
������������������������������������
����

(Co-)development of an
open-data-based tool to perform
preliminary environmental analyses
at district scale
in different European countries

Bing-Shiuan Tsai
Lars Huizer
Michele Giampaolo
Sérénic Monté
Sicong Gong

November 2023

Synthesis Project Report for MSc Geomatics

(Co-)development of an open-data-based tool
to perform preliminary environmental analyses

at district scale in different (European)
countries

Bing-Shiuan Tsai
Lars Huizer

Michele Giampaolo
Sérénic Monté
Sicong Gong

November 2023

Bing-Shiuan Tsai, Lars Huizer, Michele Giampaolo, Sérénic Monté, Sicong Gong:
(Co-)development of an open-data-based tool to perform preliminary environmental analyses at district scale in
different (European) countries (2023)
cb This work is licensed under a Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work is supported by:

Supervisors of this project

TU Delft: Giorgio Agugiaro
Royal HaskoningDHV: Gabriel Garcia

http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Client Requirements and Use Cases . 2

2 Data Evaluation 5
2.1 Data Finding in Germany . 5
2.2 Data Finding in Hong Kong . 6
2.3 Data Finding in Italy . 6
2.4 Data Finding in Spain . 7
2.5 Data Finding in the UK . 7
2.6 Data Finding in Other Regions . 8

2.6.1 Data Finding in Finland . 8
2.6.2 Data Finding in Ireland . 8
2.6.3 Data Finding in Taiwan . 8
2.6.4 Data Finding in France . 8
2.6.5 Data Finding in Australia . 9

2.7 Conclusion . 9

3 Methodology 11
3.1 Data Acquisition and Alignment . 11

3.1.1 File-based Method . 12
3.1.2 API-based Method . 13

3.2 Geometry Generation . 13
3.2.1 TIN-based Method . 13
3.2.2 Voxel-based Method . 13

3.3 Simulation Experiment . 13
3.3.1 Solar Analysis . 14
3.3.2 Wind Analysis . 14

4 Implementation - TIN Case 17
4.1 Data Acquisition and Alignment . 17

4.1.1 DTM . 18
4.1.2 DSM . 18
4.1.3 Building SHP . 18
4.1.4 CityGML . 18
4.1.5 Boundary Selection . 19
4.1.6 Results . 19

4.2 Geometry Generation . 19
4.2.1 Terrain Generation . 19
4.2.2 Building Generation - CDT Method . 19
4.2.3 Building Generation - Simplified Method . 22
4.2.4 New Building Insertion . 22
4.2.5 Results . 23

4.3 Simulation Experiment . 23
4.3.1 Solar Analysis . 23
4.3.2 Wind Analysis . 24

4.4 Region-Specific Implementations . 25
4.4.1 TIN Case in Germany . 25
4.4.2 TIN Case in Hong Kong . 25
4.4.3 TIN Case in Italy . 26
4.4.4 TIN Case in Spain . 27
4.4.5 TIN Case in the UK . 27

4.5 Evaluation of the TIN-based Construction Method . 28

v

Contents

5 Implementation - Voxel Case 29
5.1 Data Acquisition and Alignment . 29

5.1.1 GeoJSON Parsing . 29
5.1.2 OBJ Downloading . 30
5.1.3 Mesh Loading . 30
5.1.4 Results . 30

5.2 Geometry Generation . 31
5.2.1 Building Preparation . 31
5.2.2 Context Repairment . 31
5.2.3 Models Integration . 31
5.2.4 Results . 32

5.3 Simulation Experiment . 33
5.3.1 Solar Simulation . 33
5.3.2 Wind Simulation . 34

5.4 Region-Specific Implementation . 34
5.5 Evaluation of the Voxel-Based Method . 35

6 Conclusion 37
6.1 Summary . 37
6.2 Limitations of exploratory analysis . 37
6.3 Future Work . 38
6.4 GitHub repository . 38

A Data acquisition with Python package and QGIS 39
A.1 Codes for conversion of GEOTIFF to XYZ file . 39
A.2 QGIS operation for building heights extraction . 39

B Data finding statistics tables 43

vi

List of Figures

1.1 Motivation, Vision and Reality . 1
1.2 Data Requirement Analysis . 2
1.3 Client Requirement Analysis . 3

2.1 Methodology for Data Finding and Evaluation . 5

3.1 Methodology Overview . 11
3.2 Iterative Process . 11
3.3 Data Acquisition . 11
3.4 Tile data retrieved from the UK portal (https://environment.data.gov.uk/survey) . . 12
3.5 Tile data retrieved from OpenStreetMap portal (https://www.openstreetmap.org) . . . 12
3.6 Data Alignment & Geometry Generation . 13
3.7 Simulation Experiment . 14
3.8 Overall Workflow . 15

4.1 Implementation of TIN case . 17
4.2 CDT method illustration (Paden et al. [2022]) . 20
4.3 Terrain bounding box(left), Split edge points (right) . 20
4.4 Meshed building points max edge: left (2 units) - right(10 units) 20
4.5 Merged points projection on the terrain mesh . 21
4.6 Resulting CDT mesh(left), Labelled building CDTs in green (right) 21
4.7 Resulting watertight model (the UK case) . 22
4.8 Building reconstruction steps for the simplified method 23
4.9 Resulting watertight model (the Italy case) . 24
4.10 Results of Solar Simulation Experiment . 24
4.11 Results of Wind Simulation Experiment . 25
4.12 Ground points of the CityGML when processed in the original and combined method . 26
4.13 Overlapping and Gaps between the Tiles . 26

5.1 Implementation of Voxel Case . 29
5.2 Result of Acquisition . 30
5.3 Building Preparation . 31
5.4 The Reasons for BFS . 32
5.5 Results of Alignment . 33
5.6 Results of Solar Simulation Experiment . 33
5.7 Results of Wind Simulation Experiment . 34
5.8 Region-Specific voxelisation Results . 35

A.1 Import the building footprint and DSM raster data . 40
A.2 Input and Raster layer setting . 40
A.3 Select the desired attribute . 40
A.4 Building’s height stored in the last column . 41
A.5 Export the enriched building footprints to shapefile . 41

vii

https://environment.data.gov.uk/survey
https://www.openstreetmap.org

List of Tables

1.1 The Components of Ladybug . 3

2.1 Data finding in Germany . 5
2.2 Data finding in Hong Kong . 6
2.3 Data finding in Italy . 6
2.4 Data finding in Spain . 7
2.5 Data finding in the UK . 8

4.1 Geometry Generation Time by CDT-method . 22

5.1 Acquisition Time . 31
5.2 Voxelisation Time . 33
5.3 Wind Simulation Time . 34

ix

Acronyms
AEC Architecture, Environment and Construction . 1
APIs Application Programming Interfaces . 2
API Application Programming Interface . 5
AutoCAD Auto Computer Aided Design . 1
Brep Boundary Representation . 19
Breps Boundary Representations . 19
BFS Breadth First Search . 31
CFD Computational Fluid Dynamics . 14
CDT Constrained Delaunay Triangulation . 19
CDTs Constrained Delaunay Triangles . 21
DSM Digital Surface Model . 12
DT Delaunay Triangulation . 13
DTM Digital Terrain Model . 2
EPW EnergyPlus Weather . 23
GIS Geographical Information System . 1
INSPIRE Infrastructure for Spatial Information in Europe . 8
IDE Integrated Development Environment . 17
LoD Level of Detail . 2
LoS Level of Simplification . 19
MRE Minimal Reproducible Example . 14
OCG Open Geospatial Consortium . 13
QGIS Quantum Geographic Information System . 1
SDI Spatial Data Infrastructure . 5
TIN Triangular Irregular Network . 13
WFS Web Feature Service . 13
WMS Web Map Service . 13
OGC Open Geospatial Consortium . 13

xi

1 Introduction

1.1 Background and Motivation

With the high speed and scale of urbanisation, built environment practitioners are facing challenges
such as meeting accelerated demand for affordable housing, viable infrastructure including transport
systems, and many more. An efficient and accurate spatial analysis is of vital importance to sustain this
rapidly growing construction, not only by providing comprehensive insights into the site for planning
but also by mitigating the impact of the construction on its surroundings.

Recently, the advance of spatial data acquisition and processing technologies has brought a consider-
able yield of 3D data of the built environment. The primitive data collected in Point Cloud or Mesh for-
mats from Lidar or Photogrammetry techniques can be transformed into specialised data formats such
as CityGML (OGC [2023]) or CityJSON (Ledoux et al. [2019]) and further processed by Geographical
Information System (GIS) software. These abundant spatial datasets are made available on the Internet
as open data, which shows great potential to support spatial analysis.

In the realm of Geomatics, the main focus is on the acquisition, modelling, and management of spatial
data from the built environment. On the other hand, the Architecture, Environment and Construc-
tion (AEC) practitioners may pay more attention to the tools that allow direct operation and process
of 3D data. The existing powerful tools such as Quantum Geographic Information System (QGIS),
Auto Computer Aided Design (AutoCAD), Rhinoceros and its related extensions all allow users to per-
form spatial data analysis, visualisation and simulation of the environmental contexts, facilitating the
decision-making while planning and designing.

Despite the prevailing adoption of 3D data applications across various analytical tools, the process of
acquiring the available and processable input data remains a challenging hurdle in the field of AEC.
These difficulties often pose significant obstacles to the seamless progress of AEC projects, impacting
their overall efficiency and effectiveness.

Motive

GIS World Data

CityGML

OBJ

...

Added-value for All

Better Design

Less Cost

...

AEC World Application

Analysis

Decision

...

Reality

Region / Format

Region / Format

CityGMLNetherlands

OBJ etc.Other Regions

✔

❓

Vision

Open
Data

Easy-use Tool

Automatic
Data

Acquisition

Automatic
Data

Alignment

Figure 1.1: Motivation, Vision and Reality

Therefore, establishing an efficient interface that supports data collection and process to generate a
readable format for AEC applications has become the ongoing goal of the GIS industry, satisfying the
increasing need for data from the AEC industry. The value of spatial data will only be maximised with
high accessibility and processability for further analysis and application. This added value of spatial
data will facilitate the AEC industry in rapidly adapting to the ever-changing environment, enabling
them to provide more reasonable and research-based solutions.

Royal HaskoningDHV is an independent consultancy firm which integrates 140 years of engineering
expertise with digital technologies and software solutions. It has developed a prototype such as an

1

1 Introduction

interface extension tool on Rhino/Grasshopper to facilitate their architects and engineers to retrieve
the target datasets necessary for environmental analysis in the built environment. The tool allows
users to directly import the most up-to-date geodata in Rhino, bypassing its traditional cumbersome
acquisition through different portals and Application Programming Interfaces (APIs).

However, this tool is currently limited to the Netherlands where the required spatial datasets are
highly accessible and of high quality, and it is still unsupported in other countries/regions in which
the company operates due to the heterogeneous data formats and their inaccessibility. To enhance the
applicability of the tool, this research takes on the role of establishing a generic framework to enrich
the existing interface while using the data portals of different countries/regions.

The research project will first focus on seeking the corresponding local datasets that are necessary
to offer the current function. Secondly, it will delve into the process of adapting the collected data
from the local APIs to the extension tool, which finally enables the tool to support global projects.
Thus comes the project title: (Co-)development of an open-data-based tool to perform preliminary
environmental analyses at district scale in different European countries.

1.2 Client Requirements and Use Cases

The current Rhino-based toolkit developed by Royal HaskoningDHV1 offers an interface for the archi-
tects to perform preliminary analyses on a 3D model. This model is composed of a Digital Terrain
Model (DTM), building geometries with a certain Level of Detail (LoD), and other additional city el-
ement geometries obtained via open spatial data portals. The main concept is to allow the user to
seamlessly establish a 3D simulation environment of their project area from open data.

To achieve the target analyses in terms of visibility, energy and wind, the core data of the project
must include 3D building and terrain modelling, which provide the volumetric information to perform
energy consumption analysis of buildings, basic shadowing impact assessment and the view simulation
of new construction. For more supplementary details, it is suggested to have land cover and usage data,
which provides specific surface types of information for facilitating simulation like wind dispersion
and heat analysis, resulting in a more accurate outcome. Additional optional datasets could include
the orthophoto, road, vegetation and cadastre data. This additional information could enable users
to perform an inspection on a deeper level, offering a more in-depth context analysis related to the
project.

Data Requirement Analysis
Must Have Suggested To Have

3D Building & Terrain
Modelling

Geometric: Mesh, TIN etc.

Semantic: Usage etc.

Land Cover & Usage

Sementic

Geometric: (optional) may be
linked to terrain

Optional

Road CadasterOrthophoto

Figure 1.2: Data Requirement Analysis

As part of the requirements from the client, the main workflow needs to be carried out in Rhino, more
specifically with the use of Grasshopper, for the geometry generations and with the Ladybug suite for
the simulations. Another requirement was to limit the use of other plugins and external processes,
preferably to none. This was requested by the client to increase the ease of script sharing as well as to
reduce the complexity in the hands of users who might not be experienced in geodata processing. A
brief introduction of the tool and its related extensions and functions for data processing and analysis
is shown as follows.

1https://www.royalhaskoningdhv.com/en/about-us

2

https://www.royalhaskoningdhv.com/en/about-us

1.2 Client Requirements and Use Cases

Client Requirement - Work Flow

Open Data Rhino Grasshopper Environmental
Analysis Result

Client Requirement - Use Cases

Energy AnalysisVisibility Analysis Wind Analysis
Shadow Analysis

View Analysis

Solar Analyais

Heat Analysis

Wind Comfort

Dispersion

Figure 1.3: Client Requirement Analysis

Rhino2 is a CAD package that can be used to create 3D geometries. Objects can be modified and
transformed in various ways, allowing for various applications, among which detailed architectural
and city models. In this project, Rhino is used as a viewer so that the collected data and the generated
geometries can be analysed and visualised.

Grasshopper3 is a visual programming editor that allows to create and alter parametrically geometries
in Rhino. It offers various inbuilt components, among which ones which allow scripts to be run in
other programming languages, such as Python and C#. Grasshopper is used in this project to load and
transform the collected data to be visualised Rhino.

Ladybug4 is a tool used to add environmental analysis functionalities to Grasshopper. In this project,
Ladybug is used to perform the environmental experiments in the second phase as a validation for the
first phase. It can be integrated with additional components that amplify its application, such as in the
case of computational fluid dynamics and solar analysis.

Table 1.1: The Components of Ladybug
Ladybug Honeybee Butterfly Dragonfly Spider

Climate
Visualisation +
Analysis

Building Energy,
Daylight +
Comfort
Modelling

Airflow
Modelling (CFD)

Urban Modelling
(urban energy,
heat island,
custom epw)

Web
Visualisation
(sun path,
shadows, gbxml
viewing/editing)

The required data will be imported in Rhino via the aid of Grasshopper, and then the elaboration of
data alignment on two method types will be discussed, which will focus on the standard post-process
to build up the database to support tools such as Ladybug, Honeybee and Butterfly etc in Rhino.
Finally, an experiment of the target analyses in terms of visibility, energy and wind will be conducted
by these Rhino tools, and a summary of the result will be provided to suggest further development.

2https://www.rhino3d.com/features/
3https://en.wikipedia.org/wiki/Grasshopper_3D
4https://www.ladybug.tools/

3

https://www.rhino3d.com/features/
https://en.wikipedia.org/wiki/Grasshopper_3D
https://www.ladybug.tools/

2 Data Evaluation
As indicated in the introduction, this project mainly focuses on preliminary analyses which are made
available by using the built-in tools in the Rhino and Grasshopper software. Therefore, the datasets
used for establishing 3D environments should be general and easily accessible to support core analysing
functionalities. Since the tool is tailor-made for architectural analysis, the scale of the datasets is set to
the district level, which is suitable for the assessment of new construction on the urban scale.

Data Finding DiscussionData Access Data Evaluation

Governmental,
Voluntary,

Other

Format,
Coverage,
Resolution

Discussion With
Supervisors

File Downloading
API Requesting

Figure 2.1: Methodology for Data Finding and Evaluation

In the initial research phase, the target datasets were searched in ten countries/regions in the world.
After the exploration of different data portals, it was decided along with the client to specifically delve
into the countries/regions of Germany, Hong Kong, Italy, Spain and the United Kingdom (UK). The
following tables show the results of the target data accessibility among all the preferred countries/re-
gions.

Among the five cases, Hong Kong has the highest accessibility of open data, all the target data is
available through Application Programming Interface (API), which offers dynamic query to obtain the
necessary data near the interest point while Italy and the UK are more conservative on open data.
It is also important to note that Hong Kong is the only case that provides 3D LoD building data in
OBJ format. As for the download-only data, it will be processed with the File-based method since
each dataset will be saved separately before getting imported into Rhino. Both the API and File-based
methods will be further explored in section Section 3.1.

2.1 Data Finding in Germany

The geodata available in Germany are generally split up according to the different states. This means
that any end user looking to model cities in different states may end up needing to find individual data
for separate locations. In addition, the method by which the data is delivered may vary per adminis-
trative region as well. For example, the LoD2 files for the region of Hamburg had to be downloaded
in its entirety instead of per single tile, whereas the state of Bavaria requires the user to individually
download tiles that divide the dataset. In addition, this data, although aggregated on geoportal.de,
may sometimes require to be downloaded from the local Spatial Data Infrastructure (SDI) instead.

Table 2.1: Data finding in Germany
Region Type Name Format API Detail Coverage Other

Building 3D-Gebäudemodell
LoD2-DE Hamburg CityGML Download LoD2 Fully

(Hamburg)
Many separate files (entire
region, tiled up)

Terrain
Digitales
Höhenmodell
Hamburg

xyz WMS /
Download

Grid size of 1
metre

Fully
(Hamburg)

Many separate files (entire
region, tiled up)

Land Use Bodennutzung image WFS /
Download

Fully
(Hamburg)

Various
(e.g. CSV,
GeoJSON)

Cadastral Liegenschaftskataster ? ? - Fully
(Hamburg) Paid dataset

Link https://geoportal.de/

Germany

Road Straßen- und
Wegenetz Hamburg

WFS /
Download Line features

Only main
roads
Hamburg

5

2 Data Evaluation

For this exercise in data availability, the decision was made to analyse the city of Hamburg and its
associated administrative state. For architectural contextual analysis, the necessary data in the form
of buildings in LoD2 as well as digital terrain models were available. These were both delivered in
a format consisting of many different files representing the entire administrative region of Hamburg,
divided into different tiles. The finding of Germany is shown in table 2.1.

2.2 Data Finding in Hong Kong

Hong Kong’s data is overall complete, valid, well-organised and mostly obtainable through API. These
advantages may only come from the small area of Hong Kong, being only 1104 km² in area. How-
ever, its various types of data, especially three-dimensional OBJ data based on photogrammetry, have
universal utilisation value and access channels, such as Google Earth. In this project, Hong Kong’s
data serves as a window to observe the situation outside Europe due to the market expansion needs of
the clients. At the same time, it can compare the differences between the non-semantic model mainly
based on OBJ and the semantic model mainly based on CityGML. The finding of Hong Kong is shown
in table 2.2.

Table 2.2: Data finding in Hong Kong
Region Type Name Format API Detail Coverage Other

Orthophoto Digital Orthophoto
DOP5000 GEOTIFF WFS/WMS 2D Raster Fully Tiling Indexes of the files

Cadastral - - - - - No data
Link

OBJ WFS/WMS

WFS/WMS

WMS

WFS/WMS

Hong
Kong

Building 3D Visualisation Map
(2017)

3D LoD2
Model Fully Tiling Indexes of the shapes;

Files are separate for one tile

Land-use Digital Topographic
Map iB1000

Terrain Digital Terrain Model
(DTM) GEOTIFF 2D Raster Fully

Tiling Indexes of the files

GML etc. 2D Vector Partially Tiling Indexes of the files

All the data at once

Road Road Network GML etc. 2D Vector Fully

CSDI Portal - Common Spatial Data Infrastructure (CSDI)

2.3 Data Finding in Italy

The open data landscape in Italy exhibits significant heterogeneity across the country. While certain
national datasets, such as the DTM, are available, most geospatial data is managed at a regional level.
Each region operates its own Geoportal in which its catalogue of data can be found. However, a lack
of standardisation leads to substantial variation between these platforms. Despite the presence of a
national Geoportal where data from all regions is compiled, it still retains the fragmented nature of the
initial datasets.

Table 2.3: Data finding in Italy
Region Type Name Format API Detail Coverage Other

Building Building footprints
(Piedmont) SHP Download 2D polygon Fully Has field for building height

Land Use Land use map
(Piedmont) SHP Download 2D polygon Fully

Roads (Piedmont) SHP Download 2D line Fully

Train lines (Piedmont) SHP Download 2D line Fully

Bike paths (Piedmont) SHP Download 2D line Fully

DTM 5m GeoTIFF Download 2.5D raster Fully Download per tile

DSM 5m GeoTIFF Download 2.5D raster Fully Only available via email
request

Italy Transport

Terrain

Home - Geoportale Piemonte

Accessing a single thematic dataset for the entire country can prove to be challenging, as the metadata
details, field names, accuracy, coverage, scale, format and availability could all present differences
based on the region of origin. Furthermore, the overall availability of WFS and WMS APIs is limited,

6

2.4 Data Finding in Spain

at times exclusively offered for certain datasets and often not available at all. For these reasons, and
given the time restrictions and scope of the project, it was chosen to limit the research in Italy to one
region. Piedmont was chosen to act as this case study.
Italy was chosen as one of the countries/regions for the project due to its contrast with the Netherlands
in terms of geodata availability. The choice was further supported by the client company’s existing
operations in the country. The finding of Italy is shown in table 2.3.

2.4 Data Finding in Spain

Spain utilises a national Geoportal to collect its spatial open data datasets. The ones required for this
project are available on a national level, and as such the required data is available and homogenised
for the entire country. However, the available data of this national Geoportal is limited, especially in
the case of thematic data. For instance, the transport network data sets only consist of an edge graph
and no information on the size and type of road.

Table 2.4: Data finding in Spain
Region Type Name Format API Detail Coverage Other

Building Building outline from
cadastre GML WFS 2D Fully

Cadastre Parcels from cadastre GML WFS 2D Fully

Land Use Land Cover Map 2018 GDB or
Geopackage Download 2D Fully Complete country

Road Transport networks SHP Download 2D Fully Per region

DSM of buildings and
vegetation

ASCII (.asc)
ESRI arrayfile Download 2.5D raster Fully Download per tile

DSM of buildings ASCII (.asc)
ESRI arrayfile Download 2.5D raster Fully Download per tile

Spain

Terrain

http://centrodedescargas.cnig.es/CentroDescargas/index.jsp

There are also regional Geoportals which vary greatly in terms of quality. Some provide higher qual-
ity thematic data, but the ones that don’t often have worse quality than the national Geoportal. The
available data may be incomplete or limited to an extremely small subregion. Since the national Geo-
portal provides the required data at a quality that meets the requirements for this project, datasets
from regional Geoportals will not be used.

Another available source is the Spanish Cadastre, which provides the parcels and building outlines
through a WFS for the entire country. The finding of Spain is shown in table 2.4.

2.5 Data Finding in the UK

The UK’s open data sources are mainly provided by the Ordnance Survey, which is a free official portal
offering nationwide primitive data for download only, such as DTM tiles in TIFF format, shapefiles of
building footprints, etc. Several privately-owned data portals offer more advanced and integrated data
such as 3D LoD3 building models but they are all offered at a fee based on the areal size to download
selected by the user. Since the focus of this project is on the application of open data, the primitive
data from the Ordnance Survey is used as the main input for the model reconstruction and further
analyses. The finding of the UK is shown in table 2.5.

7

2 Data Evaluation

Table 2.5: Data finding in the UK
Region Type Name Format API Detail Coverage Other

Building 3D Model 3DS/DWG/
4CS/SKP Download 3D LoD1-3

Model Fully

Tiling Indexes of the shapes;
Various licensed data
providers and all data is
chargeable

Land-use
osfeatures:Zoomstack
_(District/Local)Build
ings

SHP(exportabl
e to other
formats)

Download 2D Vector Fully
All the data at once; With
shape area attribute but no
height ; Too large to process

Terrain Land Cover Map 2021 PNG Download 2D Raster Fully All the data at once;

Orthophoto LIDAR DTM-2022 TIF/laz Download
2D
Raster/Point
cloud

Partially Tiling Indexes of the shapes;

Road OS Terrain® 50

SHP/GML/
Geopackage/
Vector
tile(MBtile)

Download 2D Vector Fully All the data at once; Contour
line only

Cadastral
Vertical Aerial
Photography Tiles
RGB

ECW Download 2D Raster Partially Tiling Indexes of the shapes;
quite old

Link https://environment.data.gov.uk/DefraDataDownload/?Mode=survey

United
Kingdom

2.6 Data Finding in Other Regions

2.6.1 Data Finding in Finland

The geodata found in Finland are generally similar to other European countries that actively participate
in the Infrastructure for Spatial Information in Europe (INSPIRE) project, and as such the integrity and
availability of data can be guaranteed. In particular, it offers a three-dimensional urban semantic
model that is mainly based on CityGML. One of the main shortcomings is that Finland’s data cannot
be obtained directly through the API. Instead, users need to apply via email on the web page and then
download the data from the response. On the one hand, the inability to obtain it through API does
not meet the customer’s needs for real-time and automation. Due to this inaccessibility of the data and
similarity to other countries/regions chosen, Finland was not chosen as one of the countries/regions
analysed in this project.

2.6.2 Data Finding in Ireland

The Irish organisation Tailte Éireann (formerly known as the Ordnance Survey Ireland, or OSI) are
responsible for national mapping and surveying infrastructure within the country. They offer paid
data, which is unfit for this study. Certain datasets are made accessible as open data, however, very
little relevant data is available here. In some cases more local datasets are available, but these are often
of low quality or insufficient for the project. For these reasons, Ireland was deemed inappropriate for
this project.

2.6.3 Data Finding in Taiwan

The open datasets like the building footprint and DTM are available on the “National Land Surveying
and Mapping Centre” official data portal. Recently, the portal began to support 3D building infor-
mation surveying, however, the map service is limited to inspecting only. Since the backend data are
provided by the local governments across the nation, the processable data is only available via individ-
ual applications, which limits the data accessibility and does not meet our requirement for open data
application. Thus, the result of data finding in Taiwan can only be seen as a reference.

2.6.4 Data Finding in France

The French national Geoportal contains the spatial open data sets required by the project. The quality
of the data is also satisfactory and similar to some of the countries/regions chosen, such as Spain.
Although the data quality was found to be sufficient for the research, France was in the end not chosen
as one of the countries/regions to analyse, due to its similarity with other EU countries as well as due
to the client expressing more interest in the other chosen countries/regions.

8

2.7 Conclusion

2.6.5 Data Finding in Australia

Australia’s open data access is divided based on its states. Each offers its data on a separate geoportal
which allows the viewing and in certain cases direct access to the datasets. 3D building data is avail-
able in certain states with varying coverage and quality. The state of Victoria currently offers the most
complete open 3D building dataset. It covers the entire state and offers LoD2 buildings within Mel-
bourne and LoD1 outside the capital. It is divided based on municipalities and each dataset is available
via email request. The state of Queensland offers mostly LoD1 building data for certain sections of
Brisbane, but not for the entire city. The state of New South Wales offers models of small areas created
as tests for a future more widespread implementation.

Overall, it appears that the 3D data in Australia is currently in a phase of growth and might see
significant improvement in the next few years. While the data was available and in certain parts of
the country of high quality, it was ultimately excluded for the rest of the study to maintain the main
focus on the requested analysis of European countries. However, in the future, it shows potential as
a possible case with which to continue this study, both for the availability of the required datasets as
well as for the current presence of the client company’s operations.

2.7 Conclusion

Overall, every location that has been the subject of the study has had differing methods in which the
relevant geographic data is delivered, ranging from something that would be very easy to implement
into a tool (e.g. Hong Kong where all of its data is available per API) to ones that require more
manual user interaction to make the data workable (Italy, where data often needs to be manually
downloaded).

The heterogeneity in the provision of all these different data sources indicates that it is unlikely that
a single solution will be a fit for all of the countries/regions, and as such different countries/regions
will require separate efforts if they were to be integrated into a tool. The same consideration applies
to the different formats in which the data is delivered, although more overlap is present which should
provide some more united implementations.

9

3 Methodology
In this chapter, the methodologies of this project will be introduced. Firstly, the overview of the
technique workflow will be described. Then, in Sections 1, 2 and 3, the data acquisition, data alignment
and simulation experiment will be introduced. Finally, a conclusion of this chapter will be given as the
”prelude” to the implementation part.

SimulationGeometry
Generation

Data Acquisition & Alignment

Open Data

Figure 3.1: Methodology Overview

As mentioned in the Introduction chapter, the main goal of this project is to develop a tool that could
help the AEC practitioners to do environmental analysis, which could be further divided into the
following three sub-goals.

Phase 1 - Taks 1 Phase 2 - Taks 2Phase 1 - Taks 2 Phase 2 - Taks 1

Data Acquisition Geometry
Generation SimulationData Alignment

Figure 3.2: Iterative Process

1. Data Acquisition and Alignment: Automatically acquire the built-environment open data from
the Internet.

2. Geometry Generation: Automatically align and separate the geometry of buildings and context.
3. Simulation: Automatically prepare the models and parameters for the wind simulation and ex-

periment with the effectiveness.

3.1 Data Acquisition and Alignment

Data Acquisition and Loading

Internet

Governmental,
Voluntary,
Other

Data Types

Building

Terrain

Landuse

Find

Loading Methods

API

FILE

Pseudo-API

Figure 3.3: Data Acquisition

There are several methods for users to acquire built-environment data such as obtaining data from
the mobile physical storage device (hard drive or USB flash drive) or receiving data by email (usually

11

3 Methodology

after registering and applying from the platforms). However, those methods are heavy, non-timely,
inconvenient, and, most importantly, they require manual participation and cannot be automated.

Compared to the ”traditional” methods mentioned above, the Internet could provide users with al-
ternatives. For example, they could directly download the data file from the platforms possibly with
a licence. A more convenient way is through the API: the users only need to enter the data name or
type without having to consider the details of the data acquisition process. With these considerations in
mind, the API-based data acquisition method is the optimal method of data acquisition for this research
and will be used when present.

3.1.1 File-based Method

The typical way for spatial data modelling is to import the data layer by layer, the input files can be
retrieved through an online data portal. For instance, the Department for Environment Food & Rural
Affairs in the UK has provided a platform for the users to download datasets such as LIDAR composite
DTM, Digital Surface Model (DSM), point cloud, etc. For the retrieval of building models, if there is no
available official resource, the user can still use open source like OpenStreetMap to download the
building data in their area of interest.

Figure 3.4: Tile data retrieved from the UK portal
(https://environment.data.gov.uk/survey)

The file-based method may allow the users to either upload or draw an extent as the boundary for
data retrieval from the portal’s remote database, the downloaded files could be DTM in TIFF format or
vectorised feature data like building footprints in shapefiles. These file formats often require further
processing to be used in Rhino/Grasshopper.

Figure 3.5: Tile data retrieved from OpenStreetMap portal
(https://www.openstreetmap.org)

12

https://environment.data.gov.uk/survey
https://www.openstreetmap.org

3.2 Geometry Generation

3.1.2 API-based Method

With the aid of the Internet, the API is usually implemented by the W3C protocols, specifically, the GET,
POST requests etc. They are HTTP methods used to interact with web servers, where GET retrieves
data from a server, and POST could also submit data to a server for processing (Purewal [2014]). In the
GIS world, more specifically APIs are designed by the Open Geospatial Consortium (OGC).

The most frequently used ocg! APIs are Web Feature Service (WFS) and Web Map Service (WMS) APIs. A
WFS request is used for retrieving vectorised feature data (In GML, JSON etc. formats) from the data
source. The WMS request is used to return map images (In PNG, TIFF etc. formats) instead of features
(Davis [2007]). Many of the formats could not be directly used in Rhino/Grasshopper, several plugins
and custom parsing scripts are needed to do so.

3.2 Geometry Generation

The quality of the data from the Internet cannot always be guaranteed (especially for open-source
data). There may always be issues considering its completeness, consistency and accuracy. Some of
them could be fatal, such as missing data that cannot be repaired. Others can be repairable such as the
overlapping, disjointedness or holes in the geometry.

Data Alignment and Geometry Generation

Rhino 3DS

Geometric

Semantic

Geometry Repire

Disjoint

Overlapping

Holes

Grasshopper
Geometry

Mesh

Nurbs

Figure 3.6: Data Alignment & Geometry Generation

Based on the data input, there may be different methods to check and repair the geometry for the
environmental simulation analysis (Paden et al. [2022]; Donkers et al. [2016], Ledoux et al. [2022];
Arroyo Ohori et al. [2022]). Among them, the TIN-based and Voxel-based methods may be the most
frequently used. The TIN-based method may have higher accuracy but is more complex. The voxel-
based method, although has a higher computational cost and lower accuracy, is more stable and simple
to implement.

3.2.1 TIN-based Method

The Triangular Irregular Network (TIN)-based method is based on representing the geometry as a
network of interconnected triangles. The basic idea is to use neighbouring features to check and repair
non-consistent vertices (isolated vertices etc.), edges (dangling edge etc.) or faces (intersected faces
etc.) to form a valid triangulated mesh (usually a 2-manifold) that closely approximates the original
geometry. The most commonly used TIN is the Delaunay Triangulation (DT), which is a fundamental
data structure for terrains, both for their representation and for their processing (Ledoux et al. [2022]).

3.2.2 Voxel-based Method

The Voxel-based method, on the other hand, involves dividing the 3D space into small, equally sized
cubic cells called voxels. Each voxel is analysed and used to represent the geometry within that region.
The exterior boundary (envelope) of the volumetric representation would also be a valid geometry that
approximates the original one.

3.3 Simulation Experiment

The general steps of an environmental simulation can be summarised as follows:

1. Configuration: Begin by configuring the simulation engine and inputting the relevant geometry.

13

3 Methodology

2. Parameter Specification: Specify the necessary environmental parameters, which may include
variables like temperature and wind speed, as well as user-defined parameters like resolution
and iteration times.

3. Simulation Execution: Run the simulation using the provided input and parameters.
4. Post-Processing: After the simulation is complete, perform post-processing tasks, including visu-

alisation and analysis

Simulation

Environmental Analysis

Solar
Analysis

Wind
Analysis

Energy
Analysis

Weather
Analysis

Results with
Different SeneriesIterate

Figure 3.7: Simulation Experiment

In the context of the AEC industry, the primary focus of practitioners often revolves around the shape
and transformations of the geometry. AEC professionals typically prioritise the structural and design
aspects of their projects. As a result, it is crucial to encapsulate other complex environmental and
simulation-related issues in as simplified a manner as possible. Some environmental simulation en-
gines exist to achieve this goal.

3.3.1 Solar Analysis

Radiance1 is an environmental simulation primarily focused on the accurate simulation of light, day-
light, and energy flows within built spaces. Radiance is known for its precision in predicting the
distribution of light and visualising the impact of architectural designs on illumination and thermal
comfort. It is embedded in the Ladybug tool in Rhino/Grasshopper.

3.3.2 Wind Analysis

OpenFOAM2 is an open-source Computational Fluid Dynamics (CFD) engine which plays a significant
role in simulating airflow, thermal comfort, and pollutant dispersion within architectural and urban
spaces. OpenFOAM offers flexibility and customization, allowing AEC professionals to address com-
plex airflow and environmental issues in building design and urban planning. It is embedded in the
Butterfly tool in Rhino/Grasshopper.

In the simulation sections that will follow (4.3, 5.3), an Minimal Reproducible Example (MRE) is pro-
posed using mostly the default or automatically generated parameters for experimental purposes. It
is important to emphasise that this MRE is not meant as an accurate representation of real-world sce-
narios due to the complexity of the involved parameters. It is solely intended to test the efficacy of the
obtained models.

Among the numerous considerations to be made are the turbulence model, solving algorithms and
solver. These are research topics in specific areas, and thus they are out of the scope of this project
which is development-based. Even when applying a simple test case, using the laminar turbulence
model, the steady incompressible recipe and the default solver for ”simplefoam”, there are still param-
eters to directly specify. Among them are the wind tunnel, boundary conditions, background mesh
and snappyHexMesh (Blocken [2015], Garcı́a-Sánchez et al. [2021]).

The testing of these parameters is out of the scope of this project, and as such set values were used.
It is important to note that these parameters would not only influence the efficiency and accuracy of
the simulation, but they may also influence the convergence of the simulations. In cases where conver-
gence does not occur, obtaining accurate results becomes impossible. In this instance, the simulation
successfully converged, demonstrating the effectiveness of the generated model.

1https://www.radiance-online.org/
2https://www.openfoam.com/

14

https://www.radiance-online.org/
https://www.openfoam.com/

3.3 Simulation Experiment

Following the above explanation of the limitations and goals of the MRE, the steps for the overall
process to perform wind simulation from the generated city geometry are listed below.

Data Acquisition & Alignment Data Loading

Internet

Governmental,
Voluntary,
Other

Data Types

Building

Terrain

Landuse

Find

Loading Methods

API

FILE

Pseudo-API

Rhino 3DS

GML
OBJ

Geometric

Semantic

OtherGeometry Generation

Geometry Repire

Disjoint

Overlapping

Holes

Grasshopper
Geometry

Mesh

Nurbs

Simulation

Environmental Analysis

Solar
Analysis

Wind
Analysis

Energy
Analysis

Weather
Analysis

Ladybug

Honeybee

Dragonfly

Butterfly

Results with
Different SeneriesIterate

Enrich

Figure 3.8: Overall Workflow

1. Specifying needed parameters: the necessary parameters are used as input. These are “case
name” for project creation, “wind direction” for wind tunnel creation, ”cell size of blockmesh”
for background mesh creation, “refinement level of buildings” for refined mesh creation, and
number “number of CPUs” for the parallel running.

2. Simulation execution: all the required steps are clustered in a transformer, after inputting the
geometry and specifying the parameters, the simulation can be started.

3. Visualisation: due to the limited capability of Rhino and Grasshopper in handling the visu-
alisation of complex models, the postprocessing is done in the ParaView application, which is
packaged with OpenFOAM during the Butterfly installation.

15

4 Implementation - TIN Case
In this chapter, the TIN-based implementation is introduced. First, the overview of implementation
is described. Then, in Section 4.1, Section 4.2 and Section 4.3, the data acquisition and alignment,
geometry generation and simulation experiments are discussed in detail. Finally, a conclusion of this
chapter is given as well as the limitations of the current implementation.

As mentioned in the Methodology chapter, there are three sub-goals of this project. The ideal input
and output of the three parts are discussed below and the workflow diagram is shown in Figure 4.1.

1. The data acquisition and alignment are achieved via the file-based method, the primitive data is
processed with the aid of QGIS, specific Python scripts executed in an Integrated Development
Environment (IDE) such as PyCharm, and Python script components embedded in Grasshopper

2. The geometry generation is achieved through the TIN-based method, and the implementation is
carried out with components and Python scripts embedded in Grasshopper.

3. The simulation experiments perform Solar and Wind analysis, and they were implemented with
the use of Radiance and OpenFOAM engines, made available in Grasshopper through the Lady-
bug and Butterfly extensions. Paraview was used for the wind simulation visualisation.

Data sources

Geoportal

Location

Download Data

Download
Terrain data

Cadastre WFS
Request

Building outlines

Create Terrain Surface

Create Buildings

Surface meshExtract grid points Delaunay
triangulationDTM

Extract grid points

DSM

Building Solid

Footprint

Height

Cleaning Old Building

Create New Buidling

Geometry generation

Cropped surface

Buildings on
terrain height

OutlinesTower Add
level heigth

Context

Result Union

Simulation

Solar

Wind

Material
properties

Weather data

Geometry

Figure 4.1: Implementation of TIN case

4.1 Data Acquisition and Alignment

Before the datasets can be processed in Grasshopper, it is necessary to correctly import them into the
program. As different data formats and distribution methods are used by the different countries/re-
gions, a phase of data acquisition and alignment needs to take place where this process is correctly
carried out. Ideally, the data would be available through OGC APIs, such as WMS and WFS, and be in
data formats natively readable in Grasshopper. This would reduce the number of actions required
from the user, as no direct search and download of the data would be necessary, as well as guarantee
the use of consistently up-to-date information.

17

4 Implementation - TIN Case

However, in most of the experiences carried out this was not the case. Datasets were for the most
part retrievable with the file-based approach (see Section 3.3.1) and some formats required additional
plugins or external processing to be performed before they could be inserted into Grasshopper. In
the following section, the processes needed to acquire and align the different dataset formats are
described.

4.1.1 DTM

The terrain and surface height data is often available as a gridded raster, such as in a GeoTIFF format.
Since this format cannot be directly read by Grasshopper, alternative methods need to be applied for
its insertion.

The approach followed was that of transforming the raster file into a point cloud dataset by associating
the x and y coordinates of each pixel’s centre point with its corresponding z value. It was performed
through the Python package named “rasterio” (Gillies [2019]) and stored as an XYZ file. This format
can be parsed as a text file through the Grasshopper Python interpreter.

Another method was attempted but ultimately abandoned for its ineffectiveness. This involved in-
stalling the “Bison”1 Grasshopper plugin, which with its “Import Mesh DEM” automatically takes a
TIFF file as input and creates a Mesh in Rhino. However, it automatically translated the Mesh’s centre
to the Rhino origin, without explicitly giving the performed transformation. This caused aligning the
mesh with the other geometries to be unsuccessful, as it was not possible to reproject it to a common
coordinate system. Furthermore, it gave less control ability than the previously described method, as
the individual insert points used to create the mesh could not be changed.

4.1.2 DSM

Building height data was in certain cases available from the DSM of the area of interest. To determine
the building height corresponding to a building footprint, the height value above it is collected from
the building DSM, and the 95 percentile is taken to determine the actual height. These heights and
footprints are then used to make the LoD1 building solids

4.1.3 Building SHP

The building footprints as a SHP file was the most common way in which building geometry was
obtained. This posed a problem as the built-in Grasshopper “Import SHP” has the limitation of not
outputting the field values associated with each geometry, which in some applications were needed as
the building height was stored inside them. For this reason, an external plugin was required to extract
all the necessary data inside of Grasshopper. The one ultimately chosen was “Local Software”2, which
imports the geometries, attribute names and attribute values as three different Grasshopper trees.

The geometry entries and attribute value indices in each tree correctly correspond to each other, making
them easily connected. Another plugin was considered, “Heron”3, but it was ultimately abandoned
as errors were encountered regarding incorrect geometry reprojection and geometry/attribute indices
incongruence.

4.1.4 CityGML

City geometry in a CityGML format was available in certain cases, from which building geometry
could be extracted. It was able to be retrieved directly through a WFS API, and so directly loaded into
Grasshopper. By following the CityGML data model (OGC [2023]), the GML file was parsed with
various Grasshopper Python components to extract the required geometries.

1https://www.bison.la/
2https://www.food4rhino.com/en/app/local-software
3https://www.food4rhino.com/en/app/heron

18

https://www.bison.la/
https://www.food4rhino.com/en/app/local-software
https://www.food4rhino.com/en/app/heron

4.2 Geometry Generation

4.1.5 Boundary Selection

Often the acquired datasets span a large physical area, and as such can be computationally expensive to
perform operations on. For this reason, a way to select a boundary to delimit the area to be loaded and
considered for future operations is imperative to efficiently continue with the geometry reconstruction.
Since the geometries are projected to a specific coordinate system, this is done by providing a link4 to
an online platform where the desired project coordinates can be chosen. Afterwards, a radius can be
specified to create a boundary around it. Using this limit, the various geometries can be cropped, by
either selecting the objects that are contained inside it in the case of buildings, or by cropping the mesh
with that constraint in the case of the terrain.

4.1.6 Results

With the steps above followed the result will be the geometries being correctly imported into Grasshop-
per. Depending on the data available, this could mean having building footprints, full building models
and terrain meshes.

After the main steps mentioned above, there will be two meshed models in each case. One is the DTM
mesh generated from the point coordinates and the other is the buildings represented in Boundary
Representation (Brep).

4.2 Geometry Generation

After the acquisition step, the 3D digital surface model(s) of the context could be obtained. The
buildings are represented by Boundary Representations (Breps) in LoD1, and the terrain is represented
in DT mesh. Since the building model is disjoint with the terrain model, it fails to reflect reality and may
induce errors in further simulation. The following step after the acquisition is to correctly seal these
two models as a watertight DSM. Our team has attempted to implement the Constrained Delaunay
Triangulation (CDT) method proposed by Paden et al. [2022].

However, the result reproduced by using the Rhino/Grasshopper turns out to be unusable due to
the complexity of the resulting model and the limit of computation power. Therefore, a simplified
process will be introduced as well to achieve the sealing goal. In this section, the process will focus on
aligning the 3D geometry represented in TIN and Brep. In the meantime, one new building is inserted
(operations developed for users) into the context to create different scenarios.

4.2.1 Terrain Generation

As introduced in the previous section, the terrain data was inserted in Grasshopper as a point cloud
in XYZ format. A Grasshopper Python script allows for a mesh to be reconstructed. It also allows the
user to input a thinning variable called Level of Simplification (LoS) filter a certain amount of points to
simplify the mesh and optimise processing speeds. The code for the height extraction of TIFF files is
shown in Appendix A.

4.2.2 Building Generation - CDT Method

According to the reconstruction process (Paden et al. [2022]), the footprint points are first projected on
the terrain mesh to perform height interpolation.

Then, the constraint is added at the overlapping part of two models, in which the edges are split at the
intersection and new vertices are added. After adding the constraint, the original points and all the
newly added constraint points are used as an input set to generate the CDT mesh.

Finally, each triangle will be addressed with semantic labels, and the height of all the CDT vertices in
each footprint will be averaged to a certain level for the building’s height extrusion. Our team adapts
the workflow to fit Rhino/Grasshopper, the process is shown as the following:

1. For each building footprint, create a brep and convert it to a meshed surface.
2. Split the mesh surface with the terrain bounding box, which will give the intersecting points of

cutting edges and surfaces.

4For example, in the case of the WGS 84 UTM zone 32N, this link was provided

19

https://epsg.io/map#srs=32632&x=393328.168928&y=4988706.365163&z=15&layer=streets

4 Implementation - TIN Case

4.2 Geometry Generation

After the acquisition step, the 3D digital surface model(s) of the context could be obtained.
The buildings are represented by breps in LoD1, and the terrain is represented in DT mesh.
Since the building model is disjoint with the terrain model, which fails to reflect reality and
may induce errors in further simulation. The following step after acquisition is to correctly
seal these two models as a watertight DSM.

Our team has attempted to implement the Constrained Delaunay Triangulation (CDT) method
proposed by Pađen, I., Garcia Sanchez, C., & Ledoux, H. 2022. However, the result
reproduced by using the Rhino/Grasshopper turns out to be unusable due to the complexity of
the resulting model and the limit of computation power. Therefore, a simplified process will
be introduced as well to achieve the sealing goal. In this section, the process will focus on
aligning the 3D geometry represented in TIN and brep. In the meantime, one new building is
inserted (operations developed for users) into the context to create different scenarios.

4.2.1 Terrain Generation

As introduced in the previous section, the terrain data was inserted in Grasshopper as a point
cloud in XYZ format. A Grasshopper Python script allows for a mesh to be reconstructed. It
also allows the user to input a thinning variable called LoS (Level of Simplification) filter a
certain amount of points to simplify the mesh and optimise processing speeds. The code for
the height extraction of TIFF files is shown in appendix A.

4.2.1 Building Generation - CDT Method

According to the reconstruction process (Pađen, I., Garcia Sanchez, C., & Ledoux, H.
2022), The footprint points are first projected on the terrain mesh to perform height
interpolation. Then, the constraint is added at the overlapping part of two models, in which
the edges are split at the intersection and new vertices are added. After adding the constraint,
the original points and all the newly added constraint points are used as an input set to
generate the CDT mesh. Finally, each triangle will be addressed with semantic labels, and the
height of all the CDT vertices in each footprint will be averaged to a certain level for
building’s height extrusion. Our team adapts the workflow to fit Rhino/Grasshopper, the
process is shown as the following:

22

Figure 4.2: CDT method illustration (Paden et al. [2022])

Figure 4.3: Terrain bounding box(left), Split edge points (right)

3. Deconstruct the mesh with a custom setting to control the maximum allowed edge length between
meshed points. Note that in Grasshopper, the custom setting for max edge control will affect the
density of meshed points lie inside the polygon, the shorter the edge, the denser the meshed
points will be, which compromises the performance.

Figure 4.4: Meshed building points
max edge: left (2 units) - right(10 units)

4. Deconstruct the terrain bounding box to get its vertices and select all the meshed building points
in the terrain bounding box.

20

4.2 Geometry Generation

5. Merge all the points obtained in step 2 to 4, project those points on the DT terrain mesh. In this
step, the projected points will be automatically assigned with the linearly interpolated height
values from the terrain mesh.

6. Average the height values and assign the averaged height to all the points from step 5 and the
terrain points that fall in each building footprint.

Figure 4.5: Merged points projection on the terrain mesh

6. Merge the projected points in step 6 with the rest of the terrain points, generate the CDT mesh
from the merged point set.

7. Use the face normals to get the centres of each CDT, select the Constrained Delaunay Triangles
(CDTs) that have its centre in the footprints, which helps to label the building CDTs.

Figure 4.6: Resulting CDT mesh(left), Labelled building CDTs in green (right)

8. Find the lowest z-value of the CDTs in each footprint and project the CDTs on the plane at the
lowest height, which gives a planar mesh for extrusion that covers all the footprint area and also
guarantee the roof of the resulting LoD1 building model is flat.

9. Average the z-values of the CDTs in each footprint, compute the difference between the averaged
and lowest z-values and add the result to the building’s height that is derived from the shapefile,
which gives the extrusion height.

10. Extrude the CDTs created in step 8 with the height in step 9.

The above process demonstrates the sealing of building and terrain models with the CDT method for
generating a watertight model. Note that, since the buildings are extruded from the footprint at its
lowest z-value, the extruded solid will intersect with the CDT terrain mesh, an extra step to remove
the underground part is needed. However, the geometry generation time with the CDT method will
last unexpectedly long and would reach the memory limitation of Rhino (2GB) when the bounding
box size is set above 500 metres (see table 4.1) to merely integrate the original buildings and terrain.
Furthermore, it may fail to allow users to perform further operations like insertion of a new building
since each operation requires heavy recalculation, and this method is only tested on the UK case. All the

21

4 Implementation - TIN Case

limitations compromise the flexibility and the usability of this method, making it an only experimental
approach.

Table 4.1: Geometry Generation Time by CDT-method
Bounding Box size (m) Time cost (s)
100 12.3
200 66
300 312
400 666
500 Out of memory

Figure 4.7: Resulting watertight model (the UK case)

4.2.3 Building Generation - Simplified Method

The simplified method for building generation treats the terrain and the buildings as separate geome-
tries that intersect to have a watertight model with both geometries, without any buildings “floating”
above the terrain. It assumes that following the data acquisition and alignment steps, the building foot-
prints and terrain geometries are aligned on the x,y planes but have conflicting heights. The general
steps performed to be able to achieve this are listed below.

1. Calculate the centre point of each building footprint.
2. Project the centre point to the terrain mesh model.
3. Translate the footprint along the z direction to the height of the projected centre point
4. Select a height for the building to “sink” under the ground, ideally, this should be a value that

goes beyond the terrain’s lowest point.
5. Extrude the footprint along the z direction by the sum of its corresponding height and the selected

“sinking height”

It can be noted that the steps above can be simplified if the height given is a vertical coordinate datum,
in which case the geometries can be extruded to that set height.

4.2.4 New Building Insertion

The insertion of the new building can be done by translating its geometries to the x and y coordinates
provided by the user. To raise it to the accurate height, a similar approach was taken as in the previous
section. However, this process was performed manually by sinking the building by a small amount, to
ensure that the model would be watertight. This approach is only valid when the terrain has a gentle,
not bumpy landscape. For a rugged and steep landscape, this approach will need to be modified to
properly bridge the gaps between building footprints and the terrain or other alternatives need to be
taken.

22

4.3 Simulation Experiment

step a step b

step c steps d-e
Figure 4.8 Building reconstruction steps for the simplified method

4.2.3 New Building Insertion

The insertion of the new building can be done by translating its geometries to the x,y
coordinates provided by the user. To raise it to the accurate height, a similar approach was
taken as in the previous section. However, this process was performed manually by sinking
the building by a small amount, to ensure that the model would be watertight. This approach
is only valid when the terrain has a gentle, not bumpy landscape. For a rugged and steep
landscape, this approach will need to be modified to properly bridge the gaps between
building footprints and the terrain or other alternatives are needed to be taken.

4.2.4 Results

The model shown in Figure 4.9 shows the resulting watertight model for the TIN case. Note
that since which buildings fall in the area of interest is determined by the centre of each
building footprint, it could let the buildings near the edges unselected even their footprint
cover certain areas within the bounding box. Therefore, the users should set the bounding box
extent larger than the area of interest to create a buffer, which guarantees that at least all the
buildings near the newly inserted building are included and are watertight to the terrain within
the desired area for further simulation. With the integrated model, the solar and wind
experiments in Rhino, such as solar radiation, shadow calculations and wind analyses can
then be performed.

26

Figure 4.8: Building reconstruction steps for the simplified method

4.2.5 Results

The model shown in Figure 4.9 shows the resulting watertight model for the TIN case. Note that since
which buildings fall in the area of interest is determined by the centre of each building footprint, it
could let the buildings near the edges not be selected even if their footprint covers certain areas within
the bounding box. Therefore, the users should set the bounding box extent larger than the area of
interest to create a buffer, which guarantees that at least all the buildings near the newly inserted
building are included and are watertight to the terrain within the desired area for further simulation.
With the integrated model, the solar and wind experiments in Rhino, such as solar radiation, shadow
calculations and wind analyses can then be performed.

4.3 Simulation Experiment

4.3.1 Solar Analysis

Various components are required to perform a solar analysis. The initial requirement is a specific
date to perform solar analysis. To achieve the primary goal of preliminary environmental analyses
this was limited to one day, however it is also possible to perform the analyses for larger stretches
of time. Once the date is determined, it is necessary to search for an EnergyPlus Weather (EPW) file
near the location, which contains the necessary location-specific weather data for the simulation. The
reconstructed geometry through the TIN-based method of existing buildings, terrain and proposed
future construction will be used in conjunction with the weather data to perform solar analysis. These
must be in a Breps or mesh format to be used as input with Honeybee.

All these components were loaded into the Honeybee plugin within Grasshopper. The experiments
will be conducted using this plugin, akin to the example depicted in Figure 4.10a.

The conducted experiments firstly assess the direct sun hours. This involves analysing the influence
that new buildings have on the total hours of direct sunlight received by the surrounding areas. Sec-

23

4 Implementation - TIN Case

Figure 4.9 Resulting watertight model (the Italy case)

4.3 Simulation Experiment

4.3.1 Solar Analysis

Various components are required to perform a solar analysis. The initial requirement is a
specific date to perform solar analysis on. Once the date is determined, it is necessary to
search for an EPW (EnergyPlus Weather) file near the location, which contains the necessary
location-specific weather data for the simulation. The reconstructed geometry through the
TIN-based method of existing buildings, terrain and proposed future construction will be used
in conjunction with the weather data to perform solar analysis. These must be in a breps or
mesh format to be used as input with Honeybee.

All these components were loaded into the Honeybee plugin within Grasshopper. The
experiments will be conducted using this plugin, akin to the example depicted in figure 4.10.

The conducted experiments firstly assess the direct sun hours. This involves analysing the
influence that new buildings have on the total hours of direct sunlight received by the
surrounding areas. Secondly, the analysis also focuses on the solar radiation received by the
new building itself. It calculates the quantity of kilowatt-hours per square metre that fall on
the facade, as shown in figure 4.11.

27

Figure 4.9: Resulting watertight model (the Italy case)

ondly, the analysis also focuses on the solar radiation received by the new building itself. It calculates
the number of kilowatt-hours per square metre that fall on the facade, as shown in Figure 4.10b.

Figure 4.10 Direct sun hour analysis Figure 4.11 Solar irradiation analysis

4.3.2 Wind Analysis

The methodology and limitations in part 3.3.2 regarding the use of Butterfly and OpenFOAM
are followed when performing wind simulation with the generated geometry through the
TIN-based method. The results of the simulation, as seen in Figure 4.12, show the wind force
at a pedestrian level after the insertion of a new construction in a previously empty plot. In
order to achieve this result from the reconstructed geometries in Grasshopper, the geometries
generated via the TIN-based method require specific preparatory transformations. To comply
with the requirements of Butterfly components, these input geometries must adhere to two
conditions: they should be solids defined through breps and be closed breps.

a) Before insertion a) After insertion
Figure 4.12 Results of Wind Simulation Experiment

The building geometries typically fulfil both the conditions, as their reconstruction process
ensures the creation of a closed solid representation without openings. However, the terrain
model might necessitate certain transformations, particularly when in a mesh format.

The first transformation that needs to take place is converting the mesh into a brep structure.
This can be achieved by individually converting the mesh’s triangles into breps and
subsequently uniting into a single brep. Although this process generates a brep, it does not yet
ensure that it will be closed. An additional step is needed which involves providing the terrain

28

(a) Direct sun hour analysisFigure 4.10 Direct sun hour analysis Figure 4.11 Solar irradiation analysis

4.3.2 Wind Analysis

The methodology and limitations in part 3.3.2 regarding the use of Butterfly and OpenFOAM
are followed when performing wind simulation with the generated geometry through the
TIN-based method. The results of the simulation, as seen in Figure 4.12, show the wind force
at a pedestrian level after the insertion of a new construction in a previously empty plot. In
order to achieve this result from the reconstructed geometries in Grasshopper, the geometries
generated via the TIN-based method require specific preparatory transformations. To comply
with the requirements of Butterfly components, these input geometries must adhere to two
conditions: they should be solids defined through breps and be closed breps.

a) Before insertion a) After insertion
Figure 4.12 Results of Wind Simulation Experiment

The building geometries typically fulfil both the conditions, as their reconstruction process
ensures the creation of a closed solid representation without openings. However, the terrain
model might necessitate certain transformations, particularly when in a mesh format.

The first transformation that needs to take place is converting the mesh into a brep structure.
This can be achieved by individually converting the mesh’s triangles into breps and
subsequently uniting into a single brep. Although this process generates a brep, it does not yet
ensure that it will be closed. An additional step is needed which involves providing the terrain

28

(b) Solar irradiation analysis

Figure 4.10: Results of Solar Simulation Experiment

4.3.2 Wind Analysis

The methodology and limitations in Section 3.2.2 regarding the use of Butterfly and OpenFOAM
are followed when performing wind simulation with the generated geometry through the TIN-based
method. The results of the simulation, as seen in Figure 4.11, show the wind force at a pedestrian level
after the insertion of a new construction in a previously empty plot. Tow achieve this result from the
reconstructed geometries in Grasshopper, the geometries generated via the TIN-based method require
specific preparatory transformations. To comply with the requirements of Butterfly components, these
input geometries must adhere to two conditions: they should be solids defined through Breps and be
closed Breps.

The building geometries typically fulfil both conditions, as their reconstruction process ensures the cre-
ation of a closed solid representation without openings. However, the terrain model might necessitate
certain transformations, particularly when in a mesh format.

The first transformation that needs to take place is converting the mesh into a Brep structure. This
can be achieved by individually converting the mesh’s triangles into Breps and subsequently uniting
into a single Brep. Although this process generates a Brep, it does not yet ensure that it will be closed.
An additional step is needed which involves providing the terrain a certain thickness and extruding
it in the negative z direction by that amount. Upon the completion of these steps, the geometries

24

4.4 Region-Specific Implementations

Figure 4.10 Direct sun hour analysis Figure 4.11 Solar irradiation analysis

4.3.2 Wind Analysis

The methodology and limitations in part 3.3.2 regarding the use of Butterfly and OpenFOAM
are followed when performing wind simulation with the generated geometry through the
TIN-based method. The results of the simulation, as seen in Figure 4.12, show the wind force
at a pedestrian level after the insertion of a new construction in a previously empty plot. In
order to achieve this result from the reconstructed geometries in Grasshopper, the geometries
generated via the TIN-based method require specific preparatory transformations. To comply
with the requirements of Butterfly components, these input geometries must adhere to two
conditions: they should be solids defined through breps and be closed breps.

a) Before insertion a) After insertion
Figure 4.12 Results of Wind Simulation Experiment

The building geometries typically fulfil both the conditions, as their reconstruction process
ensures the creation of a closed solid representation without openings. However, the terrain
model might necessitate certain transformations, particularly when in a mesh format.

The first transformation that needs to take place is converting the mesh into a brep structure.
This can be achieved by individually converting the mesh’s triangles into breps and
subsequently uniting into a single brep. Although this process generates a brep, it does not yet
ensure that it will be closed. An additional step is needed which involves providing the terrain

28

(a) Before insertion

Figure 4.10 Direct sun hour analysis Figure 4.11 Solar irradiation analysis

4.3.2 Wind Analysis

The methodology and limitations in part 3.3.2 regarding the use of Butterfly and OpenFOAM
are followed when performing wind simulation with the generated geometry through the
TIN-based method. The results of the simulation, as seen in Figure 4.12, show the wind force
at a pedestrian level after the insertion of a new construction in a previously empty plot. In
order to achieve this result from the reconstructed geometries in Grasshopper, the geometries
generated via the TIN-based method require specific preparatory transformations. To comply
with the requirements of Butterfly components, these input geometries must adhere to two
conditions: they should be solids defined through breps and be closed breps.

a) Before insertion a) After insertion
Figure 4.12 Results of Wind Simulation Experiment

The building geometries typically fulfil both the conditions, as their reconstruction process
ensures the creation of a closed solid representation without openings. However, the terrain
model might necessitate certain transformations, particularly when in a mesh format.

The first transformation that needs to take place is converting the mesh into a brep structure.
This can be achieved by individually converting the mesh’s triangles into breps and
subsequently uniting into a single brep. Although this process generates a brep, it does not yet
ensure that it will be closed. An additional step is needed which involves providing the terrain

28

(b) After insertion

Figure 4.11: Results of Wind Simulation Experiment

derived from the TIN case will conform to the Butterfly requirements and the wind simulation will be
executed.

4.4 Region-Specific Implementations

4.4.1 TIN Case in Germany

The data that is required for the contextual analysis (e.g. buildings in LoD2 and terrain) in Hamburg
is delivered for the entire region, subdivided into different tiles. To preprocess this data to find the
necessary tiles for the area of study, a Python script was created that would read through all of the
different CityGML files, read out the bounds and return the file names of the files that would be
relevant. Although this approach should have worked, the speed and memory efficiency of Python
within Grasshopper was a limiting factor; the script would require more than 10 minutes to run at
least with no guarantee that it would work at all. Therefore, the decision was made to learn some C#
and to transform the Python code into something that runs more natively within Grasshopper. This
led to the code working, resulting in the correct CityGML file names being filtered out. Since the point
cloud (XYZ files) for the terrain had the same name as the CityGML tiles, this task was rather trivial.

Upon further inspection of the buildings dataset, it seems that the ground points supplied with the
CityGML do not match the ground polygons of the buildings when using a modified version of the
original implementation of the GML reader. However, an unlikely solution where the ground floor
points are instead combined with the wall points instead of being separately processed lead to correct
results (Figure 4.12). The reason for this is unknown and was not found due to time constraints, but
despite this it was possible to generate watertight models that can be employed for both solar and
wind analysis. Even so, it should be noted that since the terrain from the XYZ files matched up with
the ground floors of the buildings which effectively would also create a watertight model, the original
solution would have been usable for the simulations.

4.4.2 TIN Case in Hong Kong

The data retrieved via the API in Hong Kong is already watertight with all the DSM features repre-
sented in OBJ format, the wind simulation should be ideally available based on it. However, it will be
challenging to achieve due to the following reasons:

1. The original OBJ tiles overlap with each other to a certain extent; how to seamlessly combine
adjacent tiles is the main challenge for building a valid TIN - based model in the case of Hong
Kong.

2. The insertion of a new building would be another challenging point with the original TIN case in
Hong Kong, it will require a process similar to the CDT building regeneration method mentioned
above to incorporate the new structure into the original context. According to our experiment, it
could be too computationally expensive to achieve, which is not a viable solution for our target
analyses.

25

4 Implementation - TIN Case

(a) Top View of points when separately processed (b) Top view of points when added to wall surfaces

Figure 4.12: Ground points of the CityGML when processed in the original and combined method

3. The resolution of the primitive model could be overly detailed for running wind simulation with
the Butterfly plugin in Rhino. Certain simplification methods are needed to reduce the resolution
of the model to run the wind simulation on one single tile. If the user’s area of interest is larger
than a single tile, the issues stated above will need to be taken into consideration, which makes
the TIN case in Hong Kong difficult to apply.

Based on these reasons, our team turned to the voxelization method which is described in Chapter 5.
Based on these reasons, our team turned to the voxelization method which is described in
chapter 5.

a) Top View b) Perspective View
Figure 4.13 Overlapping and Gaps between the Tiles

4.4.3 TIN Case in Italy

The Piedmont Geoportal served as the source for data used in implementing the TIN-based
approach. The data was only available through direct download, requiring the user to establish
a direct link to the Grasshopper file.

Building footprints were made available as a shapefile that divided the region into tiles.
Among the fields corresponding to each footprint, a height value was given. This height did
not correspond to a specific vertical coordinate datum, but rather represented a generic
measurement likely taken on-site from a ground point. For this reason, an assumption was
necessary when reconstructing the building geometry to determine the starting point from
which to extrude the solid. It was opted to use the footprint centre’s projection on the terrain
as the reference height for the extruding. In the area considered for the simulation, this did not
pose a great difference, as the terrain was mostly flat. However, in conditions where the
terrain height differs greatly in small differences, this choice could lead to discrepancies
between the reconstructed building geometry and the real-life structures. Since no information
was given regarding the methodology behind the original height value, a certain margin of
error was unavoidable.

The terrain data was provided in the form of a TIFF file, which was also organised in tiles that
spanned the region. To generate a TIN mesh, the file needed to be converted into an XYZ file
format, so that a series of points could be used for the TIN mesh construction. Due to
limitations with the Python component within Grasshopper, this conversion process was
performed using an external Python script.

4.4.4 TIN Case in Spain

For Spain, the data is available from two different places. The first is the Geoportal for the
terrain data and the second place is the Cadastre WFS, from which we download the building
outlines. We use the terrain model to create the surface mesh. From the Cadastre data together
with the surface model we create the building solids as explained earlier in this chapter. The

30

(a) Top view

Based on these reasons, our team turned to the voxelization method which is described in
chapter 5.

a) Top View b) Perspective View
Figure 4.13 Overlapping and Gaps between the Tiles

4.4.3 TIN Case in Italy

The Piedmont Geoportal served as the source for data used in implementing the TIN-based
approach. The data was only available through direct download, requiring the user to establish
a direct link to the Grasshopper file.

Building footprints were made available as a shapefile that divided the region into tiles.
Among the fields corresponding to each footprint, a height value was given. This height did
not correspond to a specific vertical coordinate datum, but rather represented a generic
measurement likely taken on-site from a ground point. For this reason, an assumption was
necessary when reconstructing the building geometry to determine the starting point from
which to extrude the solid. It was opted to use the footprint centre’s projection on the terrain
as the reference height for the extruding. In the area considered for the simulation, this did not
pose a great difference, as the terrain was mostly flat. However, in conditions where the
terrain height differs greatly in small differences, this choice could lead to discrepancies
between the reconstructed building geometry and the real-life structures. Since no information
was given regarding the methodology behind the original height value, a certain margin of
error was unavoidable.

The terrain data was provided in the form of a TIFF file, which was also organised in tiles that
spanned the region. To generate a TIN mesh, the file needed to be converted into an XYZ file
format, so that a series of points could be used for the TIN mesh construction. Due to
limitations with the Python component within Grasshopper, this conversion process was
performed using an external Python script.

4.4.4 TIN Case in Spain

For Spain, the data is available from two different places. The first is the Geoportal for the
terrain data and the second place is the Cadastre WFS, from which we download the building
outlines. We use the terrain model to create the surface mesh. From the Cadastre data together
with the surface model we create the building solids as explained earlier in this chapter. The

30

(b) Perspective view

Figure 4.13: Overlapping and Gaps between the Tiles

4.4.3 TIN Case in Italy

The Piedmont Geoportal served as the source for data used in implementing the TIN-based approach.
The data was only available through direct download, requiring the user to establish a direct link to
the Grasshopper file.

Building footprints were made available as a shapefile that divided the region into tiles. Among the
fields corresponding to each footprint, a height value was given. This height did not correspond
to a specific vertical coordinate datum but rather represented the height of the building measured
from a ground point. For this reason, an assumption was necessary when reconstructing the building
geometry to determine the starting point from which to extrude the solid. It opted to use the footprint
centre’s projection on the terrain as the reference height for the extruding. In the area considered for the
simulation, this did not pose a great difference, as the terrain was mostly flat. However, in conditions
where the terrain height differs greatly in small differences, this choice could lead to discrepancies

26

4.4 Region-Specific Implementations

between the reconstructed building geometry and the real-life structures. Since no information was
given regarding the methodology behind the original height value, a certain margin of error was
unavoidable.

The terrain data was provided in the form of a TIFF file, which was also organised in tiles that spanned
the region. To generate a TIN mesh, the file needed to be converted into an XYZ file format, so that a
series of points could be used for the TIN mesh construction. Due to limitations with the Python com-
ponent within Grasshopper, this conversion process was performed using an external Python script.

4.4.4 TIN Case in Spain

For Spain, the data is available from two different places. The first is the Geoportal for the terrain data
and the second place is the Cadastre WFS, from which we download the building outlines. We use the
terrain model to create the surface mesh. From the Cadastre data together with the surface model,
we create the building solids as explained earlier in this chapter. The building solids and terrain data
together form the context of the location. Then we load a new building as described in the previous
sections.

4.4.5 TIN Case in the UK

The terrain mesh generation in the UK case shares the same method as the Italy case to convert TIFF to
XYZ file with the aid of the external Python package. As for the building, the official free data portal
only provides a coarse building footprint shapefile without height, which is not sufficient for creating
LoD1 building and several footprints are dissolved into a whole, and the detail shapes are lost. In this
case, the building footprints of the UK are retrieved from OpenStreetMap, and the heights are extracted
via the “zonal statistic” plugin in QGIS (see Appendix A) to speed up the points in cures (here refers to
building footprints) selection, the averaged heights are then addressed to each building footprint.

After the preparation, our team tried a more rigorous CDT approach mentioned in the Section 4.2.1 to
correctly embed the building footprints to the terrain. The constraints within DT mesh help to solve the
overlapping issue of two layers and enable the users to semantically label each of the CDTs, which is
beneficial when there are more than two surface roughness values apart from only building and terrain
in this case, each surface type could be identified and set with different parameters while running
wind simulation. Moreover, the CDT approach also allows users to select and crop the 3D model as
they desire, the buildings near the edge could be retained, which is another advantage compared to
the simplified method in Section 4.2.2.

However, the finer the mesh, the more challenges we could encounter. The main challenges of CDT
approach lie in the list order of CDTs layer and building footprint layer, as each footprint is divided into
multiple pieces of CDTs, if the order is not consistent, each CDT will be extruded with the wrong height.
To solve this, we first have to flatten the CDTs list to keep the building footprints list in order, we then
select the CDTs in each building footprint and assign it with the correct height.

Apart from the height issue, the CDT approach requires heavy computation, which might not be viable
in terms of timely interactive operation, and the output result may contain unknown errors such as
invalid Breps after extrusion due to the environmental setting of Rhinoceros.

We have tested the CDT-generated UK model in wind simulation, and the result was not reason-
able since the wind simulation unexpectedly stopped at the snappyHexMesh (Blocken [2015], Garcı́a-
Sánchez et al. [2021]) and collapsed. Based on the result, we have two assumptions considering the
inducing reasons for the error:

1. The shape of mesh: CDTs can result in “sliver (super thin) triangles” near the cutting edge. It
might introduce invalid geometry that causes the problem during the snappyHexmesh process.

2. The inherent characteristics of Rhinoceros: There might be some compatibility issues in con-
ducting the simulation process with CDT-based models in Rhinoceros due to the inherent appli-
cation capability. Moreover, since the CDT-based model is computationally expensive for recon-
struction considering the detailed segmentation of the input model. All these possible factors
may lead to the failure of further usage of the model and to implement simulations on a normal
laptop.

27

4 Implementation - TIN Case

Due to the time limitation, we could not figure out why the error occurred, it remains a task to solve for
future work. Considering the reasons mentioned previously, we can say that the CDTs approach might
not be suitable for generating the necessary model for wind simulation in Rhinoceros. Thus, using a
simplified method for geometry generation or voxelizing the CDTs model could be a more applicable
alternative in terms of wind simulation in Rhinoceros.

4.5 Evaluation of the TIN-based Construction Method

The TIN-based method allows for a direct recreation of geometries from available datasets. Among
its advantages is the small loss in data through the reconstruction process, as the geometries remain
mostly unaltered or simplified unless specified deliberately. This ensures that the building shapes,
position and height faithfully represent the original dataset. The terrain undergoes the most substantial
processing, as it is usually provided in a grid format, requiring interpolation for its 3D representation.
Moreover, the process yields shorter processing times, which are mainly influenced only by the size of
the original datasets, as the operations involved are generally simple. However, this same speed does
not extend to the simulation processes. The potentially detailed nature of the TIN-based model may
challenge the simulation’s processing capabilities, negatively impacting processing time.

For these same reasons, this approach heavily relies on the quality and coherence, consistency among
diverse datasets, including existing buildings, terrain data, new constructions, and other urban objects.
One of the primary challenges when combining data through the TIN-based approach is ensuring
proper alignment. Typically, alignment can be achieved when the data shares the same coordinate
system, as is often the case, although there are instances where discrepancies arise, as observed in the
cases of Italy’s and Spain’s height data.

An additional challenge involves the varying dataset resolutions. In many of the explored experiences,
limited choices in available datasets lead to the integration of geometries with varying resolutions.
Existing buildings often have a different LoD from the newly inserted ones, while terrain data usually
employs a grid structure that determines its resolution. These differences might not pose a problem
for certain users, such as architects seeking a general visualisation of the context in which to insert
detailed project models. However, in cases such as solar and wind environmental analyses accuracy
might be essential, and in these cases it could vary based on which area of the model it was performed
in.

28

5 Implementation - Voxel Case
In this chapter, the Voxel-based implementation is introduced. First, the overview of the implementa-
tion is described. Then, in Section 5.1, Section 5.2 and Section 5.3, the data acquisition and alignment,
geometry generation and simulation experiments are discussed in detail. Finally, a conclusion of this
chapter is given as well as the limitations of the current implementation.

As mentioned in the Methodology Chapter, there are three sub-goals of this project. In this Section, the
ideal input and output of the three parts are discussed below. The in-detailed steps (usually the most
tricky parts) will be left in the later 3 Sections (The workflow diagram is shown in Figure 5.1).

1. The data acquisition and alignment are achieved by the API-based method, the implementation
is achieved by Python script embedded in Grasshopper.

2. The geometry generation is achieved by the Voxel-based method, and the implementation is in
C# (for efficiency reasons) in Grasshopper.

3. The simulation experiments are for Solar and Wind analysis, and the implementation is by the
Radiance and OpenFOAM engines, Ladybug and Butterfly tools in Grasshopper, and Paraview
is used for visualisation.

Download Tiles Find OBJ URL

Insert New Building

Simulations Add New Building Clean Old Building

Create MeshDownload OBJ

obj-1

radius

request

position obj-2extractintersect

url-service

bbox

url-1

url-2

url-n obj-n

request merge

result run

mesh

grid

voxelize

bbox

grid-solid fill by bfs

grid-bbox voxelize

grid-bdg

grid-
context

substract

grid-result

unionparams

buildingvoxelizegeometry extract

solar angle...

windspeed...

Figure 5.1: Implementation of Voxel Case

5.1 Data Acquisition and Alignment

After the data finding and researching processes, there may be an initial idea to manually download
and load the data into the Rhino/Grasshopper. There may also be possibilities to automate the above
process by using APIs. Datasets may be in different formats and organisations which may be requested
by different types of APIs (OGC get/post or W3C get/post).

In this Section, a typical acquisition case for Hong Kong is introduced: W3C GET request is used to
get the GeoJSON file and to further get the OBJ files. The main steps are described below.

5.1.1 GeoJSON Parsing

1. Because of the particularity (The function of specifying the bounding box of the tiles is not
supported) of the Service Protocol, the whole GeoJSON file must be requested.

2. The requested GeoJSON file (in text form) could be transformed into a Python dictionary. There
are geometries (4 coordinates of the rectangles) and corresponding downloading links for OBJ
files for each tile.

3. Given the position (longitude and latitude of the place of interest) and the radius (size of the
bounding box), the querying rectangle could be constructed.

29

5 Implementation - Voxel Case

4. Due to the particularity of the querying shape and queried shapes (They are axis-aligned rectan-
gles), four point-in-rectangle tests could be used to detect if two rectangles are intersected.

5. One traversal is used to check the intersection between the querying rectangle, and all the queried
(extracted) rectangles and the downloading links (in string form) for OBJ files are put into a list.

5.1.2 OBJ Downloading

1. Due to the big size of the OBJ files and the fact that they are zipped, it is safer and more convenient
to first download them as temporary files (A temporal folder would be created).

2. By using the links for OBJ files obtained in the previous main step, Python requests are used to
download the zip files into the temporal folder.

3. By using the suffix names (.obj) of the files in the zip files, the OBJ files are extracted from the zip
files. The process is repeated until all the downloading links are used.

5.1.3 Mesh Loading

1. Because there is no local library in Grasshopper to load the OBJ files, another Python module is
needed. A mesh list is created first as a container for all the results.

2. The OBJ files are read line by line and all the vertices and faces are extracted and organised in
order which could be used to construct one mesh. Once one OBJ file is loaded, the mesh is
appended to the mesh list.

3. All the meshes in the mesh list are joined to a whole. The mesh is moved from the real coordinate
to the origin for the convenience of the AEC practitioners.

5.1.4 Results

After the main steps mentioned above, one mesh could be obtained, an example (one tile) is shown in
Figure 5.2. It can be seen that the resulting mesh is too detailed and complicated which may lead to
efficiency issues for later environmental simulations. If zooming in, it can also be found that there are
overlappings, disjoints and gaps in the mesh (especially in the boundaries of tiles) which may lead to
correctness issues for later environmental simulations.

An efficiency experiment1 is also carried out to test the time consumption for the data acquisition
which is shown in Table 5.1. It can be seen that there’s a linear relationship between the number of
tiles and the time cost for downloading. Note that the sides of a bounding box are equal to two times
the size of the search radius.

Figure 5.2: Result of Acquisition

1. When the search radius is small, the bottleneck of the data acquisition process is the network
speed due to the big size of the OBJ files.

2. When the search radius is big, the bottleneck of the data acquisition process is the disk. For
example, the 25 obj files in Table 5.1 account for 972 MB (nearly 1 GB).

3. When downloading the obj files, the main memory is not the bottleneck as the obj files are
downloaded one by one. However, it is untested if the main memory could be the bottleneck
when loading the obj files as all the files should be loaded together.

1Device: Lenovo ThinkBook 14 G5+ IRH; CPU: 13th Gen Intel(R) Core(TM) i7-13700H 2.40 GHz, RAM: 32.0 GB; OS: Windows
11 Family.

30

5.2 Geometry Generation

Table 5.1: Acquisition Time
Search radius (m) Tile number Time cost (s)
10 1 24.0
20 2 34.2
40 2 27.8
80 4 45.5
160 9 128.9
320 25 254.8

5.2 Geometry Generation

After the acquisition step, the 3D digital surface model(s) (represented by mesh) of the context could
be obtained. They are detailed and fit well with the real terrain, buildings, trees etc. However, there are
overlappings, disjoints and gaps, especially on the boundaries of tiles. In this Section, the voxelisation
method is used to fix the mesh. In the meantime, one new building is inserted (operations developed
for users) into the context to create different scenarios.

5.2.1 Building Preparation

1. The new building should be placed in the proposed place of the context, it could be an internal
or external model in Rhino or a parametric model in Grasshopper.

2. It is better for users to first place the model near the context (In Rhinoceros), then use the move-
ment parameters (In Grasshopper) to place the model in the context and set the original model
invisible (shown in Figure 5.3).

3. It is better to model the base of the building for later convenience (used for creating the bound-
ing box to remove original voxels). More operations for the buildings are not provided in this
workflow such as rotations and scaling which could be carried out before the placement step by
users if they like.

Figure 5.3: Building Preparation

5.2.2 Context Repairment

1. Create the bounding box of the context and the building (Use the max and min of the context and
the building), given the resolution, the Grid (voxels) could be created by the VoxelTools Plugin in
Grasshopper.

2. The places and numbers of the voxels will not be changed. Later operations are only based on
the boolean values (True or False representing the filled or empty) of the voxels.

3. The Breadth First Search (BFS) Algorithm (the 2D example is shown in Figure 5.4) is used to fill
the voxels underground making the grid a solid one. This is used to ensure the consistency of
the later insertion of the building.

5.2.3 Models Integration

1. Convert the surface to the voxelized 3D grid.
2. Get the bounding box of the building.
3. Use the bounding box to clip the context.

31

5 Implementation - Voxel Case

4. Insert the building into the context and note that there may be possible non-watertight issues
(shown in red circle).

5. Therefore, instead of directly executing step C, it is better to first fill the underground with the
BFS algorithm.

6. Use the bounding box to clip the context.
7. Insert the building into the context and note that there’s no non-watertight issue anymore.

Context Solid

Context Grid Clipped Contex Grid Inserted

Building BBOX Grid Building Grid

Context Grid Clipped Context Grid Inserted

C

G

D

E

C

B

D

G

F

Context Grid

Context Surface

Context Grid Filled

A

F

Figure 5.4: The Reasons for BFS

5.2.4 Results

The model shown in Figure 5.5 shows the resulting models of a tile with different resolutions. With
the increasing resolution, the models are smoother and fit better than the original model. Also, it can
be seen that the artefacts mentioned above can all be solved and the details of the model are still kept.
It can be seen that the result with 2m×2m×2m resolution is already acceptable for wind simulation by
visual interpretation (Blocken [2015], Garcı́a-Sánchez et al. [2021]).

An efficiency experiment (shown in Table 5.2) is carried out to test the time consumption change with
the increasing tile number and resolution as controlled parameters. It can be seen that there’s a linear
relationship between the tile number and time consumption and an exponential relationship between
the resolution and time consumption.

The bottleneck here is the main memory. When the resolution is too high, the memory used when
doing the breadth-first search would reach the memory limitation of Rhinoceros (2GB) which would
cause the Rhino to crash: frequent exchange of information between memory and disk severely lowers
the running speed (thus, it is better that users could first try the lower resolution).

32

5.3 Simulation Experiment

(a) 4m×4m×4m Resolution (b) 2m×2m×2m Resolution (c) 1m×1m×1m Resolution

Figure 5.5: Results of Alignment

Table 5.2: Voxelisation Time
Tile number Resolution (m×m×m) Time cost (s)
1 4×4×4 ≈0
1 2×2×2 14.0
1 1×1×1 109.9
4 4×4×4 6
4 2×2×2 49.3
4 1×1×1 Out of memory
9 4×4×4 15.2
9 2×2×2 116.0
9 1×1×1 Out of memory

5.3 Simulation Experiment

After the geometry generation step, a 2-manifold could be obtained which is the geometry input of
the environmental simulations. Similar to the TIN-based method, an MRE is proposed using mostly the
default or automatically generated parameters as an experiment.

5.3.1 Solar Simulation

The comparison of the solar simulation results before and after the insertion of a new building could
provide insight into the effectiveness of the mesh models. The results are visualised in Rhino which
are shown in Figure 5.6. The faces are colourised by the direct sun hours.

(a) Before Insertion (b) After Insertion

Figure 5.6: Results of Solar Simulation Experiment

It can be seen that adding a new tall building will shadow some areas, creating places lacking sunshine.
In some cases, especially when building a tall building in the south (In the case of the Northern

33

5 Implementation - Voxel Case

Hemisphere) of a residential building, the sunshine needs of the residents would not be met.

5.3.2 Wind Simulation

The comparison of the wind simulation results before and after the insertion of a new building could
also provide insight into the effectiveness of the mesh model. The results are visualised in Paraview
which are shown in Figure 5.7. The Stream Tracer is used to show the wind flow, the tracers are
colourised by the magnitude of the wind speed.

(a) Before Insertion (b) After Insertion

Figure 5.7: Results of Wind Simulation Experiment

It can be seen that adding a new tall building will move the areas with higher wind speeds from top to
bottom, creating a winding canyon which negatively influences the wind comfort for pedestrians. At
the same time, an eddy will form on the leeward side of the inserted building which may negatively
influence the dispersion of the pollutant particles.

An efficiency experiment is also carried out to check the running times (Only running time, the time
for blockmesh and snappyHexMesh are not considered) with different numbers of tiles. The results
are shown in Table 5.3.

Table 5.3: Wind Simulation Time
Search radius (m) Tile number Time cost (s)
10 1 100.3
80 4 152.5
160 9 214.4

It can be seen that the increasing number of tiles would not significantly increase the running time.
On the one hand, parallel computing makes it difficult to analyse where the bottlenecks are, on the
other hand, the complexity (mainly accounted by the number of faces) of the final mesh may not form
a linear relationship with the original size of the model (many other parameters would influence the
mesh size).

5.4 Region-Specific Implementation

Tests are carried out for the inputs from all the places (Spain, the UK and Italy) and their voxelised
results are shown in Figure 5.8 which demonstrates the broad applicability of the voxel approach.

As for the Hong Kong case with the integrated detailed terrain and building models in one file, the
voxelisation method works well to align and generate proper geometries for later environmental sim-
ulations.

As for other cases (Germany, Italy, Span and the UK) with separate terrain and building models, the
voxelisation method could act as a “simplifier” after the TIN-based steps, although reducing some
accuracy, making the models simplified and regular which may be safer for later simulations.

34

5.5 Evaluation of the Voxel-Based Method

(a) Italy (b) Spain (c) UK

Figure 5.8: Region-Specific voxelisation Results

5.5 Evaluation of the Voxel-Based Method

In general, the voxel-based method can easily convert various vector model inputs into models that
meet the needs of real-time environmental analysis and simulation (especially when the TIN-based
method is not applicable or suitable). This method is suitable for data format input in various types
and regions. At the same time, users can edit the context and insert new structures very flexibly.

The challenge comes from the efficiency issues caused by too fine voxelization resolution, especially
when Rhinoceros itself limits memory usage. However, even under this limitation, the accuracy of the
obtained voxel model can already meet the customer’s requirements.

35

6 Conclusion

6.1 Summary

This report has outlined the process of developing an open-data-based tool that builds upon the orig-
inal interface created by Royal HaskoningDHV, designed to bridge the gap between geographical
data and AEC industry applications. The focus of the project was to transform spatial data as it is
known to geomatics experts, into workable data for architects for contextual analysis in Rhinoceros
and Grasshopper. In the end, the purpose of the tool is to facilitate architects and engineers in improv-
ing their designs based on the environmental impact that these may have. The original tool provided
worked only on data within the Netherlands; however, the end goal was for the tool to be usable for
other countries/regions as well. The research consisted of multiple phases, such as the evaluation of
the data available for different countries/regions, the acquisition and alignment of relevant data into
usable input for Grasshopper, and finally the implementation of these data workflows into wind and
solar analyses.

During the data evaluation stage, it became evident that geographic data availability and accessibility
tend to vary greatly across different countries and regions, leading to significant challenges in de-
veloping a universally applicable tool. Data in Germany for example is fragmented by administrative
regions which requires end-users to navigate different data portals and delivery methods. On the other
hand, data from Hong Kong is much more centralised and accessible via API, which is more conducive
for integrating into a tool. In any case, the lack of standardisation between countries/regions often
requires manual data retrieval strategies that would hinder the automation of data integration, making
it less viable for end-users such as architects who may have a limited understanding of geodata.

Data alignment methods would also vary greatly depending on the data itself with different results.
For instance, data in Italy required extruding 2D shapefiles of the building footprints into 3D using
height values given with footprints. However, the lack of explanation of how this height value was
originally gathered, as well as inherent variability in the terrain combined with the method for building
reconstruction meant that an unavoidable margin of error would be present. In a different place like
Spain, the extrapolation of the heights of buildings were extrapolated using a digital surface model
instead. The differences in the applied techniques highlight the difficulty of a one-size-fits-all solution,
due to the inherent lack of data standardisation and interoperability.

In the end, two techniques were envisioned for the open-data tool; the TIN-based method and the
Voxel-based method. Both of these methods have different qualities. For example, the TIN-method
is the truest to the input data and as such may field much higher quality analyses. However, this
variant also relies heavily on the quality and interoperability between datasets, often requiring heavy
data alignment before different datasets can be used. On the other hand, the Voxel-based method is
more conducive to different data types and allows end-users to insert new structures very flexibly.
However, possible issues could arise from using too fine voxelisation resolution, and the results in
terms of analysis may also be affected depending on the resolution chosen.

6.2 Limitations of exploratory analysis

Although exploration of data was performed for five of the countries/regions of study, our analysis
of what may constitute roadblocks for an open-data-based tool is by no means exhaustive for other
countries/regions that may deliver and organise their data by different standards.

Another limitation of our research lies within the inherent characteristics of Rhinoceros. Since the
current version of Rhinoceros uses an older subset of Python (namely IronPython 2.7) in a closed-
off environment where the usage of external libraries is limited, many of the tools that GIS experts
would use to transform data were unavailable. This combined with Rhinoceros’s memory limitations
meant that sometimes alternative and more obtuse rounds were required to do the same thing, such as
translating Python code into C#, which none of the authors are proficient with.

Finally, the data found during the exploratory phase is not exhaustive; there is a possibility that datasets
were overlooked due to language barriers, the permeability of data platforms and similar factors.

37

6 Conclusion

6.3 Future Work

Since these are the first iterations of workflows in data transformation, the code used may benefit from
extra passes in optimisation, both to improve readability and to improve performance.

Although the current iteration of the data workflows only includes what is strictly necessary for the
contextual analysis (e.g. LoD2 buildings and terrains), AEC professionals may profit from the imple-
mentation of additional types of data such as on vegetation, land use, transport and so on.

This report has primarily focused on exploring what is necessary to combine different data-flows.
Further improvements in the implementation of an open-data tool could profit from input from actual-
AEC professionals by the use of methods such as questionnaires or moderated/unmoderated testing.

6.4 GitHub repository

The grasshopper files of all the cases mentioned in this report can be found at the following links:
https://github.com/biscuittsai1022/Synthesis-project_1-repository_2023.

38

https://github.com/biscuittsai1022/Synthesis-project_1-repository_2023

A Data acquisition with Python package and
QGIS

A.1 Codes for conversion of GEOTIFF to XYZ file

The code below shows the conversion from the GeoTIFF file to the XYZ file with the Python package
“rasterio” (Gillies [2019]), which can be executed by IDE like Pycharm.

import rasterio

def tif_to_xyz(input_path , output_path):

Open the raster dataset

with rasterio.open(input_path) as src:

Create a file for writing XYZ coordinates

with open(output_path , ’w’) as xyz_file:

Loop through all rows and columns of the raster

for row in range(src.height):

for col in range(src.width):

Read the elevation value (z) at the current pixel

z_value = src.read(1)[row , col]

Get the (x, y) coordinates of the current pixel

x, y = src.xy(row , col)

Write the (x, y, z) coordinates to the XYZ file

xyz_file.write(

"{:.2f} {:.2f} {: .2f}\r\n".format(x, y, z_value))

print("XYZ coordinates have been written to ’roi.xyz ’.")

def main():

tif = ’tiff file directory path’

roi_xyz = ’Output directory path’

tif_to_xyz(tif , roi_it_xyz)

if __name__ == ’__main__ ’:

main()

A.2 QGIS operation for building heights extraction

The following screenshots show the process to perform the “zonal statistics” operation in QGIS. In
this project, the external process is used only for the case in the UK since the building data retrieved
from the local portal does not contain height information. The input data used here include the DSM
GEOTIFF file and building shapefile extracted from OpenStreetMap (see Section 3.1.1).

1. Import the target building shapefile and DSM GEOTIFF file in QGIS.
2. Search for “zonal statistics” in the toolbar.
3. Set the building footprint as the input layer, DSM as the raster layer.
4. Click on the button beside the statistic to calculate the row and select the desired statistical at-

tributes. In this case, the mean is selected to compute the averaged z-values within each building
footprint.

5. Click run and export the resulting layer as a new shapefile

39

A Data acquisition with Python package and QGIS

Figure A.1 Import the building footprint and DSM raster data

Figure A.2 Input and Raster layer setting

Figure A.3 Select the desired attribute

45

Figure A.1: Import the building footprint and DSM raster data

Figure A.1 Import the building footprint and DSM raster data

Figure A.2 Input and Raster layer setting

Figure A.3 Select the desired attribute

45

Figure A.2: Input and Raster layer setting

Figure A.1 Import the building footprint and DSM raster data

Figure A.2 Input and Raster layer setting

Figure A.3 Select the desired attribute

45

Figure A.3: Select the desired attribute

40

A.2 QGIS operation for building heights extraction

Figure A.4 Building’s height stored in the last column

Figure A.5 Export the enriched building footprints to shapefile

46

Figure A.4: Building’s height stored in the last column

Figure A.4 Building’s height stored in the last column

Figure A.5 Export the enriched building footprints to shapefile

46

Figure A.5: Export the enriched building footprints to shapefile

41

B Data finding statistics tables
This appendix shows the detailed results in data finding mentioned in Chapter 2, including 10 coun-
tries/regions, starting from Hong Kong to Ireland. The corresponding links of different places for data
acquisition mentioned in Section 3.1 are also included.

43

B Data finding statistics tables

44

45

B Data finding statistics tables

46

Bibliography
Arroyo Ohori, K., Ledoux, H., and Peters, R. (2022). 3D modelling of the built environment. self-published.

Blocken, B. (2015). Computational fluid dynamics for urban physics: Importance, scales, possibilities,
limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environ-
ment, 91:219–245.

Davis, S. (2007). GIS for web developers. Pragmatic Bookshelf Dallas.

Donkers, S., Ledoux, H., Zhao, J., and Stoter, J. (2016). Automatic conversion of ifc datasets to geomet-
rically and semantically correct citygml lod3 buildings. Transactions in GIS, 20(4):547–569.

Garcı́a-Sánchez, C., Vitalis, S., Paden, I., and Stoter, J. (2021). The impact of level of detail in 3d city
models for cfd-based wind flow simulations. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 46:67–72.

Gillies, S. (2019). Rasterio documentation. MapBox: San Francisco, CA, USA, 23.

Ledoux, H., Arroyo Ohori, K., Peters, R., and Pronk, M. (2022). Computational modelling of terrains.
Zenodo.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., and Vitalis, S. (2019). CityJSON: a compact
and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards,
4(1).

OGC (2023). Standard citygml. https://www.ogc.org/standard/citygml/.

Paden, I., Garcı́a-Sánchez, C., and Ledoux, H. (2022). Towards automatic reconstruction of 3d city
models tailored for urban flow simulations. Frontiers in Built Environment, 8:899332.

Purewal, S. (2014). Learning Web App Development: Build Quickly with Proven JavaScript Techniques. ”
O’Reilly Media, Inc.”.

47

https://www.ogc.org/standard/citygml/

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main font is
Palatino.

	Introduction
	Background and Motivation
	Client Requirements and Use Cases

	Data Evaluation
	Data Finding in Germany
	Data Finding in Hong Kong
	Data Finding in Italy
	Data Finding in Spain
	Data Finding in the UK
	Data Finding in Other Regions
	Data Finding in Finland
	Data Finding in Ireland
	Data Finding in Taiwan
	Data Finding in France
	Data Finding in Australia

	Conclusion

	Methodology
	Data Acquisition and Alignment
	File-based Method
	API-based Method

	Geometry Generation
	TIN-based Method
	Voxel-based Method

	Simulation Experiment
	Solar Analysis
	Wind Analysis

	Implementation - TIN Case
	Data Acquisition and Alignment
	DTM
	DSM
	Building SHP
	CityGML
	Boundary Selection
	Results

	Geometry Generation
	Terrain Generation
	Building Generation - CDT Method
	Building Generation - Simplified Method
	New Building Insertion
	Results

	Simulation Experiment
	Solar Analysis
	Wind Analysis

	Region-Specific Implementations
	TIN Case in Germany
	TIN Case in Hong Kong
	TIN Case in Italy
	TIN Case in Spain
	TIN Case in the UK

	Evaluation of the TIN-based Construction Method

	Implementation - Voxel Case
	Data Acquisition and Alignment
	GeoJSON Parsing
	OBJ Downloading
	Mesh Loading
	Results

	Geometry Generation
	Building Preparation
	Context Repairment
	Models Integration
	Results

	Simulation Experiment
	Solar Simulation
	Wind Simulation

	Region-Specific Implementation
	Evaluation of the Voxel-Based Method

	Conclusion
	Summary
	Limitations of exploratory analysis
	Future Work
	GitHub repository

	Data acquisition with Python package and QGIS
	Codes for conversion of GEOTIFF to XYZ file
	QGIS operation for building heights extraction

	Data finding statistics tables

