
Maritime Inventory Routing
using Constraint Programming

by

J.T. Teitsma
to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on 25th of September 2020.

This research was undertaken in partial fulfillment of the Master’s Applied Mathematics.

ORTEC B.V. has agreed to supervise and support this research, in addition to supervision

from TU Delft.

Student number: 4327454

Thesis committee: K.I. Aardal, Faculty of Electrical Engineering, Mathematics

and Computer Science, TU Delft, supervisor

R.B.O. Kerkkamp, ORTEC B.V., supervisor

M.M. de Weerdt, Faculty of Electrical Engineering, Mathematics

and Computer Science, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The maritime inventory routing problem (MIRP) is a tactical and operational planning

problem, that takes an integrated view on ship scheduling and inventory management for

bulk products. Given production and consumption levels during a predetermined plan-

ning horizon, the problem aims at finding delivery schedules with minimal travel costs,

such that the inventory bounds at both production and consumption ports are satisfied

during the entire planning horizon.

In this thesis, we consider instances of the MIRP with a heterogenous fleet and multiple

products. We formulate both a mixed integer programming (MIP) and constraint program-

ming (CP) model for these instances. These models are solved using commercially available

dedicated solvers for both formalism. For small instance sizes and short planning periods,

the MIP approach is prevalent in finding solutions quickly and of good quality. Due to the

inventory constraints in the problem however, the MIP approach suffers from scalability

issues more heavily than the CP approach. A rolling-horizon heuristic is proposed in order

to find solutions of better quality in comparable running time.

iii

Contents

1 Introduction 1
1.1 Shipping industry . 1

1.2 Motivation . 3

1.3 Scope . 3

1.4 Research questions . 4

1.5 Outline of this thesis . 5

2 Maritime inventory routing 7
2.1 Background. 8

2.2 Classification of literature . 10

2.3 Solution approaches . 15

3 Mixed integer programming 19
3.1 Background. 19

3.2 Branch and bound . 20

4 Constraint programming 23
4.1 Theoretical background . 23

4.2 Constraint-based scheduling . 27

5 Problem description 39

6 Model description 43
6.1 Contribution . 43

6.2 Mixed integer programming model . 45

6.3 Constraint programming model . 54

6.4 Comparison between MIP and CP model . 63

7 Computational study 67
7.1 Data description . 67

7.2 Instances . 68

7.3 Exact solution methods . 70

7.4 Rolling-horizon heuristic . 79

8 Discussion 85

v

vi Contents

A Model formulations 89
A.1 Mixed integer programming model . 89

A.2 Constraint programming model . 91

1
Introduction

This thesis is about solution approaches for the maritime inventory routing problem. In

this chapter, the topic is introduced by placing this problem in the context of the industrial

shipping industry. Subsequently, we provide the motivation and scope of our study and

give the outline of this thesis.

1.1. Shipping industry
Shipping transportation is an important mode of transport in international trade. In com-

parison to other modes of transport, ships have the advantage of being cost efficient for

moving large cargoes over long distances (Rodrigue et al., 2016). The United Nations Con-

ference on Trade And Development provide annual reports on the maritime transport in-

dustry (UNCTAD, 2019). According to this report, the total amount of loaded cargo was

11.0 billion tons in 2018, which corresponds to an average yearly increase of 3.9% between

the years 1970 and 2018. The total development of the maritime shipping industry during

these years is shown in Figure 1.1.

1.1.1. Modes of transport
Maritime transportation can be divided into three modes of operation, namely: liner ship-

ping, tramp shipping and industrial shipping. Christiansen and Fagerholt (2009) elabor-

ate on these three types. Liner shipping is the transportation of goods using ships that

have fixed routes in a published schedule. Examples of this mode of transportation in-

clude container shipping. More recently, the use of roll-on-roll-off ships, used to trans-

port cars or other vehicles, has expanded within liner shipping. Next to that, tramp ship-

ping concerns the transportation of a combination of fixed contract cargoes and optional

1

2 1. Introduction

Figure 1.1: The development of maritime shipping during the years 1970-2018, in million tonnes loaded
(UNCTAD, 2019).

spot cargoes. The mandatory cargoes come from contracts between the shipping company

and cargo owners. The challenge is to maximize profit by transporting additional spot car-

goes and constructing schedules accordingly. In industrial shipping, a shipper controls a

fleet of ships and must transport cargoes to meet demand at a minimal cost. This mode of

transport often occurs at vertically integrated companies, that handle both production and

transportation of products.

1.1.2. Planning decisions
Planning decisions in maritime shipping can be made on multiple levels. More specific-

ally, it is possible to identify decisions on strategical, tactical and operational levels (Chris-

tiansen and Fagerholt, 2009). Strategical decisions are long-term decisions, such as fleet

composition, port location or network design problems. On a tactical level, shipping com-

panies need to decide on problems with a much shorter time horizon, typically ranging

from one week to one year. Problems with a tactical aim are for example scheduling and in-

ventory management problems. Lastly, operational planning concerns the decisions with

a planning horizon up to one week. Decisions that are made on this level include speed se-

lection and ship loading during port operations. Ship routing decisions are made on both

a tactical and an operational level.

1.2. Motivation 3

1.1.3. Maritime inventory routing
A maritime inventory routing problem is an industrial shipping problem that concerns

both the planning and scheduling of ships as well as inventory management at the ports

within an maritime transportation network. These decisions are often made on an tactical

level. Chapter 2 contains a review of scientific research that is related to the maritime in-

ventory routing problem of interest in this thesis. In Chapter 5, a precise problem definition

is presented.

1.2. Motivation
Over the recent years, constraint programming (CP) has gained interest in the operations

research community. Especially scheduling is one of the most promising application area

of CP, as Laborie et al. (2018) points out. There are some important reasons why the applica-

tion of CP to scheduling problems has been successful. First of all, the availability of global

constraints such as the cumulative and the disjunctive are very well suited to model

the use of resources in this kind of problems. Next to that, CP can be effective when there

exist precedence relations between activities in the problem, as the constraint propaga-

tion procedures for these kind of relations have shown promise in finding solutions that

satisfy these relations. Additionally, the growing interest in the field of constraint program-

ming has fuelled the development of powerful solvers for these kind of problems, which has

enabled constraint programming solution approaches to be competitive to mixed-integer

programming (MIP) approaches, as shown for example by Ham et al. (2016) and Laborie

(2018).

There are many industrial applications that use constraint programming as a solution

method, for example in manufacturing (Gedik et al., 2016), civil engineering (Roofigari-

Esfahan et al., 2017) and computer scheduling (Gregory et al., 2016). Next to that, trans-

portation problems have also been modelled as scheduling problems, in order to use a

constraint programming approach to solve such problems. More specifically, Goel, Slusky

et al. (2015) and Giles et al. (2016) have use CP approaches to solve maritime inventory

routing problems. Both papers find that constraint programming is able to outperform a

MIP approaches for certain instances, motivating the use of constraint programming for

our problem.

1.3. Scope
In this thesis, we consider a maritime inventory routing problem for multiple products.

This problem has attracted increasing interest from the academic community, as is out-

lined in the literature review in Chapter 2. The main purpose of this thesis is to compare

4 1. Introduction

the use of constraint programming and mixed integer programming when applied to the

maritime inventory routing problem. The scope of this research is discussed in the follow-

ing sections.

1.3.1. Model formulation
Since the formulation of the maritime inventory routing as an optimization problem by

Christiansen and Nygreen (1998), mixed integer programming (MIP) formulations have

prevailed as the prime way to describe such problems. In recent years, constraint pro-

gramming (CP) has developed as an alternative for mixed integer formulations in the field

of operations research.

In order to compare MIP and CP for this problem, we develop alternative model for-

mulations following the formalisms of MIP and CP. The mixed integer programming model

is based on models that are available in the literature. To our knowledge, the constraint

programming model is the first of this kind for maritime inventory problems with multiple

products. It is based on models for slightly different but comparable problems (Goel, Slusky

et al. (2015) and Giles et al. (2016)).

1.3.2. Solution approach
In order to directly compare the two approaches, we use the built-in solution algorithms in

commercial solver software packages for both the mixed integer programming and the con-

straint programming formulation of the problem. We perform this comparison on problem

instances of various sizes, in order to gain an insight in the scalability of both formulations.

Earlier research has shown that the aforementioned direct solution methods often do

not succeed in finding good quality solutions for large instance sizes. Therefore, many solu-

tion approaches have been proposed in the literature, including decompostion methods,

large neighbourhood search and various problem-specific heuristics. In their literature re-

view, Papageorgiou, Cheon et al. (2018) point out that rolling-horizon heuristics seem to be

the most promising approach to finding good quality solutions for large instance sizes.

We develop a rolling-horizon heuristic that is based on either constraint programming

or mixed integer programming. The MIP and CP approaches are then compared in their

ability to find good quality solutions in a heuristic setting.

1.4. Research questions
The scope of this research is summarized in the following research questions:

1. How can the maritime inventory routing problem be modelled using mixed integer

programming and constraint programming?

1.5. Outline of this thesis 5

• What design choices need to be made in the formulation of these models?

• What are the (dis)advantages of using MIP and CP?

2. How does the performance of the solution algorithms in commercial solver software

for the MIP and CP formulations of the maritime inventory routing problem com-

pare?

• How does this scale with instance size, for example with the time horizon or

number of ports and products?

3. How does the performance of the rolling-horizon heuristics for the MIP and CP for-

mulations of the maritime inventory routing problem compare?

• How does the use of a rolling-horizon heuristic compare to the solution algorithms

of commercial solver software?

1.5. Outline of this thesis
We organize this thesis as follows. Firstly, in Chapter 2, we conduct a literature study of art-

icles concerning the maritime inventory routing problem. We give a historical overview of

the development of the research field and classify the most relevant articles based on sev-

eral characteristics. Secondly, in Chapter 4, we introduce constraint programming to the

reader. This chapter consists of a general introduction in constraint programming and a

more specific explanation of constraint programming for scheduling problems. In Chapter

5, we give a mathematical description of the maritime inventory routing problem. The two

formulations for this problem are proposed in Chapter 6, in which we also discuss their

similarities and differences. Next, in Chapter 7, we present our computational study into

the performances of the solution methods associated with the MIP and CP model formu-

lations. In this chapter, we also describe the rolling-horizon construction heuristics and

present the computational results. Finally, in Chapter 8, we discuss the findings of this

thesis and present recommendations for future work.

2
Maritime inventory routing

As outlined in Chapter 1, this thesis is focused on the maritime inventory routing problem

(MIRP). The research field concerning this problem has received an increasing amount of

attention in recent years. The purpose of this chapter is to familiarize the reader with the

problem and describe the developments what developments have been made in this field.

We present and discuss the most relevant articles in this chapter.

The goal is to familiarize the reader with the topic and describe the developments in

recent years have been.

This literature review consists of three parts. Firstly, in Section 2.1, we discuss the chro-

nological development of the field of maritime inventory routing into the research area that

it is today. Secondly, in Section 2.2 we classify the most relevant articles based on several

characteristics. These characteristics are subdivided into three categories, the problem, the

model and the solution approach. In this way, the reader becomes familiar with the differ-

ent forms in which maritime inventory routing appears in the literature. In this section,

we also discuss the formulation of two constraint programming models as an alternative to

mixed integer programming. Later, in the problem description and model description in

Chapters 5 and 6, we try to position our paper in a similar manner. Lastly, in Section 2.3, we

describe the solution methods that are used in the same articles that we discussed before.

The results of Sections 2.2 and 2.3 are summarized in two tables at the end of this chapter.

The purpose of this literature review is to give the reader an overview of the articles that

are most related to this thesis. Two extensive literature surveys on MIRPs are Christiansen,

Fagerholt, Nygreen et al. (2013) and Andersson et al. (2010). Papageorgiou, Cheon et al.

(2018) give a shorter but more recent literature survey, which is mainly focused on the use

of matheuristics as a solution approach.

7

8 2. Maritime inventory routing

2.1. Background
Maritime inventory routings are a combination of ship scheduling and inventory manage-

ment, as explained in Chapter 1. They are part of the more general class of inventory rout-

ing problems. Bell et al. (1983) were the first to present the integrated view as a variant

of the vehicle routing problem that takes inventory costs into account. Dror et al. (1987)

defined the general inventory routing problem as a distribution problem in which con-

sumers of a product hold a local inventory and consume a certain quantity every day. The

objective is to minimize the costs of the transportation of the product from supplier(s) to

customers, while keeping all inventory levels between their lower and upper bounds. This

problem arises in situations where one actor is responsible for both the inventory as well

as the scheduling of transportation vehicles (Christiansen, Fagerholt, Nygreen et al., 2013).

In the years after its introduction by Bell et al. (1983), the inventory routing problem

has been described and studied in many variants and with applications across industries.

The scope of inventory routing problems mainly concentrates on road-based and mari-

time transportation of goods. In their literature review, Andersson et al. (2010) did not find

examples of inventory routing based on rail- or air transportation.

Road-based transportation problems have attracted the most attention within the in-

ventory routing literature (Andersson et al., 2010), with applications across many indus-

tries. Coelho et al. (2015) provide some examples, such as the transportation of liquid gas

(Campbell et al., 2004), automotive components (Richey et al., 2007), groceries (Custódio

et al., 2006), fuel (Popovic et al., 2012) and livestock (Oppen et al., 2010). For comprehens-

ive literature reviews on the inventory routing problem in general we refer to Andersson

et al. (2010) and Coelho et al. (2015).

MIRPs often have similar distinctive characteristics, that makes them different from

their road-based counterparts. Andersson et al. (2010) mention some important differ-

ences, of which we repeat two here. Firstly, there is a difference in planning horizons,

which are generally longer in the maritime sector because of long travel times and lengthy

port operations. Related to this, the time granularity is often rougher for maritime prob-

lems. Next to that, the quantities that are loaded and unloaded in road-based applications

are often small. In contrast, large quantities, relative to the capacity of a ship, are often

loaded and unloaded in the maritime context. Lastly, an industrial fleet of ships is often

heterogeneous, because of the long-term investments that are needed to purchase a ship.

In contrast to road-based inventory routing papers, where the fleet is assumed to be homo-

geneous more often, the papers that we included in this review deal with a heterogeneous

fleet. This means that ships may differ in size, sailing speed, operating costs etcetera.

Because of these distinctive characteristics, MIRPs have attracted interest from the aca-

demic community on their own. The first MIRP was introduced by Miller (1987). Christi-

2.1. Background 9

ansen and Nygreen (1998) present a combined inventory and routing problem with time

windows that was based on a maritime case study. In their paper, they formulate a trans-

portation problem for a single product (ammonia) as a mixed integer linear program. Con-

sumption and production rates are assumed to be constant. The column-generating ap-

proach that they used became known as the path-flow formulation. In a later article, Chris-

tiansen (1999) introduced an alternative formulation for this problem as a network model.

The nodes correspond to possible events in the planning horizon, namely port visits that

a ship can make. This event-based formulation, called arc-flow, became widely used in

literature. We will discuss the differences between the two formulations in more detail in

Section 2.2.1.

The aforementioned models by Christiansen use a continuous variable to keep track of

time between port stops, which is an accurate representation of time. Ronen (2002) was

the first to develop a discrete-time model for the maritime inventory routing problem. In

this model, the planning horizon was subdivided into smaller time periods. This approx-

imation can be made for problems with larger travel times and operation times, such as the

MIRP. The use of discrete-time models has become more common over time, with recent

papers on the maritime inventory routing problem, such as Goel, Slusky et al. (2015), Agra,

Christiansen et al. (2016) and Foss et al. (2016), presenting a model in discrete time. The

trade-off between continuous time and discrete time is discussed in more detail in Section

2.2.1.

The MIRP has occurred in many application areas concerning transportation of liquid

bulk products. The first papers that related to the maritime inventory routing addressed

a transportation problem for ammonia. Next to that, most of the articles find an applic-

ation for petroleum products, such as Song et al. (2013). In recent years, attention for the

simultaneous transportation of multiple products has grown, especially with application in

the petroleum and chemistry industries. Al-Khayyal et al. (2007) study the transportation

of petrochemicals, whereas Persson et al. (2005) consider bitumen products. Examples of

other application areas are the cement industry (Christiansen, Fagerholt, Flatberg et al.,

2011), pulp (Andersson, 2011) and calcium carbonate slurry (Dauzère-Pérès et al., 2007).

Over recent years, another application area has grown more interest on its own, namely

that of liquefied natural gas (LNG). World-wide demand of LNG accounts for a steadily

growing share of the natural gas market (Goel, Slusky et al., 2015). According to Christi-

ansen and Fagerholt (2009), this has resulted in increasing interest for optimal supply chain

management for this product. The LNG inventory routing problem is similar to other in-

ventory routing problems, with few additional requirements that are specific to the nature

of LNG transport. It was first presented by Grønhaug et al. (2009) and later solved for large

instances by Goel, Furman et al. (2012).

10 2. Maritime inventory routing

Like the first paper on maritime inventory routing by Christiansen and Nygreen (1998),

most articles modelled this problem as a mixed integer program. With the development of

constraint programming as an alternative to mixed integer programming, another class of

models for transportation problems have arisen in recent years. Goel, Slusky et al. (2015)

formulated a constraint programming model for the LNG inventory routing problem and

introduced a CP-based solution technique. Later, Giles et al. (2016) formulated a different

constraint programming model for a supply-and-delivery problem for an oil company. We

discuss these constraint programming models in the next section.

Another step in the growing maturity of the research field, was the availability of pub-

lic data sets. Papageorgiou, Nemhauser et al. (2014) present a library (MIRPLib) of test

instances for the maritime inventory routing problem. The main goal of the library was

to help the field gain maturity and reduce the "barrier to entry" for interested research-

ers. Next to the database of benchmark instances, Papageorgiou, Nemhauser et al. (2014)

provide best known computational results for each instance.

2.2. Classification of literature
In the previous section, we have seen that there are some characteristics that all MIRPs

share, such as time scales, quantities (un)loaded and a heterogeneous fleet. Christiansen

and Fagerholt (2009) present a basic version of the MIRP in their paper for the transport-

ation of a single product. However, as Andersson et al. (2010) point out, there exists large

variability among problems that are described in the maritime inventory routing literature.

The reason for these differences is the wide range of assumptions that could be made in

order to define a MIRP or to formulate a model.

In this section, we present a framework that classifies articles based on several import-

ant characteristics, in order to properly classify the wide array of problems that occur in

the literature. This framework is made of several criteria that encompass multiple aspects

of a maritime inventory routing. A similar framework was provided by Andersson et al.

(2010) consisting of slightly different characteristics. We will describe these characteristics

in Section 2.2.1.

The set of characteristics that we use to classify articles is not sufficient to describe all

dimensions of every problem and model that is found in the literature in a detailed way.

However, they are sufficient to provide a high-level categorization of the most important

articles related to maritime inventory routing.

2.2.1. Problem characteristics
In this section, we present several characteristics to classify MIRPs that are studied in the

literature. The problem characteristics that we will cover in this section are:

2.2. Classification of literature 11

• Formalism

• Time horizon

• Network

• Products

• Fleet

• Inventory

• Production and demand rates

• Scheduling

• Time

• Compartments

Formulation

Most of the articles that are included in this review, use a mixed integer programming for-

mulation of the problem. In the description of the different characteristics of the problem,

the discussion mainly concerns MIP formulations of different aspects of the problem.

To the best of our knowledge, there are two articles that use constraint programming

(CP) to model this problem in an alternative way. Goel, Slusky et al. (2015) propose two CP

models for the LNG inventory routing problem, which they compare with a mixed integer

programming model that they formulated earlier (Goel, Furman et al., 2012). The main

reason they give for formulating a constraint programming model is that the mixed integer

model suffered from scalability issues for larger instances. Giles et al. (2016) present a CP

formulation for a supply-delivery problem that is operated by energy company BP.

All models that are developed in these papers make use of the scheduling formalism,

which we explain in Chapter 4. In this formalism, it is possible to model a transportation

problem as a scheduling problem. There are some differences in the model formulations

given in these articles. In the first model that is formulated by Goel, Slusky et al. (2015), the

products that that need to be shipped are modelled as possible tasks, where each cargo can

be transported by one ship. In the second model, the tasks represent all possible stops that

a ship can make at the ports. These visits need to be scheduled in order to create a feasible

schedule. Giles et al. (2016) take the perspective of a port, by enumerating all possible visits

that can be made to a port.

Time horizon

We subdivide papers based on the time horizon of the instances. Similar to Foss et al.

(2016), we recognize horizons up to one month as short, horizons of multiple months as

medium and those of one year or longer as long planning horizons. The early papers of

Christiansen and Nygreen (1998) and Christiansen (1999) solved instances with short plan-

ning horizon. The paper of Al-Khayyal et al. (2007) is mainly focused on operations in the

ports, using planning horizons of up to ten days. Thanks to improvements in available

computation power and the development of specialized optimization software, later pa-

pers address problems with time horizons up to of a couple of months. The instances that

are used in Goel, Furman et al. (2012) and Goel, Slusky et al. (2015) even have a planning

horizon of up to one year.

12 2. Maritime inventory routing

Network

The delivery networks of the papers in this review consists of multiple customers that need

to receive products. However, the number of suppliers in the network may vary. Andersson

et al. (2010) classifies article based on the structure of the network, where there can be a

difference between distribution networks consisting of either one or multiple suppliers.

Giles et al. (2016) introduce a problem with a slightly different distribution network, that

consists of suppliers, plants and customers. This is a generalization of the standard MIRPs,

because the plants can be regarded as ports that have both production and consumption

of products.

Products

Maritime inventory routing problems in general deal with bulk products, of which we men-

tioned some applications in Section 2.1. Many of the research that is conducted, such as in

Dauzère-Pérès et al. (2007), is driven by business questions from oil companies. This makes

the shipping of oil products one of the main application areas of MIRPs. A distinction can

be made, based on whether a model accounts for one or multiple products. In the paper of

Christiansen and Nygreen (1998), a model is developed for the transportation of one single

product. Ronen (2002) was the first to present a scheduling model for multiple products.

This model only accounted for the planning of shipments and did not include decisions on

delivery schedules for ships. The arc-flow model of Christiansen (1999) was extended to

handle multiple products by Al-Khayyal et al. (2007). The LNG inventory routing problem

was solved for large instances by Goel, Furman et al. (2012) and Goel, Slusky et al. (2015).

Giles et al. (2016) solve a problem that involves conversion of a single base product into

multiple end products.

Fleet

The problems in the literature can be distinguished based on the size of a fleet. A large

fleet offers more scheduling possibilities and therefore alters the nature of the problem.

We classify small-sized (< 5 ships), medium-sized (5−10 ships) and large-sized (> 10 ships)

fleets. These three categories are all represented in the articles in this review. Many of the

problems deal with small-sized fleets, but efforts have been made to solve the problem

for fleets of larger sizes, for example by Dauzère-Pérès et al. (2007), Papageorgiou (2012),

Goel, Furman et al. (2012) and Goel, Slusky et al. (2015). Ronen (2002) only considers the

scheduling of cargoes from and to ports, without ship schedules. Therefore, the size of the

fleet is not relevant for this problem.

Inventory

One of the defining elements of the maritime inventory routing problem is the considera-

tion of stock levels at the producers and consumers. In many of the problems, the inventory

2.2. Classification of literature 13

bounds are imposed as hard constraints, for example in Christiansen and Nygreen (1998).

Sometimes, it might be inevitable that inventory bounds cannot be satisfied, which means

that the stock levels are at their lower or upper bounds.

There are two possible inventory policies that determine how these situations are handled.

If inventory levels of consumption ports are allowed to be outside the corresponding bounds,

this leads to back-ordering. This means that the corresponding demand must be served

at a later point in time. Mathematically speaking, this is equivalent to changing hard in-

ventory constraints into soft constraints, while penalizing the back orders in the objective

function. This policy is used in Ronen (2002) and Persson et al. (2005). The other inventory

policy is referred to as lost sales. Lost sales occur when inventory levels are kept at its re-

spective bounds during a certain time period, while the production or consumption during

that period is considered lost. Among others, Goel, Furman et al. (2012), Goel, Slusky et al.

(2015) and Giles et al. (2016) model the inventory management in this way. Papageorgiou

(2012) uses an equivalent policy to lost sales, by introducing a spot market for products.

Production and demand rates

This thesis is focused around the maritime inventory routing problem with deterministic

production and consumption rates, which are completely known at the beginning of the

planning horizon. This means, that we do not include stochastic MIRPs.

In practice, production and consumption profiles are not constant during an entire

planning horizon. However, assuming that production rates are constant can simplify the

model that should be used. This simplification is made by several authors, e.g., Christi-

ansen and Nygreen (1998), Al-Khayyal et al. (2007), Siswanto et al. (2011) and Agra, Chris-

tiansen et al. (2013). On the contrary, varying production and consumption profiles, that

are used by for example Papageorgiou (2012) and Giles et al. (2016), give a more correct

representation of reality. As an exception to other papers, Grønhaug et al. (2009) let the

production quantity be a decision variable of the problem.

Scheduling

As MIRPs are concerned with finding optimal ship delivery schedules, scheduling of port

visits and intermediate routes is a core element of these problems. Therefore, the way of

generating schedules is an essential characteristic of any model in the literature. In the first

paper by Christiansen and Nygreen (1998), the authors propose a model in which routes of

a ship are generated a priori. Then, binary decision variables indicate whether or not a ship

uses such a route or not. This approach later became known as the path-flow formulation.

In later papers, several alternatives to this approach have been proposed. Ronen (2002)

formulated a model that only considered the scheduling of shipments between ports, without

assigning them to ships or routes. In this way, the scheduling decision is made separately.

Dauzère-Pérès et al. (2007) considered a problem where ships would make one round-trip

14 2. Maritime inventory routing

from a refinery to exactly one consumption port each day, leading to a simplified schedul-

ing decision for ships.

The approach that would become the most used is called the arc-flow formulation,

which was introduced in the paper by Christiansen (1999). In the arc-flow formulation,

a MIRP is formulated as a flow network. The nodes in the network are possible port stops

during the planning horizon. The arcs in the network are possible connections between

two nodes. The movement of the ships is represented by the flow through the network, by

introducing variables that indicate whether a ship uses the arc between two port stops or

not. This event-based model formulation has been used in a majority of the papers in the

literature. We discuss this formulation in more detail in the model description in Chapter

6.

The arc-flow and path-flow approaches are compared in the paper by Grønhaug et al.

(2009). The main difference between the two formulations is that in an arc-flow formu-

lation, all route information such as arrival times and loading quantities are calculated

based on the values of the variables in the problem. In a path-flow formulation, all this

information is included in the routes that are generated a priori. As Grønhaug et al. (2009)

point out, the path-flow formulation suffers from poor scalability issues. All possible routes

need to be included upfront, which means that if the number of ports or the time horizon

increases, the number of possible routes in the path-flow formulation increases exponen-

tially. In contrast, the number of nodes and arcs in an arc-flow network scales polynomially

with the number of ports and the length of the planning horizon. Grønhaug et al. (2009)

show that this phenomenon leads to long solution times for the path-flow formulation,

even for the LP relaxation.

Papageorgiou (2012) concludes that for complicated MIRPs with multiple split pickups

and split deliveries, arc-based formulations are preferred. He gives two main reasons for

this, namely that local search heuristics are better able to make small local changes. Next

to that, path-based formulations often have to generate many columns. Given the nature

the problem we describe and the size of the case study, the use of arc-based formulations

are preferred in the formulation of a model in this thesis.

Time

Another characteristic that distinguishes different models in the literature is the handling

of time. In this regard, there are two main directions that could be taken. In the first papers

with models for maritime inventory routing, a continuous time variable was used. In the

path-flow model that was proposed by Christiansen and Nygreen (1998), ship routes are

enumerated a priori. In these routes, arrival, operating and travel times take continuous

values, just as it would be in a real-world situation. Also the arc-flow models that were

developed later, contain continuous time variable to keep track of the time.

2.3. Solution approaches 15

Ronen (2002) was the first to present a model that used an alternative interpretation of

time, namely discrete time. In a discrete-time model, the planning horizon is subdivided

into fixed time periods. An index that represents time is included to all relevant variables

and constraints in the model. Persson et al. (2005) presented an arc-flow model that used

discrete time.

Although continuous-time formulations were developed first, recently more discrete-

time models have been proposed. The biggest advantage of using a discrete-time scheme

is that it is easier to deal with varying production and consumption profiles. Agra, Christi-

ansen et al. (2016) formulate both a continuous-time and a discrete-time model and com-

pare the two.

Compartments

The continuous-time arc-flow model by Christiansen (1999) has been extended to contain

multiple products by Al-Khayyal et al. (2007). In order to deal with multiple products, it

must be determined how to model the way that products are loaded into ships. As most

products in practical cases are not mixable, one needs to divide the products over differ-

ent tanks. It is then a design decision, how to model this allocation of products to tanks

mathematically.

In earlier papers by Persson et al. (2005) and Dauzère-Pérès et al. (2007) the allocation

of products to the ship was not considered explicitly. Products could be loaded into the

ship until the total ship capacity was reached. No further distinctions were made between

the products. This approach was later also chosen by Agra, Christiansen et al. (2013). Al-

Khayyal et al. (2007) introduced the concept of dedicated compartments. They assumed

that every ship contained exactly one compartment that could be filled with one specific

type of product. This is a simplified representation of reality, as often different types of

products could be loaded into a compartment after it is emptied and cleaned. To model

this situation, Siswanto et al. (2011) modelled the multi-product problem using undedic-

ated compartments. The model is formulated in continuous time, similar to Christiansen

(1999); Al-Khayyal et al. (2007), but has modifications for loading and unloading activit-

ies. This prevents that a product can be loaded into a compartment that already contains

another product. Foss et al. (2016) use a discrete time model with undedicated compart-

ments and exploit the structure of the problem in order to strengthen the model using valid

inequalities.

2.3. Solution approaches
The articles that are included in this review, use various solution approaches to solve the

problem. Almost all papers formulate a mathematical program and feed this to a solver,

16 2. Maritime inventory routing

where the optimization is done using a branch-and-bound algorithm. As the size of an in-

stance of the MIRP can be very large for real-life problems, this direct method often does

not suffice in finding the optimal solution. Therefore, the solutions from this direct method

are often compared with alternative approaches, that can handle the complexity of the

problem.

The first attempt to tackle this problem, by Christiansen and Nygreen (1998) and Chris-

tiansen (1999) made use of a Dantzig-Wolfe decomposition of the problem. In this ap-

proach, the problem is subdivided in smaller subproblems that find feasible routes for

ships and visit sequences for the ports. As ships can be scheduled independently of each

other, this decomposition leads to smaller subproblems that can be solved independently

from each other.

The arc-flow models are often solved by problem-specific heuristic, for example in Sis-

wanto et al. (2011). This heuristic is aimed at constructing a good solution based on sev-

eral selection rules. Song et al. (2013) apply a large neighbourhood search to an arc-flow

model. In this algorithm, they iteratively improve an initial solution by locally optimizing

the problem with all but two ships fixed. Goel, Furman et al. (2012) then build on this heur-

istic by proposing a simple construction heuristic to find good solution to large-scale MIRP

instances.

In a recent study, Papageorgiou, Cheon et al. (2018) present and adapt several variants

of matheuristics, which have been a focal point of research in the previous years. Math-

euristics are solution methods that use the optimal solutions of (smaller) mathematical

programs. The authors compare multiple matheuristics in their computational study and

find new best known solutions to several of the unsolved instances in the MIRPLibrary

(Papageorgiou, Nemhauser et al., 2014). Papageorgiou, Cheon et al. (2018) point out that

matheuristics rely for a large part on the performance of the solver that is used to solve the

underlying smaller mixed integer linear programs.

Both Goel, Slusky et al. (2015) and Giles et al. (2016) compare a CP approach to a mixed

integer programming approach, by letting commercial solvers solve the two different prob-

lem formulations. Next to that, Goel, Slusky et al. (2015) develop both a CP heuristic and

a hybrid heuristic, which incorporates elements from both constraint programming and

mixed integer programming.

2.3.So
lu

tio
n

ap
p

ro
ach

es
17

Table 2.1: This table contains an overview of all model characteristics for the articles that are included in this literature review.

Problem characteristics

Paper Formalism Time horizon Network structure Products Fleet Inventory Rates Time Scheduling Compartments

Christiansen and Nygreen (1998) MIP Short Multiple Single Small Hard bounds Constant Continuous Path-flow N/A

Christiansen (1999) MIP Short Multiple Single Small Hard bounds Constant Continuous Arc-flow N/A

Ronen (2002) MIP Short Single/multiple Multiple N/A Back-order Varying Discrete Shipments N/A

Persson et al. (2005) MIP Short/medium Multiple Multiple Small Back-order Varying Discrete Arc-flow No compartments

Dauzère-Pérès et al. (2007) MIP Short Single Multiple Large Hard bounds Varying Discrete Daily trip No compartments

Al-Khayyal et al. (2007) MIP Short Multiple Multiple Small Hard bounds Constant Continuous Arc-flow Dedicated

Siswanto et al. (2011) MIP Short Single Multiple Small Hard bounds Constant Continuous Arc-flow Undedicated

Papageorgiou (2012) MIP Medium Single/multiple Single Large Lost sales Varying Discrete Arc-flow N/A

Song et al. (2013) MIP Medium Multiple Single Medium Hard bounds Varying Discrete Arc-flow N/A

Agra, Christiansen et al. (2013) MIP Short Multiple Multiple Small Hard bounds Varying Continuous Arc-flow Dedicated

Agra, Christiansen et al. (2016) MIP Short Multiple Multiple Small Hard bounds Constant Continuous/discrete Arc-flow No compartments

Foss et al. (2016) MIP Short Multiple Multiple Small Hard bounds Varying Discrete Arc-flow Undedicated

Grønhaug et al. (2009) MIP Short/medium Multiple Single (LNG) Small Hard bounds Decision Discrete Arc-flow N/A

Goel, Furman et al. (2012) MIP Long Single Single (LNG) Medium/large Lost sales Varying Discrete Arc-flow N/A

Goel, Slusky et al. (2015) CP Long Single Single (LNG) Medium/large Lost sales Varying Discrete CP N/A

Giles et al. (2016) CP Medium Multiple Multiple Medium Lost sales Varying Discrete CP Undedicated

18
2.M

aritim
e

in
ven

to
ry

ro
u

tin
g

Table 2.2: This table contains an overview of all solution approaches in the articles that are included in this literature review.

Solution approaches

Paper MIP approach CP approach Decomposition Construction heuristic Local search LNS Matheuristic CP heuristic Hybrid heuristic

Christiansen and Nygreen (1998) 3 3

Christiansen (1999) 3 3

Ronen (2002) 3 3

Persson et al. (2005) 3 3

Dauzère-Pérès et al. (2007) 3

Al-Khayyal et al. (2007) 3

Siswanto et al. (2011) 3 3

Papageorgiou (2012) 3 3 3

Song et al. (2013) 3 3 3

Agra, Christiansen et al. (2013) 3

Agra, Christiansen et al. (2016) 3

Foss et al. (2016) 3 3

Grønhaug et al. (2009) 3

Goel, Furman et al. (2012) 3 3 3

Goel, Slusky et al. (2015) 3 3 3 3

Giles et al. (2016) 3 3

3
Mixed integer programming

In this thesis, we compare a mixed integer programming approach to a constraint program-

ming approach for the maritime inventory routing problem. In this chapter, we briefly in-

troduce the principle of mixed integer programming, where we restrict ourselves to mixed

integer linear programming. Next to that, we explain the branch and bound algorithm,

which is used in the solution algorithm that is implemented in the commercial solver that

we use to analyse our problem.

Branch and bound is only a single topic in the research field of mixed integer program-

ming, but is highlighted here because of the relevance to our research. For further inform-

ation and a broader picture of this research field, we refer the reader to textbooks on this

topic, for example Conforti et al. (2014).

3.1. Background
The theoretical foundations for the research field in integer programming are motivated by

the paper of Dantzig et al. (1954) and Ralph Gomory’s work on cutting planes for integer

programs.

Suppose we have n-dimensional variable x = (x1, . . . , xn). For subset I ⊆ {1, . . . ,n} these

variables are integer, whereas for the variables {1, . . . ,n} \ I the variables are continuous.

Then a mixed integer linear program is given by:

minimize z = cT x

subject to Ax ≤ b,

l j ≤ x j ≤ u j , j ∈ {1, . . . ,n},

x j ∈Z≥0, j ∈ I ,

x j ∈R≥0 j ∈ {1, . . . ,n} \ I .

19

20 3. Mixed integer programming

where c is an n-dimensional vector, A an m ×n matrix, and b an m-dimensional vector.

The set of feasible solutions for this program is given by the set

S = {
x
∣∣Ax ≤ b, x j ∈Z≥0 for j ∈ I , x j ∈R≥0 for j ∈ {1, . . . ,n} \ I

}
.

A solution x∗ to the problem satisfies cT x∗ ≥ cT x for all x ∈ S \ x∗.

A relaxation of a mixed integer linear problem is a modification of the problem, in which

certain requirements are relaxed, meaning that the set of feasible solutions of the relaxed

problem is larger than the feasible set of the original problem. One relaxation to a mixed

integer linear program, in which all integrality requirements are relaxed, is called the linear

programming relaxation or LP relaxation.

The set of feasible solutions for this program is given by the polyhedron

S = {
x
∣∣Ax ≤ b, x j ∈R≥0 for j ∈ {1, . . . ,n}r i g ht }.

3.2. Branch and bound
One way to solve mixed integer linear programs, would be to enumerate all possible solu-

tions and check which solution is the best one. However, for practical problems, this is a

highly ineffective way of solving the problem. Branch and bound is an alternative method

that solves a mixed linear programs by splitting up the problem under consideration into

sub problems that are easier to solve. By solving the sub problems, one aims to find a solu-

tion for the original mixed integer program.

Branch and bound aims at systematically searching the space of all feasible solutions to

a mixed integer linear program, while avoiding the need to enumerate all possibilities. In

the search process, the space of feasible solutions is iteratively split up in smaller subsets.

This process can be represented by a search tree. The root of this tree is the original prob-

lem, also called the master problem. The sub problems that are created during the solution

process are represented by nodes in this search tree.

The process of splitting a problem up into two sub problems is called branching. As

explained later, branching can take place in the case that the solution to the LP relaxation

of a problem in the search tree does not meet all integrality requirements of the master

problem, meaning that it contain at least one of the variables with an integrality require-

ment in the master problem has a non-integer value in the solution to the LP relaxation.

In this case, one of these variables is selected and two sub problems are created. In either

sub problem, an additional requirement is imposed on the selected variable, to force the

solution away from the fractional solution that was found in the LP relaxation.

The algorithm is initialised using a lower bound and an upper bound to the objective

3.2. Branch and bound 21

value. The lower bound is the value of the LP relaxation of the master problem, whereas the

upper bound is given by any feasible solution to the problem. In case no feasible solution

is known, +∞ is used as an upper bound to the objective value.

After initialisation, the values of the lower and upper bounds are stored during the solu-

tion process, and can be updated during single iterations. For each sub problem at each

node, a lower bound to the objective value is calculated. In the case of branch and bound

methods for mixed integer linear programs, a lower bound can be calculated by solving a

linear relaxation of the sub problem at the node in the search tree. In some cases, it is pos-

sible to terminate the branching process at a given node. This step, called pruning, means

that the sub problem at that node is not partitioned later in the process. This can happen

in the following cases:

• The LP relaxation is infeasible, because of the sequence of branching choices that

leads to this sub problem is infeasible.

• The solution of the LP relaxation satisfies all integrality conditions of the master prob-

lem, which means that the LP solution is feasible for the mixed integer program. The

node can be pruned and does not need to be partitioned any further.

In this case, the values of the upper bound to the objective value of the master prob-

lem needs to be updated. If the objective value of the newly found solution is lower

than the upper bound that was stored, the upper bound is lower to this objective

value.

• The lower bound of the linear relaxation is larger than the upper bound that is stored.

In this case, the sub problem can never give an integral solution that is better than the

solution that is already known, so this node can be pruned.

In case a node cannot be pruned, it needs to be branched, in the way it is explained

before. This procedure can be carried out in order to implicitly search the solution space of

a mixed integer program.

4
Constraint programming

Constraint Programming (CP) is originally developed as a modelling concept for solving

constraint satisfaction problems, where the goal is to find a feasible solution to the prob-

lem. As it is possible to write optimisation problems as constraint satisfaction problems,

CP gained more attention in the field of operations research, as a method to model and

solve combinatorial problems. In particular, CP is a useful method for finding solutions

when applied to highly constrained problems, such as scheduling problems.

In Section 4.1, we give a background on constraint programming in general. We dis-

cuss important concepts concerning constraint programming, such as the formulation of

CP models and search method. Next, in Section 4.2, we introduce a more specific formal-

ism for modelling constraint-based scheduling problems. Again, we describe formulation,

inference and the search method for this particular formalism. We use this framework in

Chapter 6 to formulate a constraint programming model for the maritime inventory rout-

ing problem.

4.1. Theoretical background
A general constraint programming problem can be modelled as a constraint satisfaction

problem (CSP). A CSP is defined by a finite set of variables X = {x1, . . . , xn}, each with a

corresponding domain Di , and a finite set of constraints C = {c1, . . . ,cm}. We will restrict

ourselves to constraint satisfaction problems where the variables can take discrete values.

Each constraint c j is expressed as a relation on a number of variables. This set of variables

corresponding to constraint c j is called its scope S j . A solution to a CSP is given by an

assignment of values x̂i ∈ Di for each variable xi , such that all constraints c j are satisfied.

The goal of a CSP can be either to find a feasible solution, to find all possible solutions or to

23

24 4. Constraint programming

optimise with respect to an objective function.

4.1.1. Modelling
A constraint satisfaction problem is defined by its variables and constraints. In contrast

to mixed integer programs, where variables can be either integer or continuous numbers,

variables in a CSP can take more general forms, as long as the domains contain discrete

values.

Constraints can have a declarative or procedural function. In mixed integer program-

ming, numerical constraints describe an aspect of the optimisation problem and reduce

the solution space of the problem. This is a declarative constraint. It is a distinct character-

istic of constraint programming, that constraints are viewed as a procedure that operates

on the solution space (Bockmayr et al., 2005). This offers a method to exploit the problem

structure in order to find feasible solutions using these procedures.

In order to understand this concept, we consider the following basic example. We have

a CSP that contains three variables x1, x2 and x3, with the following domains:

• D1 = {1,2}

• D2 = {1,3}

• D3 = {1,2,3}

Now we can impose the allDifferent constraint on these variables:

allDifferent{x1, x2, x3} =⇒ x1 6= x2 6= x3.

This constraint states that x1, x2 and x3 cannot have the same value in a feasible solution.

Next to that, this constraint comes with a procedure to reduce the domains of all variables

that are related to this constraint. For example, if x1 would be set to 1, it would be straight-

forward to remove 1 from D2 and D3.

The possibility to declare custom constraints comes with many advantages. The most

important advantage is that this allows for very flexible modelling of a constraint satisfac-

tion problem. Once the structure of the problem is known, it is possible to declare custom

constraints by implementing a corresponding procedure. Next to that, we are not restricted

to using linear constraints when formulating a problem, which allows for a more intuitive

formulation of the problem. As an example, we can look at the allDifferent constraint

that was introduced above. This constraint can declare the relation between n variables in

one single line. On the other hand, it requires n(n −1)/2 constraints of the type xi 6= x j to

formulate the same constraint using numerical expressions.

A related concept in CP is the use of global constraints. A global constraint is a high-level

constraint class that describes all properties of the individual constraints. When making

4.1. Theoretical background 25

use of global constraints, it is only necessary to declare the constraint and the correspond-

ing filtering algorithm (see next section) once, as it will hold for all individual constraints of

this type. The allDifferent constraint is an example of a global constraint, as it needs to

be defined once, but can be use multiple times in one problem formulation.

Up until now, many types of constraints have been defined for known combinatorial

structures. A catalogue of all constraints that have been proposed in the literature is kept

in the Global Constraint Catalog (Demassey, n.d.). In Pesant (2014) an overview of several

categories of constraints is given. We will give some examples of constraints related to the

scheduling-based formalism in Section 4.2.

4.1.2. Search methods
For a typical constraint satisfaction problem, a constraint programming search method

consists of a couple of steps. In this section, we describe the common steps that are in-

cluded in such a procedure.

Constraint propagation

Each type of constraint is accompanied by a procedure, which is called the filter or propag-

ator. Remember that a constraint c j has scope S j ⊆ X , where variables xi ∈ S j have discrete

domains Di . A propagator for constraint c j reduces the size of the solution space in each

iteration, by removing values from domains Di , that do not satisfy c j . The application of

these procedures is called constraint propagation. Constraint propagation is a technique

that works directly on the domains of the variables.

The solution process of a constraint programming problem starts with a constraint

propagation step based on the initial domains of the variables. In this way, it is possible

to remove variables from the original domain, that do not have the desired level of con-

sistency. In general, these techniques are kept to a low computational time complexity, as

these procedures are called at every iteration of a solution process. After the constraint

propagation phase, three possible outcomes are possible. The first case is that one of the

domains becomes empty, meaning that the problem does not have a feasible solution.

Secondly, if the domain of every variable consists of exactly one value, then this is the sole

solution to the problem. The last possibility is that every domain Di is non-empty and at

least one domain contains multiple values.

When considering constraint propagation in a constraint satisfaction problem, it is im-

portant to take the concept of local consistency into account. When applying constraint

propagation methods to a constraint propagation problem, the goal is to achieve local con-

sistency, which is defined as a property that characterizes necessary conditions on the val-

ues that belong to a solution (Bessiere, 2006).

One example of local consistency is domain consistency, as defined by Mohr et al. (1988).

26 4. Constraint programming

A constraint c j with scope S j is said to be arc consistent if the following holds: for every

value x̂i ∈ Di for a variable xi ∈ S j , there exists a value x̂k ∈ Dk for all variables xk 6= xi ∈ S j .

In the case that one variable xi ∈ S j is fixed to value x̂i , but that it is not possible to satisfy

a constraint c j ∈C , we state that value x̂i does not have support. There exist other, weaker,

levels of consistency that can be pursued when it is too computationally expensive to aim

for domain consistency. For example, domain-(R) consistency or bounds-(R) consistency

(defined by Puget (1998)) do not require values to be in the discrete domains, but on their

continuous relaxations, as Pesant (2014) explains.

Search tree

When all domains of the variables in a problem are non-empty and at least one domain is

not a singleton, it is required to use a search procedure to find a solution to the problem.

Usually the search method involves the construction of a branching tree, where at each step

of the process, a variable is fixed to a value in the first branch and that this value is removed

from the corresponding domain in the other branch. At every node of the search tree, the

domains of the variables are affected, which means that the condition of local consistency

could be violated. Therefore, the constraint propagation algorithms can again be applied

after every branching decision in order to reduce domains even further. This procedure is

repeated until a feasible solution to the problem is found, or it is shown that the problem is

infeasible.

Selection strategies

There are a couple of decision strategies that underlie the procedure, as described in the

previous paragraph. First of all, the node selection determines which node is explored fur-

ther. In CP, the node selection is often done in a depth-first fashion (Pesant, 2014), com-

bined with a backtracking algorithm. This means that at every node in the tree, a variable is

fixed to a certain value, followed by another variable in the subsequent iteration. Whenever

this procedure leads to a infeasible solution, at least one variable is uninstantiated and fixed

to a different value.

Central elements of the backtracking strategy are the strategies that determine the se-

lection of the next variable to branch on. A straightforward strategy is to use the fail-first

principle, which aims to find a fail sooner rather than later. This strategy can be imple-

mented by choosing the variable with the smallest domain. The main reason to opt for this

strategy is, that in a depth-first strategy it is important to recover from a bad branching de-

cision as quickly as possible. Many other, more sophisticated variable selection heuristics

include: weighted degree, impact-based search and activity-based search.

When a variable selection is made, it is in theory possible to enumerate all possible val-

ues of this variable. In practice however, it is more common to branch in a binary fashion,

which means that the variable is fixed to one value in the first branch and that this value is

4.2. Constraint-based scheduling 27

removed from its domain in the other branch. Value-selection heuristics determine to what

value the chosen variable should be fixed. Again, there are many possible ways to choose

a value. One notable strategy is the succeed-fist principle, that aims to find the value that

causes the smallest reduction of the domains, in order to find a feasible solution as soon as

possible.

4.2. Constraint-based scheduling
The framework described in the previous section holds for general constraint programming

problems. A more specific framework is that of constraint-based scheduling, the discipline

that studies how to solve scheduling problems using constraint programming. The use of

constraint programming can enhance the exploitation of structure of scheduling problems.

Baptiste et al. (2006) name two strengths of constraint programming, namely the natural

and flexible modelling of scheduling problems as constraint satisfaction problems and the

powerful propagation of temporal and resource constraints.

Industrial routing problems such as the problem of interest in this thesis, can also be

modelled as constraint-based scheduling problems. In this case, a visit to a location is

modelled as a task that needs to be scheduled. It is found by several authors (Goel, Slusky

et al. (2015) and Giles et al. (2016)), that solution approaches based on this constraint-based

formulation can offer a speed-up relative to mixed-integer-programming approaches. For

this reason, we will also use this approach to develop a CP model. The design of our model

is explained in Section 6.3.

4.2.1. Modelling
The modelling of constraint-based scheduling problems makes use of the formalism of

conditional intervals that is introduced in Laborie and Rogerie (2008) and Laborie, Ro-

gerie et al. (2009). As explained by Laborie (2009), this formalism extends classical con-

straint programming by introducing new mathematical concepts to capture the structure

of scheduling problems. In this section, we will explain three important modelling con-

cepts of this formalism, i.e., optional interval variables, high-level interval variables, se-

quence variables and cumulative functions. Next to that, we describe useful constraints

and illustrate the introduced concepts using the example of a job-shop scheduling prob-

lem. For the explanation of the mathematical concepts, we follow the lines of Laborie et al.

(2018).

Optional interval variables

In this section, we consider a generic scheduling problem, where n tasks need to be sched-

uled within a finite integer planning horizon T . Because we need to have discrete variables

28 4. Constraint programming

when using constraint programming, planning horizon T is represented by a discrete set of

time points T ⊆ [0,T]. It is common to assume that all time points are integer and have an

intermediate distance of exactly 1, i.e., that T = {0,1, ...,T }.

In the CP formalism for scheduling problems, tasks are be represented by optional in-

terval variables. For each possible task that can be scheduled during the planning horizon

T , we define an an optional interval variable x as a decision variable. The optionality of

the variable needs to be emphasized, as x can be either absent or present. (Laborie, 2009)

states that the optionality of interval variables provides a powerful concept for efficiently

reasoning with optional or alternative activities.

We denote an absent interval variable that is absent by ⊥. Present interval variables

are half-open intervals [s,e), defined by its start value and end values, s and e respectively.

Both s and e are in T , with s ≤ e. We have a slight abuse of notation by allowing s = e. When

s = e, we represent a zero-length time interval at time s, even though the half-open interval

[s,e) is empty in this case. We denote the domain of x by:

D(x) = {⊥ }∪{
[s,e)

∣∣ s,e ∈ T , s ≤ e
}
.

The presence status of a fixed interval variable x, presence(x), is a binary variable that

is true when the variable is present and false when it is absent. An interval variable is

said to be fixed if its domain is reduced to a singleton, i.e., when it is either absent (x =⊥)

or present
(
x = [s,e)

)
. The length of the interval is defined as l (x) = e(x)− s(x). We say that

two interval variables x and y are equal to each other when their intervals coincide or when

they are both absent.

In the general definition of conditional interval variables, we regard the start and the

end of an interval variable x as variables with T as their domain. However, it is possible to

specify either the start, the end or the length of a variable as fixed upon definition of the

variable, by reducing the domain of the corresponding variables. In case of a fixed length

l (x), we add an additional constraint which states that e(x) = s(x)+ l (x).

It is possible to state that an activity cannot start, end or overlap with a given set of time

steps. For this purpose, we first define piecewise-linear function, which are an important

concept in this constraint programming formalism. A piecewise-linear function f : T →
Z≥0 is a function from the set of time points T to the non-negative integer numbers Z≥0.

Now let x denote an interval variable and f an non-negative piecewise-linear function.

Then we can define the following constraints:

• forbidStart(x, f) states that if interval variable x is present, s(x) cannot be equal to

t , for all t where f (t) = 0,

4.2. Constraint-based scheduling 29

• forbidEnd(x, f) states that if interval variable x is present, e(x) cannot be equal to t ,

for all t where f (t −1) = 0,

• forbidExtent(x, f) states that if interval variable x is present, then for all t ∈ [s(x),e(x)),

it must hold that f (t) 6= 0.

For all constraints above it holds that when x is absent, the constraint is trivially satis-

fied.

Several numerical expressions can be defined on an interval variable x. The integer

expressions startOf (x), endOf (x) and lengthOf (x) return s(x), e(x) and l (x) respectively.

Next to that, the numeric expressions startEval(x, f), endEval(x, f) and lengthEval(x), that

are defined on an interval variable x and a piecewise-linear function f , evaluate f at t =
s(x), t = e(x) and t = l (x) respectively. A value should be specified as an outcome for these

expressions in case the interval is absent.

The method presenceOf (x) returns the presence status of interval variable x. This at-

tribute can also be used in logical expressions. For example, the logical implication oper-

ator ⇒ can define a logical relation between two interval variables x and y as follows:

presenceOf(x) ⇒ presenceOf(y).

This expression means that interval variable y must be present whenever x is present. La-

borie et al. (2018) argue that binary constraints between the presence of interval variables

play a central role in many CP scheduling models, as they are heavily exploited by propaga-

tion algorithms.

In addition to logical relations between the presence of interval variables, several pre-

cedence constraints are available to specify precedence relations between interval variables.

Possible precedence relations between optional interval variables x and y are the following:

• startBeforeStart(x,y ,c) requires that x starts at least c time points before the start

of y , i.e., s(x) ≤ s(y)− c, for c a non-negative integer.

• startBeforeEnd(x,y ,c): s(x) ≤ e(y)− c, for c a non-negative integer.

• endBeforeStart(x,y ,c): e(x) ≤ s(y)− c, for c a non-negative integer.

• endBeforeEnd(x,y ,c): e(x) ≤ e(y)− c, for c a non-negative integer.

Constraints startAtStart, startAtEnd, endAtStart and endAtEnd are defined in a

similar way, except that the inequality in the precedence relation is replaced by an equality.

30 4. Constraint programming

High-level interval variables

Next to the optional interval variables that we have introduced in the previous section, the

conditional interval formalism allows for constraints over sets of interval variables. As ex-

plained by Laborie et al. (2018), the main purpose is to define a hierarchical structure within

the model by grouping a set of interval variables into one high-level interval variables. The

two constraints that we consider are span and alternative:

• span(x, {y1, . . . , yn}) states that at least one of {y1, . . . , yn} is present if and only if x is

present. In that case, s(x) is equal to the minimum of {s(y1), . . . , s(yn)}. Similarly, e(x)

is equal to the minimum of {s(y1), . . . , s(yn)}. In other words, x spans all variables

{y1, . . . , yn}. Interval variable x is absent if and only if y1, . . . , yn are all absent.

• alternative(x, {y1, . . . , yn}) models an exclusive alternative between {y1, . . . , yn}: x is

present if and only if exactly one interval yi out of the set {y1, . . . , yn} is present. In this

case, x starts and ends together with this yi . Interval variable x is absent if and only

if y1, . . . , yn are all absent.

Example: Job shop problem

In order to illustrate the concepts that are introduced in this section, we take a look at

an example that considers a job shop scheduling problem. We introduce the example

here, and again return to this example later in this section.

This problem consists of N jobs j and M machines m. All jobs j consist of multiple

operations O j m with processing times p j m ≥ 0, that each need to be scheduled on the

corresponding machine m. Each job j has a completion time C j ; the time at which

all operations O j m are completed. For each job j , there exist precedence relations

between the operations, that define the order in which the operations need to be

completed. An operation cannot start before its predecessor has been finished. The

goal of our example is to schedule all operations O j m to the corresponding machines,

while minimizing the makespan, i.e., Cmax = max
jobs j

{C j }.

This problem can be modelled in the conditional interval formalism, by defining

interval variables {x j m : jobs j , machines m} for each operation O j m in the problem.

Each interval variable has a fixed length t j m and a variable start- and end time. For

each job j the constraint endBeforeStart(x j m , x j m′ ,τ) captures the precedence

relation between two operations from the same job. This formulation ensure that

e(x j m) ≤ s(x j m′)−τ, where τ is the set-up time between two operations of the same

job on different machines. When a machine m has a certain idle time, this can

be modelled by defining the corresponding availability function Fm and declaring

4.2. Constraint-based scheduling 31

forBidExtent(x j m ,Fm) constraints for all interval variables x j m on that machine m.

A more general version of the job shop problem is the flexible job shop problem, where

certain operations of a job can be assigned to a set of machines instead of just one. A

structure like this can be captured by the alternative(x j m , {x j m1 , . . . , x j mk }), where

{ j m1, . . . , j mk } are all k job-machine pairs on which operation O j m can be performed.

The alternative constraint forces the model to pick exactly one of the interval vari-

ables x j m1 , . . . , x j mk to be present.

Sequence variables

Most of the scheduling problems involve resources that can only perform one task at a time.

From the perspective of the resource, a solution can be seen as a sequence of tasks assigned

to this resource in a certain order. In order to use this idea in modelling a problem, sequence

variables are introduced. Sequence variables π are defined on a set of interval variables X .

The domain of such a sequence variable π is the set of all possible permutations of X . We

denote a permutation of X by g (X), and the set of permutations by G(X).

We can define the length of a permutation g (X) as the number of intervals in X that are

present, i.e.:

length(g (X)) =
∣∣∣{x ∈X : presenceOf(x) = true

}∣∣∣.
Using this notion of length, we can define a permutation g (X) as a function g :X → {

0, . . . , |X |}
such that:

• g (x) = g (y) ⇐⇒ (x = y) ∪ (x =⊥∩ y =⊥), for every x, y ∈X ,

• g (x) ≤ length(g (X)), for every x ∈X ,

• g (x) = 0 ⇐⇒ (x =⊥), for every x ∈X .

The conditions above define g (X) as an ordering of the present variables in X . If x and

y are distinct interval variables in X , it can only have the same position in permutation

g (X) when they are both absent. In case a variable in X is absent, its position in g (X) is

equal to zero.

Several constraints can be defined on a sequence variable π. First, we mention the con-

straints that have an impact on the sequencing of interval variables x ∈ X in sequence

variable π:

• first(π, x) states that if an interval variable x ∈X is present, it is the first variable of

sequence π. Similarly, last(π, x) fixes x to be the last variable in π,

32 4. Constraint programming

• before(π, x, y) states that if both x ∈ X and y ∈ X are present, then x will appear

before y in sequence π,

• prev(π, x, y) states that if both x ∈X and y ∈X are present, then x will appear imme-

diately before y in sequence π, such that no other interval variable will be sequenced

between x and y .

Next to these sequencing constraints, there are also constraints that are related directly

to the start and end times of interval variables. The most important constraint of this kind

is the noOverlap constraint. In order to properly define this constraint, we first need to

introduce two concepts:

• Type function Θ: The type function Θ : X → {1, . . . ,
∣∣X ∣∣} is a function that assigns a

type to each interval variable x in X . In general, these types can be represented by a

non-negative integer number. It is possible to define types for all interval variables in

a sequence variable, by initializing a sequence variable as follows:

π= sequenceVar (X ,Θ) .

In this notation, type functionΘmaps every interval variable x ∈X to a type.

• Transition distance matrix T : Θ×Θ→ Z≥0 is the minimal time between the end of

one interval variable and the start of the next interval variable, depending on the type

of both interval variables. The entries of T are non-negative integers.

Letπ(X ,Θ) be the sequence variable over the set of interval variablesX , with associated

type functionΘ. Then the noOverlap constraint is defined as follows:

noOverlap(π,T) ⇐⇒ e(x)+T (Θ(x),Θ(y)) ≤ s(y), ∀x, y ∈X , s.t. 0 < g (x) < g (y).

As follows from the definition above, the noOverlap constraint regulates the transition

times between two interval variables x ∈ X and y ∈ X . Because of the requirement that

g (x) < g (y), we know that x should be scheduled ahead of y . Additionally, the requirement

that both g (x) and g (y) are unequal to zero, tells that both x and y should be present. If

this is not the case, the noOverlap constraint is trivially satisfied. As T has non-negative in-

teger entries, this constraint also ensures that there cannot be any overlap between interval

variables x and y .

A slightly weaker version is the noOverlapDirect constraint, that only works on pairs

of direct successors, where the noOverlap constraint must hold for all combinations of

variables x and y .

noOverlapDirect(π,T) ⇐⇒ e(x)+T (Θ(x),Θ(y)) ≤ s(y), ∀x, y ∈X , s.t. 0 < g (x), g (y) = g (x)+1.

4.2. Constraint-based scheduling 33

Example: Job shop problem (continued)

Sequence variables can be used to model from the perspective of one resource. In this

example, we model a sequence variable π j for each machine in the problem. This

variable returns a solution in the form of a permutation of all jobs that need to be

scheduled on that machine. Let us also define type functionΘ as follows:

Θ(x) = i , if x = xi j , for all x ∈X ,

where X is the set of operations xi j . Next to that, T j represents the setup times

between operations for different jobs on machine j .

Then, the noOverlap(π j ,T j) constraint could be used to model transition times

between operations that belong to different jobs, for example by changing the setup

of a machine. The noOverlap constraint ensures that each machine only performs

one operation at a time.

We conclude this section on sequence variables with expressions that return different

attributes of the successor of an interval variable x ∈X in sequence variable π(X ,Θ). These

are the following:

• typeOfNext(π, x) returnsΘ(y), where interval variable y is the successor of x in π, i.e.,

y with g (y) = g (x)+1.

• startOfNext(π, x) returns s(y), for y with g (y) = g (x)+ 1. Similarly, endOfNext(π, x)

returns e(y) and lengthOfNext(π, x) returns l (y), for the same interval variable y .

Additionally, similar expressions typeOfPrev(π, x), startOfPrev(π, x), endOfPrev(π, x) and

lengthOfPrev(π, x) return the same attributes as the expressions above, but for the interval

variable y ∈X that is the predecessor of x ∈X in π, i.e., y with g (y) = g (x)−1.

Cumulative functions

Resources in scheduling functions can be represented by its accumulated usage by activit-

ies. A scheduled activity typically increases the usage of a resource at its start and lowers it

at its end. In the case of our problem, production increases the level of available products,

whereas consumption decreases it. Constraints are imposed on the level of these resources.

The levels of the usage of these resources are modelled using cumulative functions, also

called cumul functions.

In order to understand cumul functions, we first describe two elementary cumul func-

tions, the step and pulse functions. At the beginning of this section, we introduced piecewise-

34 4. Constraint programming

linear functions. The step function is one type of a piecewise-linear function, which is often

used in this optional interval variable formalism. A step function fτ,H : T →Z≥0 is charac-

terized by two integers, a discrete time point τ ∈ T and a non-negative integer H , called its

height. Given τ and H , fτ,H (t) is defined as:

fτ,H (t) =
0, for t < τ,

H , for t ≥ τ.

In the constraint programming formalism, a step function can be defined in relation to

a conditional interval variable x. Let x be an interval variable. Then stepAtEnd(x, H) is

a step function that has function value H for t ≥ e(x) and 0 elsewhere. In other words,

stepAtEnd(x, H) is equal to step function fτ,H , where τ equals e(x). Similarly, one can define

stepAtStart(x, H) as the step function that has function value H for t ≥ s(x) and 0 elsewhere,

or fτ,H , where τ equals s(x). A special case is stepAt(τ, H), which does not depend on an

interval variable and is equal to step function fτ,H .

Apart from specifying height H as a constant, the height of a step function can also

be a decision variable of the problem. For example, the function stepAtEnd(x, Hmin, Hmax)

defines a step function at the end of interval variable x, with variable height H , under the

constraints that Hmin ≤ H ≤ Hmax. This is still a piecewise-constant function, but the height

H is not known upon initialization.

In the same way, the functions stepAtStart(x, Hmin, Hmax) and stepAt(t , Hmin, Hmax) are

step functions with variable height at the start of interval variable x and time t respectively.

For all elementary step functions that are defined in relation to a interval variable x it holds

that the function returns the constant zero-function, where H = 0, in case x is absent.

The other elementary cumul function is the pulse function. A pulse function fx,H : T →
Z≥0 is characterized by an interval variable x and a non-negative integer H , called its height.

Given x and H , fx,H (t) is defined as:

fx,H (t) =


0, for t ≤ s(x)

H , for s(x) ≤ t ≤ e(x)

0, for t ≥ e(x).

In the constraint programming formalism, a pulse function is called as pulse(x, H). Sim-

ilar to the step function that was described previously, it is also possible for the pulse func-

tion to have a variable height. In this case the function is called as pulse(x, Hmin, Hmax),

where the height of the pulse function is a decision variable of the problem, which can take

values between Hmin and Hmax.

4.2. Constraint-based scheduling 35

Now that we have introduced the elementary cumul functions, we can define a cumulative

function f . A cumulative function f is a composition of elementary cumul functions, i.e.,

f : T →Z≥0 is defined as:

f =
N∑

i=1
εi fi , with εi ∈ {−1,+1}, N finite and fi an elementary cumul function.

The following constraints can be imposed on cumul function f :

• alwaysIn(f , x, Hmin, Hmax) means that f must be in the range [Hmin, Hmax] during

the duration of interval variable x, if x is present. If x is absent, this constraint is

automatically satisfied.

• f ≤ h, for f and h both cumulative functions, states that f cannot take values larger

than h. Note that h can also be a constant integer, representing a constant cumulative

function. Similarly, one can define f ≥ h.

The integer expression heightAtEnd(x, f) returns the value of cumulative function f at

the end of interval variable x. A similar expression exists in heightAtStart(x, f) for the value

of f at the start of interval variable x.

Example: Job shop problem (continued)

Cumulative constraints are used to model the maximum usage of a resource. In a job

shop problem, each machine can only perform one operation at a time. We saw that

this can be modelled by the noOverlap constraint. An alternative way to model this

is to define fi j =pulse(xi j ,1) for each operation Oi j . Then the cumulative function

f j =∑
i fi j represents the usage of machine M j , and the constraint f j ≤ 1 models that

a machine can only perform one job at a time. Another possible application is that

only a fixed number of machines can operate simultaneously, which can modelled in

a similar way.

4.2.2. Search algorithm
In order to gain a better understanding of the methods that are used to solve constraint

programming, we take a closer look at the automatic search method, which is implemented

in the solver that we use, IBM CP Optimizer.

First, we describe the use of presolve methods. Next, we discuss the constraint propaga-

tion methods that are implemented. The solver uses two different strategies to explore the

36 4. Constraint programming

search space, namely large neighbourhood search and failure-directed search. We briefly

discuss both strategies at the end of this section.

Presolve

The main goal of the presolve phase, is to automatically improve a model by removing re-

dundancies and poorly formulated constraints. One example is presented in Laborie et

al. (2018). The expressions endOf(x) <= startOf(y) and endBeforeStart(x, y) relating to

interval variables x and y declare the same, namely a temporal relation between the end

of x and the start of y . However, because of a dedicated algorithm, propagation of the

endBeforeStart(x, y) constraint gives a much better performance. In the presolve phase,

such constraints are automatically identified and rewritten.

Other examples, mentioned by Laborie (2013) of available presolve procedures include

the aggregation of 6= constraints into an alternative constraint, the replacement of often-

occurring expressions by a new variable and the elimination of redundant constraints.

Constraint propagation

As described in Section 4.1.2, an important part of constraint programming search algorithms

are the propagation methods. In the previous section, we described the constraint-based

scheduling formalism using conditional interval. Several constraints that fit in this formal-

ism have been introduced, which can be divided into three categories: logical constraints,

temporal constraints and resource constraints. In this section, we discuss the constraint

propagation techniques for the constraints in these three categories.

Let the presence status of an interval variable x be represented by the binary literal

lx . All logical constraints between the presences status of interval variables are stored as

literals in a logical network, similar to the implication graph that is described by Brafman

(2001). The nodes of this graph are all literals lx and their negations ¬lx . For every logical

constraint between the presence status of two interval variables x and y of the form

lx ⇒ ly ,

an edge is added between the corresponding literals in the implication graph. Laborie et al.

(2018) point out that there are several objectives for using this implication network. Firstly,

it is possible to detect inconsistencies between logical constraints. Next to that, the net-

work provides O(1) access to the logical relation between any two intervals x and y , which

is used by the propagation of temporal constraints. Lastly, when a new implication relation

between two interval variables x and y is added to the network, the propagation to other

interval variables can be started, by assessing the network.

Similar to the logical constraints, temporal constraints, are represented using a tem-

4.2. Constraint-based scheduling 37

poral network. An example of such a temporal constraint is a precedence relation between

interval variables. The construction and use of a temporal network is described in detail

by Laborie and Rogerie (2008). The set of nodes
{

pi
}

i of a temporal network that corres-

ponds to a certain model, is equal to the set of all start points and end points of all interval

variables x that are included in that model. Remember from Section 4.2 that temporal con-

straints on interval variables x and y can come in one of the forms, such as startAtStart,

endBeforeEnd or any similar combination. Such a temporal constraint is modelled in a

temporal network by adding an arc between the two nodes pi and p j . This arc denotes c as

the minimum amount of delay between pi and p j , if both pi and p j are present. Such an

arc is denoted as (pi , p j ,c).

More specifically, let z(pi) denote the presence status of pi and let t (pi) be the (vari-

able) time of point pi . Then the arc between nodes pi and p j denotes the following logical

expression:

z(pi) ∧ z(p j) ⇒ t (pi) ≤ t (p j) − c.

As an example, the constraint endBeforeStart(x, y,c) is represented by the arc (e(x), s(y),c)

and states that e(x) ≤ s(y)− c if both x and y are present.

Constraint propagation in this temporal network can make use of implications between

the presence statuses of interval variables in the network. When for a given arc (pi , p j ,c),

the presence relation presenceOf(pi) ⇒ presenceOf(p j) can be inferred from the logical net-

work, the arc can propagate the time bounds for nodes pi and p j in the temporal net-

work. This means that time points pi and p j do not necessarily need to be present for the

propagation to take place, as long as the logical relation is defined.

Multiple methods to perform the propagation in temporal constraint networks are de-

scribed in Dechter et al. (1991). These methods can also be extended to account for the

use of optionality in the model. In CP Optimizer, the initial propagation is performed by a

modified version of the Bellman-Ford algorithm (Cherkassky et al., 1996). During the solu-

tion process, temporal constraints are propagated again, when for example a time bound

changes or a new logical implication can be inferred. This incremental propagation of tem-

poral constraints is performed by CP Optimizer using an extension of the positive cycle al-

gorithm that is proposed by Cesta et al. (1996). The main difference between the original

algorithm and the one that is implemented in the solver, is that propagation is only per-

formed for the arcs that are allowed to propagate by the implication relations in the tem-

poral network.

The propagation of resource constraints is done using a timetable algorithm. This al-

gorithm uses the notion of conflicting rectangles, which are parts of the schedule that vi-

olate the resource constraint, and propagates by removing all conflicting rectangles from

38 4. Constraint programming

the schedule. A recent implementation of the timetable algorithm is described by Gay et

al. (2015). This algorithm has a polynomial running time, making it efficient and power-

ful during the filtering phase. As the timetable algorithm is not powerful enough to prove

optimality of a solution, some other propagation algorithms for edge-finding are included

in the solver, that can propagate the resource constraints even more. For example, the

algorithm that is provided by Vilím (2011) is an edge-finding algorithm for cumulative re-

source constraints, such as the alwaysIn constraint that was described in the previous

section.

Search strategies

Large-neighbourhood search (LNS) is a solution method in CP Optimizer that makes use of

successive relaxation and re-optimisation (Laborie et al., 2018). After a first feasible solu-

tion is found, a number of iterations are carried out. Each iteration contains a relaxation

step and a re-optimisation of the relaxed solution. This process is continued until some

predefined condition is met. Typically, this means that either a time limit is reached or that

the solution is proved to be optimal.

LNS does not try to prove optimality of a solution by exploring the entire search space.

One of the risks is therefore that it gets trapped in a local minimum. A method to prove

optimality of a solution is failure-directed search (FDS), which does enables complete ex-

ploration of the search space. FDS focusses on finding failures as quickly as possible and

serves as secondary strategy, in case the LNS is not able to improve anymore (Vilím et al.,

2015).

5
Problem description

This chapter presents the description of the multi-product maritime inventory routing prob-

lem with undedicated compartments. We introduce the concepts that define this prob-

lem, such as the structure of the distribution network, products and fleet. Throughout

this chapter, we name the assumptions and additional requirements that underlie the case

study that we analyze in Chapter 7. In this explanation, we mainly follow the lines of our

literature review in Chapter 2, therefore it is possible to place our problem in the context of

other problems in the literature. Later, in Chapter 6 we formulate mathematical models for

the problem that we introduce here.

The multi-product maritime inventory routing problem concerns the transportation of

multiple bulk products between ports, as well as the allocation of products to the com-

partments on a ship. The objective is to find an optimal delivery schedule that minimizes

transportation costs and penalties for the violation of inventory constraints over a given

planning horizon.

Time horizon

The planning horizon T of our problem spans from one up to six months. We discretize

the planning horizon into a set of time points T , indexed by t . All time points are at equal

distance of each other, given a time granularity of one day.

Network

The ports in the problem can be classified as either production ports (refineries), where

there is supply of products, or consumption ports, where there is demand. In the general

case, the maritime inventory routing problem may contain multiple refineries and ports

that are both production and consumption ports, but we restrict ourselves to the case

39

40 5. Problem description

where there is exactly one refinery, and where every other port only consumes products.

From now on, we address the single production port in our problem as the refinery. The set

of ports is denoted by P , whereas PC ⊆ P is the set of all consumption ports. We index a

port by the letter i or j , while we use r for the single refinery.

Products

The maritime inventory routing problem deals with the transportation of continuous product,

more specifically petroleum products. The set of products is K. This set is strictly parti-

tioned into a subset of base products K B and of end products K E . Base products are the

products that are produced and held at the refinery, whereas end products are consumed

and held at consumption ports. When products are loaded into a compartment at the

refinery, an instantaneous conversion from base products into end products takes place.

Some end products are corresponding to exactly one base product, whereas other end

products are a mixture of multiple base products. We call the translation of base products

into end products product conversion. The conversion function F : K B → K E is a linear

transformation that maps quantities of base products into quantities of end products, i.e.,

how much of each base product needs to be mixed together to obtain one unit of the cor-

responding end product.

Fleet

The transportation of products is done using ships. The fleet of ships, denoted by set S , is

heterogeneous, meaning that every ship has different characteristics. For each ship s, the

travel time between ports i and j is given by T s
i j and depends on the sailing speed of ship s.

The travel times are rounded off to the nearest integer in order to fit in the discrete time of

the model. Likewise, we can define costs C s
i j associated with travelling between each pair

of ports. These costs include the costs of operating at the departure port.

Inventory

Every consumption port i ∈ PC consumes one or more products during the entire plan-

ning horizon. For each product k ∈ KE that a port i consumes, it has a separate storage

facility with lower and upper inventory limits I i k and I i k . The upper limit corresponds to

the storage capacity at a port, whereas the lower limit is a possible required safe stock that

the port should hold. At the beginning of the planning horizon, the initial inventory I 0
i k for

each product at each port is known.

In a similar fashion, we define I 0
r k , I r k , I r k and RP

r kt as the initial inventory, inventory

lower bound, inventory upper bound and rate of production for refinery r respectively.

These parameters are defined only for base products k ∈KB .

In order to deal with excess of products at the refinery or shortage of products at the

consumption ports, we impose a back-order policy. For consumption ports, this means

41

that consumption that cannot be met at a certain time point, needs to be served at a later

point in time, with a possible delay. We impose a penalty αi kt for the amount of product

that the level of backorders at every time point t ∈ T . In case of excess products at the

refinery, additional storage space needs to arranged at a cost αr kt , resulting in a penalty

term in the objective function of the model. The implementation of this inventory policy is

explained in more detail in the model formulations for MIP and CP in Chapter 6.

Production and consumption rates

The daily consumption rate RC
i kt is varying and given for each time step t in the entire plan-

ning horizon. Note that these parameters for consumption ports are only defined for end

products k ∈KE . Similarly, we define RP
r kt as the rate of production for base product k at

refinery r respectively. These parameters are only defined for base products k ∈KB .

Time

One important decision that needs to be made, is how to represent time in our models.

As outlined in Section 2.2.1, there exist models for our problem in the literature that rely

on either a discrete or a continuous representation of time. In this thesis, we develop a

model that is based on discrete time. The reason for this is twofold: firstly, discrete-time

and continuous-time models handle production and consumption rates in a different way.

As pointed out by Christiansen, Fagerholt, Nygreen et al. (2013), when dealing with varying

production and consumption rates, it is widely accepted to use discrete time, as no simpli-

fying assumptions need to be made on the production and consumption rates of products.

Another reason to use discrete time, is that constraint programming models use a discrete

variable to represent time. If we want to compare MIP to CP, the use of discrete time allows

for a fair comparison between the two models.

Scheduling

We will address the scheduling mechanisms for both the MIP and the CP model in more

detail in the following sections. Next to that, there are some requirements with regard to

the scheduling of ships:

• Voyages: As part of a ship schedule, we define a voyage as a trip that starts with a

refinery visit and ends at the subsequent refinery visit. One voyage thus contains

exactly one refinery visit and all intermediate visits at other ports. A ship schedule

can consist of one or multiple voyages. In the constraint programming model, we

will leverage the concept of voyages in the model formulation, in order to reduce the

solution space for the model. This will be explained in more detail in Section 6.3.

• Weight restrictions: Some ports have weight restrictions based on the maximal al-

lowed draught that a ship can have when leaving the refinery or entering a consump-

42 5. Problem description

tion port. For port i and ship s, this maximum allowed weight is W s
i .

• Ship unavailability: It might be possible that a ship is unavailable for a certain period

of time, due to for example maintenance. This means that the ship returns to the

refinery and stays there during this unavailability period. The set periods of unavail-

ability of ship s is U s .

• Operation times: The duration of operating at a port is assumed to be fixed to a con-

stant time Os
i . This duration may vary for each ship-port pair, but does not depend

on the quantity that is (un)loaded.

• Unloading quantity: When operating at a port, there is both a minimum and max-

imum quantity that can be unloaded. The lower bound is denoted by Q
i k

. The upper

bound is equal to the minimum of the compartment capacity L
s
ck and port capacity

I i k .

Compartments

Each ship s has a given number of compartments, which are not dedicated to a certain

product. The set of all compartments of a ship s is Cs . At most one product can be trans-

ported in a compartment c at the same time. A ship can carry multiple products in dif-

ferent compartments during the same transport. Each compartment has a variable max-

imum load capacity L
s
ck , which depends on the density of the product that is loaded into

the compartment. When the ship is at a consumption port, it can unload the products that

are present in each compartment. It is allowed to have partial (un)loading, meaning that

a compartment does not need to be filled or emptied completely. At the beginning of the

planning horizon, we assume that the ships have empty compartments and that they are

located at the refinery.

6
Model description

In this chapter, we give the formulations of two different mathematical models for the mari-

time inventory routing problem that was described in Chapter 5. The first model is a mixed

integer programming model, whereas the second model is a constraint programming (CP)

model.

We organize this chapter as follows: Firstly, we summarize the contributions of the

models in this thesis in Section 6.1. Then, in Section 6.2 we formulate the MIP model.

In Section 6.3, a model that uses the CP formalism, as introduced in Section 4.2, is given.

Lastly, in Section 6.4 we compare the two models.

6.1. Contribution
The models that are presented in this chapter contain elements of models that are avail-

able in the literature and new insights. As the MIP formulation for this problem is widely

documented, the MIP model, that is described in Section 6.2, is similar to other models in

literature. Especially the arc-flow structure of the scheduling part of the model is a core ele-

ment in most mixed integer programming models that we encountered. The construction

of the network is a slight adaptation from common formulation, in order to meet require-

ments from the case study. Several extensions were made to account for multiple products

and undedicated compartments. These adjustments are similar to the adjustments made

by Agra, Christiansen et al. (2013) and Foss et al. (2016).

For the constraint programming formulation, much less reference literature was avail-

able. To the best of our knowledge, only two articles on constraint programming for the

43

44 6. Model description

Table 6.1: This table contains all sets, and constants that correspond to the concepts that are introduced in
the problem description in Chapter 5. We repeat these symbols here, before we give the model description.

Sets

T = {1, . . . ,T } Set of time points t up to planning horizon T

P Set of all ports i , where r ∈ I is the single refinery

PC ⊆P Set of consumption ports i

K Set of all products k

KB ⊆K Set of base products k

KE ⊆K Set of end products k

S Set of all ships s

Cs Set of compartments c of ship s

U s Set of unavailability periods u of ship s

Constants

T Fixed planning horizon

P Total number of consumption ports, i.e., |PC | = P

S Total number of ships, i.e., |S| = S

Ii k0 Initial inventory of product k at port i

I i k Maximum inventory capacity of product k at port i

I i k Inventory lower bound of product k at port i

RP
r k Variable production rate of product k at port i

RC
i k Variable consumption rate of product k at port i

Q
i k

Lower bound on quantity of product k (un)loaded at port i

L
s
ck Maximum load capacity of compartment c of ship s for end product k

T s
i j Travel time between ports i and j for ship s

C s
i j Cost of operating at port i and sailing from port i to port j for ship s

W s
i Maximum allowed weight to enter port i for ship s

Os
i Operating time for ship i to port s

Fkκ Conversion factors for one unit of end product κ in terms of units of base products k.

6.2. Mixed integer programming model 45

maritime inventory routing problem are published, namely by Goel, Slusky et al. (2015)

and Giles et al. (2016), although both articles have a different setting than this thesis. The

paper by Goel, Slusky et al. (2015) analyses an inventory routing problem where there is one

single product. This product is LNG, which requires different additional side constraints.

Giles et al. (2016) solve a supply and delivery problem for a network with suppliers, plants

and customers.

In the formulation that is presented in this thesis, elements from the aforementioned

articles are combined in order to develop a model that is suitable for our case and also equi-

valent to the MIP model formulation, such as the use of interval variables to model port vis-

its. For example, mechanisms to regulate the allocation of products to compartments, the

use of the pulse function to model the back-order inventory policy and the travel cost ob-

jective function are new. Next to that, the use of voyages in the model in order to implicitly

reduce the search space of the model is new.

6.2. Mixed integer programming model
In this chapter, we formulate a mixed integer programming model for the maritime invent-

ory routing problem. Our model is based on the model of Foss et al. (2016), which in turn

is an extension of the model of Agra, Andersson et al. (2013).

The model that we use is a discrete-time model that is based on an arc-flow formu-

lation. We first describe the construction of an arc-flow network in Section 6.2.1. After

that, we formulate the complete model by stating the constraints for routing (Section 6.2.2),

(un)loading (Section 6.2.3), product compartment allocation (Section 6.2.4), port inventory

levels (Section 6.2.5) and the objective function (Section 6.2.6).

6.2.1. Arc-flow network
As pointed out in Chapter 2, two alternative types of MIP formulations exist for the mari-

time inventory routing problem: arc-flow and path-flow formulations. As mentioned be-

fore, models that are based on a path-flow formulation have poor scaling capabilities, be-

cause of the exponential increase in the number of possible routes. Given the size of our

real-life case study, and because of its prominent occurrence in the literature, we decided

to choose an arc-flow formulation for our model. In this section, we give a mathematical

explanation of this network formulation.

In the arc-flow formulation, the problem is regarded as a network model. In fact, for

each ship s ∈ S , we can define a network (or graph) G s = (N s ,As). An illustration of graph

G s can be found in Figure 6.1. The set of nodes N s consists of nodes (i , t), for each port

i ∈P and time period t ∈ T . Each node (i , t) in the graph represents the possibility to visit

the port i during time period t . As we will see later, by adding the correct arcs to this net-

46 6. Model description

Figure 6.1: Graphical representation of the time-space graph.

work, we can model the movement of a ship as the flow through this network. Next to the

nodes (i , t), we add an artifical origin os and an artifical destination d s as two single nodes

to the network. These nodes act as respectively a source and sink node in the network.

These nodes are not physical ports, but are needed to introduce the entrance and depar-

ture of a ship in the network. These nodes correspond to the start and the end of the ship’s

scheduling in a solution. Therefore,

N s = (P ×T)∪os ∪d s ,

where × is the Cartesian product of two sets.

In order to properly model the movement of a ship through the network, we add direc-

ted arcs between selected nodes in the network. These arcs represent possible movements

of the ship. We denote an arc a from node (i , t) to (j ,τ) as the tuple (i t , jτ). Additionally, we

require that a ship enters and leaves the network via the refinery r . This means that the first

and last stop in a ship schedule are at the refinery. We denote the sets of in-arcs of node

n ∈N s as A+
n , and out-arcs of this node as A−

n .

At every point in time, a ship is either sailing between ports, operating at a port or wait-

ing at a port. We add different types arcs to the network in order to model these activities.

Because we assume constant travel times, we can combine the activities of operating and

sailing to the next port in one type of arc. In fact, we add arcs a ∈ As of five categories,

which are the following:

1. (os ,d s): This arc from the artificial origin directly to the artificial destination node

represents the possibility of not using a ship at all. This arc needs to be included in

order to properly define all possible schedules (with an empty schedule being a trivial

possibility), but in practice, this arc will not often be used in an optimal schedule.

2. (os ,r 1): This arc from the artificial origin to the first node of refinery r represents the

entering of a ship in the network, starting in the refinery at time t . It might be optimal

6.2. Mixed integer programming model 47

for the ships to wait before operating, so a ship can wait at the refinery before starting

its first operation, using the arcs of the fourth type.

3. (r t ,d s),∀t ∈ T : These arcs correspond to the end of each ship schedule at any time

t . Note that we only include arcs to the artificial destination node from refinery r ,

which means that each ship must return to the refinery within the planning horizon,

in order to terminate its schedule.

4. (i t , i (t +1)),∀i ∈ P , t ∈ T \ T : These arcs between two successive nodes of the same

port represent the possibility to wait at a port i at time t .

5. (i t , jτ), ∀i , j ∈P , t ∈ T \ T , such that i 6= j and τ= t +Os
i +T s

i j : These arcs model the

travel between two ports i and j , taking into account the travel time between the two

ports. As mentioned before, we combine operating at port i and sailing to another

port j in one arc. We assume that a ship immediately starts sailing to the next port

in its schedule upon completion of an operation at a port. Furthermore, when a ship

starts its operation in port i at time t before sailing to port j , this ship will arrive at

port j at time τ= t +Os
i +T s

i j , where Os
i is the operating time of ship s at port i , and

T s
i j is the travel time of ship s between ports i and j . We therefore add these arcs to

the network.

Note that in the construction of this network, some arcs are inherently infeasible. For

example, at the first time step, we require each ship to enter the network at the refinery.

This means that it cannot visit other ports at this time. Therefore, these arcs coming from

these nodes (and other infeasible arcs) are not included in the network.

6.2.2. Routing
As mentioned earlier, we use the arcs to model the flow of a ship through the network. For

each arc that is included in the network, we can define a decision variable that indicates

whether this arc is included in a solution to the problem. That is, for each arc a ∈As , we

define a decision variable xs
a that is equal to 1 if the arc is used, and 0 otherwise. Because

every arc a between a port i and destination port j is uniquely characterized by its starting

time t , we can use the notation xs
i j t to indicate these decision variables.

Following the definition of the arcs, that a ship immediately leaves a port after complet-

ing its operation, the following is true: Binary variable xs
i j t is equal to 1 if ship s is scheduled

to start operating at port i at time t and to sail to port j 6= i immediately after the operation

period of Os
i , and 0 otherwise. When j = i , xs

i i t is equal to 1 if ship s is present in port i and

stays there for (at least) one more time period, and 0 otherwise. For i = os or j = d s , the

arcs represent entering or leaving the network. Using these definitions, we can declare the

48 6. Model description

constraints that model the routing of ships during time horizon T . The routing constraints

can now be defined as follows:

xs
os r 1 +xs

os d s = 1, ∀s ∈S , (6.1)∑
t∈T

xs
r d s t +xs

os ,d s = 1, ∀s ∈S , (6.2)∑
a∈A+

n

xs
a = ∑

a∈A−
n

xs
a , ∀s ∈S ,n ∈N s \ (os ∪d s), (6.3)

xs
r r t = 1, ∀s ∈S , t ∈ [su ,eu),u ∈U s , (6.4)

xs
i j t ∈ {0,1}, ∀(i t , jτ) ∈As , s ∈S . (6.5)

The equalities in (A.2) and (6.2) ensure that exactly one route is scheduled for each ship

s ∈ S . This route starts with the arc from the origin port to the refinery and ends with an

arc from the refinery to the artificial destination port. In case that the route from the origin

directly to the destination port is scheduled, the ship is not used. Constraints (6.3) repres-

ents the flow conservation at each node, implying that a ship can only leave a node when

it has entered this node. Because our model is built on a directed and acyclic graph, it is

not needed to define subtour-elimination constraints. Constraints (6.4) require that dur-

ing every unavailability period u = [su ,eu) of ship s, the ship is forced to be in the refinery.

Constraints (6.5) are the binary restrictions for decision variables xs
i j t .

6.2.3. Loading and unloading
The constraints in the previous section model the flow of a ship through a network. In

order to model the problem of our interest, we need variables and constraints that deal

with the operations of a ship: loading products into its compartments at the refinery and

later unloading these products at consumption ports. We will again use network graph G s

in order to define these variables.

For each s ∈ S , t ∈ T ,c ∈ Cs and k ∈ KE we introduce continuous variable l s
tck . This

variable is the load of end product k in compartment c of ship s at the end of time period t .

In order to change the load of a product on a ship, we need binary variables os
i t . These are

equal to 1 when ship s has an operation at port i that end at time t .

When operating at the refinery, a ship loads products from the refinery inventory into its

compartment. We introduce continuous variable q s
r tck for each s ∈ S , t ∈ T ,c ∈ Cs and k ∈

KE , which is the quantity of product k that is loaded into compartment c of ship s during

the operation that ends at time t . For consumption ports i ∈ PC the variables q s
i tck are

defined likewise, except that the product is unloaded from the ship to the port inventory.

6.2. Mixed integer programming model 49

Using these variables, we can define the corresponding (un)loading constraints as follows:

l s
tck = l s

(t−1)ck +q s
r tck −

∑
i∈PC

q s
i tck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (6.6)

os
i t = ∑

j∈P
xs

i j (t−Os
i), ∀s ∈S , i ∈P , t ∈ T , (6.7)

q s
i tck ≥ Q

i k
os

i t , ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (6.8)

q s
i tck ≤ M os

i t , ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (6.9)

l s
0ck = 0, ∀s ∈S ,c ∈ Cs ,k ∈KE , (6.10)

0 ≤ l s
tck ≤ L

s
ck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (6.11)

q s
i tck ≥ 0, ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (6.12)

os
i t ∈ {0,1}, ∀s ∈S , i ∈P , t ∈ T . (6.13)

Constraints (6.6) model the change of the load of end product k in compartment c of

ship s at time t over time. This load is equal to the load at time t −1 plus the quantity that

is loaded into c at the refinery minus the quantity that is unloaded from c at consumption

ports. In Constraints (6.7) we link the binary operating variables os
i t to the routing decision

variables. These constraints state that os
i t must be equal to 1 if ship s departs from port i at

time t .

The fact that (un)loading can only take place when a ship is operating at the port is

declared in the big-M Constraints (6.8) and (6.9), together with corresponding lower and

upper bounds on the quantity that is (un)loaded. In Constraints (6.9), the constant M

takes the value that is the minimum of compartment capacity Ls
ck and port capacity I i k ,

as the quantity cannot be larger than the compartment size or port capacity. Note that

these big-M constraints might allow the binary decision variables os
i t to take a value close

to zero in the linear relaxation. Therefore, there is a risk that these constraints worsen the

linear relaxation of the problem. This problem could be solved for example by adding valid

inequalities.

Constraints (6.10) state that all compartments are empty at the beginning of the plan-

ning horizon. We declare load variables l s
tck as continuous variables with hard lower and

upper bounds in (6.11). Constraints (6.12) declare the non-negative continuous variables

q s
i tck , whereas Constraints (6.13) are the binary restrictions on os

i t .

6.2.4. Product compartment allocation
In the previous section, we have declared the variables and constraints that model the

(un)loading of products into or from ships. One key assumption in our problem is, that

all compartments are undedicated to specific products, which means that all products can

50 6. Model description

be loaded into each compartment.

As our products are non-mixable, we need some constraints in order to ensure that

a compartment of a ship can only contain one product at a time. For this, we introduce

a binary variable y s
tck for all s ∈ S , t ∈ T ,c ∈ Cs ,k ∈ KE . This variable is equal to 1 when

product k is loaded into compartment c of ship s at time t and zero otherwise. The alloca-

tion constraints can then be defined as follows:

l s
tck ≤ L

s
ck y s

tck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (6.14)∑
k∈KE

y s
tck ≤ 1 ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (6.15)

y s
tck ∈ {0,1}, ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE . (6.16)

Constraints (6.14) ensure that whenever a compartment c of ship s contains some product

k, the corresponding binary y s
tck should be equal to 1. Constraints (6.15) declare that there

can only one product at a time loaded into a compartment. Constraints (6.16) declare bin-

ary allocation variables y s
tck .

6.2.5. Port inventory levels
In the previous sections, we have seen how the routing of ships is handled in the mathem-

atical program, together with the variables that account for the load of products in ships. As

one of the main goals of this problem is to keep all inventory levels of products between the

corresponding bounds, we still need to define a mechanism to linking the above variables

to the stock inventory levels.

We formulate the inventory balance constraints for all ports i ∈ P and all products

k ∈K. As the inventory levels of ports, we introduce continuous variables si kt ,∀i ∈ P ,k ∈
K, t ∈ T ∪0. The value of this variable is the inventory level of product k at port i at the end

of time interval t . We need to make a distinction between the refinery and consumption

ports, as they hold different types of products. Therefore, we only use the variables corres-

ponding to base products for the refinery and the variables corresponding to end products

for consumption ports.

As described in Chapter 5, we impose the inventory bounds for some part as a soft con-

straints. We will describe the penalty variables for the refinery and for consumption ports

separately.

For the refinery r , we define a continuous penalty variable for the excess stock of base

product k ∈KB at time t : zr kt . As we mentioned before, we allow the stock level sr kt to be

above the maximum inventory bound I r k and penalize the difference between the stock

6.2. Mixed integer programming model 51

level and the inventory bound, i.e.:

zr kt = max{sr kt − I r k ,0}. (6.17)

Likewise, we can define continuous penalty variable for the shortage of stock of end

product k ∈ KE at port i at time t : zr kt . This penalty comes in the form of a backorder,

meaning that every unmet demand must be satisfied at a later time. We allow the stock level

si kt to be below the minimum inventory bound I r k and penalize the difference between the

stock level and the inventory bound, i.e.:

zi kt = max{I i k − si kt ,0}. (6.18)

The inventory balances are modelled using the following constraints:

sr kt = sr k(t−1) −
∑

s∈S , c∈Cs ,κ∈KE

Fkκq s
r tcκ+RP

r kt , ∀k ∈KB , t ∈ T , (6.19)

si kt = si k(t−1) +
∑

s∈S , c∈Cs
q s

i tck −RC
i kt , ∀i ∈PC ,k ∈KE , t ∈ T , (6.20)

zr kt ≥ sr kt − I r k , ∀k ∈KB , t ∈ T , (6.21)

zi kt ≥ I i k − si kt , ∀i ∈PC ,k ∈KE , t ∈ T , (6.22)

si k0 = Ii k0, ∀i ∈P ,k ∈K, (6.23)

sr kt ≥ 0, ∀k ∈KB , t ∈ T , (6.24)

si kt ≤ I i k , ∀i ∈PC ,k ∈KE , t ∈ T , (6.25)

zi kt ≥ 0, ∀i ∈P ,k ∈K, t ∈ T . (6.26)

Constraints (6.19) are the inventory balance constraints for all base products k at refinery

r at time steps t . The constraints state that the inventory level at time t is equal to the

inventory level at time t −1, minus the amount that is loaded into ships, plus the amount

of refinery production RP
r kt at time t . The factor Fkκ accounts for the conversion between

base products k at the port and the end products κ that are loaded into the ships. Similar

inventory balances for consumption ports are given in Constraints (6.20). Note that at con-

sumption ports, no conversion is needed, because only end products are consumed and

delivered here.

Constraints (6.21) are equivalent definitions of the penalty variables for the refinery

stock levels, given in (6.17).Together with the non-negativity requirements in (6.26), these

constraints form a linear reformulation of the original definition. In a similar way, (6.22)

and (6.26) form a linear reformulation of Constraints (6.18). Because all variables zi kt are

minimized in the objective function (see Section 6.2.6), the expressions for zi kt are equal

52 6. Model description

to the excess stock or shortage during the process of optimization.

Constraints (6.23) fix the initial inventory levels to Ii k0. In Constraints (6.24) and (6.25)

we declare the non-negative continuous inventory level variables si kt together with the

hard bounds on these variables. In order to maintain feasibility at all times, this hard bound

is a lower bound for the refinery and an upper bound for consumption ports. Constraints

(6.26) declares non-negative continuous penalty variables.

6.2.6. Objective function
The objective of our problem is to minimize both the total (travel and operational) cost

C s
i j , which is equal to the sum over all arcs of the travel costs, and sum of all penalties zi kt

for shortage or excess of all products at all ports and all time steps. This penalty cost is

weighted with a time-dependent weighting factor αi kt . Therefore, we can formulate the

objective function as follows:

min
∑

s∈S , (i t , jτ)∈As
C s

i j xs
(i t , jτ) +

∑
i∈P , k∈K, t∈T

αi kt zi kt . (6.27)

6.2. Mixed integer programming model 53

Table 6.2: This table contains all variables that are used in the MIP model.

Variables

xs
i j t Binary variable that is 1 if ship s ∈ S uses arc (i t , jτ) in the arc-flow net-

work. This arc can be one of 5 categories described in Section 6.2.1

l s
tck Continuous variable for the quantity of product k ∈KE in compartment

c ∈ Cs of ship s ∈S at time t ∈ T
q s

r tck Continuous variable for the quantity of end product k ∈ KE loaded to

compartment c ∈ Cs of ship s ∈S at refinery r at time t ∈ T
q s

i tck Continuous variable for the quantity of end product k ∈K unloaded from

compartment c ∈ Cs of ship v ∈ S at consumption port i ∈ PC at time

t ∈ T
os

i t Binary variable that is 1 if ship s ∈S has started an operation at port i ∈P
that is ending at time t ∈ T

y s
tck Binary variable that is 1 if end product k ∈ KE is loaded into compart-

ment c ∈ Cs of ship s ∈S at time t ∈ T
si kt Continuous variable for the inventory level of product k ∈K at port i ∈P

at time t ∈ T
zr kt Continuous variable for the excess inventory level of base product k ∈KB

at refinery r at time t ∈ T
zi kt Continuous variable for the shortage of end product k ∈KE at consump-

tion port i ∈PC at time t ∈ T

54 6. Model description

6.3. Constraint programming model
In Section 6.2, we formulated a mixed integer programming model for the maritime invent-

ory routing problem. In this section, we formulate a model that is based on the concepts

of constraint programming for scheduling problems that we introduced in Section 4.2. The

model is based on what is done in earlier work on constraint programming for maritime

inventory routing by Goel, Slusky et al. (2015) and Giles et al. (2016), but is modified in or-

der to incorporate specific demands from our case study. Next to that, we introduce the

concept of voyages in order to reduce possible solution space of the model.

The CP model is built up in the same way as the mixed integer programming model.

We first introduce the interval variables that correspond to the port visits in Section 6.3.1.

In Sections 6.3.2-6.3.6 we explain the parts of the model that regulate routing, (un)loading,

product compartment allocation, port inventory levels and objective function in that order.

6.3.1. Port visits and voyages
As described in Section 4.2, we can model a scheduling problem using optional interval

variables. In our model, the visits that ships make at each port are the interval variables that

can be scheduled. In order to properly define the interval variables, we introduce constant

J s as the predefined number of voyages a ship s at most can make. The corresponding set

of possible voyages of ship s is J s = {
1, . . . , J s

}
. We define the port visits via the optional

interval variables xs
i j for s ∈ S , i ∈ P , j ∈ J s . These variables represent the stop at port i

during the j -th voyage of ship s. These optional interval variables have an integer length

of at least 1 and, if present, their domain is equal to all possible half-open intervals with

discrete start and end times within the planning horizon T , i.e.,

dom xs
i j = {⊥}∪ { [s,e) | s,e ∈Z, s,e ∈ [0,T], e ≥ s +1} .

Next to that, we define the voyage variables xs
j as the j -th voyage of ship s, for s ∈S , j ∈

J s . Remember that we defined a voyage as a trip that starts with a stop at refinery r and

ends at the subsequent refinery stop. Intuitively, we can see voyage variable xs
j as the col-

lection of all possible port stops that a ship s can make during its j -th voyage. We formalize

this definition in the constraints below. The domain of the voyage variables is equal to that

of the port stop variables, i.e.,

dom xs
j = {⊥}∪ { [s,e) | s,e ∈Z, s,e ∈ [0,T], e ≥ s +1} .

In order to define the relation between variables xs
j and xs

i j , remember the definition of

the span constraint (Section 4.2). We use this constraint as follows:

6.3. Constraint programming model 55

span
(
xs

j ,
{

xs
i j

}
i∈P

)
, ∀ j ∈J s , s ∈S . (6.28)

According to the definition of span, this states the following: xs
j is present if and only

if at least one of
{

xs
i j

}
i∈P is present, and the start of xs

j coincides with the earliest start of

these intervals.

In this way, Constraints (6.28) ensure that the voyage variables cover all corresponding

port stop variables. However, in order to complete satisfy the definition of a voyage, namely

that a voyage starts with a refinery stop and contains at least one stop at another port, we

pose the following constraints:

presenceOf
(
xs

j

)
⇒ presenceOf

(
xs

r j

)
, ∀ j ∈J s , s ∈S , (6.29)

presenceOf
(
xs

j

)
⇒ ∨

i∈PC

presenceOf
(
xs

i j

)
, ∀ j ∈J s , s ∈S , (6.30)

startAtStart
(
xs

j , xs
r j

)
, ∀ j ∈J s , s ∈S . (6.31)

Constraints (6.29), (6.30) and (6.31) together ensure that the interval variables for voyages

model the definition correctly. Constraints (6.29) and (6.30) declare that when a ship s

makes its j -th voyage, this voyage must include its j -th visit to the refinery r and at least

one corresponding stop at one of the consumption ports. Constraints (6.31) define that a

voyage starts with a visit to the refinery r before travelling to other ports.

We end this section by posing constraints that eliminate symmetries among voyage

variables and declare the variables xs
j and xs

i j :

presenceOf
(
xs

j

)
⇒ presenceOf

(
xs

(j−1)

)
, ∀ j ∈J s \ {1}, s ∈S , (6.32)

endBeforeStart
(
xs

(j−1), xs
j

)
, ∀ j ∈J s \ {1}, s ∈S , (6.33)

xs
j ∈ {⊥}∪ { [s,e) | s,e ∈Z, s,e ∈ [0,T], e ≥ s +1} , ∀ j ∈J s , s ∈S , (6.34)

xs
i j ∈ {⊥}∪ { [s,e) | s,e ∈Z, s,e ∈ [0,T], e ≥ s +1} , ∀i ∈P , j ∈J s , s ∈S . (6.35)

Constraints (6.32) and (6.33) eliminate symmetries among voyages. This means that

voyages are included in a solution in ascending time order, because whenever the j -th voy-

age of a ship is present, Constraints (6.32) require that the voyage before is also present.

The time ordering of port visits is implied by Constraints (6.33). Constraints (6.34) and

(6.35) declare the optional interval variables within their domain.

56 6. Model description

6.3.2. Routing
In order to control the scheduling of all port visits and voyages of a ship s, we use the se-

quence variables that we introduced in Section 4.2. In order to properly define these vari-

ables, we consider the set of all its possible port stops X s . This set consists of the following

elements:

• All possible port stops xs
i j , as defined in the previous section.

• An artificial first stop xs
0. This stop is related to the arc from the artifical origin node

in the MIP model. We need this stop in order to ensure that a ship starts its schedule

at the refinery, as explained in Chapter 6.

• Similarly, we define an artificial last stop xs
T , that we need to ensure that a ship ter-

minates its schedule at the refinery.

• Unavailability periods xs
u from set U s .

We define X s as the union of all elements that we listed above:

X s =
{{

xs
i j

}
i∈P , j∈J s

∪ xs
0 ∪ xs

T ∪ {
xs

u

}
u∈U s

}
.

Additionally, we can define type functions Θs : X s → P , that for each port stop in X s

returns the port where this stop takes place, i.e.:

Θs(x) =
i if x = xs

i j ,

r if x = xs
0, if x = xs

T , or if x = xs
u .

The intuition behind this definition is as follows: for any ordinary port stop xs
i j , the type

function returns port i . The type of the first and last port visits are equal to refinery r .

Next to that, we require a ship to be at the refinery during unavailability periods xs
u , hence

Θs(xs
u) = r .

Now that we have defined sets X s and functions Θs , we can introduce sequence vari-

ables over all possible port stops of a ship s. This declaration is also part of our model:

πs = sequenceVar
(
X s ,Θs) . (6.36)

Constraints (6.36) define the sequence variablesπs over the set of all possible port stops

X s of a ship s. We can use this sequence variable to define the routing constraints of a ship

s as follows:

6.3. Constraint programming model 57

first(πs , xs
0), ∀s ∈S , (6.37)

last(πs , xs
T), ∀s ∈S , (6.38)

noOverlap(πs ,T s), ∀s ∈S , (6.39)

xs
0 = [0,1), ∀s ∈S , (6.40)

xs
T ⊆ [1,T), ∀s ∈S , (6.41)

xs
u = [su ,eu), ∀s ∈S ,u ∈U s . (6.42)

Constraints (6.37) and (6.38) state that the first and last stop in sequence variable πs are

xs
0 and xs

T , respectively. Because we defined Θ(xs
0) =Θ(xs

T) = r , this is equivalent to requir-

ing that the schedule for ship s starts and ends at the refinery. Then, the noOverlap con-

straints in (6.39) state that no two stops in πs can overlap. Furthermore, the time between

two stops at ports i and j in πs should be at least T s
i j . This information is added through

transition matrix T s . Additionally, these constraint ensure that no other stop can be sched-

uled during a scheduled unavailability xs
u , which is also included in πs .

Constraints (6.40) declare the first visits of all ships s at the beginning of the planning

horizon, whereas Constraints (6.41) declare the last visits, which could take place during

any time. Constraints (6.42) declare the unavailability periods for ship s as fixed interval

variables.

6.3.3. Loading and unloading
Now that we have defined the routing mechanisms of the constraint programming model,

we shift the focus to the modelling of (un)loading operations. For this, we make use of

cumulative functions, which are described in Section 4.2.1. Remember the two types of

elementary cumulative functions:

• pulse(x,hmin,hmax): a function that has a variable height between hmin and hmax over

the length of optional interval variable x and 0 elsewhere. If x is absent, the pulse

function has height 0 everywhere.

• stepAtEnd(x,hmin,hmax): a function that has a variable height between hmin and hmax

after the end of optional interval variable x and 0 elsewhere. If x is absent, the stepAtEnd

function has height 0 everywhere.

Cumulative functions are defined as sums of elementary cumulative functions, i.e. they are

piecewise linear functions. We denote step, pulse and cumulative functions with a ∼ on top

of the variable.

58 6. Model description

We introduce integer (un)loading variables, analogous to variables in the MIP model

that we formulated in Section 6.2. The non-negative step function q̃ s
i j ck is the quantity of

product k ∈KE that is loaded into or from compartment c at port i during the j -th voyage

of ship s. This function has variable height between minimum (un)loading quantity Q
i k

and maximum compartment capacity L
s
ck . If port stop xs

i j is absent, the height of q̃ s
i j ck is

equal to 0. We formulate this as follows:

q̃ s
i j ck = stepAtEnd

(
xs

i j ,Q
i k

,L
s
ck

)
, ∀s ∈S , i ∈P , j ∈J S ,c ∈ CS ,k ∈KE . (6.43)

We can use the (un)loading variables to define cumulative functions l̃ s
ck that denote the

cumulative quantity of end product k ∈KE that is loaded into compartment c of ship s:

l̃ s
ck = ∑

j∈J s
q̃ s

r j ck −
∑

i∈PC

∑
j∈J s

q̃ s
i j ck , ∀s ∈S ,c ∈ Cs ,k ∈KE . (6.44)

The load of product k in compartment c of ship s is modelled as cumulative function l̃ s
ck

in (6.44). This load is composed of all quantities that are loaded into the compartment at

refinery r , minus the quantities that are unloaded at consumption ports. Because of the

assumption, that all compartments are empty at the beginning of the planning horizon, we

do not need to include initial loads in this expression.

The values that load l̃ s
ck have have hard bounds, as the load cannot be negative and

cannot exceed the tank capacity L
s
ck :

alwaysIn
(
l̃ s

ck ,0,T,0,L
s
ck

)
, ∀s ∈S ,c ∈ Cs ,k ∈KE . (6.45)

The hard bounds on the quantity of product that a ship can transport in compartment c

are given by the alwaysIn constraints in (6.45). Following the definition of alwaysIn in

Section 4.2, Constraints (6.45) ensure that load variables l̃ s
ck only have values between 0

and L
s
ck during planning horizon [0,T].

6.3.4. Product compartment allocation
Similar to the MIP model in Section 6.2, we need constraints to ensure that a compartment

can contain only one product at a time. Once a certain product is loaded into a compart-

ment at the refinery, this will be the only product type in this compartment during an entire

voyage, because there cannot be any products loaded into the compartments at consump-

tion ports. We will make use of this insight and the voyage formulation to model this in a

compact way, as we only need one allocation variable per voyage.

With this in mind, we can introduce optional interval variables y s
j ck , which are present

when product k ∈ KE is loaded into compartment c during the j -th voyage of ship s and

6.3. Constraint programming model 59

absent otherwise. The allocation constraints are then stated as follows:

alternative
(
xs

j ,
{

y s
j ck

}
k∈KE

)
, ∀s ∈S , j ∈J s ,c ∈ Cs , (6.46)(

q s
r j ck > 0

)
⇒ presenceOf

(
y s

j ck

)
, ∀s ∈S , j ∈J s ,c ∈ Cs ,k ∈KE , (6.47)

y s
j ck ⊆ {⊥}∪ [0,T), ∀s ∈S , j ∈J s ,c ∈ Cs ,k ∈KE . (6.48)

The alternative constraints in (6.46) ensure that whenever a ship s makes its j -th voyage,

exactly one of the product compartment allocation variables is present and coincides with

this voyage. This means that exactly one product k ∈KE can be loaded into compartment

c ∈ Cs . Additionally, the constraints in (6.47) ensure that y s
j ck is present whenever the con-

tinuous loading variable q s
i j ck is greater than zero at the refinery. From (6.46) we conclude

that only one product can have a positive quantity loaded into compartment c during a

voyage. Remember that Constraints (6.45) from Section 6.3.3 ensure that a product can

only be unloaded from a compartment c when the load of this compartment is larger than

zero.

Following the reasoning above, Constraints (6.46) and (6.47) together with Constraints

(6.45) ensure that only one product can be loaded into a compartment. The product com-

partment allocation variables are declared in (6.48).

6.3.5. Port inventory levels
In order to complete the model, we need to model the inventory balance of the ports i ∈P
for all products k ∈ K. Similar to the approach in Section 6.2.5, we use variables for the

inventory level of product k at port i during the planning horizon. In this case, we introduce

cumulative functions s̃i k for this purpose. We only use variables corresponding to base

products for the refinery and variables that corresponds to end products for consumption

ports.

First, remember that at each time step t , the quantity of base product k that refinery r

produces is RP
r k . Similarly, the quantity of end product k that consumption port i consumes

is equal to RC
i k . In our CP model, we model the production and consumption as a step

functions:

R̃P
r k = ∑

t∈T
stepAt

(
t ,RP

r k

)
, ∀k ∈KB , (6.49)

R̃C
i k = ∑

t∈T
stepAt

(
t ,RC

i k

)
, ∀i ∈PC ,k ∈KE . (6.50)

In Constraints (6.49) and (6.50) we model the cumulative quantity of product k that is pro-

duced or consumed at refinery r and consumption ports i as cumulative functions.

In Section 6.3.3 we defined elementary cumulative functions q̃ s
r j ck for the quantity of

60 6. Model description

end product k that was loaded into compartment c of ship s during the ship’s j -th stop

at refinery r . Because the refinery only has base products in stock, we would like to de-

rive a similar expression for base products k. If the quantity q̃ s
r j cκ of an end product κ is

loaded into a ship at the refinery, Fkκq̃ s
r j cκ is taken from the refinery stock of base product

k. Therefore the total amount that is subtracted from the stock of base product k during an

operation, is the sum of all contributions Fkκq̃ s
r j cκ over all end products κ:

q̃ s
r j ck = ∑

κ∈KE

Fkκq̃ s
r j cκ, ∀k ∈KB . (6.51)

We can sum this over all ships, voyages and compartments to find:

q̃r k = ∑
s∈S

∑
j∈J S

∑
c∈CS

∑
κ∈KE

Fkκq̃ s
r j cκ, ∀k ∈KB . (6.52)

We can derive a similar expression for the cumulative quantities of end products k that are

unloaded from ships to consumption ports i . In this expression, we do not need conversion

factor Fkκ:

q̃i k = ∑
s∈S

∑
j∈J S

∑
c∈CS

q̃ s
i j ck , ∀i ∈P ,k ∈KE . (6.53)

Next to that, we need the penalty variable for shortages or excesses of a product k at

ports i to model the backorder inventory policy. In order to model this using the CP form-

alism, we use introduce optional interval variables ζi kt which are present whenever a pen-

alty occurs at time t . Then the penalty can be modelled using an elementary cumulative

function z̃i kt which takes the height of the stock violation in case a penalty occurs. Integer

variables zi kt have the value of the penalty of product k at port i in time t and can be added

to the objective function:

z̃i kt = pulse (ζi kt , zi kt) , ∀i ∈P ,k ∈K, (6.54)

z̃i k = ∑
t∈T z̃i kt

∀i ∈P ,k ∈K, (6.55)

ζi kt ⊆ {⊥} ∈ [t , t +1), ∀i ∈P ,k ∈KE , t ∈ T , (6.56)

zi kt ∈Z≥0, ∀i ∈P ,k ∈KE , t ∈ T . (6.57)

Constraints (6.54) model the loss penalty for product k that occur at port i at time t . Con-

straints (6.55) give the cumulative penalty function for product k at port i as the sum over

all time periods of z̃i kt . In (6.56) we declare the optional interval variables for losses at time

t . Non-negative integer penalty variables zi kt are declared in (6.57).

6.3. Constraint programming model 61

In the above paragraphs, we explained most elements that have an impact on inventory

levels s̃r k for base product k at refinery r . For completeness, we list all contributions to s̃r k

here:

• Initial inventory S0
r k . We can model this as an elementary cumulative function as

follows: S̃0
r k = stepAt(0,S0

r k).

• Production as a cumulative function: R̃P
r k (see Constraints (6.49))

• Products that are loaded into ships: q̃r k (see Constraints (6.52)).

• Penalties as a cumulative function: z̃r k (see Constraints (6.55))

This results in the following expression for inventory levels s̃r k :

s̃r k = S̃0
r k + R̃P

r k − q̃r k − z̃r k , ∀k ∈KB . (6.58)

We can find an equivalent expression for consumption ports:

s̃i k = S̃0
i k − R̃P

i k + q̃i k + z̃i k , ∀k ∈KB . (6.59)

We only need to impose inventory bounds on cumulative functions s̃i k . For this, we

again use the alwaysIn constraint:

alwaysIn(s̃i k ,0,T, I i k , I i k), ∀i ∈P ,k ∈K. (6.60)

The alwaysIn constraints in (6.60) ensure that s̃i k can only take values of I i k and I i k . The

presence of z̃i k in (6.58) and (6.59) turn this constraint into a one-sided soft constraint.

6.3.6. Objective function
The complete constraint programming model is given by Constraints (6.28)-(6.60). The

objective of this model is the same as in Section 6.2.6, namely to minimize both the total

cost TC s , which is composed of travel and operational cost, and the penalties for shortage

or excess of all products at all ports. This penalty cost is weighted with a weighting factor

αi kt . Therefore, we can formulate the objective function as follows:

min
∑
s∈S

TC s + ∑
i∈P

∑
k∈K

∑
t∈T

αi kt zi kt , (6.61)

where TC s =∑
i

C s
θs (πs (i−1)),θ(πs (i)), ∀s ∈S . (6.62)

The total cost of the ship sequences πs is calculated in (A.30). It consists of the sum of

all travel costs between consecutive port visits for ship s.

62 6. Model description

Sets

Js Set of possible voyages for ship s ∈S

Variables

xs
j Optional interval variables for the j -th voyage of ship s, for j ∈J s

xs
i j Optional interval variables for the port visit to port i during the j -th voy-

age of ship s, for j ∈J s

xs
0 Interval variables for the artificial first stop of ship s ∈S

xs
T Interval variables for the artificial last stop of ship v ∈V

q s
i j ck Discrete variable of the quantity of product k ∈KE that is loaded into or

from compartment c ∈ Cv of ship s ∈S at the visit to port i ∈P during the

j -th voyage, for j ∈J s

q̃ s
i j ck Step functions that represent the (un)loading of product k ∈KE into or

from compartment c ∈ Cv of ship s ∈S at the visit to port i ∈P during the

j -th voyage, for j ∈J s

l̃ s
ck Discrete variable of the load of product k ∈KE in compartment c ∈ Cs of

ship s ∈S
y s

i j ck Optional interval variables that are present when product k ∈ KE is

loaded into compartment c ∈ Cs of ship sS at the end of the visit to port

i ∈P during the j -th voyage, for j ∈J s and absent otherwise

R̃P
r k Cumulative function of the production of base product k ∈KB at refinery

r

R̃C
i k Cumulative function of the consumption of end product k ∈KE at port

i ∈PC

s̃i k Cumulative function of the inventory level of product k ∈K at port i ∈P
during the planning horizon.

ζi kt Optional interval variables that are present whenever the inventory

levels of product k ∈K in port i ∈P at time t ∈ T violates its soft bound.

zi kt Discrete variable for the excess inventory level of base product k ∈KB at

the refinery r at time t ∈ T , or for the shortage of end product k ∈KE at

consumption port i ∈PC at time t ∈ T
z̃i k Cumulative function of all excess inventory of base product k ∈KB at the

refinery r , or cumulative function of all shortages of end product k ∈KE

at consumption port i ∈PC

6.4. Comparison between MIP and CP model 63

6.4. Comparison between MIP and CP model
In this chapter, we presented two alternative models using either mixed integer program-

ming and constraint programming. We can identify several differences between the mod-

els, which we will discuss in this section.

One of the main differences between the two models is the way that ship schedules are

constructed. In the CP model, this is done using optional interval variables that represent

the port visits. These port visits are represented by half open intervals with discrete start

and end points that can be scheduled during the planning horizon. This contrasts the MIP

model, where we only model the visit implicitly by the navigation of the ships through their

respective graphs.

Another difference is the necessity of binary operating variables os
i t , which are needed

to impose conditional minima on the variables q s
i tck in Constraints (6.8). These minima

should only be enforced whenever the ship is operating at that port during that time slot,

which can be achieved using the binary variables. In the CP models, this conditionality

is modelled directly through the optional interval variables. Whenever such an interval

variable is absent, all corresponding constraints, for example on its minimum value, do

not need to be satisfied, allowing for a concise formulation without binary variables.

The product compartment allocation is handled differently in both models. In order to

ensure that only one product is loaded into a compartment at all times, the MIP model uses

binary variables y s
tck . Therefore, the number of binary variables scales with the length of

the time horizon. In contrast, the CP model replaces these variables by y s
j ck , where the time

index is replaced by the index j , corresponding to a predefined number of voyages that is

included in the model. In most cases, this number is smaller than the time horizon T .

The last main difference between the two models is, that the CP models use integer

variables instead of continuous variables for the loading quantities q , port inventory levels

s, ship load levels l and penalties z. The main reason for this is that variables in CP prob-

lems have discrete domains. In order to make a fair comparison between the two models,

we need to show that for every solution of the MIP problem, with non-integer values for

continuous variables, we can find an alternative solution with integer values, that has the

same or a better objective value.

This follows from the fact that whenever a continuous variable takes a fractional value,

it is always possible to find an alternative integer solution with the same objective value.

We formalize this intuition in the following propositions. First, in Proposition 1, we take all

conversion factors between base and end products equal to 1.

Proposition 1. Let Π be a maritime inventory routing problem formulated as a mixed in-

teger program using constraints (A.2)-(6.26) and with objective function (6.27).

64 6. Model description

Let I be an instance of this problem with the following properties:

1. Travel cost C s
i j and penalty coefficients αi kt are non-zero, otherwise the statement is

trivial.

2. Ship capacity L
s
ck is integer for all s ∈S ,c ∈ Cs ,k ∈KE .

3. Consumption port inventory related constants RC
i kt ,S0

i k and Si k are integer for all i ∈
PC ,k ∈KE , t ∈ T .

4. Refinery inventory related constants RP
r kt ,S0

r k and Sr k are integer for all k ∈KB , t ∈ T ,

5. Conversion factors Fkκ are either 0 or 1 for all k ∈KB ,κ ∈KE .

Now suppose that there exists a solution Σ to (Π,I), with a non-integer value (at least) for

one of the following variables:

• Inventory stock variable si kt for i ∈P ,k ∈K, t ∈ T ,

• Penalty variable zi kt for i ∈P ,k ∈K, t ∈ T ,

• Ship load variable l s
tck for t ∈ T , s ∈S ,c ∈ Cs ,k ∈KE ,

• (Un)loading quantity q s
i tck for s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE ,

Then, there exists a solution Σ′ that has the same or lower objective value than Σ.

Proof. We will proof this statement by construction. Without loss of generality, we can

assume that penalty variables zi kt are either equal to 0, or that equality holds in the corres-

ponding Constraint (6.21) or (6.22). In other words, the penalty variables are equal to the

excess or shortage of a product at a port.

First, we show that whenever one of the variables si kt , zi kt or l s
tck has a non-integer

value, there must be a variable q s
i tck that has a non-integer value. We show this by contra-

diction:

• Suppose one of the variables si kt has a non-integer value, but all variables q s
i tck are

integer. This contradicts inventory balance constraints (6.19) or (6.20) and the as-

sumption that input parameters for the initial inventory S0
i k and production/con-

sumption rates RP
r kt /RC

i kt are integer.

• Suppose one of the variables zi kt has a non-integer value. Because all parameters

Si k and Si k are integer, equality in Constraints (6.21) or (6.22) assures that the corres-

ponding variable si kt has a non-integer value as well. Via the reasoning above, there

is a variable q s
i tck that has a non-integer value in this case.

6.4. Comparison between MIP and CP model 65

• If one of the variables l s
tck has a non-integer value, we can also conclude that there

must be a variable q s
i tck . This follows from similar reasoning as above, using the ship

load balance (6.6) and the fact that the ships are empty at the beginning of the plan-

ning period (6.10).

From the previous argument, we know that in our non-integer solutionΣ, at least one of the

variables q s
i tck must have a non-integer value. Hence, it suffices to show that we can con-

struct an alternative solution Σ′ in which all (un)loading variables q s
i tck are integer. Given

this variable q s
i tck and its lowest index t , no other variable si kt , zi kt or l s

tck can have non-

integer values for times t ′ < t , because of the integer input parameters and the balance

Constraints (6.6), (6.19) and (6.20).

Consider the non-integer variable q s
iτck in Σwhich has the lowest index t , which we call

τ. We show that we can construct a solution Σ′ with integer q s
iτck , that has a lower objective

value than Σ. For this q s
iτck , consider two cases: i corresponds to the refinery r , or to a

consumption port.

First the case that q s
rτck is non-integer, which means that an non-integer quantity of

product k is loaded into compartment c of ship s. By (6.6) we know that the corresponding

ship load l s
τck is also non-integer, and therefore strictly smaller than its upper bound L

s
ck .

Because of Constraints (6.2), we know that ship s must return to the refinery at least once

before the end of the planning period.

All compartments of ship s are empty at the trip back to the refinery. This means that

there must be at least one other variable q s
i tck that is non-integer, for i ∈PC . For this vari-

able, we know that t > τ, but before the ship returns to the refinery again. We now construct

solution Σ′ by rounding q s
rτck up to the nearest integer, and by increasing q s

i tck with the

same amount. This is allowed because the ship load variable l s
τck is smaller than L

s
ck . Note

that the objective value of Σ′ is the same as that of Σ or lower. The higher quantity that is

shipped reduces possible excess at the refinery, and reduces possible shortage at consump-

tion port i .

For Σ′, we could have the following two cases:

1. Σ′ is a solution with integer values for all variables q s
i tck , and hence also for all vari-

ables si kt , zi kt and l s
tck (by the starting argument). In this case, we are done with the

proof.

2. Σ′ is a solution where still one of the variables q s
i tck is non-integer. In this case, we

return to the starting point of our construction, by choosing the non-integer variable

q s
i tck in Σ′ with the lowest index t . We apply this procedure repeatedly.

Now we take a look at the second case, where the non-integer variable q s
iτck in Σ with

the lowest index τ corresponds to a consumption port i . By the same arguments as before

66 6. Model description

we know that ship load l s
τck is also non-integer, and therefore strictly smaller than its upper

bound L
s
ck . Ship s must return to the refinery at least once before the end of the planning

period. All compartments of ship s are empty at the trip back to the refinery. This means

that there must be at least one other variable q s
ηtck that is non-integer, for another con-

sumption port η ∈PC . For this variable, we know that t > τ, but before the ship returns to

the refinery again. We now construct solution Σ′ by rounding q s
iτck up to the nearest in-

teger, and by decreasing q s
ηtck with the same amount. This is allowed because the ship load

variable l s
τck is smaller than L

s
ck . Note that the objective value of Σ′ is could in this case be

higher, the same or lower than that of Σ, depending on non-zero weights αi kt . If the oper-

ation above results in a higher objective value, we decrease q s
iτck by 1 and increase q s

ηtck by

one, leading to a solution with an objective value lower than what we had before. Again, we

could have the following two cases:

1. Σ′ is a solution with integer values for all variables q s
i tck , and hence also for all vari-

ables si kt , zi kt and l s
tck (by the starting argument). In this case, we are done with the

proof.

2. Σ′ is a solution where still one of the variables q s
i tck is non-integer. In this case, we

return to the starting point of our construction, by choosing the non-integer variable

q s
i tck in Σ′ with the lowest index t . We apply this procedure repeatedly.

By repeating this procedure until all variables are integer, we can construct a solution

Σ′ that only has discrete values for the variables si kt , zi kt , l s
tck and q s

i tck . Because of the

finite time horizon, there is only be a finite number of variables q s
i tck , which means that

this process always terminates.

7
Computational study

In Chapter 6, we have seen two mathematical formulations of the maritime inventory rout-

ing problem. One of the main goals of this thesis, is to develop approaches based on both

MIP and CP to solve the problem, and to compare the outcomes of the approaches in a

computational study. In this chapter, we will outline this analysis. Firstly, in Section 7.1,

we describe the data that we use as input for this problem. Secondly, in Section 7.2, we

describe the generation and characteristics of additional instances, that are based on the

original data. Finally, in Section 7.3 we present and discuss the (preliminary) results of the

runtime analysis, where we solve both the MIP and CP model and compare the results.

7.1. Data description
As described in Chapter 5, an instance of the maritime inventory routing problem is given

by to input data, related to the sets and constants that are listed in Table 5.1. Our analysis is

based on a real-life instance from a petroleum company. This data set provides information

about the characteristics of the ships, ports and products and supply and demand profiles

over a time horizon of approximately four months. Next to the original data set, we created

a set of instances. By including this set of instances, we can extend our analysis and check

whether our findings extend to different instances

In Table 7.1, the characteristics of the real-life case are presented. Apart from the num-

ber of ports |N |, ships |V |, base products |KB |, and end products |KE |, we list three addi-

tional properties in the table. These properties can be used in order to evaluate our created

instances, in order to ensure that these instances have realistic properties in comparison

to the real-life case. The characteristics that we use are the following:

• Density ρ: This characteristic is defined as the total number of stocks of end products

67

68 7. Computational study

that are held by the ports, divided by the total possible number of stocks, which is

equal to the number |KE | × |NC |. This ratio is an indication of the complexity of

the problem in relation to the number of ports and products that are included. The

higher ρ is, the harder the problem is.

• Stock capacity-to-consumption Smax/RC : This characteristic is the average ratio between

the stock capacity of a port to its average daily production. The ratio is an indication

of how often ports need to be visited in order to meet the demand at that port.

• Ship capacity-to-consumption Lmax/RC : This characteristic is the ratio of the total

loading capacities of all compartments of all ships, divided by the total consumption

of all ports over the entire planning horizon. This characteristic is an indication about

the level at which the ships in the instance are able to meet the total demand of end

products at the ports.

Table 7.1: In this table, we list the properties of the problem instance that is based on real-life data.

Instance |N | |V | |KB | |KE | ρ Smax/RC Lmax/RC

Real-life case 13 2 7 9 0.44 84.52 9.74

7.2. Instances
With the information from the case study, it is possible to create similar instances of the

problem, that have the same or similar characteristics. The aim of these instances is to for-

mulate the MIP and CP models for all instances and analyse the run times for all instances.

We generate instances of different sizes. In Table 7.2 we list all instances that are created,

together with the same characteristics as we introduced in Section 7.1.

As indicated in Table 7.2, we can divide our instances into four groups. This subdivision

is based on the size of the instances and the way in which they are created:

• S1 - S3: These instances are small instances, which have four ports (of which one is

the refinery), two ships and three to four different product types. These instances are

created by filtering the data of the original instances and selecting the four ports and

products that these ports hold. Because the instances are small, the density charac-

teristic is relatively high for these instances. As we will see later, the instances S1, S2

and S3 can be solved to near optimality by a MIP approach for a short time horizon,

which makes these instances good benchmarks for other methods.

• M1 - M5: The number of ports in the mid-size instances varies from 5 to 10. The in-

stances are created in a similar way as the small instances, namely by taking a subset

7.2. Instances 69

Table 7.2: In this table, we list the properties of all created instances that we use in the computational study.

Instance |N | |V | |KB | |KE | ρ Smax/RC Lmax/RC

S1 4 2 4 3 0.78 75.50 8.52
S2 4 2 4 3 0.78 88.47 4.66
S3 4 2 3 3 0.56 95.37 10.84

M1 5 2 5 5 0.60 97.13 13.02
M2 5 2 6 5 0.72 91.88 4.36
M3 6 2 6 5 0.70 101.09 6.20
M4 8 2 6 6 0.60 93.19 3.52
M5 10 2 7 6 0.52 85.45 5.22

L1 13 2 7 9 0.44 84.52 9.74
L2 13 2 7 9 0.44 84.52 9.74
L3 13 2 7 9 0.44 84.52 9.74

L4 13 2 7 9 0.43 85.96 9.38
L5 13 2 7 9 0.44 69.77 8.17
L6 13 2 7 9 0.37 82.82 12.88
L7 13 2 7 9 0.46 87.68 9.68
L8 13 2 7 9 0.43 90.47 10.68

Case study 13 2 7 9 0.44 84.52 9.74

of the ports and products from the real-life case. By looking at instances of increasing

sizes, it is possible to look up to what instance size it is possible to find good solutions

using exact solver algorithms on the model formulations as proposed in Chapter 6.

Note that the ship capacity-to-consumption ratios instances M2-M5 are on the low

side, this is due to some restrictions on the number of compartments that ships have

in these instances. Perhaps these instances need to be adjusted somewhat, in order

to make them more comparable to the real-life case.

• L1 - L3: The large instances in our instance set all have the similar size as our real-life

case. For the first three instances, the port indices are permuted, while keeping all

other input data the same. In this way, the distances between port, and the accom-

panying costs, change, but aggregate production and consumption numbers stayed

the same for all products. Apart from the travel distances, these instances have the

same exactly the same characteristics as the real-life case.

• L4 - L8: These instances are all variations on the real-life case, which are created in

the following way: for each pair of a consumption port and an end product in the

new instance, we pick the consumption data, along with the corresponding invent-

ory bounds, of a random port-product pair from the real-life case. Note that this can

mean that the port does not consume this product in the new instance, if the port we

70 7. Computational study

picked does not store the chosen product in the original instance. In this case, the

consumption patterns in the new instances still are realistic in shape and size, but

the total demand of a certain port or product may deviate from the total demand in

the original case. In this way we create realistic instances, that still have the same

characteristics as the original case.

7.3. Exact solution methods
In order to compare the two mathematical formulations of MIP and CP, we set up a compu-

tational experiment. In this experiment, we model the maritime inventory routing problem

as both a MIP model, as presented in Section 6.2, and a CP model, which is formulated in

Section 6.3. We use this model and try to solve it using solution methods that are imple-

mented in commercial solver software. When we use the term exact solution method, we

refer to these search algorithms. The commercial solver that we use to solve the MIP model

is IBM ILOG CPLEX 12.10.0. To solve the CP model, we use the related solver IBM ILOG CP

Optimizer 12.10.01. All experiments are run on a Dell 7490 Windows PC with a 1.90 GHz

four-quad core processor and 16 GB RAM.

In this section, this numerical analysis is outlined. First, in Section 7.3.1, the two models

are compared based on their size. In Section 7.3.2, we outline the solution approaches that

are embedded in the commercial solvers. Lastly, in Section 7.3.3, we discuss the results of

the comparison of the exact solution method.

7.3.1. Model size
In this section, we compare the size of the MIP model to the size of the CP model, based

on the number of constraints and variables that it contains. Table 7.3 shows the number

of variables and constraints for both models for all instances. The size of the models grows

fast with increasing instance size. For example, the variables q s
i tck in the MIP model are

indexed with the number of ports, compartments and products. With doubling the number

of ports, compartments and products in the instance, the number of variables of this kind

already increase by a factor 8. This shows that the scalability of the model might quickly

become an issue when solving for large size instances.

One difference between MIP and CP follows from the decision variables that are related

to the routing of the ship. The MIP model uses decision variables of the form xs
i j t for this.

Therefore, the number of routing decision variables is quadratic in the number of ports

in the instance. Conversely, the CP uses optional interval variables of the form xs
i j , which

1A detailed overview of all available CP solvers is available on the following website:
http://openjvm.jvmhost.net/CPSolvers/.

7.3. Exact solution methods 71

is linear in the number of ports in the instance. Therefore, when doubling the number of

ports, the number of routing decision variables doubles as well, instead of the quadratic

growth in the MIP model.

As explained in Section 4.2.2, the solver IBM ILOG CP Optimizer contains a presolve

functionality, which reduces the size of the CP model before starting the search algorithm,

by removing redundant constraints and variables. Similarly, the solver for the MIP model,

IBM ILOG CPLEX contains a similar functionality, which further reduces the size of the

MIP model. In Table 7.4, the size of the models after presolve is reported. What stands out,

is that the presolve for the MIP model removes more variables and constraints from the

model than the presolve for the CP model. However, even after presolve, the total number

of variables in the MIP model is higher than the number of variables in the CP model, up to

around a factor three for the large instances.

Table 7.3: In this table, we list the number of variables and constraints for all instances with time horizon
T = 20. We indicate the number of variables that are in the model formulation, so before presolve is executed.

MIP CP

Constraints Binary variables Total variables Constraints Total variables

S1 13748 2056 8888 3117 2096

S2 7812 1506 5510 1977 1676

S3 9274 1692 6336 2193 1636

M1 18450 2510 11870 4343 3277

M2 23778 3076 15154 5559 4296

M3 20271 2700 12996 4790 3585

M4 33538 4272 21336 7792 6236

M5 80662 7350 47286 16680 11030

L1-L8 277038 16114 150738 51729 28253

Case study 277038 16114 150738 51729 28253

72 7. Computational study

Table 7.4: In this table, we list the number of variables and constraints for all instances with time horizon
T = 20. We indicate the number of variables after presolve is executed by the solver.

MIP CP

Constraints Binary variables Total variables Constraints Total variables

S1 2318 850 2203 3117 1914

S2 1526 658 1334 1977 1578

S3 1849 730 1476 2193 1514

M1 3158 1152 3450 4343 3083

M2 4069 1414 3412 5559 4084

M3 3627 1194 3263 4790 3373

M4 5812 2190 4516 7792 6006

M5 10834 3642 8959 16680 10548

L1 36334 9244 31299 51729 26895

L2 37874 9400 32695 51729 26895

L3 36151 9088 31260 51729 26895

L4 45507 8932 40788 51729 26895

L5 47079 8932 42360 51729 26895

L6 45895 8932 41183 51729 26895

L7 45202 8932 40482 51729 26895

L8 45996 8932 41285 51729 26895

Case study 34716 8932 29969 51729 26895

7.3.2. Search algorithms
In this section, we briefly address the exact solution methods in the solvers for the MIP and

the CP model. We formulate both models and use the solution algorithms in their respect-

ive solvers to solve this problem. This solution process is run until either the instance is

solved to optimality, or a time limit of 3600 seconds is reached.

The solution algorithm in IBM ILOG CPLEX is called the dynamic search algorithm. As

this is a commercial software package, the details of this algorithm are not exactly known.

The algorithm is based on the branch and bound algorithm that was outlined in Chapter 3.

This algorithm is run with the default settings in CPLEX.

The performance of the automatic search algorithm for the CP model formulation as

given in Section 6.3 is analysed. The search algorithm for the constraint programming

model is explained in more detail in Section 4.2.2. We guide this search algorithm by the de-

7.3. Exact solution methods 73

claration of a search phase. Experimentation showed that without the declaration of such

search phase, there is a high risk that the solution algorithm makes a bad branching de-

cision, from which it is unable to recover soon enough. Our search phase consists of the

following variables:

xs
i j Optional interval variables for the port visit to port i during the j -th voy-

age of ship s, for j ∈J s

q s
i j ck Discrete variable of the quantity of product k ∈KE that is loaded into or

from compartment c ∈ Cv of ship s ∈S at the visit to port i ∈P during the

j -th voyage, for j ∈J s

zi kt Discrete variable for the excess inventory level of base product k ∈KB at

the refinery r at time t ∈ T , or for the shortage of end product k ∈KE at

consumption port i ∈PC at time t ∈ T
Next to adding the variables list above to the search phase, a value selector was in-

cluded for the penalty variables zi kt , requiring that the smallest possible value was chosen

for these variables, in order to minimize the impact on the objective function.

7.3.3. Results
In this section, we discuss the results of the computational study using commercial solv-

ers. The main objective of this study is to compare the results of the solution algorithms

in commercial solvers for the MIP and CP model. We compare the results of the solution

approach in multiple ways. First, we compare the solutions with the best objective values

after the search procedure is finished. Next to that, we analyse the first feasible solutions,

as well as the first solutions that reach a certain threshold value in the objective function.

Lastly, we compare the time that was needed for both solution approaches to reach a solu-

tion of comparable quality. All analyses that we performed are explained in more detail in

the following sections.

Best feasible

First, we perform a run time analysis to compare the performance of the commercial solv-

ers for MIP and CP. For all the instances that are created, we run the built-in solution al-

gorithm in order to find the optimal solution. In case this optimal solution is not found, the

search is cut off after a time limit of 3600 seconds.

We analyse the runs for two time horizons, namely T = 20 days and T = 60 days. The

reason we chose these time horizons is as follows: we want to compare for both a short

and a longer time horizon. Experimentation showed that for a planning horizon of 20 days

both solution approaches are still able to find an optimal solution within the time limit.

We need this proof of optimality to have a reference of the quality of our results. Next to

74 7. Computational study

Table 7.5: This table contains the results of the run time analysis for small and medium-sized instances. The
analysis is done for time horizons T = 20 and = 60 days. For each model, the best solution is shown, as well
as the time it took the solver to reach this solution.The solution process has a time limit of 3600 seconds.

MIP CP

Instance Horizon Best solution Bound Gap Time (s) Best solution Bound Time (s)

S1 T=20 762 762 0% 4.45 762 0 274.07

T=60 3146 1551 50.68% 3596.77 3824 0 2193.79

S2 T=20 849 849 0% 0.39 849 0 1.0

T=60 1616631 11820 99.27% 5.17 1026593 570775 688.63

S3 T=20 525 525 0% 0.70 525 0 0.88

T=60 1365 1174 13.93% 3313.72 54463 0 1152.5

M1 T=20 1146 873 23.81% 1791.95 1160 0 12.05

T=60 64170 1212 98.11% 3570.91 31667 0 2374.42

M2 T=20 1528 1528 0% 1567.45 1852 0 59.84

T=60 1616269 3788 99.77% 3502.28 2106664 546574 1560.73

M3 T=20 663 663 0% 327.63 768 0 161.41

T=60 273939 258730 5.55% 3173.08 879315 0 1320.29

M4 T=20 56758 1728 96.95% 3534.61 133114 0 3210.51

T=60 5603470 11873 99.79% 1674.55 5375996 401615 2175.48

M5 T=20 21143 1148 94.57% 1321.88 2693 0 146.94

T=60 10619929 957 99.98% 1145.92 3268506 0 2206.93

that, the analysis for the longer time horizon of T = 60 allows us to test the scalability of

both models in terms of an increasing time horizon, as well as to compare the results of a

rolling-horizon heuristic, as is explained in Section 7.4.

In Table 7.5 the results of the run time analysis are listed for the small and medium-

sized instances. For the three small-sized instances, both the MIP and CP approach found

the optimal solution within the time limit for the short planning horizon of T = 20. For

instances M2 and M3, the MIP approach also found an optimal solution within the time

limit. It stands out from this table that for small instances and the short time horizon, MIP is

the dominant approach, finding a better solution for 7 out of the 8 instances. For the longer

planning horizon of T = 60, the model sizes grow and CP finds better quality solutions for

most instances. One drawback of the constraint programming approach becomes clear in

this table, namely the fact that the CP solver often does not generate good bounds.

7.3. Exact solution methods 75

Table 7.6: This table contains the results of the run time analysis for large-sized instances. The analysis is
done for time horizons T = 20 and = 60 days. For each model, the best solution is shown, as well as the time
it took the solver to reach this solution.The solution process has a time limit of 3600 seconds.

MIP CP

Instance Horizon Best solution Bound Gap Time to best (s) Best solution Bound Time to best (s)

L1 T=20 4473 1140 74.50% 3368.58 17371 0 2950.56

T=60 29481186 1136 100.00% 263.75 2876510 0 2578.27

L2 T=20 33558 1377 95.90% 3537.64 3959 0 3179.62

T=60 29481186 959 100.00% 292.80 1226275 0 2398.54

L3 T=20 4584 1062 76.82% 3306.23 8946 0 3192.55

T=60 20507334 1322 99.99% 3510.64 1958668 0 3169.36

L4 T=20 8396 3601 57.10% 3591.88 75641 0 708.23

T=60 21171390 288921 98.64% 922.03 4126265 0 2987.46

L5 T=20 111690 4724 95.77% 3536.72 353604 0 3436.45

T=60 27849275 169 100.00% 3600.02 9099865 0 2953.16

L6 T=20 34885 2564 92.65% 2548.41 50789 0 2547.02

T=60 15237129 517494 96.60% 572.08 3228286 0 2647.25

L7 T=20 1752 1193 31.88% 3251.81 126210 0 1361.21

T=60 23448125 363116 98.45% 1142.47 5068536 0 3531.31

L8 T=20 22285 2125 90.46% 3561.95 107766 0 339.6

T=60 17735884 407 100.00% 3600.28 4018831 0 3324.29

Case study T=20 19939 2089 89.52% 3543.27 16983 0 3215.38

T=60 26960315 1403 99.99% 3265.58 1508203 0 2915.33

When the instance sizes become larger, and therefore the the complexity of the model

is increases, the CP-based approach provides superior results. One of the reasons for this

could be the fact that in the CP solver, constraint propagation becomes a powerful tech-

nique that enables the solver to keep finding better solutions. For many of the large in-

stances, the MIP approach is not able to find a feasible solution within the time limits, for

the time horizon of T=60.

Comparable solutions

In the previous analysis, the two solution approaches were compared to each other based

on the objective value of the solution that was obtained after the solution period of 3600

seconds. Another method to compare the two approaches is by looking at the time that

both approaches to reach a solution with a comparable objective value. For this, we take

the minimum objective value that is reached by either the MIP or CP approach, and list the

time that it took for both approaches to reach this solution. The results of this comparison

76 7. Computational study

are listed in Tables 7.7 and 7.8.

For a short planning horizon, there is no difference to be distinguished between the

two approaches. However, for longer planning horizon of T = 60, it is easy to see that for all

large instances, the constraint programming approach found a solution that has a similar

or better objective value than the MIP solution in only a couple of seconds. The mechan-

ism to construct solutions early in the solution process is one of the benefits of opting for a

CP approach.

Table 7.7: This table contains time to a comparable solution for a planning horizon of T = 20.

Instance Horizon Value MIP Time MIP (s) Value CP Time CP (s)

S1 T=20 762 4.45 762 274.07

S2 T=20 849 0.39 849 1.00

S3 T=20 525 0.7 525 0.88

M1 T=20 1156 291.92 1160 12.05

M2 T=20 1530 1433.14 1852 59.84

M3 T=20 718 108.48 768 161.41

M4 T=20 126859 10.78 133114 1198.39

M5 T=20 21143 1321.88 20889 120.71

L1 T=20 15024 1518.50 17371 2950.56

L2 T=20 33558 3537.64 33382 110.96

L3 T=20 8577 3302.58 8946 1614.99

L4 T=20 49108 907.97 75641 708.23

L5 T=20 326989 448.56 353604 2397.5

L6 T=20 49796 977.42 50789 2547.02

L7 T=20 125259 319.63 126210 1361.21

L8 T=20 91687 1788.86 107766 339.6

Case study T=20 19939 3543.27 19929 1320.36

7.3. Exact solution methods 77

Table 7.8: This table contains time to a comparable solution for a planning horizon of T = 60.

Instance Horizon Value MIP Time MIP (s) Value CP Time CP (s)

S1 T=60 3621 3458.55 3824 2193.79

S2 T=60 1616631 5.17 1441227 3.97

S3 T=60 45993 2.94 54463 1152.5

M1 T=60 64170 3570.91 63941 212.60

M2 T=60 2097763 1171.97 2106664 1560.73

M3 T=60 809914 232.45 879315 1320.29

M4 T=60 5603470 1674.55 5591328 1155.61

M5 T=60 10619929 1145.92 10603004 36.25

L1 T=60 29481186 263.75 29481186 20.94

L2 T=60 29481186 292.8 29481186 9.73

L3 T=60 20507334 3510.64 9887118 95.26

L4 T=60 21171390 922.03 21171390 10.53

L5 T=60 27849275 3600.02 27849275 12.25

L6 T=60 15237129 572.08 15237129 22.14

L7 T=60 23448125 1142.47 23448125 10.37

L8 T=60 17735884 3600.28 17735884 10.62

Case study T=60 26960315 3265.58 23601350 20.62

78 7. Computational study

First feasible

Apart from comparing the best solutions that we found in the run time analysis, there is

some information in the the time until a first feasible solution is found. In Table 7.9, we

analyse the results from the analysis in the previous section by the time to the first feasible

solution. For small instances, the time until a first feasible solution is found, is comparable.

As the instance sizes and time horizon increase, it is easy to observe that for MIP, it takes

more time to find an initial solution. The reason for this, is that for these large instances, the

MIP model becomes larger, making it harder to solve the root node. The CP solver suffers

less from this scalability issue, as it is able to construct a feasible solution relatively quickly.

Table 7.9: This table contains the time to the first feasible solutions for all instances.

Instance Horizon Time MIP (s) Time CP (s) Instance Horizon Time MIP (s) Time CP (s)

S1 T=20 0.17 0.64 L1 T=20 20.52 2.87

T=60 0.78 1.14 T=60 263.70 15.83

S2 T=20 0.13 0.18 L2 T=20 24.69 2.92

T=60 0.83 0.32 T=60 292.75 7.15

S3 T=20 0.13 0.20 L3 T=20 19.51 2.94

T=60 0.66 0.29 T=60 259.91 17.24

M1 T=20 0.28 0.25 L4 T=20 49.99 3.11

T=60 9.56 0.48 T=60 921.98 7.69

M2 T=20 0.58 1.14 L5 T=20 44.80 3.07

T=60 2.41 0.58 T=60 22059.91 8.58

M3 T=20 0.41 0.29 L6 T=20 39.58 3.25

T=60 1.88 0.51 T=60 572.08 16.19

M4 T=20 0.83 0.39 L7 T=20 34.59 3.08

T=60 4.64 1.76 T=60 1142.42 7.59

M5 T=20 2.23 0.59 L8 T=20 57.50 3.22

T=60 15.34 2.97 T=60 3600.25 7.68

Case study T=20 18.39 2.83

T=60 254.89 11.23

7.4. Rolling-horizon heuristic 79

7.4. Rolling-horizon heuristic
In the previous section, we analysed the scalability of the maritime inventory routing prob-

lem and found that for large instances, the solution methods in the commercial solvers

were not only not able to find an optimal solution within the search limits of our exper-

iment, but already finding good quality solutions proved to be a hard task. However, in

a practical setting, the aim is to construct solutions for a time period of several months.

Therefore, it is desirable to find a solution method that can come up with such solutions.

For this reason, we develop a construction heuristic method in order to come up with good

quality solutions within a similar time frame. In this section, we explain the principles be-

hind our heuristic and set up an experiment to evaluate the performance of the heuristic.

7.4.1. Setup
It followed from the computational experiment in the previous section, that when increas-

ing the time scale, both the MIP and CP approaches had trouble finding good quality solu-

tions. Papageorgiou, Cheon et al. (2018) discuss the use of matheuristics for the maritime

inventory routing problem. The authors list several types of construction heuristics, most

notably rolling-horizon heuristics and local search heuristics. The local search heuristics in

this paper are more suitable for problems with a large fleet size, as they rely on solving the

problem for a subset of one or two ships out of the entire fleet. As the fleet only exists of two

ships in the instances in this thesis, we opt for the use of a rolling-horizon heuristic. The

objective of this heuristic is to find high quality solutions for a mathematical program, by

iteratively fixing a subset of variables in the model. In this section, we provide a framework

in which both MIP and CP can be used in a heuristic approach.

In a rolling-horizon heuristic, the problem is solved for the desired planning horizon

by iteratively solving smaller problems with a shorter planning horizon and extending the

planning horizon with every iteration. After every iteration, part of the solution is fixed for

the next iteration. In this way, the sizes of the model does not grow as hard as it would when

considering the entire model.

Algorithm 1 gives the outline of the rolling-horizon heuristic to solve an instance IT of

the maritime inventory routing problem that has planning horizon T . The iteration hori-

zon τ determines the size of the models that are solved in each iteration. In order to limit

the running time of the solution processes, the solve timit limit tmax is predetermined. The

horizon of the first iteration is initialised to be τ.

One iteration of the heuristic is described in lines 11-24. For iteration k, an instance ITk

with a time horizon Tk is created, for which a mathematical model Mk is built. This model

can be a MIP or CP model, as formulated in Chapter 6. For k = 0, this model is solved using

80 7. Computational study

Algorithm 1: Rolling-horizon heuristic for the maritime inventory routing prob-
lem
1 Input
2 Problem instance IT for planning horizon T , and number of ships S
3 Iteration horizon τ

4 Solve time limit per iteration tmax

5

6 Initialize
7 k = 0
8 Planning horizon for first iteration T0 = τ

9

10 while Tk < T do
11 Create instance ITk

12 Build mathematical model Mk for instance ITk

13

14 if k > 0 then
15 for All ships s = 1, . . . ,S do
16 Add constraints to fix the first k voyages from Σk−1 in Mk

17 Add constraints to fix corresponding (un)loading quantities in Mk

18

19 Solve ITk within time limit tmax, resulting in solution Σk

20 for All ships s = 1, . . . ,S do
21 Extract list of voyages Vk,s = {vk,s,1, . . . , vk,s,m} from solution Σk

22

23 Tk+1 = min

{
min

ships s

{
endOf(vk,s,k+1)

}+τ,T

}
24 k ← k +1

25

26 Do one last iteration as described in lines 11-24 for Tk = T

the same techniques as used in the analysis earlier in this chapter. This solution process has

a runtime limit of tmax. The solution Σ0 of this process is stored. From the routing variables

in this solution, a list of voyages is deduced. Remember from the earlier definition, that

a voyage encompasses exactly one round trip from and to the refinery. This information

is used to reduce the model size in the next iteration. The time that ships s return to the

refinery after their first voyage is denoted as

min
ships s

{
endOf(vk,s,k+1)

}
with a maximum of T . The planning horizon T1 for the next iteration is set as this minimum

plus the iteration horizon τ, effectively resulting in a new planning period of τ.

For k > 0, a similar procedure is executed. After building model Mk for instance ITk

7.4. Rolling-horizon heuristic 81

with time horizon Tk , the first k voyages for both ships in Σk−1 are fixed in Mk , including

the quantities that are loaded or unloaded during these voyages. In the MIP model, this

corresponds to fixing the routing variables xs
i j t corresponding to this voyage. In the CP

model, the corresponding port stops are fixed. The reason that the (un)loading quantities

are fixed, is to prevent the solution process from reoptimizing these quantities repetitively

during each following iteration. Once the time horizon Tk has been set to the total planning

horizon T , one last iteration is performed to solve the problem for the desired time horizon.

7.4.2. Results
In this section, we analyze the performance of the rolling-horizon heuristic that was given

by Algorithm 1. The algorithm builds and solves mathematical models for a given problem

instance with time horizon T . We use both MIP and CP as part of the modelling of this

heuristic and compare the results. In our analysis, we use a planning horizon of T = 60

and an iteration horizon τ= 20, and compare the results to the results of the analysis of the

exact solution methods in Section 7.3.3. An iteration solve limit of 600 seconds is used.

The results for the heuristic with the MIP formalism at its core are listed in Table 7.10. In

this table, the objective values of the first iteration of the rolling-horizon heuristic, i.e. with

a planning horizon of T = 20, and the last iteration, with a planning horizon of T = 60, are

compared to the results in Table 7.5 and Table 7.6. Similarly, Table 7.11 contains the results

for the heuristic procedure with CP at its core. From Table 7.10, it follows that the rolling-

horizon heuristic is able to find better solutions that the exact solution method, especially

for large-sized instances. With the number of iterations that is between 4 and 7 for most

instances, the total run time for the heuristic is comparable to the run time that was given

to the exact solution method. It follows that the approach to reduce the model size of the

instances that we solve in each iteration yields better results than solving the complete

model directly for the MIP-based approach.

In Table 7.11, the results for the CP-based rolling-horizon heuristic are listed. Especially

for the smaller instances, the heuristic is able to find better solutions than the exact solu-

tion method. However, for larger instances, the results are more mixed than in the case of

the MIP-based approach. The reason for this is twofold. On the one hand, the CP-based ex-

act solution method already provided better solutions, making it a tougher benchmark to

match. Additionally, the decision to fix the loading quantities was made in order to reduce

computation time in the CP-based heuristic approach, as the CP solver spends a lot of time

to optimise the loading and unloading quantities.

82 7. Computational study

Table 7.10: This table contains the results of the runs for the rolling-horizon heuristic based on mixed integer
programming. The table shows the results for the first iteration, after T = 20, and at the end of the planning
horizon, at T = 60 days. For each iteration, the solution process has a time limit of 600 seconds. The solu-
tions that are listed in the columns with headers ’original’, are the solutions that were found using the direct
solution approach as explained in Section 7.3.

T=20 T=60

Instance Heuristic Original Heuristic Original Bound # iterations

S1 762 762 2900 3146 1551 4

S2 849 849 85792 53464 12621 7

S3 525 525 968 1365 1174 2

M1 1152 1146 4142 64170 1212 5

M2 1852 1528 900292 1616269 3787 7

M3 663 663 279606 273939 258489 7

M4 72899 56758 1829455 5603470 11844 7

M5 17387 21143 1203426 10619929 1782 7

L1 89575 4473 535871 29481186 212 4

L2 76927 33558 12757 29481186 71 6

L3 77845 4584 257495 20507334 1322 5

L4 137583 8396 755658 21171390 1053 4

L5 247917 111690 3584320 27849275 169 5

L6 85544 34885 795315 15237129 0 5

L7 81737 1752 950970 23448125 78 5

L8 103135 22285 975821 17735884 407 4

Case study 155891 19939 473026 26960315 1403 5

7.4. Rolling-horizon heuristic 83

Table 7.11: This table contains the results of the runs for the rolling-horizon heuristic based on constraint
programming. The table shows the results for the first iteration, after T = 20, and at the end of the planning
horizon, at T = 60 days. For each iteration, the solution process has a time limit of 600 seconds. The solu-
tions that are listed in the columns with headers ’original’, are the solutions that were found using the direct
solution approach as explained in Section 7.3.

T=20 T=60

Instance Heuristic Original Heuristic Original # iterations

S1 1034 762 3917 3824 4

S2 849 849 41603 1026593 6

S3 525 525 19045 54463 6

M1 1156 1160 31210 31667 5

M2 17465 1852 1548283 2106664 6

M3 932 768 5482252 879315 6

M4 129911 133114 2196188 5375996 6

M5 90312 2693 5321157 3268506 5

L1 6509514 17371 2344633 2876510 4

L2 104343 3959 2436266 1226275 6

L3 116159 8946 2975490 1958668 5

L4 223913 75641 4666873 4126265 4

L5 431032 353604 8473602 9099865 4

L6 153236 50789 3265499 3228286 4

L7 213081 126210 6798315 5068536 4

L8 107766 107766 2677910 4018831 5

Case study 29804 16983 799122 1508203 5

84 7. Computational study

Table 7.12: This table compares the results of the runs for the rolling-horizon heuristic based on mixed integer
programming and constraint programming. The table shows the results for the first iteration, after T = 20,
and at the end of the planning horizon, at T = 60 days. For each iteration, the solution process has a time
limit of 600 seconds.

T=20 T=60

Instance MIP CP Instance MIP CP

S1 2900 3917 L1 535871 2344633

S2 85792 41603 L2 12757 2436266

S3 968 19045 L3 257495 2975490

M1 4142 31210 L4 755658 4666873

M2 900292 1548283 L5 3584320 8473602

M3 279606 5482252 L6 795315 3265499

M4 1829455 2196188 L7 950970 6798315

M5 1203426 5321157 L8 975821 2677910

Case study 473026 799122

After comparing the MIP-based and CP-based heuristic to the exact solution methods

in Tables 7.10 and 7.11 respectively, the methods are compared to each other in Table 7.12.

For all but one instance, the MIP-based approach found better results. The main reason for

this difference is that the CP-based approach suffers more from the limited solution time.

Errors that are made in early iterations cannot be recovered in later iterations for longer

planning horizons.

8
Discussion

In this thesis, two different solution approaches for the maritime inventory routing prob-

lem were compared. The aim of the thesis was to provide answers to three main research

questions, which are:

1. How can the maritime inventory routing problem be modelled using mixed integer

programming (MIP) and constraint programming (CP)?

2. How does the performance of the solution algorithms in commercial solver software

for the MIP and CP formulations of the maritime inventory routing problem com-

pare?

3. How does the performance of the rolling-horizon heuristics for the MIP and CP for-

mulations of the maritime inventory routing problem compare?

In this chapter, we discuss the findings of this research related to these questions and

discuss possible improvements that can be made in future research.

In Chapter 6, both a MIP and CP model were formulated for the maritime inventory

routing problem. The aim was to provide two models that are equivalent to each other,

meaning that all feasible solutions for one of the two models has an equivalent solution in

the other model, without resulting in infeasibilities. To the best of our knowledge, the two

models provided in Chapter 6 are equivalent to each other, with one exception, namely the

use of voyages in the constraint programming model. The choice to use explicitly formu-

late voyages in this model, was driven by the aim to reduce the possibilities to schedule

port stops, helping the solution process in finding good solutions. This voyage formula-

tion could also be implemented in the mixed integer model, albeit less straightforwardly

than in the constraint programming model. Therefore, it could theoretically be possible

85

86 8. Discussion

that a solution to the MIP model visits a consumption port multiple times before ending

its voyage at the refinery. In our computational study however, we have not encountered

solutions that leaded to this kind of infeasiblity, as it is in practice suboptimal to visit a port

twice during one voyage.

The aim of this thesis was to compare the performance of the solution approaches for

the two model formulation as directly as possible. The MIP model was therefore formulated

without the use of valid inequalities. However, the use of these inequalities can improve the

performance of the MIP solution approach. For example, Foss et al. (2016) developed valid

inequalities for a maritime inventory routing product with undedicated compartments.

Similarly, possible improvements for the constraint programming can also be made.

For example, the possibility to define custom constraints with accompanying filtering pro-

cedures offers a chance to explicitly use information about the instance of a problem in the

solution process. From production and consumption information at all ports, it might be

possible to induce time windows for port visits, reducing the domains for these variables.

This and other improvements to the model might be worth exploring in future research.

The Python API for the constraint programming solver that was used when conducting this

thesis, does not support this kind of manual extensions to the model, so it is recommended

to choose a solver and programming language that does support these kind of additions.

Another improvement that could strengthen the constraint programming model for-

mulation, is replacing the soft inventory bounds constraints by hard constraints. The con-

straint programming solver contains a filtering algorithm for the alwaysIn constraint, which

moves interval variables in order to find solutions that satisfy this hard constraint. However,

when this constraint is modelled as a soft constraint, by introducing the slack variables to

the model, these filtering algorithms become ineffective, as it is always possible to find a

feasible solution, by choosing the right value for the slack penalty. Nevertheless, due to the

nature of the instances that are included in this thesis, the use of soft constraints was inev-

itable, as posing the bounds as hard constraints would lead to infeasible models. It can be

interesting to formulate the model using hard constraints for suitable instances and ana-

lyse the performance of the models.

In the computational study in Chapter 7, the aim was to make a direct comparison

between the solution approaches for the MIP and CP modelling paradigm, using commer-

cially available solvers. The most important takeaways are that for smaller instances, the

MIP model performs better, but with increasing instance size, CP found better solutions.

There are some possible improvements to the approach that was taken in this thesis.

First of all, we only provide a direct comparison between two possible solution approaches.

In most of the cases, an optimal solution was not found, so nothing can be said about the

87

absolute strength of either solution approach. The use of better lower bounds could en-

hance the discovery of optimal solutions or at least provide a better threshold to the ob-

jective value. Next to that, the instances can be created with more care, so it is easier to

weigh the value of a solution that is found. Instances for which a solution exists that does

not have penalties for inventory bound violations have much lower objective values, mak-

ing it easier to interpret the quality of solutions based on their objective value.

With the development of the rolling-horizon heuristic, we provide a tool that is more

effective in finding good quality solutions. Nevertheless, the same argument as in the pre-

vious paragraph extends to the analysis of the heuristic. Even though a relative compar-

ison between the heuristics using a MIP and CP approach can be made, we lack knowledge

about the desired result, making it hard to evaluate the true potential of this heuristic. One

thing that can be concluded, is that the heuristic is more effective using the MIP approach,

as the heuristic iteration solve limit of 600 seconds is too short for the constraint program-

ming model to find a good solution to large-sized instances.

In the heuristic, the choice was made to fix the loading variables from the solution of

one iteration to model in the next iteration. However, this decision may lead to the fact that,

by fixing these quantities, the heuristic becomes less flexible when the planning horizon is

shifted. New information that comes available in a next iteration, might change the optimal

allocation of products to tanks and ports. This flexibility is reduced by fixing the quantities

up front. On the other hand, not fixing these variables might lead to worse solutions for the

constraint programming heuristic. This is a trade-off that is needed to be made.

Both in the analysis of the exact solution method and the rolling-horizon heuristic, the

MIP and CP approaches have been compared vis-a-vis. However, it might be beneficial to

not treat both paradigms as stand-alone solvers, but integrate the two approaches in order

to profit from the strengths of both methods. A first step could be to use the propagation

techniques from constraint programming to find feasible schedules for the problem, and

subsequently solve the problem of loading and unloading quantities using the LP mechan-

ism in the MIP solver. This and more sophisticated integrated methods could be an inter-

esting topic in future research.

A
Model formulations

A.1. Mixed integer programming model

minimize
∑

s∈S , (i t , jτ)∈As
C s

i j xs
(i t , jτ) +

∑
i∈P , k∈K, t∈T

αi kt zi kt . (A.1)

s.t.

xs
os r 1 +xs

os d s = 1, ∀s ∈S , (A.2)∑
t∈T

xs
r d s t +xs

os ,d s = 1, ∀s ∈S , (A.3)∑
a∈A+

n

xs
a = ∑

a∈A−
n

xs
a , ∀s ∈S ,n ∈N s \ (os ∪d s), (A.4)

xs
r r t = 1, ∀s ∈S , t ∈ [su ,eu),u ∈U s , (A.5)

xs
i j t ∈ {0,1}, ∀(i t , jτ) ∈As , s ∈S , (A.6)

l s
tck = l s

(t−1)ck +q s
r tck −

∑
i∈PC

q s
i tck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.7)

os
i t = ∑

j∈P
xs

i j (t−Os
i), ∀s ∈S , i ∈P , t ∈ T , (A.8)

q s
i tck ≥ Q

i k
os

i t , ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (A.9)

q s
i tck ≤ M os

i t , ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (A.10)

l s
tck ≤ L

s
ck (1− ∑

i∈P
xs

i r (t−Os
i)), ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.11)

l s
0ck = 0, ∀s ∈S ,c ∈ Cs ,k ∈KE , (A.12)

0 ≤ l s
tck ≤ L

s
ck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.13)

q s
i tck ≥ 0, ∀s ∈S , i ∈P , t ∈ T ,c ∈ Cs ,k ∈KE , (A.14)

os
i t ∈ {0,1}, ∀s ∈S , i ∈P , t ∈ T , (A.15)

89

90 A. Model formulations

l s
tck ≤ L

s
ck y s

tck , ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.16)∑
k∈KE

y s
tck ≤ 1 ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.17)

y s
tck ∈ {0,1}, ∀s ∈S , t ∈ T ,c ∈ Cs ,k ∈KE , (A.18)

zr kt = max{sr kt − I r k ,0}, ∀t ∈ T ,k ∈KB , (A.19)

zi kt = max{I i k − si kt ,0}, ∀i ∈NC , t ∈ T ,k ∈KB , (A.20)

sr kt = sr k(t−1) −
∑

s∈S , c∈Cs ,κ∈KE

Fkκq s
r tcκ+RP

r kt , ∀k ∈KB , t ∈ T , (A.21)

si kt = si k(t−1) +
∑

s∈S , c∈Cs
q s

i tck −RC
i kt , ∀i ∈PC ,k ∈KE , t ∈ T , (A.22)

zr kt ≥ sr kt − I r k , ∀k ∈KB , t ∈ T , (A.23)

zi kt ≥ I i k − si kt , ∀i ∈PC ,k ∈KE , t ∈ T , (A.24)

si k0 = Ii k0, ∀i ∈P ,k ∈K, (A.25)

sr kt ≥ 0, ∀k ∈KB , t ∈ T , (A.26)

si kt ≤ I i k , ∀i ∈PC ,k ∈KE , t ∈ T , (A.27)

zi kt ≥ 0, ∀i ∈P ,k ∈K, t ∈ T . (A.28)

A.2. Constraint programming model 91

A.2. Constraint programming model

minimize
∑
s∈S

TC s + ∑
i∈P

∑
k∈K

∑
t∈T

αi kt zi kt , (A.29)

where TC s =∑
i

C s
θs (πs (i−1)),θ(πs (i)), ∀s ∈S . (A.30)

s.t.

first(πs , xs
0), ∀s ∈S , (A.31)

last(πs , xs
T), ∀s ∈S , (A.32)

noOverlap(πs ,T s), ∀s ∈S , (A.33)

xs
0 = [0,1), ∀s ∈S , (A.34)

xs
T ⊆ [1,T), ∀s ∈S , (A.35)

xs
u = [su ,eu), ∀s ∈S ,u ∈U s , (A.36)

q̃ s
i j ck = stepAtEnd

(
xs

i j ,Q
i k

,L
s
ck

)
, ∀s ∈S , i ∈P , j ∈J S ,c ∈ CS ,k ∈KE , (A.37)

l̃ s
ck = ∑

j∈J s
q̃ s

r j ck −
∑

i∈PC

∑
j∈J s

q̃ s
i j ck , ∀s ∈S ,c ∈ Cs ,k ∈KE , [5pt] (A.38)

alwaysIn
(
l̃ s

ck ,0,T,0,L
s
ck

)
, ∀s ∈S ,c ∈ Cs ,k ∈KE , (A.39)

alternative
(
xs

j ,
{

y s
j ck

}
k∈KE

)
, ∀s ∈S , j ∈J s ,c ∈ Cs , (A.40)(

q s
r j ck > 0

)
⇒ presenceOf

(
y s

j ck

)
, ∀s ∈S , j ∈J s ,c ∈ Cs ,k ∈KE , (A.41)

y s
j ck ⊆ {⊥}∪ [0,T), ∀s ∈S , j ∈J s ,c ∈ Cs ,k ∈KE , (A.42)

R̃P
r k = ∑

t∈T
stepAt

(
t ,RP

r k

)
, ∀k ∈KB , (A.43)

R̃C
i k = ∑

t∈T
stepAt

(
t ,RC

i k

)
, ∀i ∈PC ,k ∈KE , (A.44)

q̃ s
r j ck = ∑

κ∈KE

Fkκq̃ s
r j cκ, ∀k ∈KB , (A.45)

q̃r k = ∑
s∈S

∑
j∈J S

∑
c∈CS

∑
κ∈KE

Fkκq̃ s
r j cκ, ∀k ∈KB , (A.46)

q̃i k = ∑
s∈S

∑
j∈J S

∑
c∈CS

i q̃ s
r j ck , ∀i ∈P ,k ∈KE , (A.47)

z̃i kt = pulse (ζi kt , zi kt) , ∀i ∈P ,k ∈K, (A.48)

92 A. Model formulations

z̃i k = ∑
t∈T z̃i kt

∀i ∈P ,k ∈K, (A.49)

ζi kt ⊆ {⊥} ∈ [t , t +1), ∀i ∈P ,k ∈KE , t ∈ T , (A.50)

zi kt ∈Z≥0, ∀i ∈P ,k ∈KE , t ∈ T , (A.51)

s̃r k = S̃0
r k + R̃P

r k − q̃r k − z̃r k , ∀k ∈KB , (A.52)

s̃i k = S̃0
i k − R̃P

i k + q̃i k + z̃i k , ∀k ∈KB (A.53)

alwaysIn(s̃i k ,0,T, I i k , I i k), ∀i ∈P ,k ∈K. (A.54)

References

[1] A. Agra, H. Andersson, M. Christiansen and L. A. Wolsey. ‘A maritime inventory rout-

ing problem: Discrete time formulations and valid inequalities.’ In: 62 (2013), pp. 297–

314.

[2] A. Agra, M. Christiansen and A. Delgado. ‘Discrete time and continuous time formu-

lations for a short sea inventory routing problem’. In: Optimization and Engineering

18 (Apr. 2016).

[3] A. Agra, M. Christiansen and A. Delgado. ‘Mixed Integer Formulations for a Short Sea

Fuel Oil Distribution Problem’. In: Transportastion Science 47 (Feb. 2013), pp. 108–

124.

[4] H. Andersson. ‘A Maritime Pulp Distribution Problem’. In: INFOR: Information Sys-

tems and Operational Research 49.2 (2011), pp. 125–138. eprint: https://doi.org/

10.3138/infor.49.2.125.

[5] H. Andersson, A. Hoff, M. Christiansen, G. Hasle and A. Løkketangen. ‘Industrial

aspects and literature survey: Combined inventory management and routing’. In:

Computers & Operations Research 37.9 (2010), pp. 1515–1536.

[6] P. Baptiste, P. Laborie, C. L. Pape and W. Nuijten. ‘Chapter 22 - Constraint-Based

Scheduling and Planning’. In: Handbook of Constraint Programming. Ed. by F. Rossi,

P. van Beek and T. Walsh. Vol. 2. Foundations of Artificial Intelligence. Elsevier, 2006,

pp. 761–799.

[7] W. J. Bell, L. M. Dalberto, M. L. Fisher, A. J. Greenfield, R. Jaikumar, P. Kedia, R. G.

Mack and P. J. Prutzman. ‘Improving the Distribution of Industrial Gases with an On-

Line Computerized Routing and Scheduling Optimizer’. In: Interfaces 13.6 (1983),

pp. 4–23.

[8] C. Bessiere. ‘Chapter 3 - Constraint Propagation’. In: Handbook of Constraint Pro-

gramming. Ed. by F. Rossi, P. van Beek and T. Walsh. Vol. 2. Foundations of Artificial

Intelligence. Elsevier, 2006, pp. 29–83.

[9] A. Bockmayr and J. Hooker. ‘Constraint Programming’. In: Discrete Optimization. Ed.

by K. Aardal, G. Nemhauser and R. Weismantel. Vol. 12. Handbooks in Operations

Research and Management Science. Elsevier, 2005, pp. 559–600.

93

https://doi.org/10.3138/infor.49.2.125
https://doi.org/10.3138/infor.49.2.125

94 References

[10] R. I. Brafman. ‘A Simplifier for Propositional Formulas with Many Binary Clauses’.

In: Proceedings of the 17th International Joint Conference on Artificial Intelligence -

Volume 1. IJCAI’01. Seattle, WA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 515–

520.

[11] A. M. Campbell and M. W. Savelsbergh. ‘A decomposition approach for the inventory-

routing problem’. In: Transportation science 38.4 (2004), pp. 488–502.

[12] A. Cesta and A. Oddi. ‘Gaining efficiency and flexibility in the simple temporal prob-

lem’. In: Proceedings Third International Workshop on Temporal Representation and

Reasoning (TIME ’96). 1996, pp. 45–50.

[13] B. V. Cherkassky, A. V. Goldberg and T. Radzik. ‘Shortest paths algorithms: Theory and

experimental evaluation’. In: Mathematical programming 73.2 (1996), pp. 129–174.

[14] M. Christiansen. ‘Decomposition of a Combined Inventory and Time Constrained

Ship Routing Problem’. In: Transportation Science 33.1 (1999), pp. 3–16.

[15] M. Christiansen and K. Fagerholt. ‘Maritime inventory routing problems’. In: En-

cyclopedia of Optimization. Ed. by C. A. Floudas and P. M. Pardalos. Boston, MA:

Springer US, 2009, pp. 1947–1955.

[16] M. Christiansen, K. Fagerholt, T. Flatberg, Ø. Haugen, O. Kloster and E. Lund. ‘Mari-

time Inventory Routing With Multiple Products: A Case Study From the Cement In-

dustry’. In: European Journal of Operational Research 208 (Jan. 2011), pp. 86–94.

[17] M. Christiansen, K. Fagerholt, B. Nygreen and D. Ronen. ‘Ship routing and scheduling

in the new millennium’. In: European Journal of Operational Research 228.3 (2013),

pp. 467–483.

[18] M. Christiansen and B. Nygreen. ‘A method for solving ship routing problems with

inventory constraints’. In: Annals of Operations Research 81.0 (June 1998), pp. 357–

378.

[19] L. Coelho, J.-F. Cordeau and G. Laporte. ‘Thirty Years of Inventory Routing’. In: Trans-

portation Science 48 (Jan. 2015), pp. 1–19.

[20] M. Conforti, G. Cornuéjols, G. Zambelli et al. Integer programming. Vol. 271. Springer,

2014.

[21] A. L. Custódio and R. C. Oliveira. ‘Redesigning distribution operations: a case study

on integrating inventory management and vehicle routes design’. In: International

Journal of Logistics Research and Applications 9.2 (2006), pp. 169–187. eprint: https:

//doi.org/10.1080/13675560600649982.

https://doi.org/10.1080/13675560600649982
https://doi.org/10.1080/13675560600649982

References 95

[22] G. Dantzig, R. Fulkerson and S. Johnson. ‘Solution of a Large-Scale Traveling-Salesman

Problem’. In: Journal of the Operations Research Society of America 2.4 (1954), pp. 393–

410.

[23] S. Dauzère-Pérès, A. Nordli, A. Olstad, K. Haugen, U. Koester, P. Myrstad, G. Teistklub

and A. Reistad. ‘Omya Hustadmarmor Optimizes Its Supply Chain for Delivering Cal-

cium Carbonate Slurry to European Paper Manufacturers’. In: Interfaces 37 (Feb.

2007), pp. 39–51.

[24] R. Dechter, I. Meiri and J. Pearl. ‘Temporal constraint networks’. In: Artificial Intelli-

gence 49.1 (1991), pp. 61–95.

[25] S. Demassey. Global Constraint Catalog. Accessed: 2020-08-09.

[26] M. Dror and M. Ball. ‘Inventory/routing: Reduction from an annual to a short-period

problem’. In: Naval Research Logistics (NRL) 34.6 (Dec. 1987), pp. 891–905.

[27] E. Foss, T. N. Myklebust, H. Andersson and M. Christiansen. ‘A Multi-product Mari-

time Inventory Routing Problem with Undedicated Compartments’. In: Computa-

tional Logistics. Ed. by A. Paias, M. Ruthmair and S. Voß. Cham: Springer Interna-

tional Publishing, 2016, pp. 3–17.

[28] S. Gay, R. Hartert and P. Schaus. ‘Simple and Scalable Time-Table Filtering for the

Cumulative Constraint’. In: vol. 9255. Aug. 2015, pp. 149–157.

[29] R. Gedik, C. Rainwater, H. Nachtmann and E. A. Pohl. ‘Analysis of a parallel machine

scheduling problem with sequence dependent setup times and job availability inter-

vals’. In: European Journal of Operational Research 251.2 (2016), pp. 640–650.

[30] K. Giles and W.-J. van Hoeve. ‘Solving a Supply-Delivery Scheduling Problem with

Constraint Programming’. In: Principles and Practice of Constraint Programming.

Ed. by M. Rueher. Cham: Springer International Publishing, 2016, pp. 602–617.

[31] V. Goel, K. Furman, J.-H. Song and A. El-Bakry. ‘Large neighborhood search for LNG

inventory routing’. In: Journal of Heuristics 18 (Dec. 2012).

[32] V. Goel, M. Slusky, W.-J. van Hoeve, K. Furman and Y. Shao. ‘Constraint programming

for LNG ship scheduling and inventory management’. In: European Journal of Oper-

ational Research 241.3 (2015), pp. 662–673.

[33] A. Gregory and S. Majumdar. ‘Energy Aware Resource Management for MapReduce

Jobs with Service Level Agreements in Cloud Data Centers’. In: 2016 IEEE Interna-

tional Conference on Computer and Information Technology (CIT). 2016, pp. 568–

577.

96 References

[34] R. Grønhaug and M. Christiansen. ‘Supply Chain Optimization for the Liquefied Nat-

ural Gas Business’. In: Innovations in Distribution Logistics. Ed. by J. A. Nunen, M. G.

Speranza and L. Bertazzi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 195–

218.

[35] A. M. Ham and E. Cakici. ‘Flexible job shop scheduling problem with parallel batch

processing machines: MIP and CP approaches’. In: Computers Industrial Engineer-

ing 102 (2016), pp. 160–165.

[36] F. Al-Khayyal and S.-J. Hwang. ‘Inventory constrained maritime routing and schedul-

ing for multi-commodity liquid bulk, Part I: Applications and model’. In: European

Journal of Operational Research 176.1 (2007), pp. 106–130.

[37] P. Laborie. ‘An Update on the Comparison of MIP, CP and Hybrid Approaches for

Mixed Resource Allocation and Scheduling’. In: Integration of Constraint Program-

ming, Artificial Intelligence, and Operations Research. Ed. by W.-J. van Hoeve. Cham:

Springer International Publishing, 2018, pp. 403–411.

[38] P. Laborie. ‘IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three

Problems’. In: Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems. Ed. by W.-J. van Hoeve and J. Hooker. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 148–162.

[39] P. Laborie. Model Presolve, Warmstart and Conflict Refining in CP Optimizer. Aug.

2013.

[40] P. Laborie et al. ‘IBM ILOG CP optimizer for scheduling’. In: Constraints 23.2 (2018),

pp. 210–250.

[41] P. Laborie and J. Rogerie. ‘Reasoning with Conditional Time-Intervals.’ In: Jan. 2008,

pp. 555–560.

[42] P. Laborie, J. Rogerie, P. Shaw and P. Vilím. ‘Reasoning with Conditional Time-Intervals.

Part II: An Algebraical Model for Resources.’ In: Jan. 2009.

[43] D. M. Miller. ‘An interactive, computer-aided ship scheduling system’. In: European

Journal of Operational Research 32.3 (1987), pp. 363–379.

[44] R. Mohr and G. Masini. ‘Good Old Discrete Relaxation’. In: ECAI. 1988.

[45] J. Oppen, A. Løkketangen and J. Desrosiers. ‘Solving a rich vehicle routing and invent-

ory problem using column generation’. In: Computers & OR 37 (July 2010), pp. 1308–

1317.

[46] D. J. Papageorgiou. ‘Optimization in maritime inventory routing’. PhD thesis. Geor-

gia Institute of Technology, 2012.

References 97

[47] D. J. Papageorgiou, M.-S. Cheon, S. Harwood, F. Trespalacios and G. L. Nemhauser.

‘Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing’. In:

(2018). Ed. by C. Konstantopoulos and G. Pantziou, pp. 59–94.

[48] D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M.-S. Cheon and A. B. Keha. ‘MIRPLib

– A library of maritime inventory routing problem instances: Survey, core model, and

benchmark results’. In: European Journal of Operational Research 235.2 (2014). Mari-

time Logistics, pp. 350–366.

[49] J. A. Persson and M. Göthe-Lundgren. ‘Shipment planning at oil refineries using column

generation and valid inequalities’. In: European Journal of Operational Research 163.3

(2005). Supply Chain Management and Advanced Planning, pp. 631–652.

[50] G. Pesant. ‘A constraint programming primer’. In: EURO Journal on Computational

Optimization 2.3 (2014), pp. 89–97.

[51] D. Popovic, M. Vidovic and G. Radivojević. ‘Variable Neighborhood Search heuristic

for the Inventory Routing Problem in fuel delivery’. In: Expert Systems with Applica-

tions 39 (Dec. 2012), pp. 13390–13398.

[52] J.-F. Puget. ‘A Fast Algorithm for the Bound Consistency of Alldiff Constraints’. In:

Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/In-

novative Applications of Artificial Intelligence. AAAI ’98/IAAI ’98. Madison, Wiscon-

sin, USA: American Association for Artificial Intelligence, 1998, pp. 359–366.

[53] R. G. Richey, J. Stacey, M. Natarajarathinam and C. Sox. ‘The storage constrained, in-

bound inventory routing problem’. In: International Journal of Physical Distribution

& Logistics Management (2007).

[54] J.-P. Rodrigue, C. Comtois and B. Slack. The geography of transport systems. Jan.

2016, pp. 1–440.

[55] D. Ronen. ‘Marine inventory routing: shipments planning’. In: Journal of the Opera-

tional Research Society 53.1 (Jan. 2002), pp. 108–114.

[56] N. Roofigari-Esfahan and S. Razavi. ‘Uncertainty-Aware Linear Schedule Optimiz-

ation: A Space-Time Constraint-Satisfaction Approach’. In: Journal of Construction

Engineering and Management 143.5 (2017), p. 04016132.

[57] N. Siswanto, D. Essam and R. Sarker. ‘Solving the ship inventory routing and schedul-

ing problem with undedicated compartments’. In: Computers and Industrial Engin-

eering 61.2 (2011). Combinatorial Optimization in Industrial Engineering, pp. 289–

299.

98 References

[58] J.-H. Song and K. Furman. ‘A maritime inventory routing problem: Practical approach’.

In: Computers and Operations Research 40.3 (2013). Transport Scheduling, pp. 657–

665.

[59] U. N. C. on Trade and Development. Review of Maritime Transport, 2019.

[60] P. Vilím. ‘Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Re-

sources’. In: Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems. Ed. by T. Achterberg and J. C. Beck. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 230–245.

[61] P. Vilím, P. Laborie and P. Shaw. ‘Failure-Directed Search for Constraint-Based Schedul-

ing’. In: Integration of AI and OR Techniques in Constraint Programming. Ed. by L.

Michel. Cham: Springer International Publishing, 2015, pp. 437–453.

	Introduction
	Shipping industry
	Motivation
	Scope
	Research questions
	Outline of this thesis

	Maritime inventory routing
	Background
	Classification of literature
	Solution approaches

	Mixed integer programming
	Background
	Branch and bound

	Constraint programming
	Theoretical background
	Constraint-based scheduling

	Problem description
	Model description
	Contribution
	Mixed integer programming model
	Constraint programming model
	Comparison between MIP and CP model

	Computational study
	Data description
	Instances
	Exact solution methods
	Rolling-horizon heuristic

	Discussion
	Model formulations
	Mixed integer programming model
	Constraint programming model

