessels can be easily equipped with similar stereovision setups and achieve plug and play
perception and localisation, even with a different number of depth sensors. The mapping package is kept separate
as it may or may not be required by other applications and in the case that it were, application-specific adjustments
to the constants based upon the positioning of the sensor(s) on the vessel and the global environment of operation
would need to be made.

Module Name Dependant Program Function
DeviceConfiguration stream_pipeline

device_ association
Configuration of the depth devices and
management of data streams.

ObstacleDetection obstacle_analysis Handling of obstacle detection on all four
device streams.

ObstacleLocalisation obstacle_analysis Determination of obstacle position through
manipulation of the depth frame data.

ObstaclesClass obstacle_analysis Responsible for the creation and manage-
ment of obstacle instances throughout ob-
stacle analysis.

Table 3.1: Perception Package - Modules
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The localisation package is significantly less complex than the perception package with only one executable
being present which enables the sensor, processes the data and publishes pose data via ROS. The perception
system is initialised using two ROS executables, namely ’stream_pipeline’ and ’obstacle_analysis’. The former
is responsible for enabling the four depth cameras, logging device intrinsic data and streaming frame data via
the pipeline node. The obstacle analysis node is then responsible for detecting obstacles within the frames and
consequently deriving the relative obstacle position. The modules within the package sub-directory enable these
individual tasks. These modules within the perception package cover a number of tasks as summarised below in
Table. 3.1.

The multi-device setup introduced in the previous subsection makes use of four depth cameras to perceive the
area around the vessel, with one device assigned to cover the fore, aft, port and starboard sides respectively. When
first mounting the depth cameras, or after any adjustments to the hardware configuration, the individual devices
must have their serial number associated with their position on the vessel. Device association can be achieved
by running the dedicated executable (device_association) within the ROS package and following the on-screen
queues when prompted by the GUI. After all the devices have been associated to their respective locations, the
configuration is saved to a file stored within the package’s modules directory. After this configuration is set the
main perception program automatically re-associates the devices upon execution.

Module Name Dependant Program Function
ObstacleTracker mapping Associates obstacles between iterations,

assigning them with an ID number
MappingClass mapping Responsible for the creation and manage-

ment of AV and obstacle objects and their
attributes throughout the mapping proce-
dure

AVDomain mapping Maps obstacles inside the AV domain ref-
erence frame from individual sensor feeds

GlobalFrame mapping Maps the AV and obstacles within the de-
fined global coordinate system

Plotter mapping Generates a pseudo-radar plot with any ob-
stacles detected in the environment dis-
played along with their ID number.

Table 3.2: Mapping Package - Modules

The mapping package only contains one executable that is responsible for generating the Navigation System
output from the available localisation and perception data. To achieve this a number of sub-tasks are required in
order to conduct translations into the local and global frames and these are conducted by the callable modules
within the packages sub-directory. A summary of the mapping modules is provided in Table. 3.2.

3.2.4. The Guidance System
Reviewing again the software structure seen in Fig. 3.2, it can be seen that the Guidance System only consists
of one ROS package, with one executable. Running the guidance executable initiates both the global planner
and local planner which are stored within the modules directory. The global planner only contains one module
that imports the global path that has been provided and creates a path object with waypoints for the guidance
system. The local planner on the other hand contains a number of modules that are configured to handle collision
avoidance procedure and are detailed in Table. 3.3. A detailed explanation of the executable and local planner
module roles shall be provided in Chapter 5.
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Module Name Dependant Program Function
MotionPrediction guidance Handles the forecasting of contact vessel

trajectory.
ConflictDetection guidance Responsible for monitoring conflict with

contact vessels during interactions and
triggering a response where necessary.

ConflictResolution guidance Determines the required action that should
be taken in each case of conflict.

GuidanceClass guidance Manages the Autonomous Vessel, Con-
tact Vessel and Path objects throughout the
guidance system

Table 3.3: Guidance Package - Local Planner Modules

3.2.5. The Control System
Although the control system does not compose part of the research focus of this paper in order to provide total
context to the reader and complete the GNC overview, the control system structure shall be presented within this
subsection. From a broad perspective, the main control loop is built within a MatLab environment that is run on
the host PC and communicates with the marine craft via the ROS network.

The existing control system for the Grey Seabax test vessel prior to this project already had a multi-level control
structure to handle a simple path following control strategy using sensor data from a GPS and IMU sensor
to complete the feedback loop. As this project replaces the sensor data input with that produced by the new
navigation system and requires waypoints to be set by the new guidance system, the high level control structure
required some alterations.

(a) Azimuth Thruster Locations (b) Control Structure

Figure 3.4: Grey Seabax Low Level Control

The Seabax vessel has total of four azimuth thrusters and their locations on the ships hull can be seen in Fig 3.4a.
Two stern mounted thrusters (1 & 2) and two bow thrusters (3 & 4) can provide actuation in the three degrees of
freedom of surge, sway and yaw. The path following technique utilised however only controls actuation in yaw
from the heading error, with the the engine speed not being regulated to control surge velocity and sway not being
simultaneously controlled. The control of vessel yaw moment requires varied actuation of the azimuth thruster
based upon its location on the ship, thus requiring the high level controller to further specify the individual target
thruster angle for each thruster. Low level control then actuates the target azimuth angle of each of the vessel’s
thrusters in response to the provided setpoints, with speed being controlled by a constant setpoint as illustrated
in Fig. 3.4b.

This new high level controller structure can be seen below in Fig. 3.5. The target waypoint, position and heading
inputs are all received via subscription to the respective ROS topics published by the navigation and guidance
systems. The target waypoint and current position of the vessel are used to generate a reference heading that is
consequently compared to the current vessel heading and the relative error is defined. This heading error is then
fed through a PI controller, with the proportional action (P) being used to counter-act the heading error and the
integral action being utilised to attenuate disturbances. A derivative action was omitted from this controller as
the dampening effect it provides proved inessential.
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Figure 3.5: Grey Seabax High Level Control

3.3. Conclusion
The autonomous vessel hardware and software structure was introduced in this Chapter. A system overview
provided context for the two consecutive Chapters that will cover the detailed approaches to navigation and
guidance. The selected approach for software implementation was addressed, with which answering the fourth
research question How can the guidance and navigation modules be implemented towards software standardisa-
tion and accessibility?.

Incentive for the chosen implementation approach was to move towards an open source platform for autonomous
inland vessels. It was concluded from the research that the Robot Operating System would provide the best
middleware framework for the implementation of the Guidance and Navigation units. To enable future research
developments within the ResearchLab Autonomous Shipping and the wider research community, it was also
concluded from the research that Python offered the most suitable programming language for the use case.

The implementation saw the use of ROS packages for the grouping of major tasks and the approach to software
modularity continues even at a sub-package level. This approach was selected to promote future research de-
velopment by allowing focus on the optimality of specific module tasks without the need to develop or revise
an entire system. A total of four packages were developed, with one dedicated to guidance tasks and three be-
ing dedicated to the stereovision based navigation system. The separation of the navigation tasks allow for the
modular application of these tasks independently of one another in other application cases.





�
Stereovision Based Navigation System

This chapter explores the implementation of a navigation system whose primary sensor set relies on stereovision
for mid range perception and localisation tasks. Through which, the second research question of this paper shall
be answered, specifically: How can perception and localisation tasks be achieved by a navigation system using
stereovision? with the sub-questions below breaking down each task.

2a How can stereovision provide mid-range perception onboard a vessel? (Section 4.2)

2b How can stereovision sensors be applied to accomplish localisation? (Section 4.3)

4.1. System Overview
The role of the Navigation System is to acquire sensor data from the vessel and manipulate this data to yield useful
information about the autonomous vessel and its environment. The proposed GNC system structure requires the
Navigation System to provide the Control System and Guidance System with the relevant position and orientation
data of the Autonomous Vessel and the Guidance System further requires information on the obstacles in its
surroundings, in this case specifically contact vessels. This section will introduce the proposed structure for a
stereovision based Navigation System, providing both an introduction to the system’s procedural approach as
well as the sensor hardware that has been selected and its configuration to suit the inland waterway.

4.1.1. Procedural Overview
In the previous chapter, three branches of the Navigation System were introduced, namely perception, localisa-
tion and mapping. In an autonomous vehicle, the navigation system must assume the roles of perception and
localisation in the absence of a human controller. Perception and localisation are achieved by a human operator
simultaneously, through the constant visual scanning of the surrounding environment in conjunction with the
monitoring of nautical instruments. Whilst being habitual in nature to a human operator, these tasks present a
significant challenge for an autonomous navigation system. Gathering visual environmental data comparable to
that of human sight is achievable using modern stereovision sensors, however the processing of this raw data into
usable information presents a major challenge.

Perception and localisation have already been discussed due to their focus being at a forefront of this research
project, however there is an additional procedure that is required to make process of the data acquired by these
sub-tasks. Mapping describes the translation of perception and localisation data into specific reference frames,
be it a global or local reference frame. The result of this final processing step provides the final outputs of the
Navigation System and the entire procedural flow can be visualised with the overview illustrated in Fig. 4.1.
Sections 4.2, 4.3, 4.4 of this Chapter will detail the content of each sub-system.

4.1.2. Sensor Selection and Configuration
A fully operational navigation system of a vessel must have the capacity to perform perception and localisation
under any condition of visibility to comply with collision regulations. Focus shall be narrowed here and the per-
formance of stereovision shall be reviewed in clear, well lit conditions. It is recognised that for sailing during low
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Figure 4.1: Navigation System Overview

light conditions and/or poor weather conditions, that the developed system would require at least one secondary
sensor set to supply sufficient data. Furthermore, the navigation system of an autonomous vessel will likely make
use of sensor fusion to improve accuracy and reliability in all sailing conditions and varying circumstances. A
thorough understanding of the advantages and limitations of each individual sensor set is consequently imperative
for optimal equipment selection and the fusing of sensor set data.

Regarding perception, rule five of the collision regulations states that a vessel must maintain a proper look-out at
all times so to make a full appraisal of the situation and the risk of collision. Whilst a human operator will never
be able to maintain a look-out in all directions surrounding the vessel, at all times, their vision does not have
a fixed orientation, providing flexibility in field of view. When perceiving the environment using stereovision
devices, such flexibility is not achievable in the absence of a rotating mount, such as those used by LiDAR and
Radar sensors. Nonetheless, the affordability of stereovision technology enables the use of a multi-device setup,
which could arguably achieve a more consistent lookout than any human operator ever could, whilst also not
being susceptible to the mechanical failures as a rotating sensor. Whether a perception system ultimately can be
considered to fulfil the expectations of a proper look-out is open to interpretation, as are scenarios that present
collision risk.

Sufficient perception coverage for an autonomous inland vessel will be interpreted by this thesis as follows. The
first major consideration is the architecture of an inland waterway and the typical navigation paths of vessels
along such channels. As discussed during the literature review, inland vessels generally travel along a central
path of the channel section in a manner synonymous to travel on road networks. Whilst vessels may travel
perpendicularly to this traffic flow, crossover interactions are limited significantly by the channel width and are
far less frequently encountered. In addition, the vessels that routinely travel across the channel section tend to
be small and manoeuvrable, requiring them to give way to larger, less manoeuvrable vessels travelling down the
channel.

As this navigation system is being configured for the Grey Seabax vessel, which can be considered comparable
in length-beam ratio to a larger inland vessel such as a freight barge. Focusing perception ahead of the vessel,
in its direction of movement where collision risk is higher and where opportunity for avoidance is present can
thus be considered a better utilisation of the sensor. The chosen camera configuration can be visualised by the
mounted hardware in Fig. 4.2. A total of four Intel Realsense D345i depth devices are used which are each
orientated to cover a forward weighted coverage around the vessel. These devices have a depth range of ten
metres, which is sufficient for the scale vessel in question, offering a coverage of magnitude over seven times
the vessel length. For larger scale applications, device selection or custom stereovision setups would need to
consider the specific requirements of the vessel scale, with the imaging sensors and the baseline influencing the
range of a stereovision sensor. The baseline refers to the distance between the stereo imaging sensors which
influences the disparity region where depth can be interpreted and the imaging sensor itself influences the field
of view and data density.
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Figure 4.2: Sensor Setup - Grey Seabax Autonomous Test Vessel

The Realsense depth modules utilised onboard the Grey Seabax utilise two infrared sensors and an infrared
projector to gather depth data, which offer accuracy even in scenes with low texture. These sensors have a
baseline of fifty millimetres and a horizontal field of view covering approximately ninety degrees, equating to a
depth map of the same coverage. The RGB sensor within the module offers a reduced horizontal field of view of
69.4± and is not physically aligned with the depth field as can be seen in Fig. 4.3a [46]. Consequently the colour
frame and depth frame received from the device must be subjected to alignment during post-processing, resulting
in the devices being mounted in such a way to centralise about the colour sensor frame. The resultant coverage
around the vessel can be seen in Fig. 4.3b with the horizontal field-of-view for each device being separated by
colour and textually labelled in the figure. The exact locations and orientations of cameras on board the vessels
will be further disclosed in Section 4.4.1 with a technical drawing.

(a) Intel RealSense Depth Module Configuration [46] (b) Multi-device Depth Camera Setup

For localisation, a dedicated tracking device is utilised which makes use of two fish eye lenses and a built in in-
ertial measurement unit to conduct stereo Visual- Simultaneous Localisation and Mapping (V-SLAM). Although
SLAM algorithms could also be run using data from the perception devices, offloading this task to an external
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device drastically reduces computational load on the on-board processor. Furthermore, the dedicated sensor set
incorporates a sophisticated list of built in features and considerations which shall be discussed in detail further
on in this chapter. The limitations of the technology will also be discussed, which also has some impact upon
how the device is mounted to the ship. Intel recommend that the camera should be mounted rigidly, yet should
make use of dampened mounts and data cable screws in any case where the device may experience vibrations
and/or sudden knocks. In addition, care should be taken to minimise occlusions to the vision sensors field of
view as this can prove detrimental to the localisation algorithm and cause significant error.

After testing the performance at various locations, the selected mounting point onboard the Seabax is situated
at the bow of the vessel as can be seen in Fig. 4.2 using a 3D printed mount. This mounting location ensures
that the vessel itself does not occlude the visual frames and during testing did not appear to be impacted by
a large field of view being occupied by the water surface. There was a concern that a lack of features on the
surface and/or reflections may have caused total localisation failure, however this was not the case, provided the
remaining environment contained enough features. Testing the device when mounted directly to the Seabax also
did not demonstrate any of the adverse effects that can be expected from vibrations/knocks, suggesting that the
rigid mount is sufficient on board the test vessel without further dampening.

4.2. Perception
When perceiving the environment, a human controller sub-consciously identifies obstacles and approximates
their position and state. Artificially replicating this behaviour to a comparable level is extremely complex and
arguably an impossible task, yet this remains an open research topic of significant focus within the robotics com-
munity. The approach taken in this project to achieve perception will be broken down into three sub-tasks which
can be visualised in the procedural system diagram in Fig. 4.4. These tasks of data acquisition, obstacle detection
and obstacle analysis form the sub-section structure of this section and cover the approach taken to process depth
camera data into an output detailing the instance of obstacles perceived and their respective attributes.

Figure 4.4: Perception sub-task procedure

4.2.1. Data Acquisition and Processing
Data acquisition and processing handles the communication between the perception sensors and the Navigation
System and processing the raw data prior to outputting the frame and intrinsic data relevant for ongoing tasks.
As this data may wish to be accessed by more nodes than the obstacle analysis task, the sub-task itself runs
independently of the other perception tasks. Within the perception ROS package introduced in the previous
chapter, this procedure can initialised by running the ’stream_pipeline’ executable. The Librealsense Software
Development Kit can be accessed via a Python package and includes a number of useful functions for this
procedure.
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Acquiring data from the perception sensors starts with the configuration of the devices and the relevant data
streams. The device serial numbers are primarily associated with their stored location on the vessel so to simplify
onward referencing. Two sets of frame data are required from the each device, specifically a colour frame is used
for the following obstacle detection task and a depth frame which is required to analyse the actual position of
detected obstacles. Fortuitously, these frames can be requested directly from the device as they are processed by
the onboard D4 processing chip. When received from the device, the colour and depth frames are not aligned to
one another, which is necessary to associate the detected obstacle bounds in the colour frame to the relevant depth
data. This forms the first major post-processing task and also proved to have an influence upon the dimensions
of the frame data.

Aligning the depth frame with the colour frame can be achieved with a function built into the Librealsense SDK.
Albeit a useful tool, this alignment task is however rather computationally heavy meaning that care needs to be
taken when employing the function. Whilst Intel has optimised the function performance for use for their own
chipsets, the process proved to be significantly slower for the host Jetson chipset for which the perception system
operates, even when building the SDK with CUDA capabilities to allow for GPU offloading. That being said,
GPU power is in short supply due to the obstacle detection process which runs synchronously with the stream
acquisition, not to mention the multi-cam setup leading to overheads being four-fold. The alignment process was
further found to be particularly susceptible to any latency within the external data acquisition loop, meaning that
streaming other processes synchronously proved sub-optimal. Even by overriding Python’s global interpreter
lock through multi-processing/threading comes to little avail, most likely due to the SDK reacting unfavourably
to the manual assignment of computational power.

There are a few ways in which these issues can be reduced and the performance of the alignment task can
be improved. Primarily, it is wise to consider ways to minimise the computational load of this process where
possible to ensure that this does not prove to be a bottleneck to the perception program and lead to unsatisfactory
latency. The first way that the computational strain of this process can be reduced is through the selection of
a lower resolution and frame rate than that recommended by the manufacturer (848x480, 30FPS) [47]. As the
application does not require exceptionally high data frequency nor point cloud density due to low sailing speeds
and a generalised localisation procedure, the depth frame could be set to a resolution of 424x240 and a frame
rate of 15FPS without impacted onward results. Furthermore, as the obstacle detection program resizes any input
image to 300x300 pixels, selecting a resolution of 424x240 here also does not lead one to anticipate a reduction
in detection performance over higher resolutions. The relative effect of this reduction in resolution and frame
rate accounts for a computational strain eight times lower than that of the recommended stream setup.

Furthermore, by applying a sub-sampling post-processing to the depth frame prior to alignment reduces the
computational load. Decimating the depth frame through factor of two reduces subsequent computation by
a factor of four and has the added benefit of smoothing the depth data, through the removal of dead depth
pixels that do not carry a value as they did not reach the confidence metric of the stereo algorithm. Whilst
additional processing such as spatial and temporal filters can be implemented to improve point cloud quality, the
improvement is unlikely to benefit this application and would come at unnecessary computational cost.

To reduce the impact of the aforementioned loop latency on the alignment task and provide frame data topics
accessible by any subscriber in the network, the stream acquisition program is conducted in parallel to the sub-
sequent obstacle detection and analysis processes. In order to create a data pipeline between the programs being
executed in parallel, the ROS communications protocol is utilised using a node to publish data with two topics
existing per enabled device. One for the colour frame and the second for the (aligned) depth frame. The depth
intrinsics of each device is also required for ongoing processes, however this does not change during streaming
and so is saved to a file when the devices are first initiated and can be accessed by any program on the Jeston.
The intrinsics contain data on the depth calibration and format of each of the depth device frames and will be
accessed by the obstacle analysis program. The ROS node initiated by this program consequently publishes eight
topics to the network, with each publisher being generated under the name of frame type and the location of the
device for which they are associated as can be seen in Table. 4.1.

As the Jetson does not function as the ROS master, the bandwidth capacity must be sufficient to handle the
streaming of all four devices over the ROS network. Each device streams colour (8-bit) and depth (16-bit)
frame data over the network at 15 frames per second and with a resolution of 424x240. Summing the raw data
throughput for all outgoing streams results in 36.6 Mb/s, which even when allowing contingency for encoding
overheads can easily be handled by a WiFi router. Encoding is managed using the CV bridge ROS package which
allows image data to be published over the ROS network and decoded at the other end by the subscriber.
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Device ROS Topic Name
Position Colour (uint8) Depth (uint16)

Fore /ForeColour /ForeDepth
Aft /AftColour /AftDepth
Port /PortColour /PortDepth

Starboard /StbdColour /StbdDepth

Table 4.1: ROS Topics published by Pipeline Node

4.2.2. Obstacle Analysis
With sensor data being processed into a suitable form, perception can direct its focus analysing the environmental
state for the instance of obstacles and determine their position. Figure 4.4 provides an insight to the obstacle
analysis sub-system where the tasks of obstacle detection and localisation are divided. Obstacle detection is
conducted using the colour frames acquired from each of the devices, with the classification of the obstacle being
supplied directly as an output of the analysis sub-system and the obstacle bounds being provided as an input to
the obstacle localisation task. Each obstacle bound defines a rectangular area within the frame where an obstacle
has been detected and due to frame alignment, this Region-of-Interest (ROI) also corresponds to the same frame
area within the depth frame. Using the device intrinsics to assess the ROI within the depth frame allows for
the obstacle location to be determined, along with a horizontal obstacle dimension. The selected procedure for
obstacle detection and localisation is discussed in specifics hereon.

4.2.2.1. Obstacle Detection
Obstacle detection is a critical primary task for any perception system. The most popular technique for conduct-
ing object detection for autonomous vehicles sees the use of clustering techniques applied to point cloud data.
However the emergence of Artificial Intelligence based object detection on colour images has grown in popular-
ity of late, with both 2D and 3D object detection tools being developed using convolutional neural networks. One
major benefit of the artificial intelligence approach is the ability to classify objects beyond arbitrary detection.
Knowing the type of obstacle that has been detected allows a guidance system to make better informed decisions
on collision avoidance.

The Jetson TX2 Development Kit has a small form factor making it ideal for use as an onboard processing
unit. Despite its small footprint, the board exhibits outstanding performance when running inference on a neural
network model due to its on board graphical processor being especially well suited to Artificial intelligence
tasks. To fully utilise the potential processing power of the TX2, it is beneficial to convert trained neural network
models into TensorRT engines. TensorRT is a software development kit provided by NVIDIA for use with their
hardware to allow developers to fully optimise their AI applications.

Format Data Type Speed (ms) mAP@IoU=0.5:0.95
Tensorflow FP32 125 24.6
TFLite (Quantised) INT8 143 19.0
TensorRT Engine FP16 25 24.6

Table 4.2: Comparison of Mobilenet SSD v2 Model Performance using Speed and Mean Average Precision (mAP @IoU=0.5:0.95) as Key
Performance Indicators

When assessing the performance of TensorRT, it was compared with two other frameworks, Tensorflow and
TFLite. TFLite had been implemented in a previous RAS project where the Jetson was not available [48].
When running inference on a CPU bound PC, utilising the TFLite framework with an 8-bit quantised model
provided optimality regarding inference speeds, albeit at the cost of accuracy. As the Jetson is optimised for GPU
processing, there is little advantage in running with the integer TFLite framework as can be observed in Table
4.2, where both speed and accuracy are proved sub-optimal compared to the standard Tensorflow framework.
Both speed and accuracy of inference can be improved by switching to a floating point based model. To quantify
this performance upgrade, TFLite inference on the Jetson yielded speeds of approximately 7 frames per second
and when running inference of the same MobileNet SSD v2 COCO model in the through a TensorRT engine,
the frame rate jumped to approximately 40 frames per second. Furthermore when evaluating the mean average
precision (mAP) achievable using the val2017 dataset, the TensorRT engine provided the equivalent precision to
the baseline Tensorflow model, despite its reduction from a 32 bit to a 16 bit model.
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Using a TensorRT engine for running inference consequently offers the best option when considering both speed
and accuracy. Even when considering the multi-device perception configuration, as inference only takes 25ms
per frame (40Hz), running detection on all four cameras streams could theoretically allow for near 10Hz per
camera frame. A COCO model, whilst useful for testing and development cannot be used to detect the vessels in
the simulated test environment, meaning a new model needed to be trained for the purpose.

In a fully-fledged application, the neural network model would need to recognise all obstacles that may be pose a
collision risk in the inland waterway environment. At this stage of the development however, the model will only
be trained to recognise one object, specifically the model tugboat that will be used in the experimental collision
avoidance testing. The training of such a Convolutional Neural Network model is covered in the paper preceding
this work [48] which details the steps required to obtain a standard Tensorflow model.

Figure 4.5: Average Total Loss relative to Training Iterations

The MobileNet SSD v2 model was trained using approximately 1200 annotated images of the model tugboat
within the testing tank environment. The training results for this model are displayed in Fig. 4.5, where the graph
shows a steady reduction of total loss until levelling off at an average loss of 1.2 after approximately twenty
thousand training iterations. This performance metric effectively quantifies the discrepancy between the model
result and the actual result, the aim is consequently to minimise this discrepancy until convergence occurs. With
a trained model, the standard Tensorflow format must then be converted to a Universal Framework Format (UFF)
and subsequently parsed to build an optimised TensorRT engine.

Detection results can be monitored whilst the task is running, by observing the graphical interface for each camera
feed. Figure 5.3 shows example outputs for multiple camera positions demonstrating the detection ability from
all views surrounding the vessel. As can be seen, each detection is highlighted by the annotation of the object
bounds and classification. This user output provides not only an excellent tool for monitoring detection but also
for development and evaluation of the neural network performance.

(a) Fore colour frame (b) Side colour frame (c) Aft colour frame

Figure 4.6: Visualised detection output at various device positions.
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4.2.2.2. Obstacle Localisation
The obstacles detected in the colour frame must subsequently be analysed to determine their actual position in
the 3D space. In maritime surface applications, the vertical positioning of an obstacle is of little importance as
the vessel cannot move in this direction. Horizontal and depth positioning is however of critical importance as
these are within the degrees of freedom of the vessel which it must control. During this stage of obstacle analysis,
only the position of the obstacle relative to the respective device is calculated. The positioning of obstacles will
later be translated into one homogeneous reference frame during the mapping stage as detailed in 4.4.

Prior to analysing the obstacle position, it is first checked whether any occlusions exist in the bounds of the
detected obstacles as this can significantly influence the depth value that is obtained within the individual obstacle
bounds. As detection is conducted on a 2D representation of the environment, multiple obstacles may be detected
in the same pixel range leading to all obstacles being associated with the depth data of the nearest object. To
reduce the likelihood of this error occurring, all the detected objects in each frame are checked for any overlap in
their bounding boxes using the procedure detailed in Algorithm ??. In the case where an occlusion is detected,
instead of using the bounding box of the affected obstacles for extracting depth data, a new region of interest
(ROI) is defined. This new ROI retains the same centroid as the original bounding box, however reduces its size
to one third of the original. By limiting depth data extraction to this innermost region helps remove errors caused
by partial occlusions. The dimensions of these bounds were determined through experimental testing of the
object detection model which showed that bounding boxes may overlap, however once an object was occluded
by more than a third of its area, it could no longer detected by the model.

The distance to the obstacle in terms of depth from the camera reference plane is determined by assessing all the
depth points within the obstacle bounds and selecting the lowest value. The reason for selecting the lowest value
is two-fold, primarily as a safety concern and also regarding data consistency. The safest assumption is that the
closest part of the obstacle is the most likely point of collision and this value also provides the most consistent
depth result between frames. If instead of the lowest depth value, the mean average of all depth points within
the region are taken, there exists the risk of causing an unexpected collision due to underestimating the obstacles
position. The mean depth result also proves to be more volatile over time as the mean average fluctuates far more
than the lowest value when obstacle orientation changes. This selected depth point shall be considered as the
Closest Obstacle Point (COP).

Immediately prior to finding the lowest depth value within the ROI, misleading data must first be purged from
the array. When the RealSense device runs the stereo algorithm, any pixel which could not be assigned a depth
value due to confidence metrics not being met, is assigned the value of zero to indicate this error to onward
processes. Therefore, all the zero values must be removed from the depth array prior to selecting the lowest
value, otherwise any ROI where a zeroed pixel resides will result in the obstacle being associated an invalid
depth value. Furthermore, the field of view of the fore and aft cameras are actually occluded slightly by the
vessel itself. This could also lead to misleading depth values and to avoid this, the depth arrays of the fore and
aft cameras are further filtered to remove any depth values that lie within the vessel bounds. For the aft device,
this filter is set to a depth of one metre and for the fore device, 0.4m.

Whilst there exists the possibility to create a detailed profile of an obstacle with the point-cloud data, it is both
computationally expensive and arguably unnecessary for typical collision avoidance scenarios. It may be argued
that a detailed point-cloud could assist in the estimation of vessel heading, however such a task would be highly
complex, computationally expensive and have a large margin for error. As is further detailed in the following
Chapter, the heading of a contact vessel will not be used in the collision avoidance approach, rather the vessel’s
track shall be used to record and predict motion. The track of the vessel will be interpreted later during the
mapping process, see section 4.4.

With a depth value obtained, the lateral location of the obstacle and its bounded width can also be found. For
simplicity, lateral reference point for the vessel will be taken as the centroid of the obstacle bounding box. The
depth intrinsics for each device must at this stage be recalled so to project the pixel values into 3D coordinate
points. To convert to the lens coordinate frame, the principal point is subtracted and the sum is divided by the
focal length, following which the impact of specific lens distortion is accounted for. Fortuitously, this projection
can be achieved using a built in Librealsense function, which requires only the depth intrinsics, pixel of interest
and the depth value to be supplied. For each obstacle two points are projected to 3D coordinates using the
obtained depth value and the pixel values at of the horizontal extremities of the bounding box. By extracting
these two points, the width of the obstacle can subsequently be estimated and the lateral position of the obstacle
centroid easily derived. As the obstacle orientation is unknown, the width of the bounding box provides only an
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arbitrary obstacle dimension.

Figure 4.7: Definition of the Device Coordinate System - Diagram displays a plan view perspective of the D435i Depth Camera with the
origin of the coordinate system incident to the RGB sensor.

Obstacle position is then defined defined within a device coordinate system (XD ,YD ) as shown in Fig. 4.7, where
the depth value corresponds to the XD axis and the lateral position of the obstacle is to the YD axis. The origin
of the depth is at the centre the left depth imaging sensor and the origin of the lateral distance is centred about
the horizontal mid-plane of the colour frame ( aligned depth frame). Whilst depth values can only be positive,
points to the left of the mid-plane are assigned a negative coordinate value and points to the right, a positive
value.

4.2.3. Perception Output
The output from the perception package is published over the ROS network as a string message at a frequency
of 5Hz. The contents of the message contains all the relevant information for the ongoing processes and are
configured in such a manner to allow the subscriber to simply convert the message into a Python dictionary.
Firstly an obstacle count is provided which states how many obstacles have been detected by the perception
program across all the devices. Following this, each of the obstacles and their corresponding attributes are
listed, with each obstacle being an item within the list. The attributes that are published for each object are as
follows:

• Device position (i.e. ’Fore’/’Aft’/’Port’/’Starboard’)

• Obstacle classification (e.g. ’Tugboat’)

• Obstacle coordinates ( (XD ,YD ) )

• Obstacle dimension
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4.3. Localisation
Localisation concerns the determination of the Autonomous Vessels current position and orientation in the con-
figuration space. Typically a global positioning system (GPS) provides the primary data for localisation, however
as the experimental testing will take place indoors, an alternative solution is required to ensure sufficient read-
ings. Fortunately, stereovision also offers a solution to localisation through the implementation of V-SLAM
algorithms. As such as well as reviewing the potential of stereovision as a perception sensor, this paper will also
review the viability of using stereovision sensors to gather localisation data. Localisation accuracy is of critical
importance to the performance of an autonomous vessel and this can be best achieved by using multiple sensors
for acquisition and applying data fusion. By assessing the performance of stereovision for the specific use case
onboard an inland autonomous vessel, its potential for future application on larger scale autonomous vessels can
be understood. The accuracy level of stereovision could complement GPS data nicely, with GPS alone being
limited in accuracy and impacted by occlusions in its direct view of the sky. The restricted channel widths on
inland waterway heightens the requirement for accurate localisation and occlusions to the sky such as bridges
could further reduce GPS accuracy.

Figure 4.8: Localisation Procedure

Figure 4.8 provides an overview of the localisation sub-system from the sensor input through to the sub-system’s
pose output. As the device executes the localisation algorithm on its built-in processor, the data acquired directly
from the device comes in the pose format of translation and orientation. The following sub-section shall detail the
background concerning the onboard algorithm, its features and restrictions. The sub-section thereafter will cover
the translation of the raw pose data from the device into the desired configuration. The reference frame of the
device is not aligned with that of the vessel, meaning that the position needs to be derived by axes transformation
and the orientation must be calculated from quaternions into Euler angle form.

4.3.1. Background
Although data from the depth cameras could provide data input to a point cloud based V-SLAM algorithm,
the device sensors are configured for optimal depth accuracy not to provide optimal data for localisation. The
T265 tracking camera however, is optimised for conducting localisation using a Visual-Intertial-Odometry (VIO)
technique. The principles behind VIO are akin to that of human localisation, where key features in a scene are
recognised and tracked over time, along with inertial movements. The T265 uses computer vision algorithms to
recognise features captured by two fish-eye lenses which can be compared to the visual data obtained by human
eyes and an Inertial Measurement Unit to record movement and rotation, the same task managed in the inner ear
of a human.

The use of two imaging sensors (stereo) not only increases the amount of features that can be recognised, but
further provide a calibrated method for scaling the environment into real world coordinates. Whilst modern
imaging sensors can operate at high frame rates, the algorithms that are used detect features in each frame
require high computational power to keep up with such frequencies. IMU data on the other hand can be supplied
at high data frequencies without requiring laborious post-processing. This high frequency characteristic makes
IMUs extremely good at tracking movements over short time periods, to the degree of a fraction of a second. The
data from the imaging sensors and IMU subsequently complement one another well, allowing for low latency
tracking to be achieved without huge computational expense. The device in fact executes the VIO processing
using its onboard chip, requiring only 1.5W via a USB data cable, entirely offloading the burden from the host
board [49].
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The device also minimises the impact of sensor drift error by providing re-localisation contingency to centime-
tre accuracy. In the case where the device momentarily loses its bearings, the device reviews its memory of
the environment to best relocate itself based upon known features within the map. Whilst the potential bene-
fits of stereovision based localisation have been made apparent, a few limitations of the technology are worth
noting.

Operating in extreme light conditions, whether that be low or high can have an impact on the quality of localisa-
tion. Too many moving objects in the environment, or an environment with two few landmark features can lead
to significant localisation errors as there are no clear stationary features to track between frames. The imaging
sensors are further limited in the same way as humans, where they can neither see in the dark nor when facing
a direct light source. Reflections of light can also cause issues, which may be a particular issue in the maritime
application with the still water surface potentially causing phantom features to be recognised. Whilst the mount-
ing solution used for this project does lead to a discouraged occlusion in camera field of view, the surface of the
water does not provide any useful features for tracking and avoiding a direct view of the water from an acute
angle, may reduce the likelihood of reflection errors. Extra attention should be paid during experimental testing
to these areas of potential error occurrence.

(a) Tracking Device Coordinate System [50] (b) Body-fixed Coordinate System [51]

Figure 4.9: Localisation Coordinate Systems

4.3.2. Translation
Acquisition of the localisation data from the device is again achieved using the Librealsense SDK through the
Python wrapper. The Python executable responsible for the acquisition and manipulation of localisation data can
be found within the ’ras_localisation’ ROS package as seen in Fig. 3.3. The coordinate system of the tracking
camera itself is defined in Figure 4.9a with the centre of tracking equidistant from the two imaging sensors. This
coordinate system differs from the orientation of the body-fixed coordinate system and the North East Down
(NED) reference frame and so must be translated for ongoing processes. The raw tracking data is translated to
the body-fixed frame of the vessel itself, see Fig. 4.9b, meaning the X and Y coordinate (xb , yb) that is finally
published by the ROS package refers to the negated z and x values of the tracking device coordinates by applying
the transformations defined in table 4.3.

NED Body-fixed Tracking Device
North xb -z
East yb x
Down zb -y

Table 4.3: Coordinate System References

The Euler angles roll, pitch and yaw have to be calculated from the raw pose data which comes in the form
of a quaternion. The quaternion format offers a far less intuitive representation than Euler angles, however are
advantageous as they are unrestricted by the gimbal lock which prevents measurements when pitch reaches ±90±.
In nautical applications, a vessel should never reach such extreme pitch rotations and so conversion to the Euler
angles can be conducted without further consideration to the impact of gimbal locking.
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A quaternion is a vector comprised of four elements, one real and three imaginary, which can be used to describe
the orientation of a body in a three dimensional environment. The quaternion data from the tracking device is
delivered in the order x, y, z, w. Where w is the real part and x, y, z represent the imaginary vector parts. Aligning
the unit quaternions to the body frame can be achieved by again implementing the relations seen in Table 4.3. As
the conversion to Euler angles will follow the procedure of Fossen et al. [51], the unit quaternions will be further
converted to the relevant notation seen in Eq. 4.1.

q =
£
w °z x °y

§T =
£
¥ ≤1 ≤2 ≤3

§T (4.1)

The coordinate transformation matrix for the unit quaternions can be defined by Eq. 4.2 which enables conversion
to the Euler angles of roll, pitch and yaw using Equations 4.3, 4.4 & 4.5 respectively.
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4.3.3. Localisation Output
Once the relevant information has been obtained, it is published over the ROS network as a string message, ready
for ongoing processes to subscribe to the stream and again can be easily converted into a Python dictionary. The
following data is obtained and published: X coordinate, Y coordinate, Roll, Pitch and Yaw. Whilst ongoing
processes only require position and yaw directly as this informs as to the current coordinate of the Autonomous
Vessel and of the current heading. The other data is published due to its potential use in future projects. The yaw
value is also published in its own topic as it will be subscribed to directly by the control system to provide an
input to its heading error strategy.

4.4. Mapping
Mapping represents the final sub-task in the Navigation system and is responsible for the post-processing of the
results from the perception and localisation sub-tasks. This processing concerns two main procedures, firstly the
translation of perception results to a single homogeneous reference frame, and secondly the fusion of localisation
and perception data to map the position of the AV and obstacles in the global coordinate system. Subsection 4.4.1
details how the obstacle positions attained by the individual perception sensors are translated to the coordinate
system of the Autonomous Vessel. Subsection 4.15 details the generation of a global map, where both the AV
and the obstacles are plotted in the global reference frame.

4.4.1. Autonomous Vessel Domain
The initial stage of mapping handles the translation of the obstacle positions from the individual device coordinate
system into the coordinate system relative to a consolidated AV domain. The device coordinate system is defined
as having two axis relative to the camera, where XD is aligned with the depth value of the camera and YD refers
to the position in the horizontal frame. The origin of the AV domain, is located at the geometric centre of the
vessel as indicated by point CO in Fig.4.9b and reiterated in Fig. 4.10, with the axes orientation of xb and yb

also matching that of the 2D AV coordinate system, X AVD
and YAVD

. When mapping obstacles to the AV domain,
each instance will be assigned with a 2D coordinate relative to this origin and reference axes.

As each device is positioned at a different location on the vessel, with a different orientation, there exist varied
procedures for generating the AV domain coordinates. Fig. 4.10 details the locations and orientations of each
depth device with the relevant dimensions needed for the translation to the AV domain. As can be observed in
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Figure 4.10: Multi-device Configuration for Perception. All linear dimensions in millimetres.

the diagram, translation of the fore and aft, is fairly straight forward as the orientation and x-axis origin is already
aligned with the AV coordinate system only the y-axis displacement must be displaced.

The port and starboard cameras on the other hand are offset from the origin in both the axes and are further
orientated at ∞ = ±50± displacement from the AV coordinate system. Therefore, prior to accounting for the
displacements in the axes, the obstacle coordinates must be translated by rotating the device axes to reach a
parallel relation with the AV coordinate axes. To translate the device coordinates (XD ,YD ) to be parallel with the
AV domain axes(X

0
D

,Y
0

D
), the axes rotation defined in 4.6 is performed. After the axes have been aligned, the

axes displacements from Fig. 4.10 can be applied as detailed in Algorithm 1 to define the obstacle’s coordinates
in the AV domain.
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Algorithm 1: AV Domain Displacements
Result: Obstacle Coordinates in the AV Domain
if Device is ’Fore’ then

X AVD
= XD +0.15

YAVD
= YD

else if Device is ’Aft’ then
X AVD

= 0.12°XD

YAVD
=°YD

else
if Device is ’Port’ then

X AVD
= X

0
D
°0.64

YAVD
= Y

0
D
°0.1

else
X AVD

= X
0
D
°0.64

YAVD
= Y

0
D
+0.1

end
end

With the obstacle coordinates defined in the AV domain, the bearing (Ø) of the obstacle relative to the AV can be
derived. To do this, the angle between the origin x-axis of the AV domain and each obstacle needs to be found.
Where the origin coordinates are (XCO ,YCO) and the range is r , the obstacle coordinates are (X AVD

,YAVD
) can be

defined as shown in Eq. 4.7 and the raw bearing angle Ø̂ in Eq. 4.8.

(X AVD
,YAVD

) = (XCO + r · Ø̂,YCO + r · si nØ̂) (4.7)

Ø̂= at an2(YAVD
°YCO , X AVD

°XCO) (4.8)
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As the origin coordinates are (0, 0), Eq. 4.8 can be simplified to Eq.4.9 and the actual bearing Ø can be defined
by the cases in Eq. 4.10.

Ø̂= at an2(YAVD
, X AVD

) · 180
º

(4.9)

Ø=
(
Ø̂, Ø̂∏ 0±

360+ Ø̂, Ø̂< 0±
(4.10)

Referring once more to Fig. 4.3b, it can be observed that an overlap in field-of-view that exists between the
fore and side devices and this region can lead to the perception sub-system essentially seeing double when the
same obstacle is recognised by multiple cameras. It is important that these replicated obstacles are removed so
to ensure that ongoing processes do not consider these obstacles to be independent. This is achieved following
the procedure in Algorithm 2, whereby obstacles who share classification and almost identical coordinates are
removed from the obstacles list.

Algorithm 2: Obstacle Replication Removal
Result: Replication Removal
for i Fore_obstacles do

for j in Port_obstacles and Stbd_obstacles do
Vicinity = |coor d s[i ]° coor d s[ j ]|
if Vicinity ∑ 0.5m and classification[i]==classification[j] then

Remove(j)
end

end

With the obstacles having been coalesced into a singular coordinate frame and any replications eradicated, they
can each be associated with an identification number for tracking between iterations. As obstacle detection is
run afresh each frame, the obstacle log generated with each iteration is arbitrary and bears no direct association
to the previous set of detections. Tracking is instead achieved using a Nearest Neighbour technique whereby
the coordinates of each obstacle detected in the current iteration is compared with all obstacle positions in the
previous iteration and associated by minimising Euclidean distance. This procedure allows for the assignment of
an obstacle identification number (ID).

Figure 4.11: Pseudo-radar Obstacle Monitor
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To enable user-interaction with the navigation system, a visual representation of the obstacles mapped within the
AV domain is provided. In line with the maritime application, this output is delivered in the form of a pseudo-
radar plot as can be seen in Fig. 4.11. The origin of the plot corresponds with the origin of the AV domain and
is illustrated in the plot by the white dot, with the outline of the vessel plotted around this point for reference.
An obstacle that has been detected, localised and mapped is plotted as green dot along with an annotation of its
ID.

4.4.2. Global Coordinate System
With localisation data on the Autonomous vessel itself and the surrounding obstacles in the AV domain, global
mapping can be initiated to provide the Guidance system with a canvas to track movements and generate trajec-
tories. The global coordinate system needs to be presented with a base map relevant to the area of navigation. For
example, in the case of this project, a base map of the tank that shall be used for testing is supplied. As this base
map is simply a rectangular section of the testing tank without the presence of static waterway obstacles, it can
be specified simply by 4 sets of two dimensional coordinates. This map can be visualised in Figure 4.12 below,
along with the defined coordinate system and origin. Outside of this specific application in a testing tank, the
base map could be generated using GPS coordinates defining the extremities of the waterways channel.

Figure 4.12: Visual representation of the testing tank base map

When first initialising the navigation system, the starting position (Xav0 ,Yav0 ) of the vessel within the base map
must be stated. The localisation system is only capable of tracking its movement over time, it does not have the
capacity to independently localise its position in the base map. The default starting coordinates for operations
in the test tank are (1, 0.15), which describes the location where the vessel is launched for testing. In the case
where the start location is different, this must be manually altered prior to initialisation. With this start value,
the position coordinates streamed by the localisation system (xb , yb)) can simply be summed with the starting
coordinates to provide the current vessel location in global coordinates (Xav ,Yav ) as per Eq. 4.11. By monitoring
this location over time, the state can be quantified by the registered change in position from the previous time
step (Ẋav , Ẏav ). A time step of one second is used allowing for the AV speed to be defined by Eq. 4.12 in meters
per second.
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2
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As well as a start position, the starting orientation must also be supplied in the form of a initial heading value ('0).
As per nautical standards, the base map will rely on a magnetic compass to describe vessel heading. For the test
tank base map, '0 is taken as 250±, which is aligned with the X-axis of the base map coordinates, meaning that
when initiated the vessel should be positioned facing directly down the length of the tank. The relative heading
value can subsequently be calculated through summing the initial offset with the yaw value (√) as defined in Eq.
4.13 and then applying the cases in Eq. 4.14.

'̂='0 +
180√
º

(4.13)
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Defining the global coordinates of each obstacle (Xcv ,Ycv ) is accomplished through the translation of obstacle
coordinates in the AV domain using the current AV position and orientation as detailed in Eq. 4.15. Using
the obstacle IDs from the previous section, obstacles can be tracked over time, the state of an obstacle can
be quantified by the difference in obstacle position at the previous time step at the current iteration position
(Ẋcv , Ẏcv ). This time step is again taken to be one second.
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The velocity vector generated between the obstacle position at the previous time step and the current position can
be referred to as the obstacle’s relative track. The track vector can be described by its magnitude and direction.
The direction defined in Eq. 4.18 being referred to as the Track Angle (ø) and the magnitude describing the
vessel speed (Eq. 4.16). To assist in collision avoidance procedure it is also useful to know the angle at which
a dynamic obstacle is moving relative to the AV itself. This can simply be determined by finding the difference
between the heading of the AV and the track angle of the obstacle. This directional measure of obstacle dynamics
shall be referred to as the approach angle (Æ) and is defined in Eq. 4.20.
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Æ̂= ø°' (4.19)

Æ=
(
Æ̂, Æ̂∏ 0

Æ̂+360, Æ̂< 0
(4.20)

Of course, these state attributes cannot be generated until the vessel has been tracked over multiple time steps and
in this momentary period it is set to a null value to avoid feeding misleading values. The average speed and angle
measurements are then taken over the past three seconds so to provide a smoother forward data feed.
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4.5. Navigation Output
The output of the mapping process is a refined set of attributes relating to the AV and the obstacles which
will form the main output of the entire Navigation System. These attributes and some other will go on to
be used by the guidance system during its collision avoidance procedure in the next chapter. To simplify the
guidance subscription process, obstacles and all their useful attributes shall be published in one message and the
AV attributes shall be published in another. Both of these publishers are set to run at the same frequency and
triggered at the same time so to bi-pass the requisite of time-stamping data. The attainable frequency was found
to vary somewhat, however could always achieve 5Hz leading to this rate being fixed to ensure consistency in
publication. The exact attributes published over the ROS network as the final output of the navigation system are
detailed below in table 4.4. The AV position will also be subscribed to by the high level controller of the Seabax
control system as an input to the reference heading calculation, which shall be discussed further in Chapter 6.
Consequently an additional topic is published, dedicated to providing the current position in array format to the
control system.

Attribute AV Data CV Data Notes
Global Coordinates (Xav ,Yav ) (Xcv ,Ycv ) Eq.4.11, Eq.4.15
AV Domain Coordinates - (X AVD

,YAVD
) Algorithm.1

Speed uav ucv Eq.4.12, Eq. 4.16
Heading ' - Eq.4.14
Bearing - Ø Eq. 4.10
Approach Angle - Æ Eq. 4.20
Track Angle - ø Eq. 4.18
Classification - Ct y pe E.g. ’tugboat’
Identification Number - ID Integer value

Table 4.4: Output of Navigation System.

4.6. Conclusion
The second research question: How can perception and localisation tasks be achieved by a navigation system
using stereovision? was addressed in this Chapter. A multi-device system has been proposed to achieve mid-
range perception and localisation on board inland autonomous vessels. Four depth devices onboard enable the
acquisition of both textural and depth data of the surrounding environment for perception tasks, covering the
directions fore, aft, port and starboard of the autonomous vessel. A tracking camera, incorporating stereo fish-
eye vision sensors and an integrated inertial measurement unit is utilised to provide pose data for autonomous
vessel localisation.

The multi-device perception setup enables the navigation system to maintain a constant lookout around the
vessels in the collision risk regions. The utilisation a convolutional neural network to conduct object detection
has highlighted its suitability to the autonomous inland vessel application. Not only does this approach provide
advantages over arbitrary object detection but does so at impressive inference rates even with the limitations a
small form-factor computer onboard a scale vessel. A refined approach to the acquisition of depth data avoids the
unnecessary post-processing and manipulation of dense point clouds, which arguably add little value to a system
centred around achieving collision avoidance.

The utilisation of a Visual Inertial Odometry approach provided a means of mid range localisation using only
stereovision and IMU data. The offloading of the task to a singular compact device, allows a significant boost to
small scale applications and yet the VIO approach also lends itself well to larger application setups. Secondary
processing of the perception and localisation data through the mapping procedure provides a coalescent output for
the Navigation System, particularly well suited to provide sufficient information to ongoing collision avoidance
tasks.

Under the given computational setup, the output of the Navigation System is capable of publishing outgoing data
at rate of five hertz, which is considered sufficient for the low speed application. The perception and localisation
sub-tasks alone were further found to be capable of reaching frequencies closer to ten hertz.





�
Collision Avoidance for an Autonomous

Inland Vessel

This chapter concerns the third research focus of this thesis, the specific question being How can a guidance
system avoid collisions with dynamic obstacles within an inland waterway environment?. Collision avoidance
is handled within the local planner of the guidance system and the sub-task division introduced in the previous
Chapters of Motion Prediction, Conflict Detection and Conflict Resolution form the sectional structure within this
Chapter. The contributions made by this research concern the latter two sub-tasks with the respective research
sub-questions listed below being answered in Sections 5.3 and 5.4.

3a How can collision conflict be detected between an autonomous inland vessel and a contact vessel? (Section
5.3).

3b How can a local path planner be configured to handle conflict resolution and avoid collision in an inland
environment? (Section 5.4).

5.1. The Guidance System
A Guidance system can be aptly divided into two main sub-tasks, a global planner and a local planner. The
global planner sets a route from the departure to destination node for the AV to follow, irrespective of obstacles
encountered underway. The local planner on the other hand is specifically tasked with managing temporary
deviations from this global path to avoid collisions with said dynamic obstacles. The global guidance system will
remain outside of the scope of this project, with attention being focused upon the collision avoidance procedure
of the local planner.

Although the global planner will not form a research focus, the operation of the local planner remains reliant upon
the presence of a global path therefore can be found as a module within the software structure. The global path
is therefore to be specified by the user in the form of a CSV file, stating waypoints spanning from the departure
to destination node and the angle of from the previous waypoint.

The local planner can be neatly divided into three sub-tasks as per the review of [24] which forms the structure
of this chapter. Motion Prediction will explore the approach taken to estimate the state of dynamic obstacles in
coming time steps. Conflict Detection will cover the techniques implemented to recognise collision risk within an
inland environment and incite suitable action. Finally, Conflict Resolution will detail the procedure for generating
the most suitable local path to avoid collision. It is worth noting that this guidance system will only be developed
for, and tested with vessel-vessel interactions. Obstacles shall therefore be referred to as contact vessels (CV)
within this chapter and shall apply its focus to interaction with a single vessel.

45
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5.2. Motion Prediction
Predicting the motion of a contact vessel plays a significant role in creating a successful collision avoidance
strategy. No specific contribution is made to this research field, however the implementation approach taken is
detailed for context. Several methods for motion prediction were introduced during the literature study, from
simple physics-based models through to more complex prediction techniques. At this initial stage of research
development, the guidance system is configured with a physics based model with the implementation of more
sophisticated techniques being left to form the focus of future research. Through the assumption that a contact
vessel is holonomic and can move freely in the horizontal plane, the vessel’s motion can be predicted over coming
time steps using its current speed and track. Extending the current velocity vector to span a range future time
intervals provides a prediction of future motion, albeit a crude one. Both the speed (ucv ) and the track angle (ø)
of the contact vessel are supplied by the navigation system with their relations to the movement in the horizontal
plane being defined in Equations 5.1 and 5.2 with the time step (t) being defined in seconds.

ẋ(t ) = x(t )°x(t °1) = ucv · cosø (5.1)

ẏ(t ) = y(t )° y(t °1) = ucv · si nø (5.2)

The majority of motion prediction techniques are configured for guidance systems which rely on proprietary
communication such as AIS and consequently make use of the current heading of the contact vessel when pre-
dicting motion. The approach taken here will instead opt to use the current track of the contact vessel which
is attainable by the current navigation system. Attempting to interpret heading in the absence of proprietary
information is an convoluted task for which a reliable method is currently lacking. Although it may be argued
that heading could provide a more accurate prediction of a vessel’s intended course, the track more accurately
represents its current trajectory.

In the coming sections, the results of motion prediction will be used to help detect conflict in sufficient time for
action to be taken to avoid collision and also to help assess the collision risk of candidate local paths. Conse-
quently, the motion prediction span (tpr ) must be suitably selected to ensure that sufficient warning is provided
whilst not creating an overly sensitive avoidance system. The most useful value that can be supplied by motion
prediction is an estimate of future position so to define the fore bound of a vessel’s conflict region and assess
future collision risk.

Continuing with the assumption of maintained speed and track, the velocity of the vessel and the prediction span
can be used to provide the future position of the contact vessel. Whilst the speed of the vessel is variable, the
prediction horizon will be a fixed value inputted by the user for each vessel type. The predicted position (xpr , ypr )
of the contact vessel can be found by applying Eq. 5.3 and 5.4 which are derived through the manipulation of
the holonomic model in Eq. 5.1 and 5.2 to account for the defined time span. The position of the vessel at the
current time step is defined as (x(t0), y(t0)).

xpr = x(t0)+ (tpr ·ucv · cosø) (5.3)

ypr = y(t0)+ (tpr ·ucv · si nø) (5.4)

This creates a collision risk system that considers the influence of vessel speed and thus inertia upon the opportu-
nity to avoid collision. For the model tugboat that will assume the role of the contact vessel during experimental
testing, an initial prediction span value of three seconds is assigned, which at the maximum speed of 0.5m/s

would equate to an additional contingency of 1.5 metres. It is noteworthy to mention that this definition is an
intuitive estimate, this fixed value would be better defined using an expert-based method.
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5.3. Conflict Detection
Conflict detection involves two major tasks, the generation of conflict regions and the monitoring of the conflict
state. Conflict regions are the zones surrounding a vessel which when intersecting one another, indicate that a
conflict is anticipated, or in other words, when two vessels are on a potential collision course without suitable
action. An approach to generating conflict regions which are deemed appropriate for the inland waterway envi-
ronment will be presented in subsection 5.3.1 and a procedure for monitoring various conflict conditions will be
detailed in 5.3.2.

5.3.1. Conflict Regions
Conflict regions in maritime autonomy are typically defined in radial form, which whilst valid for open-water
applications are less applicable to the narrow channels of inland waterways. As such, rectangular conflict regions
will be proposed in this paper, inspired by the uncertainty zones presented in the Hull-2-Hull research project
[30]. In the Hull-2-Hull project, the sizes of the uncertainty zones around a vessel are dependent upon the
inertia of the vessel itself, which is influenced by its velocity and its mass. Whilst the mass of the autonomous
vessel is known, the mass of an contact vessel in the absence of propriety communication, is not obtained by the
navigation system. An estimate of the mass could be made based upon the obstacle classification, however rather
than attempting to generate a pseudo-inertia value, a time based factor is applied to the obstacle velocity to yield
a future position estimate as was presented in the previous section.

In this approach, each contact vessel is assigned a singular conflict region. The bound in the direction of vessel
movement is influenced by the results of motion prediction where an extension is added to the base region, whilst
the other base extremities remain constant and uniform. The actual size of the base conflict region is defined to
be one times the beam of the vessel as indicated in Fig. 5.1a. The region remains defined this way when static,
however when dynamic the region edge to the bow of the vessel will be extended by adding the contingency
(Xcon) as illustrated in Fig. 5.1b This contingency is defined by Eq. 5.5 using the motion prediction model.
Although largely applicable, the definition of base region based upon vessel beam may not be well suited to large
vessels operating in particularly narrow waterway stretches.

Xcon = tpr ·ucv (5.5)

The beam and length of the contact vessel are retrieved from a database which lists all vessel classifications that
the neural network model can recognise and the approximate dimensions of said vessels. At this stage, the object
detector is only trained to recognise the model tugboat used in testing meaning the database only has one entry,
whose dimensions are exactly known. A network trained to recognise various classifications of vessel could
provide a rough estimation of vessel size based upon classification.

(a) Static Base Region (b) Dynamic Conflict Region

Figure 5.1: Contact Vessel Conflict Region. Where B is the beam of the vessel and Xcon is the forward bound extension.

A different procedure is followed for the assignment of the AV conflict regions as to that used for the contact
vessel. The AV requires two regions, one larger conflict region to trigger generic collision avoidance which will
be referred to as the COLREG zone and one smaller region intended to incite emergency collision avoidance
procedure which will be referred to as the critical zone. Fig. 5.2 illustrates how the configurations of the AC
conflict regions.

The critical conflict region surrounds the port, starboard and aft edges at identical distances, defined at this stage
as being one times the beam of the autonomous vessel (Bav ). This selection also accounts for the port and
starboard bow blind-spots of the AV’s perception system. The size of the critical region ahead of the autonomous
vessel is defined by considering its deceleration rate, to account for a worst case scenario. Meaning that after
the local planner has established that no alternate route exists to circumnavigate a vessel, the AV should still
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have a sufficient amount of time to either fully stop or at least significantly reduce its speed prior to collision.
Although logical and applicable to some vessel types, such as the test AV used in this project, it is recognised that
underactuated vessels with a higher inertia would not be so suitably catered for by this approach in its current
form with extra considerations needing to be made.

The theoretical stopping distance (d) can be defined by the heuristic relation between velocity (uav ) and deceler-
ation rate (aav ) in Eq. 5.6. Previous experimental research into the Grey Seabax vessel found that navy braking
offers the best combined results considering rate of deceleration and maintenance of heading [52], with an aver-
age deceleration rate of 0.08m/s

2 being found. Therefore using Eq. 5.6, at the maximum velocity of 0.5m/s, an
approximate stopping distance of 1.56m is to be expected. Since the deceleration rate was determined, approx-
imately two kilograms in navigation system hardware has been added. To account for this increase in mass and
for the latency, a safety factor of 1.25 is applied to the overall stopping distance. The value Fcr i t seen in Fig. 5.2
is subsequently driven by this adjusted stopping distance as defined in Eq. 5.7, with a minimum value being set
to 0.5m to account for low speeds.

dstop =
u

2
av

2aav

(5.6)

Fcr i t = Bav +1.25 ·dstop (5.7)

Figure 5.2: AV Conflict Regions. Blue-dashed: COLREG region, red-dashed: critical region. Fcol describes the fore COLREG bound, Scol

the starboard COLREG bound and Fcr i t the fore critical bound. B refers to the beam dimension of the vessel.

The COLREG zone surrounding the AV is not uniform as can be seen in Fig. 5.2, rather the region extremities
are weighted in the fore and starboard directions to support adherence to regulation scenarios where the AV can
be designated give-way status. The COLREG zone remains identical to the critical zone along the port and aft
edges, due to vessel interactions on these sides yielding the AV to assume the role of the stand-on vessel. The
region dimensions in the fore and starboard directions edges are driven by the vessel speed and a defined time
period as defined in Eq. 5.8 and 5.9 which provide a distance in metres. For the Seabax AV, t f is set to six seconds
and ts to three seconds with minimum dimension results being limited to 1.2 and 0.6 metres respectively.

Fcol = uav · t f (5.8)

Scol = uav · ts (5.9)

5.3.2. Conflict Monitoring
When the conflict regions of the AV and a contact vessel experience overlap, the AV will be triggered to take
action to avoid a collision. The specific action taken is dependent upon which of the AV regions has detected
conflict and a more detailed explanation as to the procedure will be given in the following section. This subsection
will focus upon how the conditions for overlap are monitored and assessed so to send the relevant trigger to the
resolution procedure.
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Algorithm 3: Determination of Conflict State.
Result: Conflict State
if OverlapCOLREG then

if OverlapCritical then
conflict = ’critical’

else
conflict = ’COLREG’

end
else

conflict = ’None’
end

The detection of conflict involves the constant monitoring of two AV conflict regions, the COLREG zone and
the critical zone. This is achieved by looping through all detected CVs and for each CV deciphering whether or
not its conflict region is infringing upon one of the AV regions. In any case where overlap is detected in the the
critical region, it also exists within the COLREG region. Therefore the logic in Algorithm 3 is followed.

A propositional logic approach is taken to monitor for overlap between the conflict regions of the AV and CV due
to the appeal of its computational efficiency. The AV domain coordinates from the Navigation system are utilised
instead of the global frame as this fixes the orientation of the AV regions, reducing problem complexity. The
rectangular region of the AV can as such be separated into two ranges covering the X and Y dimensions whose
bounds can be visualised in Fig. 5.3a. The orientation of the contact vessel however is not fixed, meaning that
the rectangular region cannot be simply defined by two ranges. Coordinates for the CV region are instead defined
as shown in Fig. 5.3b, and sub-regions are defined around these points as illustrated in Fig. 5.4. The division of
elements into four regions allows for a more accurate assessment of range overlap, with both the bounded ranges
and the midpoints being of interest.

(a) Autonomous Vessel. Black-dashed: An AV conflict region. (b) Contact Vessel. Red-dashed: CV conflict region.

Figure 5.3: Conflict Region Coordinates

The CV sub-regions are each assessed for overlap with the two AV conflict regions following the logic flow
in Algorithm 3. The rectangular sub-region ranges and the midpoints are assessed independently for overlap
with an AV region as per Eq. 5.10. Two propositional arguments are reviewed in each of the two coordinate
dimensions (X1, X2,Y1,Y2) and when these conditions are met, a binary result is obtained indicating the presence
of overlap. The terms used within these arguments refer to coordinates in Fig. 5.3. A total of eight overlap
checks are made as listed in N , with the n values referring to the coordinate subscript defined in Fig. 5.3b. When
these binary results are summed, the number of overlap instances (On) is known and utilising the cases in Eq.
5.11, the boolean conflict condition (Co) can be assigned. Conflict is considered to be present when two or more
instances of overlap are encountered.
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(a) Fore(F) and Aft(A) sub-regions (b) Starboard(S) and Port (P) sub-regions

Figure 5.4: Contact Vessel Sub-regions. Blue-shaded rectangles: Sub-region range, blue-shaded centroids: midpoint

On =
X

n2N

(X1 ^X2)^ (Y1 ^Y2) (5.10)

wher e :
X1 = Xmax ∏ argmin(Xn), X2 = argmax(Xn) ∏ Xmi n

Y1 = Ymax ∏ argmin(Yn), Y2 = argmax(Yn) ∏ Ymi n

N = [( f s, f p), ( f s, as), ( f p, ap), (as, ap), f m, am, sm, pm]

Co =
(

Tr ue, On ∏ 2

F al se, On < 2
(5.11)

(a) Missed Detection of Conflict (b) Successful Detection of Conflict

Figure 5.5: Conflict Detection Accuracy. See plotted legends.
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The simple logic approach to the monitoring of conflict between the regions avoids computational expense,
however the conservative approach does have limited accuracy. As the CV conflict region is only subjected to a
coarse meshing of sub-regions, very small overlaps in conflict regions may be missed, which is more prevalent
when a CV approaches at an angle and intersects the AV region at a corner. Figure 5.5a demonstrates such a
scenario, where despite the AV and CV conflict regions marginally overlapping, conflict was not detected. This
element of inaccuracy is however not deemed an issue for the application as once a slightly larger overlap is
encountered as illustrated in Fig. 5.5b, conflict is successfully detected.

5.4. Conflict Resolution
A predominantly rule-based collision avoidance algorithm will be implemented in the Guidance System at this
stage of development. The avoidance strategy presented focuses on single vessel interactions within an environ-
ment typical of a simple inland waterway channel. The resolution process is two-stage and is triggered when a
conflict is detected as can be seen in Fig. 5.6. The subsection structure hereon will follow the two-stage resolution
process, with the avoidance procedure being addressed first and the local path generation thereafter.

Figure 5.6: Collision Resolution Scheme

5.4.1. Avoidance Procedure
The avoidance procedure is responsible for determining the way in which the AV resolves conflict. Its purpose
is to determine the status and mode of avoidance. The avoidance status details the responsibility of the AV in a
given interaction and the avoidance mode identifies the type of interaction that is taking place, which indicates
the specific action that should be taken by the AV to avoid a collision. The type of conflict that has been detected
has an influence upon the avoidance procedure that is followed. When a COLREG conflict is detected, avoidance
is conducted based upon maritime collision law and when a critical conflict is detected, an emergency procedure
is followed in a final attempt to avoid collision.

5.4.1.1. COLREG Procedure
This implementation will focus on the main three COLREG interactions, head-on, overtake and crossover as
were introduced in 2.4. The AV can either be allocated a stand-on or give-way status during an interaction, with
a specific avoidance procedure being allocated for all give-way cases as shall be detailed further hereon. When
a stand-on status is assigned to the AV, it should standby, remaining on its course as per regulations. Whilst
maintaining this course, the critical region continues to be monitored by the Guidance System and in the case
where the contact vessel infringes this region, the COLREG compliance can be dropped in favour of emergency
avoidance.

Algorithm 4 defines the the logic procedure for determining COLREG state and an appropriate avoidance action
by using the speed, bearing and approach angle. The first conditional check determines the state of the contact
vessel which is necessary as a stationary vessel should be treated differently to a dynamic vessel under control.
According to the COLREGs any stationary vessel can not be considered to be actively adhering to collision
regulations. Consequently, when in conflict with a stationary vessel, the autonomous vessel is assigned give-way
status and it must take responsibility to perform any action possible to avoid a collision. The stationary avoidance
strategy consequently follows the same procedure as would be followed when overtaking a vessel.

In the case where the contact vessel is dynamic, two conditions are devised, one where the contact vessel is
moving in the same direction as that of the AV, and another where the directions are opposing. In the case where
the CV is moving in the same direction as the AV, three avoidance modes can be yielded. If the CV is at the
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Algorithm 4: Collision Regulation Procedure
Result: COLREG Status and Avoidance
if ucv = 0 and not 30 <Ø< 330 then

status = ’GiveWay’
avoidance = ’Overtake’

else if 90 <Æ< 270 then
if 0 <Ø< 90 and Æ> 195 then

status = ’GiveWay’
avoidance = ’Crossover’

else if Ø∏ 350 and Æ∏ 165 then
status = ’GiveWay’
avoidance = ’HeadOn’

else if Ø∑ 10 and Æ∏ 165 then
status = ’GiveWay’
avoidance = ’HeadOn’

else
status = ’StandOn’
avoidance = ’Standby’

end
else

if <Ø< 112.5 and 270 <Æ< 345 then
status = ’GiveWay’
avoidance = ’Crossover’

else if ucv < uav and not 30 <Ø< 330 then
if Ø> 330 and Æ∑ 15 then

status = ’GiveWay’
avoidance = ’Overtake’

else if Ø< 30 then
status = ’GiveWay’
avoidance = ’Overtake’

else
status = ’StandOn’
avoidance = ’Standby’

end
else

status = ’StandOn’
avoidance = ’Standby’

end
end

starboard side of the AV and is approaching at a starboard angle (270± to 292.5±), the CV is considered to have a
stand-on status in a crossover scenario. This therefore requires the AV to assume the give-way role and navigate
behind the CV’s crossover path. In the case where vessel direction is shared and the AV is approaching the stern
of and travelling faster than the CV, an overtake manoeuvre needs to be conducted by the AV. There exists no
hard set rule as to which side a vessel must overtake, and therefore the local planner can select a route on either
side. In the case where no feasible route can be found, AV speed should be reduced until a feasible route can be
found. In any other case where the AV and CV direction is the same, a stand-on state can be assumed.

When a CV is travelling in the opposite direction to the AV, three possible outcomes can be reached. The
conditions for a head-on collision can be encompassed by two sets of relations between the obstacle bearing and
the approach angle. This paper will take the assumption that a head on scenario can be considered in effect when
a contact vessel is at a bearing ±10± to the AV. The action that is required by a vessel in a head on scenario is
that her course be altered to starboard so to cross port-port with the other vessel at a safe distance. Both vessels
involved in a head-on scenario are assigned a give-way status and should both adjust course astarboard. If a vessel
is within the bearing range for a head-on, it might not necessarily be on course for a head on collision, therefore
the current approach angle should also be taken into consideration. If the approach angle does not suggest that
the contact vessel within the head-on bearing range is on a collision course with the AV but is instead crossing
its path, moving starboard to avoid this vessel may actually lead to an incident.
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The second possible interaction scenario for a contact vessel travelling in the same direction is the crossover. If
the contact vessel is on the starboard side and at an approach angle which clearly crosses the path of the AV,
the AV should navigate behind the path of this vessel. The same contingency has been applied here to that of
the head-on manoeuvre, the approach angle must be steep enough to suggest a potential crossover collision,
otherwise the CV may simply be intending to pass starboard-starboard believing there is sufficient room. Again,
if the AV were to take action in this case, a collision may be caused as a consequence of strictly following the
COLREGs. In the case that a contact vessel is travelling in the same direction as the AV and does not yield one
of these two potential outcomes, the AV can assume a stand-on status and standby for any potential emergency
avoidance that may prove necessary.

5.4.1.2. Emergency Procedure
When a contact vessel appears to not be adhering to the collision regulations or the current avoidance action does
not sufficiently reduce risk, an emergency procedure is required to protect the AV from collision where possible.
Little can be done by the AV to avoid a collision to the sides or stern of the vessel, as under normal operation it
has no meaningful control over these directions. However if a collision is anticipated ahead of the vessel and the
COLREGs cannot be followed, emergency avoidance should be conducted in an attempt protect the AV.

Algorithm 5: Emergency Avoidance Procedure
Result: Emergency Avoidance
status = ’Emergency’ if ucv = 0 then

if not 5 <Ø< 355 then
avoidance = ’EmergencyStop’

else if Ø> 180 then
avoidance = ’HardStarboard’

else
avoidance = ’HardPort’

end
else if Ø> 315 then

if Æ< 165 then
avoidance = ’HardPort’

else
avoidance = ’HardStarboard’

end
else if Ø< 45 then

if Æ> 195 then
avoidance = ’HardStarboard’

else
avoidance = ’HardPort’

end
else

avoidance = ’CollisionImminent’
end

When an infringement to the critical region is detected, the emergency procedure is triggered. As was the case
for the COLREG procedure, the direction of the avoidance trajectory shall be decided based upon the bearing
and approach angle of the contact vessel, see Algorithm 5. If a stationary vessel is dead ahead within the critical
region, the safest option for minimising risk would be to perform an emergency stop as an avoidance direction is
difficult to call in the absence of the approach angle. Hard Port and Hard Starboard avoidance modes encourage
the AV to conduct a sudden and significant change in direction to avoid a collision. In any case where the contact
vessel is at an approach angle crossing the AV path, emergency avoidance should move to the opposite direction
to forgo a manoeuvre that would turn the AV towards future danger. When a contact vessel is located to one side
of the AV and not crossing its path, the avoidance should favour moving in the opposing direction of the contact
vessel’s position. When the conflict region is infringed in any other scenario, there is little that the AV can do to
avoid incident and so a collision can be considered highly likely.
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5.4.2. Local Path Planner
As was discussed in Chapter 2, not all of the existing maritime solutions to collision avoidance are suitable
for application on the inland waterway. The architecture of the inland waterway perhaps bears a closer resem-
blance to road networks, albeit lacking the set lane divisions. As such, this guidance system utilises an adapted
implementation of the Roll-out Trajectory Generation (RTG) technique developed by Darweesh et al. [37] for
autonomous cars and made available as part of the Autoware platform. Within this section, the scheme followed
for the generation of candidate paths using RTG shall be presented and the procedure for path selection under
CORLEG and Emergency avoidance modes shall be discussed.

5.4.2.1. Roll-out Trajectory Generation
In line with the primary aim of this project to develop a standardised programming structure, the adapted tech-
nique used in this thesis has been implemented in Python as opposed to its native C++ and included within the
Guidance ROS package. Whilst the fundamental procedure behind this new implementation remains similar, a
few major changes have been made during the generation procedure.

(a) Rollout Trajectory Generation (b) Trajectory Smoothing

Figure 5.7: Autoware Local Path Planner [37].

Firstly and perhaps most importantly, the roll-out generator has been optimised based upon the maritime collision
regulations. Rather than generating roll out trajectories to both sides of the vessel (see Fig. 5.7a), the approach
has been enhanced to only generate trajectories in the direction which the avoidance mode requires. For the
majority of COLREG avoidance cases, trajectories are only generated astarboard. Only in the case of an overtake
manoeuvre where the contact vessel lies to the starboard side of the global path shall trajectories be generated
aport. In the case of the emergency avoidance, the AV can be required to turn hard starboard or hard port so
to avoid an obstacle that poses high risk. Therefore one roll-out trajectory is generated in emergency scenarios
which immediately creates a path as far away as possible to the port or starboard side to increase the chance of
avoidance and to minimise latency.

Additionally, whilst the Autoware implementation makes use of a car tip region and velocity dependent roll-in
trajectories to smooth transition (see Fig. 5.7b), the local planner in this project simplifies trajectory generation
somewhat. The inclusion of such features has been neglected in this implementation due to lower speeds in
the maritime environment and in particular with the current RAS test vessels. Furthermore, within rule 8 of
the collision regulations, it is stated that any alteration to course and/or speed should be significant enough to
be readily apparent. Therefore any path smoothing that were to be conducted would need to ensure that this
requirement not be infringed, a problem that is not encountered with discretised steps. An element of smoothing
is nonetheless provided by the path-following based trajectory tracker, with the acceptance radius surrounding a
target waypoint allowing for smoother transitions between trajectory angles. The only other contingency made
for smoothing is for target parallel trajectories that are in close proximity to the waterway edge.

The generation of candidate trajectories works simply by comparing the current position of the AV and the
navigable edge of the waterway channel to define a bound and then creating trajectories that run parallel to
the current path, with spacing between one times the width of the AV. The number of trajectories that can be
generated to the side of the AV is defined in Eq. 5.12, where d is the distance to the edge of the waterway
from the current path and Bav is the vessel beam. As can be seen, the vessel beam is further deducted from the
distance to ensure all trajectories have sufficient clearance from the waterway edge and the number of trajectories
that could fit within this adjusted distance is calculated by dividing by the vessel beam and flooring the result to
the nearest integer.
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Figure 5.8: Example of Roll-out Trajectories. Bav is the vessel beam, d is the distance to the bank.

bnc= d °Bav

Bav

(5.12)

A visual example of candidate trajectory generation can be seen in Fig. 5.8. Each trajectory is generated at a
parallel distance of one times the vessel beam from the global trajectory or the superseding candidate trajectory.
Smoothing the roll-out trajectory itself is generally neglected as a clear indication of manoeuvre intention is
required by regulations and waypoint progress incorporates an acceptance radius which in itself offers an element
of path smoothing. That being said, waypoint generation does require an element of path smoothing when the
generated trajectory is close to the the edge of the waterway. Candidate trajectory three in Fig. 5.8 can be seen
to have a smoothed roll-out region so to ensure the vessel has adequate opportunity to change its course to meet
the parallel path.

5.4.2.2. Path Selection
The path selection procedure determines the most suitable route from the candidate trajectories and is only
required for the COLREG protocol as in an emergency, only one trajectory is generated. To select the best
candidate trajectory in a given interaction, integer weights are assigned to each path and a simple optimisation
problem is solved to minimise cost. Three influential factors were identified for the inland application and these
regard the distance efficiency of a path, the expected avoidance action based upon CORLEGs and the risk of
collision that a path carries.

The distance weight (di ) is added to each of the trajectories based on the distance from the current path in an order
ascending magnitude with distance as shown in Table. 5.1. The COLREG weight (ci ) is assigned based upon
the specific avoidance mode which indicates the magnitude of expected avoidance, i.e. a head-on or overtake
scenario would yield lower weights closer to the current path whilst a crossover which requires more significant
action would lead to higher weights closer to the current path.

Candidate Distance Weight COLREG Weight (ci )
Trajectory (di ) Head-on Overtake Crossover

1 1 1 2 3
2 2 2 1 2
3 3 3 2 0

Table 5.1: Integer Distance and COLREG Weights

The final weight aims to discourage paths that are close to the contact vessel’s predicted motion as these poten-
tially increase collision risk. Consequently, the proximity of a candidate trajectory (Px) to the CV’s predicted
position in the y-axis reference plane is taken as the quantification of this risk and is defined in Eq. 5.13. This
predicted position (ysp ) is retrieved from the motion prediction module and yct is the parallel y-axis reference
of the candidate trajectory. A negative proximity value suggests that the CV is predicted to cross the candidate
trajectory in a direction not expected by collision regulations and thus yields a heavy weight penalty as collision
risk is high. For positive proximity values, a linear trend is followed whereby the larger the proximity value the
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lower the weight that a candidate trajectory carries. The assignment uses a factor of the AV’s beam to generate
the integer weights as shown in table .

Px = yct ° ypr (5.13)

Proximity (Px) Collision Risk Weight (ri )
Px < 0 10

0 < Px < Bav 5
Bav ∑ Px ∑ 3Bav 1

Px > 3Bav 0

Table 5.2: Integer CV Proximity Weight. Where Bav is the Autonomous Vessel Beam and Px is the proximity.

The optimal candidate trajectory is then selected by solving the simple optimisation problem defined in Eq. 5.14.
This solution simply summates the three trajectory weights into one trajectory cost and selects the candidate
trajectory with this lowest total cost. In any case where the optimisation problem provides two trajectories which
carry the same cost, decision favours in the direction of caution, selecting the trajectory with the further distance
to increase opportunity for avoidance. The weighting system whilst suitable at a developmental level would again
benefit from an expert-based method to determine the optimal weights as the current definition has limitations
and oversights.

Tw = mi n

nX

i=1
(di + ci + ri ) (5.14)

The autonomous vessel follows the local path until the avoidance action is considered sufficient and it is safe to
return to the global path and continue the journey. Once the CV has been tracked past a bearing associated with
the aft side of the vessel, namely (150 < Ø < 210), avoidance can be considered complete.

5.5. Guidance Output
The Guidance System provides global and local paths for the autonomous vessel to follow, as well as tracking
the progress along these paths. Within the GNC structure, the output of the Guidance system is the current target
waypoint which is published to the ROS network as a string message at a rate of five hertz. The format of this
message is a one dimensional array with two entries, detailing the X Y coordinates of the waypoint. The target
waypoint is primarily intended as an input for the high-level controller to generate a target heading for the AV as
detailed in Chapter 3.2.5.

5.6. Conclusion
The third research focus resulted in a Guidance System being developed which incorporates a tailored collision
avoidance protocol for the challenges of the inland waterway. A new configuration for conflict detection regions
has been proposed to meet the challenges brought on by the architecture of the inland waterways and the nature
of the interactions that take place on it. The techniques sees the use of rectangular vessel domain regions whose
dimensions are influenced by a function of the vessel speed. The autonomous vehicle is assigned two conflict
regions, one that when infringed indicates a scenario whereby collision regulations can be followed and a second
critical region where emergency avoidance procedure should be followed.

The collision resolution approach sees the integration of collision regulations and a secondary emergency proce-
dure within a rule-based implementation compatible with the data available from a stereo-vision based navigation
system. This two tier system prevents the AV from blindly following the collision regulations when a contact
vessel is recognised to be non-compliant or an extremely close encounter requires additional action to be taken.
The local path planner incorporates a roll-out-trajectory generation technique that has been adapted and opti-
mised for application on an inland autonomous vessel. The planner operates by generating candidate trajectories
based upon the determined collision avoidance mode and the limitations of the navigable waterway channel. The
optimal path is then selected from the candidate trajectories by applying three weight variants based upon the
added distance, collision regulations and collision risk and solving the subsequent optimisation problem.
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System evaluation is critical in understanding the performance of the sub-systems, which leads to the final sub-
question. The guidance sub-system can be verified using simulations, however the navigation sub-system requires
experimental testing in order to assess its performance. Furthermore, inline with the main question it is crucial
to understand the level of collision avoidance that can be achieved using a stereovision based navigation system.
The components of the fifth and final research question: How well do the guidance and navigation systems
perform under experimental testing and what are their limitations? shall be covered in this chapter. The specific
sub-questions this chapter covers are detailed below.

5a How does the stereovision based perception system fair under precision/recall testing and position error
KPIs?

5b How well does the stereovision based localisation perform under the KPIs of position and heading error?

5c Can the developed guidance and navigation systems enable the autonomous avoidance of collisions under
various staged scenarios?

6.1. Experimental Setup
To conduct experimental testing, both a test environment and experimental hardware are required. The Grey
Seabax that assumes the role of the autonomous vessel during testing has already been introduced in Chapter 3,
however the contact vessel that is used during testing is yet to be formally introduced. The Tito Neri vessel that
shall assume the role of contact vessel and shall be introduced in the following subsection 6.1.1. The test tank
where the experiments are conducted and the tracking setup used to provide ground truth pose data on the vessels
within this environment shall be discussed in the remainder of this section.

6.1.1. Contact Vessel
The Tito Neri (Fig. 6.1) is a 1:30 scale model tugboat measuring at one metre in length with a beam of 0.3
metres. During experimental testing the Tito Neri can be controlled by means of a joystick, allowing for adaptive
scenarios to be met on demand. The vessel is actuated by two azimuth thrusters located at the stern of the vessel
and a bow thruster. The Tito Neri vessel was used to acquire data during the training of the neural network for
obstacle detection and thus falls under the classification of ’tugboat’. The experimental testing conducted in this
research project will not test multiple-vessel interactions meaning that the Tito Neri is the only contact vessel
present at this stage of development.

57



58 6. Results

Figure 6.1: Tito Neri Model Tugboat Figure 6.2: MTT Towing Tank

6.1.2. Test Tank
As the application focus for the autonomous vessel is the inland waterway network, it is most suitable to select a
test environment that mimics the restricted channel widths that are synonymous with the inland waterway. Within
the MTT department at TU Delft, one of the towing tanks provides a suitable an environment for this stage of
testing. The towing tank utilised is 85 metres in length with a width of 2.75 metres and can be seen in Fig. 6.2
above. The narrow channel width of the tank emulates the inland network as desired, however the entire length
of the tank will not be required for testing, leading to the workspace for this project being reduced down to a
twenty metre stretch of the tank, with the full width still being utilised.

Although the test tank provides a suitable replication of inland waterway architecture, the hydrodynamic con-
ditions that a vessel would be subjected to are not replicated. External influences could be applied to the test
environment using lab equipment however as the research scope only aims to provide the guidance and naviga-
tion systems with experimental proof of concept. The capacity of the control system to deal with external forces
is left outside of the scope of this research. Consequently experimental testing shall take place in still waterway
conditions. Artificial lighting is present within the test environment that would not be present in a real-world
application, however it is noted that this stage of research does not aim to review performance in extreme light
conditions so the fixed nature of the lighting provides consistency between testing occasions.

6.1.3. OptiTrack 3D Tracking Setup
The towing tank is further equipped with an OptiTrack 3D tracking system comprised of twenty-eight cameras
covering a forty metre span of the tank, which has been calibrated to sub millimetre accuracy. The test vessels
being used within the experimental environment are equipped with passive markers so to be identified by the
tracking system as rigid-bodies. The pose data of the vessels acquired from this fixed tracking system will be
accepted as the ground truth during the calculation of the navigation evaluation metrics.

The collection of experimental data from the OptiTrack setup is achieved by streaming rigid-body pose from
the MotiveTracker software the ROS network via a client server protocol. The relevant pose data can then be
subscribed to by any node within the network, with the further ability to record the published messages to a ROS
bag file for post-experimental analysis. The use of the ROS network for recording this data provides timestamped
messages, which proves invaluable when aligning data sets. As the Navigation system developed in this project
is also built within a ROS environment, data forms are further consistent between the ground truth values and the
experimental measurements.
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Figure 6.3: OptiTrack 3D Tracking System

6.2. Navigation System
In the literature review, a number of key performance indicators were identified for their suitability in reviewing
perception and localisation system performance. The perception KPIs quantify performance of the object detec-
tion and obstacle localisation procedures, as divulged upon in subsections 6.2.1 and 6.2.2 respectively. Pose data
acquired by the localisation module is evaluated in subsections 6.2.3 where both position and orientation data is
reviewed.

6.2.1. Detection Precision and Recall
Testing the performance of the object detection procedure in a maritime environment is important to understand
the specific ability of the chosen technique for the application. Testing is conducted using multiple sets of
onboard footage that were recorded within the test tank environment. As experimental testing is only setup for
interaction with the tugboat variant, the following evaluation is conducted using this singular object type.

Arguably the most important feature of an object detector for application in an autonomous navigation system is
robustness. An entirely robust model would detect all obstacles that are present within a frame. The metrics that
can be used to best assess this robustness are recall and precision, the KPIs which were introduced in Chapter 2.
A good object detector should maintain a high precision as recall increases.

Recall can simply be considered to quantify the ability of the detector to find all of the relevant cases within
an environment. To achieve 100% recall, the detector must be capable of identifying every obstacle that exists
within a data-set. On its own, recall presents a limited metric for assessing robustness due to the fact that
it does not account for cases where irrelevant detections are made. The Precision metric can be used to fill
this gap and assess the relevance of each detection within an accuracy threshold. More specifically, what is
the percentage of correct positive detections within the allowable threshold. This is of course influenced by
the occurrence of false positives and the occurrence of true positives whose bounding boxes lie outside of the
permissible threshold. The Intersection-over-union (IoU) threshold for this application has been set to 75% as
opposed to the 50% or 95% alternatives. The perception system does not require a perfectly defined bounding box
for its functionality meaning some contingency can be permitted for the detection precision. However accuracy
should still be sufficient to ensure the correct obstacle depth data can be extracted from the ROI. Consequently
the middle-ground in this case of threshold selection represents the most suitable choice.
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Evaluating under the IOU threshold of 0.75, the obstacle detector was found to achieve a total precision of 97.4%
with a recall of 94.6%. This means that out of all the true positives that existed within the testing dataset, 94.6%
were detected by the model and of these successful detections, 97.4% were within the acceptable precision
threshold. The relation between precision and recall can be further assessed by plotting the curve of the two
metrics. Figure 6.4 shows the tail end of the precision recall curve obtained through the evaluation procedure.
The model achieved 100% precision rating up to a recall of 93.6%, where the precision then can be seen to
gradually reduce. Within the 5.4% of recall that the model failed to achieve, 2.5% were false negatives and 2.9%
were false positives.

Figure 6.4: Precision Recall Curve above 94% Recall.

Within the tested environment, the precision remained high as the recall increased which indicates a robust de-
tection model. Whilst highlighting high performance for the current detection model, there are some limitations
to this evaluation. Firstly, the neural network was trained and tested within the same environment meaning that
this evaluation only holds for these conditions. Furthermore, as only one obstacle was present in the tank, there
was little opportunity for other objects in the environment to be detected as false positives. When the level of
research development demands it, this evaluation procedure should be repeated in multiple environments with
more obstacles to gain a more transferable metric.

6.2.2. Perception Position Error
The second key performance indicator used to quantify the performance of the perception system is the root mean
square position error as was defined in Eq. 2.3. This key performance indicator provides a good evaluation of the
quality of depth data that can be obtained by the stereovision devices utilised by the perception system as well
as the technique used to extract the closest obstacle point. The perception system extracts an obstacle position
within the device frame which has been used to generate this metric as further manipulations of this data would
cause the metric to deviate away from its focus on perception.

The evaluation was conducted using the pose data of the two vessels provided by the OptiTrack setup described
in section 6.1. By aligning the passive markers associated with each vessel with the stereovision device origin
and the COP of the contact vessel, the absolute distance between the vessels within the 2D reference frame can be
obtained. This value is taken as the ground truth value and can be compared with the euclidean distance between
the depth camera position and the position the perception system associates with the COP.

Data was gathered within the ten metre range covered by the perception system, with a total of 280 data points
being gathered across three tests with varied vessel positioning. The perception system is limited to ten metres as
this is the operational range of the stereovision device, which was considered during its selection and operating
outside of this zone would cause significant reductions in data quality. The resultant position error recorded at
each of these data points can be seen in Fig. 6.5, with the individual error measurements being indicated by the
black scatter plots on the graph and the root mean square error of the dataset being indicated by the red line. The
root mean square position error can be quantified from this evaluation as 0.31 metres.
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Figure 6.5: Perception System Position Error

Taking the application into account, the root mean square position error that has been obtained from experimental
testing bears a magnitude similar to that of the model scale vessel beams. Such an error in open water applications
would not be so troubling, however the close interactions on the inland waterway lead this error to have a far
greater significance. In the following chapter means of reducing this error shall be discussed.

6.2.3. Localisation Position and Heading Error
The performance of the localisation system was evaluated using tracking data acquired across multiple experi-
mental tests. The two key performance indicators that have been selected for the evaluation are position error
(AT Epos) and heading error (AT Er ot ), which are both defined by the root mean square deviance between the
acquired sensor value and the accepted ground truth value. The mathematical definitions of these two metrics
were introduced in Eq. 2.1 and 2.2.

Experimental testing to evaluate localisation performance is conducted using two path types, a slalom/zigzag
style path and a straight path. As an inland vessel will generally move along straight trajectories, it is beneficial
to review the performance of the localisation procedure under typical sailing conditions. When a vessel traverses
along a trajectory that includes sharp turns and sudden manoeuvres, the conditions within which a localisation
system must operate are somewhat difference. As this research project proposes the use of stereovision for
collision avoidance, the performance achievable on a slalom style path is of particularly significant interest. As
test tank length being used during the experiments is restricted to a twenty metre length, the paths that shall be
generated this space shall not be exceed a fifteen metre length. Consequently the evaluation of the localisation
procedure shall focus upon this range of the waterway.

Testing the performance of the localisation system to track movement along a straight path yielded promising
results. Figure 6.6 provides a data plot from a straight path evaluation, with the black line indicating the ground
truth, the blue line indicating the sensor reading and the red area indicating the position error. The localisation
system can be seen to match the ground truth trajectory very closely along the majority of the path length, with
the only error appearing towards the end of the path, where the position acquired by the localisation system is
seen to lag slightly behind the ground truth position.

Experimental localisation testing along a slalom path yielded, as anticipated, slightly less accurate position data.
Figure 6.7 shows position data acquired when the vessel traversed a slalom path, with the plot legend being
identical to the straight path. It can be visually observed that when the vessel is following a more dynamic
trajectory that the localisation performance begins to dwindle, an important consideration for a vessel using
localisation data for collision avoidance procedures. The error can be seen to increase in magnitude in response
to manoeuvres in the lateral direction and as was the case with the straight path, the error at the end of the path
highlights that the localisation system lags behind the ground truth.

Both the straight paths and slalom paths exhibited a correlation between the magnitude of error and the path
length, a behaviour that is commonly faced by localisation systems that utilise a Visual-SLAM approach. This
behaviour is frequently characterised by the sensor drift whereby position error accumulates over the length of a
path. As well as being visually evident in the path plots, this behaviour can be further investigated by analysing
the data along divided sections of the path. In this case, the data shall be divided into two sections, halfway down
the waterway length within which the path runs.
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Figure 6.6: Localisation System Testing - Straight Path

Figure 6.7: Localisation System Testing - Slalom Path

The relative position and rotation errors between the ground truth and the sensor readings are taken at given
time steps along the path. As the localisation system publishes data at ten hertz, this time step is taken as 100
milliseconds. Boxplots can be used to provide a representation of these relative errors along the path length for
analysis. A boxplot diagram can be found for both path variants in Figures 6.8a and 6.8b, where the position
and heading errors share the same plot area, but are associated with different y-axis, as distinguished by the
colour coded plots and axes. The boxplots themselves are comprised of a number of features that help paint a
clearer picture of the position and heading errors. The central box of each plot indicates the interquartile range
of the errors which is further split horizontally by the median line. The whiskers highlight the upper and lower
quartiles, which are bounded by the caps.

(a) Straight Path (b) Slalom Path

Figure 6.8: Boxplot representation of relative position and heading errors for divided sub-trajectory lengths. Boxplot colour corresponds to
y-axis of the same colour. Specifically. blue: position error and red: heading error.

Reviewing the box-plots it can be clearly seen that the conclusion that was made from the visual path error was
not unfounded. The relative position error can be seen to increase significantly in the second half of the path
length division, both in the straight and slalom paths. The relative heading error can be seen to remain fairly
consistent between the sections of the straight path, however this trend is not shared by the slalom path, with a
significant increase in heading error being observed in the latter path section.

With a graphical evaluation of the localisation and position errors having been presented, a numerical metric can
be applied by quantifying performance based upon the root mean square deviations of the position and heading.
The quantification of localisation system performance is taken as the average errors gathered across the full
length of both path variants. The position error metric can consequently be defined as 0.129m and the heading
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Waterway Length KPI Slalom Paths Straight Paths Average
0 - 7.5 ATEpos 0.076m 0.059m 0.068m

(metres) ATEr ot 4.24± 1.04± 2.64±

7.5 - 15 ATEpos 0.216m 0.125m 0.171m
(metres) ATEr ot 13.6± 1.14± 7.37±

0 - 15 ATEpos 0.153m 0.105m 0.129m
(metres) ATEr ot 9.49± 1.11± 5.30±

Table 6.1: Localisation Key Performance Indicators over varied path lengths and types

error as 5.3±. Due to the discussed variations in localisation performance based upon the trajectory shape and the
length of the path, a break down of the key performance indicators achieved in different scenarios is provided in
Table 6.1. This breakdown is particularly useful when one is deciding upon a dependable operational range for
the sensor type.

The evaluation of the localisation system was conducted using data gathered under typical operational behaviour,
however there were a number of instances during experimental testing where the reliability of the localisation
system came to be questioned. On occasion the localisation system fails to provide sufficient data, either failing to
recognise when the vessel departed from its initial starting position or suddenly jumping to an incorrect location
on the map. This behaviour can again be attributed with the “kidnapped robot” problem of which localisation
systems suffer. This issue occurs when the tracking camera essentially gets lost within its environment, or
incorrectly associates its position with a similar one encountered at a different point. Whilst infrequent, the
occurrence of this issue has significant implications for ongoing processes, highlighting the necessity for data
fusion with another additional sensor set.

6.3. Guidance System
Verification and validation of the implemented collision avoidance procedure within the Guidance System is
conducted using simulation. During experimental testing, the Guidance System performance dependent upon
the quality of information received from the navigation system and upon the ability of the control system to
follow the provided path. As such, primary evaluation of the guidance system using controlled inputs alone is
important. In this section the conflict detection and resolution procedures are tested across a host of scenarios to
verify the results obtained are that expected. For the majority of the evaluations, the simulation space is equivalent
in dimensions to the tank used for experimental testing, allowing for assessment within the target environment.
Sufficient performance in these simulation tests therefore enables the fourth question to be answered by ensuring
the guidance procedure is correctly implemented prior to experimental testing.

Simulation testing shall consider two scenario sets. One set of scenarios within which the autonomous vessel
should adhere firmly to the collision regulations and a second where an emergency collision avoidance strategy is
required for the vessel to avoid collision. Within each simulation, three main evaluation points exist. Firstly, the
ability to detect conflict in a scenario is assessed through the graphical analysis of the simulation plot. Secondly,
the ability of the collision resolution procedure to correctly identify the current collision scenario and determine
the AVs status of responsibility and a mode for avoidance. This is assessed graphically and numerical from the
simulation plot. Finally, the resultant local path that is generated by the guidance system to avoid a collision is
assessed for both its suitability to avoid the collision and its optimality.

6.3.1. COLREG Avoidance
Three COLREG interaction types have been implemented within the collision avoidance strategy and conditions
do not always call for particular action. To verify the behaviour of the avoidance system in a host of scenarios,
each of the three COLREG interactions have been subjected to ten simulated scenarios. The vessel parameters
differ in each of these scenarios to assess interaction performance across different conditions. The key parameters
are the bearing, approach angle and the vessel speeds. The results of the simulation are assessed to determine
whether or not the guidance system generates an action compliant with the regulation for the given interaction. It
is further assumed in all of these scenarios that the contact vessel is compliant with the regulations. Within this
section a few of the most noteworthy simulation results shall be presented and discussed with a full recording of
results being displayed in Appendix B.
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6.3.1.1. Head On
As both vessels involved in a head-on scenario are required to take action to avoid a collision, only a slight
deviation from global path to the starboard side is required under normal circumstances. This behaviour can be
demonstrated by the guidance system as indicated by the results in Fig. 6.9. Should a contact vessel be slightly
to the starboard side, yet a head-on scenario is still identified, the guidance system should account for this by
selecting a local path further starboard as demonstrated in Fig. 6.10. Alternatively, in the case that the AV is
already at the starboard extremity of the waterway when a head-on collision is detected, it cannot move to its
starboard side. So despite being recognised as a head-on scenario, the AV should remain on its course allowing
the contact vessel to avoid the collision as shown in Fig. 6.11. If the CV fails to do this in time, emergency
avoidance will be triggered. The implemented collision avoidance procedure can be seen to succeed in all of
these scenarios to perform in a manner compliant with collision regulation.

(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path

Figure 6.9: Typical Head-On Simulation Result. Refer to plotted legends.
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(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path

Figure 6.10: Starboard Head-On Simulation Result. Refer to plotted legends.
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(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path

Figure 6.11: Head-On Simulation Result at Waterway Edge. Refer to plotted legends.
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6.3.1.2. Overtake
Overtaking is the second of the avoidance protocols that is up for evaluation. When approaching a contact vessel
travelling in the same direction and slower than the AV, an overtake manoeuvre should be triggered. Unlike with
a head on scenario, during an overtake manoeuvre the autonomous vessel needs to take full responsibility in
avoiding a collision as only one vessel is assigned Give Way status. There exists no hard set rule regarding which
direction an overtake manoeuvre should be conducted in, however the implementation saw the starboard side
be preferable where a feasible path exists. Fig. 6.13 represents an overtake scenario where conflict is correctly
identified and a new path is assigned to the starboard side. Fig. 6.14 on the other hand shows another overtake
scenario, however in this case the manoeuvre is correctly conducted to the port side as it is recognised that no
feasible path exists to the starboard side. An alternative outcome of a simulated overtake scenario is one where
the AV takes the role of the stand-on vessel as seen in Fig. 6.12.

(a) Conflict Detection (b) Avoidance Mode

Figure 6.12: Stand On Overtake Simulation Result. Refer to plotted legends.



68 6. Results

(a) Conflict Detection (b) Avoidance Status and Mode

(c) Collision Resolution - Local Path

Figure 6.13: Starboard Overtake Simulation Result. Refer to plotted legends.
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(a) Conflict Detection (b) Avoidance Mode. Refer to plotted legends.

(c) Collision Resolution - Local Path. Refer to plotted legends.

Figure 6.14: Port Overtake Simulation Result. Refer to plotted legends.
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6.3.1.3. Crossover
Whilst head-on and overtake scenarios are particularly likely to occur on the inland waterway, crossovers are
far less likely. Nonetheless in some scenarios such avoidance may well be triggered and an inland autonomous
vessel must be able to handle such a scenario as per regulations. In order to trigger a crossover response, the
simulation workspace had to be widened from the dimensions of the towing tank as this width was insufficient
for evaluation. In the crossover scenario, the AV may be assigned either the give way or stand on status. In the
former, the AV should change its course to navigate behind the path of the crossing contact vessel as shown in
the simulation result of Fig. 6.15. It is worth noting that in Fig. 6.15c the predicted motion of the CV in the
coming time steps is indicated by the red arrow which can be seen to cross the path of the AV. Therefore the
local path selected allows the AV to navigate behind the vessel as per regulations. Furthermore, the procedure
has proven it can successfully determine when a stand on crossover scenario is valid as indicated by the results
ins Fig. 6.16.

(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path. Red arrow indicates predicted motion of the CV.

Figure 6.15: Give Way Crossover Simulation Result. Refer to plotted legends.
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(a) Conflict Detection (b) Avoidance Mode

Figure 6.16: Stand On Crossover Simulation Result. Refer to plotted legends.
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6.3.2. Emergency Avoidance
A second set of scenarios that need to be evaluated under simulation were those that required emergency avoid-
ance procedure. This mode may be triggered when the action taken during COLREG avoidance was not signifi-
cant enough to avoid risk or when the contact vessel is not compliant with regulations. Two changes to the local
path can be expected from the AV in the emergency case. A hard starboard manoeuvre is initiated when the port
direction is deemed to have a higher likelihood and vice versa for the hard port manoeuvre. Fig. 6.17 shows a
scenario where despite the contact vessel being on the port side, the hard port manoeuvre is initiated to avoid
collision. The reason for this situation developing was due to the contact vessel not assuming its give way status
within the COLREG crossover scenario. The contact vessel is recognised to still be crossing the path of the AV
and so to avoid collision the AV would be best to change course to the direction in which the contact vessel is
not moving. In Fig. 6.18 a similar scenario is encountered, only this time the cause of the incident was that the
contact vessel failed to take action in a head on scenario. As can be seen however, the vessel is not crossing the
path of the AV and therefore a hard starboard avoidance mode is initiated to prevent collision.

(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path

Figure 6.17: Hard Port Simulation Result. Refer to plotted legends.
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(a) Conflict Detection (b) Avoidance Mode

(c) Collision Resolution - Local Path

Figure 6.18: Hard Starboard Simulation Result. Refer to plotted legends.
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6.4. Experimental Collision Avoidance
Experiments were conducted under three interaction scenarios, static, head-on and overtake. Due to the re-
stricted tank size in relation to the vessel size, it proved very difficult to emulate a crossover scenario within the
experimental testing tank. Consequently, the crossover scenario has not been experimentally tested with these
experiments being left for future research in less restricted waters. Instead the ability of the system to recog-
nise and avoid static obstacles has been assessed, which is also of importance and a requirement of the collision
regulations, specifically rule 18.

The static type scenario involves a contact vessel which is recognised to not be under active control and stationary
within the global environment, meaning that the autonomous vessel must assume full responsibility to avoid a
collision. The head-on scenario sees the autonomous and contact vessel travelling along the waterway section
towards one another and in general scenarios, both vessels should be seen to take action to avoid a collision by
passing port-to-port. In the case where the initial change of course is not significant enough, the autonomous
vessel should recognise this and take action to further alter its course and avoid collision. The overtake scenario
regards the case where the autonomous vessel and contact vessel are travelling in the same direction. When the
autonomous vessel approaches a contact vessel which is travelling slower, it should change its course to safely
overtake. Again, in the case where an initial course is not considered sufficient to avoid collision, the local path
should be changed again to avoid collision.

Ten experiments were conducted per avoidance mode so to evaluate the consistency of performance and define
the experimental collision avoidance KPIs. During the collision regulation focused testing, it has been assumed
that the contact vessel is also complying to the regulations. Therefore any emergency avoidance scenarios that
are triggered are done so due to the fact that the original action was found to be not significant enough.

6.4.1. Static
When conflict is detected with a static obstacle in the environment, the collision avoidance procedure instructs the
autonomous vessel to conduct an overtake manoeuvre. The local path considered most suitable shall thereafter
be selected to either the port or starboard side depending upon the specific scenario. An example set of results
from one of the experimental tests can be seen in Figure 6.2. In sub-figure (a) the AV can be seen to recognise
the static contact vessel (red point) and generate a path around the vessel to avoid a collision. In sub-figure (b)
the guidance log can displays the procedural results from the successful encounter. Having detected COLREG
conflict, the Guidance system went on to correctly recognise the vessel as being static and assigned the overtake
avoidance mode.

(a) Experimental Scenario and the Selected Local Path for Avoidance

(b) Procedural Response to the scenario from the Guidance System

Figure 6.19: Example Results from Static Experiment
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Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Added Distance Collision Vicinity Metric

1 X 0.55 0.60 0.92
2 X 0.58 0.58 1.00
3 X 0.24 1.20 0.2
4 X 0.23 1.02 0.23
5 X 0.28 1.36 0.21
6 X 0.43 0.98 0.44
7 X - - -
8 X 0.69 1.14 0.61
9 X 0.20 0.94 0.21

10 X 0.39 1.31 0.30
Average 40% 50 % 10% 0.40 1.01 0.40

Table 6.2: Experimental Results from Static Scenario. Compliant: successful avoidance as per procedure, semi-compliant: successful
avoidance however not exactly per procedure, Failed: unsuccessful avoidance. Metric: path optimality key performance indicator (Eq. 2.7).

Table 6.2 presents the numerical results for all ten static scenarios and Fig. C.1 in the Appendix provides the
graphical result for each test. The table is comprised of all the KPIs for each test as well as the totalled results
for the static tests in the last row. In 90% of the scenarios the guidance and navigation systems enabled the AV to
autonomously avoid collision, however only 40% were fully compliant with the regulations and one was a total
failure. The path optimality metric came out at 0.40 which is relatively low, meaning that the static avoidance
procedure yields reasonable performance results regarding the collision risk and efficiency.

The total failure in test number seven was caused by a localisation system failure through which the the AV and
CV objects were not mapped correctly and collision was not avoided. In tests 1 and 10, only semi-compliant
avoidance was experienced due to an incorrect scenario being recognised. Instead of recognising the static vessel
and initiating an overtake manoeuvre, the system recognised a head on scenario. Whilst this still lead to success-
ful avoidance, it was not fully compliant with the regulations. The reason behind this false recognition was due
to incorrect navigation data most likely due to an accumulation of the defined localisation and perception errors.
Of the other three tests that yielded semi-compliance, the emergency scenario was triggered too soon.
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6.4.2. Head On
The head on scenario in Fig. 6.21 provides one of the outcomes of the ten experimental tests with the rest being
presented in Fig. C.2. It can be seen that the system correctly detects the head on scenario to hand and generates
a regulation compliant path. Table 6.3 below presents the results of all of the ten tests and it can be seen that only
30% of all scenarios recorded fully compliant avoidance, with 20% failing to avoid the collision entirely. As well
as a drop in avoidance success over the static case, the path optimality was also seen to worsen with a metric of
0.57 being obtained.

(a) Experimental Scenario and the Selected Local Path for Avoidance

(b) Procedural Response to the scenario from the Guidance System

Figure 6.20: Example Results from Head On Experiment

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Added Distance Collision Vicinity Metric

1 X 0.38 0.76 0.5
2 X 0.69 0.94 0.73
3 X 0.50 0.62 0.8
4 X - - -
5 X 0.44 1.02 0.43
6 X 0.4 0.5 0.8
7 X - - -
8 X 0.2 0.8 0.25
9 X 0.54 1.21 0.45

10 X 0.46 0.6 0.77
Average 30% 50 % 20% 0.52 0.92 0.57

Table 6.3: Experimental Results from Head-On Scenario. Compliant: successful avoidance as per procedure, semi-compliant: successful
avoidance however not exactly per procedure, Failed: unsuccessful avoidance. Metric: path optimality key performance indicator (Eq. 2.7).

Tests number two and three again suggest that the COLREG and critical regions surrounding the vessel require
some fine tuning for the experimental environment. In both these cases, despite the collision being avoided, the
system failed to detect and act upon conflict within the COLREG region, jumping immediately into emergency
avoidance procedure. The total avoidance failures in tests four and seven were caused by localisation system
failure. The issue being in both cases that the tracking algorithm incorrectly associated its position with the start
of the path, causing a sudden jump backwards, leading to failed collision avoidance.
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6.4.3. Overtake
The overtake scenario achieved the best results of all the scenarios with no failures in collision avoidance and
50% of tests yielding fully compliant avoidance (see Table 6.4). The scenario also yielded the best path optimality
score of all, achieving an optimality metric of 0.33. Of the 50% of semi-compliant attempts, the main culprit
preventing full compliance was the misidentification of the contact vessel as a static vessel. Although a static
manoeuvre also yields an overtake procedure, semi-compliance was assigned due to the fact that the contact
vessel should have been recognised as dynamic during the experiment as this would have influenced the outcome
of the experiments, perhaps leading to conflict being detected sooner.

(a) Experimental Scenario and the Selected Local Path for Avoidance

(b) Procedural Response to the scenario from the Guidance System

Figure 6.21: Example Results from Overtake Experiment

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Added Distance Collision Vicinity Metric

1 X 0.20 0.81 0.26
2 X 0.80 1.16 0.69
3 X 0.40 1.8 0.22
4 X 0.24 1.5 0.16
5 X 0.69 0.8 0.86
6 X 0.52 0.9 0.58
7 X 0.50 2.1 0.23
8 X 0.25 0.6 0.42
9 X 0.38 1.50 0.25

10 X 0.25 1.55 0.16
Average 50% 50 % 0% 0.42 1.27 0.33

Table 6.4: Experimental Results from Overtake Scenario. Compliant: successful avoidance as per procedure, semi-compliant: successful
avoidance however not exactly per procedure, Failed: unsuccessful avoidance. Metric: path optimality key performance indicator (Eq. 2.7).
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6.5. Conclusion
This Chapter has answered the final research question of this thesis: How well do the guidance and navigation
systems perform under experimental testing and what are their limitations?. The performance of the perception
and localisation branches of the Navigation System have been individually evaluated, providing an indication
of the capabilities of stereovision sensors in the inland application. The collision avoidance performance of the
Guidance system has been tested in both a simulated environment with controlled inputs and experimental an
environment, where the data supplied by the Navigation System.

Perception testing provided promising results from both the robustness of obstacle detection and the accuracy
of positioning. The obstacle detection procedure maintained high precision with increasing recall achieving a
total precision of 97.4% and recall of 94.6%. The evaluation of the perception position accuracy yielded a root
mean square position error of 0.31 metres. Localisation testing was conducted using data gathered under two
path variants, a slalom/zigzag style path and a straight path. Within the workspace environment the position error
metric was found to be 0.129m and the heading error to be 5.3±. A variation in localisation performance was
however demonstrated along the path length, with the performance decreasing with an increase in length. The
localisation system was however observed on multiple occasions to be susceptible to the impact of the kidnapped
robot problem.

Testing of the collision avoidance procedure under simulation provided verification and validation of the Guid-
ance System implementation, with fully compliant avoidance being achieved in all forty tests. However as the
main aim of this thesis was to assess collision avoidance using stereovision technology, the most important re-
sults of this Chapter are from the experimental tests of the combined Guidance and Navigation System. Across
all of the thirty tests conducted, an average avoidance success rate of 90% was achieved, meaning that 10% of
interactions resulted in collision due to insufficient action. Of the successful tests however, only 40 out of the
total 90% percent saw fully compliant avoidance with the remainder seeing either the premature activation of
emergency procedure or the incorrect COLREG mode being activated.

The experimental testing has highlighted that whilst the Guidance System performed particularly well under
simulation, with real world data supplied from the stereovision devices this same performance could not be
accomplished. Despite almost always generating a path that successfully avoided collision with a contact vessel,
experimental avoidance was not capable of consistently triggering the correct response due to the data from the
navigation system not being reliable enough. The alteration of conflict region definitions could well provide
a workaround solution to this issue as by expanding the COLREG region a greater opportunity for compliant
regulation would be allowed. However that being said, the first port of call should be to address the data quality
issues from the Navigation System.



�
Conclusion and Recommendations

This paper has presented the development of Navigation and Guidance Systems for an inland autonomous vessel.
Reflecting back upon the main research question: How can collision avoidance be achieved by autonomous
inland vessels using stereovision?, the main requirements of these systems were to enable collision avoidance on
the inland waterway through the utilisation of stereovision sensor technology. The first section of this chapter
will provide a summary of the work conducted and the second section shall thereafter cover the results achieved
during evaluation. The final section of this chapter shall deliver proposals for the future research based upon the
outcomes of this project and the observations made throughout.

7.1. Recapitulation
7.1.1. Standardisation
The first research question concerned the implementation approach with a the incentive to move towards an open
source platform for autonomous inland vessels. It was concluded from the research that the Robot Operating
System would provide the best middleware framework for the implementation of the Guidance and Navigation
units. To enable future research developments within the ResearchLab Autonomous Shipping and the wider re-
search community, it was also concluded from the literature review that Python offered the optimal programming
language for the use case.

The implementation saw the use of ROS packages for the grouping of major tasks and the approach to software
modularity continues even at a sub-package level. This approach was selected to promote future research de-
velopment by allowing focus on the optimality of specific module tasks without the need to develop or revise
an entire system. A total of four packages were developed, with one dedicated to guidance tasks and three be-
ing dedicated to the stereovision based navigation system. The separation of the navigation tasks allow for the
modular application of these tasks independently of one another in other application cases.

7.1.2. Stereovision-based Navigation
The second research focus was on this stereovision-based Navigation System, with a multi-device system being
proposed to achieve near range perception and localisation on board inland autonomous vessels. Four depth
devices onboard enable the acquisition of both textural and depth data of the surrounding environment for per-
ception tasks, covering the directions fore, aft, port and starboard of the autonomous vessel. A tracking camera,
incorporating stereo fish-eye vision sensors and an integrated inertial measurement unit is utilised to provide pose
data for autonomous vessel localisation.

The multi-device perception setup enables the vessel to maintain a constant lookout around the vessels in the
collision risk regions. The utilisation a convolutional neural network to conduct object detection has highlighted
its suitability to the autonomous inland vessel application. Not only does this approach provide advantages over
arbitrary object detection but does so at impressive inference rates even when computationally limited to a small
form-factor computer onboard a scale vessel. A refined approach to the acquisition of depth data avoids the
unnecessary post-processing and manipulation of dense point clouds, which arguably add little value to a system
centred around achieving collision avoidance.
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The utilisation of a Visual Inertial Odometry approach provided a means of short range localisation using only
stereovision and IMU data. The offloading of the task to a singular compact device, allows a significant boost to
small scale applications and yet the VIO approach also lends itself well to larger application setups. Secondary
processing of the perception and localisation data through the mapping procedure provides a coalescent output for
the Navigation System, particularly well suited to provide sufficient information to ongoing collision avoidance
tasks.

Under the given computational setup, the output of the Navigation System is capable of publishing outgoing data
at rate of five hertz, which is considered sufficient for the low speed application. The perception and localisation
sub-tasks alone were further found to be capable of reaching frequencies closer to ten hertz.

7.1.3. Inland Collision Avoidance
The third research focus resulted in a Guidance System being developed which incorporates a tailored collision
avoidance protocol for the challenges of the inland waterway. A new configuration for conflict detection regions
has been proposed to meet the challenges brought on by the architecture of the inland waterways and the nature
of the interactions that take place on it. The techniques see the use of rectangular vessel domain regions whose
dimensions are influenced by a function of the vessel speed. The autonomous vehicle is assigned two conflict
regions, one that when infringed indicates a scenario whereby collision regulations can be followed and a second
critical region where emergency avoidance procedure should be followed.

The collision resolution approach sees the integration of collision regulations and a secondary emergency pro-
cedure within a rule-based implementation compatible with the data available from a stereo-vision based nav-
igation system. This two tier system prevents the AV from blindly following the collision regulations when a
contact vessel is recognised to be non-compliant or an extremely close encounter requires additional action to be
taken.

The local path planner incorporates a roll-out-trajectory generation technique that has been adapted and optimised
for application on an inland autonomous vessel. The planner operates by generating candidate trajectories based
upon the determined collision avoidance mode and the limitations of the navigable waterway channel. The
optimal path is then selected from the candidate trajectories by applying three weight variants based upon the
added distance, collision regulations and collision risk and solving the subsequent optimisation problem.

7.2. Evaluation
The perception solution was evaluated using experimental testing which focused upon the robustness of obstacle
detection and the accuracy of positioning. Under the defined precision/recall key performance indicators, the
obstacle detection procedure maintained high precision with increasing recall achieving a total precision of 97.4%
and recall of 94.6%. However as the neural network was both trained and tested with one type of obstacle in one
environment, the significance of this result is limited to the specific experimental environment.

The accuracy of obstacle positioning was evaluated using the ground truth from an OptiTrack camera system
providing sub-millimetre accuracy. Data was gathered within the ten metre range covered by the perception
system, with a total of 280 data points being gathered across three tests with varied vessel positioning. The
comparison of the ground truth and perception system provided a quantification position error which yielded a
root mean square position error of 0.31 metres.

Experimental testing to evaluate localisation performance was conducted using two path types, a slalom/zigzag
style path and a straight path. The evaluation of the localisation procedure focused upon paths within a waterway
length range of 15 metres as this was within the workspace bounds of the collision avoidance experiments.
Along the full 15m length, the position error metric was found to be 0.129m and the heading error to be 5.3±.
A variation in localisation performance was however demonstrated along the path length, with the performance
decreasing with an increase in length. If one were to reduce the waterway length to 7.5m for evaluation sampling,
the position and heading errors were seen to reduce to 0.068m and 2.6± respectively. These evaluations were
made under normal operational cases, however the localisation system was observed on multiple occasions to be
susceptible to the impact of the kidnapped robot problem.

Collision avoidance experiments provided an evaluation of the combined guidance and navigation system perfor-
mance. Across all of the thirty tests conducted, an average avoidance success rate of 90% was achieved, meaning
that 10% of interactions resulted in collision due to insufficient action. Of the successful tests however, only



7.3. Recommendation for Future Work 81

40 out of the total 90% percent saw fully compliant avoidance with the remainder seeing either the premature
activation of emergency procedure or the incorrect COLREG mode being activated.

The experimental testing has highlighted that whilst the Guidance System particularly well under simulation,
with real world data supplied from the stereovision devices this same performance could not be accomplished.
Despite almost always generating a path that successfully avoided collision with a contact vessel, experimental
avoidance was not capable of consistently triggering the correct response due to the data from the navigation
system not being reliable enough. The alteration of conflict region definitions could well provide a workaround
solution to this issue as by expanding the COLREG region a greater opportunity for compliant regulation would
be allowed.

The weakest link in the entire network during this combined testing appeared to be the localisation system which
was prone to sudden and significant errors, whereby it would get lost in its environment, either associating itself
with the wrong location or failing to recognise movement at all. Besides these sudden failures, the combination
of the localisation position error under normal operation and the perception position error lead to the global state
attributes, particularly contact vessel velocity to be assigned a misleading value.

7.3. Recommendation for Future Work
7.3.0.1. Guidance
A more sophisticated motion prediction procedure would allow for optimised interaction behaviour. The integra-
tion of COLREG based prediction would optimise reactions in head on scenarios. The current system selects a
collision avoidance route under the assumption that the target vessel will continue on its current course, however
in such a scenario the target vessel also has a responsibility to manoeuvre to its starboard side. Therefore, oper-
ating under the assumption that the target vessel is complying to COLREGs, the collision avoidance trajectory
could be positioned closer to the global path, minimising the extra distance that needs to be travelled. Such
assumptions would however require extra contingencies to be put in place to recognise and detect when a target
vessel is failing to fulfil its roll under collision regulations.

As was mentioned during the presentation of the conflict regions, the assumption of vessel size based only upon
the classification is somewhat limited. For vessel classifications whose dimensions can vary significantly in size,
such as with freight barges, a less ambiguous approach would be desirable. A potential solution to this limitation
would be to make use of the obstacle dimension which is supplied by the navigation system to estimate vessel
size. However as this dimension is arbitrary it would first need to be associated with an actual vessel dimension.
To do this, the orientation of the vessel needs to be known which could be obtained in several manners. One
potential solution would be to train the neural network model to distinguish between the bow, stern and sides of a
vessel. Or by assuming that vessel is orientated in the direction of its movement, the vessel’s angle of orientation
could be derived using the approach angle from the navigation system.

Whilst the navigation system is fully configured for handling multiple obstacles, the guidance system requires
some adjustments in order to handle environments with multiple obstacles. The current setup has been configured
assuming that only one obstacle is avoided at a time, which obviously does not hold for all scenarios. Furthermore
testing was only conducted on a straight stretch of inland waterway. It would be beneficial to test the performance
of collision avoidance when navigating along a curved waterway channel. It is anticipated that the simple motion
prediction procedure and rigid conflict regions will perform unfavourably when navigating such obstacles. One
potential solution may be to refactor the AV conflict region generator to follow the global path as opposed to
generating the region inline with its current heading.

7.3.0.2. Navigation
As artificial intelligence will likely play a major role in the realisation of Autonomous Inland Vessels, a focus on
data acquisition and model training would be a beneficial area of research. In the broader maritime environment,
the Singapore dataset [53] and SeaShips [54] datasets provide image data and pre-trained object detection models
for sea going vessels. Whereas to the best of the author’s knowledge there exists no equivalent dataset specific to
the inland waterway environment. Gathering the training data and configuring models for obstacles encountered
on the inland waterway, from vessels to pontoons and buoys. Compiling such a dataset of annotated images could
be an extremely valuable contribution to the developments of this research field.

An increase in onboard computational power could allow for a point cloud based SLAM algorithm, using data
acquired by the depth sensors to be utilised. Fusing the results of this localisation solution with that of the existing
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V-SLAM algorithm could improve localisation system performance without the system requiring additional short
range sensor sets.

On the topic of sensor fusion, one of the major limitations of the stereovision-based navigation system is that it is
not suitable for all weather conditions. In low visibility, the imaging sensors cease to provide the perception and
localisation data required, meaning additional sensors would be required to support sailing in such conditions.
Radar would be the primary choice to support navigation in low light and fog conditions, however as mentioned
it is not without its accuracy and frequency limitations. This means that sailing under such conditions would
lead to sub-optimal operational performance as contingencies would need to be expanded to account for reduced
perception.

The challenges of autonomously mooring and navigating inland infrastructure such as locks will prove a particu-
larly difficult task for a navigation system to handle. In further developments of the navigation system, it would
be valuable to study the required sensor set to enable such levels of autonomy. It was discussed during the litera-
ture study that autonomous cars make use of ultrasonic sensors in combination with an array of imaging sensors
in order to enable short range perception with sufficient accuracy. This aid autonomous cars in performing tasks
such as parking and also supports the system during close range interactions with other vehicles. Perhaps a sim-
ilar sensor set could be applied to aid autonomous inland vessels in handling close range interactions in narrow
channels and assist in mooring procedures.

The current depth devices have a relatively limited horizontal field of view and a limited depth range. The
newly released RealSense depth cameras would provide an improvement in both these specifications, with a
field of view in the horizontal plane increasing by twenty degrees per device and the depth range increasing
to twenty metres. This improvement in sensor technology could reduce the blind spots that exist in the current
perception device configuration and the increased range make the application of the sensors to larger scale vessels
feasible.

7.3.0.3. Control
Although the control system did not form a research focus of this paper, a few observations were made during
experimental testing which present potential avenues for future research development. The control structure
currently uses a path following technique whereby it simply navigates a path dictated by target waypoints that
are continuously fed from the guidance system. Although a sufficient technique to provide the rudimentary
change in trajectory needed for collision avoidance, in the absence of speed control the system did not have
as much control over actuation as would be desired. The integration of a more advanced trajectory tracking
technique could help the vessel in following the route planned by the guidance system. Furthermore, the use
of a simple PID controller in handling the thruster angle did lead to a variation in path following performance
along different path sections. Perhaps the integration of an adaptive PID strategy would be able to overcome such
limitations.
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Collision Avoidance for Autonomous Inland Vessels
using Stereovision˚
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Abstract—This paper explores an approach to collision avoid-
ance for autonomous vessels on the inland waterway. The
potential role of stereovision technology as a primary sensor set
is investigated with the development of a multi-device Navigation
sub-system setup for mid-range perception and localisation tasks.
The specific performance of these sensors in the application
is evaluated with experimental testing, demonstrating their ca-
pabilities and limitations. Attention is further applied to the
guidance sub-system of an autonomous vessel. Techniques for
conflict detection and conflict resolution suitable for the inland
waterway environment are proposed, with the integration of col-
lision regulations and emergency contingency protocols. Collision
avoidance procedure is independently evaluated with simulation
and thereafter experimental collision avoidance performance is
tested with the combined inland Guidance and Navigation sub-
systems.

Index Terms—Autonomous Shipping, Autonomous Surface
Vehicle, Stereoscopic Vision, Artificial Intelligence, Inland Wa-
terways, Collision Avoidance

I. INTRODUCTION

The inland waterway once enabled an industrial revolution,
yet the emergence of coalescent road networks has seen its true
worth be all but disregarded. Despite the amenity of unimodal
travel being compelling, growing awareness for sustainability
has reignited interest in more fuel efficient modalities for
transportation. Traffic congestion remains a persistent issue in
urban areas and logistical hubs and fixed infrastructure links
do not always offer expedient options to cross waterways.
Increased utilisation of the inland waterways could offer a
solution to achieving emissions targets, easing congestion
and providing alternative crossing solutions. Attaining said
utilisation and future-proofing the market share of the inland
waterway does however require innovative solutions.

Concepts such as synchromodality have presented ap-
proaches to enable a modal shift in hinterland freight trans-
portation through the creation of an interconnected, integrated
and cooperative freight transportation network [1]. However its
adaptive nature demands high efficiency and reliability from
the inland waterway network. Autonomous shipping has the
potential to increase efficiency and reliability and will arguably
play a major role in the evolving transport revolution, returning
the transport modality to its former glory.

Achieving autonomy is no mean feat and arguably the most
critical challenge to an autonomous inland vessel (AV) is the
suitable execution of collision avoidance. In the absence of the
usual human operator, an AV requires a Guidance, Navigation
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and Control System (GNC) to assume responsibility for exe-
cuting this task. Within this paper a main focus shall be applied
to the Guidance and Navigation branches. The Guidance sub-
system is responsible for, amongst other tasks of generating
a local path to avoid an obstacle. The Navigation sub-system
uses sensor and/or proprietary communication data such as
AIS to establish the current position and state of the AV as
well as evaluating the obstacles in its environment and their
attributes.

Citation Sensors : Avoidance ; COLREGs Evaluation
[2] G, I, L, C, A IvP No Experiment
[3] I, L, C RTG No Experiment
[4] R VO, Re Yes Simulation
[5] R, A Re Yes Simulation
[6] A, R VO Yes Simulation
[7] A, R MPC Yes Both
[8] G, R, A, M CC No Simulation
[9] R VO No Experimental
[10] A, R, G APF Yes Simulation
[11] R DW No Experimental

TABLE I: Maritime Collision Avoidance.
: G: GPS, I: IMU, L: LiDAR, C: Camera, R: Radar, A: AIS
; IvP: Interval Programming, RTG: Rollout Trajectory Gen-
erator, VO: Velocity Obstacle, Re: Re-planning, MPC: Model
Predictive Control, CC: Collision Cone, APF: Artificial Po-
tential Field, DW: Dynamic Window

In Table I, it can be seen that a host of sensors are typically
utilised in order to enable collision avoidance. Radar, GPS and
AIS are the primary choices due to their proven, dependable
reputation from decades of being used as navigation aids.
Whilst offering suitable coverage for collision avoidance in
open-water environments, inland vessels tend to be subject to
closer interaction between vessels, meaning that they require
additional sensors to achieve near range perception and local-
isation. The inland applications in the first two rows of the
table [2][3] both utilise LiDAR and stereovision to provide
this supplement, however in both cases stereovision takes a
back seat role.

Autonomous Inland Vessels perhaps exhibit perception re-
quirements closer to those of autonomous ground vehicles
as opposed to their sea-based counterparts. In the automotive
industry, LiDAR has also been the most popular sensor choice
for achieving mid range perception and was long considered a
necessity. However deviation from this preference is emerging
with manufacturers turning instead to imaging sensors due
to the affordability and expanding capabilities of computer
vision. A study by researchers at Cornell University has further
gone on to prove the capability of stereovision to conduct
the tasks previously assumed only possible using LiDAR
[12]. Whilst inland vessels are arguably not restricted by the



same necessity for consumer accessibility, reducing the initial
investment cost has the potential to catalyse adoption as well
as benefit from the benefits of computer vision advancements.

The typical procedure for collision avoidance is well cov-
ered in a comprehensive review of the state-of-the art by
Huang et al. [13]. A useful breakdown is provided of the
typical sub-tasks involved, which are neatly divided into
motion prediction, conflict detection and conflict resolution.

The incorporation of radial safety regions or vessel domains
during conflict detection tasks are popular in maritime solu-
tions to autonomy [4][5][6][7][8][14][15]. Vessels travelling
on the narrow channels of inland waterway networks are
however frequently subject to close side-side interactions with
one another. This renders the direct application of radial
regions less suitable, particularly in the case of larger vessels.
The elliptical regions presented in [16] or the rectangular
uncertainty zones presented in [17] may perhaps inspire more
eloquent solutions to autonomous inland vessel applications.

Conflict resolution represents the cornerstone of collision
avoidance. Its responsibility lies in determining a suitable
collision free path based upon all the information available
from preceding tasks. Artificial potential field, collision cone
and velocity obstacle approaches are some of the most fre-
quently encountered techniques for managing local routing
[18]. Yet of late, research into maritime collision avoidance
has been further advancing in its maturity. More recent work
includes the proposal of hybrid solutions to local planning [4]
[6] [16] and emergency contingency when normal avoidance
is not possible [5]. Moreover, focus has even turned away
from the generation of merely feasible avoidance and towards
optimised avoidance by using a rolling horizon technique to
select optimal heading angles [19]. Advancements in artificial
intelligence have also lead to their consideration in solving the
problem of maritime collision avoidance [20][21][22].

Many of the solutions for maritime collision avoidance have
been adopted from other sectors. In some cases, these solutions
have seen adaption and evolution prior to implementation, in
other cases they have been more directly implemented. For
example, the open source local path planning technique of
[23] designed for ground vehicles has been utilised for inland
surface vehicles on the canals of Amsterdam [3].

The importance of COLREG integration within the conflict
resolution stage is clearly apparent. To this end multiple
techniques have been proposed to integrate COLREG compli-
ance into the local planner. Fuzzy rules have been integrated
into a modified Virtual Force Field approach [14] and rule
based methodologies that in some cases consider the fact that
compliance is not a binary problem [24].

In this paper, an approach to achieve collision avoidance for
autonomous inland vessels using is implemented. In section
II a stereovision-based Navigation System is introduced. Fol-
lowing which, a strategy for collision avoidance is introduced
for the inland environment (Section III). An evaluation of the
Guidance and Navigation Systems is conducted in Section IV
with a particular focus on the experimental performance of
the stereovision sensors as well as the execution of collision
avoidance. Finally, a conclusion is delivered in Section V, with
recommendations for future research directions.

Fig. 1: The Grey Seabax Test Vessel.
Tracking Camera: stereovision device for localisation tasks.
Depth Cameras: stereovision devices used for perception tasks.
Tracking Marker: passive OptiTrack c� marker to track vessel
position during evaluation (ground-truth measurement).

II. STEREOVISION BASED NAVIGATION SYSTEM

A fully operational navigation system of a vessel must have
the capacity to perform perception and localisation under any
condition of visibility to comply with collision regulations.
This paper will narrow its focus and review the performance
of stereovision in clear, well lit conditions. It is recognised that
during low light conditions and/or poor weather conditions, the
developed system would require at least one secondary sensor
set to supply sufficient data. Furthermore, the navigation
system of an autonomous vessel will likely make use of sensor
fusion to improve accuracy and reliability in all sailing condi-
tions and varying circumstances. A thorough understanding of
the advantages and limitations of each individual sensor set is
consequently imperative for optimal equipment selection and
the fusing of sensor set data.

A. Perception
Rule five of the collision regulations states that a vessel

must maintain a proper look-out at all times so to make a
full appraisal of the situation and the risk of collision. Whilst
a human operator will never be able to maintain a look-out
in all directions surrounding the vessel, at all times, their
vision does not have a fixed orientation, providing flexibility
in field of view. When perceiving the environment using
stereovision devices, such flexibility is not achievable in the
absence of a rotating mount, such as those used by LiDAR and
Radar sensors. Nonetheless, the affordability of stereovision
technology enables the use of a multi-device setup, which
could arguably achieve a more consistent lookout than any
human operator ever could, whilst also not being susceptible
to the mechanical failures as a rotating sensor.

Whether a perception system can be considered to fulfil the
expectations of a proper look-out is open to interpretation, as
are scenarios that present collision risk. Due to the architecture
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of an inland waterway, vessels generally travel along a central
path of the channel section in a manner synonymous to travel
on road networks. Focusing perception ahead of the vessel,
in its direction of movement where collision risk is higher
and where opportunity for avoidance is present can thus be
considered a more suitable utilisation of the sensor.

A proposed camera configuration for the test vessel can be
visualised in Figure 2 and the mounted depth cameras can be
seen in Fig. 1. A total of four Intel Realsense D345i depth
devices are utilised covering a forward weighted coverage
around the vessel. These devices have a depth range of ten
metres, which is sufficient for the scale vessel in question,
offering a coverage of magnitude over seven times the vessel
length. For larger scale applications, device selection or cus-
tom stereovision setups would need to consider the specific
requirements of the vessel scale, with the imaging sensors and
the baseline influencing the range of a stereovision sensor.

Fig. 2: Perception Sensors - Field of View

The depth cameras provide both point cloud data through a
depth frame extracted from two infrared sensors and a colour
frame from a separate RGB sensor. The colour frame is used
for obstacle detection, with the resultant region of interest
(ROI) being used to extract relevant position data from the
depth frame. As the colour and depth frames are not physically
aligned in the device, alignment must be conducted during
post-processing. Sub-sampling is applied to the depth frame
directly prior to this alignment by decimating the depth frame
through a factor of two both reduces subsequent computation
by a factor of four and has the added benefit of smoothing
the depth data through the removal of dead depth pixels.
Additional processing such as spatial and temporal filters were
deemed unnecessary for the application requirements.

The potential of an artificial intelligence approach to mar-
itime obstacle detection is well founded [25] [26] [27] and
this potential shall be further explored in this implementation.
A Convolutional Neural Network, with the MobileNet Single
Shot Detector v2 framework is utilised for the specially
trained Tensorflow model. The neural network model should
be trained to recognise all obstacles that may be pose a
collision risk in the interaction waterway environment. At this
stage of research, the model is only trained to recognise one

object, specifically the model tugboat that will be used in the
experimental collision avoidance testing.

Inference is run on the Jetson TX2 mounted onboard the
vessel, with frames being processed from all four camera
streams. In order to maintain performance under this heavy
processing burden, the trained model is converted to a Uni-
versal Framework Format (UFF) and subsequently parsed to
build a 16-bit optimised TensorRT engine. Running inference
on the TensorRT engine model was found to reduce latency
fivefold over the original Tensorflow format with the max
execution rate per frame being reduced from 125ms to 25ms.
This enables each of the four perception device streams to
be processed at up to 10Hz and does so without exhibiting a
reduction in average precision. The performance of the trained
model shall be further evaluated in Section IV and an example
detection output stream can be visualised in Fig. 3, with
the key outputs being the obstacle bounds and classification
(Ctype).

Fig. 3: Obstacle Detection Output

The obstacles detected in the colour frame must subse-
quently be analysed to determine their actual position in the
3D space. Each obstacle bound defines a rectangular area
within the frame where an obstacle has been detected and
due to frame alignment, this Region-of-Interest (ROI) also
corresponds to the same frame area within the depth frame.
Using the device intrinsics to assess the ROI within the depth
frame, allows for point cloud points to be defined. The Closest
Obstacle Point (COP) is then extracted from the point cloud
data within the ROI and is taken forward as the reference point
of obstacle location. The position at this stage is defined in
coordinates relative to the device within which the obstacle
has been detected. The device coordinates of obstacles are
translated into one homogeneous reference frame during the
mapping stage.

The perception system is built within a ROS package
that is run on the onboard Jetson TX2 and its output is
published over the ROS network at a frequency of 5Hz. The
message that is published provides a list of obstacles and their
corresponding attributes. The attributes that are published for
each object are device position, obstacle classification, obstacle
device coordinates and the obstacle’s lateral dimension. This
implementation approach allows for the perception package
to be directly reapplied to other vessels, even ones that use a
different number and orientation of depth devices.
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B. Localisation
To localise the Autonomous Vessel, a dedicated tracking

device is utilised which makes use of two fish eye lenses and
a built in inertial measurement unit to conduct stereo V-SLAM
(Visual- Simultaneous Localisation and Mapping). The device
selected for this application also belongs to the Intel RealSense
range, with the T265 camera fulfilling this role.

The tracking camera is mounted to the bow of the vessel as
seen in Fig. 1 using a rigid 3D printed bracket. The position
at the bow of the vessel was selected to minimise occlusions
to the vision sensors and IMU noise due to vibrations at this
location were not encountered. Although SLAM algorithms
could also be run using data from the perception devices,
offloading this task to an external device drastically reduces
computational load on the on-board processor. The SLAM
algorithm that runs onboard the T265 uses a Visual-Intertial-
Odometry (VIO) technique, which relies upon data from two
fish eye lenses and an IMU. These fish-eye sensors allow
a large field of view to be covered, whereby more features
can be detected and tracked within in the environment and
provides a calibrated scale of the environment even with a
single sensor set. The fusion of visual feature recognition with
high frequency IMU data allows for the VIO algorithm to track
movements over a shorter time steps, enhancing the tracking
accuracy.

Fig. 4: Body Reference Frame [28]

The only post-processing tasks that are conducted by the
localisation system concern the translation of the device coor-
dinate axes to correspond with the body reference frame and
the extraction of Euler angles from the quaternion orientation
data. The position of the vessel is only required within two
body-frame dimensions, xb and yb as defined in Fig. 4 and
the Euler angle of main interest is the yaw angle p q which
provides a means to derive vessel heading. The output after
post-processing was found to consistently achieve a frequency
of 10Hz onboard the Jetson TX2 and is published over the
ROS network, with the localisation system to being built
within a ROS package to allow for direct application to other
vessels in future research.

C. Mapping
Mapping represents the final sub-task in the Navigation

system and is responsible for the post-processing of the results
from the perception and localisation sub-tasks to provide
useful data for collision avoidance tasks. The processing con-
cerns two main procedures, firstly the translation of perception
results to map positions into a single homogeneous reference
frame, and secondly the fusion of localisation and perception
data to map the position of the AV and obstacles in the global
coordinate system.

Each obstacle position attained by the perception system is
translated from the individual depth device coordinate system
into a consolidated AV domain. The origin of the AV domain,
is located at the geometric centre of the vessel as indicated
by point CO in Fig.4, with the body axes orientation also
matching that of the 2D AV coordinate system. Translation
involves applying the displacement of the relative camera
from this origin point and accounting for the configured
camera angles through axes rotation. The result is a set of
obstacle coordinates within the AV domain pXAVD , YAVD q.
One particularly useful attribute for collision avoidance tasks
is the obstacle bearing and can be defined as seen in Eq. 2.

�̂ “ atan2pYAVD , XAVD q ¨ 180
⇡

(1)

� “
#
�̂, �̂ • 0˝

360 ` �̂, �̂ † 0˝ (2)

With the obstacles having been coalesced into a singular
coordinate frame, any replicated obstacles that exist in the
overlapping field-of-view regions are eradicated as per Algo-
rithm 1. After which, each obstacle can be associated with
an identification number for tracking over time. Tracking is
achieved using a Global Nearest Neighbour technique whereby
the coordinates of each obstacle detected in the current itera-
tion are compared with all obstacle positions in the previous
iteration and associated by minimising Euclidean distance.
To enable user-interaction with the navigation system when
necessary, a visual representation of the obstacles mapped and
associated within the AV domain is provided in the form of a
pseudo-radar plot as can be seen in Fig. 5.

Fig. 5: Pseudo-radar Obstacle Monitor
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Global mapping is conducted by utilising the localisation
data. The global coordinate system requires a base map to be
provided by the user that details the area of navigation, the
starting position of the AV and the start heading p'0q. The
AV position pXav, Yavq can with this be defined by summing
the start position with the position data from the localisation
output. By monitoring the position over time, the AV speed
(uav) can be determined, following a constant time step of
one second. The relative heading value is calculated through
summing the initial offset with the yaw value ( ) as defined
in Eq. 3 and then applying the cases in Eq. 4.

'̂ “ '0 ` 180 

⇡
(3)

' “

$
’’&

’’%

'̂ , 0˝ § '̂ § 360˝

360 ` '̂ , '̂ † 0˝

'̂´ 360, '̂ ° 360˝
(4)

Defining the global coordinates of each obstacle pXcv, Ycvq
is accomplished through the translation of obstacle coordi-
nates in the AV domain using the current AV position and
orientation. Using the obstacle IDs from the previous section,
obstacles can also be tracked over time to define their state.
The velocity vector generated between the obstacle position at
the previous time step (one second) and the current position
can be referred to as the obstacle’s relative track. The track
vector can be described by its magnitude and direction. The
direction defined in Eq. 6 being referred to as the Track Angle
(⌧ ) and the magnitude describing the vessel speed (ucv). To
assist in collision avoidance procedure it is also useful to know
the angle at which a dynamic obstacle is moving relative to
the AV itself. This can simply be determined by finding the
difference between the heading of the AV and the track angle
of the obstacle. This directional measure of obstacle dynamics
shall be referred to as the approach angle (↵) and is defined
in Eq. 8.

⌧̂ “ patan2p 9Ycv,
9Xcvq ` '0q ¨ 180

⇡
(5)

⌧ “

$
’’&

’’%

⌧̂ , 0 § ⌧̂ § 360˝

360 ` ⌧̂ , ⌧̂ † 0˝

⌧̂ ´ 360, ⌧̂ ° 360˝
(6)

↵̂ “ ⌧ ´ ' (7)

↵ “
#
↵̂, ↵̂ • 0˝

↵̂ ` 360, ↵̂ † 0˝ (8)

The mapping sub-task is also embedded within a ROS
package and is responsible for providing the output of the
Navigation System. The mapping procedure runs on the host
PC (Macbook Pro A1278) and the output publication rate
can maintain a frequency of five hertz, which is considered
sufficient for the low speed application. The specific output
in this case is especially suited for the collision avoidance

procedure that shall be detailed in the following chapter. The
output is again published over the ROS network and contains
two topics, a summary of which is given below in Table. II.
One of these topics streams attributes of the AV and the other
details the attributes of the obstacles, which from this point
on shall be referred to as contact vessels.

Attribute AV Data CV Data
Global Coordinates pXav , Yavq pXcv , Ycvq
AV Domain Coordinates - pXAVD

, YAVD
q

Speed uav ucv

Heading ' -
Bearing - �
Approach Angle - ↵
Track Angle - ⌧
Classification - Ctype

Identification Number - ID

TABLE II: Output of Navigation System

III. COLLISION AVOIDANCE FOR AN AUTONOMOUS
INLAND VESSEL

The Guidance System of an Autonomous Inland Vessel
requires a local path planner capable of handling collision
avoidance. The procedure for collision avoidance can be aptly
divided into the topics of motion prediction, conflict detection
and conflict resolution s per the review of Huang et al. [13].
The term Contact Vessel (CV) describes an obstacle classified
as a vessel with which the AV is in a collision interaction. The
procedure within this section only covers interactions between
the AV and a single contact vessel.

A. Motion Prediction
At this initial stage of research development, a physics based

model is utilised with the implementation of more sophisti-
cated techniques being left to form the focus of future research.
Through the assumption that a contact vessel is holonomic and
can move freely in the horizontal plane, the vessel’s motion
can be predicted over coming time steps using its current speed
and track. Extending the current velocity vector to span a range
future time intervals provides a prediction of future motion,
albeit a crude one. Both the speed (ucv) and the track angle
(⌧ ) of the contact vessel are supplied by the navigation system
with their relations to the movement in the horizontal plane
being defined in Equations 9 and 10 with the time step (t)
being defined in seconds.

9xptq “ xptq ´ xpt ´ 1q “ u ¨ cos (9)

9yptq “ yptq ´ ypt ´ 1q “ u ¨ sin (10)

The most useful value that can be supplied by motion
prediction is an estimate of future position so to define the
fore bound of a vessel’s conflict region and assess collision
risk. The predicted position pxpr, yprq of the contact vessel
can be found by applying the holonomic model as defined
in Eq. 11 and 12, with t0 as the current time step. The
motion prediction span tpr must be suitably configured for
the application to ensure that sufficient warning is provided
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whilst not creating an overly sensitive avoidance system. For
the model tugboat that will assume the role of the contact
vessel during experimental testing, a prediction span value of
three seconds is assigned.

xpr “ xpt0q ` ptpr ¨ ucv ¨ cos⌧q (11)

ypr “ ypt0q ` ptpr ¨ ucv ¨ sin⌧q (12)

B. Conflict Detection

Conflict regions in maritime autonomy are typically defined
in radial form, which whilst valid for open-water applications
are less applicable to the narrow channels of inland waterways.
As such, rectangular conflict regions will be proposed in this
paper, inspired to a degree by the uncertainty zones presented
in the Hull-2-Hull research project [17].

In this approach, each contact vessel is assigned a singular
conflict region. The conflict region of a static CV is defined
to be one times the beam of the vessel around all edges.
When a CV is moving, only the forward conflict region bound
changes, with an extension (Xcon) being added to the static
region in this direction. This extension is defined in Eq. 13
using the motion prediction model. The static and dynamic
regions of the CV can be visualised in Fig. 6. Although largely
applicable, the definition of the static region based upon vessel
beam may not be well suited to large vessels operating in
particularly narrow waterway stretches. The beam and length
of the contact vessel are retrieved from a database which lists
all vessel classifications that the neural network model can
recognise and the approximate dimensions of said vessels.

Xcon “ tpr ¨ ucv (13)

Fig. 6: Contact Vessel Conflict Region. Where B is the beam
of the vessel and Xcon is the forward bound extension.

A different procedure is followed for the assignment of the
AV conflict regions as to that used for the contact vessel.
The AV requires two regions, one larger conflict region to
trigger generic collision avoidance which will be referred to

as the COLREG zone and one smaller region intended to
incite emergency collision avoidance procedure which will
be referred to as the critical zone. Fig. 7 illustrates how the
configurations of the AC conflict regions.

Fig. 7: Autonomous Vessel Conflict Regions. Blue-dashed:
COLREG region, red-dashed: critical region. Fcol describes
the fore COLREG bound, Scol the starboard COLREG bound
and Fcrit the fore critical bound. B refers to the beam of the
vessel.

The critical conflict region surrounds the port, starboard
and aft edges at identical distances, defined at this stage as
being one times the beam of the autonomous vessel (Bav).
This selection also accounts for the port and starboard bow
blind-spots of the AV’s perception system. The size of the
critical region ahead of the autonomous vessel is defined
by considering its deceleration rate, to account for a worst
case scenario. The theoretical stopping distance (d) can be
defined by the heuristic relation between velocity (uav) and
deceleration rate (aav) in Eq. 14. The value Fcrit seen in Fig.
7 is subsequently driven by this stopping distance as defined
in Eq. 15, with a safety factor of 1.25 being applied. Whilst
applicable to the test vessel used in this study, the use of the
stopping distance could prove less well suited to vessels with
a high inertia.

dstop “ u
2
av

2aav
(14)

Fcrit “ Bav ` 1.25 ¨ dstop (15)

The COLREG zone surrounding the AV is not uniform as
can be seen in Fig. 7, rather the region extremities are weighted
in the fore and starboard directions to support adherence to
regulation scenarios where the AV can be designated give-
way status. The COLREG zone remains identical to the critical
zone along the port and aft edges, due to vessel interactions on
these sides yielding the AV to assume the role of the stand-
on vessel. The region dimensions in the fore and starboard
directions edges are driven by the vessel speed and a defined
time period as defined in Eq. 16 and 17 which provide a
distance in metres. For the Seabax AV, tf is set to six seconds
and ts to three seconds with minimum dimension results being
limited to 1.2 and 0.6 metres respectively.

Fcol “ uav ¨ tf (16)

Scol “ uav ¨ ts (17)
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The detection of conflict involves the constant monitoring of
the two AV conflict regions, the COLREG zone and the critical
zone. At each iteration it is assessed whether the conflict region
of a contact vessel is infringing upon one of the AV regions. If
a conflict is detected with a contact vessel, a trigger is set for
the conflict resolution procedure to assess the situation and act
accordingly. This trigger indicates not only that a conflict has
been detected but also the protocol, be it COLREG or critical
depending on which AV region has been infringed.

C. Conflict Resolution

A predominantly rule-based collision avoidance procedure
is followed by the local planner at this stage of development.
The avoidance strategy presented focuses on single vessel
interactions within an environment typical of a simple inland
waterway channel. The resolution procedure is triggered when
a conflict is detected and the protocol has been set, with the
primary protocol requiring a collision regulation procedure to
be followed and the secondary protocol inciting emergency
collision avoidance. Two stages exist within conflict resolution
with avoidance procedure being addressed first and the local
path generation thereafter.

The avoidance procedure is responsible for determining the
way in which the AV resolves conflict. Its purpose is to
determine the status and mode of avoidance. The avoidance
status details the responsibility of the AV in a given interaction
and the avoidance mode identifies the type of interaction that is
taking place, which indicates the specific action that should be
taken by the AV to avoid a collision. The type of conflict that
has been detected has an influence upon the avoidance proce-
dure that is followed. When a COLREG conflict is detected,
avoidance is conducted based upon maritime collision law and
when a critical conflict is detected, an emergency procedure is
followed in a final attempt to avoid collision. The avoidance
procedure uses the speed, bearing and approach angle data
from the Navigation System to inform its decisions.

Algorithm 2 defines the the logic procedure for determining
COLREG state where the main three COLREG interactions,
head-on, overtake and crossover are considered. In any of these
scenarios the AV can either be allocated a stand-on or give-
way status, with a specific avoidance mode being allocated
for all give-way cases. For all cases where a stand-on status
is assigned to the autonomous vessel, it shall remain on its
course as per regulations. Whilst maintaining this course, the
critical region should continue be monitored and in the case
where the contact vessel infringes this region, the COLREG
compliance can be dropped in favour of emergency avoidance.
If a critical conflict is detected, the emergency procedure in
Algorithm 3 is followed to protect the AV from collision as far
as possible. If a collision is anticipated yet it is still feasible
for avoidance action to be taken, a hard turn to the port or
starboard turn can be triggered to avoid the contact vessel..

Acting upon the determined avoidance mode requires the
generation of a local path that suitably circumnavigates the
obstacle. Not all of the existing maritime solutions to collision
avoidance are suitable for application on the inland waterway
and in many ways architecture of the inland waterway bears a

closer resemblance to road networks. This paper presents an an
implementation of a Roll-out Trajectory Generation technique
for the inland waterway, adapted from an approach developed
for autonomous cars [23].

The generation of candidate trajectories works simply by
comparing the current position of the AV and the navigable
edge of the waterway channel to define a bound and then
creating trajectories that run parallel to the current path, with
spacing between one times the width of the AV. As the
avoidance mode indicates the direction in which the AV needs
to travel, the candidate trajectories need only be generated to
one side, most often astarboard. The number of trajectories
that can be generated to the side of the AV is defined in Eq.
18, where d is the distance to the edge of the waterway from
the current path and Bav is the AV beam.

tnu “ d ´ Bav

Bav
(18)

A visual example of candidate trajectory generation can be
seen in Fig. 8. Each trajectory is generated at a parallel dis-
tance of one times the vessel beam from the global trajectory
or the superseding candidate trajectory. Smoothing the roll-out
trajectory itself is generally neglected as a clear indication of
manoeuvre intention is required by regulations and waypoint
progress incorporates an acceptance radius which in itself
offers an element of path smoothing. That being said, waypoint
generation does require an element of path smoothing when
the generated trajectory is close to the the edge of the
waterway. Candidate trajectory three in Fig. 8 can be seen
to have a smoothed roll-out region so to ensure the vessel has
adequate opportunity to change its course to meet the parallel
path.

Fig. 8: Rollout Trajectory Generation

The path selection procedure determines the most suitable
route from the candidate trajectories and is only required
for the COLREG protocol as in an emergency, only one
trajectory is generated. To select the best candidate trajectory
in a given interaction, integer weights are assigned to each
path and a simple optimisation problem is solved to minimise
cost. Three influential factors were identified for the inland
application and these regard the distance efficiency of a path,
the expected avoidance action based upon CORLEGs and the
risk of collision that a path carries.

The distance weight (di) is added to each of the trajectories
based on the distance from the current path in an order
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ascending magnitude with distance as shown in Table. III.
The COLREG weight (ci) can also be found in this table
and is assigned based upon the avoidance mode that has been
set which indicates the magnitude of expected avoidance and
therefore influences ideal path selection.

Candidate Distance Weight COLREG Weight (ci)
Trajectory (di) Head-on Overtake Crossover

1 1 1 2 3
2 2 2 1 2
3 3 3 2 0

TABLE III: Integer Distance and COLREG Weights

The final weight aims to discourage paths that are close
to the contact vessel’s predicted motion as these potentially
increase collision risk. The proximity of a CV’s predicted
position to a candidate trajectory (Px) is defined in Eq. 19.
A negative proximity value suggests that the CV is predicted
to cross the candidate trajectory in a direction not expected by
collision regulations and thus yields a heavy weight penalty
as collision risk is high. For positive proximity values, a
linear trend is followed whereby the larger the proximity value
the lower the weight that a candidate trajectory carries. The
assignment uses a factor of the AV’s beam to generate the
integer weights as shown in table .

Px “ yct ´ ypr (19)

Proximity (Px) Collision Risk Weight (ri)
Px † 0 10

0 † Px † Bav 5
Bav § Px § 3Bav 1

Px ° 3Bav 0

TABLE IV: Integer CV Proximity Weight. Where Bav is the
Autonomous Vessel Beam and Px is the proximity.

The optimal candidate trajectory is then selected by solving
the simple optimisation problem defined in Eq. 20. This
solution simply summates the three trajectory weights into one
trajectory cost and selects the candidate trajectory with this
lowest total cost. In any case where the optimisation problem
provides two trajectories which carry the same cost, decision
favours in the direction of caution, selecting the trajectory
with the further distance to increase opportunity for avoidance.
The weighting system whilst suitable at a developmental level
would again benefit from an expert-based method to determine
the optimal weights as the current definition has limitations
and oversights.

Tw “ min

nÿ

i“1

pdi ` ci ` riq (20)

The autonomous vessel follows the local path until the
avoidance action is considered sufficient and it is safe to return
to the global path and continue the journey. Once the CV has
been tracked past a bearing associated with the aft side of the
vessel, namely (150 † � † 210), avoidance can be considered
complete.

IV. RESULTS

The final focus of this paper is to evaluate the performance
of the developed Guidance and Navigation Systems, with
a focus on experimental testing. The Navigation System is
evaluated first under experimental testing with a focus on
the sub-tasks of perception and localisation. This provides an
indication of stereovision sensor performance and suitability
of the sensors for the application. Simulation testing provides
a means of verification and validation for the independent
Guidance branch. After which experimental collision avoid-
ance performance of the combined Navigation and Guidance
System is assessed.

Fig. 9: MTT Towing Tank - Experimental Environment

The test environment and vessels used in experimental
testing can be seen in Fig. 9. The Grey Seabax that assumes
the role of the autonomous vessel and The Tito Neri vessel
shall assume the role of contact vessel. The test environment
is further equipped with an OptiTrack c� 3D tracking system as
visualised in Fig. 10 that is used to extract ground truth vessel
pose data for use during sensor evaluations. The perception
and localisation tasks of the Navigation System run on-board
the AV’s Jetson TX2, whilst the remaining procedures run on
the host PC (MacBook Pro A1278), with all communications
being handled via ROS.

A. Perception
The perception solution was evaluated using experimental

testing which focused upon the robustness of obstacle detec-
tion and the accuracy of positioning. Under the precision/recall
KPIs defined in. 21 and 22, the obstacle detection procedure
maintained high precision with increasing recall achieving a
total precision of 97.4% and recall of 94.6%. However as the
neural network was both trained and tested with one type of
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obstacle in one environment, the significance of this result is
limited to the specific experimental environment.

The accuracy of obstacle positioning was evaluated using
the ground truth from an OptiTrack camera system providing
sub-millimetre accuracy. Data was gathered within the ten
metre range covered by the perception system, with a total of
280 data points being gathered across three tests with varied
vessel positioning. The comparison of the ground truth and
perception system provided a means for evaluation with a root
mean square position error of 0.31 metres being found using
the KPI defined Eq. 23.

Fig. 10: OptiTrack c� 3D Tracking System

B. Localisation
Experimental testing to evaluate localisation performance

was conducted using two path types, a slalom/zigzag style
path and a straight path. The two KPIs used are the position
error and heading error, which are both defined by the root
mean square deviance between the acquired sensor value and
the accepted ground truth value ( Eq. 24 and 25). Along the
full 15m waterway length, the position error metric was found
to be 0.129m and the heading error to be 5.3˝. A variation
in localisation performance was however demonstrated along
the path length, with the performance decreasing with an
increase in length. When the sampling length of the waterway
is reduced to 7.5m, the position and heading errors also reduce
significantly to 0.068m and 2.6˝ respectively. These evalua-
tions were made under normal operational cases, however the
localisation system was observed on multiple occasions to be
susceptible to the impact of the kidnapped robot problem.

C. Collision Avoidance
The Guidance system was primarily subjected to simulation

testing to verify and validate its collision avoidance procedure.
To assess the COLREG procedure ten simulations were run for
each of the three scenarios of head-on, overtake and crossover.
The implemented collision avoidance procedure was found to

succeed at avoiding collisions in all of these tests and do so in
a manner compliant with collision regulation. The success of
the collision avoidance procedure under simulation, allowed
for testing to progress to the experimental phase, whereby
the Guidance system relies upon the data from the navigation
system.

Three interaction types were replicated during experimental
testing, head-on, overtake and static. The crossover interaction
type could not be replicated within the narrow test tank
environment. Instead the ability of the AV to detect a static
conflict vessel was tested as in this case it must assume full
responsibility for avoidance. For each interaction type ten tests
were conducted. Two performance metrics are used to evaluate
the performance of the collision avoidance system, success rate
and path optimality. The success rate provides an indication of
a system’s fundamental capability to avoid collision. Whereas
the path optimality reviews how close the path selected by
the avoidance system was to a most desirable selection. A
hierarchy exists between the former and latter metric as the
path optimality is dependent upon a successful avoidance case
for the assignment of an optimality value.

The success rate in this application is quantified as a
percentage and is divided by three outcomes, compliant, semi-
compliant and failed. Compliant collision avoidance indicates
that the AV has successfully avoided collision, following the
expected protocol. Semi-compliant collision avoidance indi-
cates that collision avoidance was successful but the expected
protocol was not adhered to exactly as expected. Finally, failed
avoidance indicates that the AV was unsuccessful in avoiding
a collision. The path optimality metric is defined in Eq. 26. It
describes the relation between the distance the local avoidance
path added to the global route and the collision risk, quantified
by the shortest distance between the AV and CV during the
interaction. A lower metric value indicates optimality.

Scenario Collision Avoidance Optimality
Number Compliant Semi-compliant Failed Metric

Static 40% 50% 10% 0.4
Head-on 30% 50% 20% 0.57
Overtake 50% 50% 0% 0.33
Average 40% 50% 10% 0.43

Simulation 100% 0% 0% 0.38

TABLE V: Collision Avoidance Evaluation. Compliant: suc-
cessful avoidance as per procedure, semi-compliant: success-
ful avoidance however not exactly per procedure, Failed:
unsuccessful avoidance. Metric: path optimality KPI.

Experimental collision avoidance results can be seen in
Table V. Across all of the thirty tests conducted, an average
avoidance success rate of 90% was achieved, meaning that
10% of interactions resulted in collision due to insufficient
action. Of the successful tests however, only 40 of the 90%
percent saw fully compliant avoidance with the remainder see-
ing either the premature activation of emergency procedure or
the incorrect COLREG mode being activated. This behaviour
is reflected in the resultant path optimality, with the mean
average being 0.43, a reduction in performance of that through
simulation.
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The experimental testing has highlighted that whilst the
Guidance System performed particularly well under simu-
lation, with real world data supplied from the stereovision
devices this same performance could not be accomplished.
Despite almost always generating a path that successfully
avoided collision with a contact vessel, experimental avoidance
was not capable of consistently triggering the correct response
due to the data from the navigation system not being reliable
enough.

V. CONCLUSIONS

A. Recapitulation

A stereovision based navigation system, with a multi-device
system has been proposed to achieve mid-range perception
and localisation onboard inland autonomous vessels. A multi-
device perception setup has been introduced that enables the
autonomous vessel to maintain a constant lookout in areas of
collision risk. The utilisation of a convolutional neural network
to conduct object detection has demonstrated its suitability to
the autonomous inland vessel application. A refined approach
was taken towards the processing of depth data which avoids
the computationally expensive manipulation of dense point
clouds, by directly locating the obstacles closest point of
approach. A dedicated stereovision tracking camera, utilising
a Visual Inertial Odometry approach was also integrated to
provide pose data for autonomous vessel localisation.

The perception solution was evaluated using experimental
testing which focused upon the robustness of obstacle detec-
tion and the accuracy of positioning. The obstacle detection
procedure was found to run at a high inference rate of 25ms on
the onboard processing unit, whilst maintaining high precision
with increasing recall. However as the neural network was
both trained and tested with one type of obstacle in one
environment, the significance of this result is limited to the
specific experimental environment. The accuracy of obstacle
positioning was also evaluated and the perception system
exhibited an RMS position error of 0.31 metres.

Experimental testing to evaluate localisation performance
was conducted using two path types, a slalom/zigzag style
path and a straight path. Along a 15m length of waterway, the
position error metric was found to be 0.129m and the heading
error to be 5.3˝. The localisation performance was seen to
reduce as the vessel progressed down the path length and the
system was observed on multiple occasions to be susceptible
to the impact of the kidnapped robot problem, limiting its
reliability slightly.

The developed Guidance System incorporates a collision
avoidance protocol capable of handling the specific challenges
of the inland waterway. A new configuration for conflict
detection regions has been proposed to overcome the issues
that arise from the inland waterway architecture and the
subsequent nature of the interactions that take place. The
collision resolution approach integrates collision regulations
and a secondary emergency procedure within a rule-based
implementation compatible with the data available from the
stereovision based Navigation System. The local path planner
incorporates a roll-out-trajectory generation technique that has

been adapted and optimised for application on an inland
autonomous vessel.

Collision avoidance experiments provided an evaluation of
the combined guidance and navigation system performance.
Across all of the thirty tests conducted, an average avoidance
success rate of 90% was achieved, meaning that 10% of
interactions resulted in collision due to insufficient action. Of
the successful tests however, only 40 out of the total 90%
percent saw fully compliant avoidance with the remainder
seeing either the premature activation of emergency procedure
or the incorrect COLREG mode being activated.

The experimental testing has highlighted that whilst the
Guidance System exceptionally well under simulation, with
real world data supplied from the stereovision devices this
same performance could not be accomplished. Despite almost
always generating a path that successfully avoided collision
with a contact vessel, experimental avoidance was not capable
of consistently triggering the correct response due to the data
from the navigation system not being dependable enough.
Specifically, the weakest link in the entire network during
this combined testing appeared to be the reliability of the
localisation system.

B. Future Work
A focus on inland data acquisition for the training and

testing of CNN based obstacle detection would be an enabler
to future research. Gathering image data on inland waterway
obstacles and developing an Inland Maritime Dataset would
enable research to apply focus to model optimisation, perhaps
utilising a similar initiative to the KITTI benchmark suite [29].

Further development of the Navigation System with a
view to the most appropriate approach for complementing
the stereovision setup through fusion with data from other
sensor sets. GPS could be aptly coupled with the stereovision
sensors for localisation, providing global re-localisation along
the path length. For perception, the stereovision solution would
benefit from coupling with a radar sensor to extend range and
ultrasonic sensors to cover the area around the vessel.

Regarding the collision avoidance procedure, a primary
focus should be towards the handling of avoidance in con-
gested waterways with multiple contact vessels present at
one time, expanding upon the current approach. Secondary
research could focus towards a more advanced approach to
motion prediction, considering vessel behaviour on the inland
waterway. The definitions of conflict region dimensions and
path weighting would further benefit from testing and fine
tuning along varied waterway stretches.
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APPENDIX I - KEY PERFORMANCE INDICATORS

A. Perception

Precision and recall are defined as shown in Equations 21
and 22 respectively.

Precision “ correct predictions

all predictions
(21)

Recall “ correct detections

all ground truths
(22)

The definition of obstacle position error is given in Eq. 23
below with ôi referring to the ground truth position of the
obstacle, oi being the measured position value and N being
the number of samples.

RMSEpos “

d∞N
i“1pôi ´ oiq2

N
(23)

B. Localisation

The definitions the two Absolute Trajectory Error metrics
can be defined below in Eq. 24 and 25 relating to the position
and rotation error respectively with p̂i and ŷi being the ground
truth values, pi and yi being the measurement values and N
being the number of samples.

ATEpos “

d∞N
i“1pp̂i ´ piq2

N
(24)

ATErot “

d∞N
i“1pŷi ´ yiq2

N
(25)
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C. Collision Avoidance

Path Optimality “ Additional Path Distance pmq
Collision V icinity pmq

(26)

APPENDIX II - ALGORITHMS

Algorithm 1: Obstacle Replication Removal
Result: Replication Removal
for i Fore obstacles do

for j in Port obstacles and Stbd obstacles do
Vicinity = |coordsris ´ coordsrjs|
if Vicinity § 0.5m and
classification[i]==classification[j] then

Remove(j)
end

end

Algorithm 2: Collision Regulation Procedure
Result: COLREG Status and Avoidance
if ucv “ 0 and not 30 † � † 330 then

status = ’GiveWay’
avoidance = ’Overtake’

else if 90 † ↵ † 270 then
if 0 † � † 90 and ↵ ° 195 then

status = ’GiveWay’
avoidance = ’Crossover’

else if � • 350 and ↵ • 165 then
status = ’GiveWay’
avoidance = ’HeadOn’

else if � § 10 and ↵ • 165 then
status = ’GiveWay’
avoidance = ’HeadOn’

else
status = ’StandOn’
avoidance = ’Standby’

end
else

if † � † 112.5 and 270 † ↵ † 345 then
status = ’GiveWay’
avoidance = ’Crossover’

else if ucv † uav and not 30 † � † 330 then
if � ° 330 and ↵ § 15 then

status = ’GiveWay’
avoidance = ’Overtake’

else if � † 30 then
status = ’GiveWay’
avoidance = ’Overtake’

else
status = ’StandOn’
avoidance = ’Standby’

end
else

status = ’StandOn’
avoidance = ’Standby’

end
end

Algorithm 3: Emergency Avoidance Procedure
Result: Emergency Avoidance
status = ’Emergency’
if ucv “ 0 then

if not 5 † � † 355 then
avoidance = ’EmergencyStop’

else if � ° 180 then
avoidance = ’HardStarboard’

else
avoidance = ’HardPort’

end
else if � ° 315 then

if ↵ † 165 then
avoidance = ’HardPort’

else
avoidance = ’HardStarboard’

end
else if � † 45 then

if ↵ ° 195 then
avoidance = ’HardStarboard’

else
avoidance = ’HardPort’

end
else

avoidance = ’CollisionImminent’
end
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B
Appendix B - Simulation Results

Simulations results for scenarios where the AV was required to take action can be found in the tables below.
In each test both vessels were defined a start position and state that should yield the relevant conflict to be
detected and a new local path to be generated. Following the detection of conflict, over a horizon of twenty
time steps (seconds), it is assumed that the AV follows the generated path exactly and the CV is anticipated to
act accordingly with regulations through remaining on its path or in the case of the head-on scenario, also take
action to avoid collision. For this prediction of motion it is assumed that the CV takes action identical to that of
the AV.

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Metric

1 X 0.1
2 X 0.1
3 X 0.11
4 X 0.13
5 X 0.77
6 X 0.77
7 X 0.51
8 X 0.5
9 X 0.51
10 X 0.13

Average 100% 0 % 0% 0.33

Table B.1: Simulation Results from Head-On Scenario.
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102 B. Appendix B - Simulation Results

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Metric

1 X 0.51
2 X 0.34
3 X 0.60
4 X 0.43
5 X 0.38
6 X 0.43
7 X 0.40
8 X 0.3
9 X 0.33
10 X 0.43

Average 100% 0 % 0% 0.42

Table B.2: Simulation Results from Overtake Scenario.

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Metric

1 X 0.31
2 X 0.42
3 X 0.39
4 X 0.36
5 X 0.51
6 X 0.58
7 X 0.66
8 X 0.31
9 X 0.29
10 X 0.19

Average 100% 0 % 0% 0.40

Table B.3: Simulation Results from Crossover Scenario.

Test Collision Avoidance Path Optimality
Number Compliant Semi-compliant Failed Metric

1 X 1.82
2 X 0.39
3 X 0.77
4 X 0.70
5 X 0.61
6 X 0.70
7 X 0.36
8 X 0.58
9 X 1.52
10 X 0.36

Average 100% 0 % 0% 0.78

Table B.4: Simulation Results from Emergency Scenario.
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Appendix C - Experimental Results

(a) Static Test 1

(b) Static Test 2
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104 C. Appendix C - Experimental Results

(c) Static Test 3

(d) Static Test 4

(e) Static Test 5

(f) Static Test 6
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(g) Static Test 7

(h) Static Test 8

(i) Static Test 9

(j) Static Test 10

Figure C.1: Results of Experimental Collision Avoidance- Static Contact Vessel Scenario
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(a) Head On Test 1

(b) Head On Test 2
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(c) Head On Test 3

(d) Head On Test 4

(e) Head On Test 5

(f) Head On Test 6



108 C. Appendix C - Experimental Results

(g) Head On Test 7

(h) Head On Test 8

(i) Head On Test 9

(j) Head On Test 10

Figure C.2: Results of Experimental Collision Avoidance- Head On Scenario
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(a) Overtake Test 1

(b) Overtake Test 2
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(c) Overtake Test 3

(d) Overtake Test 4

(e) Overtake Test 5

(f) Overtake Test 6
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(g) Overtake Test 7

(h) Overtake Test 8

(i) Overtake Test 9

(j) Overtake Test 10

Figure C.3: Results of Experimental Collision Avoidance- Overtake Scenario
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