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THE C AND the C++ programming 
languages rely on a versatile but ar-
chaic and easily abused feature called 
a preprocessor. Before the source code 
is seen by the compiler proper, the pre-
processor manipulates the source code 
according to special directives embed-
ded in the source code. These directives 
may cause some parts of the code to 
vanish (conditional compilation), may 
insert the contents of another file in 
the specified place (file inclusion), and 
may also substitute a token or a series 
of tokens that resemble a function call 
with a specified code (macro replace-
ment). The preprocessor boosted the C 
programming language’s performance 
and portability, but its naive processing 
of the source code, without taking into 
account the language’s syntax as well as 
scope and type semantics, is nowadays 
making it a liability.

To study the issue and possible 
countermeasures, I decided to ana-
lyze the usage of the C preprocessor 
by the modern Linux kernel using the 
CScout refactoring browser.1 How-
ever, when I commenced the analy-
sis, I came across a big problem. As 
the CScout’s data structures quickly 
swelled to contain the kernel’s mil-
lions of identifiers, its performance 
dropped from the thousands of lines 

per second it can normally process to 
a measly 29. This meant that process-
ing the 20 million lines of the selected 
kernel configuration would take 
eight days—and many more if I had 
to restart the process a few times to 
fix errors or fine-tune it.

CScout is designed and constructed 
to use efficient data structures and algo-
rithms, so optimizing it further would 
be difficult. Consequently, I followed 
the easy optimization method: throw 
money at the problem. Here I describe 
how I shrank the Linux kernel analy-
sis execution time from several days to 
hours by running the code on an (ex-
pensive) supercomputer.

Of Supercomputers  
and Supercars
Early supercomputers could execute 
sequential programs much faster 
than other computers available at 
the time. They did that through fast 
(but pricey and power-hungry) elec-
tronics as well as through more so-
phisticated hardware architectures 
that offered features such as pipe-
lining, instruction prefetching, and 
floating-point instructions. Nowa-
days, thanks to Moore’s law, our 
laptops can execute a sequential pro-
gram (such as CScout) almost as fast 
as a modern supercomputer.

So how do modern supercomput-
ers justify their eye-watering price 

tags? By offering myriad comput-
ing cores: 11 million for El Capitan, 
the one currently at the top of the 
league. In that, modern supercom-
puters resemble a supertanker more 
than a supercar (Figure 1). What a 
modern supercomputer lacks in se-
quential program execution speed it 
offers by its ability to execute in par-
allel a huge number of tasks.

And how can one program such a 
supercomputer? Most modern super-
computers (and all top-500 ones) run 
versions of Linux together with di-
verse specialized programs that han-
dle things such as distributed storage 
provision, software package instal-
lation, and resource management. 
A frequently used system to allocate 
access to computer nodes through 
queues and to manage the starting, 
stopping, and monitoring of ex-
ecuted jobs is the Slurm Workload 
Manager.2 Both Slurm and the com-
mands that launch it are based on 
the Unix shell, so with that knowl-
edge at hand, one can easily put a 
supercomputer to work.

Divide and Conquer
To utilize a supercomputer’s im-
mense power, the challenging part is 
dividing the work at hand among the 
supercomputer’s many processing 
cores. For the Linux kernel analysis 
I was undertaking, I decided to split 
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the processing of the roughly 23,000 
source code files into 32 jobs, each 
processing about 750 files on a sepa-
rate node. (The number of jobs was 
dictated by the supercomputer re-
sources I was allocated when I ap-
plied for its use.)

CScout operates by reading a 
specification file detailing the source 
code it needs to process. Then, it can 
output analysis results, offer a web 
interface, or store the results as 21 ta-
bles in a relational database. For the 
Linux kernel analysis, I adopted the 
database option, planning to write 
code to merge the 32 generated da-
tabases into a single one. A CScout 
tool, csmake, can create the required 
specification file by monitoring the 
make-based compilation process. 

Automatically generated files are 
often easy to process because they 
have a regular structure that allows 
the processing to be done with regu-
lar expressions and a simple state ma-
chine rather than with full-fledged 
parsing. In this case, all that was re-
quired for splitting the specification 
file were 45 lines of awk code.

With the split specification files at 
hand, I submitted a Slurm job to run 
an array of 32 tasks on correspond-
ing supercomputer nodes. Next is an 
excerpt from the job’s specification 
shell script.

#!/bin/sh
#SBATCH --job-name=cscout
#SBATCH --array = 1—32
#SBATCH --ntasks = 1
#SBATCH --cpus-per-task = 1
#SBATCH --mem = 128G
#SBATCH --time = 1-00:00:00
filebase=$(printf tasks/file-%04d  
$SLURM_ARRAY_TASK_ID)

cscout -s sqlite ${filebase}.cs 2>${filebase}.err |
sqlite3 ${filebase}.db 2>${filebase}-sqlite.err \  
  >${filebase}-sqlite.out

The Slurm-specific SBATCH 
comments configure the job to run 
in a set of 32 nodes, each providing 
128 GB of RAM (CScout process-
ing can require a lot of RAM) for 
a maximum run time of one day. 
The filebase variable is set to contain 
the name of each task (for example, 
tasks/file-0013), which is then used 
to specify the names of the CScout 
specification file, the generated da-
tabase, and the error logging files. 
Thus, CScout is set to run on each 
task’s specification file, piping SQL 
commands to the sqlite3 command to 
populate the database.

While the 32 analysis tasks were 
running, I started working on the 
merging code, naively expecting to 
have it completed by the time the 
job would finish. Reasoning that the 
merging would also be an expensive 
operation, I decided to follow a bi-
nary tournament merge strategy3: 
pairwise merge the 32 databases into 
16, then the 16 into eight, then into 
four, two, and finally, into a single 
one (see Figure 2). 

Most table merging operations 
were based on temporary tables 
that mapped entity keys (such as 
those for identifiers, files, mac-
ros, or functions) of the two data-
bases into a common numbering 

scheme. The process ensured that 
entities that existed in both data-
bases (for example, a commonly 
included header file) would share 
the same key. With the renumber-
ing table at hand, the merging of 
two CScout tables from two data-
bases involved creating a new table 
containing only a single instance 
of each common entity mapped to 
the shared identifier. (See the exam-
ple in Figure 3 for the source code 
files entity.) Furthermore, all entity 
keys provided as foreign keys were 
renumbered to follow the shared 
numbering scheme. This operation 
involved 21 SQL scripts comprising 
about 700 lines and another 1,860 
lines of RDBUnit4 tests.

The merging code assumes that 
the merged tables also contain the 
temporary key mapping tables. As 
this is not the case for the initial set of 
32 tables, I employed a small trick to 
avoid the cost of crafting special code 
and tests to populate them with map-
ping tables referring only to a single 
table rather than two. This involved 
initially merging each of the 32 tables 
with an empty database using the 
same schema.

The following Unix Bash func-
tion illustrates the heart of the merg-
ing process.

(a) (b)

FIGURE 1. (a) and (b) Supercomputers resemble a supertanker more than a supercar. 

[Source: Ford GT image credit Ruben de Rijcke (https://commons.wikimedia.org/w/

index.php?curid=67643343), CC BY-SA 4.0.] 
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merge()
{
    local files=(“$@”)
    if [“${#files[@]}” -eq 2; then
        output=”temp-$(get_dbid).db”
        create_empty “$output”
        merge_onto $output “${files[0]}”
        merge_onto $output “${files[1]}”
        echo $output
        return
    fi
    midpoint=$((${#files[@]}/2))
    local left=(“${files[@]:0:midpoint}”)
    local left_output=$(mktemp XXXXX.txt)
    merge “${left[@]}” >$left_output &
    pid_left=$!

    local right=(“${files[@]:midpoint}”)
    local right_output=$(mktemp XXXXX.txt)
    merge “${right[@]}” >$right_output &
    pid_right=$!

  wait $pid_left
  left_output_db=$(<$left_output)

  wait $pid_right
  right_output_db=$(<$right_output)

  merge_onto $left_output_db $right_output_db
  echo $left_output_db
}

The function takes as an argument 
a list of 2N database files to merge (ini-
tially all 32) and outputs the name of 
the merged database file. The base case 
(in the if block) handles the merging of 
just two files, which involves creating 
an empty database and merging onto 
it the first file and then the second one. 
Otherwise, the function divides the 
files into a left and a right half set. It 
then recursively launches two merge 
operations, one for each half, which 
will execute asynchronously (in par-
allel) by terminating their invocation 
statement with the & (background ex-
ecution) operator. It redirects their out-
put into temporary files from which it 
will later fetch the name of the result-
ing database. When both operations 
finish, it retrieves the names of the two 
merged databases, merges the right 
one onto the left, and returns the left’s 
database name as the result. Thus, 
the script initially launches a tree of 

processes, which at its leaves merges 
the 16 database pairs (Figure 3,  
top left). As time goes by, more and 
more database files are merged un-
til just two databases remain to be 
merged into one. Almost like magic, 
the figure’s process tree is initially con-
structed from left to right, and then the 
merge reduction operations take place 
from right to left. As all processes have 
the same parent, the merge opera-
tion is run on a single supercomputer 
node utilizing 16 cores, as specified 
through the Slurm invocation param-
eter --cpus-per-task = 16.

If at First You Don’t Succeed…
The implementation work proceeded 
smoothly, with unit tests neatly dem-
onstrating the correctness of the 
SQL scripts I wrote. However, when 
I tried merging actual databases, the 
results were often wrong.

The culprit was a table holding C 
identifier equivalence classes: a data 
structure indicating, for example, 
that the global identifier print occurring 

FIGURE 2. The binary tournament merge process tree at 0:00:00 (top left), 1:29:14 (top right), 2:04:50 (bottom left), and 

3:57:35 (bottom right). 
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in several code places in multiple data-
bases was indeed the same one. In con-
trast to other merged entities for which 
CScout defines a single canonical 
representation, which can then be used 
for merging them across databases, 
identifiers lack such a representation. 
A CScout database groups C identifi-
ers that are considered to be semanti-
cally equivalent through a shared key 
assigned to all their records. Each iden-
tifier instance is stored through the file 
and offset in which it appears. Identi-
fier groups from two databases must 
be merged when they share at least one 
identifier file and location (for example, 
a declaration in a commonly used C 
header file). For example, if one data-
base group has identifiers in file:offset 
locations 1:53, 2:142, and 3:1,030 and 
the other in locations 4:95, 2:142, 
4:910, and 5:2,345, these two groups 
must be merged because they share the 
identifier in location 2:142.

Furthermore, when the results of 
multiple databases are merged up-
stream, a newly introduced database 
entry may require the merging of 
equivalence classes that were previ-
ously separate in a single database. It 
gets worse. The C preprocessor can 
dynamically create identifiers by con-
catenating other ones, for example, 
concatenating print and _error to create 
print_error. In a large software system, 
such as the Linux kernel, identi-
fier splits can occur in different string 
offsets for the same identifier, which 
means that the merging may also need 
to take this into account and therefore 
resplit identifiers in the merged data-
bases along the union of all split offsets.

Getting this merging right was a 
humbling experience involving many 
false starts. Initially, I tried various 
increasingly complex approaches 
based on SQL statements. At some 
point, I had working unit tests for 
eight possible cases, and yet although 

the tests were passing, in practice, the 
merging failed in a few cases.

After I spent several days examin-
ing the failing cases, I realized that the 
problem could not be addressed by the 
relational algorithm I was implement-
ing in SQL. Instead, it required a graph 
algorithm, namely that for finding con-
nected components. The graph’s nodes 
are the identifier equivalence classes. 
One node is created for each group of 
identifiers in a database that are seman-
tically equivalent, for example, all in-
stances of dev_t. Two equivalence classes 
(from different databases) are con-
nected by an edge when they share at 
least one identifier. For both classes, the 
shared identifier will reside in the same 
file and at the same offset, for example, 
dev_t in the header file types.h.

The connected components al-
gorithm can be easily implemented 
through a breadth-first search (BFS) 
along the graph’s nodes. One can 
implement BFS using recursive SQL 
common table expressions. Unfor-
tunately, the SQLite database I was 
using for storing the CScout results 
did not support the required multiple 
references to a recursively specified 
table or recursive aggregate queries.

To counter this limitation, I located 
and used an SQLite extension (bfs-
vtab) that exposes a performant BFS 
algorithm as a virtual database table. 
However, this approach proved too 
slow for two reasons. First, it required 
performing a BFS for every node, which 
required processing large amounts of 
data. Second, to encode into the graph 

node identifiers all the required infor-
mation, I devised a suitable integer en-
coding and stored the mapping from 
the original equivalence classes into 
the graph node identifiers in temporary 
tables. It turned out that the SQLite re-
lational join on half a billion elements 
was too slow, mainly because it per-
formed a nested loop join rather than 
the more appropriate (in this case) sort-
merge join. Even after I created all the 
required database indexes, the opera-
tion to map the graph node identifiers 
back into CScout equivalence classes 
generated only a few tens of records per 
second, which was unacceptably slow.

I then reasoned that the slowness was 
because too many processes were run-
ning on a single supercomputer node, 
starving it from input/output (I/O) ca-
pacity. Normally, I would use diverse 
performance monitoring tools to verify 
this hypothesis, but doing this on the 
nodes of the supercomputer wasn’t easy. 
So, I simply changed the work division 
from launching several processes on one 
supercomputer node to scheduling sev-
eral rounds of mutually dependent Slurm 
tasks, hoping that these would distribute 
the I/O load among multiple nodes. This 
didn’t help for two reasons. First, all the 
tasks were again scheduled on the same 
node. Second, I hit a limit on the number 
of supercomputer tasks I was allowed to 
submit even though most were just wait-
ing for their dependent tasks to finish.

GraphViz to the Rescue?
Back to the drawing board, I decided 
to calculate the graph’s connected 

FIGURE 3. Merging the Files tables from two database instances. 
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components using the ccomps (con-
nected components) command-line 
program that is distributed with 
the GraphViz (Graph Visualiza-
tion Software) open source software 
package.5 Initiated by AT&T Labs 
Research and expertly designed and 
engineered, GraphViz has served me 
well on a number of occasions, so I 
reasoned it would do so again. How-
ever, although this approach worked 
fine for small examples, when I tried 
merging the databases resulting from 
the Linux kernel analysis (by that 
time, the analysis had long finished), 
ccomps appeared to hang.

Hypothesizing that ccomps was  
hitting a fault, I started creating a 
minimum working example to demon-
strate it. I did this by repeatedly cutting 
the number of input lines by half to 
find what part of the input was causing 
it to hang. Surprisingly, at some point, 
while I was taking notes on the pro-
cess, the program finished. It turns out 
that ccomps wasn’t in fact hanging; 
it was just very slow. I verified this by 
timing and plotting a few input sizes. 
Through the elapsed time plot I real-
ized that it experienced an exponential 
slowdown as the input size increased.

Digging deeper into the rabbit hole, 
I then started debugging ccomps. 
Guessing that the issue was expensive 
memory garbage collection at the end 
of processing, I ran the ltrace (library 
trace) program on it, expecting to see 
calls to free() memory deallocation 
function. No such sign. Attaching a 
debugger to the hung process, inter-
rupting it, and looking at the stack 
also didn’t help; the process appeared 
to be quite live, exploring the graph.

Then, I downloaded and compiled 
the source code (this is the beauty of 
open source software) and started 
adding print statements to narrow 
down the area of code that was caus-
ing the slowdown. Through this 

process, I found that it was code that 
listed any missing edges after the 
connected components had been out-
put. Because the program had out-
put half a million components, each 
node was probably checked against 
all of them, resulting in the extreme 
slowdown. Given that for efficiency 
reasons I fed to ccomps only edges 
associated with connected compo-
nents, I found and used the program 
invocation option that eliminated 
that step. After that change, ccomps 
finished in seconds.

With running and unit-tested 
code at hand, I ran the process on 
the whole output, and 12 hours later, 
I had a single merged database file. 
Full of excitement, I started working 
on it, but I soon realized that the re-
sults I obtained weren’t quite what I 
expected. And yet, my manual verifi-
cation of the file’s contents typically 
yielded the expected results.

Feeling uneasy with the outcome, 
I devised a scheme for stress-testing 
the merging code in a minute rather 
than in 12 hours. Rather than merg-
ing 32 database files containing the 
analysis of 740 files each, I created 
eight database files containing the 
analysis of four files each. I also ex-
tended the database’s contents to in-
clude all the analyzed code elements 
(not just those I needed for my study) 
so that I could then fully reconsti-
tute from the database the complete 
source code and compare it against 
the original. The merging of the re-
sultant files still performed the pair-
wise tournament merge but could 
finish in about a minute. It turned 
out that creating the testing setup 
was one of the best decisions I had 
made in a long time.

Between the time I created the test-
ing setup and the time I had merge 
code working correctly, I fixed not 
fewer than 20 logical errors that 

caused the code to produce incorrect 
results. Each of them manifested itself 
as a discrepancy between the original 
Linux kernel C source code and the 
one reconstituted from the analysis 
database. With the fast testing setup, 
I was able to test each fix in minutes 
rather than wait a day for the results.

Third Time Lucky
Two of the faults caused me to com-
pletely redesign the merging method. 
First, I gave up on using ccomps 
when I realized that it couldn’t merge 
groups containing parts of dynami-
cally generated C identifiers because 
the underlying graph lacked the cor-
responding information. To overcome 
that issue, I decided to use CScout’s 
tried and tested identifier equivalence 
class merging capabilities. Therefore, 
I extended CScout with an option to 
merge input files describing identifi-
ers, functions, and associated tokens. 
The database merging process writes 
these files out for each database, calls 
CScout to merge them, and then 
reads back the results into the data-
base to continue the merging.

Second, my initial design for the 
CScout-based merging operation, built 
around a state machine that processed 
the identifiers file, failed because I 
didn’t take into account that the identi-
fiers would not appear in the file in the 
neat order I had placed them in the 10 
test files I had constructed to test the 
merge operation. I fixed that by aban-
doning this design in favor of a two-
pass approach over the entire identifier 
set. Even though the CScout approach 
was much simpler than the others I 
had tried, I still fixed several faults 
mainly caused by me trying to opti-
mize the merge process without taking 
into account diverse corner cases. As I 
fixed them, I remembered D. Knuth’s 
pronouncement: “Premature optimiza-
tion is the root of all evil.”6
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I n the end, the analysis took just 
32 hours of wall clock time us-
ing 374 CPU hours and 640 

GiB of RAM on the supercomputer’s 
nodes to create a single 27-GiB data-
base file with the results. The labo-
rious implementation process, which 
took several weeks, taught me many 
new things regarding the processing 
of complex large datasets. I hope that 
sharing the adventure through this 
column has made you, dear reader, 
wiser in a less painful way. 

References
	 1.	D. Spinellis, “CScout: A refactoring 

browser for C,” Sci. Comput. Program., 

vol. 75, no. 4, pp. 216–231, Apr. 2010, 

doi: 10.1016/j.scico.2009.09.003.

	 2.	M. A. Jette and T. Wickberg, 

“Architecture of the Slurm Work-

load Manager,” in Proc. Work-

shop Job Scheduling Strategies 

Parallel Process., 2023, pp. 3–23, 

doi: 10.1007/978-3-031-43943-8_1.

	 3.	D. E. Knuth, The Art of Computer 

Programming, Volume III: Sorting 

and Searching. Reading, MA, USA: 

Addison-Wesley, 1973.

	 4.	D. Spinellis, “Unit tests for SQL,” IEEE 

Softw., vol. 41, no. 1, pp. 31–34, Jan./Feb. 

2024, doi: 10.1109/ms.2023.3328788.

	 5.	J. Ellson, E. Gansner, L. Koutso-

f io s ,  S .  C . Nor th , and  

G. Woodhull, “Graphviz— 

Open source graph drawing  

tools,” in Proc. Int. Symp. Graph 

Drawing, 2002, pp. 483–484, 

 doi: 10.1007/3-540-45848 

-4_57.

	 6.	D. E. Knuth, “Structured pro-

gramming with go to statements,” 

ACM Comput. Surv., vol. 6, no. 

4, pp. 261–301, Dec. 1974, doi: 

10.1145/356635.356640.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management 

Science and Technology, Athens University of Economics and Business, 

104 34 Athens, Greece, and a professor of software analytics in the 

Department of Software Technology, Delft University of Technology, 2600 

AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact him at 

dds@aueb.gr.

Enhance the credibility 
and prestige of your research 

by publishing with
a globally recognized and 
respected organization.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

general-cfp-hHoriz-Sept24.indd   3general-cfp-hHoriz-Sept24.indd   3 9/30/24   6:22 PM9/30/24   6:22 PM
Digital Object Identifier 10.1109/MS.2025.3531670

http://dx.doi.org/10.1016/j.scico.2009.09.003
https://doi.org/10.1007/978-3-031-43943-8_1
https://doi.org/10.1109/ms.2023.3328788
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1145/356635.356640

	018_42ms02-adventurescode-3512732

