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Summary

The problem of internal waves is dealt with theoretically for certain continuous density distributions of
the general type shown in fig. 1. The relative variation of density is supposed to be small. The fluid is supposed
to be incompressible and to be at rest in the non-perturbed state; the internal waves are treated as small
perturbations.

If we describe the simple harmonie, basic waves by means of a streamfunction

cp(x, z, t) = cp(z) exp i (p,x- vt],

it appears that cp(z) may be found with, in general, sufficient accuracy as a solution of the equation

d2 (cp) (gd8jdZ 2) cp _dz2 yS + c280 - ft yS - 0,

where8 (z) = specificvolumeinthe equilibriumstate, 80 =mean specificvolume,c= v j ft = velocityofpropagation.
Together ·with the boundary conditions, this equation gives an eigen-value problem, solution of which

gives relations between wave-length and period.
When using, as an analytical representation of the density distribution, the function

8(z) = 80 + t!':::,. 8tgh (2.zjb),

where b is a measure of the thickness of the transition layer (see fig. I) and !':::,.8 is the total variation of the
specific volume, we may solve the above differential equation analytically by means of hypergeometrie series.
When the fluid is sufficiently deep on both sides of the transition layer, the relation between the wave length
L = 2:n:.A,and the period T = 2:n:. is given by .

gfs:.2= n(n+l) (2:r + (2n+ I) (2:)+ I,

where À is positive; n has one of the valnes 0, I, 2, 3, etc. (any integer) and represents the order of the mode
of oscillation,which is equal to the number of zeros of the correspondingsolution cpn(z).

When L--+O, the period approaches a minimum value, which is independent of n, viz:

T . = 2:n: 1 / b80 = 2:n:
mm V g!':::,.8 Yg(8-1d8jdz)maa:

The existence of this lower limit of the period of internal waves appears to be a general feature, not
restricted to the special type of density distribution assumed here.

The theory is extended so as to inolude the earth's rotation. In this case the same relation as exists
between • and. À in the previous (non-rotating) case, now exists between • and ÀVI- (2wz.)2, Wz being the
vertieal component of the angular velocity of rotation.



Symbols
a = lIb.
b = thickness of transition layer, as defined by figure l.
c = velocity of propagation.
F = hypergeometric series.
f = d log 81/dz.
g = acceleration of gravity.
h = 1/(ab-1+ I).
L = wave lenght.
m = b#/2 = b/2)" = rnb/L.
n = order of mode of oscillation.
P = unperturbed pressure.
p = local pressure ,Perturbation.
q = ,2)"/b, or )"expreseed in bl2 as unit of length.
r = 7:2g 6. S/bSo = (7:/7:1)2.

8 = specific volume in the equilibrium 'state.
80 = value of 8 at the level z = O.
81= 8(z)-! 6. Stgh2az.
8 = perturbation of specific volume.
t = time.
T = period of oscillation.
u = velocity component in the x-direction.
v = velocity component in the y-direction.
w = velocity component in the z-direction.
x = coordinate in the direction of propagation of the waves.
y = horizontal coordinate perpendicular to x.
z = vertical coordinate.
Z = 2 zlb, or z expressed in bl2 as unit of length.

13 = -l + 1/i+ #0V 2a

'YJ = f{J/VS
)"= L/2rn

# = 1/)"
g!:::.S

#0 = .2 Soc2

v = 2rn/T
~ = (cosh Z)2
(! = density
a = 6. 8180 = total relative variation of specific volume
7: = T/2n
f{J = stream function
'IJl = 'YJ (cOShZ)6

Wz = vertical component of angular velocity of rotation.
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1. lntroduction.

The behaviour of internal waves in vertically inhomogeneous fluids has been studied
theoretically by various authors, from the point of view of general hydrodynamics as well as
of meteorology and of physical oceanography (see the list of references, which, however, is
not meant to be complete).

For mathematical reasons most of them assumed discontinuities at certain levels, either
in the density e or in its first derivative with respect to the vertical coordinate, z. Any
transition layer was often assumed to be thin in comparison with the wave length. FJELD STAD
[7], on the other hand, by using numerical integration, succeeded in giving an.approximate
method of solving the problem for certain general density-distributions, such as mayactually
occur in the sea, a method, however, which is only applicable for very long waves.

Besides this restrietion to long waves only, FJELDSTAD'~method has one other disadvan
tage, viz. of not directly yielding general rules or relations between the properties of the
internal waves and certain parameters of the density-distribution.

It is therefore, that we have gone back to somewhat more special density distributions,
which are perfectly continuous with respect to e and de/dz (as are FJELDSTAD'S density
distributions), but which appeal' to be capable of an analytical treatment; furthermore, the
results are also valid for small wavelengths. The density distribution is of the general type
shown in fig. 1,where we have a graph of the specific volume against depth.

In the present paper we shall only deal with fluids extending to infinity both upwards
anddownwards. At first sight this seems rather unrealistic. We know, however, th at the wave
motions are always confined to a certain layer, above and below which they are negligibly
smalI, so that, if only the boundaries of the fluid fall without this layer, they will not interfere
essentially with the solutions we shall find here. The thickness of this layer depends on the
wave length (see section 5). .

For the rest, it is quite possible to introduce a free surface and a rigid bottom, if necessary.
This will make the computations much more complicated and laborious, however.

2. Derivation of the basic equations.

Let the fluid be at rest, in the equilibrium state, and let in the perturbed state the internal
wave motion be propagated in the x-direction, all statie, kinematic and dynamic properties
being assumed to be independent of the y-coordinate. The symbols u and w denote respec
tively the x- and the y-component of velocity (perturbation velocity).

As the earth's rotation is neglected, at least for the time being (see section 6), the y-çom
ponent of the perturbation velocity vanishes, on account of the suppositions made.
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The pressure and density fields will then be described by the following scalars:

pressure = P (z) + p (x, z, t),

specificvolume= S(z)+8 (x, z, t),

(1)

(2)

where pand s denote the local changes brought about respectively in the pressure and the
specificvolume, by the wave perturbation.

As the Huidis supposed to be incompressible 1),.the wave motion is now governed by the
followingequations:

OU op-+S-=oot ox ' (3)

Ow op oP-+S-+8-=0,ot oz OZ (4)

Ou Ow ° ( t" ion)- + - = con inuity equa.tion ,
OX élz (5)

08 oS ° (,. ibilit )- + w - = mcompreSSl y ,ot OZ (6)

These equations are obtained by the usuallinearization with respect to the small quantities
u, w, pand s (seel.i.V. BJERKNESc.s. [8] page 300)..

Now we introduce the stream function q; by writing

u = oq;/oz, w = - oq;/ox,

As equation (5) is now automatically satisfied, we are left with
o2q; op
otoz+S ox = 0,

_ o2q;+S op+8 oP =0,
êtox oz OZ

(7)

(8)

(9)

08 oq;es
----=0.at ox oz (10)

-We may write the simple harmonie, basic solutions of this system of equations, which
we are looking for, in the followingform:

q; (x, z, t) = q; (z) cxp i (f-lx-vt); p (x, z, t) = P (z) exp i (f-lx -vt); 8 (x, z, t) = 8 (z) exp i (f-lX-vt);

so that we may write, symbolically: a/at == - iv, %x == if-l; the velocity of propagation is then
c = v/f-l. Finally we can substitute: oP/az = -gjS.

We obtain then (equations (8) and (10) are divided by if-l):

-cq;' + Sp = 0,

- f-l2cq;+Sp' - (/8/S= 0,

es + q;S' = 0,

(lI)

(12)

(13)

Here a prime denotes a differentation with respect to z. Besides,the quantities q;, pand s
will be considered as functions of Z only (as Sis), the common factor exp (if-lx-ivt) being
left out, for the present.

From (ll) and (13) we derive:
p = ctp'IS, 8 = - q;S'[c. (14)

1) If we should want to take the compressibility into account we might use the potentlal density I!pot instead of the actual
density. For sea water we can write, with sufficient approximation, I!pot = 1+ 10-3 at, where at has the usual meaning.
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Substituting this into (12) and dividing by c, we get:

" ,S' ,(gS' 2) 0cp - cp S + cp c2S - f-l = .

In order to get rid of the first derivative of cp, we put

Cp='YJVS

, (S" S' 2 gS' )'YJ" + 'YJ ts -!S2 + c2S - f-l2 = O. (17)

Now we shail suppo,se the 'fluid layer to be infinitely high. Then the "boundary" condi
tions .which should be satisfied by 'YJ are: 'YJ and 'YJ' must remain finite for z -++ 00 as weil as
for z -+ - 00.

We wish to find solutions of the present problem for vertical density distributions of the
general type represented in fig. 1, which we shail
describe analyticaily by the function

S = So+ i 8,. Stgh2az,

The question as to the extent to which the
above conditions (19) will be actuaily satisfied
will be discussed later (page 12). It will appear
that the relation between wavelength, period and
velocity of propagation, which we shall derive, is
accurate in most cases. Itmay still be noted here,
that, as in the atmosphere and in the ocean
8,. S/S<< 1, the second one of the inequali ties (19)
will automatically be satisfied if the first one is,
when we are dealing with atmospheric or oceanic
internal waves.

Considering the fact that the relative variation of S is small in the density distributions
concerning us here, we may, finally, replace S' /S by S' ISo without introducing any appre
ciable error 1) and we obtain:

"+ (,ga8,.S _ 2)-0
'YJ ,'YJ c2S0 (cosh 2az)2 f-l ~'

"-+- ( 2af-lo _ 2) =0
'YJ ,'YJ (cosh 2az)2 f-l '

g 8,. S 2:n:
f-lo= 2Soc2 = i.;

'I'hen » must satisfy the equation:

(18)

where 8,. S denotes the total variation of the
specific volume and a-1= b may roughly be taken
as the thickness of the transition layer.

Now it may easily be seen that, when we use
the function (18), the first two terms öf the form
in brackets in eq. (17) may be neglected oom
pared with the third one, if

2 ac2 3ac28,. S
-g- «1 and 4gS « L (19)

or:

where

(15)

(16)

z

b
2

....__----6. S -----i

b I- ---T---------------------
2 I

I
I
I

--I
b=a-1

____________________ .J 1

L__...L- ----. --'----')s
Fig. 1. Distribution of specificvolumeS as a function
of z, according to the formula S = So + t 6,S tgh 2az.

(20)

(20)

(21)

1) We may avoid this error entirely, if we like, ,by just assuming: S = s, exp (~S~ ~gh2az) instead of (18); as 6, SISo
is supposed to be rather small (of the order of 0.01), the general picture of the density distribution remains the same.
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Lo being the wave leng th to which belongs a velocity of progagation c of internal waves along
a surface of discontinuity between homogeneous fluids with specific volumes 80 +!6. 8 and
80 - !6. 8; or, in other words: flo is the value of fl to which would belong a velocity of
propagation e ij the thickness of the transition layer were zero.

Now by a final transformation

2az=~=Z
b/2

equation (20) may be written as follows:

d2'Yj [flO/2a (fl )2l
dZ2 t'Yj (cosh Z)2 -- 2a' J = 0.

(22)

(23)

If we assume the fluid to extend to infinity both upwards and downards, we have as
"boundary"-conditions th at ({J, and consequently n, must remain finite or beoome zero when
z -+ + 00 as well as when z -+ - 00.

If 8(z) is given, we have as variabie parameters in equation (23) the quantities fl and flo'
or, in other words: the wave number and the velocity of propagation .(e).

Now, equation (23) does possess solutions satisfying the above "boundary"-conditions
only for special combinations of values of e and fl; in other words: our problem is an "eigen
value" -problem.

This will yield the relations between wave-length and velocity of propagation, or between
wave length and period.

3. 80lving the eigen-value-problem.
Equation (23) is a differential equation of the general type

d2y [k (k-I) _ l(l-I) _ 2]_
dZ2 + Y (cosh Z)2 (sinh Z) 2 m - 0,

which may be solved by the substitution

Y = "PW (cosh Z)k (sinh Z)l, ~ = (cosh Z)2,

"P" ~(~-I) + "P' [(k+l+I) ~-(k + i)l + "P[ (k~ T- (~r] = 0,
yielding:

the latter equation being a, hypergeometrie differential equation:

"P" ~(~ -1.) + "P' [(ex.+,8+I)~-yl + 1X,8"P= 0, (24)
with

k+l+m k+l-m
IX = 2 ,,8 = 2 ' Y= k+ t (m> 0);

a prime now stands for one differentiation with respect to Z.

In order to solve (23) we put

(25)

k(k-I)=~~, l=O, m=:a(m>O),

the first of these relations yielding:

(26)

we take the negative root:

k = i- -v t +~;= - è (B > 0).

Substituting this in (25) we get

(27)

-B+m -B-m
IX = 2 ,,8 = 2 ' 'Y = -B + t, (28)
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where e and mare. defined by (27) and (26), respectively; for m = t-t/2a we mayalso write
xblL, which means that m is n times the ratio transition-layer thickness : wave-length (L).

The general solution of equation (23) is now

'Y) = (cosh Z)-S tp(~), ~ = (COShZ)2,

where tpW should satisfy (24), ex,{Jand y being given by (28).The solution of (24) for ~> 1may
be expressed in terms of hypergeometrie series of ascending powers of ~-I,which we shall
generaUy denote by

. -1 _ A .B -1 A (A + 1) B (B + 1) -2
F (A, B, C, ~ ) - 1+ 1.C ~ + 1.2. C (0 + 1) ~ + .

The general solution for ~> 1 reads:

tp (~) = Cl~-(X F (ex,ex-y+I, ex-{J+I; ~-l) + C2~-{3F ({J,{J-y+I, {J-cx+I;~-'--l)=

e-m e+m
-2- (-s+m s+m+I ) -2- (-s-m s-m+I . ) .=Cl~ F 2' 2 ,m+I;~-l +C2~ F 2 ' 2 ,I-m;~-l =

e--m e+m
= Cl~ 2 Fd~-l) + C2~-2- F2 (~-l).

Hence
(29)

As ~ --+ 00 when Z --+ + 00 or Z --+ - 00, while F2(0) = 1, th is solution is infinite for
z = + ~ or z = - 00 unless O2 = o. So we are left with .

/2 [-s+ms+m+I_]'Y) = Cl;m Fl (~-l)= Cl(cosh Z)--m F 2 ' 2 ' m + 1; (cosh Z) . (30)

For Z ,= 0, ~ --+ 1+ 0 or ~-1_)I- 1- 0; ~he value of the series Fl then converges t) towards

F (1) = r (1+m) rm
1 _ r(I+s~m)r(-s+2m+I)"

Now we must bear in mind that (30) represents only half of the solution we need, either
for the positive half of the Z-axis, or for the negative half. Indeed, as, in general, the deriva
tive of (30) with respect to Z, for Z = 0, will not be equal to zero; taking (30) as a solution
for both halves of the Z-axis would mean th at the solution would have a discontinuous
derivative at Z =O.According to equation (7), however, cp as well as iJcp/iJz must be everywhere
continuous ; according to (16) the same is true for 'Y).

Hençe, it follows, that, if (30) is the solution for, say, the positive half of the Z-axis, we
have, for the other half, to find the analytical continuation of this half of the solution. This
continuation will, in general, be of the type (29) with O2 of 0, so that it will have no fini te
value for Z = - 00, unless either

(31)

or

'Y)' (0) = 0, (I)

'Y) (0) = O. (II)

In case I (the prime denotes differentiation with respect to Z, here) our solution is simply
even and is described by (30) with the same value of Ol for both halves of the Z-axis.

In case II the continuation for Z < 0 is obtained by taking for the cofactor Ol the
opposite of the value used for Z> 0; the solution is then odd.

. . . . r(G)r(G-A-B)
1) The criterium for convergenceofF (A,B,G;X)forX= lIS: A+B-G < 0,F(A,B,G;1)bemgthen r 0 A)r ., (- (G-B)
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Oase 1.
r/ =-mCdcoshz)-m-l sinhZ· Fd(c~shZ)-2] -2C1 (coShZ)-m-3sinhZ· Fi' [(cOShZ)-2].

The first term in the above form vanishes for Z = O.As to the second term, we have,
generally:

F1' (X) = d~ F(A,B,C;X) = A: F (A+ 1, B+ 1, C+ l;X),

where
A = -e+m B = e+m't1, C= m+ 1.

2' 2

For the latter hypergeometrie series, the condition for convergence (see footnote on
page 9.)is not satisfied, here. It can, however, be proved 1) that

.Lim (1_XfHB-O+lF(A+1 B+1 C+1'X)=1'(C+1)1'(A+B-C+1)
X=1-0 ' " 1'(A+1)1'(B+1) ~

A+B-O+l 2(A+B-O+l)
Now, in our case (I-X) means (tgh Z) = tgh Z = sinh Z/cosh Z.

According to this we have .

Lim sinhZ .F,'[("o,hZ)-~ ~ (-, +m) (, +m + 1) ( r (m+)r (t ' )"
z=o 4(m+1) r -e2+m +1 l' e,~+3

Hence, r/ (Z = 0) is finite; as both e and mare positive, it will only vanish if either
-e + m = 0, making

m=e, (32)

or .['(-e 2+m + 1)= 00, the latter being the case if -e 2+m+ 1= 0,-1, -2, -3, ..... , or

(0 <)m = e - 2, e ----:4, e -"- 6, ..... etc. (33)

.By (32) and (33) a series of eigen-values of f..l= 2am is given, determining a series of
possible wavelengths for any given value of the velocity of propagation c. Since, however,
m should be positive, while

e=-!+ l/t+f..lo,V 2a

it follows, that (33)yields one or more eigen-values (but always only a finite set) only ij
f..lo/2a> 6. The larger f..lo/2a is, the larger is the number of possible solutions. As, according
to (21), f..lois inversely proportional to c2, the foregoing statement means only that, the smaller
cis, the larger is the number of solutions, if the other constants are fixed. The simplest
solution of type I is given by (32), making

1:..=_!+ l/1.+f..lo,
2a V4 2aor:
bf..l=-1 +,,11 +2b!-l0' (34)

On account of the conditions expressed by (19) this result may not be applied for too
small values of b. Nevertheless equation .(34) yields the correct limiting value of !-l when b
tends towards zero: Lim !-l= !-lo. Power series development of the right hand menber of (34)
, b= 0

would, however, yield: !-l =!-lo (l-tb!-lo+ ...),whereas a correct approximation for small
transition layer thicknesses yields: !-l =!-lo (I-b!-lo + ...).2)

1) See: Whittaker and Watson, A course of modern analysis, Cambridge 1935,Ch XIV, ex. 8,18.
2) This may f.i. be derived from an equation, obtained by Haurwitz [5] for the case of two infinite Lomogeneouslayers

seperated by a thin transition layer, viz. equation (12a) of paragraph 9 of the paper referred to,
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Case 11.

According to equations(30)and (31), 'YJ (0) will be zero, if -8 +2m+1= 0, -1; -' 2,-3, ..... ,
or:

(0<)m = 8-1,8-3,8-5;8-7, ..... etc. (36)

In order to make possibIe one or more solutions of this type, f-to/2a should be larger than
2 (m being positive).

4. Belation. between wave-length and period.

The relations found above between wavelength and velocity of propagation may be
transformed into relations between wavelength and period (the latter being a more directly
.measurable" quantity). On account of equations (32), (33) and (36) we may write:

I

bf-t= 2m = 2 (8-n)= - (2n + 1)+VI + 2bf-to , - (2n + 1)+VI +qobc:", n = 0, 1,2,3, ..... ,

where a = /::,.8/80 = the relative variation of the specific volume; a is a small number. As
c = v] f-t it follows, th at

bp: + 2n + 1 = VI + gabf-t2v-2,
or:

or:

gar21b = 4n (n + 1) (A/W + 2 (2n + 1) (A/b) + 1, (37)

where A= L/2n = f-t-I and r = V-I= T/2n, Land
T being the wavelength and the period,
respectively.

By writing

q = 2A/b, r = gar2/b,
we get:

r = n (n + 1) q2 + (2n + 1) q + 1. (37)

Figure 2 shows a set of graphs, giving r
as a function of q, and thus, implicitly, r2 as
a function of A, for a set of values of n, The
corresponding formulas are written down
below:

(n=O) r=q+1
(n= 1) r ,(2q+ 1) (q+ 1)
(n = 2) r = (3q + 1) (2q + 1)
(n = 3) r = (4q + 1) (3q + 1)
(n = 4) r = (5q + 1) (4q + 1)

4
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It may be noticed that both variables
q and r are pure numbers, which have a
simple meaning, q being obtained when we
simply express A in terms of b/2', or half the -O,._5 ..L- --l0,_. '..._,o_--l

transition layer thickness, as a unit of length, Fig. 2. Relations botween'wave-Iength(2n;') and period (2n.)
of interrial waves.and r being equal to (r/rI)2, where rl = yb/ag

has been used as a unit of time. The quantities b/2 and rl are the two characteristics of the
fluid system we must know in order to be able to use fig. 2.

Except for n = 0, which gives a straight line, all curves are parabolas, only part of which,

3

2.

,
t I
I I

,'/1, ,//"'S?.... /~~
/"" I 'Y.

" t: ,'t./'"
I· I, "

/ ""I "
~..". "

--72;\/6
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however, must be used, viz. the points to the right of and above the point q = 0, r = 1. This
is a consequence of the fact that by agreement A should be positive, as m is positive,
according to (26) 1). .

As may be seen Irom the formulas as well as from fig. 2, we have always (for A =f 0) :
gar:2/b> 1, or: .

1/ ss, 1/ So
r:> r:1= V g6S = V g (dSjdz)max' (38)

the latter value appearing to be the louier limit of the period of any internol wave in the given
density distribution. This lower limit, which the period approaches when the wave-Iength
tends to zero, is exactly equal to the "period of free osoillation" of a fluid partiele belonging
to the level of the greatest vertical density gradient. We shall see in the next section, .that
the thickness of the layer within which, practically speaking, the wave motions are confined,
becomes small proportionally to the square root of the wave-length, when the latter becomes
very small, so th at a free surface and a rigid bottorn donot make themselves felt for the
shortest internal waves, which have the shortest periods.

Numerical example: For SO-l (dS/dz)max = 0.0001 'm-1the limiting value of the period is
Tl = 2nr:1= 3.3 min. We shall return to the matter in the last section.

Another general result which follows from the above formulas is, that, when band A, or:
the thickmess of the transition layer and the ioaoe-lenqth, are multiplied by the same factor (the
total density. variation remaining the same), the period is multiplied by the square root of
that factor.

The velocity of propagation is given by c= À/r:;curves c= constant in figure 1 are repre
sented by r:2= A2/C2, or r = (bga/4c2)q2. These are parabolas touching the q-axis in the origin.
Two of them are drawn, viz. c= !Vbga and c = iVbga.

It should not be forgotten that the conditions (19) might impose a certain restrietion
on the use of our solutions. From the first one of the inequalities (19) we get: 2c2/gb«I, or:

2(Ajb)2 q2
a'~/b =a'-2 «1.gar: r

Now, for n = 1 or higher, the factor q2/2; of this inequality is always <0.25, so th at
here this condition is ,automatically satisfied, a being a small number.

For n= 0, however, it might imply a real restrietion by excluding too large valnes of A/b.
Now it should not be forgotten that the Ieft hand members of the inequalities (19) are

the maxima of the ratios of the terms which we neglected in equat.ion (17) to the term
gS' /c2S0, which we used, so that we cannot just say, that the value of aq2/2r means the order
of magnitude of the error brought about in, say, the computed wave lenght (as a function
of the period) by the neglect of the term t S" IS; nor can we say that this error must needs
be much larger than the one brought about by the neglect of the term - 1(S' /S)2, although
the maximum of the latter term is only about 6 SISo times the maximum of the former one.

As a matter of fact, it appears that for the laroer wave-lenghts (the only ones for which
the errors need any consideration) both terms taken separately imply relative errors which
are of the same order of magnitude, namely about 0.1' a2q.

Since a is supposed to be small, these errors might become important only for the very
large st wave-Ienghts; for a = 0.01, for instance, 0.1 . a2q is still only 0.01 for q = 1000, or L
as large as 3000b..

But, as the errors have opposite signs, they compensate each other for large values of
Llb or small values of b[L, for which the transition layer acts like a discontinuity; as we have
seen when discussing (34), our solution gives again the exact relation between wave length

1) Of course, this is an arbitrary agreement, but we must stick to it, because, otherwise our solution (30) would become
infinite for z = + 00 and z = - 00.
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and period for the limiting case, th at blIr-» o. This result mayalso easily be obtained from
equation (37) by putting n= 0 and neglecting the term 1 with respect to 2A/b.

That the term iS" /S involves only such a small error, even when 2À/b is as large as 1000,
is explained by the fact that iS" /SO, to which this, term is nearly equal, is, as a function of
z, oddwith respect to z, S"(-z) being equal to -S"(z).

The exact method of computing the effect of small terms in a differential equation upon
the eigen-value-problem, determined by this differential equation and certain boundary
conditions, is called perturbation-calculus1).

Let the differential equation without "perturbation" be written in the following sym-
bolical form:

(Hop - E) 1J = 0,

where Hop is a so-called Hermiteian operator, which in the case of equation (20) is described by

H _d2+ gal:::,S
op - dz2 c2S0 (cosh 2az)2'

where as E is a parameter; the eigen-values of which are to be obtained ; E corresponds to
fh2 in equation (20).

Let the boundary conditions be

1J (z = ZI) = 0, 1J (z = Z2) = 0,

and let the eigen-values of E and the corresponding eigen-functions, which are supposed to
be real, be denoted by

and
rJo(Z) , rJI(Z), rJ2(Z), ..•••

respectively. Then the eigen-value problem defined by the differential equation

(Hop + f(z) - E) rJ = 0,

where f(z) is a small "perturbation", and by the same boundary conditions as above, has
eigen-values

and eigen-functions
rJo(Z) + (jrJo(z), rJI(Z) + (jrJI(Z), rJ2(Z) + (jrJ2(Z), .•.•• ,

where, in first approximabion,

(39)

In the case we are dealing with, namely equation (17), the function f(z) is

S" (S')2f(z) = tS -! S ' (40)

and the eigen-function we are concerned with (see section 5) is

rJo = (cosh 2az)-m.

1) The term "perturbation" is used here in the classicalmeaning in which it is used in celestial mechanica and quanturn
mechanics. '
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Since Hap, as definedabove, contains c as a faetor, formula(39)gives the (small)variation
brought about in the eigen-valuef-l2 = Eo hy the function f(z) when c is kept constant.

Since1]~ is an even function of z, it followsfrom formula (39) that any term of f(z), which
is odd with respect to z, gives no contribution to the integral occurring in the numerator
and, consequently, to the result of (39). Nowwe can write:

S" S" S" S"
ts = tso (1+ ta tgh 2az) = t So-ta So tgh 2az,

the first term of which is by far the larger one, but odd with respect to z. This term gives a
contribution to !5(f-l2) only in the second approximation and thus becomes,as far as the effect
upon f-l or À is concerned, of the same importance as the second one and as the term
-1(8'/8)2, which we still have in f(z) (40).

We shall not enter into further details of the perturbation-calculus which we used"),
but confine ourselves'to giving the result, as stated above2).

5. Stream. fun,ctions and velocity fields.

The stream functions correspondingto the solutions found, are given by (16) and (30),
where e = m+ n, and m = b/2;. = l/q. For 1], whichwe may call the "reduced stream func
tion", we get, as the most general solution,

z

5
Fig. 3. Redue~d streem funetion ('f}) as a funo

tion of Z, for n = 0, ).= bf2.

'YJ= c(n)'YJn,
n=O,1,2, ...

with

[
n n' ]F -2,m+2'+t,m+I; (cash2zJb)-2

'YJn= (cash2zJb)m

.Here m is always positive.

(41)

For n = 0 the numerator in (41) is equal to unity,
. so that·

'YJo = (cash2zJb)-m

For n = 1 we have

F[-t,m + 1,m + 1;(cash2zJb)-2] =VI-(~ash 2zJb)-2 = tgh 2zJb,,
so that

1]1= (tgh2zJb) (cash2zJb)-m.

For n = 2 we have
m + ItF [-1, m + It, m + 1; \cosh2zJb)-mJ = 1- m + 1 (cash.2zJb)-2,

so that

'YJ~= [1 m + q. (cash2ZJb)-2j (cash2zJb)-m.
m+1

1) For further details the reader is referred to any textbook on the matter. A very elear and concise explanation of
"perturbation-theory" may be found in H. A. KRAMERS, Die Grundlagen der Quantentheorie, Lèipzig 1933,Chapter 5.

2) As to the relative variacion of ). when -c is fixed, instead of c, we have the relation

).-1 (t:5).)-cconst. = (1- 2rfq) ).-1 (t:5J.)cconst.'
whieh may easily be proved.

For n = 0 this ~elation yields:

14



The figures 3, 4, 5 show graphs of the reduced stream functions for these three cases.
Here we have used Z = 2z/b as the vertical coordinate; this means simply that we have again
used bj2 as the unit of length. The value of m = 1jq was
chosen to be 1.

As regards the solutions belonging to higher valnes of
n we confine ourselves to stating, that the number of zeros
of the stream function is apparently n1); that for any even
value of n (n = 2N) the hypergeometric series in (41)
degenerates into a po1ynomial in (cosh 2zjb )~2; and that
In all solutions the argument of the hypergeometric func
tion, viz. (cosh 2zjb )~2 tends to zero when z -~ ± oo , so that
then the numerator in (41) tends to unity, whereby all
solutions 'YJntend to zero in the same way, when z --+ ± oo ,

viz. a~ (cosh 2z jb)~rn.
From the last statement it may be easily derived that,

if bis small enough compared with L, the wave motion is,
practically speaking, confined between the limits z = Lj2
and z = -Lj2, the amplitudes being then reduced to about
e:» ~ 4% at z = ± Lj2. We shall call the interval of z, with
in which the wave motion is, practically speaking, confined,
the "wave thickness". Thus, if b is sufficiently smalI, the
wave thickness is 2· Lj2 = L.

If b is larger than A, the wave thickness will also depend
upon b, more or less. For b = L, for instance, the factor Fig. 4. Reduced stream function (1'}) as a

function of Z, for n = 1, A= bf2.
(cosh 2zjb)~ referred to above will amount to about 0.26
for z = Lj2 and we must go to z = 0.85 . L in order to find the value 0.04 again. The wave
thickness is here, consequently, 1.7· L. 'Finally, it ma)' be proved, th at for large values of
blA the wave thickness amounts to about ",l2bL, the factor z
(cosh 2zjb)~ again being reduced to about 4% (~e~n) at
z = ±YbLj2. .

From the above it follows that, in general, the solutions
just found mayalso be applied to fluid systems which are
not infinitely deep on both sides of the transition layer, if
only the bottom and the free surface are not closer to the
middle of the transition layer than about half of. the wave
thickness, which may vary between LI2 and ·VbLj2according
as b is small or large relatively to A.

Inasmuch as the smallest periods belong to the smallest
wave lengths, the result of the preceding section concerning
the lower limit of the period of intern al waves appears to be
independent of the assumption of infinitely deep fluid layers
on both sides of the transition layer.

z

a

-1

-2

-3

-5

Velocity field. The veloeities u and ware now determined
by the stream function according to equation (7), yielding:

u = a ('YJYSé (/J,X __.:.vt), W = _ ifl'YJYS . é (p,x - vt).
az ,

2.

-I

-2

(42)
-5

It appears from equations (42) th at u and w differ in Fig. 5. Reduced stream function (1'}) as
phase by 90°, the velocity veetors describing ellipses; the a function of Z, for n = 2, A= bf2.

w-axis and the u-axis of these ellipses are in the ratio fl'YJYS : a('YJys)/az, or 'YJYS ,:Aa('YJys)jaz,

1) This may be proved directly from the Iorrn of the düferential equation, without calculating the solutions explicitly,
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or nearly as 'f} : Ào'f}/oz, or m'f} : O'f}/oZ. The latter ratio can for any given value of m immediately
be derived from such curves as given in fig. 3,4 or 5. It appears that near the points where
n possessesa maximum or a minimum (as, for instance, in the middle of the transition layer
when n = 0, 2, 4, ... ) the fluid particles move simply up and down, while at the zeros of 'f}
they oscillatehorizontally.Besides,it may easily be derived,that, when z-+ ± 00, the ellipses,
becoming smaller and smaller, change into cirolets.

Fig. 6 and fig. 7 show the stream line patterns corresponding to the solutions for n = 0
and n = 1, for a certain moment; m = l/q was the same as in fig. 3 and fig. 4, viz..1.

diredion 0[, ~ propo.qo.tion

Fig. 6. Stream linepattern of interrialwave; n = 0, Ä = b/2.

o
"s,

o
11
e,

..... 1('= 0.50

sP.,. 0.2.5

o
"s..

Finally, it can easily be shown that the amplitudes of the vertical and of the horizontal
displacements are c-11 ep 1 and 7: 1ep' I, respectively.

o
".9-.

6. lnfluence of rotation.

If the wholefluid system rotates in such a way that we need only take into account the
vertical component of the rotation vector w, equation (3) must be replaced by

direction of =e propo.9ö..tion

Fig. 7. Stream linepattern of internal wave;n = I, Ä = b/2.

ou op
-+S--2w v= 0ot ox Z ,

. .
while for the y-component of the motion the followingequation must be added:

OV
ot + 2wzu= o.

(3*)

(3**)

The equations (4), (5) and (6) remain unaltered, %y being, here also, equal to zero.
16



By differentiating equation (3*) with respect to tand substituting for ov/ot what follows
from (3**), viz. ov/ot = -2wzu, we obtain:

(
02 ) 02p2+4wz2 u+s-=o.ot oxot.

Introducing again the stream function fP and substituting a/ot = - iv, %x = i/l, we find
the following equation:

(ll*)

The only difference with equation (ll) is the appearance of the factor 1 - 4(wz/v)2 =
= 1-(T/D)2, where T = 2n/v is the period of the wave motion, while D = n/wz= !pen
dulum day.

Solving (ll *) for pand substituting the result in (12) we obtain now (after dividing by
c, again):

(15*)

instead of (15). Dividing now by 1 - (2WzT)2 and substituting ~ for c, ~ for /l, we obtain:

S' ~ [ T 12 yS' [ 1 ] 2 I
tp" - sp' s + fP? AVI _ (2WzT)2 S - AVI _ (2WzT)2 ~= o.

It appears that the only difference, brought about by the earth's rotation, is such, that
in the basic differential equations, written down in terms of A and T,A has been replaced by
A VI - (2WzT)2.

This means th at in the final result we have the same relations, here, between AVI - (2WzT)2
and Tas we previously had between A and T.In other words: if we write the relation between
Tand A, which is implicitly described by equations (37) and fig. 2, in the form

A = Fn(T), (without rotation),
we have now:

1 .:.F'n(T) 'h .
11. = . / (w~t rotat~on).

vI - (2WzT)2

From the last formula, it appears that when T approaches to D, the wave length tends
to infinity, half a pendulum day apparently being the upper limit of the period of free
internal waves. For very small values of T/ D, on the other hand, the influence of the rotation
will be negligible.

If we again draw r, q-curves, all curves show a bending to the right for sufficiently large.
values of q, now, approaching asymptotically to the straight line r = (D/2nT1)2.

As to the stream functions, it appears that, for the same value of T,any fPn(Z) is the same
as was derived in the previous sections, m being now equal to b/2 AVI - (2WzT)2 and having
(for any n) the same numerical value as before, if T is the same.

From (3**) follows, that the y-component of the motion, occurring here, is given by
the equation

- ivv +2wzu = 0,
or

.2wz • Tv = - ~- u = - ~- u.
v D

This means that v is 90° behind u, in phase. Any velocity vector describes an ellipse in
a sloping plane, intersecting a horizontal plane along a line in, the x-direction and making

1 f t D fP(z) ith itan ang e 0 arc g T A dfP/dz WIl.

1·7



The horizontal projections of the velocity veetors describe ellipses, the shorter axis (the
v-axis) and the longer axis (the u-axis) of which are to each other as 2wz to v, or as T to D;
the rotation is cum sole (clock-wiseon the northern hemisphere)..

5. Somewhat more general type oi density distr.ibution.

A final generalization may still be given to our treatment by taking for S a function
of the type

S = SI(Z) + t /;;Stgh2az, (44)
where

SI (z)=s,etz ~ s, (1+fz) for ZI< z< Z2'

[z being small everywhere within the interval of z to which the use of this function is limited;
this interval is either the total depth of the fluid system or else may be ·taken to coincide
with the wave thickness; the total relative variation of Sis again supposed to be small with
in the interval of z we are concerned with; I is positive.

Then, writing down the term gS' Ic2S of equation (17), getting

gSI' ga /;; S
c2S + c2S(cosh 2az)2'

we may again replace Sin the denominator of the second term by 80' whereas In the first
term we may write SI' IS1 = I for SI' IS.

Introducing this into our derivations we obtain, instead of equation (20),'the following
equation: .

"+ [ ga/;;S +'!l_ 2]-0
'Y) 'Y} c2S0(cosh 2az)2 c2 p, - . (45)

On further proceeding as before, the only difference in the result will be that the eigen
values of p" found above, will now be the eigen-values of VP,2-gfJc2, when the value oi c is
the same in both cases, so that we obtain .

tbp,t = tbYp,2_gfJc2 = e-n,

e being defined as before. Hence,

bp,t + 2n + 1=VI + gabflNv2,

from which we may easily derive the followingequation

(46)

or

(<< -r )2 gaJb= n (n + 1) ( V 2A )2 + (2n + 1) V 2A + 1.
1- gf-r2 . b 1- gf-r2 'b 1- gf-r2

Writing, for the moment, -r/vI-gf-r2 = -rt and A/VI-gt-r2 = At, we have the same relation
between.-rt and At as previously found between -r and A for the case where I was zero, so that,
in order to calculate the value of A corresponding to a given value of -r, we may proceed as
follows: first, find -rt by dividing -r by Vl-gt-r2; then enter into the diagram of fig. 2 with
the value ga-rt2lb for rand find the value of q of the corresponding point of the appropriate
curve; then, putting q = 2At/b find At; finally find A by multiplying At by VI-gt-r2.

As At/-rt = AI-r=c, the velocity of propagation of waves with period 2nr or wave length
2nA is the same as we find from fig. 2 for rt or At. In ether words: if we represent the period
wave-length.relation for any value of n in a q-r-diagram as before, each point [q(A), r(-r)] of
the curve lies with the point [q(At), r(rt)] of the correspondingcurve for the case I = 0 (fig.2)
on the same equal-veloeity parabola.
18



From the form (46) of our equation it may easily be seen that for any fixed value of À
the corresponding value of l'must be smaller here than in the previous case, where f was zero.
Furthermore the values of l' larger than llylfiï are here ruled out; the corresponding limiting
value of À obtained from (46) turns out ibvajn(n + l)b!.

Meanwhile, it should be borne in mind, that just for large values of;" or, more generally
speaking, for large values of;"t (on which the wave thickness depends, as we shall see), where
the deviation of the results of this section from those of section 2 (fig. 2) becomes important,
the increasing wave thickness may prevent us from applying them to the cases we are
concerned with, viz. cases of limited depth of the fluid on both sides of the transition layer
and of limited interval of validity of formula (44).

The minimum value of l' is here:
I

1'mtn= .Vg (ajb +I)

The quantity olb + f occurring in the above formula is again the maximum of the rate
of relative variation of 8, found at the middle of the transition layer.

For n = 0 we can separate the variables (1' and ;")and find an explicit formula for À as
a function of 1', viz.

g (ajb + !) 1'2- I 2À

VI-g!1'2 v

where

A graph of this relation is shown in fig. 8, where now rf = g(a/b + f) 1'2= (1'/1'mtn)2has been
used as the ordinate; the abscis is s= 2À/b, ,;

"as before. In terms of rf and q the equation rf /
of this curve reads as follows: + --,,.:.,,_/ _

ro ",;
,;

""""",;0'''
~~" "" o!\"" ,\~
""",;"/

""/.~

rf-l
-;'::==- qVI-kr, - ,

h= !
ajb +!

5
is the ratio of the lapse rate of the
term 81 in formula (44) at the level z = 0
to the total lapse ra te of 8 at the same
level, the lat ter being the maximum lapse
rate of 8. The curve of fig. 9 has h. = 0.1.
The maximum value 1) of rt is Ijk; the mini
mum value of rf is 1, as was the minimum
of r for f = zero. The straight line r = q + 1 (38) found previously for that case has been
added in fig. 8 (dashed line).

For all values of n the reduced stream function corresponding to a certain solution is,
here also, given by formula (41), where now, however,

L_. ~ q

Fig. 8. Relation between ('r/Tmin)2and 2),/b.

b'
m = tbflVI-g!-r:2 = tbflt = 2Àt'

this being exactly the inverse of the value of q found on entering into the diagram of fig. 2
with the value ga-r:t2/b for r, as described above.

The wave thickness belonging to a solution (41), when b is small enough, was, in terms
of band m, given by nb/m. This yields: wave thickness = L/V1-g!-r:2 = Lt = 2Ût, Àtbeing
the quantity most easily calculated when starting from r; as described above.

If, however, b is large compared withÀt, the wave thickness may be put equal to V2bLt.
1) Of" however, the remark made above as to the limited applicability of the formulas of this sectien for large values of ),t.
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If, in addition to the complication dealt with in this section, we wish to take into account
a rotation of the whole fluid system, we have to substitute AV1 - (2Wzi)2 for Ain all equations.
The upper limit of i will now be the lower one of the two values 1/v gt and 1/2wz •

.
8. General proof of the existence of the lower bound of periode of interval waves.

In this section we shall drop our special assumptions concerning the density distribution
and the absence of boundaries. ,

The density distribution is only supposed to be stable and to have a finite density
gradient everywhere inside the fluid.

A lower rigid boundary may be present at a level Z = zo' so that, since the vertical
velocity must, at aIlY time, be zero there, the stream function vanishes at this level, or:

(/J(zo) = 0, (47)

q; (z) being defined as before (section 2).
If the fluid is infinitely deep, we may put Zo= - (X'.
When dealing with internal gravitational waves we always have still at least one other

level, z =Zl' where (/J (z) vanishes:

(/J(Zl) = ° (48)

(where, eventually, Zl may have the "value" + 00), for, either there is a rigid upper boundary
at Z = Zl' or there is a free surface at Z = Z2' but, in the latter case we know that internal
waves are supposed to have at least one "node"-level between the surface and the bottom.

The general, exact equation for q; (z) is:

S' (S')(/J" - ep' S + (/Jfl2 '1:2 gS - 1 = 0, (49)

which is identical with equation (15).
Now, if (/J(z) is to vanish 'at Z = Zoand at Z = Zl' it must needs, somewhere in between,

have at least one maximum, where it is positive, or a minimum, where it is negative, or both,
since (/J(z) is a continuous function of zand is not identically equal to zero. This means, since
sp' and (/J" exist everywhere between Zoand Zl' that, at a certain level z = z* (zo < z* <Zl)'

(/J' (z*) = 0, !
(/J" (z*)--<0.
(/J (z*)

From (50) and (49) follows, since S' is fini te , that fl2 (i2gS' IS -1) is positive at z = z*.
This means, that i2gS' IS must become largor than unity somewhere inside the fluid; in
other words: i2g (S' IS)max > 1, or:

(50)

2 1
i > g (S' /S)max'

or:
2n

T> = Tl.V g (S' /S)max
(51)

This exact result, which is independent of any special assumptions with regard to the
density distribution (even if S' = 00 at a certain level, (51) is true, because it gives Tl = 0,
then) differs from what was arrived at in section 4 (38) only in so far as (38) has S' maxlSo
instead of (S' IS)max, but in section 4 the difference between S' I S and S' ISo was discarded,
as we remem ber.

The period Tl is exactly equal to what is sometimes called the "period of free oscillation"
of a fluid particle belonging to the level of greatest stability.
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The "period of free oscillation" of any fluid partiele in a stabie
stratification is understood to be the period of the oscillating
motion the said fluid partiele is supposed to assume, under the
influence of the Archimedian force, when it is removed from the
level it belongs to, without, however, removing the surrounding
fluid particles from their equilibrium levels. Now this is a rather
hypothetical experiment. Perhaps we might best put it this way,
that (51) gives some sense to this "period of free oscillation",
but only for the level of greatest stability, in so far as this
period, computed for the level of greatest stability, is the lower
limit of the periods of intern al waves-in the wole fluid layer con
sidered.

In the table alongside we have given values of Tl for various
values of (S'jS)max, or (-e'je)max.,

(S'jS)max I Tl

0 00

1.1O-6m-1 33.4 min.,
4.1O-6m-1 16.7 min.
1.1O-5m-1 10.6 min.
4.1O-5m-1 5.3min.
1.1O-4m-1 ·3.3 min.
4.1O-4m-1 IJ min..
1.1O-3m-1 63sec.
4.1O-3m-1 32.sec.
1.1O-2m-1 20sec.

00 0
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