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Analyzing Linux on
a Supercomputer

Diomidis Spinellis

THE C AND the C++ programming
languages rely on a versatile but ar-
chaic and easily abused feature called
a preprocessor. Before the source code
is seen by the compiler proper, the pre-
processor manipulates the source code
according to special directives embed-
ded in the source code. These directives
may cause some parts of the code to
vanish (conditional compilation), may
insert the contents of another file in
the specified place (file inclusion), and
may also substitute a token or a series
of tokens that resemble a function call
with a specified code (macro replace-
ment). The preprocessor boosted the C
programming language’s performance
and portability, but its naive processing
of the source code, without taking into
account the language’s syntax as well as
scope and type semantics, is nowadays
making it a liability.

To study the issue and possible
countermeasures, I decided to ana-
lyze the usage of the C preprocessor
by the modern Linux kernel using the
CScout refactoring browser.! How-
ever, when I commenced the analy-
sis, I came across a big problem. As
the CScout’s data structures quickly
swelled to contain the kernel’s mil-
lions of identifiers, its performance
dropped from the thousands of lines
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per second it can normally process to
a measly 29. This meant that process-
ing the 20 million lines of the selected
kernel configuration would take
eight days—and many more if I had
to restart the process a few times to
fix errors or fine-tune it.

CScout is designed and constructed
to use efficient data structures and algo-
rithms, so optimizing it further would
be difficult. Consequently, I followed
the easy optimization method: throw
money at the problem. Here I describe
how I shrank the Linux kernel analy-
sis execution time from several days to
hours by running the code on an (ex-
pensive) supercomputer.

Of Supercomputers
and Supercars
Early supercomputers could execute
sequential programs much faster
than other computers available at
the time. They did that through fast
(but pricey and power-hungry) elec-
tronics as well as through more so-
phisticated hardware architectures
that offered features such as pipe-
lining, instruction prefetching, and
floating-point instructions. Nowa-
days, thanks to Moore’s law, our
laptops can execute a sequential pro-
gram (such as CScout) almost as fast
as a modern supercomputer.

So how do modern supercomput-
ers justify their eye-watering price
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tags? By offering myriad comput-
ing cores: 11 million for EI Capitan,
the one currently at the top of the
league. In that, modern supercom-
puters resemble a supertanker more
than a supercar (Figure 1). What a
modern supercomputer lacks in se-
quential program execution speed it
offers by its ability to execute in par-
allel a huge number of tasks.

And how can one program such a
supercomputer? Most modern super-
computers (and all top-500 ones) run
versions of Linux together with di-
verse specialized programs that han-
dle things such as distributed storage
provision, software package instal-
lation, and resource management.
A frequently used system to allocate
access to computer nodes through
queues and to manage the starting,
stopping, and monitoring of ex-
ecuted jobs is the Slurm Workload
Manager.2 Both Slurm and the com-
mands that launch it are based on
the Unix shell, so with that knowl-
edge at hand, one can easily put a
supercomputer to work.

Divide and Conquer

To utilize a supercomputer’s im-
mense power, the challenging part is
dividing the work at hand among the
supercomputer’s many processing
cores. For the Linux kernel analysis
I was undertaking, I decided to split



mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897

the processing of the roughly 23,000
source code files into 32 jobs, each
processing about 750 files on a sepa-
rate node. (The number of jobs was
dictated by the supercomputer re-
sources I was allocated when I ap-
plied for its use.)

CScout operates by reading a
specification file detailing the source
code it needs to process. Then, it can
output analysis results, offer a web
interface, or store the results as 21 ta-
bles in a relational database. For the
Linux kernel analysis, I adopted the
database option, planning to write
code to merge the 32 generated da-
tabases into a single one. A CScout
tool, csmake, can create the required
specification file by monitoring the
make-based compilation process.

Automatically generated files are
often easy to process because they
have a regular structure that allows
the processing to be done with regu-
lar expressions and a simple state ma-
chine rather than with full-fledged
parsing. In this case, all that was re-
quired for splitting the specification
file were 45 lines of awk code.

With the split specification files at
hand, T submitted a Slurm job to run
an array of 32 tasks on correspond-
ing supercomputer nodes. Next is an
excerpt from the job’s specification
shell script.

#1/bin/sh

#SBATCH --job-name=cscout
#SBATCH --array = 1—32
#SBATCH --ntasks = 1
#SBATCH --cpus-per-task = 1
#SBATCH --mem = 1286
#SBATCH --time = 1-00:00:00

filebase=S(printf tasks/file-%04d
SSLURM_ARRAY_TASK_ID)

escout -s sqlite S{filebase}.cs 2>S{filebase}.err |
sqlite3 S{filehose}.db 2>S{filebase}-sqite.err\
>S{filebase}-sqlite.out

The Slurm-specific SBATCH
comments configure the job to run
in a set of 32 nodes, each providing
128 GB of RAM (CScout process-
ing can require a lot of RAM) for
a maximum run time of one day.
The filebase variable is set to contain
the name of each task (for example,
tasks/file-0013), which is then used
to specify the names of the CScout
specification file, the generated da-
tabase, and the error logging files.
Thus, CScout is set to run on each
task’s specification file, piping SQL
commands to the sglite3 command to
populate the database.

While the 32 analysis tasks were
running, I started working on the
merging code, naively expecting to
have it completed by the time the
job would finish. Reasoning that the
merging would also be an expensive
operation, I decided to follow a bi-
nary tournament merge strategys:
pairwise merge the 32 databases into
16, then the 16 into eight, then into
four, two, and finally, into a single
one (see Figure 2).

Most table merging operations
were based on temporary tables
that mapped entity keys (such as
those for identifiers, files, mac-
ros, or functions) of the two data-
bases into a common numbering
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scheme. The process ensured that
entities that existed in both data-
bases (for example, a commonly
included header file) would share
the same key. With the renumber-
ing table at hand, the merging of
two CScout tables from two data-
bases involved creating a new table
containing only a single instance
of each common entity mapped to
the shared identifier. (See the exam-
ple in Figure 3 for the source code
files entity.) Furthermore, all entity
keys provided as foreign keys were
renumbered to follow the shared
numbering scheme. This operation
involved 21 SQL scripts comprising
about 700 lines and another 1,860
lines of RDBUnit* tests.

The merging code assumes that
the merged tables also contain the
temporary key mapping tables. As
this is not the case for the initial set of
32 tables, I employed a small trick to
avoid the cost of crafting special code
and tests to populate them with map-
ping tables referring only to a single
table rather than two. This involved
initially merging each of the 32 tables
with an empty database using the
same schema.

The following Unix Bash func-
tion illustrates the heart of the merg-
ing process.

FIGURE 1. (a) and (b) Supercomputers resemble a supertanker more than a supercar.

[Source: Ford GT image credit Ruben de Rijcke (https://commons.wikimedia.org/w/

index.php?curid=67643343), CC BY-SA 4.0]
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FIGURE 2. The binary tournament merge process tree at 0:00:00 (top left), 1:29:14 (top right), 2:04:50 (bottom left), and

3:57:35 (bottom right).

merge()
{
local files=("S@")
if [“S{#files[@1)" -eq 2; then
output="temp-S(get_dbid).db"
create_empty “Soutput”
merge_onto Soutput “S{files[0T}"
merge_onto Soutput “Sfiles[17}"
echo Soutput
return
fi
midpoint=5((S{#files[@]}/2))
local left=("S{files[@]:0:midpoint}")
local left_output=S(mkiemp XXXXX.ixi)
merge “S{lefi[@]}" >Sleft_output &
pid_left=S!

local right=("S${files[@]:midpoint}”)

local right_output=S(mkiemp XXXXX.ixi)
merge “S{rightf@1}" >Sright_output &
pid_right=$!

wait Spid_left
left_output_db=S(<Sleft_output)

wait Spid_right
right_output_db=S(<Sright_output)

merge_onto Sleft_output_db Sright_output_db

echo Sleft_output_db
}

The function takes as an argument
a list of 2N database files to merge (ini-
tially all 32) and outputs the name of
the merged database file. The base case
(in the if block) handles the merging of
just two files, which involves creating
an empty database and merging onto
it the first file and then the second one.
Otherwise, the function divides the
files into a left and a right half set. It
then recursively launches two merge
operations, one for each half, which
will execute asynchronously (in par-
allel) by terminating their invocation
statement with the & (background ex-
ecution) operator. It redirects their out-
put into temporary files from which it
will later fetch the name of the result-
ing database. When both operations
finish, it retrieves the names of the two
merged databases, merges the right
one onto the left, and returns the left’s
database name as the result. Thus,
the script initially launches a tree of

processes, which at its leaves merges
the 16 database pairs (Figure 3,
top left). As time goes by, more and
more database files are merged un-
til just two databases remain to be
merged into one. Almost like magic,
the figure’s process tree is initially con-
structed from left to right, and then the
merge reduction operations take place
from right to left. As all processes have
the same parent, the merge opera-
tion is run on a single supercomputer
node utilizing 16 cores, as specified
through the Slurm invocation param-
eter --cpus-per-task = 16.

If at First You Don’t Succeed...
The implementation work proceeded
smoothly, with unit tests neatly dem-
onstrating the correctness of the
SQL scripts I wrote. However, when
I tried merging actual databases, the
results were often wrong.

The culprit was a table holding C
identifier equivalence classes: a data
structure indicating, for example,
that the global identifier print occurring
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in several code places in multiple data-
bases was indeed the same one. In con-
trast to other merged entities for which
CScout defines a single canonical
representation, which can then be used
for merging them across databases,
identifiers lack such a representation.
A CScout database groups C identifi-
ers that are considered to be semanti-
cally equivalent through a shared key
assigned to all their records. Each iden-
tifier instance is stored through the file
and offset in which it appears. Identi-
fier groups from two databases must
be merged when they share at least one
identifier file and location (for example,
a declaration in a commonly used C
header file). For example, if one data-
base group has identifiers in file:offset
locations 1:53, 2:142, and 3:1,030 and
the other in locations 4:95, 2:142,
4:910, and 5:2,345, these two groups
must be merged because they share the
identifier in location 2:142.
Furthermore, when the results of
multiple databases are merged up-
stream, a newly introduced database
entry may require the merging of
equivalence classes that were previ-
ously separate in a single database. It
gets worse. The C preprocessor can
dynamically create identifiers by con-
catenating other ones, for example,
concatenating print and _error to create
print_error. In a large software system,
such as the Linux kernel, identi-
fier splits can occur in different string
offsets for the same identifier, which
means that the merging may also need
to take this into account and therefore
resplit identifiers in the merged data-
bases along the union of all split offsets.
Getting this merging right was a
humbling experience involving many
false starts. Initially, I tried various
increasingly complex approaches
based on SQL statements. At some
point, I had working unit tests for
eight possible cases, and yet although
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the tests were passing, in practice, the
merging failed in a few cases.

After T spent several days examin-
ing the failing cases, I realized that the
problem could not be addressed by the
relational algorithm I was implement-
ing in SQL. Instead, it required a graph
algorithm, namely that for finding con-
nected components. The graph’s nodes
are the identifier equivalence classes.
One node is created for each group of
identifiers in a database that are seman-
tically equivalent, for example, all in-
stances of dev_t. Two equivalence classes
(from different databases) are con-
nected by an edge when they share at
least one identifier. For both classes, the
shared identifier will reside in the same
file and at the same offset, for example,
dev_t in the header file fypesh.

The connected components al-
gorithm can be easily implemented
through a breadth-first search (BFS)
along the graph’s nodes. One can
implement BFS using recursive SQL
common table expressions. Unfor-
tunately, the SQLite database I was
using for storing the CScout results
did not support the required multiple
references to a recursively specified
table or recursive aggregate queries.

To counter this limitation, I located
and used an SQLite extension (bfs-
vtab) that exposes a performant BFS
algorithm as a virtual database table.
However, this approach proved too
slow for two reasons. First, it required
performing a BFS for every node, which
required processing large amounts of
data. Second, to encode into the graph

node identifiers all the required infor-
mation, I devised a suitable integer en-
coding and stored the mapping from
the original equivalence classes into
the graph node identifiers in temporary
tables. It turned out that the SQLite re-
lational join on half a billion elements
was too slow, mainly because it per-
formed a nested loop join rather than
the more appropriate (in this case) sort-
merge join. Even after I created all the
required database indexes, the opera-
tion to map the graph node identifiers
back into CScout equivalence classes
generated only a few tens of records per
second, which was unacceptably slow.

I then reasoned that the slowness was
because too many processes were run-
ning on a single supercomputer node,
starving it from input/output (I/O) ca-
pacity. Normally, I would use diverse
performance monitoring tools to verify
this hypothesis, but doing this on the
nodes of the supercomputer wasn’t easy.
So, I simply changed the work division
from launching several processes on one
supercomputer node to scheduling sev-
eral rounds of mutually dependent Slurm
tasks, hoping that these would distribute
the I/O load among multiple nodes. This
didn’t help for two reasons. First, all the
tasks were again scheduled on the same
node. Second, I hit a limit on the number
of supercomputer tasks [ was allowed to
submit even though most were just wait-
ing for their dependent tasks to finish.

GraphViz to the Rescue?
Back to the drawing board, I decided
to calculate the graph’s connected

Database 2 Database 5 Map Merged
Id | Name Id | Name Dbld | Localld | Globalld Id | Name
1 main.c 1 version.c 2 1 1 1 main.c
types.h 2 compile.h 2 2 2 2 types.h
3 types.h 5 1 3 3 version.c
5 2 4 4 compile.c
5 3 2

FIGURE 3. Merging the Files tables from two database instances.
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components using the ccomps (con-
nected components) command-line
program that is distributed with
the GraphViz (Graph Visualiza-
tion Software) open source software
package.” Initiated by AT&T Labs
Research and expertly designed and
engineered, GraphViz has served me
well on a number of occasions, so I
reasoned it would do so again. How-
ever, although this approach worked
fine for small examples, when I tried
merging the databases resulting from
the Linux kernel analysis (by that
time, the analysis had long finished),
ccomps appeared to hang.
Hypothesizing that ccomps was
hitting a fault, I started creating a
minimum working example to demon-
strate it. I did this by repeatedly cutting
the number of input lines by half to
find what part of the input was causing
it to hang. Surprisingly, at some point,
while I was taking notes on the pro-
cess, the program finished. It turns out
that ccomps wasn’t in fact hanging;
it was just very slow. I verified this by
timing and plotting a few input sizes.
Through the elapsed time plot I real-
ized that it experienced an exponential
slowdown as the input size increased.
Digging deeper into the rabbit hole,
I then started debugging ccomps.
Guessing that the issue was expensive
memory garbage collection at the end
of processing, I ran the [trace (library
trace) program on it, expecting to see
calls to free() memory deallocation
function. No such sign. Attaching a
debugger to the hung process, inter-
rupting it, and looking at the stack
also didn’t help; the process appeared
to be quite live, exploring the graph.
Then, I downloaded and compiled
the source code (this is the beauty of
open source software) and started
adding print statements to narrow
down the area of code that was caus-
ing the slowdown. Through this

process, I found that it was code that
listed any missing edges after the
connected components had been out-
put. Because the program had out-
put half a million components, each
node was probably checked against
all of them, resulting in the extreme
slowdown. Given that for efficiency
reasons | fed to ccomps only edges
associated with connected compo-
nents, I found and used the program
invocation option that eliminated
that step. After that change, ccomps
finished in seconds.

With running and unit-tested
code at hand, I ran the process on
the whole output, and 12 hours later,
I had a single merged database file.
Full of excitement, I started working
on it, but I soon realized that the re-
sults I obtained weren’t quite what I
expected. And yet, my manual verifi-
cation of the file’s contents typically
yielded the expected results.

Feeling uneasy with the outcome,
I devised a scheme for stress-testing
the merging code in a minute rather
than in 12 hours. Rather than merg-
ing 32 database files containing the
analysis of 740 files each, I created
eight database files containing the
analysis of four files each. I also ex-
tended the database’s contents to in-
clude all the analyzed code elements
(not just those I needed for my study)
so that 1 could then fully reconsti-
tute from the database the complete
source code and compare it against
the original. The merging of the re-
sultant files still performed the pair-
wise tournament merge but could
finish in about a minute. It turned
out that creating the testing setup
was one of the best decisions I had
made in a long time.

Between the time I created the test-
ing setup and the time I had merge
code working correctly, I fixed not
fewer than 20 logical errors that
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caused the code to produce incorrect
results. Each of them manifested itself
as a discrepancy between the original
Linux kernel C source code and the
one reconstituted from the analysis
database. With the fast testing setup,
I was able to test each fix in minutes
rather than wait a day for the results.

Third Time Lucky

Two of the faults caused me to com-
pletely redesign the merging method.
First, 1 gave up on using ccomps
when I realized that it couldn’t merge
groups containing parts of dynami-
cally generated C identifiers because
the underlying graph lacked the cor-
responding information. To overcome
that issue, I decided to use CScout’s
tried and tested identifier equivalence
class merging capabilities. Therefore,
I extended CScout with an option to
merge input files describing identifi-
ers, functions, and associated tokens.
The database merging process writes
these files out for each database, calls
CScout to merge them, and then
reads back the results into the data-
base to continue the merging.

Second, my initial design for the
CScout-based merging operation, built
around a state machine that processed
the identifiers file, failed because I
didn’t take into account that the identi-
fiers would not appear in the file in the
neat order I had placed them in the 10
test files I had constructed to test the
merge operation. I fixed that by aban-
doning this design in favor of a two-
pass approach over the entire identifier
set. Even though the CScout approach
was much simpler than the others I
had tried, I still fixed several faults
mainly caused by me trying to opti-
mize the merge process without taking
into account diverse corner cases. As |
fixed them, I remembered D. Knuth’s
pronouncement: “Premature optimiza-
tion is the root of all evil.”®
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n the end, the analysis took just

32 hours of wall clock time us-

ing 374 CPU hours and 640
GiB of RAM on the supercomputer’s
nodes to create a single 27-GiB data-
base file with the results. The labo-
rious implementation process, which
took several weeks, taught me many
new things regarding the processing
of complex large datasets. I hope that
sharing the adventure through this
column has made you, dear reader,
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