P-T history and ⁴⁰Ar/³⁹Ar dating of the Jinshuikou group, Eastern Kunlun Mountains, Qinghai, China C.J.C. Bontje Master research project & thesis Student number: 1822411 Supervisors: J.R. Wijbrans & F.M. Brouwer May 2015 ## **Abstract** The Kunlun Mountains, located along the northern margin of the Tibetan Plateau in Qinghai, Western China play an important role in the collision history between Eurasia and India. However, not much research has been done on both metamorphic P-T conditions and geochronology. A combined P-T modelling and 40 Ar/ 39 Ar dating study on the Jinshuikou group in the Kunlun Mountains revealed a metamorphic event of Silurian – Devonian age. Peak conditions of amphibolite to granulite facies of 750°C, 13 kbar and 800°C, 10 kbar are at higher pressure and lower temperature conditions than previously found by Liu et al. (2005). Dating of hornblende, biotite, muscovite and K-feldspar of metamorphic and intrusive rocks from the Jinshuikou group revealed four age groups: 1) 450.27 ± 22.60 Ma till 403.25 ± 17.89 Ma; 2) 353.40 ± 14.62 Ma till 263.43 ± 9.97 Ma; 3) 252.58 ± 8.87 Ma till 199.86 ± 43.37 Ma and 4) 215.11 ± 5.48 Ma till 184.26 ± 7.52 Ma. These groups all correspond to important accretion phases of microcontinents to the Eurasian continent with corresponding magmatic events. Ages found display cooling rather than forming ages and are (partially) reset by new pulses of magmatic intrusions. By combining P-T modelling with the thermal history based on argon dates from this study and U-Pb zircon and AHe ages from literature, initial cooling rates of $10-14^{\circ}$ C/Ma between 430 and 400 Ma were found, decreasing exponentially to 2.0° C/Ma between 400 and 300 Ma. Reheating of sample locations 1 and 5 by Permian – Triassic intrusions caused another phase of exponential cooling, followed by a fluctuation around 250°C due to several phases of granitic intrusions. A paleo geothermal gradient of 50°C/km between peak metamorphism and present is assigned to the Jinshuikou group, which implies a denudation rate of 0.1 km/Ma and total unroofing of 40 km. # Table of contents | ABS | STRACT | 1 | |-----|---|----| | TAB | BLE OF CONTENTS | 2 | | 1. | INTRODUCTION | 5 | | | 1.1. Background | 5 | | | 1.2. Project aim | 5 | | 2. | GEOLOGICAL SETTING | 6 | | 3. | METHODOLOGY | 10 | | | 3.1. Fieldwork and sample selection | 10 | | | 3.2. Thermobarometry | 11 | | | 3.2.1. XRF measurements | 11 | | | 3.2.1.1. Preparation | | | | 3.2.1.2. Measurements | 11 | | | 3.2.2. Electron microprobe measurements for thermobarometry | 12 | | | 3.2.3. Thermodynamic modelling | 12 | | | 3.3. Argon dating | 13 | | | 3.3.1. Preparation for argon dating | 13 | | | 3.3.1.1. Mineral separation | | | | 3.3.1.2. Electron microprobe measurements | 14 | | | 3.3.1.3. Radiation | | | | 3.3.2. Measurements with AGES | | | | 3.3.2.1. Single grain fusion | | | | 3.3.2.2. Stepwise heating | | | | 3.3.3. Data reduction | | | | 3.3.4. Excess argon and recoil effects | 16 | | 4. | PETROLOGICAL RESULTS | 18 | | | 4.1. Petrography | 18 | | | 4.1.1. Amphibolite | 18 | | | 4.1.2. Gneiss | 19 | | | 4.1.3. Granite | 19 | | | 4.1.4. Gabbro | 20 | | | 4.1.5. Hornblende hornfels | 20 | | | 4.2. Whole rock geochemistry | 22 | | | 4.3. Mineral geochemistry | 23 | | | 4.3.1. Feldspar | | | | 4.3.2. Garnet | | | | 4.3.3. Amphibole | | | | 4.3.4. Mica | | | 5. | ARGON DATING RESULTS | | | | 5.1. Stepwise heating | | | | J. 1. JULANISC HEURING | | | | 5.1.1. | Location 1 | 33 | |------|------------------|--|-----------| | | 5.1.2. | Location 2 | 36 | | | 5.1.3. | Location 4 | 37 | | | 5.1.4. | Location 5 | 42 | | | 5.2. | Summary | 46 | | | 5.3. | Single grain results | 47 | | 6. | THERN | MODYNAMIC MODELLING RESULTS | 49 | | | 6.1. | Solution models | 49 | | | 6.2. | Amphibolite JI 1-1 model | 52 | | | 6.2.1. | JI 1-1 model discussion | 56 | | | 6.3. | Garnet amphibolite JI 2-1 | 58 | | | 6.3.1. | JI 2-1 model discussion | 64 | | | 6.4. | Gneiss JI 2-2 | 66 | | | 6.4.1. | JI 2-2 model discussion | 71 | | | 6.5. | Granulite JI 4-6 | 72 | | | 6.5.1. | JI 4-6 model discussion | <i>77</i> | | | 6.6. | Hornblende hornfels JI 5-3 | 78 | | | 6.6.1. | JI 5-3 model discussion | 83 | | 7. | DISCU | JSSION | 84 | | | 7.1. | Discussion of methodology | 9.4 | | | 7.1.
7.1.1. | Fieldwork and sample selection | | | | 7.1.1.
7.1.2. | Dating limitations | | | | 7.1.2.
7.1.3. | | | | | | 3.1. Omission of MnO | | | | 7.1. | | | | | 7.1. | | | | | | 3.4. H ₂ O saturation | | | | 7.1. | 3.5. CO ₂ estimation | 87 | | | 7.1. | 3.6. Estimating the equilibration volume | 87 | | | 7.1. | Discussion of argon ages | 87 | | | 7.2. | Discussion of thermodynamic modelling | 90 | | | 7.3. | Geological implications | 92 | | | 7.4. | Suggestions for future research | 95 | | 8. | CONCI | LUSIONS | 96 | | ACK | NOWLE | EDGEMENTS | 97 | | REFI | ERENCE | | 98 | | APP | ENDIX I | I: THIN SECTION DESCRIPTIONS | 102 | | APP | ENDIX I | II: XRF DATA | 120 | | APP | ENDIX I | III: EMP DATA SINGLE GRAIN | 121 | | APP | ENDIX I | IV: EMP DATA THIN SECTIONS | 144 | | APP | ENDIX \ | V: ARGON DATING | 178 | | APPENDIX VI: PSEUDOSECTIONS | 201 | |-----------------------------|-----| | | | ## 1. Introduction The Kunlun Mountains, located along the northern margin of the Tibetan Plateau in Qinghai, Western China, play an important role in the collision history between Eurasia and India. However, not much research has been done on both metamorphic P-T conditions and geochronology. By investigating the metamorphic grade and internal variations therein, combined with timing of metamorphism by 40 Ar/ 39 Ar dating of selected samples from the Jinshuikou group in the Kunlun Mountains, we hope to improve the understanding of its tectonic history. This research is a collaboration between VU University Amsterdam and China University of Geosciences Wuhan. A fieldwork for a period of one week was carried out in the Kunlun Mountains in July 2012. During this fieldwork gneisses, amphibolites and granites (both syn- and post metamorphic) were sampled at five locations along a transect in the Jinshuikou group. The transect was orientated along the strike of the mountain belt over a distance of approximately 430 km. #### 1.1. Background The Kunlun Mountains were accreted against the southern margin of Eurasia as one of a series of microcontinents and island-arcs positioned in the Tethys ocean during the Paleozoic and Mesozoic (Dewey et al., 1988; Xiao et al., 2003; Yin and Nie, 1996; Zhiqin et al., 1997). The final collision event in this series is the Indo-Asian collision during the Cenozoic, which started between 70-34 Ma (Aitchison et al., 2007; Mo et al., 2008; Royden et al., 2008; Zhu et al., 2005). Evidence for accretion towards the Eurasian continent is clear as deformation in each subsequent unit becomes younger southwards across the plateau (Dewey et al., 1988). From recent studies it appears that the convergence of the Kunlun Mountains lasted at least from Early Paleozoic up to Cenozoic (Liu et al., 2005; Mock et al., 1999). From this long lasting sequence of orogenetic phases, four age groups of different tectonic events in the Kunlun Mountains were identified by Liu et al. (2005) and Arnaud et al. (2003), of which at least two could be ascribed to distinct metamorphic events of granulite and amphibolite facies of Middle Silurian - Late Devonian and Triassic age. This was followed by magmatic intrusions and partial overprinting of earlier fabrics. The third age group of Middle Jurassic – Lower Cretaceous age represents a sinistral deformation regime as strike-slip structures in mylonites. The last age group represents late-stage exhumation during the Himalayan orogenesis of Oligocene age. #### 1.2. Project aim This project aims to investigate the tectonic history of the Kunlun Mountains and more specifically the Jinshuikou group. This will be done by thermodynamic modelling of samples collected on a west-east transect along the eastern Kunlun Mountains, using the computer program Perple_X (Connolly, 2005). 40 Ar/ 39 Ar dating of these samples will hopefully give an idea of the timing of different events. Combining these results, P-T-t paths for different locations in the Kunlun Mountains can be resolved, providing information on the tectonic history and ultimately differences therein for different parts of the Kunlun Mountains. In chapter 2, an overview of the geological setting will be given, followed by the research methodology in chapter 3. Then, results of the ⁴⁰Ar/³⁹Ar dating will be shown in chapter 5, and of the thermodynamic modelling in the program Perple_X (Connolly, 2005) in chapter 6, followed by the discussion and conclusions in chapters 7 and 8 respectively. # 2. Geological setting The study area is located in the eastern Kunlun Mountains, on the north-eastern edge of the Tibetan plateau. The Kunlun Mountains are part of the Himalayan-Tibetan orogen, which is in turn part of the Himalayan-Alpine system and stretches from Spain in the west, to Indonesia in the east (Yin and Harrison, 2000). During the Palaeozoic to Mesozoic, subsequent accretion of microcontinents to the southern margin of the Eurasian continent formed the orogen (Yin and Nie, 1996). These continents include amongst others the North- and South Tarim block, North- and South China block, Qaidam block, Qiangtang block and Lhasa block. A short reconstruction of the plate configuration and formation of the Himalayan-Tibetan orogen after (Yin and Nie, 1996) will be given. The simplified tectonic model is shown in Figure 1. In this figure, the future Kunlun Mountains and Altyn Tagh fault are indicated. During the Silurian to mid-Devonian, the South Tarim and Qaidam block moved northward, causing subduction of a small paleo-ocean underneath the North Tarim and North China block and subsequent collision (Dai et al.,
2013) (Figure 1A). Evidence for this accretion and subduction is found in widespread Silurian and Early-Devonian granites across the Eastern Kunlun range (Figure 2) and hornblende, muscovite and biotite ⁴⁰Ar/³⁹Ar ages (Chen et al., 2002; Liu et al., 2005). This was followed by subduction of this group underneath the Siberia-Kazakhstan plate during the Devonian (Figure 1B). During the Carboniferous - Permian the South China block started to subduct underneath the North China-Qaidam plate and a magmatic arc formed along the southern margin of the Qaidam block, where in the future the Kunlun Mountains will be (Figure 1C). In the Late Permian, collision of the South China block with the North China-Qaidam plate started, propagating from east to west. Widespread granitoids from this period can be found (Dai et al., 2013) (Figure 2). Simultaneous subduction of the Paleo-Tethys occurred both northward and southward (Dai et al., 2013; Yin and Nie, 1996). Due to this collision, earlier suture zones were reactivated as strike-slip faults and the Qaidam block was pushed to the west during the Triassic (Figure 1D). During the late-Triassic to Cretaceous, subsequently the Qiangtang and Lhasa block (also called Gangdise terrain) were attached, forming the later so called Qinghai-Tibet plateau (Figure 1E). The timing of these events is strengthened by occurrence of Late Triassic and Early Jurassic granitoids (Dai et al., 2013) and an age group of 104-172 Ma which may be related to ductile deformation along the Xidatan fault due to the northward accretion of the Lhasa block (Liu et al., 2005). During the Paleogene, the India-Asia collision began, propagating from west to east. Ongoing compression resulted in the formation of thrusts and folds in the Qiangtang block, south of the Kunlun Mountains. In the Cenozoic, activation of the Altyn Tagh and Kunlun sinistral strike-slip faults north of the Qinghai-Tibet plateau, led to eastward extrusion of the plateau (Dewey et al., 1988) and to separation of the Kunlun Mountains into the western- and eastern Kunlun (Figure 1F). Today, the Kunlun Mountains separate the Qinghai-Tibet plateau from the Qaidam and Tarim block in the north (Roger et al., 2003), which are on its turn separated by the Altyn Tagh sinistral strikeslip fault. The Kunlun mountain range follows the sinistral Kunlun fault (Van der Woerd et al., 2000) and stretches east for 2000 km into the Qilian and Qinling Mountains (Mattauer et al., 1985). Both the Qaidam and the Tarim block are rigid regions that resisted deformation. Therefore it is probable that deformation was strongly focused in the Kunlun and Altyn Tagh faults (Dewey et al., 1988). The geology of the eastern Kunlun Mountains is dominated by a broad Palaeozoic arc with a superposed Late Permian – Triassic arc, together referred to as the Kunlun batholith (Yin and Harrison, 2000) (Figure 2). The western part of this batholith consists of Middle to Late Proterozoic gneiss, schist and marble, overlain by marine deposits (Yin and Harrison, 2000). Dating of gneissic basement rocks near the Golmud-Lhasa highway with the Rb-Sr method gave an age of 1846 \pm 109 Ma (Zhang and Zheng, 1994) in (Yin and Harrison, 2000). Protoliths of both the metamorphic and granitic sequences in the Jinshuikou group were dated between 1339 Ma and 2468 \pm 46 Ma (Ba et al., 2012; Liu et al., 2005; Long et al., 2006; Yu et al., 2005; Zhang et al., 2003). Extensive granitic intrusions in the Eastern Kunlun batholith give predominantly ages of 290-190 Ma (Dai et al., 2013; Harris et al., 1988; Li et al., 2013; Liu et al., 2005; Mock et al., 1999). According to Yin and Harrison (2000), the local volcanic deposits together with large amounts of submarine strata, suggest that the eastern Kunlun Mountains experienced a rifting event in the Early Permian. Subsequent, northward subduction of the Songpan-Ganzi-Hoh Xil terrain beneath the Kunlun batholith led to volcanic eruptions and intrusion of granites forming the superposed arc. Alternatively, the superposed arc could be related to southward subduction of the Qilian terrain north of the Qaidam block (Yin and Harrison, 2000). The eastern Kunlun orogen can be subdivided into three different tectonic units, namely the Northern, Middle and Southern Zone. These are separated by respectively the North- and Central Kunlun fault (Liu et al., 2005; Zhang et al., 2012). The Southern Zone is bounded to the south by the South Kunlun fault. The northern zone is an Early Paleozoic fold belt, containing Ordovician marine sediments and low-grade metamorphic rocks (Liu et al., 2005). The Middle Zone mainly consists of Middle to Late Proterozoic metamorphic sequences overlain by Devonian and Carboniferous rocks and Paleozoic and Mesozoic granitic intrusions (Liu et al., 2005; Zhang et al., 2012). The Southern Zone is similar to the Middle Zone, but contains more Triassic successions (Liu et al., 2005). The metamorphic sequences in the Middle Zone can be divided into the Binggou formation, the Xiaomiao formation and the Baishahe formation (Zhang et al., 2012), of which the Baishahe and Xiaomiao formations together constitute the Jinshuikou Group (Zhang et al., 2012). The Binggou formation contains marbles, slates and meta-sandstones. The Baishahe formation consists of gneisses and marbles, with minor amounts of amphibolites, migmatites and schists. Their protoliths were greywackes, limestones and intermediate to basic volcanic rocks. The Xiaomiao formation consists of granulites, schists and minor amounts of marbles. Their protoliths were likely a suite of volcanic-sedimentary rocks that underwent low amphibolite-facies metamorphism. Figure 1. Simplified tectonic history of the Himalayan-Tibetan orogen. Green in figures A-E indicates future Kunlun mountains; orange indicates future Altyn Tagh fault. Figure F shows the Kunlun thrust system in green and the Altyn Tagh fault in orange. Modified after (Yin and Nie, 1996). Figure 2. Geological map of the Eastern Kunlun Mountains and surroundings. Sample locations are indicated with a green star. Explanation of abbreviations: ATF = Altyn Tagh Fault, NZF = North Zongwulongshan Fault, NQF = North Qaidam Fault, CKLF = Central Kunlun Fault, SQF = South Qaidam Fault, KLF = Kunlun Fault. Modified after Chen et al. (2012) ## 3. Methodology In this chapter the used methodology for this research is described. First a fieldwork was carried out where samples were gathered. Depending on the state of alteration and on the mineralogy, samples were selected for thermodynamic modelling and for argon dating. In the following paragraphs, procedures for these measurements are described. #### 3.1. Fieldwork and sample selection Fieldwork was carried out in the summer of 2012, between July 18 and 24. Within the Jinshuikou group, sixteen samples were collected along a transect parallel to the strike of the Kunlun Mountains, running from 290 km west to 130 km east of the city of Geermu (Golmud), in the Qinghai province, Western China (Figure 2). Samples from amphibolites and gneisses were used for both thermodynamical modelling and argon dating. For argon dating also granites that intruded these rocks were sampled. Also quartz lenses were sampled for fluid inclusion analysis (this would be in the context of a future study). Due to limited time in the field, the main purpose of the fieldwork was to collect samples rather than doing a structural analysis. Thin sections were produced of all samples to identify minerals and alteration using optical microscopy. From the metamorphosed samples, the ones with minor alteration were chosen for thermobarometry and equally divided between this project and the project of Huijgen (2015). Most samples were processed for mineral separation for argon dating as almost all samples contained (minor amounts of) either K-feldspar, amphibole, biotite or white mica. A list of the samples including rock type and type of analyses can be found in Table 1. | Sample | Rocktype | Thermodynamic modelling | Argon
dating | |--------|----------------------------|-------------------------|-----------------| | JI-1-1 | Amphibolite | X | Х | | JI-1-3 | Biotite Gneiss | X | Χ | | JI-1-4 | Amphibolite gneiss | X | Χ | | JI-2-1 | Garnet amphibolite | X | | | JI-2-2 | Biotite gneiss | X | Χ | | JI-4-2 | Biotite Gneiss | Χ | Χ | | JI-4-3 | Amphibolite | X | Χ | | JI-4-5 | Mylonite | | Χ | | JI-4-6 | Garnet amphibolite | X | | | JI-4-7 | Granite | Χ | Χ | | JI-5-1 | Granite with garnet | | Χ | | JI-5-2 | Granite with Cr micas | | Х | | JI-5-3 | Hornblende hornfels | X | Χ | | JI-5-4 | Mafic intrusion | | | | JI-5-5 | Gabbro | | Χ | | JI-5-7 | Late post tectonic granite | Χ | Х | Table 1. Samples and rock types used in this study. Thermodynamic modelling samples indicated in yellow are analysed in this study; samples in green are analysed in the study of Huijgen (2015); pink samples are used in both studies. #### 3.2. Thermobarometry For thermobarometry, both whole rock major element analyses, and single crystal in situ major element spot analyses are needed. Therefore, Li-tetraborate glass beads were produced from whole rock powders in order to perform XRF (X-ray fluorescence) measurements and thin sections were used for electron microprobe measurements (EMP) on selected near surface locations in single crystals. The obtained data was used to derive a P-T model with the program Perple_X (Connolly, 2005). This methodology is described in more detail below. #### 3.2.1. XRF measurements Whole rock XRF analysis of major elements will provide vital knowledge on the composition of the rocks. In this section the procedure of preparation of the samples for XRF measurements and execution of the measurements is described. #### 3.2.1.1. Preparation Samples were crushed by a jaw crusher up to a particle size of <1 cm. Approximately 100 g of this crushed material was used for XRF preparations; the rest was used for mineral separation
for argon dating. 100 g of the material was put in an agate mill for one minute, grinding the sample to a silt grain size. By using a planetary mill with agate pots for one hour this grain size was reduced further to clay size. The clay sized material was dried in an oven at 100°C for one day. Subsequently, 1.2000 g of this material was further heated at 1000°C for 30 minutes to remove all volatiles and eventually remove organic material and carbonate. The difference in weight before and after heating to 1000°C will determine the Loss On Ignition (LOI), which is a measure for the OH and CO_3 content. Then 1.0000 g of ignited powder was mixed with 4.0000 g of spectroflux 110 (lithium tetraborate : lithium metaborate in a 66.5:33.5 wt% ratio). The mixed powder was put in a platinum cup, heated to 1150°C in the Perl'X 3 machine and poured out into a platinum disk, creating a flat, glass bead with dimensions of approximately 4 cm diameter and 4 mm thick. #### 3.2.1.2. Measurements Table 2 shows the accuracy of the measurements as measured on andesite standard AGV-1 P4925 that was co-processed with the project. | | Fe ₂ O ₃ | MnO | TiO ₂ | CaO | K ₂ O | P ₂ O ₅ | SiO ₂ | Al ₂ O ₃ | MgO | Na₂O | BaO | |-------------------|--------------------------------|-------|------------------|-------|------------------|-------------------------------|------------------|--------------------------------|-------|-------|-------| | Delta (%) | -0,1 | 4,5 | -0,1 | 0,7 | 1,4 | -0,2 | 1,3 | 0,6 | -4,8 | 0,2 | -1,3 | | Average (N=51) | 6,76 | 0,096 | 1,049 | 4,973 | 2,960 | 0,499 | 59,624 | 17,248 | 1,457 | 4,267 | 0,136 | | Recommended value | 6,77 | 0,092 | 1,05 | 4,94 | 2,92 | 0,5 | 58,84 | 17,15 | 1,53 | 4,26 | 0,137 | Table 2. Accuracy of the major element oxides as measured on laboratory standard AGV-1 P4925 using the PANalytical MagiX Pro XRF spectrometer at the VU university Amsterdam. #### 3.2.2. Electron microprobe measurements for thermobarometry The same rock samples as used for XRF measurements were used for electron microprobe measurements (EMP). Polished thin sections of these samples were coated with a conductive carbon layer. Per thin section, five to six locations were indicated for measurements. Locations were chosen such that the same type of different minerals in coherence with each other and possibly containing zonation could be measured in each location. Measurements were carried out on the JEOL JXA 8800M at the VU University. An acceleration voltage of the primary electron beam was 15 kV, beam current was 20 nA and a beam diameter of 5 μ m were used. As different kind of minerals were measured in each location, it was not possible to defocus the beam for measurements of Na and K. Calibration was done against natural standards as listed in | Table 3. A ZAF | correction was | applied to | the data | (Reed. 2005). | |-----------------|----------------|------------|-----------|----------------| | Tubic 3.71 Z/11 | COLLCCTION WAS | applica to | tile data | 111000, 20001. | | Standard | Element | |------------|---------| | Diopside | Si, Ca | | Forsterite | Mg | | Ilmenite | Ti | | Jadeite | Na | | Fayalite | Fe | Table 3. Standards used for EMP measurements #### 3.2.3. Thermodynamic modelling For thermodynamic modelling, Perple_X version 6.6.8. by Connolly (1990), updated in 2012, was used. This is a set of FORTRAN77 coded programmes which calculate phase diagrams, phase equilibria and thermodynamic data, based on minimization of Gibbs free energy of mineral reactions. The various programmes in the Perple_X package each serve for a different part of the process of calculating a pseudosection, a phase diagram which shows the fields of stability of different mineral assemblages at a given bulk-rock composition, and defining mineral composition and modal abundances. Programs of Perple_X used for this study are BUILD, VERTEX, PSSECT, WERAMI, PSTABLE, PSVDRAW and MEEMUM. In addition the program PyWerami version 2.0.1 by Lexa (2011) was used to display data produced in WERAMI. Table 4 shows a short description of the functionality of each of these routines. | Program | Purpose | |----------------|--| | BUILD | Define compositional variables, boundary conditions, and data sources to | | | be used for the actual calculation. | | VERTEX | Calculate the pseudosection. | | PSSECT | Plot the pseudosection as calculated in VERTEX. | | WERAMI | Calculate isopleths and modal abundances. | | PyWerami | Visualize isopleths and modal abundances. | | PSTABLE | Plot cumulative modal abundance against P, T or X. | | PSVDRAW | Plot profiles. | | MEEMUM | Define properties at specified conditions in the pseudosection. | Table 4. Programs used for performing thermodynamic modelling. In the BUILD file, a thermodynamic data file, a fluid equation of state file and a solution model file need to be defined. For all three, the default setting is used, hp02ver.dat (Holland and Powell, 1998a), and solution_model.dat, respectively. A more detailed description of how to use the programs can be found in Pietersen (2013). In a separate document (Basic Perple_X manual, version 2015), a roadmap of how Perple_X was used in this study to arrive at acceptable pseudosections is given. #### 3.3. Argon dating Argon dating is based on the decay of ⁴⁰K to ⁴⁰Ar and ⁴⁰Ca with a half-life of 1250 Ma (McDougall and Harrison, 1999). As precision of the K/Ar method is generally lower than that of the ⁴⁰Ar/³⁹Ar method, the latter is used for this study. For this method, samples have to be irradiated in order to transform a small proportion of 39 K into 39 Ar. Subsequently, relative abundances of 40 Ar, 39 Ar, 38 Ar, 37 Ar and 36 Ar are measured in a Hiden quadrupole mass spectrometer. As 40 Ar*/ 39 Ar_k is proportional to 40 Ar*/ 40 K, where 40 Ar* represents the radiogenic argon component, the age can be calculated. #### 3.3.1. Preparation for argon dating A high (preferably > 1.0%) potassium content is needed in order to perform argon dating. Therefore, minerals with a high potassium content such as K-feldspar, amphibole, biotite and white mica were separated from the samples. Subsequently radiation of the samples took place in the NRG HFR radiation facility of Petten, The Netherlands. #### 3.3.1.1. Mineral separation The material left over from the jaw crusher was sieved for size fractions 32 - 125 μ m, 125 - 250 μ m, 250 - 500 μ m and 500 - 1000 μ m. The different fractions were washed using demineralised water and put in an ultrasonic bath as to get rid of small particles attached to the grains. Mineral separation and measurements are easier on coarser material. Therefore, for each target mineral, the coarsest fraction was optically chosen and used for further treatment. By using a range of heavy liquids with different densities in the centrifuge LOC 50, minerals were separated from each other. Table 5 lists the liquid densities used for separation of the different minerals. | Mineral | Liquid density (g/cm ³) | |------------|-------------------------------------| | K-feldspar | 2.54 – 2.59 | | Biotite | 3.05 - 3.20 | | Amphibole | 3.05 - 3.20 | Table 5. Heavy liquids used for mineral separation. White mica was separated using only the Faul table. For further purification of K-feldspar and amphibole, the Frantz magnet was used. By applying a variable electric current on the magnet, the minerals will be separated according to their magnetic susceptibility. Contaminated grains will be separated from the fresh grains as the contamination generally has a different magnetic susceptibility. Further purification of biotite and separation of white mica was done using the Faul table. This is a vibrating plate that separates grains according to shape. Platy minerals such as micas will be transported to the end of the table, whereas round grains will drop off in the beginning. As there was enough clean material of white mica present in the samples, it was not needed to use heavy liquids for a first separation. Finally, a 3% HNO₃ solution was added for 5 minutes to all minerals to remove surface contamination on the grains. Mineral separation was completed by hand picking using a small vacuum cleaner, resulting in 5 till 100 mg of clean sample. #### 3.3.1.2. Electron microprobe measurements As potassium content, heterogeneity and zoning are important factors for argon dating, EMP measurements were carried out on roughly ten minerals per rock sample to check for these factors. The potassium content was verified with EDS (Energy Dispersive Spectroscopy) on the EMP facility at the VU University Amsterdam. Samples which did not contain enough potassium for dating according to EDS measurements were excluded from further measurements. EMP Measurements of the core, middle and rim of the grains using the wavelength dispersive spectroscopes were carried out in order to detect changes in chemical compositions over growth time. For the process of EDS and EMP measurements mineral mounts of the cleaned samples selected for argon dating were made by gluing separate minerals to a plastic layer, filling the gaps with resin and final polishing. These mounts were coated with a conductive carbon layer and subsequently measured. The same EMP facility and settings were used as for the thin section measurements. #### **3.3.1.3.** Radiation In order to have 39 Ar present, the clean minerals need to be irradiated with fast (2-7 MeV) neutrons. This was carried out in the High Flux Reactor in Petten, The Netherlands in the RODEO cadmium shielded position on July 15, 2012. In this facility the samples are exposed to a fast neutron field for 18 hours with 1MWH, changing some of the 39 K into 39 Ar. In order to define how much 39 K is transformed into 39 Ar, the amount of radiation on each samples, known as the irradiation parameter J or
flux, has to be determined. This parameter is calculated using a standard sample which is radiated together with the samples of interest (unknowns). The absolute K/Ar age of the standard sample should be very accurately dated. This absolute age in combination with dating of the standard after irradiation using the 40 Ar/ 39 Ar method enables us to calculate the irradiation parameter by using Equation 1. For this research, the inhouse standard Drachenfels with a known age of 24.99 \pm 0.07 Ma is used (Wijbrans et al., 1995). **Equation 1. Calculating the irradiation parameter** $$J = \frac{e^{\lambda t} - 1}{{}^{40}Ar^*/{}^{39}Ar_K}$$ Samples were packed in aluminium packages and stacked together in an aluminium tube for radiation as shown in Figure 3. Standard samples were provided with an extra cupper layer to easily tell the difference between standards and unknowns. Standard samples were put in every two to four samples, trying to keep the speciation of the standards equal in order to calculate the flux change over the samples using a linear interpolation. Figure 4 shows the J-values of all standard samples used in this study. Figure 1A linear interpolation of the J-factor on two subsequent standards is used to calculate the flux on each individual sample as the difference in flux change over the standards is rather substantial. Therefore a total linear regression is not favourable. As becomes clear from Figure 4 standard xc1 displays a strange flux deviating from the expected value in line with the other standards. Figure 4. J-values for the individual standard samples. As flux changes between two subsequent samples vary substantial, linear interpolation between two subsequent standards is used rather than a total regression. Distance between two standards is roughly constant. Figure 3. Packing sequence for irradiation. Difference between standards and unknowns is obvious from the cupper around the standard samples. The total length of this wrap is 5 cm. #### 3.3.2. Measurements with AGES Sample measurements were carried out on the AGES (Automated Gas Extraction System) at the VU University, Amsterdam. A CO_2 laser beam is directed onto the mineral with a varying intensity, causing the mineral to (partly) melt. During this melting, argon is released from the crystal lattice and let into the cleaning part of the extraction line. In this phase, two SAES getters and a cold finger with an operating temperature of 250°C and -40°C respectively will ensure that undesired elements are trapped before the gas reaches the Hiden quadrupole mass spectrometer where 40 Ar, 39 Ar, 38 Ar, 37 Ar and 36 Ar are measured in fifteen cycles. Blanks are frequently measured to keep track of unexpected contaminations from either the line itself, or the previous measured sample. For single grain fusion measurements this is every four measurements; for stepwise heating experiments, the frequency is every two measurements. For the blank measurement, the same routine as for a sample is followed, except that the laser has an intensity of 0. Air measurements which are used for correcting for the atmospheric ⁴⁰Ar present in the sample, are measured four times a month. #### 3.3.2.1. Single grain fusion When a rock has experienced a complex tectonic history, this may be represented in different age peaks for single grain measurements. Therefore single grain measurements were carried out on three biotite samples, namely JI 4-2, JI 4-7 and JI 5-1. Grains of biotite were loaded in a 185 hole cupper disk with one grain per hole. Per sample, thirty replicates were loaded to get a good idea of the spread of the ages. Each grain was heated once by the laser at an intensity of 80 W. This resulted in a molten grain after heating and it was assumed that all argon was released at once. #### 3.3.2.2. Stepwise heating For establishing an absolute age of the transition through the closing temperature of a certain mineral, stepwise heating experiments were done. Roughly twelve grains per sample per hole were loaded in a 21 hole cupper disk. In approximately fifteen steps with increasing laser intensity, all argon was released from the mineral structure. The heating scheme is slightly different for different minerals and chosen such that the amount of ³⁹Ar released in each step is roughly similar. For biotite the following scheme was used: 15W, 17.5W, 20W, 22.5W, 25W, 27W, 29W, 32W, 35W, 38W, 42W, 46W, 100W, 150W. For K-feldspar the scheme was as following: 20W, 25W, 30W, 35W, 40W, 47W, 55W, 70W, 90W, 100W, 110W, 130W, 150W, 200W, 270W. And for hornblende the scheme was as following: 15W, 18W, 21W, 23W, 25W, 27W, 28W, 30W, 33W, 35W, 40W, 46W, 120W, 170W, 230W. For white mica the following scheme was used: 10W, 12W, 13W, 14W, 15W, 16W, 17W, 18W, 19W, 20W, 23W, 32W, 150W, but probably due to the mineral structure of white mica this scheme contained still too large steps in intensity increase. As the step size cannot be decreased further, the laser beam width was doubled in order to reduce the intensity of the laser on a single spot. As fine tuning of these schemes was carried out on one sample per mineral type, the scheme might not be ideal for all samples. #### 3.3.3. Data reduction Age calculations from the obtained data were done using the Microsoft Excel add-in ArArCALC by Koppers (2002). This software enables to do age calculations and correct for blank measurements, air measurements and J-factor. As the produced gas is measured in 15 cycles with a total measurement time of approximately thirty minutes, deviations might occur in measurements from the beginning and end. Mainly in the beginning, measurements might be off as equilibrium between the isotopes is not yet reached. Therefore, all measurements are manually checked in ArArCALC and wrong measurements in the beginning of the 15 cycles (often the first two) are deleted. Subsequently, ArArCALC calculates the age, amount of argon released, isochron (40 Ar/ 36 Ar versus 39 Ar/ 36 Ar), inverse isochron (36 Ar/ 40 Ar versus 39 Ar/ 40 Ar), age plateau and K-Ca plateau. Blank measurements are processed the same way and corrections on the sample measurements are done automatically. Data reduction for the standard measurements is done in the same way, resulting in a J-value for the neutron flux. Linear interpolation of the J-values gives a value to use for the unknown age calculations. This value can be inserted in the sample parameters of the unknown age file and results in automatic recalculation of the age. The ratio of 36 Ar/ 40 Ar for the air measurements is compared to the internationally used value of 298.56 \pm 0.31 (Lee et al., 2006). Deviation from this value is calculated by ArArCALC and listed as an MDF value. This value can be incorporated in the unknown measurements in the same way as the J-value to correct for the air contribution of argon in the sample. In some measurements, the amount of ³⁶Ar in the sample is almost 0. If this is the case, it might happen that the measurement of ³⁶Ar in the blank is (slightly) higher than during the sample measurements. This results in an unnatural low error on the age calculation. In order to work with more natural error values, the value of ³⁶Ar in the sample is changed to blank+1. This adjustment only affects the error to a more natural value, but leaves the measured age unchanged. #### 3.3.4. Excess argon and recoil effects In an ideal case, the mineral dated acts as a closed system, in which all argon originates from the decay within the mineral. However, this is often not the case and argon can move in and out the crystal lattice before reaching the closure temperature. When this happens, so-called excess 40 Ar (40 Ar_E) can be present, which affects the age calculations. Incorporating 40 Ar_E in minerals during or after crystallization can be caused by overpressure of 40 Ar in the surroundings due to for instance increased heat by an intrusion (Harrison and McDougall, 1980). 40 Ar can be either radiogenic (formed by the decay of 40 K), atmospheric (in a 40 Ar/ 36 Ar ratio of 298.56 \pm 0.31 (Lee et al., 2006)) and non-radiogenic (e.g. 'excess'). In age spectra calculations the amount of atmospheric 40 Ar is calculated from the amount of 36 Ar, assuming that all 36 Ar is atmospheric. The remaining amount of 40 Ar is thought to be radiogenic and used for the age calculation. However, with this approach the 40 Ar_E is not determined and therefore calculated ages may be too high and thus meaningless. In order to detect the 40 Ar_E, normal- and inverse isochron plots should be made (40 Ar/ 36 Ar versus 39 Ar/ 40 Ar respectively). In these diagrams the deviation of measurements from the atmospheric 40 Ar/ 36 Ar ratio becomes clear and with that the presence of excess 40 Ar. Another effect which could make the age calculations unreliable is recoil of ³⁹Ar during irradiation. The neutron beam which activates the ³⁹K(n,p)³⁹Ar reaction with a recoil energy of ~300 keV enables ³⁹Ar to recoil out of the mineral (Ching-Hua and Onstott, 1989). Especially in biotite this effect cannot be ignored (Ching-Hua and Onstott, 1989; Hess et al., 1987). These minerals may, although appearing homogeneous, contain small scale alteration products which can accommodate ³⁹Ar which recoiled out of the biotite (Hess et al., 1987). Therefore ⁴⁰Ar/³⁹Ar spectra may be influenced. According to Hess and Lippolt (1986) this effect can also be observed in white mica, hornblende and K-feldspar, although in much smaller scale than for biotites. In order to find out if recoil could have taken place in samples used in this study, element distribution maps of different biotite grains were made in order to detect alteration products within seemingly unaltered grains. To do so, Fe, Mg, K, Si, Ti, Ca and Al were mapped out over a $500 \times 500 \, \mu m$ range with the EMP facility at the VU University Amsterdam, using an acceleration voltage of 15 kV, beam current of 2.5 nA, a
fully focused beam and a measurement interval of 0.50 μm . # 4. Petrological results Within the study area, different rock-types have been found. In this chapter, an overview will be given on the petrography and mineral assemblages, whole rock geochemistry and mineral geochemistry. #### 4.1. Petrography The Jinshuikou group consists of metamorphic rocks of amphibolite facies metamorphic grade, including amphibolites and gneisses. In the upper part of the Jinshuikou group, the rocks are often mylonitized, whereas in the lower part of the group, rocks are often migmatized. Figure 5 shows slightly mylonized rocks on the left and partly migmatized rocks on the right. Syn- and posttectonic intrusions of granite and gabbro can be found in between the metamorphic rocks. The heat of these intrusions created contact metamorphic hornfels in the east of the section. The presence of intrusive rocks increases towards the east, whereas the amount of metamorphic rocks decreases. Thin section descriptions of all samples can be found in Appendix I. Table 6 shows a summary of the mineral abundances of all samples. An explanation of mineral abbreviations used in this study can be found in Paragraph 6. Figure 5. (left) Slightly mylonized rocks in the top of the Jinshuikou group. (right) Slightly migmatized rocks in the lower part of the group with Jan Wijbrans, supervisor of this research as scale indicator. #### 4.1.1. Amphibolite The amphibolite samples show a mineral assemblage of amp + pl \pm bio \pm q \pm ep \pm cz/zo \pm sph \pm cc \pm chl \pm gt \pm metal oxides \pm ru. Sample JI 4-6, shows a large amount (30%) of fresh garnet and in sample JI 2-1 we find relics of garnet, almost completely replaced by amp + pl + metal oxides. These are remains of an earlier (peak) metamorphic part of the history of the rock. The other amphibolites do not show any hints of garnet. Occurrences of chl + pl (ab) in all amphibolite samples and epidote or cz/zo in all samples but JI 4-3 gives evidence for the course of the retrograde path into greenschist facies. Also the seemingly unstable habit of amphibole with irregular mineral edges and being partly replace by chlorite or metal oxides is evidence for recrystallization along this retrograde path. Samples JI 1-1, JI 1-4 and JI 2-1 also display presence of late calcite, indicating introduction of a CO₂ fluid into the system. Figure 6 shows a typical example of an amphibolite. #### 4.1.2. **Gneiss** The gneiss samples in the Jinshuikou group all show a mineral assemblage of q + bio + pl + kfs ± mica \pm ru \pm zo/cz \pm chl \pm cc \pm metal oxides \pm zr \pm ap. In all gneisses, either plagioclase or K-feldspar is partly replaced by clayminerals. JI 1-3 and JI 2-2 contain muscovite, although in JI 1-3 this is partly replaced by chlorite. In JI 2-2 almost all biotite is replaced by chlorite, only leaving tiny patches within the grains as proper biotite. Quartz generally shows undulose extinction and banding of felsic and mafic minerals is often deformed. Figure 6 and Figure 7 show typical examples of a gneiss. In the case of gneiss JI 1-3 the development of a crenulation at cm scale is note, with an S2 developing parallel to the orientation of the hammer on the photograph (Figure 7). Figure 7. Strongly deformed banding in JI 1-3. Figure 6. JI 4-3, a typical example of an amphibolite with randomly orientated anhedral amphiboles. (right) JI 2-2, a typical example of a gneiss with mica banding and plagioclase partly replaced by clayminerals. indicator. #### 4.1.3. **Granite** The granite samples show a mineral assemblage of $q + pl + kfs + bio \pm ep \pm gt \pm mica \pm zo \pm chl \pm ap \pm zr \pm metal oxides$. JI 4-7, JI 5-1 and JI 5-2 show an unstable habit in which epidote or amphibole is growing instead of biotite, garnet and feldspar. These samples show rather large crystal sizes of on average 2 mm, with outliers up to 20 mm. In contrast, JI 5-7 shows small crystal sizes with a maximum of 1 mm. From structural relations in the field it was already concluded that the latter is a posttectonic granite, whereas granites JI 4-7, JI 5-1 and JI 5-2 are syn-tectonic. Figure 8 shows a typical example of a granite from the Jinshuikou group with large crystals up to 4 mm and often garnet present. #### 4.1.4. Gabbro The gabbro samples show a mineral assemblage of amp + ol + bio + metal oxides + pl + ru + q \pm zo \pm chl \pm ap \pm cpx and were only found in the eastern area of the Jinshuikou group. Biotite occurs only in fairly small amounts (< 2%) and relatively large amounts of metal oxides overgrow plagioclase and in JI 5-4 also olivine and quartz. Figure 9 shows a typical example of a gabbro with the mentioned mineral assemblage and a grain size up to 2 mm. #### 4.1.5. Hornblende hornfels The hornblende hornfels sample shows a mineral assemblage of amp + q + bio + pl + metal oxides. Within this sample amphibole and plagioclase are represented both as phenocrysts and in the matrix. Phenocrysts have a size up to 4 mm and display clear zoning. The matrix contains grains with an average size of 0.05 mm. The phenocrysts seem generally unstable and are partly replaced by biotite and metal oxides. Figure 10 shows a hornblende hornfels. Figure 8. (top left) JI 5-2, a typical example of a granite with large crystals up to 4 mm. Figure 9. (top right) JI 5-5, a typical example of a gabbro with metal oxides overgrowing plagioclase and olivine. Figure 10. (bottom left) JI 5-3, a typical example of a hornblende hornfels containing phenocrysts of hornblende and plagioclase which are unstable and partly replaced by biotite and metal oxides. | Sample | q | amp | bio | ер | gt | Metal oxide | pl | kfs | mica | zo/cz | sph | chl | СС | ru | ilm | zr | ар | ol | срх | |--------|----|--------|-----|----|-------|-------------|-------|-----|------|-------|-----|-----|------|-----|-----|-----|-----|----|-----| | JI 1-1 | 5 | 60 | 2 | 5 | | | 15 | | | 3 | 5 | 1 | 5 | | | | | | | | JI 1-3 | 45 | | 20 | | | | 7 | 5 | 15 | 5 | | 2 | | | | | | | | | JI 1-4 | 25 | 40 | 5 | 5 | | | 10 | 2 | | 2 | 1 | 3 | 5 | 2 | | | | | | | JI 2-1 | 1 | 70(66) | | | 3(10) | 5 | 10(8) | | | 3 | 5 | | 1(0) | 1 | | | | | | | JI 2-2 | 35 | | <1 | | <1 | | 25 | 25 | 8 | <1 | | 5 | | <1 | | acc | acc | | | | JI 4-2 | 65 | | 20 | | | | 10 | 7 | | | | | | | | acc | | | | | JI 4-3 | 20 | 50 | 5 | | | 3 | 10 | 7 | | | 3 | | | | | | 2 | | | | JI 4-5 | 65 | | 3 | | | 5 | 10 | 5 | | | | 10 | 3 | | | acc | | | | | JI 4-6 | 20 | 25 | 10 | | 30 | | 2 | 2 | | 6 | 1 | | | acc | 5 | 1 | 2 | | | | JI 4-7 | 35 | | 15 | 5 | | 3 | 25 | 20 | | 1 | | | | | | 1 | | | | | JI 5-1 | 50 | | 10 | | 5+20 | | 10 | 10 | | | | | | | | acc | | | | | JI 5-2 | 40 | 10 | 10 | | 5 | | 20 | 15 | | | | | | | | | | | | | JI 5-3 | 20 | 10+30 | 10 | | | 2 | 2+25 | | | | | 1 | | 1 | | | | | | | JI 5-4 | 40 | 15 | acc | | | 10 | 15 | | | 5 | | 3 | | 2 | | | acc | 10 | | | JI 5-5 | 2 | 25 | 2 | | | 5 | 20 | | | | | | | 2 | | | | 40 | 5 | | JI 5-7 | 50 | | 15 | | | | 15 | 10 | 5 | | | 5 | | | | | | | | Table 6. Mineral abundances in percent of all samples; acc stands for accessory. For JI 2-1, the number between brackets is the assumed amount before alteration of garnet. JI 5-1 has a 5% fresh and 20% altered garnet. For JI 5-3 the double numbers of amphibole and plagioclase stand for phenocryst + matrix. #### 4.2. Whole rock geochemistry For all metamorphic samples and granites JI 4-7 and JI 5-7 XRF major element analyses were carried out to determine the whole rock geochemistry. The results are listed in Appendix II. For all samples but JI 4-6 also the LOI was determined. It should be noted that for iron, no distinction can be made between Fe^{2+} and Fe^{3+} during measurements. So although Fe_{total} is measured, it is listed as Fe_2O_3 in the tables. From the TAS classification (Figure 11), it is clear that the (garnet) amphibolites JI 1-1, JI 2-1, JI 4-3 and JI 4-6 display a basaltic composition. The amphibolite gneiss JI 1-4 and hornblende hornfels JI 5-3 show a basaltic andesite composition. Biotite gneiss JI 1-3 and JI 4-2 and granite JI 4-7 show a dacitic composition whereas the gneiss JI 2-2 and granite JI 5-7 display a rhyolitic composition. For samples JI 4-5. JI 5-1, JI 5-2, JI 5-4 and JI 5-5 no XRF analysis was carried out. Figure 11. TAS classification of the samples used in this study. Blue samples are the ones used for thermodynamic modeling in this study and argon dating; grey samples are only used for argon dating. Thermodynamic modeling on the latter is performed by Huijgen (2015). #### 4.3. Mineral geochemistry EMP spot analyses were carried out both on thin sections of the samples which were selected for thermodynamic modelling and on mineral mounts of the minerals picked for argon dating. The chemical results are shown in Appendix III (mineral mounts) and IV (thin sections). Measurement locations are shown in Appendix IV . In the following sections, mineralogical compositions of feldspars, amphiboles, garnets and micas will be shown and details will be explained. #### 4.3.1. Feldspar For each sample 10-30 feldspar measurements were done. Locations for these measurements in the thin sections were chosen randomly in order to define the range in compositions within one rock. When zoning was obvious backscattered images, both core and rim of a grain were measured. As can be seen in Figure 12, samples JI 1-1, JI 2-1, and JI 5-3 show only plagioclase compositions varying from albite to anorthite. Samples JI 2-2 and JI 4-6 also show K-feldspar compositions. In samples JI 2-1, JI 2-2 and JI 4-6 the feldspars are not in equilibrium as can be seen from the segregation in Figure 13. After mineral separation, EMP measurements were also carried out on K- feldspars from samples JI 1-1, JI 1-3, JI 1-4, JI 2-2, JI 4-2, JI 4-3, JI 4-5, JI 4-7, JI 5-1, JI 5-2, JI 5-5 and JI 5-7 in Figure 12. Ternary diagram of EMP measurements on
feldspars in samples used for thermodynamic modeling. order to determine how potassium content changes within the mineral and how this might influence the ⁴⁰Ar/³⁹Ar dating. Results per rock type are shown in Figure 14. Within error, no changes are visible and therefore will not influence argon dating results. #### 4.3.2. Garnet Garnet compositions are shown in Figure 15. Sample JI 2-1 only contains altered garnets of which only the outer parts remained (Figure 16). However, compositions are very similar throughout the sample as is clear from Figure 15. Also sample JI 4-6 shows very uniform garnet compositions. Both samples contain very Mg-poor garnet. Figure 13. Backscattered images of feldspar in sample JI 2-1, JI 2-2 and JI4-6. Anorthite rich feldspar is generally darker than K-rich feldspar and lighter than albite rich feldspar. Spots of light and dark feldspar in the same grains develop from segregation of a mineral that is no longer in equilibrium. Figure 14. K₂O measurements of K-feldspar single crystals of core, middle and rim. Within error, no changes in content occur over the crystals for amphibolite, gneiss and granite rocks. For each measurement, n=12. JI 2-1 GR Pg COMP XM5038 15 ØKU X40 Figure 16. Remaining garnet in sample JI 2-1. Part of the garnet is replaced by plagioclase, amphibole and metal oxides. Figure 15. Ternary diagram of EMP measurements of garnet in samples used for thermodynamic modeling. #### 4.3.3. Amphibole Amphiboles in samples JI 1-1, JI 1-4, JI 2-1, JI 4-3 and JI 5-3 all show a calcic composition with $Ca_B \ge 1.5$ and $(Na + K)_A < 0.5$ according to the amphibole classification of Leake et al. (1997). Amphiboles in JI 4-6 also have a calcic composition, but contain more potassium, resulting in a classification of $Ca_B \ge 1.5$; (Na + K)_A > 0.5 and Ti < 0.5 according to Leake et al. (1997). Figure 17 and Figure 18 show the compositions of all amphiboles. Sample JI 1-1 and JI 4-3 show an obvious trend from ferrotschermakite, through ferrohornblende and magnesiohornblende to actinolite. Sample 1-4 also shows a slight trend from ferrotschermakite to ferrohornblende. For sample JI 5-3, distinction is made between phenocrysts and matrix. The rim of the phenocrysts corresponds in composition to that of the crystals in the matrix. The composition of the phenocryst cores contains more magnesium. Also for amphibole, EMP measurements on minerals separated for argon dating were carried out. The average composition of the minerals is displayed in Figure 17 and Figure 18 together with error bars, indicating the range of measurements. For sample JI 1-1 and JI 4-3, all single grain measurements showed a quite similar composition as indicated with respectively the light blue diamond and pink dot and associated error bars. As it appears from the thin section measurements that the composition of amphiboles in both samples spreads over a large range, this means that only a small part of the population of amphiboles will be dated. Single grains of sample JI 5-3 show a range in composition from phenocryst to matrix measurements on the thin section. So for dating, an average of all amphiboles will be measured. Also for sample JI 1-4, the whole range of amphibole compositions is included in the grain separates used for argon dating. It was not possible to separate a sufficient amount of amphibole from sample JI 2-1 for dating purposes, so no single crystal measurements were carried out. Figure 19 shows the K₂O content of amphiboles in amphibolite and hornfels measured in the core, middle and rim of the crystals. Within error, no variation in composition is noted within the crystals. ## Calcic amphibole $Ca_B \ge 1.5$ and $(Na + K)_A < 0.5$ ### Calcic amphibole $Ca_B \ge 1.5$; $(Na + K)_A > 0.5$; Ti < 0.5 Figure 17. (top) Amphibole compositions from EMP measurements. All amphiboles plot in the calcic amphibole field and $(Na + K)_A < 0.5$ and $Ca_B \ge 1.5$. Composition of grains separated for argon dating is also shown. Error bars on these points indicate the range of compositions of the grains separated for argon dating. Figure 18. (bottom) Amphibole composition of JI 4-6 with $Ca_B \ge 1.5$; (Na + K)_A > 0.5 and Ti < 0.5. JI 4-6 shows a hastingsite composition. Figure 19. K₂O measurements of hornblende on single crystals in core, middle and rim. Within error, no variation in composition can be observed in the crystal. For all numbers displayed, n=12. #### 4.3.4. Mica Micas within the samples used in this study show muscovite, celadonite and biotite compositions. Nomenclature is based on the amount of positive charge per octahedral site, dividing micas into dioctahedral (<2.5 positive charge) and trioctahedral (>2.5 positive charge) (Rieder et al., 1998). Since substitution within micas is based on the replacement of Al by Fe, Mg and Ti in octahedral sites and by Si in tetrahedral sites, this can be shown graphically in a combined graph (Tracy, 1975). Biotite samples should plot along the trioctahedral trend whereas muscovite plots along the dioctahedral trend (Figure 20). As becomes clear from this graph the micas in sample JI 1-1, JI 4-6 and JI 5-3 have a biotite composition whereas micas in JI 2-1 are celadonitic. JI 2-2 contains both biotite and muscovite. Figure 20. Mica classification after (Tracy, 1975). Ideal endmember compositions are displayed with black dots. Figure 21 shows the potassium content of micas that are used for ⁴⁰Ar/³⁹Ar dating measured in the core, middle and rim of the samples. Within error, no variation in composition is observed in the samples. Figure 21. K₂O measurements of single crystals of biotite and muscovite samples used for argon dating. Measurements were taken in core, middle and rim to determine changes in composition. Within error, no variation in composition can be observed in the crystal. For all numbers displayed, n=12. As was explained in paragraph 3.3.4 intercalation of alteration products with biotite can be used as evidence for possible recoil effects of ³⁹Ar out of the sample. It was not possible to detect alterations on nanometre scale, but on micrometre scale evidence of chlorite alteration in biotite grains was found for sample JI 4-2 (Figure 22). This figure shows a backscattered image of a cluster of biotite grains, together with chemical maps of the same area of K, Ti and Mg on a micrometre scale. Absence of K and Ti together with elevation of Mg in the same regions indicates presence of chlorite. This makes it very plausible that also on a smaller scale alteration products are present. As it is beyond the scope of this project to go into detail on this subject, only chemical maps of one sample were produced. However, the possible effects of argon recoil must be taken into account as biotite alteration products may be expected in other samples as well. Figure 22. Chemical maps of sample JI 4-2. a) backscattered electron image, b), c) and d) show respectively amounts of K, Ti and Mg. It is clear that darker areas within the biotite crystal shown on figure a) correspond to absence of K and Ti, and elevation of Mg, which points towards chlorite intercalation within the biotite crystals. # 5. Argon dating results In this chapter the results of Ar-Ar dating will be described. Both stepwise heating measurements on biotite, hornblende, K-feldspar and white mica and single grain measurements on biotite were carried out. Not all ages are straightforward plateau ages, but rather closure ages obscured by excess argon and partial resetting. Best estimates for these ages can be divided into four different age groups, namely 450.27 ± 22.60 Ma to 403.25 ± 17.89 Ma, 353.40 ± 14.62 Ma to 263.43 ± 9.97 Ma, 252.58 ± 8.87 Ma to 199.86 ± 43.37 Ma and 215.11 ± 5.48 Ma to 184.26 ± 7.52 Ma. No clear trends in ages from west to east or from top to bottom of the Jinshuikou group were found. Below, the single measurements will be described in detail and the reasoning underlying the choices for best age estimates is explained. Argon plateau ages can be used when no excess argon is present in the sample, and the plateau contains at least 50% of all radiogenic argon with an MSWD value below 5. Excess argon was found in all but the biotite grains, based on a deviation of single heating steps from the atmospheric isochron. Therefore, no plateau ages except for biotite could be used and ages are thus based on isochron corrections. Within this chapter only the isochron diagrams that are needed for explanation of the age are shown. In these diagrams, green dots are the measurements used for the isochron, blue dots are left out of the calculation. The purple line corresponds to an atmospheric isochron, whereas the pink line corresponds to the isochron as drawn for the included measurements. A 2σ error ellipse for each of the measurements is displayed. A complete overview of all age data including incremental heating summary, age plateau, K-Ca plateau, normal- and inverse isochron diagram is shown in Appendix V. #### 5.1. Stepwise heating From stepwise heating experiments, ages for hornblende, biotite, white mica and K-feldspar were obtained for the four sample locations. The results will be described per sample location. An overview of the results is shown in Table 7. Colours indicate rock type; blue = metamorphic, orange = mylonitic, green = intrusive. As not all ages are straightforward measurements, some of the numbers given in Table 7 are best estimates rather than absolute ages. Ages with a * are best estimates based on isochron or lowest step ages; ages with ** are averages based on minimum and maximum ages. Details on these ranges and reason for the best estimates are given in the sample location descriptions below, but on general the lowest reasonable age is used as best estimate as excess argon results in overestimation of the age. Figure 23 shows the ages in map view, separated for metamorphic rocks on the top and intrusive
rocks on the bottom. All errors given in this chapter display 2σ errors. | | hbl | bio | mica | kfs | |--------|-----------------|----------------|---------------|-----------------| | JI 1-1 | 184.28 ± 58.74* | | | | | JI 1-3 | | | | 184.26 ± 7.52* | | JI 1-4 | 273.92 ± 4.26* | | | 217.46 ± 10.94* | | JI 2-1 | | | | | | JI 2-2 | | | 418.15 ± 2.45 | 295.37 ± 15** | | JI 4-2 | | 307.60 ± 1.64 | | 199.86 ± 43.37* | | JI 4-3 | 403.25 ± 17.89* | | | 263.43 ± 9.97* | | JI 4-5 | | | | 309.34 ± 16.19* | | JI 4-6 | | | | | | JI 4-7 | | 282.91 ± 3.46 | | 207.44 ± 10.12* | | JI 5-1 | | 235.75 ± 3.89* | | 203.02 ± 1.02* | | JI 5-2 | | 228.73 ± 2.81 | | 190.52 ± 0.38* | | JI 5-3 | 252.58 ± 8.87* | | | | | JI 5-4 | | | | | | JI 5-5 | | | | 241.37 ± 1.15** | | JI 5-7 | | 233.26 ± 2.84 | | 242.72 ± 5.38* | Table 7. ⁴⁰Ar/³⁹Ar ages with 2σ error as obtained from stepwise heating experiments. Colours stand for rock type; blue = metamorphic, orange = mylonitic, green = intrusive. Ages with * are best estimates based on isochron or lowest step ages. Ages with ** are averages based on maximum and minimum values. Figure 23. ⁴⁰Ar/³⁹Ar ages per sample location for metamorphic rocks (top) and intrusive rocks (bottom). Colours correspond to the different mineral ages. * is best estimated age, ** is an average age. #### **5.1.1. Location 1** At the westernmost location three metamorphic rocks were dated, of which two amphibolites JI 1-1 and JI 1-4 and a gneiss JI 1-3. Figure 24 shows the stepwise heating age spectra as obtained for hornblende and K-feldspar of these three samples. Note the difference in vertical scale. Due to excess argon inheritance the age spectra look bumpy and no plateau ages were determined. Figure 24. Stepwise heating age spectra for hornblende and K-feldspar measurements on location 1. Due to excess argon inheritance no age plateaus could be determined. Note the difference in vertical scale. Hornblende in JI 1-1 seems to show a proper plateau in the heating step ages (Figure 24). However the inverse isochron diagram shows obvious evidence for excess argon, obscuring the age (Figure 25). An inverse isochron age for this plateau gives 377.28 ± 9.48 Ma. However, as excess argon results in an overestimation of the age, an inverse isochron age for the middle ten measuring steps is calculated, resulting in 184.28 ± 58.74 Ma. This is thought to be the best estimate of the closure age. Figure 25. Inverse isochron of hbl from JI 1-1. The middle ten measurements are included. K-feldspar in JI 1-3 shows a disturbed age pattern (Figure 24) with clear evidence of excess argon from the inverse isochron diagram (Figure 26) as measurements strongly deviate from the atmospheric isochron displayed in purple. An inverse isochron age of all but the first two heating steps is 184.26 ± 7.52 Ma and is thought to be the best estimate as no reasonable age could be obtained otherwise. Figure 26. Inverse isochron of kfs from JI 1-3. All but the first two heating steps are included. Hornblende in sample JI 1-4 does not show a nice plateau (Figure 24) despite of the absence of excess argon in the first twelve heating steps according to the inverse isochron (Figure 27). Therefore an inverse isochron age for this part was determined resulting in 335.65 \pm 11.51 Ma. However when looking at the lowest age step at the end of the spectrum the age is 273.92 \pm 4.26 Ma which is thought to be the best estimate as excess argon in these steps still results in an age overestimation. This makes the first age of 335.65 \pm 11.51 Ma meaningless. K-feldspar in JI 1-4 shows very clear evidence for excess argon both in the age plateau (Figure 24) and inverse isochron (Figure 28). An inverse isochron of the first seven heating steps was drawn resulting in an age of 217.46 \pm 10.94 Ma. As the ages of the different heating steps all vary within the same range, also a total fusion age of 223.23 \pm 1.07 Ma with a minimum of 214.52 \pm 0.46 and a maximum of 236.82 \pm 0.74 Ma was calculated. As excess argon overestimates the age, and no clear lowest step in the heating spectrum is present, the inverse isochron age of 217.46 \pm 10.94 Ma is used as a best estimate. Figure 27. Inverse isochron of hbl from JI 1-4. The first twelve heating steps are included for the isochron. These steps line-up nicely with the atmospheric value, so no excess argon is present. Figure 28. Inverse isochron of kfs from JI 1-4. The first seven heating steps are included in the calculation. All measurements cluster and a best linear fit through a subsequent set of measurements is used for calculating the inverse isochron age. #### **5.1.2. Location 2** Approximately sixty kilometres to the south-east of the first location another amphibolite (JI 2-1) and gneiss (JI 2-2) were sampled. Figure 29 shows the stepwise heating age spectra for muscovite and K-feldspar of JI 2-2. Unfortunately no potassium containing minerals could be separated from JI 2-1 so no age were obtained for this sample. Figure 29. Stepwise heating age spectra for muscovite and K-feldspar measurements on location 2. Due to excess argon inheritance in K-feldspar no age plateau could be determined. Note the difference in vertical scale. For JI 2-1 no potassium containing minerals could be separated. Muscovite in JI 2-2 gives a nice plateau age of 418.15 ± 2.45 Ma and no signs of excess argon occur. However, the K-feldspar of JI 2-2 does show a disturbed age spectrum (Figure 29) and a cluster of the measurements in the inverse isochron diagram (Figure 30) giving evidence for excess argon. The measurements cluster in the inverse isochron diagram makes it impossible to draw a proper isochron. Therefore the normal isochron diagram is used to calculate an age. Figure 31 shows two normal isochrons drawn for JI 2-2 K-feldspar, one for the first six measurements (isochron 1), and one for the last seven measurements (isochron 2). This results in an age envelope of 237.33 \pm 22.14 Ma for isochron 1 and 353.40 \pm 14.62 Ma for isochron 2 which are thought to be the extremities, with the real age in between. An average of 295.37 \pm 15 Ma is used as best estimate. Figure 30. Inverse isochron diagram of kfs for JI 2-2. The measurements show a large spread so no decent inverse isochron could be drawn. Figure 31. Normal isochron diagram of kfs for JI 2-2. Two isochrons can be drawn through respectively the first six (isochron 1, green dots) and last seven (isochron 2, blue dots) heating steps resulting in an age envelope. #### **5.1.3.** Location **4** From location 4, which is situated roughly in the middle of the entire research area, five samples were sampled. Four of these samples, including a gneiss (JI 4-2), amphibolite (JI 4-3), mylonized gneiss (JI 4-5) and a granite (JI 4-7) are dated. For amphibolite JI 4-6 no ages were determined. Figure 32 shows the stepwise heating age spectra for hornblende, biotite and K-feldspar. All spectra for hornblende and K-feldspar show a disturbed pattern coming from excess argon. However, biotite does show nice plateau ages. A more detailed explanation is given per sample below. Biotite in JI 4-2 gives a plateau age of 307.60 ± 1.64 Ma. Although the inverse isochron diagram does show a scatter of the measurements, the isochron still agrees with the plateau age. The age spectrum does show a slight climbing staircase pattern with a lowest age of 304.85 ± 1.02 Ma. As this age does not differ within error from the plateau age, it is thought to be the moment at which the system was actually closed. K-feldspar in JI 4-2 shows a disturbed age spectrum (Figure 32) and clear evidence for excess argon in the inverse isochron diagram (Figure 33). Two isochrons were drawn representing the first four measurements (isochron 1) and the last eight measurements (isochron 2). These give ages of 285.54 \pm 11.83 Ma and 199.86 \pm 43.37 Ma respectively. The lowest two age steps at the end of the age spectrum give an age of 269.95 \pm 5.93 Ma. These lowest steps are supposed to be an upper estimate of the real K-feldspar age as excess argon results in overestimation of the age. As the outer part of the mineral (and thus the first heating steps) should represent younger ages than the inside, and because the lowest age steps of the spectrum lay below the inverse isochron age of isochron 1, the isochron 2 age is used as a best estimate. Hornblende in JI 4-3 shows a disturbed age spectrum (Figure 32) due to excess argon. The lowest steps at the end of the spectrum with an age of 425.66 ± 4.81 Ma are thought to represent an upper limit of the hornblende age. For the inverse isochron diagram, again two isochrons could be drawn; one for the first six heating steps and one for the last seven steps (Figure 34). Ages of these isochrons are 450.27 ± 22.60 Ma and 403.25 ± 17.89 Ma respectively. The lowest of these ages is thought to be the closest approximation of reality and listed as best estimate. Figure 32. Stepwise heating age spectra for hornblende, biotite and K-feldspar measurements on location 4. Note the difference in vertical scale. All hornblende and K-feldspar age spectra show a disturbed pattern coming from excess argon. Biotite shows nice plateau ages and partial resetting of JI 4-7 resulting in a staircase pattern. K-feldspar in JI 4-3 shows a stepwise heating spectrum with a staircase pattern at the beginning and a concave downward pattern at the end. The last ten heating steps fall along the atmospheric line in the inverse isochron (Figure 35) and thus no presence of excess argon is assumed. Therefore the inverse isochron age of these steps is assumed to be the best estimate with an age of 263.43 ± 9.97 Ma. The staircase pattern in the first heating steps is interpreted as a partial resetting of the sample. The lowest age step of 233.26 ± 0.51 Ma is thought to represent an upper constraint for the onset of this resetting. Figure
33. Inverse isochron diagram for K-feldspar in JI 4-2. An isochron for the first four (isochron 1, blue dots) and the last eight (isochron 2, green dots) measurements was drawn. Figure 34. Inverse isochron diagram for hornblende in JI 4-3. An isochron for the first six (isochron 1, green dots) and the last seven (isochron 2, blue dots) measurements was drawn. Figure 35. Inverse isochron diagram for K-feldspar in JI 4-3. The last ten heating steps follow the atmospheric isochron in purple. The K-feldspar age spectrum of JI 4-5 is also disturbed by the presence of excess argon (Figure 32). On the inverse isochron diagram the measurements show a too large scatter to define a decent isochron. Therefore the normal isochron diagram is used. Figure 36 shows the normal isochron diagram with two isochrons drawn for the first seven measurements (isochron 1) and the next five measurements (isochron 2). Ages of these isochrons are 241.35 ± 15.39 Ma and 309.34 ± 16.19 Ma respectively. These ages are thought to represent a cooling age and a partial resetting age as the lowest step of 242.32 ± 0.56 Ma agrees very well with the first isochron age. Therefore the cooling age of 309.34 ± 16.19 Ma is thought to represent the best estimate. Figure 36. Normal isochron diagram for K-feldspar in JI 4-5. An isochron for the first seven (isochron 1, green dots) and the next five (isochron 2, blue dots) measurements was drawn. Biotite in JI 4-7 shows a nice plateau age of 282.91 ± 3.46 Ma (Figure 32). No excess argon is observed in these plateau steps. The beginning of the age spectrum shows a climbing staircase pattern with a lowest age of 202.32 ± 2.30 Ma which is interpreted as the moment of partial resetting of the system. K-feldspar in JI 4-7 again shows a disturbed age pattern (Figure 32) and strong evidence for excess argon in the inverse isochron diagram (Figure 37). The lowest age step at the end of the heating steps is 225.15 ± 0.45 Ma, which is assumed to be an upper limit of the correct age. An inverse isochron age of 207.44 ± 10.12 Ma was determined for the last part of the heating spectrum and assumed to be the best estimate. Figure 37. Inverse isochron diagram of kfs for JI 4-7. The last nine heating steps excluding the very last are used for the isochron calculation. #### **5.1.4. Location 5** On the easternmost location a total of five rocks, three granites, JI 5-1, JI 5-2 and JI 5-7, a hornblende hornfels, JI 5-3 and a gabbro, JI 5-5 were sampled and dated. Step heating age spectra are shown in Figure 38. Note the difference in vertical scale. All K-feldspar spectra are disturbed due to inheritance of excess ⁴⁰Ar. Biotite spectra do show nice plateaus and staircase patterns due to partial resetting. Age spectra of K-feldspar of samples JI 5-1, JI 5-2 and JI 5-5 inherit a first age step off scale of the diagram. However as there is no scientific meaning to the exact age of this step the diagrams scale was adjusted such that details in the remaining spectra could still be observed. Figure 38. Stepwise heating age spectra for hornblende, biotite and K-feldspar measurements on location 5. Note the difference in vertical scale. All K-feldspar age spectra show a disturbed pattern coming from excess argon. Biotite shows nice plateau ages and partial resetting in a staircase pattern. Biotite in JI 5-1 shows a clear plateau of 239.30 \pm 2.97 Ma (Figure 38). However, from the inverse isochron it becomes clear that excess ⁴⁰Ar is inherited (Figure 39). Therefore the inverse isochron age of 235.75 \pm 3.89 Ma is used as a best estimate. The step heating age spectrum does show a climbing staircase pattern with a lowest step of 231.93 \pm 0.80 Ma. As excess argon results in overestimating the age, this age is thought to represent an upper limit of the moment of partial resetting. Figure 39. Inverse isochron diagram of bio for JI 5-1. Green dots are used for the isochron calculation and represent the apparent age plateau heating steps. K-feldspar in JI 5-1 shows clear evidence for excess argon in both the age spectrum (Figure 38) and the inverse isochron diagram (Figure 40). Two inverse isochrons were defined, one for the first seven measurements (isochron 1) and one for the last four measurements (isochron 2). Ages for these isochrons are 215.11 ± 5.48 Ma and 233.20 ± 15.72 Ma respectively. However, as the lowest steps of the age spectrum of 203.02 ± 1.02 Ma are lower than the inverse isochron ages, this age is used as the best estimate. Figure 40. Inverse isochron diagram for kfs in JI 5-1. An isochron for the first seven (isochron 1, green dots) and the last four (isochron 2, blue dots) measurements was drawn. Biotite in JI 5-2 shows a clear plateau with an age of 228.73 ± 2.81 Ma (Figure 38). The heating steps included in this plateau do not show evidence for excess argon. Also no partial resetting is observed. K-feldspar in JI 5-2 shows clear evidence of excess argon in both the age spectrum (Figure 38) and the inverse isochron diagram (Figure 41). An inverse isochron was drawn based upon the first part of the heating steps resulting in an age of 190.00 ± 11.25 Ma. The lowest age step of the spectrum with an age of 190.52 ± 0.38 Ma agrees very well with the inverse isochron age and is therefore thought to be the best estimate. Figure 41. Inverse isochron diagram of kfs for JI 5-2. Green dots are used for the isochron calculation and represent the first part of the heating steps. Hornblende in JI 5-3 shows a very clear age spectrum of excess argon inheritance with higher ages in the beginning, lowering towards a plateau with an age of 258.92 \pm 4.92 Ma (Figure 38). A small amount of inherited excess argon in the plateau steps is evident from the inverse isochron diagram (Figure 42). An inverse isochron with an age of 252.58 \pm 8.87 Ma was drawn for the plateau age steps and used as the best estimate. Figure 42. Inverse isochron diagram of hbl for JI 5-3. Green dots are used for the isochron calculation and represent the age plateau steps. K-feldspar in JI 5-5 shows clear evidence for excess argon. The different steps of the age spectrum all vary around the same age (Figure 38). A total fusion age of 241.37 \pm 1.15 Ma with a minimum of 233.76 \pm 1.19 Ma and maximum of 248.77 \pm 0.54 Ma was determined. As the inverse isochron diagram shows a large scatter of the measurements (Figure 43), no isochron could be drawn and the total fusion age is used as a best estimate of the upper limit of the K-feldspar age. Figure 43. Inverse isochron diagram of kfs for JI 5-5. The large scatter of measurements makes it impossible to determine an isochron. Biotite in JI 5-7 shows a clear plateau with an age of 233.26 \pm 2.84 Ma (Figure 38) and no evidence for excess argon. The first three heating steps show a climbing staircase pattern with a lowest age of 221.48 \pm 1.54 Ma, which is thought to be the timing of partial resetting. K-feldspar in JI 5-7 shows a step heating spectrum of a climbing staircase, followed by a convex downward pattern (Figure 38). For these measurements two inverse isochrons could be drawn (Figure 44). An inverse isochron of the climbing part (isochron 1) results in an age of 193.91 ± 20.33 Ma, whereas an inverse isochron of the downward pattern (isochron 2) results in an age of 242.72 ± 5.38 Ma. The latter follows the atmospheric argon line and thus no excess argon is present. Therefore this is thought to represent the cooling age and is used as best estimate. The staircase pattern is thought to represent a partial resetting phase. The lowest age step in the beginning has an age of 229.26 ± 0.53 Ma, which is older than the inverse isochron age of the staircase. Therefore the inverse isochron age is thought to represent the moment of partial resetting at 193.91 ± 20.33 Ma. Figure 44. Inverse isochron diagram of kfs for JI 5-7. Two inverse isochrons were drawn, one for the climbing staircase part of the age spectrum (isochron 1, green dots), and one for the concave downward pattern of the age spectrum (isochron 2, blue dots). ## 5.2. Summary A summary of the above described ages is shown in Table 8. | Sample | Mineral | Cooling age (Ma) | Resetting age (Ma) | Average age (Ma) | |--------|---------|---------------------------------|--------------------|------------------| | JI 1-1 | hbl | 184.28 ± 58.74 | | | | JI 1-3 | kfs | 184.26 ± 7.52 | | | | JI 1-4 | hbl | 273.92 ± 4.26 | | | | | kfs | 217.46 ± 10.94 | | | | JI 2-2 | mica | 418.15 ± 2.45 | | | | | kfs | 353.40 ± 14.62 - 237.33 ± 22.14 | | 295.37 ± 15 | | JI 4-2 | bio | 307.60 ± 1.64 | 304.85 ± 1.02 | | | | kfs | 269.95 ± 5.93 | 199.86 ± 43.37 | | | JI 4-3 | hbl | 403.25 ± 17.89 | | | | | kfs | 263.43 ± 9.97 | 233.26 ± 0.51 | | | JI 4-5 | kfs | 309.34 ± 16.19 | 241.35 ± 15.39 | | | JI 4-7 | bio | 282.91 ± 3.46 | 202.32 ± 2.30 | | | | kfs | 207.44 ± 10.12 | | | | JI 5-1 | bio | 235.75 ± 3.89 | 231.93 ± 0.80 | | | | kfs | 233.20 ± 15.72 | 203.02 ± 1.02 | | | JI 5-2 | bio | 228.73 ± 2.81 | | | | | kfs | 190.00 ± 11.25 | | | | JI 5-3 | hbl | 252.58 ± 8.87 | | | | JI 5-5 | kfs | 241.37 ± 1.15 | | | | JI 5-7 | bio | 233.26 ± 2.84 | 221.48 ± 1.54 | | | | kfs | 229.26 ± 0.53 | 193.91 ± 20.33 | | Table 8. Summary of the described ages. Resetting ages are an upper estimate. ## 5.3. Single grain results For the single grain measurements, thirty replicates of biotite in samples JI 4-2, JI 4-7 and JI 5-1 were fused in a single event with a laser intensity of 80 W, resulting in age ranges as shown in Figure 45 and Figure 46. These samples were chosen based on amount of biotite grains available and correspond to one gneiss (JI 4-2) and two granites (JI 4-7 and JI 5-1). Figure 45 shows the age per grain measurement for each sample. Error bars display a 2 σ error. Colours represent separate age groups that either show a normal distribution within the group or are outliers. Group
differentiation is based on visual grouping. Figure 46 shows a probability density curve of the age distribution. Age groups in Figure 45 agree with the peaks of probable ages in Figure 46. Figure 45. Age distribution of biotite in sample JI 4-2, JI 4-7 and JI 5-1. Colours indicate age groups with either an own normal distribution or indicated as outliers. Figure 46. Probability density distribution of single grain ages for biotite in samples JI 4-2, JI 4-7 and JI 5-1. Different age peaks correspond with the age groups as indicated in Figure 45. For sample JI 4-2 the age range spreads over approximately 45 Ma, from 285.52 ± 1.59 Ma to 331.21 ± 2.82 Ma. On the high- and low end of the range single measurements are present. In the core of the measurements, we can distinguish at least four age groups indicated in Figure 45. Within error, these groups show a similar age with averages from low to high of 300.52 ± 3.14 Ma (green), 305.99 ± 3.56 Ma (orange), 310.35 ± 1.49 Ma (red) and 314.31 ± 2.71 Ma (blue). For sample JI 4-7 the range spreads over almost 120 Ma, from 193.41 ± 11.91 Ma to 310.01 ± 5.55 Ma. On the low end, an extreme outlier is present which deviates more than 40 Ma from the next measurements. Also on the high end an outlier occurs. The core of the measurements can be divided into three different age groups with average ages from low to high of 252.69 ± 29.63 Ma (purple), 267.01 ± 18.37 Ma (green) and 289.19 ± 30.32 Ma (yellow). Sample JI 5-1 shows an age range of almost 25 Ma from 228.20 ± 0.55 Ma to 252.76 ± 1.48 Ma. On both the high and low end of the range four unique measurements occur. The core of the measurements can again be divided into two groups with average ages from low to high of 236.44 ± 1.62 Ma (green) and 242.10 ± 0.87 Ma (yellow). Normal and inverse isochron diagrams of these measurements are shown in Appendix V. The blue dots indicate measurements with relative excess ⁴⁰Ar. This could be either due to excess ⁴⁰Ar caused by partial overpressure during exhumation, or loss of ³⁹Ar due to recoil effects during irradiation (Ching-Hua and Onstott, 1989; Hess and Lippolt, 1986). The relative excess ⁴⁰Ar measurements appear all to be present in the higher age ranges of all three samples, causing an overestimation of the real age. This effect starts to show up on measurements in JI 4-2 with an age over 304.15 ± 0.73 Ma, in JI 4-7 with an age over 265.35 ± 4.98 Ma and in JI 5-1 with an age over 238.04 ± 1.15 Ma. On the low-age side, there is evidence for relative excess ³⁶Ar. There is no clear evidence present for excess ⁴⁰Ar in the lower age range and these ages are thus more reliable. # 6. Thermodynamic modelling results In order to constrain the metamorphic evolution of the rocks addressed in this study, thermodynamic modelling was carried out using Perple_X Connolly (1990) version 6.6.8. (2012). As described in the methodology (Chapter 3), solution models for each of the minerals in a sample are used. These models describe how elements are built into the crystal lattice and the chemistry dependence on pressure and temperature. The models used in this study were chosen for various reasons as described in Paragraph 6.1 and listed in Table 9. The findings of each rock sample are discussed in two paragraphs; first the model outcomes are described and in a second paragraph discrepancies between the modelled and observed results are discussed. Endmember mineral abbreviations used in this study follow Holland and Powell (1998, 2002) and are listed in Table 10. #### 6.1. Solution models All models with the suffix (stx), (stx7) or (stx8) need a specific thermodynamic data file, which is known to give problems when using other solution models without this addition. Therefore these models were dismissed a priori. For consistency within the study, the same solution models are used in each sample, unless the mineral composition and chemistry did require a specifically different model. For amphibole, GITrTsPg is used as it is preferable for use over large pressure ranges due to its limited computational time (solution.dat file, Perple_X package). Other available models for amphibole are Amph(DPW) and cAmph(DP). Amph(DPW) is a more extensive model which takes more endmembers into account and therefore requires much more computational time. A test run was made for sample JI 2-1 to compare the difference between GITrTsPg and Amph(DPW). It appeared that the shape of stability fields varies greatly among the two models, but the assigned stability field for both tests which compares to the stable mineral assemblage in JI 2-1 lies in the same P-T range. A test run with cAmph(DP) was aborted after 18 hours because of the lengthy computational time, making this model unpractical. Although Amph(DPW) could have been used for the models with a relatively small pressure range, in the interest of consistency, GITrTsPg was used for all models except JI 4-6. For this sample, GITrTsPg resulted in stability of amphibole up to unrealistically high temperatures. Therefore Amph(DPW) was used instead. The Bio(TCC) model was used for biotite as it provides better constraints on the Ti substitution than Bio(HP), which is the other model available. Advantages of Bio(HP) are the extension to cover Mn-solutions, but because Mn is not incorporated in many of the other solution models considered, MnO was not considered in the calculations and therefore the choice for Bio(TCC) was preferable. For chlorite, solution models Chl(LWV) and its extended version Chl(HP) with a wider range of endmembers were available. In order to reduce computational time, and because there was no obvious reason to choose Chl(HP) instead, Chl(LWV) was used. The Cpx(I) model was chosen for clinopyroxene. A test run with Cpx(h), the other available model, resulted in unrealistic stability of this phase throughout the entire P-T range whereas Cpx(I) worked fine and only showed stability at P-T conditions where this would be expected. Therefore Cpx(I) was chosen to use in this study. For feldspar, models for mixtures of either all three, or two endmembers are available. In case both plagioclase and K-feldspar are present in the sample, it was chosen to use the three-endmember model 'feldspar', which is the most straightforward model. For a reasonably simple mineral system such as feldspar this is assumed to be the best option (solution.dat file, Perple_X package). In case a sample contains only plagioclase, the model Pl(h) was used, being the only plagioclase model available. K-feldspar did not occur on its own, so no solution model for these minerals was used. For both garnet and orthopyroxene, only Gt(HP) and Opx(HP) were available as all other models had the suffix (stx), (stx7) or (stx8) and could thus not be used together with the models for the other minerals requiring a different thermodynamic data file. Most models for white mica are focussed on phengite. However, as the samples in this study do not contain phengite, these models were dismissed. The models with the broadest chemical composition are Mica(CHA) and Mica(CHA1). The first does not include Ti substitution whereas the latter does. As Ti does not make out an important part of most white mica analysed in this study, Mica(CHA) was used. Only for JI 2-2, where using Mica(CHA) resulted in excessive stability of rutile, Mica(CHA1) was used. For both epidote and ilmenite only one solution model was available and therefore Ep(HP) and IlHm(A) were used to model these minerals respectively. | Target mineral | Solution model | Reference | | |-------------------|----------------|--------------------------------------|--| | Amphibole | GlTrTsPg | Wei and Powell (2003) | | | | Amph(DPW) | Dale et al. (2005) | | | Biotite | Bio(TCC) | Tajčmanová et al. (2009) | | | Chlorite | Chl(LWV) | Holland and Powell (1998b) edited by | | | | | Wagner (2012) | | | Clinopyroxene | Cpx(I) | Gasparik (1984) and (1985) | | | Epidote – Zoisite | Ep(HP) | Holland and Powell (1998, 2002) | | | Feldspar | feldspar | Fuhrman and Lindsley (1988) | | | Garnet | Gt(HP) | Holland and Powell (1998, 2002) | | | Ilmenite | IIHm(A) | Andersen and Lindsley (1988) | | | Orthopyroxene | Opx(HP) | Holland and Powell (1996) | | | Plagioclase | Pl(h) | Newton et al. (1980) | | | White mica | Mica(CHA) | Coggon and Holland (2002) | | | White mica | Mica(CHA1) | Auzanneau et al. (2010) | | Table 9. Solution models used in this study. | Abbreviation | Mineral | Abbreviation | Mineral | |--------------|--------------------|--------------|---------------------| | ab | albite | ilm | ilmenite | | acti | actinolite | kfs | K-feldspar | | amp | amphibole | law | lawsonite | | and | andalusite | Mg-hbl | magnesio-hornblende | | ank | ankerite | mic | microcline | | СС | calcite | mica | white mica | | cel | celadonite | mt | magnetite | | clin | clinochlore | ol | olivine | | срх | clinopyroxene | phl | phlogopite | | crd | cordierite | pl | plagioclase | | CZ | clinozoisite | prl | pyrophyllite | | di | diopsite | q | quartz | | dol | dolomite | ri | richterite | | fa | fayalite | ru | rutile | | Fe-hbl | ferro-hornblende | sid | siderite | | Fe-ts | ferro-tschermakite | sill | sillimanite | | fosm | Fe-osumilite | sph | sphene (titanite) | | gt | garnet | stlp | stilpnomelane | | Hbl | hornblende | ts | tschermakite | | hed | hedenbergite | VSV | vesuvianite | | hem | hematite | wrk | wairakite | | herc | hercynite | zo | zoisite | Table 10. Mineral abbreviations as used in this study. ## 6.2. Amphibolite JI 1-1 model Sample JI 1-1 shows a mineral assemblage of amp + bio + ep + zo/cz + pl + sph + cc + q. As described in detail in the thin section descriptions (Appendix I), calcite rich lumps are present which are being replaced by clayminerals, ep, zo/cz, cc and amp. Within the amphibole hints of instability in some grains were observed whereas others looked very fresh. From EMP measurements on single grains of amphibole as described in
Paragraph 4.3.3 a trend in chemistry from actinolite to ferro-tschermakite is observed. Solution models used for this sample are: GITrTsPg, Ep(HP), feldspar, Bio(TCC), Chl(LWV) and Mica(CHA). Model runs are calculated for a FeO + TiO₂ + CaO + K₂O + MgO + Na₂O + SiO₂ + Al₂O₃ + O₂ + H₂O + CO₂ system with SiO₂ as a saturated component and H₂O + CO₂ as a saturated fluid. As none of the solution models includes MnO in the calculations, this oxide is left out of consideration. As this model includes P, T, O₂ and CO₂ as variables, first the O₂ concentration was defined, setting CO₂ to 0. After that, the desired CO₂ concentration was modelled using a fixed O₂ concentration as found in the previous step (see below for a detailed description). The field of stability of the mineral assemblage of this rock fell around the same P-T conditions for both cases, excluding and including CO₂ concentration, although the shape of the stability fields varied. As it is not possible in Perple_X to model in 3D (eg. P-T- O_2 or P-T- CO_2), seven P-T pseudosections for varying O_2 concentrations were made to define the right amount of O_2 to produce 5% epidote. The right concentration of O_2 for the stability of sample JI 1-1 was chosen based on intersection of modal abundances of minerals present in the sample. Subsequently five pseudosections for varying CO_2 concentrations and a fixed O_2 concentration as found before were made to define the right amount of CO_2 to produce 5% calcite. The right H_2O-CO_2 fluid mixture was also chosen based on intersection of modal abundances of the minerals present in the sample and on chemical compositional isopleths of amphibole and plagioclase. Pseudosections including isopleths for determination of both the O_2 and CO_2 concentration are shown in Appendix VI, Figure 120 till Figure 123 . Figure 47 shows the pseudosections for sample JI 1-1 in the P-T range of 1-20 kbar and 300-800°C, with a O_2 concentration of 0.04 wt% and a H_2O-CO_2 fluid mixture of 0.7 H_2O + 0.3 CO_2 . The stability field which matches the mineral assemblage of the rock is indicated with red in Figure 47 and contains amp +bio + ep + zo + fsp + sph + cc + q. This field ranges from 590 - >800°C and 8 - >19.1 kbar. No upper constraint on this field was modelled as modal abundances of minerals present in the sample and compositional isopleths of these minerals all indicate stability in the lower part of the field <720°C and <11 kbar (see below for details). The mineral assemblage as modelled agrees exactly with the minerals found in the thin section. Isopleths of modal abundances of all pertinent minerals in the sample cluster around 670-720°C and 9-10.5 kbar (Figure 48). The isopleths as shown in all figures display the average EMP measurements of the pertinent minerals in the thin section, and are tabulated in Appendix IV. If two or more populations of measurements are present, these isopleths are all shown. The stability field as indicated in Figure 47 agrees very well with modal abundances and part of the amphibole isopleths which cluster around 625-675°C and 8.6 kbar (Figure 48). As isopleths for biotite and plagioclase follow the same path and do not intersect, they are plotted as a single line which also runs through the stability field around 625°C and 8.6 kbar. Single EMP measurements of plagioclase and amphibole are plotted onto the pseudosection as isopleth intersections in Figure 49 in case of an error smaller than 20°C and 0.75 kbar and tabulated in Appendix IV. Amphibole measurements show a very clear trend from 700°C and 9.6 kbar towards 475°C and 2.9 kbar. As only retrograde minerals remained in the sample, only the retrograde path can be determined. Peak conditions derived from these single EMP measurements are 10.9 kbar and 730°C represent the minimum peak conditions the rock has experienced. Figure 47. Pseudosection for JI 1-1 with $O_2 = 0.04$ and $CO_2 = 0.3$. Stable mineral assemblage amp + bio + ep + zo/cz + pl + sph + cc + q is indicated with the red field. Phase boundaries are indicated with coloured lines and mineral assemblages of most fields are indicated. Figure 48. Isopleths of amp, bio and pl and modes of the stable mineral assemblage of JI 1-1. Figure 49. Separate EMP measurements plotted on the pseudosection of sample JI 1-1. Amphibole measurements show a very clear trend from 700°C and 9600 bar towards 475°C and 2900 bar. ## 6.2.1. JI 1-1 model discussion For sample JI 1-1 the model had to take into account four variables, namely P, T, O_2 and CO_2 . Therefore assumptions had to be made in order to run the model as only modelling in 2D is possible. The most important assumption made is that the effect of the O_2 concentration on the minerals is not influenced by a change in $CO_2 - H_2O$ fluid mixture. Either this assumption or the assumption that the effect of CO_2 concentration on the minerals is not influenced by a change in O_2 concentration had to be made in order to specify either O_2 or CO_2 and model the other. The O_2 concentration was fixed based on the intersect of modal abundance isopleths and compositional isopleth intersections. The O_2 concentration at which a closest approximation of an intersect of all these isopleths occurred was used for further modelling. However, a true intersection was not achieved (Appendix VI, Figure 120 and Figure 121). By assuming that the effect of the O_2 concentration is not affected by a change in CO_2 concentration, a better fit for the mineral modes was not found. A more preferable, but in the scope of this project too time consuming, option is to adopt an iterating process on this method. By first defining a 'best' O_2 concentration and using this to model the 'best' CO_2 concentration, the first step of this process is achieved. Subsequently the best CO_2 concentration can be used to again model with different O_2 concentrations and see if the best fit of isopleth intersections can be further narrowed down. By continuing this process a better fit could be found in P-T- O_2 - CO_2 space. The model outcome agrees very well with the observed mineral assemblage of amp + bio + ep + zo/cz + pl + sph+ cc + q in the thin section. Chemical compositions reasonably well reproduced in the model with compositional isopleths coming together within a 50°C and 0.2 kbar range. As assumptions are made with each step of the modelling process, this is quite a good achievement. Also mineral modes agree fairly well in the model with thin section observations. Except amphibole, as for this mineral the maximum mode modelled does not exceed 52%, whereas the sample in reality contains 60%. The discrepancy between the two could be caused by the large trend in amphibole composition which is visible in Figure 50. As not all amphibole is still stable in the sample, grains unstable cause overestimation from the thin Figure 50. P-T path of sample JI 1-1. As only retrograde minerals remained in the sample, no details on the prograde path can be given. section, causing the discrepancy. All mineral modes cluster together within a range of 50° C, from $670 - 720^{\circ}$ C, except for calcite which is stable in the right amounts approximately 50° C lower. 2.5% calcite would be stable in the same range as the other minerals, which is half of the amount observed in thin section. This discrepancy could be ascribed to the assumptions made to determine the O_2 and CO_2 concentrations as described above. Figure 50 shows the P-T path which is based on the stability field and single EMP measurements with minimum peak conditions of 10.9 kbar and 730°C. As shown in Figure 17, only a part of the amphibole population is dated by 40 Ar/ 39 Ar dating. This part corresponds to the amphibole above 600°C in the model, which is above the assumed closure temperature of $450 - 525^{\circ}$ C. Therefore cooling ages rather than forming ages are found. ## 6.3. Garnet amphibolite JI 2-1 Sample JI 2-1 has a mineral assemblage of amp + gt + pl + zo + ru + cc + cel + sph + q. As described in detail in the thin section descriptions (Appendix I) this mineral assemblage is not in equilibrium. Garnet is partially replaced by amphibole and plagioclase and calcite occurs in the pressure shadow of the garnet. Therefore two consecutive 'stable' mineral assemblages are interpreted and modelled, namely: amp + gt + pl + cel + q (early) and amp + pl + zo + ru + cc + sph + cel + q (main). Solution models used for this sample are: GITrTsPg, Gt(HP), feldspar and Mica(CHA). Model runs are calculated for a FeO + TiO₂ + CaO + K_2O + MgO + Na_2O + SiO₂ + Al_2O_3 + H_2O (+ CO_2) system with SiO₂ as a saturated component and H_2O or H_2O + CO_2 as a saturated fluid. As the Gt(HP) model is the only one that includes MnO, this oxide is left out of consideration to prevent overestimating garnet stability. Because no distinction can be made between Fe²⁺ and Fe³⁺ in XRF and EMP measurements, Fe_{total} is used and assumed to all be Fe²⁺. Therefore, no epidote and only pure clinozoisite could be modelled. Figure 51 and Figure 52 show pseudosections for sample JI 2-1 in a P-T range of 1-15 kbar and 300-800°C, with a pure H_2O fluid and a $0.8~H_2O+0.2~CO_2$ fluid mixture, respectively. The stability field of the early mineral assemblage is indicated with a red field in Figure 51. This assemblage of hbl + gt + pl + cel + sph +q occurs between 625 - 725°C and 10.1 - >15 kbar. The model was not extended to higher pressures in an attempt to identify and upper boundary, because the modal abundances of minerals present in the sample and compositional isopleths of these minerals all indicate stability in the lower part of the field (see below for details). The modelled mineral assemblage contains sphene (titanite), while this mineral was not expected to be stable in the early assemblage as the grains in the thin section look very
fresh and texturally late, overgrowing mainly amphibole grains, and were therefore ascribed to later growth. The stability field of the main assemblage is indicated in red in Figure 52 and shows a modelled mineral assemblage of hbl + ts + pl + zo + cel + sph + cc + q. It ranges from 610 - 635°C and 8.9 - 10.4 kbar. This assemblage matches the observed assemblage in thin section except for rutile. However, rutile appears 1 kbar lower or 40°C higher than the indicated field, so this is not thought to be a major mistake according the assumption that had to be made in order to model the pseudosection. As it is not possible in Perple_X to model in 3D (e.g., P-T-CO₂), eleven P-T pseudosections for varying CO_2 concentrations were produced. In Figure 53, the stable mineral assemblage amp + pl + sph \pm gt \pm cc is displayed for each of these pseudosections. A shift can be observed towards higher temperatures with increasing CO_2 concentrations, with approximately 200°C difference between CO_2 = 0.05 and CO_2 = 0.9. The assumed concentration of CO_2 in the fluid for the stable assemblage of sample JI 2-1 was chosen based on modal abundances of minerals present in the sample and on compositional isopleths of amp and pl. These data are shown in Appendix VI. A best fit of isopleth intersections was derived for CO_2 = 0.2. The isopleths as shown in all figures (Figure 54 and Figure 55) display the average EMP measurements of the pertinent minerals in the thin section, and are tabulated in Appendix IV. If two or more populations of measurements are present, isopleths are shown for each of them. The stability fields as indicated in Figure 51 and Figure 52 are in agreement with the observed modal abundances, which cluster around 640-670°C and 10.1-10.7 kbar for $CO_2 = 0$ (Figure 54) and around 600-645°C and 9.4-10.1 kbar for $CO_2 = 0.2$ (Figure 55) and the mineral chemistry of gt, amp and pl (Figure 54 and Figure 55). Isopleth intersections at $CO_2 = 0$ for amp and gt cluster around 650-680°C and 9.4 kbar, whereas for pl two intersections are present around 650°C; 9.5 kbar and 535°C; 10.3 kbar. At $CO_2 = 0.2$ isopleths of amphibole do not intersect but narrow between 600-660°C and 8.7-9.7 kbar. Plagioclase isopleths intersect again in two spots at 625°C; 9.2 kbar and 500°C; 4.5 kbar. Single microprobe measurements are plotted in the pseudosections as isopleth intersections in case of an error smaller than 20 °C and 0.5 kbar. The garnet and albite measurements, which are assumed to represent the early stable assemblage, were plotted in the pseudosection for $CO_2 = 0$; the amphibole and plagioclase measurements are representative for the retrograde part of the metamorphic history where a CO_2 fluid was present and were therefore plotted in the pseudosection for $CO_2 = 0.2$. All stability fields are displayed on the latter in Figure 56. Figure 51. Pseudosection for JI 2-1 with CO_2 = 0. Stable mineral assemblage of hbl + gt + pl + mica + sph + q \pm zo is indicated with the red field. Phase boundaries are indicated with coloured lines and mineral stability of most fields are indicated. Note that the names used for amphiboles and micas are not true endmembers but rather nomenclature based on chemistry after Leake et al. (1997) and Rieder et al. (1998). Figure 52. Pseudosection for JI 2-1 with $CO_2 = 0.2$. Stable mineral assemblage of hbl + ts + pl + mica + zo + sph + cc is indicated with the red field. Phase boundaries are indicated with coloured lines and mineral stability of most fields are indicated. Note that the names used for amphiboles and micas are not true endmembers but rather nomenclature based on chemistry after Leake et al. (1997) and Rieder et al. (1998). ## Mineral stability in P-T-CO2 Figure 53. Stability fields of the mineral assemblage amp + pl + sph \pm gt \pm cc at different CO₂ fluid concentrations. CO₂ concentrations are based on a CO₂ + H₂O mixture with a total of 1. With increasing CO₂ content a shift of stability towards higher temperatures is observed. Figure 54. Mineral modes and isopleths of amp, gt and pl. Intersections of isopleths and modal abundances correlate very well to the assumed stability field. Figure 55 (top). Mineral modes and isopleths of amp and pl. Intersections of isopleths and modal abundances correlate very well with the assumed stability field. Figure 56 (right). Stability of EMP measurements, displayed on the pseudosection for $CO_2 = 0.2$. ## 6.3.1. JI 2-1 model discussion For sample JI 2-1 two metamorphic stages were identified on the basis of textural information. An early peak metamorphic assemblage of amp + gt + pl + cel + q and a main assemblage of amp + pl + cz + ru + cc + sph + cel + q, (almost completely) excluding garnet was present. The most important assumption for this model is that the whole rock chemical composition did not change through time. However, with the introduction of a CO_2 fluid, it can be expected that other changes in the chemistry occurred as well as an active fluid flow took place, being able to transport molecules. Because isopleth intersections and mineral mode intersections all agree within a range of 30°C and 1 kbar, the assumption appears to be justified. The only discrepancy observed is the modelled amount of amphibole, which does not exceed 60% and is thus slightly (6%) lower than the observed modal abundance. Another assumption is that the fluid was saturated in the sample. However, as garnet is not broken down completely, it is probable that not enough fluid was present to form the retrograde hydrous phases such as biotite or amphibole from the anhydrous garnet, and the assumption of fluid saturation may not be entirely justified during retrogression. For the main mineral assemblage, the most suitable fluid composition in terms of CO₂ - H₂O proportions was constrained based on the best fit of compositional isopleth intersections for amphibole and plagioclase, in combination with the modal abundances. However, this best fit still resulted in a range of 75°C and 2 kbar for isopleths of amphibole, with no intersection. For plagioclase and the mineral modes, almost perfect intersections at a single point were obtained. As it was assumed that the clinozoisite present was all the pure endmember zoisite, no O2 was added in the model in order to model epidote. However, from EMP measurements we know that not all of the zoisite is the pure endmember. Adding O2 to the system might cause the stability fields to shift slightly and also provide a better approximation of intersection of the amphibole compositional isopleths. In addition, the amount of modelled amphibole might deviate from thin section observations because 2% garnet is preserved as relisc, but not modelled as part of the main assemblage. As part of the garnet is replaced by amphibole, a slight shift in mineral modes might happen when all garnet is gone. The choice of amphibole solution model may also have played a role. A single test was carried out, in which stability field boundaries appeared to change drastically, although the P-T conditions at which the mineral assemblage is stable are comparable between both models. Because modelling using Amph(DPW) turned out to be too computationally expensive, the simpler GITrTsPg model was used. Single EMP measurements are plotted onto the pseudosection in order to define a P-T path as shown in Figure 57. The shape of the P-T path is based on the single EMP measurements and the stability fields before influx of CO_2 in green and with presence of CO_2 in red. As the moment of influx of the CO_2 fluid that allowed for calcite to appear in the main mineral assemblage is not known, measurements are plotted for both the pure water case and the $0.2 CO_2$ case. For garnet it appears that stability is shifted towards $50-100^{\circ}$ C higher temperatures with the presence of CO_2 in the fluid. However, as amphibole measurements all coincide with garnet without the presence of CO_2 , it is more likely that garnet was formed entirely before the influx of CO_2 . Based on the stability of amphibole, the timing of CO_2 influx is determined at 655° C and 10 kbar and indicated in Figure 57. Plagioclase measurements are stable at higher P-T conditions than garnet, both in the case of presence and absence of a CO_2 fluid. Therefore, all but the last four plagioclase measurements along the path are thought to represent the prograde part of the P-T path with peak conditions of 760°C and 13.6 kbar. As the plagioclase grains generally seem more unstable than amphibole (Appendix IV), it is likely that they were formed during the prograde rather than the retrograde part of the metamorphic history. Figure 57. P-T path of sample JI 2-1. Indicated are the stability field before CO_2 influx in green and after in red and the moment of CO_2 influx together with single EMP measurements. #### 6.4. **Gneiss JI 2-2** Sample JI 2-2 shows a mineral assemblage of chl + mica + pl + kfs + q + ru + metal oxides and an accessory amount of zr and ap with relics of gt. This mineral assemblage is modelled using the following solution models: Bio(TCC), Mica(CHA1), feldspar, Chl(LWV), Cpx(I) and Gt(HP). Model runs are calculated for a FeO + TiO₂ + CaO + K_2O + MgO + Na₂O + SiO₂ + Al₂O₃ + H₂O system with SiO₂ used as a saturated component and H₂O as a saturated fluid. MnO was left out of the model as only Gt(HP) incorporates MnO and including it will therefore lead to overestimating the stability of garnet. Figure 58 shows the pseudosection as modelled for JI 2-2 in the P-T range of 0.001-15 kbar and 300-800°C. As it was determined from the thin section that the chlorite present used to be biotite, the stable mineral assemblage bio + mica + pl + kfs + q + ru is modelled and indicated with a red field which ranges between 410 - 725°C and 0.001 - 12.5 kbar. The green field indicated in Figure 58 is thought to be the
present stability as biotite is replaced by chlorite and tiny hints of clinozoisite can be found in the thin section. This field ranges between 300 - 360°C and 0.9 - 3.1 kbar. From the garnet relics, an earlier mineral assemblage of gt + bio + mica + pl + kfs + q is assumed. The stability field corresponding to this assemblage is indicated in blue and ranges between 650 - 715°C and 11.5 - 15 kbar. In order to assess the effect of the amount of water in the system, and to determine the amount of water used to stabilize the above mentioned stability fields, $P-H_2O$ pseudosections were produced for three different temperatures, 400, 600 and 800°C. Figure 59 shows a $P-H_2O$ diagram with H_2O ranging from O-1 wt%. Lines in the diagram indicate the amount of H_2O used in Figure 58 to form the stable mineral assemblage at the given P and P conditions. More water at the given conditions results in excess water. The amount of water used by the model varies strongly throughout the pseudosection. The red stability field as indicated in Figure 58 corresponds to a P0 concentration of roughly P0.4 - 0.5 wt%. The availability of water strongly affects the stability of garnet and aluminosilicates: at decreasing water content (0.2 – 0.4 wt%), the stability of garnet starts at lower pressure and temperature, whereas the aluminosilicates are not stable at all at water contents higher than 0.4 wt%. However, as we do not have specified constraints on the realistic amount of water in the model, water saturation was assumed for all models. The feldspars in this rock are subdivided in primary (albite) and secondary (K-feldspar) minerals based on their stability. Compositional isopleths of mica, biotite and primary and secondary feldspar are shown in Figure 60. Isopleths for mica intersect within the indicated stability field in red at 625°C and 9.75 kbar. Isopleths for feldspar vary in a large range and are thus displayed as 'isopleth fields' rather than lines. These fields for primary feldspar overlap in an approximately 40°C wide band at the lowest pressure towards 90°C at the highest pressure, ranging from ~3 to >15 kbar as indicated in Figure 60. Isopleths of secondary feldspar agree with measured chemistry at least between 0.001 and 15 kbar with increasing temperatures from 400°C at 1 bar up to 550°C at 15 kbar. Furthermore it is assumed that the ratio Fe/Mg in chlorite in the sample is the same as in the modelled biotite. So EMP measurements of these elements in chlorite are compared with isopleths of biotite. This data falls along a line as indicated in Figure 60. As chlorite analyses are compared with modelled biotite, this data might be slightly off and will only indicate an area of assumed stability. Figure 61 shows the modal abundances of the stable mineral assemblage in the thin section. Modes run parallel in a 150°C wide band around and parallel to the indicated stability field in red in Figure 58. This band overlaps with the mica isopleth intersection and the overlap of isopleths of primary feldspar. Modal abundances of mica and quartz also intersect within the green field. Single EMP measurements of white mica based on K and Al isopleth intersections, and primary feldspar and secondary feldspar based on K and Na isopleths intersections are displayed in Figure 62 in case of an error smaller than 20°C and 0.5 kbar and tabulated in Appendix IV. Figure 58. Pseudosection of JI 2-2. Stable mineral assemblage of bio + mica + pl + kfs + ru + q is indicated with the red field. Stable mineral assemblage of chl + mica + ab + mic + q + cz + sph is indicated with the green field. Stable mineral assemblage of gt + bio + mica + pl + kfs + q + sph is indicated with the blue field. Important phase boundaries are indicated with coloured lines and stable mineral assemblages of most fields are indicated. Figure 59. Water content used in the pseudosection of Figure 58 at given pressure and temperature conditions. The stability field indicated in red in the former figure corresponds to a water content of roughly 0.4 – 0.5 wt%. Figure 60. Isopleths of mica, biotite, primary feldspar and secondary feldspar. As data of the feldspars vary over a large range, stability fields are indicated. The mica isopleth is thought to be the most reliable due to instability of the other minerals and thus distortion of the measurements. Figure 61. Modal abundances of sample JI 2-2. Modes focus in a parallel band around the stability field as indicated in Figure 58. Figure 62. Single EMP measurements of mica and primary feldspar based on isopleth intersections. The stability field of secondary feldspar is indicated as isopleths of Na and K run parallel. #### 6.4.1. JI 2-2 model discussion Sample JI 2-2 contains 5% chlorite with relict parts of biotite inside the grains. Therefore, it was assumed that biotite is almost completely replaced by chlorite, which results in two metamorphic stages. From a chemistry point of view this assumption makes sense as plagioclase is unstable, whereas K-feldspar is stable. With replacing biotite by chlorite, potassium got free and stabilized K-feldspar and muscovite. However, it is unclear what phase took up the sodium that was released from the decay of plagioclase. Although changes in the chemistry are obvious, for modelling the assumption was made that the chlorite chemistry resembles that of the former biotite and thus the stable mineral assemblage was chl/bio + mica + pl + kfs + q + ru + metal oxides. This is probably the reason why modal abundances for biotite and K-feldspar are 150°C apart and do not intersect with the modes of other minerals present in the sample. For feldspars, a subdivision was made between potassium poor (primary) and potassium rich (secondary) feldspars. For the primary feldspars, compositional isopleth intersections could be drawn. Based on freshness of the grains from BSE (backscattered electron images), a sequence from most to least disturbed chemistry was made. This corresponds very well with the prograde part of the P-T path in Figure 63. This part of the path also corresponds with the compositional isopleth of biotite. Peak metamorphic conditions are displayed in primary feldspar chemistry and the location of the blue stability field including garnet. The retrograde part of the path is based on mica compositional isopleth intersections and the stability field of the present mineral assemblage with biotite (red) and with chlorite (green). The red stability field is based on the presence of rutile. As this mineral is thought to be a late ingrowth, and part of the mica isopleth intersections fall at slightly higher pressures, a wiggle in the P-T path is interpreted. Compositional isopleths of the secondary feldspars run parallel, almost isothermal. Therefore the shape of the P-T path is thought to run along a fairly isobaric line, e.g. perpendicular to the secondary feldspar isopleths. Peak metamorphic conditions are found at 720°C and 14.25 kbar, which falls within the garnet stability field. Only small amounts of garnet are still present in the sample, whereas sample JI 2-1 contains much more remains of garnet. This could have three reasons; 1) either the rock has only been in garnet stability for a relatively short amount of time and therefore not much garnet was formed, 2) enough water was available to enable retrograde reactions and breakdown of garnet, or 3) chemistry was not favourable to form garnets. With less than 1 wt% MnO, CaO and MgO and only 2 wt% FeO, a combination of the latter two is assumed. For ⁴⁰Ar/³⁹Ar dating, only mica grains with a potassium content between 0.897 and 0.926 p.f.u. were used. This corresponds to the mica EMP measurements in Figure 63 above 625°C. As this temperature lies well above the assumed closure temperature of mica of 325 – 375°C, cooling ages rather than forming ages were found. Figure 63. P-T path of sample JI 2-2. #### 6.5. Granulite JI 4-6 Sample JI 4-6 shows a mineral assemblage of gt + amp + pl + kfs + bio + ep + q + ilm + ap and accessory amounts of ru and al. This mineral assemblage is modelled using the following solution models: Ep(HP), Gt(HP), Amph(DPW), Bio(TCC), feldspar, Mica(CHA), IlHm(A), Cpx(I) and Opx(HP). Model runs are calculated for a FeO + TiO₂ + CaO + K_2O + MgO + Na₂O + SiO₂ + Al₂O₃ + H₂O + O₂ system with SiO₂ used as a saturated component and H₂O as a saturated fluid. MnO was left out of the model as only Gt(HP) incorporates MnO. Leaving MnO in would lead to overestimating the stability of garnet. The amount of O₂ added to the system was determined based on the best fit of modal abundance isopleths of the stable mineral assemblage and chemical compositional isopleths of garnet and shown in Appendix VI (Figure 129 and Figure 130). A best fit was found with 0.4 wt% O₂. Amph(DPW) was used instead of GITrTsPg because this resulted in a better fit for compositional isopleths of amphibole and the absence of amphibole at unrealistic high temperatures. Figure 64 shows the pseudosection as modelled for JI 4-6 in the P-T range of 1-25 kbar and 500 -1000° C. It has a mineral assemblage of gt + amp + pl + bio + ep + q + ilm \pm mt and ranges between 630 -730° C and 8.2-14.8 kbar. The only deviation of this assemblage with the one observed in the thin section is the absence of kfs. In this pseudosection, kfs is only observed where cpx is present and amp is absent. In order to assess the effect of the amount of water in the system, and to determine the amount of water used to form the above mentioned stability fields, $P-H_2O$ pseudosections were produced for three different temperatures, 600, 700 and 800°C. Figure 65 shows a $P-H_2O$ diagram with H_2O ranging from O-2 wt%. Lines in the diagram indicate the amount of H_2O used in Figure 64 to form the stable mineral assemblage at the given P and T conditions. Larger amounts of water result in excess water. The amount of water used by the model varies strongly
throughout the pseudosection. The red stability field as indicated in Figure 64 corresponds to a H_2O concentration of roughly 1.3-1.7 wt%. The availability of water strongly affects the stability of garnet. With decreasing water content (0.2 wt%), the stability of garnet starts at lower pressure and temperature (5 kbar and 100°C). Compositional isopleths of garnet, amphibole, feldspar and biotite are shown in Figure 66. Garnet isopleths cluster very nicely at 780°C and 8.8 kbar. For amphibole the magnesium isopleth cannot be reasonably displayed and is therefore left out of the image. The compositional isopleths of Ca, Na and Fe lay parallel below 675°C and 8 kbar. However, the chemical composition of amphibole in the sample is not well reflected as both for Na and Fe, amounts are too high whereas for Ca they are too low. Feldspar shows two stable groups, one with a roughly 0.4 Na + 0.6 Ca composition and one almost pure K-fsp. Isopleths for the first group intersect at 560°C and 4.8 kbar. For the pure K-fsp stability occurs over 850°C and 21 bar. This seems unrealistic high compared to other samples from the same region. A close to pure K-fsp stability is also observed around 730 – 850°C and 9 – 10 kbar. The biotite Mg + Fe isopleth falls within the same range as the other isopleth intersections. Figure 67 shows the modal abundances of the stable mineral assemblage ep, bio, gt, kfs, pl, q and ilm. This data clusters around $740-760^{\circ}\text{C}$ and 13-15.4 kbar, which is at slightly higher P-T conditions than the stability field of the mineral assemblage. Amphibole shows only a maximum of 10% modal abundance in the model whereas 25% is observed in thin section. Therefore amphibole is left out of the image. Single EMP measurements of feldspar, garnet, amphibole and biotite are plotted on the pseudosection as isopleth intersections in Figure 68 in case of an error smaller than 20°C and 0.75 kbar and tabulated in Appendix IV. As isopleths for biotite and amphibole are parallel over a large range, stability fields for these minerals are displayed. Figure 64. Pseudosection of JI 4-6. Stable mineral assemblage of ep + bio + amp + pI + gt + ilm + q \pm mt is indicated with the red field. Phase boundaries are indicated with coloured lines and stable mineral assemblages of most fields are indicated. Figure 65. Water content used in the pseudosection of Figure 64 at given pressure and temperature conditions. The stability field indicated in red in the former figure corresponds to a water content of roughly 1.3 - 1.7 wt%. Figure 66. Isopleths of gt, amp, fsp and bio of sample JI 4-6. Figure 67. Mineral modes of ep, bio, gt, kfs, pl, q and ilm as observed in the thin section. Amphibole is not shown as modes do not exceed 10% whereas 25% is observed in thin section. Figure 68. Single EMP measurements of feldspar, garnet, amphibole and biotite. For amphibole and biotite isopleths are generally parallel, so fields of possible stability are indicated. The red field indicates the stable mineral assemblage of ep + bio + amp + pl + gt + ilm + mt + q. #### 6.5.1. JI 4-6 model discussion Sample JI 4-6 has a stable mineral assemblage of gt + amp + pl + kfs + bio + ep + q + ilm + ap and contains only a small amount (1%) of epidote. In order to model this epidote, a certain amount of O_2 was added in the model in order to transform Fe^{2+} to Fe^{3+} . As the amount of O_2 is determined based on visual best fit of modal abundances of pertinent minerals in the sample and chemical compositional isopleths of garnet, discrepancies in the model may arrive. However, the choice of not modelling epidote because of the low modal abundance and thus not including O_2 proved to influence the model extensively. This leads to lower pressure estimates for both garnet stability and the stability field of the pertinent mineral assemblage. The higher pressure estimates when including epidote agree very well with the estimates of other samples from the same location (e.g. JI 4-3 (Huijgen, 2015.) and the entire Jinshuikou group (this study, Figure 75). Therefore it was chosen to use the model including epidote. As Bio(TCC), Amph(DPW) and Ep(HP) all three use Fe³⁺ in the model, but it is not taken into account in Gt(HP), it can be expected that this leads to underestimation of the stability of Fe-rich garnet in the sample. A correction for this would result in higher pressure stability of garnet and therefore a shift in the P-T path which would agree with other P-T paths within the Jinshuikou group. The inability to correctly model isopleths for magnesium in amphibole, plus the too high estimates of Na and Fe isopleths and too low estimate of Ca isopleths may be related to each other as they all exchange for each other in the mineral B-site. When modelling without addition of O_2 , these discrepancies were lower but still present. Therefore part of it can be ascribed to the introduction of Fe³⁺, but not all. The reason for the remaining discrepancy and for the underestimation of stability with 15% is unknown. Peak estimates are based on garnet stability with an average at 800°C and 10 kbar (Figure 69). As explained above, with better constraints of Fe³⁺ in garnet, this estimate may shift towards higher pressures. Feldspar and amphibole are considered to be retrograde minerals and are therefore used to determine the retrograde part of the P-T path. Although part of the data seems to fit very precise, intersection of modal abundances and the position of the stability field do not agree with each other and with the rest of the data. A solution for this problem was not found so far. Figure 69. P-T path of sample JI 4-6. Garnet stability is thought to represent peak conditions. The shape of the path is based on garnet, amphibole and feldspar single measurements. #### 6.6. Hornblende hornfels JI 5-3 Sample JI 5-3 shows a mineral assemblage of amp + pl + bio + ru + chl + q. This mineral assemblage is modelled using the following solution models: GlTrTsPg, Bio(TCC), Pl(h), IlHm(A), Chl(LWV), Opx(HP), Mica(CHA) and Cpx(I). Model runs are calculated for a FeO + TiO₂ + CaO + K₂O + MgO + Na₂O + SiO₂ + Al₂O₃ + H₂O system with SiO₂ used as a saturated component and H₂O as a saturated fluid. MnO was left out of the model as none of the solution models used incorporates MnO. Figure 70 shows the pseudosection as modelled for JI 5-3 in the P-T range of 0.001-15 kbar and 250-750°C. The stability field which corresponds best with the observed mineral assemblage in thin section is indicated with a red field and contains amp + bio + pl + ru + chl + q. It ranges between 490 – 625°C and 2.3 - 7.2 kbar. The modelled mineral assemblage is exactly the same as the one observed in the thin section. In order to assess the effect of the amount of water in the system, and to determine the amount of water used to form the above mentioned stability fields, $P-H_2O$ pseudosections were produced for three different temperatures, 500, 600 and 700°C. Figure 71 shows a $P-H_2O$ diagram with H_2O ranging from O-3 wt%. Lines in the diagram indicate the amount of H_2O used in Figure 70 to form the stable mineral assemblage at the given P and T conditions. Larger amounts of water results in excess water. The amount of water used by the model varies strongly throughout the pseudosection. The red stability field as indicated in Figure 70 corresponds to a H_2O concentration of roughly 1.2 wt%. The availability of water strongly affects the stability of opx and aluminosilicates. With decreasing water content, opx and aluminosilicates become stable. Above 1.2 wt% H_2O these phases are not stable at all. Compositional isopleths of amphibole, plagioclase rims and biotite and mineral modes of all stable minerals in the sample are shown in Figure 72. Isopleths of Mg and Fe of amphibole do not intersect or come close to the isopleths of Ca and Na. However the latter two do intersect at 525° C and 6 kbar. Isopleths of plagioclase follow the same path as sodium and calcium exchange for eachother. Isopleths of biotite fall between $580-680^{\circ}$ C and 6.75-8 kbar. Intersection of modal abundances of the stable mineral assemblage amp + pl + bio + chl + ru + q occurs roughly at 525° C and 7.5 kbar. Intersections of isopleths and mineral modes all occur at slightly higher (± 0.75 kbar) than the stability field of JI 5-3 as indicated in Figure 70. Single EMP measurements of hornblende, biotite and plagioclase rim and core are plotted on the pseudosection as isopleth intersections in Figure 73 in case of an error smaller than 20°C and 0.5 kbar and are tabulated in Appendix IV. For hornblende, only the measurements of the core of the phenocrysts are displayed as other measurements do not show stability in this model. As isopleths for feldspar are parallel over a large range, stability fields for this mineral are displayed, subdivided into rim and core measurements. Figure 70. Pseudosection of JI 5-3. Stable mineral assemblage of amp + pl + bio + chl + ru + q is indicated with the red field. Important phase boundaries are indicated with coloured lines and stable mineral assemblages of most fields are indicated. Figure 71. Water content used in the pseudosection of Figure 70 at given pressure and temperature conditions. The stability field indicated in red in the former figure corresponds to a water content of roughly 1.2 wt%. Figure 72. Isopleths of amphibole, plagioclase and biotite and modal abundances of all stable minerals within the sample. Isopleths of plagioclase are based on EMP measurements of plagioclase rims. Figure 73. EMP measurements of hornblende, biotite and plagioclase rim and core plotted on the pseudosection based on isopleth intersections. Plagioclase measurements occur throughout the displayed fields. #### 6.6.1. JI 5-3 model discussion Sample JI 5-3 is a hornblende hornfels and should therefore be stable in the range of 450 - 650°C and
<3 kbar. The stability field of the mineral assemblage of this rock of amp + pl + bio + chl + ru + q falls partly within this ranges with the lowest pressure stable hornblende limits. However, measurements of the phenocryst cores (Figure 73) and isopleths of biotite and modal abundances (Figure 72) all intersect at higher pressure and temperature conditions. Measurements of rims of hornblende phenocrysts and hornblende in the matrix are not stable at all in the modelled pseudosection. However, a better fit could not be obtained. Therefore a P-T path is made based on hornblende core measurements which probably display the chemistry of the protolith, the stability field of the rock within the hornblende hornfels range of conditions and the chemistry of plagioclase core and rim measurements. However, as the real conditions of the rock could not be modelled, this path is less reliable and should be used with caution. Figure 74. P-T path of sample JI 5-3 from a protolith amphibolite to a hornblende hornfels. # 7. Discussion In this chapter a discussion of the methodology used and the results obtained will be given. Furthermore, a geological interpretation and suggestions for future research will follow. #### 7.1. Discussion of methodology Significance and interpretation of the data presented in this study strongly depends on the used methodology. Some of the choices made were based on well thought-through reasoning, whereas others were not intended but inevitable, a discussion will follow on the implications of these choices. #### 7.1.1. Fieldwork and sample selection Due to the limited time available in the field, only four locations over a large spatial distance of \pm 400 km within the Jinshuikou group were sampled. At three locations metamorphosed rocks were sampled. Unfortunately no metamorphosed rocks apart from one hornfels were sampled from the easternmost location. At these four locations a variety of amphibolites and biotite gneisses were sampled that could be used to carry out 40 Ar/ 39 Ar dating and thermodynamic modelling. In particular the amphibolites were quite weathered and the surface parts of the rocks had to be removed before XRF measurements could be done in order to minimize the effects of the altered chemistry of the weathered parts. However, removing more material, revealing the deeper inside of the rock would have resulted in samples that were too small for obtaining a realistic whole rock chemical composition. As the grain size was relatively large (~1mm average) this will result in inhomogeneity problems. Therefore the XRF measurements which are the basis of the thermodynamic modelling may still contain a slight weathering signature which could have an influence on the outcome of the models. For instance more water-bearing clay minerals could be present on the outside of the rock when compared with the water-poor inside. A complication of sampling biotite/chlorite gneisses with a general mineral assemblage of bio + pl + kfs + q for thermodynamic modelling was the limited amount of minerals in the sample to model. This makes it very hard to define good constraints on the P-T estimates. More mafic samples would have simplified the job of modelling P-T estimates of the Jinshuikou group. However, time constraints in the field made it impossible to search for more mafic samples both at the same sample locations and at a larger number of locations in the Jinshuikou group. For argon dating, preferably a rock with three different potassium bearing minerals should be selected in order to constrain an uplift history for the rock. However, such kinds of rocks were not found and only one or two different potassium bearing minerals could be separated per sample. #### 7.1.2. Dating limitations The argon dating system is suitable for the 'mid-range' temperature spectrum of the thermal history of a rock as maximum closure temperatures are at 525 °C for hornblende and lower for the other K-bearing minerals. It therefore gives only a small part of the thermal history of the samples based on the P-T-t paths derived in Chapters 5 and 6. As shown in Chapter 4 and 6, the chemistry of amphiboles and micas which are used for dating are determined to have conditions that relate to higher temperatures than their closure temperature. It is therefore certain that cooling rather than forming ages were determined. As is shown by stepwise heating patterns and inverse isochrons in Chapter 5, all but the biotite samples give strong evidence for the presence of excess argon. Ages are calculated based on the inverse isochron and are therefore more accurate but less precise than when plateau ages can be used. Fine- tuning the ages could be done when the exact influx of excess ⁴⁰Ar is known (Smye et al., 2013). A possibility for doing this is by measuring the amount of ⁴⁰Ar in a K-lacking mineral such as plagioclase (personal communication with Andriessen (2015)). Defining the amount of excess argon in the surroundings of the samples by this method will enable us to make a better estimate of the ages as the source of the isotopes is better constrained. It is therefore advisable to implement this method on the available samples in further research. In this case excess argon was encountered in all rock samples of the entire research area. Therefore, one would expect excess argon to be present in all minerals and not just in some. However, evidence for excess argon in biotite is not visible. Reason for this is probably due to the high amounts of potassium in a biotite grain. When the closure age is high (> 100 Ma), the amount of potassium being decayed is large, obscuring the excess argon. For K-feldspar you would expect the same effect. However, K-feldspars have different degassing domains which in some cases keeps excess argon still visible in the high temperature domain (Lovera et al., 1989). One could argue that stepwise heating patterns give evidence for partial resetting and thus provide more detail on the thermal history of the sample. However, as many of the dates found are obscured by excess ⁴⁰Ar, it is hard to tell the exact effect of partial resetting and interpretation should be treated with caution. #### 7.1.3. Model limitations As described above, the sample selection already had an influence on the outcome and reliability of the thermodynamic models. In addition, a couple of the model based limitations and choices further influenced the outcome. #### **7.1.3.1. Omission of MnO** Only a limited amount of solution models includes manganese endmembers. Therefore including MnO in the model results in overestimation of stability of these few endmembers and underestimating stability of others. For this reason it is common practice to omit MnO in the model to overcome obvious discrepancies (Powell and Holland, 2008). However as shown by Tinkham et al. (2001) and references therein, leaving MnO out results in large discrepancies in garnet stability (± 150 °C and 4 kbar for the combined effect of MnO and CaO). This implies that cautiousness is needed when interpreting garnet stability in a MnO-absent system. For all samples in this study MnO was left out of the model and therefore real stability of all samples could be lowered with a maximum of (± 150 °C and 4 kbar). Another effect which has to be addressed when omitting MnO is that this oxide has to be replaced by the remaining oxides. In this case it was chosen to not recalculate the amount of oxides as MnO only counted for a maximum of 0.238 wt%, which is relatively small compared to the deviation of the sum of all oxides from 100%. However, even though small, the missing amount of Mn in the model has to be replaced by cations occupying the same site in a mineral and will thus have more effect on certain oxides (e.g. CaO, FeO and MgO in the case of garnet) than it will on for instance SiO_2 and Al_2O_3 . #### 7.1.3.2. Ferrous versus ferric iron Iron measured during XRF measurements is reported as Fe_2O_3 , but actually includes also FeO. For modelling pseudosections, the assumption was made that all iron was present in the ferrous state. Therefore XRF measurements of Fe_2O_3 were recalculated to FeO. Only if ferric iron bearing phases such as epidote were present in a sample, a certain amount of O_2 was added to the model in order to transform (part of) the iron from Fe^{2+} to Fe^{3+} (See Paragraph 6.2 for details on how the amount of O_2 is determined). However, also biotite, amphibole, pyroxene and garnet can contain Fe^{3+} , so the stability of these phases are also affected by changes in the amount of O_2 in the model. The solution models used for biotite, amphibole and pyroxene all include Fe^{3+} , although the model for garnet does not. Therefore the stability of garnet will be affected when adding O_2 to the system as predictions will be further deviating from reality than they are for the other Fe^{3+} -bearing minerals. As apparently both the absence of MnO and the presence of Fe^{3+} influence the stability of garnet, stability fields calculated for this mineral should be treated with caution. Unfortunately garnet is the only mineral which is appropriate for estimating peak metamorphic conditions in most rocks used in this study and therefore peak temperature and pressure estimates are likely to be less reliable than assumed at first. Garnet is not the only mineral influenced by changes in the amount of Fe³⁺ in the model. Within biotite, Fe²⁺ and Mg substitute for each other and Fe³⁺ and Ti do so too. When assuming all iron to be ferrous, the bulk Fe/Mg ratio is generally assumed to be equal to this ratio in the mineral site occupation within the biotite (Powell and Holland, 2008). However, this will directly influence the amount of Ti needed to fill the second mineral site and thus the amount of Ti available for other minerals such as rutile. In the models produced in this study, rutile is generally underestimated in modal
abundance, which is assumed to be a direct result of the overestimation of the Ti-occupation of the biotite mineral sites. Also amphibole and pyroxene are influenced by the absence of Fe^{3+} as mineral stabilities will be different and thus phase boundaries are situated differently. It is therefore better to include O_2 in every model in order to have Fe^{3+} present. However, estimating the right amount of ferric iron is a very difficult and imprecise task which becomes even harder when no epidote is present in the sample as estimates are based on the modal abundance of epidote. A discussion on the O_2 estimation in order to produce enough Fe^{3+} is given in the next section. #### 7.1.3.3. O_2 estimation The amount of O₂ added in the model in order to produce Fe³⁺ is fully based on the stability of epidote in this model. Getting to the right amount of O2 is relatively imprecise as a trial and error method at different O₂ concentrations has been applied. First a certain amount of O₂ was discarded based on the absence of a stability field containing the stable mineral assemblage of the sample. However, as it can be very hard to actually define the equilibration volume (paragraph 7.1.3.6), an estimate which is only slightly off, can already cause discarding the right amount of O2. A further narrowing of the range of possible O₂ concentrations was done by intersecting modal abundance isopleths of the stable mineral assemblage and, depending on the type of minerals present in the sample, also intersection of chemical compositional isopleths. As this is a very time consuming process, the interval of O2 concentrations at which these tests were performed could not be too small and was generally set at 0.2 wt% for a first try and subsequently 0.1 or 0.05 wt% for further narrowing down. In practice, a true intersection of modal abundance and chemical compositional isopleths rarely occurs as the solution models that are used are a simplification of reality. The lack of this true intersection was the case for every model within this study. Therefore determining a best fit is hard, especially when two tests give an equally good result on visual basis. A statistically best fit was not determined and thus the choice only relies on visual and personal interpretation of a best fit. Furthermore, the actual best amount of O_2 can be 0.05 - 0.1 wt% off as tests were not further narrowed down. As already explained in paragraph 6.2.1, having both O_2 and a CO_2 fluid in the model makes it even harder to predict how much O_2 should be present, as the mineral stability will be affected by both components. Modelling is only possible in 2D with contours of a third variable. Therefore, either O_2 or CO_2 had to be fixed in order to determine the effect of varying concentrations of the component on the stability field. In theory it would be possible to produce an extensive dataset for the whole range of O_2 and CO_2 concentrations. However this would take several weeks of processing data and is therefore not performed in this study. #### 7.1.3.4. H_2O saturation For all models, H_2O is assumed to be a saturated component. However, this is not a realistic assumption as most samples have experienced temperatures over 700 °C so it can be expected that most water has been removed during dehydration reactions in the prograde part of the path. Water was therefore probably not available anymore for retrograde reactions. Sample JI 4-6 gives clear evidence for water undersaturation during the retrograde path as garnet still seems (meta-) stable instead of being replaced by hydrous phases such as biotite or chlorite. However, for the prograde part of the path a H_2O saturation is realistic as protoliths consist of sedimentary rocks and basic volcanics which generally contain high amounts of H_2O . For sample JI 2-1 the same counts but in a less extreme manner as garnet is partly replaced. Sample JI 2-2 is an example of most probably H_2O saturation during the entire metamorphic history as only tiny hints of remaining garnets and relatively large amounts of hydrous phases (14%) such as chlorite, muscovite and biotite are present. Water was chosen to be saturated for modelling purposes as all samples contain reasonable amounts of water bearing minerals such as amphibole, biotite, chlorite and muscovite. As is shown for samples JI 2-2, JI 4-6 and JI 5-3 in Chapter 6, the effect of including less water than the saturation volume leads to large changes in mineral stability. Especially for the retrograde part of the paths this is an important aspect to take into account. However due to time constraints the exact amount of water for each sample is not defined. Therefore, the retrograde part of the P-T paths can be subject to changes when including the right amount of water. #### 7.1.3.5. CO_2 estimation To estimate the amount of CO_2 fluid in the model, the same procedure as for O_2 is used, using the stability of calcite instead of epidote. This is again a relatively imprecise trial and error method with a test interval of 10% CO_2 fluid (e.g. $0.1 CO_2 + 0.9 H_2O$ etc.), assuming a saturated $CO_2 + H_2O$ fluid. For detailed thoughts on the inaccuracy, see paragraph 7.1.3.3. #### 7.1.3.6. Estimating the equilibration volume In order to correctly model the pertinent stable mineral assemblage in a rock, the equilibration volume needs to be correctly estimated. However, this was complicated for some samples as they contain a suite of assemblages being stable throughout their history. Zoning and (partly) unstable minerals make it hard to correctly estimate the right distribution of minerals at stable conditions (Powell and Holland, 2008). This is especially the case for sample JI 2-1, which contains parts of remaining garnet and ingrowth of amphiboles, feldspars and calcite. Based on exchange of elements between these minerals an estimate could be made of which mineral assemblages were stable at the same time. However estimating modal abundances of this stable mineral assemblage is harder as part of the minerals may be completely vanished, which may lead to flaws in the model. Also for sample JI 5-3 it is hard to make a proper estimate as both amphibole and plagioclase are highly zoned. This results in certain elements being locked in a minerals' core and thus will affect the mineral assemblage that can be stable. #### 7.1. Discussion of argon ages As shown in Chapter 5, the ⁴⁰Ar/³⁹Ar ages are not all very straightforward crystallization ages, but rather cooling ages, obscured by excess argon and partial resetting. This makes it difficult to form a comprehensive geological story out of them, but not impossible. Ages from literature named in this paragraph are listed in Table 11. A reason for this 'imperfect' behaviour of the minerals can be found in the complex geological history the rocks and minerals have experienced. Plate subduction and the associated presence of a fluid which can mobilize argon, enabled the build-in of excess argon into the minerals. This excess argon was locked into the grains as diffusion within minerals became inefficient after cooling below the closure temperature (Smye et al., 2013). Furthermore, minerals were partly reset during granite intrusion phases in the Ordovician – Devonian and Permian – Triassic. Another complicating factor is the overprinting of high temperature mineral assemblages by low temperature minerals such as chlorite, which does not contain any potassium, whereas its preliminary mineral (often biotite or amphibole) often do. Based on closure temperature, ages within one sample, and preferably also within the entire Jinshuikou group, follow a trend of oldest towards youngest age from hornblende, muscovite, biotite, K-feldspar. Closure temperatures of these minerals are: $450 - 525^{\circ}$ C, $325 - 375^{\circ}$ C, $260 - 350^{\circ}$ C and $125 - 350^{\circ}$ C (Harrison, 1982; Spear, 1993). However, these numbers can vary up to 75° C according to literature. (Partial) resetting gives evidence for re-heating above the minerals closure temperature. Based on the argon ages found in this study, four different age groups were determined. The first group exists of metamorphic hornblende and muscovite cooling ages of granulite facies rocks between 450.27 ± 22.60 Ma and 403.25 ± 17.89 Ma. This group corresponds to the accretion of the South Tarim- and Qaidam block to the North Tarim and North China block during Silurian – Mid Devonian (Figure 1) and associated closure of the Paleo-Tethys. This is further strengthened by a 427 ± 4 Ma hornblende- and 408 Ma muscovite plateau age found by Chen et al. (2002) and a granulite facies hornblende age of 395.8 ± 7.2 Ma (Liu et al., 2005). This age group also coincides with zircon SHRIMP ages of granulite-facies metamorphism of 460 ± 8 Ma and granitic anatexis of 402 ± 6 Ma as found by Zhang et al. (2003). Also U-Pb zircon ages coming from granitic intrusions within the Jinshuikou group between 484.6 ± 7.3 Ma and 396 ± 18 Ma are in agreement with the ages related to the first age group as found in this study (Dai et al., 2013; Li et al., 2013; Long et al., 2006; Long et al., 2005). The second age group ranges from 353.40 ± 14.62 Ma to 263.43 ± 9.97 Ma and consists of metamorphic biotite and K-feldspar ages and one hornblende age. This age group corresponds to the accretion of the former blocks to Siberia and the indention of South China from the south during Carboniferous – Permian. One matching granitic K-feldspar age of 338.4 ± 0.4 Ma was found in literature (Mock et al., 1999). In the literature, matching ages of intrusive rocks based on U-Pb zircon ages were only found approximately 200 km to the west of the westernmost sample location. As this is thought to be spatially too far apart from each other, these ages were not used for comparison. The third age group ranges
from 252.58 ± 8.87 Ma to 199.86 ± 43.37 Ma for metamorphic K-feldspar ages and magmatic hornblende, biotite and K-feldspar ages. The hornblende age of 273.92 ± 4.26 Ma from age group 2 could also be counted to this age group due to its higher closure temperature. This age group corresponds to the still ongoing indention of the South China block and the accretion of the Qiangtang terrain during Late Permian – Late Triassic. Liu et al. (2005) found a similar age group of 242 - 212 Ma which relates to magmatic intrusions. These ages are well in agreement with ages found by Mock et al. (1999) for the Golmud Hydro Batholith 30 km south of Golmud (Geermu) of 252 ± 5 Ma for biotite and 224 ± 4 Ma for K-feldspar. Also the a U-Pb zircon age of 253.1 ± 4.7 Ma found by Dai et al. (2013) is in agreement. The last age group ranges from 215.11 \pm 5.48 Ma to 184.26 \pm 7.52 Ma for metamorphic K-feldspar and magmatic hornblende, biotite and K-feldspar. This group corresponds to accretion of the Lhasa terrain and still ongoing closure of the Tethys sea during Late Triassic — Cretaceous. U-Pb zircon crystallization ages between 228.4 \pm 2.4 Ma and 194.9 \pm 1.0 Ma and ZHe ages between 215 \pm 31 Ma and 185.8 \pm 9.1 Ma found by Dai et al. (2013) are in agreement with the age group found in this study. From the second age group of 353.40 ± 14.62 Ma to 263.43 ± 9.97 Ma, partial resetting both in biotite and K-feldspar towards the third age group took place. This implies that temperatures in the Jinshuikou group exceeded the minimum closure temperature of K-feldspar and biotite of 260 °C during this event. As muscovite does not show evidence of partial resetting, the temperatures probably did not exceed 325 °C which is the minimum closure temperature for muscovite. For the magmatic ages, we see partial resetting within the third age group for biotite ages. This is probably caused by a series of magmatic pulses during the accretion of the South China block and accretion and subduction of the Qiangtang terrain. New magmatic pulses increased the local temperature, causing partial resetting of the argon system. Partial resetting from the third to the fourth age group is only observed for the K-feldspar ages and one single biotite age. Accretion and subduction of the Lhasa terrain and the associated granitic intrusions are assumed to have caused heating up of the surroundings, but due to the larger distance of the Jinshuikou group to the suture zone, temperatures reached only slightly over 125 °C. This is high enough to partially reset the K-feldspar ages, but not sufficient to reset the biotite system. The single biotite age that has been reset, is probably caused by a local heat source that added to the heat caused by the accretion phase. For biotite single grain ages, we can observe a similar pattern of resetting, resulting in age clusters corresponding to the second to fourth age group. For sample location 4, Figure 46 shows an overlap of youngest metamorphic ages and oldest magmatic ages. This implies that the onset of magmatism resulted in resetting of part of the metamorphic biotite grains, which resulted in younger ages than the bulk. Also within the magmatic sample of location 4 we observe a main age group corresponding to the indention of the South China block during Carboniferous – Permian, but also ages corresponding to the third and fourth age group of accretion of the Qiangtang and Lhasa terrains. | Lithology | Method | Age (Ma) | Source | | |--|---|-----------------|----------------------|--| | Granitic gneiss | ⁴⁰ Ar/ ³⁹ Ar biotite | 233.4 ± 4.3 | (Liu et al., 2005) | | | Granitic gneiss | ⁴⁰ Ar/ ³⁹ Ar biotite | 218.6 ± 4.1 | | | | Granitic gneiss | ⁴⁰ Ar/ ³⁹ Ar biotite | 212.2 ± 4.1 | | | | Granulite | ⁴⁰ Ar/ ³⁹ Ar biotite | 222.1 ± 4.4 | | | | Granulite ⁴⁰ Ar/ ³⁹ Ar hornblend | | 395.8 ± 7.2 | | | | Granitic gneiss | ⁴⁰ Ar/ ³⁹ Ar muscovite | 242.0 ± 4.3 | | | | Epidote-amphibolite | ⁴⁰ Ar/ ³⁹ Ar hornblende | 427 ± 4 | (Chen et al., 2002) | | | Gneiss | ⁴⁰ Ar/ ³⁹ Ar muscovite | 408 | | | | Granitoid | ZHe | 215 ± 31 | (Dai et al., 2013) | | | Granitoid | AHe | 93.0 ± 17.0 | | | | Granitoid | SHRIMP Zircon U-Pb | 253.1 ± 4.7 | | | | Granitoid | SHRIMP Zircon U-Pb | 228.4 ± 2.4 | | | | Granitoid | SHRIMP Zircon U-Pb | 194.9 ± 1.0 | | | | Granite | LA-ICP-MS Zircon U-Pb | 484.6 ± 7.3 | (Li et al., 2013) | | | Granite | LA-ICP-MS Zircon U-Pb | 439.0 ± 5.9 | | | | Granite | LA-ICP-MS Zircon U-Pb | 424.0 ± 3.5 | | | | Granite | ranite LA-ICP-MS Zircon U-Pb | | | | | Granodiorite | SHRIMP Zircon U-Pb | 407 ± 3 | (Liu et al., 2012) | | | Granite | ⁴⁰ Ar/ ³⁹ Ar K-feldspar | 338.4 ± 0.4 | (Mock et al., 1999) | | | Granite | ⁴⁰ Ar/ ³⁹ Ar biotite | 252 ± 5 | | | | Granite | ⁴⁰ Ar/ ³⁹ Ar K-feldspar | | | | | Granite | AHe | 24 ± 4.2 | (Clark et al., 2010) | | | Metasediment | AHe | 24 ± 4.2 | | | | Granodiorite | LA-ICP-MS Zircon U-Pb | 396 ± 18 | (Long et al., 2006) | | | Granulite | Granulite SHRIMP Zircon U-Pb | | (Zhang et al., 2003) | | | Granite SHRIMP Zircon U-Pb | | 402 ± 6 | | | Table 11. Ages from literature. #### 7.2. Discussion of thermodynamic modelling Pressure-Temperature paths for samples modelled in this study and the study of Huijgen (2015) are combined in Figure 75. Although numeral assumptions were made and models showed discrepancies from the observed pertinent mineral assemblages in the samples as described in Chapter 6, all P-T paths follow a quite similar metamorphic history as is shown in Figure 75. In this section, all samples including the ones modelled in this study and in Huijgen (2015) are discussed and compared with each other. Modelling details of samples JI 1-3, JI 1-4 and JI 4-3 can be found in Huijgen (2015). Part of the samples (e.g. JI 1-1, JI 1-3, JI 1-4, JI 4-3 and JI 5-3) only contain retrograde minerals. Therefore the prograde path could not be determined and peak metamorphic conditions could only be displayed as minimum peak conditions as explained in Chapter 6. For samples that do display part of the prograde path, peak metamorphic conditions plot in the low eclogite/upper granulite facies of 13.5 kbar and 780-830°C for sample location 2 (JI 2-1 and JI 2-2) and in the granulite facies of 10 kbar and 800°C for sample location 4 (JI 4-6). Sample JI 4-3 follows a similar path as JI 4-6 and reaches almost the same conditions as peak conditions of JI 4-6. Samples JI 1-1 and JI 1-4 follow the same retrograde path although JI 1-1 lies at 50°C higher temperature conditions for similar pressure. JI 1-3 shows similar conditions for the upper part of the P-T path as JI 1-4, although discrepancies between the two arise at pressures below 7 kbar. However, as these samples are modelled by Huijgen (2015), and details on this process are missing at this moment, a decent explanation for this discrepancy cannot be given here. A possibility is that EMP measurements which plot at 5 kbar and 470°C belong to prograde minerals rather than retrograde as was the case for sample JI 2-2. In that case the P-T path could more or less follow the path of sample JI 2-2. However, due to lack of information within this study this could not be verified. The P-T path of sample JI 1-1 reveals a higher temperature compared to that of sample JI 1-4. The discrepancy between the two could have resulted from differences in the solution models used. The main difference is the choice for GlTrTsPg as the amphibole model in JI 1-1 and Amph(DPW) in JI 1-4. As shown in paragraph 6.5, choosing GlTrTsPg instead of Amph(DPW) resulted in an unrealistic amphibole stability up to much higher temperatures (>200°C) for pressures below 12kbar. Therefore the path of JI 1-4 could be argued more realistic than the path of JI 1-1 for sample location 1. The same issue could be the case for sample JI 2-1 which means that the path of JI 2-2 (which does not contain amphibole and is therefore not prone to this problem), is the most realistic for sample location 2. When adapting the temperature profile of samples JI 1-1 and JI 2-1 to a profile based on the Amph(DPW) model, we could state that sample location 2 has experienced the highest pressure-temperature conditions of 13.5 kbar and 780°C. Location 4 has experienced similar to slightly higher temperatures of 800°C and lower pressure conditions of 10 kbar. For location 1, no peak conditions could be determined, although based on the shape of the other P-T paths and the retrograde part of the paths at location 1, it can be argued that peak conditions are probably similar to those of location 2. This results in an asymmetric metamorphic stage with higher pressures in the western part of the Kunlun Mountains, and lower pressures with similar to slightly higher temperatures in the eastern part of the Kunlun Mountains. Only little research on metamorphic conditions in the Kunlun Mountains and especially in the Jinshuikou group has been carried out so far. Chen et al. (2002) and Liu et al. (2005) both report of metamorphosed sequences of epidote-amphibolite with relics of granulite facies, which corresponds to results found in this study. Liu et al. (2005) also performed thermodynamic modelling on three granitic gneisses of amphibolite facies and two granulites from the Jinshuikou group. This data is displayed in Figure 75 with black stars and corresponding error bars. Part of the data of Liu et al. (2005) agrees with data found in this study and is in equilibrium at amphibolite facies, or, just within P-T error, of upper granulite facies. However, sample conditions corresponding to middle granulite facies with pressures between 7.1 and 4.5 kbar and temperatures of 826 - 885°C as obtained by Liu et al. (2005) were not found in this study. This discrepancy could be due to sample limitations, as according to Liu et al. (2005) granulite facies can only be found as
relics north of the Central Kunlun Fault. It is therefore likely that these granulite facies samples were just missed in the field and not sampled. This study seems to be the first to report of rocks having experienced eclogite facies metamorphism, overprinted by amphibolite and/or greenschist facies. No other report on eclogite facies rocks in the Jinshuikou group have been found. Figure 75. P-T-t paths of this study and the study of Huijgen (2015) All follow a similar path with peak conditions of lower eclogite/granulite facies and retrogression through amphibolite and greenschist facies. Note that the wiggle in the lowest part of the path of sample JI 2-2 is an exaggeration based on partial resetting. P-T conditions of Liu et al. (2005) are displayed with stars and correspond partly to the data found in this study. Ages are displayed onto the path at the right closure temperatures if possible and otherwise displayed with a line where the path could cross the closure temperature. #### 7.3. Geological implications In Figure 76 age data obtained in this study and from literature is displayed and correlated based on spatial distribution. Literature based ages are displayed in Table 11 and references are listed in the legend of Figure 76. Cooling histories for each sample location are displayed with a thick line, which approximately represents the vertical error. Zircon U-Pb data is correlated with ages found in this study within the vicinity (<50km) of the sample location. As not much published data exists from the western part of the Eastern Kunlun Mountains, it was not possible to correlate sample location 2 with zircon U-Pb data. Furthermore, the thermal history of location 2 is based on only two data points, which both suffered from complications concerning excess argon. It is therefore possible that the resulting cooling history for this location is less meaningful. Figure 76. Thermal history of the Jinshuikou group. Different symbols indicate various dating methods whereas colours stand for the source. The cooling speed for different segments is indicated. As the cooling path of JI 2 is based on only two measurements with major issues concerning excess argon, this may not be very conclusive for the thermal history of location 2. Age errors (2σ) are displayed in case they are smaller than the symbol indicating the age. Figure 76 shows Silurian - Devonian ages for U-Pb zircon and 40Ar/39Ar hornblende and muscovite, which are outlined by the black box. Based on peak temperature conditions in Figure 75 and temperature-time constraints in Figure 76, metamorphism of the Jinshuikou group is thought to have taken place during the this period. The metamorphic event is thought to have occurred simultaneously with granitic intrusions. From the high (850°C) temperatures of sample locations 1, 4 and 5 exponential cooling took place with an initial estimated rate of $10 - 14^{\circ}$ C/Ma. The cooling rate is dependent on the depth placement of the intrusion within the crust. The intrusion at location 5 was situated lower in the crust than at locations 1 and 4, which caused a lower relative temperature difference and thus slower cooling. The hornblende age of 403 Ma at location 4 was probably also present at locations 1 and 5, but due to later resetting not preserved. Location 1 and 5 experienced strong heating due to intrusion of new granitic plutons with a Permian - Triassic age which is demonstrated by U-Pb zircon ages and visible in Figure 77 by Chen et al. (2012). This extensive emplacement of granitic intrusions is also known as the Kunlun Batholith, which formed during active subduction of the Paleo Tethys (Harris et al., 1988). This completely reset the argon dating system and only ages from this event on are preserved. The hornblende hornfels from location 5 contains dated phenocrysts of Permian - Triassic age but a modelled chemistry of amphibolite facies (Paragraph 6.6). This seemingly contradiction can probably be explained as the amphibolite facies chemistry resulted from the Silurian – Devonian metamorphic event, whereas the hornfels texture was formed during granitic intrusions in the Permian – Triassic. From the onset of magmatism around 270 Ma until ~225 Ma, exponential cooling took place with an initial rate of 35°C/Ma and gradually decreasing to 5.0°C/Ma. For sample location 1, no age data younger than 200 Ma is available and so no further cooling history is determined. For sample location 5, age data both from this study and the study of Liu et al. (2005) show evidence of cooling biotite and K-feldspar ages between 250 and 200 Ma, and subsequent partial resetting of these ages. This might be related to the accretion of the Qiangtang and Lhasa terrain to the already existing complex. At sample location 2, only small (<10 km) Permian-Triassic plutons are present. Therefore, rocks were not heated extensively and could retain their former age information of Silurian-Devonian age. Only partial resetting in K-feldspar took place during the magmatic event. Figure 77. Simplified tectonic map showing the distribution of magmatism in the Eastern Kunlun mountains. Modified after Chen et al. (2012). Sample locations in this study are indicated with green stars. Various small (<20 km) Permian-Triassic plutons are present at location 4 which probably caused partial resetting of all but the hornblende systems. The temperatures reached during this stage were either not high enough, or not prolonged enough to (partially) retain the hornblende age of 403 Ma. Cooling between ~400 and ~300 Ma occurred at a rate of 2.0°C/Ma. Subsequently, two phases of partial resetting can be found in biotite and K-feldspar ages. These are related to the tectonic activity during the indention of the South China block and accretion of the Qiangtang and Lhasa terrains. The temperature did not exceed 450°C as the hornblende age was not reset. It is found probable that AHe ages found by Clark et al. (2010) and Dai et al. (2013) are the result of accretion of India to Eurasia. Therefore an initially tectonic inactive period was interpreted from $^{\sim}175$ Ma with a cooling rate of 0.4°C/Ma. Active cooling started again around 70 Ma with a cooling rate of 1.5 – 2.2°C/Ma, which is supported by Arnaud et al. (2003). According to literature, cooling rates vary highly north and south of the Central Kunlun fault due to northward tectonic thrusting both during the Devonian and Palaeogene (Chen et al., 2002; Mock et al., 1999). Around 25-30 Ma, related to this tectonic thrusting, an important cooling event took place. The rate of cooling varies among authors between 9-15°C/Ma based on K-feldspar diffusion modelling of Mock et al., (1999) and 40°C/Ma based on argon release spectra and apatite dating by Arnaud et al. (2003). The increased amount of cooling is further supported by (U-Th)/He dating by Clark et al. (2010) who comes to cooling of 30°C/Ma. This late stage of fast cooling can only be explained by exhumation. Based on the combined study of pressure-temperature constraints of the metamorphic rocks in the Jinshuikou group, and temperature-time constraints on the entire Kunlun Mountains north of the Central Kunlun fault, we could construct a local thermal gradient of ~50°C/km between peak metamorphism and present. This corresponds to an average denudation rate of 0.1 km/Ma and a total unroofing of 40 km in this period. Based on research by AHe dating, this geothermal gradient decreased to 15-30°C/km from 30 Ma due to the collision of India and Eurasia South of the Central Kunlun fault (Clark et al., 2010). #### 7.4. Suggestions for future research As very little is known so far about the metamorphic history of the Jinshuikou group and the Eastern Kunlun Mountains as a whole, it is advisable to further investigate the metamorphic sequences in this area to expand the available dataset and provide more material for comparison. At this moment only this study, the study of Huijgen (2015) and Liu et al. (2005) provide information on the P-T-t history of the Jinshuikou group. At some points, major differences exist between these studies, especially on the estimates of the peak metamorphic conditions. Therefore it is recommended to carry out a more extensive sampling study throughout the entire Jinshuikou group to obtain more and better distributed samples for modelling purposes. Subsequently it would be good to perform more dating work on metamorphosed samples, both in the low (<250°C) and in the high (>500°C) temperature domain in order to better constrain the thermal history of the samples. In this study, modelling was carried out with the assumption that water was saturated at all times. As explained in Chapter 6 this is not entirely realistic and therefore, a better reconsideration of the full effect that water can have is needed. Also an iterating modelling of CO_2 and O_2 concentrations is needed to better constrain these amounts in the sample during mineral stability. Furthermore, replacing the amphibole model GITrTsPg by the more extensive Amph(DPW) model would improve constraints on the amphibole stability. In order to define the amount of excess argon present in the samples, testing with a K-poor mineral is advised. By degassing for instance plagioclase in the same way as is done for K-feldspar, the amount of excess ⁴⁰Ar can be measured and a quantified correction could be applied to the age measurements within this study. This will lead to more realistic ages and therefore to better constraints on the geological impact and consequences of certain events. # 8. Conclusions Based on the P-T modelling and ⁴⁰Ar/³⁹Ar dating results the following conclusions were drawn: - I. Metamorphic samples from the Jinshuikou group experienced amphibolite to granulite facies metamorphism. Only part of the rocks show real evidence for granulite facies, but based on the P-T paths of the other samples, extension into the granulite field is
assumed for the whole unit. - II. Peak metamorphic conditions of 750°C and 13 kbar for samples JI 1-1, JI 2-1 and JI 2-2 and conditions of 800°C and 10 kbar for samples JI 4-3 and JI 4-6 are at higher pressure and lower temperature than those found by Liu et al. (2005). - III. Peak metamorphic conditions might shift to lower pressure if adjustments are made for MnO and water undersaturation. - IV. Four age groups are determined as cooling ages based on 40 Ar/ 39 Ar dating: 1) 450.27 ± 22.60 Ma till 403.25 ± 17.89 Ma. This group corresponds to the accretion of the South Tarim- and Qaidam block to the North Tarim and North China block during Silurian Mid Devonian and associated closure of the Paleo-Tethys. 2) 353.40 ± 14.62 Ma till 263.43 ± 9.97 Ma. This age group corresponds to the accretion of the aforementioned blocks to Siberia and the indention of South China from the south during Carboniferous Permian. 3) 252.58 ± 8.87 Ma to 199.86 ± 43.37 Ma. This age group corresponds to the still ongoing indention of the South China block and the accretion of the Qiangtang terrain during Late Permian Late Triassic. 4) 215.11 ± 5.48 Ma to 184.26 ± 7.52 Ma. This group corresponds to accretion of the Lhasa terrain and ongoing closure of the Tethys sea during Late Triassic Cretaceous. - V. The distribution of argon ages can be explained with the presence of granitic plutons throughout the Jinshuikou group and the associated (partial) resetting. Presence of Permian Triassic plutons in the vicinity of sample locations 1 and 5 caused complete resetting of the argon system. - VI. Peak metamorphism is assumed to have occurred during a Silurian Devonian metamorphic event. - VII. Cooling rates after metamorphism changed exponentially from 10 14°C/Ma between 430 and 400 Ma to 2.0°C/Ma between 400 and 300 Ma. Reheating of sample locations 1 and 5 caused another phase of exponential cooling, whereas sample locations 2 and 4 fluctuated around 250°C due to several phases of granitic intrusions. The approach/collision of India with Eurasia caused another tectonically active period which caused increased cooling from ~175 Ma onward of 2.2°C/Ma. - VIII. A paleo geothermal gradient between peak metamorphism and present of 50°C/km is found. This corresponds to a denudation rate of 0.1 km/Ma and total unroofing of 40 km over this period. # Acknowledgements First I would like to thank Jan Wijbrans and Fraukje Brouwer for giving me the opportunity to participate in this project and giving guidance and help wherever needed during the project. The fruitful discussions helped me to get to this final work. Furthermore I would like to thank Jan Wijbrans, Maarten Huijgen and Hanwen Zhou for their company in the field and the nice atmosphere during our stay in China. Analyses would not have been possible without the help of Bouk Lacet and Wynanda Koot for thin section and mineral mount preparations, and Roel van Elzas for help with mineral separation. Sergei Matveev has been a great help with preparation for XRF measurements and performing EMP measurements. Furthermore, this project was financially supported by the Molengraaff fonds, which is highly appreciated. # References - Aitchison, J. C., Ali, J. R., and Davis, A. M., 2007, When and where did India and Asia collide?: Journal of Geophysical Research: Solid Earth, v. 112, no. B5, p. B05423. - Andersen, D. J., and Lindsley, D. H., 1988, Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides: American Mineralogist, v. 73, no. 7-8, p. 714-726. - Andriessen, P. A. M., 2015. - Arnaud, N., Tapponnier, P., Roger, F., Brunel, M., Scharer, U., Wen, C., and Zhiqin, X., 2003, Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault, northern Tibet (China): Journal of Geophysical Research: Solid Earth, v. 108, no. B1, p. 2053. - Auzanneau, E., Schmidt, M. W., Vielzeuf, D., and Connolly, J. A. D., 2010, Titanium in phengite: a geobarometer for high temperature eclogites: Contributions to Mineralogy and Petrology, v. 159, p. 1-24. - Ba, J., Chen, N., Wang, Q., wang, X., Zhang, L., and Wang, S., 2012, Nd-Sr-Pb Isotopic composititions of cordierite granite on southern margin of the Qaidam block, NW China, and constraints on tis petrogenesis, tectonic affinity of source region and tectonic implications.: Earth Science Journal of China University of Geosciences, v. 37, p. 80-92. - Chen, N., Sun, M., He, L., Zhang, K., and Wang, G., 2002, Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen: Chinese Science Bulletin, v. 47, no. 13, p. 1130-1133. - Chen, X. H., Gehrels, G., Yin, A., Li, L., and Jiang, R. B., 2012, Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance: Acta Geologica Sinica English Edition, v. 86, no. 2, p. 350-369. - Ching-Hua, L., and Onstott, T. C., 1989, 39Ar recoil artifacts in chloritized biotite: Geochimica et Cosmochimica Acta, v. 53, no. 10, p. 2697-2711. - Clark, M. K., Farley, K. A., Zheng, D., Wang, Z., and Duvall, A. R., 2010, Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages: Earth and Planetary Science Letters, v. 296, no. 1–2, p. 78-88. - Coggon, R., and Holland, T. J. B., 2002, Mixing properties of phengitic micas and revised garnet-phengite thermobarometers: Journal of Metamorphic Geology, v. 20, no. 7, p. 683-696. - Connolly, J. A. D., 1990, Multivariable phase diagrams: an algorithm based on generalized thermodynamics: American Journal of Science, v. 290, p. 666-718. - Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation: Earth and Planetary Science Letters, v. 236, no. 1–2, p. 524-541. - Connolly, J.A.D., 2012, Perple X 6.6.8.: ETH Zürich. - Dai, J., Wang, C., Hourigan, J., and Santosh, M., 2013, Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology: Tectonophysics, v. 599, no. 0, p. 97-106. - Dale, J., Powell, R., White, R. W., Elmer, F. L., and Holland, T. J. B., 2005, A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations: Journal of Metamorphic Geology, v. 23, no. 8, p. 771-791. - Dewey, J. F., Shackleton, R. M., Chengfa, C., and Yiyin, S., 1988, The Tectonic Evolution of the Tibetan Plateau: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 327, no. 1594, p. 379-413. - Fuhrman, M. L., and Lindsley, D. H., 1988, Ternary-feldspar modeling and thermometry: American Mineralogist, v. 73, no. 3-4, p. 201-215. - Gasparik, T., 1984, Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2: Geochimica et Cosmochimica Acta, v. 48, no. 12, p. 2537-2545. - Gasparik, T., 1985, Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na₂O-CaO-Al₂O₃-SiO₂: Contributions to Mineralogy and Petrology, v. 89, p. 346-357. - Harris, N. B. W., Ronghua, X., Lewis, C. L., Hawkesworth, C. J., and Yuquan, Z., 1988, Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 327, no. 1594, p. 263-285. - Harrison, M. T., 1982, Diffusion of 40Ar in hornblende: Contributions to Mineralogy and Petrology, v. 78, no. 3, p. 324-331. - Harrison, T. M., and McDougall, I., 1980, Investigations of an intrusive contact, northwest Nelson, New Zealand—II. Diffusion of radiogenic and excess 40Ar in hornblende revealed by 40Ar39Ar age spectrum analysis: Geochimica et Cosmochimica Acta, v. 44, no. 12, p. 2005-2020. - Hess, J. C., and Lippolt, H. J., 1986, Kinetics of Ar isotopes during neutron irradiation: 39Ar loss from minerals as a source of error in 40Ar/39Ar dating: Chemical Geology: Isotope Geoscience section, v. 59, no. 0, p. 223-236. - Hess, J. C., Lippolt, H. J., and Wirth, R., 1987, Interpretation of 40Ar39Ar biotites: Evidence from hydrothermal degassing experiments and TEM studies: Chemical Geology: Isotope Geoscience section, v. 66, no. 1–2, p. 137-149. - Holland, T. J. B., and Powell, R., 1996, Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions: American Mineralogist, v. 81, p. 1425-1437. - Holland, T. J. B., and Powell, R., 1998a, An internally consistent thermodynamic data set for phases of petrological interest: Journal of metamorphic Geology, v. 16, p. 309-343. - Huijgen, M., 2015, Metamorphic conditions of the Jinshuikou Group in the Eastern Kunlun Mountains, China: Master thesis, VU Amsterdam. - Koppers, A. A. P., 2002, ArArCALC—software for 40Ar/39Ar age calculations: Computers & Geosciences, v. 28, no. 5, p. 605-619. - Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., and Youzhi, G., 1997, Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: American Mineralogist, v. 82, no. 9-10, p. 1019-1037. - Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., and Kim, J. S., 2006, A redetermination of the isotopic abundances of atmospheric Ar: Geochimica et Cosmochimica Acta, v. 70, p. 4507-4512. - Lexa, O., 2011, PyWerami. - Li, W., Neubauer, F., Liu, Y., Genser, J., Ren, S., Han, G., and Liang, C., 2013, Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun
Mountains: Constraints from zircon dating of granitoids and modern river sands: Journal of Asian Earth Sciences, v. 77, no. 0, p. 183-202. - Liu, B., Ma, C.-Q., Zhang, J. Y., Xiong, F.-H., Huang, J., and Jiang, H.-A., 2012, Petrogenesis of early Devonian intrusive tocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes: Acta Petrologica Sinica, v. 28, no. 6, p. 1785-1807. - Liu, Y., Genser, J., Neubauer, F., Jin, W., Ge, X., Handler, R., and Takasu, A., 2005, 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications: Tectonophysics, v. 398, no. 3–4, p. 199-224. - Long, X., Jin, W., Ge, W., and Yu, N., 2006, Zircon U-Pb geochronology and geological implications of the granitoids in Jinshuikou, East Kunlun, NW China: Geochimica, v. 35, no. 4, p. 333-345. - Long, X., Jin, W., and Yu, N., 2005, Raman spectroscopic study of zircons in the Jinshuikou gneissic Al-rich granite in east Golmud, East Kunlun: Geological Bulletin of China, v. 24, no. 1, p. 36-40. - Lovera, O. M., Richter, F. M., and Harrison, T. M., 1989, The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes: Journal of Geophysical Research: Solid Earth, v. 94, no. B12, p. 17917-17935. - Mattauer, M., Matte, P., Malavieille, J., Tapponnier, P., Maluski, H., Zhiqin, X., Yilun, L., and Yaoqin, T., 1985, Tectonics of the Qinling Belt: build-up and evolution of eastern Asia: Nature, v. 317, p. 496-500. - McDougall, I., and Harrison, T. M., 1999, Geochronology and thermochronology by the ⁴⁰Ar/³⁹Ar method, New York, Oxford, Oxford University Press. - Mo, X., Niu, Y., Dong, G., Zhao, Z., Hou, Z., Zhou, S., and Ke, S., 2008, Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet: Chemical Geology, v. 250, no. 1–4, p. 49-67. - Mock, C., Arnaud, N. O., and Cantagrel, J.-M., 1999, An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China): Earth and Planetary Science Letters, v. 171, no. 1, p. 107-122. - Newton, R. C., Charlu, T. V., and Kleppa, O. J., 1980, Thermochemistry of the high structural state plagioclases: Geochimica et Cosmochimica Acta, v. 44, no. 7, p. 933-941. - Pietersen, J. L., 2013, Reconstruction of PT-conditions and (dis-)equilibria in a blueschist and eclogite facies metabasite domain at western Syros (Cyclades, Creece) [MSc MSc-thesis]: VU University. - Powell, R., and Holland, T. J. B., 2008, On thermobarometry: Journal of Metamorphic Geology, v. 26, no. 2, p. 155-179. - Reed, S. J. B., 2005, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge University Press. - Rieder, M., Cavazzini, G., D'yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval', P. V., Mueller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z., and Wones, D. R., 1998, Nomenclature of the micas: The Canadian Mineralogist, v. 36, no. 3, p. 905-912. - Roger, F., Arnaud, N., Gilder, S., Tapponnier, P., Jolivet, M., Brunel, M., Malavieille, J., Xu, Z., and Yang, J., 2003, Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet: Tectonics, v. 22, no. 4, p. 1037. - Royden, L. H., Burchfiel, B. C., and van der Hilst, R. D., 2008, The Geological Evolution of the Tibetan Plateau: Science, v. 321, no. 5892, p. 1054-1058. - Smye, A. J., Warren, C. J., and Bickle, M. J., 2013, The signature of devolatisation: Extraneous 40Ar systematics in high-pressure metamorphic rocks: Geochimica et Cosmochimica Acta, v. 113, no. 0, p. 94-112. - Spear, F. S., 1993, Metamorphic phase equilibria and Pressure-Temperature-Time paths, Washington, Mineralogical society of America. - Tajčmanová, L., Connolly, J. A. D., and Cesare, B., 2009, A thermodynamic model for titanium and ferric iron solution in biotite: Journal of Metamorphic Geology, v. 27, no. 2, p. 153-165. - Tinkham, D. K., Zuluaga, C. A., and Stowell, H. H., 2001, Metapelite phase equilibria modeling in MnNCKFMASH: The effect of variable Al₂O₃ and MgO/(MgO+FeO) on mineral stability: Geological Materials Research, v. 3, no. 1, p. 1-42. - Tracy, J. R., 1975, High grade metamorphic reactions and partial melting in pelitic schist, Quabbin reservoir area, Massachusetts [Ph.D: University of Massachusetts, 127 p. - Van der Woerd, J., Ryerson, F. J., Tapponnier, P., Meriaux, A. S., Gaudemer, Y., Meyer, B., Finkel, R. C., Caffee, M. W., Guoguang, Z., and Zhiqin, X., 2000, Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics: Geophysical Research Letters, v. 27, no. 16, p. 2353-2356. - Wei, C., and Powell, R., 2003, Phase relations in high-pressure metapelites in the system KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) with application to natural rocks: Contributions to Mineralogy and Petrology, v. 145, no. 3, p. 301-315. - Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., and Scheveers, R., 1995, Argon geochronology of small samples using the Vulkaan argon laserprobe: Proc. Kon. Ned. Akad. v. Wetensch., v. 98 no. 2, p. 185-218. - Xiao, W., Han, F., Windley, B. F., Yuan, C., Zhou, H., and Li, J., 2003, Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia: International Geology Review, v. 45, no. 4, p. 303-328. - Yin, A., and Harrison, T. M., 2000, Geologic Evolution of the Himalayan-Tibetan Orogen: Annual Review of Earth and Planetary Sciences, v. 28, no. 1, p. 211-280. - Yin, A., and Nie, S., 1996, A Phanerozoic palinspastic reconstruction of China and its neighboring regions, The tectonic evolution of Asia: Cambridge, Cambridge University Press, p. 666. - Yu, N., Jin, W., Ge, W., and Long, X., 2005, Geochemical study on peraluminous granite from Jinshuikou in East Kunlun: Global Geology, v. 24, no. 2, p. 123-128. - Zhang, J.-Y., Ma, C.-Q., Xiong, F.-H., and Liu, B., 2012, Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China: Geological Magazine, v. 149, no. 05, p. 892-908. - Zhang, J., Meng, F., Wan, Y., Yang, J., and Tung, K. A., 2003, Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam: Zircon U-Pb SHRIMP age evidence: Geological Bulletin of China, v. 22, no. 6, p. 397-404. - Zhang, Y., and Zheng, J., 1994, Geologic Overview in Kokshili, Qinghai and Adjacent Areas, Beijing, Seismological Publishing House, 177 p.: - Zhiqin, X., Mei, J., and Jingsui, Y., 1997, Deep Tectonophysical Process of the Uplift of the Northern Qinghai—Tibet Plateau: Acta Geologica Sinica English Edition, v. 71, no. 1, p. 1-14. - Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., and Shafique, N., 2005, Age of Initiation of the India-Asia Collision in the East-Central Himalaya: The Journal of Geology, v. 113, no. 3, p. 265-285. # Appendix I: Thin section descriptions | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|----------------|-------------------|--| | q | 5 | 0.02-0.1 | 0.05 | Anhedral | | amp | 60 | 0.1-0.5 | 0.15 | Subhedral, fine grained, positioned in bands. Some grains lay perpendicular to the direction of the bands. | | ce | 2 | 0.05-0.1 | 0.1 | Brown pleochroic, looks like biotite. Subhedral, in clusters with q and pl | | ер | 5 | 0.01-0.1 | 0.07 | Anhedral, zoning, in clusters with cc + pl + cz (+q), replaces calcium-rich lumps. | | CZ | 3 | 0.05-0.1 | 0.07 | Anhedral, bluish in XPL, clusters with cc + ep + pl + (q) | | pl | 15 | 0.1-0.3 | 0.2 | Anhedral, sometimes albite twinning. | | cc-rich | <1 | 1-1.5 original | | Completely altered, replaced by clayminerals + | | lumps | | now replaced | | amp + ep + cz + cc. Sigma-clast shape. | | СС | 5 | 0.05-0.15 | 0.1 | Subhedral, in clusters with q and pl or in cracks. | | sph | 5 | 0.01-0.1 | 0.05 | Very high relief, in sph clusters. | | chl | 1 | 0.05-0.3 | 0.2 | Subhedral, green pleochroic. | #### **Texture** The thin section shows clear banding of pl + cc + ep (+q) and amp + ce. In some places, there are very distinct bends/kinks in the banding. The elongated amphiboles lie in the direction of the banding and follow the kinks. The bigger (0.3-0.5 mm) amphibole grains are mostly positioned perpendicular to the banding. Completely altered lumps of calcite rich material are present as sigma clasts. These are replaced by clayminerals, epidote, clinozoisite, calcite and amphibole. Calcite also occurs as filling of cracks and in clusters with quartz and plagioclase. #### **Interpretation** This rock is an gneissic amphibolite with a calc-silicate as protolith. The rock is not in equilibrium as calcite rich lumps are being transformed. Sigma clast structures and bends/kinks point to a shear stress. The perpendicular amphibole would suggest the grow of amphibole before and after compression. However, only few (20%) of the crystals are post compression. #### JI 1-3 | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|--| | q | 45 | 0.05-0.3 | 0.2 | Undulose extinction, blue extinction on the edges. Recrystallized grains. | | pl | 7 | 0.1-0.6 | 0.3 | Sometimes albite twinning visible. | | kfs | 5 | 0.2-0.8 | 0.5 | Dusty appearance, mainly replaced by clay minerals. | | mica | 15 | 0.1-1 | 0.6 | Intergrowing with biotite. | | bio | 20 | 0.1-1.5 | 0.5 | Large grains > 0.5 mm generally have an elongated habit and
preferred orientation. Smaller grains are more random in shape and occur around the larger grains. | | chl | 2 | 0.3-1 | 0.5 | Intergrowing with biotite. Light green pleochroic. | | zo | 5 | 0.05-0.3 | 0.2 | Blue extinction. Occurs together with quartz. | #### **Texture** All micas focus in bands, which are generally cracked. In between the bands q + pl + kfs occurs. The quartz grains show undulose extinction and have relocated grain boundaries, giving it a mosaic-like structure. The K-feldspar grains are highly unstable and only visible as dusty looking mineral shapes, mainly replaced by clay-minerals. ## **Interpretation** This rock is a biotite gneiss with little remains of chlorite. The rock has experienced large deformational pressures, forming banding and recrystallization of quartz. The environment changed from a more potassium rich, to a more sodium + calcium rich one. #### JI 1-4 | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|--| | amp | 40 | 0.8-1.5 | 1 | Green pleochroic, very altered, sometimes distinct cleavage. | | q | 25 | 0.05-0.3 | 0.2 | Rounded, anhedral grains occurring in clusters. | | СС | 5 | 0.1-1 | 0.3 | Rounded grains, generally growing along altered amphiboles. | | ер | 5 | 0.03-0.1 | 0.05 | Rounded minerals growing as a replacement of other, undefined, minerals. | | pl | 10 | 0.05-0.1 | 0.1 | Anhedral, sometimes albite twinning. | | kfs | 2 | 0.05-0.1 | 0.08 | Checkerboard twinning, quite altered. | | chl | 3 | 0.2-0.3 | 0.25 | Light green pleochroic, very fresh grains. | | bio | 5 | 0.05-0.15 | 0.1 | Brown pleochroic, elongated. | | ZO | 2 | 0.1-0.3 | 0.2 | Blue extinction. Occurs together with quartz. | | ru | 2 | 0.05-0.1 | 0.08 | Occurs around chl. | | sph | 1 | 0.08-0.12 | 0.1 | Eye-shaped, sometimes very clear cleavage. | #### **Texture** This rock contains not very well defined bands of amp + ep, separated from q + fsp + zo + cc. Amphibole grains are very altered and no distinct grain boundaries are present anymore. Grains are partly replaced by epidote and calcite grains grow along the outside of the grains. Quartz grains are partly recrystallized. Part of them shows undulose extinction whereas other grains do not. Zoisite looks very similar to the quartz grains, except for the blue extinction. ### Interpretation This is an amphibolite which is no longer in equilibrium. Amphiboles are being replaced by epidote, chlorite, calcite and rutile. A non-uniform pressure enabled slight bands to form. A CO_2 fluid was at some point after peak metamorphism introduced, enabling calcite to form as a stable mineral in the current assemblage. #### **II 2-1** | Mineral | Abundance (%) Present (early) | Size (mm) | Average size (mm) | Habit | |--------------|-------------------------------|-----------|-------------------|---| | amp | 70 (66) | 0.5-2 | 1.5 | Subhedral, sometimes pretty cracked. Clear cleavage, light green pleochroic. Some grains grow over altered gt, most are folded around former garnets. | | gt | 3 (10) | 0.2-0.5 | 0.4 | Completely altered, tiny patches of gt left (max. 20% of grain). | | sph | 5 | 0.1-0.2 | 0.15 | Sub/Euhedral. As inclusions in amp. | | metal oxides | 5 | 0.1-0.5 | 0.25 | Anhedral, replacing the gt. | | pl | 10 (8) | 0.05-0.5 | 0.3 | Anhedral, replacing the gt. Unstable; exsolution between albite and anorthite | | CZ | 3 | 0.1-0.5 | 0.2 | Anhedral, heavily zoned. In bands together with ru. | | СС | 1 (0) | 0.2-0.5 | 0.4 | Subhedral, grows in pressure shadow of gt. | | ru | 1 | 0.1-0.5 | 0.2 | Deep orange, in bands with cz and replacing gt. | #### **Texture** This thin section shows vague bands of amphibole and altered plagioclase which are wrapped around altered garnets. The amphiboles have a weakly expressed preference orientation. In the pressure shadow of the garnet, calcite may occur. The altered garnets are replaced by pl + metal oxides + amp + sph + cz + ru. Mostly a rim-like structure of the garnet is still present, whereas the interior is completely altered away. # Interpretation This is an amphibolites, formed from a mafic material. The garnets were formed before stress and shearing started. The rock is not in equilibrium anymore as minerals are being replaced but no stable structure is present yet. Calcite can only have formed in the presence of a CO_2 fluid, providing the necessary carbon. #### JI 2-2 #### **Texture** This thin section shows clear banding of bio + wm and q + pl + kfs. The plagioclase is not in equilibrium and satirization by clay minerals and minor amounts of clinozoisite occurs. However kfs does seem stable. Some micas show folding structures. Almost all biotite is being replaced by chlorite. Relics of garnet can be found. isotropic. ## **Interpretation** This is a biotite gneiss. Fluid flow at relatively low temperatures caused alteration of the rock, including replacement of biotite by chlorite and plagioclase by clay minerals and clinozoisite. Remaining potassium from the biotite is used in kfs. Relics of garnet give evidence for an earlier eclogite or granulite facies. A pressure regime caused both folding of mica grains and undulose extinction in quartz grains. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|-------------------------------------| | Q | 65 | 0.1-1 | 0.4 | Undulose extinction in most grains. | | Bio | 20 | 0.05-2 | 0.1 | Elongated | | Kfs | 7 | 0.1-0.3 | 0.2 | Checkerboard twinning | | pl | 10 | 0.1-0.5 | 0.3 | Albite twinning | | zr | Accessory | 0.05-0.1 | 0.8 | euhedral | #### **Texture** This rock shows a wealth of felsic minerals occurring in bands, interspersed with bands containing also biotite up to 30% within the band. The biotite grains are generally finegrained (<0.1 mm) but also sometimes occur in clusters with much larger grains up to 2 mm. # Interpretation This is a biotite gneiss, although the banding is not that well developed. Most quartz grains show undulose extinction pointing toward a fierce stress regime being plied on the rock. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |--------------|------------------|-----------|-------------------|--| | amp | 50 | 0.1-1 | 0.5 | Green pleochroic, anhedral, clear cleavage. | | pl | 10 | 0.1-0.3 | 0.2 | Very clear albite twinning. Anhedral, dusty looking in PPL. | | kfs | 7 | 0.1-0.3 | 0.2 | Checkerboard twinning, dusty looking in PPL. | | q | 20 | 0.05-0.8 | 0.2 | Undulose extinction, sometimes yellowish on the rims. | | sph | 3 | 0.05-0.2 | 0.1 | Very high relief, eye-shaped. | | bio | 5 | 0.05-0.5 | 0.3 | Intergrown with amphibole grains. Blocky to elongated shape. | | metal oxides | 3 | 0.01-0.2 | 0.05 | Generally as replacement of amphibole rims. | | ар | 2 | 0.05-0.1 | 0.1 | Rounded, within amphibole grains | #### **Texture** This rock shows a randomly orientated mineral assemblage. Amphiboles are not completely stable and partly replaced by metal oxides. Titanite grains are growing randomly over other minerals. Quartz shows undulose extinction with often pale yellow parts on the side of the grains. Both plagioclase and k-feldspar show very distinct twinning. #### **Interpretation** This is a amphibolite on the retrograde part of the metamorphic path. A slight pressure domain was applied on the rock creating undulose extinction in the quartz grains, but it was not enough for distinct banding to form. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |--------------|------------------|-----------|-------------------|---| | q | 65 | 0.1-3 | 1 | Elongated shape, undulose extinction | | pl | 10 | 0.2-0.8 | 0.5 | Very dusty appearance in PPL, unstable. Some grains still show albite twinning. | | kfs | 5 | 0.7-1.5 | 1 | Clear checkerboard twinning. Less dusty than pl. | | zr | accessory | 0.03-0.05 | 0.04 | Rounded, very high interference colours. | | chl | 10 | 0.2-1 | 0.8 | Light green pleochroic. Dark blue extinction in XPL. Elongated, clustered with biotite remains. | | СС | 3 | 0.01-0.1 | 0.05 | Grows in between grains, along the grain boundaries. | | bio | 3 | 0.05-0.1 | 0.06 | Grows together with chl, mostly replaced by chl. | | Metal oxides | 5 | 0.01-0.05 | 0.02 | Opaque, anhedral grains on the edges of chlorite grains. | #### **Texture** This rock shows a very clear preferred orientation of the grains, even resulting in occurrence of elongated quartz grains. Chlorite is gathered in bands together with a single biotite crystal every now and then. Plagioclase grains are not stable anymore, which gives them a very dusty appearance in PPL. K-felspars are stable and show checkerboard twinning. #### **Interpretation** This rock is a mylonite. Due to the very high pressures it must have experienced even quartz was able to deform to an elongated shape. The for the naked eye 'dark' bands consist out of unstable plagioclase together with chlorite and biotite, whereas the lighter bands consist mainly of quartz and k-feldspar. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------------|------------------|-----------|-------------------|---| | bio | 10 | 0.5-1 | 0.8 | Subhedral, sometimes ingrowth of ap and replaced by ilm. | | gt | 30 | 0.1-0.8 | 0.5 | Sub/euhedral, many cracks running through. Occurs in clusters. | | amp | 25 | 0.5-0.8 | 0.7 | Dark green/blue pleochroic. Sometimes almost completely replaced by ilm. | | q | 20 | 0.1-1.5 | 0.5 | Anhedral. Most
grains show undulose extinction. | | ilm | 5 | 0.1-1 | 0.7 | Opaque patches of multiple grains, mostly overgrowing one or more amp grains. | | pl | 2 | 0.1-0.4 | 0.2 | Unstable, wispy appearance with alternation of more Na- and Ca-rich parts. | | kfs | 2 | 0.1-0.4 | 0.2 | Anhedral, patchy in PPL | | ru | accessory | 0.05-0.1 | 0.1 | Deep orange in PPL and XPL | | al (allanite) | accessory | 0.05-0.1 | 0.08 | Yellow in PPL. Occurs between ilm clusters replacing amp grains. | | ер | 1 | 0.1-1 | 0.5mm | Euhedral, zoning with diffuse borders. | | ар | 2 | 0.05-0.1 | 0.08mm | Euhedral. Occurs inside q, bio and amp. | #### **Texture** This rock shows clusters of gt + bio + amp, separated by quartz and feldspars. Plagioclase grains seem to be unstable and show segregation of more sodic and more calcic parts. The gt + bio + amp clusters appear to be stable, although at some places complete amphibole + biotite grains are being replaced by ilmenite (+ allanite). Most amphiboles show a dark green pleochroism specific for hornblende, although some grains go towards a bluish color specific for barroisite. Euhedral epidote occurs in the sample, but is not evenly distributed and grains cluster together at some places. Euhedral apatite is evenly distributed throughout the sample. Almost all quartz grains show undulose extinction. ## **Interpretation** This rock is a garnet amphibolite with a very stable mineral assemblage of gt + bio + amp. However at confined locations amp + bio is being replaced by ilm (+ al) indicating the assemblage as less stable. Undulose extinction in the quartz grains indicate a stress regime which was put on the rock. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |--------------|------------------|-----------|-------------------|--| | q | 35 | 0.2-4 | 1 | Undulose extinction. Partly recrystallized. | | pl | 25 | 0.2-6 | 3 | Generally elongated with sometimes twinning, Subhedral. Dusty appearance. Sometimes albite twinning. | | kfs | 20 | 0.2-20 | 5 | Elongated, subhedral, sometimes with checkerboard twinning. | | bio | 15 | 0.1-2 | 1 | Brown pleochroic, some grains contain small grains of apatite inside. | | ер | 5 | 0.1-0.5 | 0.1 | Small grains in cluster, probably remains of one larger grain. Blue extinction, high relief. | | zo | 1 | 0.1-0.8 | 0.5 | High relief, blue extinction. Within pl. | | metal oxides | 3 | 0.1-0.5 | 0.2 | Between biotite clusters. | | zr | 1 | 0.05-0.2 | 0.1 | As inclusions in plagioclase. | #### **Texture** This rock is equigranular with large (up to 20mm) grains of k-feldspar. Biotite clusters with metal oxides. Plagioclase is unstable and is sometimes partly replaced by epidote grains. #### **Interpretation** This is a granite which had quite some time to cool down, resulting in large feldspar grains. The chemical surrounding got more potassium rich resulting in breakdown of plagioclase and remaining stability of k-feldspar. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|--| | q | 50 | 0.5-4 | 2 | Subhedral, symplectitic structures running from the old garnets. | | pl | 10 | 0.5-3 | 2 | Sub-/Euhedral grain, very clear albite twinning. Inclusions of zircon. | | kfs | 10 | 1-5 | 3 | Dusty appearance in PPL, seemingly unstable. | | bio | 10 | 0.5-1 | 0.7 | Brown pleochroic, black decay halos. Mostly overgrown by quartz. Sometimes symplectite formation in quartz and feldspar radiating from the biotite grains. | | gt | 5 | 1-5 | 2 | High relief, pinkish in PPL. Subhedral, run through by cracks. Overgrowing biotite. | | old gt | 20 | 0.3-2 | 1 | Subhedral, 6-sized grains, colourless in PPL. Low grey interference colours, neither isotropic nor showing normal interference habits. Grains ran through by green filled cracks like often in garnet. | | zr | Accessory | 0.01 | 0.01 | As inclusions in quartz. | #### **Texture** This rock contains an equigranular mineral assemblage. Part of the minerals used to be garnet according to their relief, shape and filled cracks resembling a garnet. They are completely replaced by quarts. Some garnets with a pinkish colour are still present and overgrow the biotite in the sample. K-feldspar seems relatively unstable compared to plagioclase as of its dusty appearance and less obvious mineral edges. Also symplectitic structures can be observed (Figure 78). # Interpretation This rock is a granite, containing garnet. Potassium was reacted out of the rock, making K-feldspar and biotite less stable. Further back in its history, the surroundings were changed as well, making garnet unstable. Figure 78. Symplectitic structures in sample JI 5-1. ## **JI5-2** | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|---| | q | 40 | 0.1-4 | 2 | Anhedral, some recrystallization along the edges. Some grains show undulose extinction. | | pl | 20 | 0.5-3 | 1 | Albite twinning, some grains are unstable, partly replaced by amphibole. | | kfs | 15 | 1-4 | 2 | Dusty appearance, anhedral. | | bio | 10 | 1-8 | 5 | Brown pleochroic, cleavage parallel to elongated shape of the grains. | | gt | 5 | 2-5 | 3 | Unstable, partly replaced by amp + pl | | amp | 10 | 0.1-0.5 | 0.3 | Finegrained needles, occurs as a replacement for altered minerals. | #### **Texture** This rock contains large (1-5mm) crystals, of which some are completely replaced by a fine grained mineral cluster of amp + pl (+ bio) (<0.5mm) in a random order. Garnet and biotite crystals are unstable and are partly replaced by small grained amp + pl. # Interpretation This rock is an unstable granite. Garnet and biotite are (partly) replaced by amphibole and plagioclase needles in a random order. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |-------------------|------------------|-----------|-------------------|--| | hbl (phenocrysts) | 10 | 2-4 | 3 | Euhedral, zoned, sometimes clear cleavage.
Dark green pleochroic. Sometimes partly
replaced by bio + metal oxides. | | pl (phenocrysts) | 2 | 1-2 | 1 | Euhedral blocky shape, zoned, albite twinning.
Unstable core filled with hbl, followed by
anorthite zone and albite rim. | | hbl (matrix) | 30 | 0.5-2 | 1 | Anhedral, partly being replaced by metal oxides. Dark green pleochroic. | | pl (matrix) | 25 | <0.2 | 0.05 | Euhedral elongated shape, sometimes albite twinning. An-rich core, Ab-rich rim. | | q (matrix) | 20 | <0.2 | 0.05 | Anhedral | | bio (matrix) | 10 | 0.01-0.1 | 0.02 | Anhedral, light brown pleochroic. Stable appearance. | | ru | 1 | 0.05-0.1 | 0.08 | Deep orange, Anhedral. | | metal oxides | 2 | 0.01-0.1 | 0.02 | Anhedral to blocky shape. Often overgrows hbl or pl. | #### **Texture** Fine grained matrix with coarse grained hbl and pl minerals. No preferred direction of growth visible. Phenocrysts seem unstable, especially in the core of the grains. Plagioclases show a clear zoning with an anorthite rich core and an albite rich rim. # Interpretation This is a hornblende hornfels, formed as contact metamorphose with granite intrusions. Present conditions are different from original conditions, causing zoning and replacement of mineral cores. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |--------------|------------------|-----------|-------------------|---| | q | 40 | 0.5-1 | 0.8 | Anhedral, sometimes containing holes with ap inside. | | pl | 15 | 0.2-1 | 0.5 | Albite twinning. Grains covered with holes, filled with amp. | | amp | 15 | 0.3-1.5 | 0.8 | Green in PPL, not pleochroic. Clear 60/120 degree cleavage. | | metal oxides | 10 | 0.05-0.2 | 0.1 | Anhedral, overgrowing ol, pl and q. | | ol | 10 | 0.05-0.2 | 0.1 | Slightly higher relief than amphibole, green in PPL. Sometimes clear cleavage in one direction. | | zo | 5 | 0.05-0.1 | 0.08 | Distinct blue extinction. Occurs along grain boundaries and as fill up of holes in pl. | | chl | 3 | 0.01-0.1 | 0.05 | Along quartz and epidote grain boundaries. Green pleochroic. | | ru | 2 | 0.01-0.2 | 0.05 | Along epidote grain boundaries. | | bio | Accessory | 0.1 | | Along metal oxide boundary. | | ар | Accessory | 0.03-0.08 | 0.05 | Inside quartz grains. | #### **Texture** This rock shows an unstable, equigranular mineral assemblage in which plagioclase is eaten away, resulting in holes inside the grains filled with amphibole. Metal oxides grow throughout the sample replacing olivine, plagioclase and quartz. The sample consists mainly of a mineral assemblage as described in the table. However there are some more felsic spots with mainly quartz, plagioclase and some amphibole. Here plagioclase grains show symplectitic structures. ## **Interpretation** This is a mafic intrusive rock, most likely a gabbro, which cooled pretty fast according to the mineral size. The chemistry of the surroundings changed drastically, resulting in plagioclase being replaced by amphibole and symplectitic structures to form. The more felsic part are probably lumps of minerals added to the melt at a later stage. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |--------------|------------------|-----------|-------------------|---| | q | 2 | 0.1-0.5 | 0.2 | Anhedral, together with
plagioclase. | | pl | 20 | 0.1-13 | 1 | Anhedral, very distinct albite twinning. | | ol | 40 | 0.3-3 | 0.8 | Rounded shape, slight higher relief than amphibole. Sometimes distinct cleavage in one direction. | | amp | 25 | 0.5-2 | 1 | Distinct cleavage on 60/120 degree angle. Often dusty appearance. | | metal oxides | 5 | 0.1-2 | 0.5 | Anhedral, often overgrowing plagioclase. | | ru | 2 | 0.05-0.1 | 0.08 | Together with metal oxides and inside cracks. | | срх | 5 | 0.2-0.5 | 0.3 | Distinct 90 degree cleavage, inclined extinction. | | bio | 2 | 0.1-1 | 0.5 | Randomly orientated, together with clayminerals in a crack running through the sample. | #### **Texture** This rock shows a fairly coarse grained, equigranular mineral structure. Amphibole seems unstable regarding the dusty appearance. A crack running through the sample contains mainly plagioclase and random oriented clay minerals. The rock is divided in a mafic and more felsic part. The latter contains plagioclase grains up to 13 mm whereas within the mafic part these grain do not exceed 2 mm. However on the border between the two areas, minerals in the mafic section are slightly larger (<2 mm) than in the rest of the rock (<1 mm). # **Interpretation** This is a mafic intrusive rock; most probably a gabbro. Introduction of a more felsic melt caused slower cooling in this area resulting in slightly larger crystals. Chemistry changes caused amphiboles to be unstable, although no evidence for such is found in zoning of olivines. | Mineral | Abundance
(%) | Size (mm) | Average size (mm) | Habit | |---------|------------------|-----------|-------------------|--| | q | 50 | 0.1-1 | 0.5 | Subhedral, some grains show undulose extinction. | | pl | 15 | 0.3-1 | 0.7 | Anhedral, dusty appearance. | | kfs | 10 | 0.5-1.5 | 1 | Anhedral, checkerboard twinning. | | bio | 15 | 0.01-1 | 0.3 | Elongated, slight preferred orientation. Mainly in between quartz grains. | | mica | 5 | 0.1-1 | 0.7 | Elongated, slight preferred orientation. Mainly overgrowing quartz grains. | | chl | 5 | 0.01-0.3 | 0.1 | Anhedral, small patches. | #### **Texture** This rock shows a slight preferred orientation of the micas, although no banding of these grains is observed. The rock is much smaller grained (0.01-1.5mm) than the other granite samples in this study (0.1-8mm). Chlorite grains are small and thinly spread indicating they probably only had short time to grow. # **Interpretation** This is a granite with slight schistose habits. It is probably part of a different generation of granites than the others described in this study because of its fine grained habit and lack of garnets. # Appendix II: XRF data | Clambo | | | | | | | | | | | | | | |-----------------|---------|--------------------------------|-----------|--|------------|----------|-------------------------------|------------------|-----------------------------------|--------|-------------------|-------|---------| | sample LOI (%) | (%) IOT | Fe ₂ O ₃ | MnO | Ti02 | CaO | K20 | P ₂ O ₅ | SiO ₂ | AI ₂ O ₃ | MgO | Na ₂ O | BaO | Sum | | JI-1-1 | 2.471 | 11.190 | 0.225 | 1.243 | 13.131 | 0.875 | 960.0 | 48.367 | 15.273 | 6.623 | 1.927 | 0.010 | 98.959 | | JI-1-3 | 1.294 | 5.358 | 0.118 | 0.615 | 1.737 | 3.156 | 0.133 | 68.480 | 14.242 | 2.605 | 2.228 | 0.046 | 98.716 | | JI-1-4 | 2.207 | 10.635 | 0.216 | 1.087 | 7.533 | 2.458 | 0.105 | 55.529 | 16.693 | 3.636 | 2.068 | 0.045 | 100.003 | | JI-2-1 | 1.396 | 12.058 | 0.197 | 1.210 | 11.471 | 0.609 | 0.087 | 49.222 | 13.906 | 7.964 | 2.332 | 0.008 | 99.064 | | JI-2-2 | 1.168 | 2.285 | 0.027 | 0.257 | 0.972 | 5.743 | 0.154 | 73.218 | 13.993 | 0.275 | 2.577 | 0.085 | 99.585 | | JI-4-2 | 0.613 | 3.356 | 0.040 | 0.449 | 2.151 | 4.383 | 0.106 | 67.623 | 14.053 | 1.241 | 2.783 | 0.093 | 96.278 | | JI-4-3 | 0.912 | 12.204 | 0.202 | 0.936 | 11.125 | 0.975 | 0.068 | 49.136 | 14.382 | 7.530 | 1.448 | 0.007 | 98.013 | | JI 4-6 | | 18.684 | 0.238 | 2.000 | 6.394 | 3.084 | 0.788 | 49.587 | 13.549 | 1.635 | 0.685 | 0.176 | 96.820 | | JI-4-7 | 1.150 | 5.347 | 0.072 | 0.817 | 2.861 | 4.566 | 0.207 | 65.908 | 15.249 | 1.109 | 3.096 | 0.111 | 99.344 | | JI-5-3 | 0.914 | 9.126 | 0.173 | 0.908 | 8.049 | 1.150 | 0.209 | 54.976 | 18.653 | 3.822 | 2.419 | 0.045 | 99.530 | | JI-5-7 | 0.626 | 1.786 | 0.019 | 0.171 | 0.932 | 5.352 | 0.036 | 74.275 | 13.423 | 0.224 | 2.909 | 0.067 | 99.193 | | Table 12. Whole | _ | ck geoch | emistry f | ock geochemistry from XRF analysis in wt%. Fe_2O_3 includes both Fe_2O_3 and FeO_3 | analysis i | n wt%. F | e_2O_3 incl | ides both | Fe ₂ O ₃ an | d FeO. | | | | # Appendix III: EMP data single grain JI 1-1 K-feldspar | Na2O | siO2 | MnO | K20 | MgO | Al203 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,197 | 65,208 | 0,000 | 16,527 | 0,000 | 18,673 | 0,000 | 0,000 | 100,637 | core | | 0,353 | 65,298 | 0,000 | 15,962 | 0,120 | 18,791 | 0,126 | 0,036 | 100,725 | core | | 0,145 | 64,246 | 0,022 | 16,507 | 0,003 | 18,618 | 0,000 | 0,000 | 99,598 | core | | 0,673 | 64,219 | 0,040 | 15,988 | 0,000 | 18,756 | 0,000 | 0,000 | 99,676 | core | | 0,180 | 64,939 | 0,000 | 16,304 | 0,011 | 18,415 | 0,012 | 0,000 | 99,861 | core | | 0,219 | 65,560 | 0,009 | 16,300 | 0,004 | 18,612 | 0,007 | 0,012 | 100,723 | core | | 0,124 | 66,121 | 0,009 | 16,156 | 0,011 | 18,522 | 0,019 | 0,000 | 100,963 | core | | 7,020 | 59,002 | 0,000 | 0,245 | 0,013 | 26,568 | 0,081 | 7,661 | 100,590 | core | | 0,141 | 65,875 | 0,011 | 16,365 | 0,000 | 18,617 | 0,032 | 0,000 | 101,057 | core | | 0,213 | 65,579 | 0,000 | 16,277 | 0,008 | 18,701 | 0,000 | 0,002 | 100,802 | core | | 0,134 | 65,460 | 0,022 | 16,598 | 0,001 | 19,003 | 0,026 | 0,000 | 101,244 | core | | | | | | | | | | | | | 0,149 | 65,011 | 0,013 | 16,615 | 0,000 | 18,552 | 0,035 | 0,000 | 100,375 | middle | | 0,212 | 65,202 | 0,000 | 16,088 | 0,008 | 18,524 | 0,000 | 0,648 | 100,736 | middle | | 0,210 | 64,007 | 0,004 | 16,392 | 0,000 | 18,593 | 0,000 | 0,010 | 99,216 | middle | | 0,709 | 62,897 | 0,000 | 15,678 | 0,263 | 18,517 | 0,044 | 0,000 | 98,108 | middle | | 0,209 | 65,876 | 0,011 | 16,278 | 0,000 | 18,672 | 0,040 | 0,000 | 101,086 | middle | | 0,149 | 65,288 | 0,031 | 16,557 | 0,000 | 18,615 | 0,056 | 0,000 | 100,699 | middle | | 0,146 | 66,065 | 0,013 | 16,251 | 0,000 | 18,673 | 0,000 | 0,000 | 101,160 | middle | | 0,211 | 65,855 | 0,046 | 16,365 | 0,009 | 18,788 | 0,000 | 0,000 | 101,287 | middle | | 0,207 | 64,858 | 0,000 | 16,463 | 0,000 | 18,622 | 0,000 | 0,000 | 100,201 | middle | | 0,129 | 64,919 | 0,011 | 16,702 | 0,000 | 18,888 | 0,014 | 0,000 | 100,670 | middle | | | | | | | | | | | | | 0,231 | 65,472 | 0,029 | 16,327 | 0,005 | 18,386 | 0,033 | 0,000 | 100,483 | rim | | 0,250 | 65,426 | 0,013 | 16,419 | 0,007 | 18,978 | 0,011 | 0,000 | 101,157 | rim | | 0,207 | 65,084 | 0,000 | 16,514 | 0,000 | 18,814 | 0,000 | 0,000 | 100,667 | rim | | 0,499 | 64,792 | 0,020 | 16,093 | 0,000 | 18,652 | 0,011 | 0,000 | 100,108 | rim | | 0,201 | 65,765 | 0,011 | 16,378 | 0,000 | 19,041 | 0,032 | 0,000 | 101,430 | rim | | 0,158 | 65,303 | 0,018 | 16,300 | 0,000 | 18,700 | 0,076 | 0,000 | 100,568 | rim | | 0,130 | 66,040 | 0,015 | 16,290 | 0,000 | 18,809 | 0,000 | 0,015 | 101,358 | rim | | 6,754 | 59,056 | 0,004 | 0,179 | 0,002 | 27,497 | 0,000 | 8,173 | 101,675 | rim | | 0,163 | 65,200 | 0,000 | 16,640 | 0,014 | 18,731 | 0,000 | 0,000 | 100,748 | rim | | 0,173 | 65,474 | 0,000 | 16,488 | 0,000 | 18,908 | 0,007 | 0,000 | 101,062 | rim | | 0,110 | 65,597 | 0,022 | 16,599 | 0,000 | 19,103 | 0,000 | 0,000 | 101,451 | rim | Table 13. Core, middle and rim measurements of K-felspar in JI 1-1. JI 1-3 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,137 | 64,446 | 0,000 | 16,417 | 0,000 | 18,605 | 0,019 | 0,007 | 99,652 | core | | 0,167 | 65,502 | 0,000 | 16,288 | 0,000 | 19,069 | 0,028 | 0,007 | 101,087 | core | | 0,252 | 64,848 | 0,026 | 16,265 | 0,000 | 18,857 | 0,114 | 0,000 | 100,362 | core | | 0,261 | 64,224 | 0,002 | 16,055 | 0,027 | 19,782 | 0,074 | 0,036 | 100,462 | core | | 0,145 | 65,441 | 0,007 | 16,236 | 0,003 | 18,824 | 0,000 | 0,000 | 100,675 | core | | 0,399 | 64,715 | 0,000 | 16,107 | 0,005 | 18,756 | 0,000 | 0,021 | 100,003 | core | | 0,179 | 65,479 | 0,000 | 16,182 | 0,000 | 18,832 | 0,032 | 0,000 | 100,704 | core | | 0,154 | 65,254 | 0,000 | 16,308 | 0,000 | 18,703 | 0,023 | 0,015 | 100,471 | core | | 0,140 | 65,012 | 0,000 | 16,385 | 0,000 | 18,894 | 0,000 | 0,016 | 100,447 | core | | 0,130 | 64,944 | 0,004 | 16,345 | 0,004 | 18,768 | 0,007 | 0,003 | 100,211 | core | | 0,143 | 65,034 | 0,000 | 16,523 | 0,001 | 18,879 | 0,000 | 0,000 | 100,595 | core | | | | | | | | | | | | | 0,132 | 65,011 | 0,002 | 16,384 | 0,006 | 18,552 | 0,083 | 0,000 | 100,186 | middle | | 0,169 | 65,607 | 0,011 | 16,308 | 0,004 | 18,897 | 0,035 | 0,012 | 101,056 | middle | | 0,173 | 65,266 | 0,000 | 16,161 | 0,000 | 18,525 | 0,048 | 0,000 | 100,213 | middle | | 0,183 | 64,336 | 0,000 | 16,045 | 0,012 | 19,830 | 0,009 | 0,025 | 100,445 | middle | | 0,167 | 65,655 | 0,011 | 16,397 | 0,000 | 18,815 | 0,048 | 0,000 | 101,095 | middle | | 0,136 | 64,615 | 0,000 | 16,570 | 0,000 | 18,644 | 0,000 | 0,000 | 99,974 | middle | | 0,180 | 65,500 | 0,000 | 16,131 | 0,004 | 18,715 | 0,035 | 0,000 | 100,565 | middle | | 0,180 | 65,356 | 0,000 | 16,323 | 0,000 | 18,688 | 0,018 | 0,000 | 100,568 | middle | | 0,153 | 65,393 | 0,000 | 16,322 | 0,001 | 18,978 | 0,000 | 0,000 | 100,849 | middle | | 0,166 | 65,217 | 0,000 | 16,296 | 0,003 | 18,701 | 0,055 | 0,000 | 100,496 | middle | | | | | | | | | | | | | 0,174 | 65,284 | 0,011 | 16,317 | 0,000 | 18,951 | 0,046 | 0,000 | 100,837 | rim | | 0,167 | 64,620 | 0,000 | 16,176 |
0,049 | 18,434 | 0,058 | 0,003 | 99,507 | rim | | 0,994 | 63,935 | 0,024 | 14,491 | 0,078 | 20,282 | 0,241 | 0,224 | 100,269 | rim | | 0,132 | 65,399 | 0,007 | 16,357 | 0,000 | 18,843 | 0,012 | 0,000 | 100,750 | rim | | 0,181 | 64,718 | 0,033 | 16,372 | 0,000 | 18,476 | 0,011 | 0,000 | 99,791 | rim | | 0,230 | 65,677 | 0,013 | 16,059 | 0,000 | 18,721 | 0,016 | 0,000 | 100,755 | rim | | 0,105 | 65,048 | 0,000 | 16,604 | 0,000 | 18,717 | 0,000 | 0,001 | 100,475 | rim | | 0,364 | 65,456 | 0,000 | 16,213 | 0,000 | 18,858 | 0,000 | 0,000 | 100,905 | rim | | 0,164 | 63,797 | 0,000 | 16,635 | 0,000 | 18,644 | 0,000 | 0,000 | 99,251 | rim | | 0,116 | 65,288 | 0,000 | 16,570 | 0,002 | 18,890 | 0,083 | 0,000 | 100,953 | rim | Table 14. Core, middle and rim measurements of K-felspar in JI 1-3. JI 1-4 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,188 | 64,473 | 0,000 | 16,636 | 0,000 | 19,065 | 0,002 | 0,080 | 100,444 | core | | 0,098 | 64,931 | 0,017 | 16,858 | 0,006 | 19,198 | 0,034 | 0,027 | 101,169 | core | | 0,160 | 65,298 | 0,000 | 16,593 | 0,003 | 19,229 | 0,000 | 0,000 | 101,283 | core | | 0,161 | 65,061 | 0,002 | 16,751 | 0,006 | 19,250 | 0,000 | 0,000 | 101,231 | core | | 0,188 | 65,110 | 0,000 | 16,568 | 0,000 | 18,962 | 0,002 | 0,000 | 100,830 | core | | 0,156 | 64,977 | 0,033 | 16,813 | 0,000 | 18,855 | 0,000 | 0,008 | 100,842 | core | | 0,129 | 65,736 | 0,019 | 16,905 | 0,010 | 19,236 | 0,000 | 0,000 | 102,035 | core | | 0,144 | 64,013 | 0,007 | 16,669 | 0,001 | 19,166 | 0,011 | 0,000 | 100,011 | core | | 0,214 | 62,979 | 0,000 | 16,627 | 0,011 | 19,142 | 0,000 | 0,014 | 98,987 | core | | 0,238 | 64,423 | 0,000 | 16,674 | 0,000 | 18,946 | 0,019 | 0,000 | 100,300 | core | | | | | | | | | | | | | 0,177 | 64,909 | 0,031 | 16,694 | 0,000 | 19,224 | 0,000 | 0,000 | 101,035 | middle | | 0,166 | 63,395 | 0,019 | 16,636 | 0,017 | 18,952 | 0,000 | 0,000 | 99,185 | middle | | 0,111 | 65,088 | 0,021 | 16,687 | 0,013 | 19,259 | 0,004 | 0,000 | 101,183 | middle | | 0,183 | 65,431 | 0,000 | 16,632 | 0,000 | 18,801 | 0,044 | 0,264 | 101,355 | middle | | 0,183 | 63,804 | 0,005 | 16,552 | 0,000 | 18,706 | 0,000 | 0,000 | 99,250 | middle | | 0,194 | 65,085 | 0,000 | 16,779 | 0,000 | 19,102 | 0,000 | 0,000 | 101,160 | middle | | 0,185 | 64,836 | 0,000 | 16,724 | 0,005 | 19,060 | 0,000 | 0,016 | 100,826 | middle | | 0,167 | 63,037 | 0,000 | 16,584 | 0,000 | 18,857 | 0,000 | 0,000 | 98,645 | middle | | 0,142 | 62,462 | 0,000 | 16,452 | 0,000 | 18,900 | 0,000 | 0,014 | 97,970 | middle | | 0,146 | 65,000 | 0,000 | 16,677 | 0,004 | 18,836 | 0,013 | 0,011 | 100,687 | middle | | | | | | | | | | | | | 0,182 | 63,943 | 0,000 | 16,799 | 0,000 | 19,132 | 0,000 | 0,000 | 100,056 | rim | | 0,187 | 65,105 | 0,000 | 16,480 | 0,018 | 19,052 | 0,021 | 0,011 | 100,874 | rim | | 0,116 | 64,379 | 0,035 | 16,624 | 0,000 | 19,161 | 0,000 | 0,000 | 100,315 | rim | | 0,154 | 65,607 | 0,000 | 16,713 | 0,000 | 19,149 | 0,000 | 0,000 | 101,623 | rim | | 0,196 | 65,906 | 0,000 | 16,653 | 0,000 | 18,881 | 0,000 | 0,000 | 101,636 | rim | | 0,149 | 63,998 | 0,064 | 16,596 | 0,002 | 18,846 | 0,000 | 0,007 | 99,662 | rim | | 0,217 | 65,193 | 0,000 | 16,845 | 0,001 | 19,263 | 0,000 | 0,007 | 101,526 | rim | | 0,175 | 63,826 | 0,012 | 16,642 | 0,012 | 18,913 | 0,000 | 0,017 | 99,597 | rim | | 0,187 | 63,424 | 0,024 | 16,591 | 0,000 | 18,933 | 0,038 | 0,005 | 99,202 | rim | | 0,236 | 64,538 | 0,000 | 16,717 | 0,000 | 18,894 | 0,002 | 0,000 | 100,387 | rim | Table 15. Core, middle and rim measurements of K-felspar in JI 1-4. JI 2-2 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 1,067 | 65,088 | 0,000 | 15,558 | 0,000 | 19,503 | 0,028 | 0,083 | 101,327 | core | | 0,778 | 64,519 | 0,000 | 16,172 | 0,000 | 19,221 | 0,045 | 0,018 | 100,753 | core | | 1,203 | 65,462 | 0,024 | 15,311 | 0,009 | 19,239 | 0,032 | 0,002 | 101,282 | core | | 2,047 | 65,440 | 0,000 | 14,154 | 0,000 | 19,606 | 0,000 | 0,041 | 101,288 | core | | 3,567 | 66,158 | 0,000 | 12,731 | 0,000 | 19,727 | 0,000 | 0,033 | 102,216 | core | | 0,632 | 65,044 | 0,000 | 16,012 | 0,002 | 19,206 | 0,040 | 0,079 | 101,015 | core | | 0,478 | 65,293 | 0,000 | 16,392 | 0,000 | 19,232 | 0,030 | 0,029 | 101,454 | core | | 0,871 | 65,379 | 0,009 | 15,901 | 0,000 | 19,439 | 0,000 | 0,015 | 101,614 | core | | 0,872 | 64,329 | 0,007 | 15,672 | 0,000 | 19,058 | 0,002 | 0,040 | 99,980 | core | | | | | | | | | | | | | 0,759 | 65,134 | 0,000 | 16,005 | 0,000 | 19,402 | 0,038 | 0,077 | 101,415 | middle | | 1,222 | 64,916 | 0,000 | 15,290 | 0,000 | 19,331 | 0,000 | 0,040 | 100,799 | middle | | 1,353 | 64,847 | 0,002 | 15,275 | 0,000 | 19,343 | 0,030 | 0,025 | 100,875 | middle | | 0,932 | 65,617 | 0,000 | 15,827 | 0,000 | 19,309 | 0,028 | 0,015 | 101,728 | middle | | 0,833 | 65,209 | 0,042 | 15,756 | 0,000 | 19,361 | 0,000 | 0,028 | 101,229 | middle | | 0,804 | 64,977 | 0,007 | 15,963 | 0,000 | 19,370 | 0,006 | 0,005 | 101,132 | middle | | 0,663 | 65,509 | 0,000 | 16,156 | 0,000 | 19,390 | 0,023 | 0,052 | 101,793 | middle | | 0,891 | 65,871 | 0,016 | 15,841 | 0,000 | 19,465 | 0,017 | 0,038 | 102,139 | middle | | 1,165 | 65,642 | 0,005 | 15,377 | 0,000 | 19,366 | 0,000 | 0,035 | 101,590 | middle | | 0,980 | 65,742 | 0,000 | 15,728 | 0,000 | 19,557 | 0,013 | 0,038 | 102,058 | middle | | | | | | | | | | | | | 0,749 | 65,172 | 0,009 | 16,072 | 0,000 | 19,291 | 0,004 | 0,048 | 101,345 | rim | | 0,967 | 64,466 | 0,005 | 15,868 | 0,000 | 19,088 | 0,004 | 0,037 | 100,435 | rim | | 0,770 | 65,522 | 0,000 | 15,938 | 0,017 | 19,464 | 0,047 | 0,009 | 101,767 | rim | | 1,412 | 65,424 | 0,000 | 14,990 | 0,000 | 19,414 | 0,049 | 0,024 | 101,313 | rim | | 0,449 | 64,856 | 0,000 | 16,418 | 0,000 | 19,288 | 0,000 | 0,055 | 101,066 | rim | | 0,895 | 65,505 | 0,000 | 15,771 | 0,010 | 19,529 | 0,011 | 0,009 | 101,730 | rim | | 0,677 | 65,783 | 0,000 | 15,939 | 0,003 | 19,469 | 0,032 | 0,025 | 101,928 | rim | | 0,966 | 65,737 | 0,012 | 15,597 | 0,000 | 19,471 | 0,008 | 0,043 | 101,834 | rim | | 1,121 | 65,773 | 0,000 | 15,675 | 0,005 | 19,457 | 0,028 | 0,040 | 102,099 | rim | | 1,042 | 65,037 | 0,000 | 15,728 | 0,000 | 19,371 | 0,009 | 0,070 | 101,257 | rim | Table 16. Core, middle and rim measurements of K-felspar in JI 2-2. JI 4-2 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 1,429 | 65,245 | 0,000 | 14,895 | 0,003 | 19,390 | 0,000 | 0,040 | 101,002 | core | | 1,911 | 65,137 | 0,002 | 14,034 | 0,000 | 19,822 | 0,000 | 0,241 | 101,147 | core | | 0,674 | 64,834 | 0,000 | 16,258 | 0,000 | 19,437 | 0,000 | 0,000 | 101,203 | core | | 0,599 | 65,174 | 0,005 | 16,314 | 0,000 | 19,420 | 0,013 | 0,000 | 101,525 | core | | 0,559 | 64,586 | 0,000 | 16,272 | 0,000 | 19,511 | 0,015 | 0,009 | 100,952 | core | | 0,608 | 63,817 | 0,000 | 16,211 | 0,000 | 19,411 | 0,013 | 0,000 | 100,060 | core | | 0,429 | 65,318 | 0,007 | 16,451 | 0,003 | 19,422 | 0,000 | 0,035 | 101,665 | core | | 0,320 | 65,162 | 0,000 | 16,492 | 0,005 | 19,309 | 0,011 | 0,000 | 101,299 | core | | | | | | | | | | | | | 0,922 | 63,592 | 0,000 | 15,528 | 0,000 | 19,512 | 0,061 | 0,018 | 99,633 | middle | | 2,336 | 66,112 | 0,017 | 13,564 | 0,006 | 19,845 | 0,030 | 0,198 | 102,108 | middle | | 0,702 | 63,838 | 0,000 | 16,099 | 0,000 | 19,358 | 0,063 | 0,000 | 100,060 | middle | | 0,570 | 64,944 | 0,014 | 16,333 | 0,018 | 19,308 | 0,009 | 0,000 | 101,196 | middle | | 0,458 | 64,563 | 0,000 | 16,330 | 0,000 | 19,405 | 0,000 | 0,000 | 100,756 | middle | | 0,640 | 64,722 | 0,000 | 16,268 | 0,000 | 19,516 | 0,000 | 0,000 | 101,146 | middle | | 0,580 | 64,674 | 0,026 | 16,158 | 0,000 | 19,397 | 0,013 | 0,000 | 100,848 | middle | | 0,751 | 65,033 | 0,000 | 16,118 | 0,000 | 19,523 | 0,000 | 0,004 | 101,429 | middle | | | | | | | | | | | | | 0,749 | 65,795 | 0,000 | 15,928 | 0,020 | 19,363 | 0,000 | 0,032 | 101,887 | rim | | 0,976 | 65,324 | 0,000 | 15,714 | 0,008 | 19,507 | 0,015 | 0,031 | 101,575 | rim | | 0,671 | 65,119 | 0,012 | 16,157 | 0,010 | 19,458 | 0,000 | 0,000 | 101,427 | rim | | 0,645 | 65,891 | 0,000 | 16,296 | 0,000 | 19,487 | 0,000 | 0,000 | 102,319 | rim | | 0,582 | 63,825 | 0,000 | 16,153 | 0,000 | 19,356 | 0,000 | 0,178 | 100,094 | rim | | 0,562 | 65,332 | 0,033 | 16,285 | 0,006 | 19,513 | 0,023 | 0,244 | 101,998 | rim | | 0,525 | 65,102 | 0,000 | 16,391 | 0,000 | 19,447 | 0,000 | 0,000 | 101,465 | rim | | 0,810 | 63,826 | 0,000 | 15,958 | 0,004 | 19,261 | 0,000 | 0,007 | 99,866 | rim | | 0,895 | 65,505 | 0,000 | 15,771 | 0,010 | 19,529 | 0,011 | 0,009 | 101,730 | rim | | 0,677 | 65,783 | 0,000 | 15,939 | 0,003 | 19,469 | 0,032 | 0,025 | 101,928 | rim | | 0,966 | 65,737 | 0,012 | 15,597 | 0,000 | 19,471 | 0,008 | 0,043 | 101,834 | rim | | 1,121 | 65,773 | 0,000 | 15,675 | 0,005 | 19,457 | 0,028 | 0,040 | 102,099 | rim | | 1,042 | 65,037 | 0,000 | 15,728 | 0,000 | 19,371 | 0,009 | 0,070 | 101,257 | rim | Table 17. Core, middle and rim measurements of K-felspar in JI 4-2. JI 4-3 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|--------|--------|--------|--------|---------|---------| | 0,524 | 63,871 | 0,000 | 15,746 | 0,302 | 18,962 | 0,477 | 0,033 | 99,917 | core | | 0,323 | 65,340 | 0,020 | 16,615 | 0,003 | 19,093 | 0,014 | 0,000 | 101,433 | core | | 0,461 | 65,321 | 0,000 | 16,348 | 0,000 | 19,161 | 0,000 | 0,000 | 101,305 | core | | 0,377 | 64,724 | 0,009 | 16,346 | 0,000 | 18,981 | 0,000 | 0,010 | 100,447 | core | | 0,349 | 65,304 | 0,035 | 16,406 | 0,000 | 18,949 | 0,000 | 0,024 | 101,067 | core | | 0,507 | 65,776 | 0,018 | 16,006 | 0,000 | 19,033 | 0,016 | 0,000 | 101,373 | core | | 0,116 | 65,294 | 0,033 | 16,631 | 0,001 | 18,849 |
0,000 | 0,000 | 100,924 | core | | 0,485 | 65,320 | 0,000 | 16,311 | 0,005 | 19,014 | 0,007 | 0,015 | 101,157 | core | | 0,488 | 65,782 | 0,000 | 16,041 | 0,000 | 19,053 | 0,011 | 0,000 | 101,419 | core | | 0,244 | 65,509 | 0,000 | 16,532 | 0,011 | 18,999 | 0,007 | 0,000 | 101,302 | core | | 0,559 | 65,380 | 0,000 | 15,878 | 0,040 | 19,198 | 0,072 | 0,019 | 101,157 | core | | | | | | | | | | | | | 0,266 | 64,419 | 0,000 | 16,044 | 0,013 | 18,954 | 0,000 | 0,017 | 99,753 | middle | | 0,262 | 65,365 | 0,000 | 16,507 | 0,009 | 19,225 | 0,000 | 0,000 | 101,413 | middle | | 0,482 | 65,264 | 0,000 | 16,174 | 0,000 | 18,974 | 0,004 | 0,004 | 100,902 | middle | | 0,343 | 65,411 | 0,000 | 16,395 | 0,000 | 19,078 | 0,000 | 0,000 | 101,272 | middle | | 0,266 | 65,028 | 0,024 | 16,416 | 0,000 | 19,062 | 0,000 | 0,000 | 100,796 | middle | | 0,482 | 65,482 | 0,042 | 16,087 | 0,003 | 19,074 | 0,000 | 0,006 | 101,176 | middle | | 0,492 | 65,446 | 0,009 | 16,099 | 0,000 | 19,067 | 0,000 | 0,000 | 101,113 | middle | | 0,068 | 65,340 | 0,000 | 16,770 | 0,017 | 18,814 | 0,007 | 0,000 | 101,031 | middle | | 0,437 | 65,523 | 0,002 | 16,218 | 0,021 | 19,158 | 0,000 | 0,000 | 101,381 | middle | | 0,517 | 65,788 | 0,000 | 16,242 | 0,000 | 18,942 | 0,000 | 0,000 | 101,489 | middle | | 0,082 | 65,894 | 0,009 | 16,805 | 0,001 | 18,981 | 0,000 | 0,000 | 101,796 | middle | | 0,690 | 65,200 | 0,020 | 15,703 | 0,016 | 19,161 | 0,037 | 0,004 | 100,847 | middle | | | | | | | | | | | | | 0,379 | 64,257 | 0,000 | 16,188 | 0,000 | 19,046 | 0,000 | 0,016 | 99,886 | rim | | 0,386 | 65,358 | 0,018 | 16,373 | 0,000 | 18,990 | 0,000 | 0,000 | 101,160 | rim | | 0,596 | 64,505 | 0,029 | 15,895 | 0,000 | 19,170 | 0,000 | 0,000 | 100,218 | rim | | 0,384 | 65,497 | 0,013 | 16,356 | 0,000 | 19,108 | 0,000 | 0,000 | 101,359 | rim | | 0,317 | 65,265 | 0,018 | 16,381 | 0,004 | 19,247 | 0,000 | 0,000 | 101,239 | rim | | 0,331 | 51,086 | 0,308 | 0,278 | 12,984 | 4,399 | 14,394 | 12,219 | 96,293 | rim | | 0,353 | 65,251 | 0,000 | 16,220 | 0,007 | 18,841 | 0,025 | 0,000 | 100,697 | rim | | 0,470 | 65,709 | 0,004 | 16,155 | 0,013 | 19,009 | 0,002 | 0,000 | 101,436 | rim | | 0,063 | 65,533 | 0,000 | 16,782 | 0,000 | 18,944 | 0,021 | 0,000 | 101,366 | rim | | 0,416 | 65,519 | 0,002 | 16,252 | 0,004 | 19,189 | 0,026 | 0,016 | 101,424 | rim | | 0,451 | 65,764 | 0,000 | 16,170 | 0,000 | 19,024 | 0,000 | 0,000 | 101,421 | rim | | 0,096 | 65,381 | 0,011 | 16,685 | 0,000 | 19,181 | 0,044 | 0,000 | 101,422 | rim | | 0,478 | 64,519 | 0,027 | 15,702 | 0,003 | 18,777 | 0,023 | 0,000 | 99,529 | rim | Table 18. Core, middle and rim measurements of K-felspar in JI 4-3. JI 4-5 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al203 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,227 | 64,946 | 0,012 | 16,732 | 0,000 | 19,016 | 0,030 | 0,000 | 100,963 | core | | 0,263 | 64,765 | 0,016 | 16,742 | 0,008 | 18,901 | 0,032 | 0,000 | 100,727 | core | | 1,479 | 63,813 | 0,012 | 14,264 | 0,019 | 18,730 | 0,030 | 1,479 | 99,826 | core | | 0,695 | 64,944 | 0,012 | 16,048 | 0,011 | 19,299 | 0,000 | 0,025 | 101,034 | core | | 0,715 | 65,844 | 0,031 | 15,963 | 0,001 | 19,597 | 0,017 | 0,041 | 102,209 | core | | 0,557 | 64,426 | 0,000 | 16,364 | 0,000 | 19,251 | 0,000 | 0,000 | 100,598 | core | | 0,249 | 64,418 | 0,000 | 16,788 | 0,000 | 19,060 | 0,000 | 0,000 | 100,515 | core | | 0,569 | 63,964 | 0,000 | 16,154 | 0,005 | 19,114 | 0,023 | 0,035 | 99,864 | core | | 0,661 | 64,277 | 0,019 | 16,068 | 0,000 | 19,092 | 0,000 | 0,028 | 100,145 | core | | 0,689 | 64,574 | 0,000 | 16,007 | 0,000 | 19,293 | 0,000 | 0,022 | 100,585 | core | | | | | | | | | | | | | 0,212 | 65,027 | 0,000 | 16,806 | 0,000 | 18,990 | 0,000 | 0,012 | 101,047 | middle | | 0,250 | 64,991 | 0,000 | 16,787 | 0,000 | 18,924 | 0,000 | 0,000 | 100,952 | middle | | 2,096 | 65,655 | 0,000 | 13,820 | 0,002 | 19,616 | 0,011 | 0,051 | 101,251 | middle | | 0,498 | 65,336 | 0,000 | 16,308 | 0,000 | 19,449 | 0,004 | 0,024 | 101,619 | middle | | 0,655 | 65,012 | 0,000 | 16,097 | 0,008 | 19,351 | 0,000 | 0,035 | 101,158 | middle | | 0,648 | 65,315 | 0,033 | 16,122 | 0,000 | 19,274 | 0,045 | 0,012 | 101,449 | middle | | 0,216 | 64,639 | 0,012 | 16,549 | 0,000 | 19,255 | 0,000 | 0,000 | 100,671 | middle | | 0,504 | 64,488 | 0,012 | 16,412 | 0,000 | 19,254 | 0,019 | 0,022 | 100,711 | middle | | 0,382 | 63,361 | 0,052 | 16,394 | 0,000 | 18,998 | 0,000 | 0,033 | 99,220 | middle | | 0,666 | 64,153 | 0,028 | 16,128 | 0,002 | 19,315 | 0,013 | 0,027 | 100,332 | middle | | | | | | | | | | | | | 0,264 | 64,810 | 0,000 | 16,628 | 0,005 | 19,133 | 0,000 | 0,000 | 100,840 | rim | | 0,278 | 65,035 | 0,005 | 16,627 | 0,000 | 18,963 | 0,038 | 0,002 | 100,948 | rim | | 0,913 | 65,834 | 0,000 | 15,507 | 0,000 | 19,331 | 0,000 | 0,014 | 101,599 | rim | | 0,955 | 65,602 | 0,000 | 15,706 | 0,002 | 19,456 | 0,015 | 0,000 | 101,736 | rim | | 1,187 | 65,714 | 0,000 | 15,248 | 0,000 | 19,625 | 0,017 | 0,036 | 101,827 | rim | | 0,876 | 65,644 | 0,000 | 15,678 | 0,000 | 19,450 | 0,000 | 0,000 | 101,648 | rim | | 0,254 | 63,952 | 0,000 | 16,545 | 0,002 | 18,669 | 0,004 | 0,000 | 99,426 | rim | | 0,275 | 64,690 | 0,045 | 16,595 | 0,002 | 19,373 | 0,011 | 0,000 | 100,991 | rim | | 0,848 | 64,270 | 0,035 | 15,832 | 0,000 | 18,979 | 0,000 | 0,014 | 99,978 | rim | | 0,748 | 65,001 | 0,033 | 15,968 | 0,000 | 19,513 | 0,000 | 0,004 | 101,267 | rim | Table 19. Core, middle and rim measurements of K-felspar in JI 4-5. JI 4-7 K-feldspar | Na2O | SiO2 | MnO | К2О | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,584 | 63,853 | 0,022 | 15,98 | 0 | 18,796 | 0,035 | 0,058 | 99,382 | core | | 0,715 | 65,028 | 0,002 | 15,863 | 0,004 | 18,93 | 0,005 | 0 | 100,579 | core | | 0,656 | 64,582 | 0 | 15,872 | 0 | 18,768 | 0 | 0 | 99,888 | core | | 0,572 | 63,701 | 0 | 15,946 | 0 | 18,843 | 0,019 | 0,004 | 99,121 | core | | 0,661 | 64,619 | 0,015 | 15,748 | 0 | 19,107 | 0 | 0,001 | 100,153 | core | | 0,838 | 64,428 | 0 | 15,481 | 0 | 18,974 | 0,046 | 0 | 99,806 | core | | 0,694 | 64,846 | 0 | 15,88 | 0 | 18,909 | 0 | 0 | 100,352 | core | | 0,898 | 64,523 | 0 | 15,207 | 0 | 19,164 | 0,004 | 0,019 | 99,815 | core | | 0,737 | 65,116 | 0 | 15,721 | 0 | 19,147 | 0,067 | 0,005 | 100,793 | core | | 2,419 | 65,74 | 0 | 13,208 | 0 | 19,133 | 0,002 | 0,028 | 100,541 | core | | | | | | | | | | | | | 0,685 | 65,06 | 0,024 | 15,885 | 0 | 19,13 | 0,005 | 0 | 100,823 | middle | | 0,727 | 64,293 | 0,024 | 15,845 | 0 | 18,649 | 0,002 | 0 | 99,615 | middle | | 0,594 | 63,826 | 0 | 15,989 | 0,004 | 18,723 | 0,019 | 0,009 | 99,186 | middle | | 0,602 | 64,849 | 0 | 15,916 | 0 | 19,032 | 0 | 0,005 | 100,411 | middle | | 0,588 | 64,449 | 0,002 | 15,737 | 0 | 19,032 | 0,023 | 0,008 | 99,875 | middle | | 0,842 | 63,933 | 0 | 15,431 | 0 | 18,967 | 0,033 | 0 | 99,27 | middle | | 0,552 | 64,892 | 0,031 | 15,935 | 0 | 18,932 | 0,028 | 0 | 100,374 | middle | | 0,449 | 64,66 | 0 | 16,105 | 0 | 19,002 | 0 | 0 | 100,216 | middle | | 0,708 | 64,999 | 0 | 15,688 | 0,005 | 19,064 | 0,058 | 0,005 | 100,527 | middle | | 0,664 | 65,18 | 0,004 | 15,871 | 0,001 | 19,067 | 0 | 0 | 100,829 | middle | | 0,777 | 65,041 | 0,011 | 15,672 | 0 | 18,967 | 0,07 | 0,012 | 100,568 | middle | | | | | | | | | | | | | 0,717 | 64,972 | 0,026 | 15,721 | 0,015 | 19,039 | 0,023 | 0,012 | 100,537 | rim | | 0,788 | 63,606 | 0 | 15,378 | 0 | 18,618 | 0 | 0 | 98,408 | rim | | 0,478 | 64,193 | 0,042 | 16,157 | 0,002 | 18,739 | 0 | 0 | 99,687 | rim | | 0,671 | 65,022 | 0 | 15,674 | 0 | 19,001 | 0,007 | 0 | 100,397 | rim | | 0,678 | 64,259 | 0,002 | 15,603 | 0,004 | 18,868 | 0,037 | 0 | 99,462 | rim | | 2,831 | 64,063 | 0 | 12,564 | 0 | 19,027 | 0 | 0,046 | 98,551 | rim | | 0,587 | 65,288 | 0,046 | 16,015 | 0 | 19,046 | 0,058 | 0 | 101,048 | rim | | 0,721 | 65,44 | 0,011 | 15,727 | 0,015 | 19,136 | 0,011 | 0 | 101,076 | rim | | 0,76 | 65,098 | 0,013 | 15,717 | 0 | 19,026 | 0,011 | 0,003 | 100,628 | rim | | 0,723 | 64,946 | 0 | 15,709 | 0 | 19,025 | 0 | 0 | 100,431 | rim | | 0,668 | 65,188 | 0,007 | 15,769 | 0 | 19,055 | 0,018 | 0 | 100,714 | rim | Table 20. Core, middle and rim measurements of K-felspar in JI 4-7. JI 5-1 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 1,084 | 64,518 | 0,000 | 15,269 | 0,000 | 19,447 | 0,002 | 0,038 | 100,396 | core | | 1,240 | 63,957 | 0,000 | 14,886 | 0,000 | 19,165 | 0,000 | 0,052 | 99,336 | core | | 1,942 | 64,897 | 0,000 | 14,063 | 0,000 | 19,277 | 0,000 | 0,055 | 100,263 | core | | 1,160 | 64,860 | 0,000 | 15,206 | 0,000 | 19,354 | 0,048 | 0,013 | 100,667 | core | | 0,922 | 64,898 | 0,004 | 15,362 | 0,031 | 19,457 | 0,000 | 0,035 | 100,739 | core | | 0,973 | 64,567 | 0,000 | 15,323 | 0,000 | 19,060 | 0,004 | 0,033 | 99,986 | core | | 1,387 | 64,508 | 0,000 | 14,703 | 0,000 | 19,059 | 0,025 | 0,064 | 99,772 | core | | 0,944 | 63,465 | 0,000 | 15,389 | 0,000 | 19,187 | 0,005 | 0,038 | 99,033 | core | | 1,294 | 64,393 | 0,018 | 14,813 | 0,000 | 19,377 | 0,014 | 0,075 | 99,987 | core | | 1,586 | 65,033 | 0,044 | 14,471 | 0,006 | 19,410 | 0,021 | 0,067 | 100,662 | core | | 0,997 | 64,982 | 0,000 | 15,195 | 0,000 | 19,221 | 0,026 | 0,037 | 100,493 | core | | | | | | | | | | | | | 1,785 | 65,192 | 0,000 | 14,368 | 0,023 | 19,742 | 0,000 | 0,150 | 101,260 | middle | | 1,409 | 64,451 | 0,007 | 14,674 | 0,000 | 19,363 | 0,030 | 0,060 | 100,021 | middle | | 1,804 | 64,925 | 0,013 | 14,224 | 0,010 | 19,412 | 0,051 | 0,022 | 100,473 | middle | | 1,174 | 64,571 | 0,000 | 15,174 | 0,002 | 19,272 | 0,011 | 0,020 | 100,224 | middle | | 1,038 | 64,308 | 0,000 | 15,338 | 0,002 | 19,264 | 0,000 | 0,023 | 100,031 | middle | | 1,214 | 65,167 | 0,002 | 14,918 | 0,008 | 19,420 | 0,000 | 0,044 | 100,784 | middle | | 2,310 | 65,074 | 0,000 | 13,365 | 0,000 |
19,389 | 0,028 | 0,096 | 100,265 | middle | | 2,126 | 63,819 | 0,022 | 13,273 | 0,000 | 18,972 | 0,026 | 0,105 | 98,343 | middle | | 1,456 | 64,882 | 0,011 | 14,594 | 0,006 | 19,266 | 0,000 | 0,068 | 100,309 | middle | | 1,426 | 65,023 | 0,000 | 14,601 | 0,000 | 19,471 | 0,000 | 0,054 | 100,575 | middle | | 1,345 | 64,992 | 0,020 | 14,814 | 0,000 | 19,316 | 0,028 | 0,069 | 100,613 | middle | | | | | | | | | | | | | 1,221 | 64,821 | 0,000 | 14,969 | 0,001 | 19,429 | 0,039 | 0,040 | 100,539 | rim | | 1,437 | 64,851 | 0,024 | 14,789 | 0,000 | 19,316 | 0,030 | 0,052 | 100,553 | rim | | 1,920 | 65,046 | 0,000 | 13,954 | 0,016 | 19,390 | 0,033 | 0,048 | 100,438 | rim | | 1,353 | 64,723 | 0,000 | 14,857 | 0,004 | 19,158 | 0,007 | 0,068 | 100,193 | rim | | 0,810 | 64,358 | 0,000 | 15,572 | 0,007 | 19,295 | 0,000 | 0,035 | 100,085 | rim | | 1,845 | 64,756 | 0,000 | 14,084 | 0,016 | 19,252 | 0,000 | 0,040 | 100,015 | rim | | 0,655 | 64,707 | 0,000 | 15,713 | 0,012 | 19,302 | 0,011 | 0,000 | 100,419 | rim | | 2,069 | 65,052 | 0,011 | 13,354 | 0,011 | 19,541 | 0,033 | 0,069 | 100,172 | rim | | 1,047 | 65,299 | 0,018 | 15,125 | 0,000 | 19,450 | 0,000 | 0,052 | 101,041 | rim | | 1,334 | 65,402 | 0,000 | 14,883 | 0,000 | 19,459 | 0,016 | 0,058 | 101,227 | rim | Table 21. Core, middle and rim measurements of K-felspar in JI 5-1. JI 5-2 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |----------------|------------------|----------------|--------|----------------|--------|----------------|----------------|------------------|------------| | 0,960 | 64,384 | 0,000 | 15,729 | 0,005 | 19,238 | 0,000 | 0,000 | 100,316 | core | | 0,977 | 64,340 | 0,000 | 15,406 | 0,000 | 19,078 | 0,030 | 0,052 | 99,883 | core | | 0,839 | 64,001 | 0,000 | 15,663 | 0,004 | 18,862 | 0,024 | 0,019 | 99,412 | core | | 0,950 | 64,018 | 0,000 | 15,300 | 0,000 | 18,780 | 0,000 | 0,041 | 99,089 | core | | 1,376 | 64,244 | 0,039 | 14,993 | 0,012 | 19,100 | 0,031 | 0,098 | 99,893 | core | | 1,495 | 64,319 | 0,046 | 14,788 | 0,000 | 19,256 | 0,000 | 0,049 | 99,953 | core | | 1,145 | 64,341 | 0,023 | 15,324 | 0,005 | 18,769 | 0,000 | 0,000 | 99,607 | core | | 1,024 | 64,071 | 0,000 | 15,466 | 0,001 | 18,894 | 0,000 | 0,023 | 99,479 | core | | 0,458 | 63,113 | 0,023 | 15,984 | 0,003 | 18,669 | 0,000 | 0,013 | 98,263 | core | | 1,355 | 63,008 | 0,005 | 14,936 | 0,000 | 18,463 | 0,026 | 0,202 | 97,995 | core | | 1,094 | 64,268 | 0,000 | 15,418 | 0,000 | 19,016 | 0,022 | 0,049 | 99,867 | core | | | | | | | | | | | | | 0,964 | 63,937 | 0,000 | 15,474 | 0,000 | 18,870 | 0,000 | 0,000 | 99,245 | middle | | 1,342 | 64,329 | 0,000 | 14,818 | 0,015 | 18,885 | 0,000 | 0,046 | 99,435 | middle | | 0,762 | 64,010 | 0,000 | 15,801 | 0,014 | 19,078 | 0,000 | 0,019 | 99,684 | middle | | 1,800 | 64,707 | 0,014 | 14,511 | 0,000 | 18,683 | 0,000 | 0,032 | 99,747 | middle | | 0,721 | 63,776 | 0,000 | 15,759 | 0,006 | 19,193 | 0,000 | 0,013 | 99,468 | middle | | 1,383 | 64,752 | 0,000 | 14,795 | 0,019 | 18,883 | 0,000 | 0,019 | 99,851 | middle | | 1,241 | 64,301 | 0,000 | 15,091 | 0,000 | 18,908 | 0,013 | 0,006 | 99,560 | middle | | 0,251 | 75,674 | 0,000 | 10,092 | 0,000 | 11,466 | 0,004 | 0,012 | 97,499 | middle | | 0,852 | 64,178 | 0,007 | 15,500 | 0,004 | 18,601 | 0,000 | 0,111 | 99,253 | middle | | 1,243 | 64,126 | 0,005 | 15,110 | 0,013 | 18,759 | 0,000 | 0,023 | 99,279 | middle | | 1,459 | 64,292 | 0,000 | 14,724 | 0,000 | 18,647 | 0,024 | 0,083 | 99,229 | middle | | 1.074 | 62 972 | 0.016 | 15 200 | 0.000 | 10.027 | 0.061 | 0.005 | 00.335 | wina | | 1,074 | 63,872 | 0,016 | 15,280 | 0,000 | 19,027 | 0,061 | 0,005 | 99,335 | rim | | 1,439
0,867 | 64,606
63,558 | 0,000 | 14,812 | 0,000 | 18,999 | 0,000 | 0,052 | 99,908
98,940 | rim
rim | | 0,867 | 64,536 | 0,028
0,014 | 15,541 | 0,000 | 18,916 | 0,007 | 0,023
0,000 | · | | | | | | 15,523 | • | 18,743 | 0,000 | | 99,725 | rim | | 0,691 | 63,782 | 0,000 | 15,658 | 0,011 | 18,690 | 0,007
0,007 | 0,123 | 98,962 | rim | | 2,726 | 64,268
64,399 | 0,005 | 12,974 | 0,002
0,000 | 18,710 | 0,007 | 0,074 | 98,766
99,604 | rim | | 1,345
0,418 | 65,459 | 0,005
0,028 | 14,796 | · | 19,043 | 0,000 | 0,016 | | rim | | | • | | 15,615 | 0,000 | 17,983 | | 0,000 | 99,503 | rim | | 0,794 | 63,835 | 0,000 | 15,649 | 0,000 | 18,386 | 0,018 | 0,020 | 98,702 | rim | | 1,269 | 64,029 | 0,000 | 15,050 | 0,000 | 18,632 | 0,000 | 0,016 | 98,996 | rim | | 0,918 | 63,602 | 0,000 | 15,492 | 0,002 | 19,169 | 0,000 | 0,054 | 99,237 | rim | Table 22. Core, middle and rim measurements of K-felspar in JI 5-2. JI 5-5 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 1,008 | 64,485 | 0,000 | 15,401 | 0,000 | 18,956 | 0,007 | 0,003 | 99,871 | core | | 0,711 | 65,017 | 0,000 | 15,821 | 0,000 | 19,193 | 0,000 | 0,000 | 100,775 | core | | 0,880 | 65,365 | 0,000 | 15,447 | 0,000 | 19,121 | 0,000 | 0,048 | 100,901 | core | | 0,998 | 64,945 | 0,007 | 15,111 | 0,000 | 19,221 | 0,042 | 0,026 | 100,409 | core | | 0,976 | 64,230 | 0,000 | 15,259 | 0,000 | 19,282 | 0,023 | 0,078 | 99,880 | core | | 0,782 | 65,463 | 0,026 | 15,855 | 0,000 | 18,996 | 0,000 | 0,000 | 101,122 | core | | 1,298 | 64,711 | 0,022 | 14,948 | 0,000 | 19,187 | 0,000 | 0,001 | 100,194 | core | | 0,765 | 65,155 | 0,015 | 15,574 | 0,000 | 19,351 | 0,000 | 0,009 | 100,887 | core | | 1,066 | 65,425 | 0,000 | 15,314 | 0,002 | 19,344 | 0,000 | 0,038 | 101,189 | core | | 0,100 | 64,616 | 0,000 | 16,527 | 0,066 | 18,828 | 0,116 | 0,001 | 100,289 | core | | 0,732 | 65,388 | 0,000 | 15,748 | 0,000 | 19,163 | 0,056 | 0,003 | 101,129 | core | | | | | | | | | | | | | 0,783 | 65,058 | 0,000 | 15,555 | 0,000 | 19,144 | 0,000 | 0,018 | 100,611 | middle | | 0,727 | 64,856 | 0,000 | 15,972 | 0,000 | 19,164 | 0,018 | 0,000 | 100,768 | middle | | 0,883 | 65,743 | 0,000 | 15,426 | 0,005 | 19,172 | 0,044 | 0,028 | 101,337 | middle | | 0,998 | 64,954 | 0,000 | 15,220 | 0,005 | 19,350 | 0,019 | 0,014 | 100,560 | middle | | 0,917 | 64,687 | 0,009 | 15,357 | 0,000 | 19,233 | 0,000 | 0,063 | 100,266 | middle | | 0,727 | 64,770 | 0,029 | 15,871 | 0,000 | 19,109 | 0,004 | 0,002 | 100,541 | middle | | 0,750 | 65,221 | 0,000 | 15,519 | 0,000 | 19,198 | 0,000 | 0,001 | 100,709 | middle | | 0,766 | 65,058 | 0,009 | 15,553 | 0,000 | 19,325 | 0,002 | 0,022 | 100,779 | middle | | 1,147 | 64,999 | 0,000 | 15,120 | 0,000 | 19,090 | 0,000 | 0,000 | 100,366 | middle | | 0,107 | 65,155 | 0,000 | 16,625 | 0,054 | 19,134 | 0,070 | 0,000 | 101,156 | middle | | 0,731 | 65,122 | 0,040 | 15,706 | 0,009 | 19,131 | 0,004 | 0,001 | 100,744 | middle | | | | | | | | | | | | | 0,832 | 65,049 | 0,000 | 15,525 | 0,000 | 19,095 | 0,014 | 0,014 | 100,555 | rim | | 0,875 | 65,379 | 0,000 | 15,611 | 0,000 | 19,208 | 0,012 | 0,028 | 101,113 | rim | | 0,920 | 64,823 | 0,000 | 15,469 | 0,001 | 19,171 | 0,000 | 0,005 | 100,394 | rim | | 0,898 | 64,922 | 0,000 | 15,326 | 0,009 | 19,311 | 0,000 | 0,083 | 100,584 | rim | | 0,799 | 65,597 | 0,011 | 15,831 | 0,005 | 19,156 | 0,005 | 0,011 | 101,428 | rim | | 0,790 | 65,151 | 0,000 | 15,496 | 0,000 | 19,092 | 0,037 | 0,008 | 100,651 | rim | | 0,563 | 64,788 | 0,033 | 16,002 | 0,000 | 19,321 | 0,026 | 0,000 | 100,742 | rim | | 1,023 | 64,786 | 0,000 | 15,324 | 0,000 | 19,071 | 0,028 | 0,018 | 100,276 | rim | | 0,102 | 65,089 | 0,000 | 16,715 | 0,001 | 18,977 | 0,014 | 0,006 | 100,916 | rim | | 0,703 | 64,914 | 0,000 | 15,601 | 0,006 | 19,089 | 0,021 | 0,000 | 100,351 | rim | | | | | | | | | | | | Table 23. Core, middle and rim measurements of K-felspar in JI 5-5. JI 5-7 K-feldspar | Na2O | SiO2 | MnO | K2O | MgO | Al2O3 | FeO | CaO | Total | Comment | |-------|--------|-------|--------|-------|--------|-------|-------|---------|---------| | 0,832 | 65,140 | 0,000 | 15,888 | 0,015 | 19,492 | 0,021 | 0,000 | 101,388 | core | | 0,604 | 64,763 | 0,014 | 16,413 | 0,000 | 19,350 | 0,013 | 0,000 | 101,157 | core | | 0,375 | 64,649 | 0,031 | 16,530 | 0,004 | 19,221 | 0,000 | 0,000 | 100,810 | core | | 0,499 | 64,471 | 0,000 | 16,191 | 0,000 | 18,963 | 0,000 | 0,683 | 100,807 | core | | 1,069 | 64,116 | 0,007 | 15,519 | 0,013 | 19,488 | 0,000 | 0,014 | 100,226 | core | | 1,410 | 64,665 | 0,026 | 15,063 | 0,000 | 19,537 | 0,008 | 0,013 | 100,722 | core | | 1,256 | 65,578 | 0,000 | 15,418 | 0,005 | 19,574 | 0,000 | 0,031 | 101,862 | core | | 0,844 | 65,348 | 0,009 | 15,940 | 0,008 | 19,511 | 0,017 | 0,006 | 101,683 | core | | 1,099 | 65,445 | 0,000 | 15,569 | 0,024 | 19,411 | 0,024 | 0,025 | 101,597 | core | | | | | | | | | | | | | 0,846 | 64,755 | 0,005 | 16,098 | 0,000 | 19,448 | 0,004 | 0,000 | 101,156 | middle | | 0,990 | 65,230 | 0,002 | 15,720 | 0,014 | 19,507 | 0,015 | 0,026 | 101,504 | middle | | 0,979 | 64,969 | 0,007 | 15,714 | 0,002 | 19,358 | 0,000 | 0,000 | 101,029 | middle | | 0,387 | 64,531 | 0,023 | 16,554 | 0,001 | 19,387 | 0,028 | 0,016 | 100,927 | middle | | 1,000 | 63,537 | 0,000 | 15,645 | 0,000 | 19,454 | 0,000 | 0,000 | 99,636 | middle | | 1,187 | 65,158 | 0,016 | 15,428 | 0,000 | 19,541 | 0,000 | 0,028 | 101,358 | middle | | 1,084 | 64,962 | 0,009 | 15,549 | 0,000 | 19,363 | 0,000 | 0,025 | 100,992 | middle | | 0,966 | 65,097 | 0,000 | 15,749 | 0,000 | 19,408 | 0,013 | 0,000 | 101,233 | middle | | 0,979 | 65,998 | 0,002 | 15,792 | 0,003 | 19,541 | 0,002 | 0,000 | 102,317 | middle | | 1,078 | 65,180 | 0,000 | 15,596 | 0,016 | 19,323 | 0,011 | 0,000 | 101,204 | middle | | | | | | | | | | | | | 0,762 | 64,605 | 0,000 | 16,064 | 0,000 | 19,418 | 0,000 | 0,000 | 100,849 | rim | | 0,537 | 63,076 | 0,000 | 16,392 | 0,000 | 19,130 | 0,026 | 0,002 | 99,163 | rim | | 0,909 | 65,781 | 0,012 | 15,775 | 0,000 | 19,429 | 0,006 | 0,001 | 101,913 | rim | | 1,059 | 65,775 | 0,000 | 15,637 | 0,000 | 19,573 | 0,000 | 0,027 | 102,071 | rim | | 1,010 | 64,221 | 0,000 | 15,708 | 0,000 | 19,415 | 0,000 | 0,000 | 100,354 | rim | | 1,238 |
65,392 | 0,009 | 15,330 | 0,000 | 19,585 | 0,000 | 0,014 | 101,568 | rim | | 0,560 | 64,237 | 0,012 | 16,445 | 0,006 | 19,345 | 0,030 | 0,000 | 100,635 | rim | | 0,764 | 65,348 | 0,012 | 16,072 | 0,000 | 19,567 | 0,047 | 0,000 | 101,810 | rim | | 0,727 | 65,378 | 0,000 | 16,090 | 0,000 | 19,324 | 0,028 | 0,000 | 101,547 | rim | | 0,613 | 64,694 | 0,000 | 16,247 | 0,000 | 19,280 | 0,047 | 0,000 | 100,881 | rim | | | | | | | | | | | | Table 24. Core, middle and rim measurements of K-felspar in JI 5-7. # JI 2-2 muscovite | Na2O | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | L | TiO2 | ס | Total | Comment | |------------|-------------|------------|--------------|----------------------|--------------|-------|--------|-------|-------|-------|--------|---------| | 0,405 | 49,524 | 0,016 | 10,648 | 1,392 | 30,840 | 3,361 | 0,014 | 0,726 | 0,482 | 000'0 | 97,102 | core | | 0,441 | 47,279 | 0,044 | 10,909 | 0,732 | 33,517 | 2,810 | 00000 | 0,559 | 0,838 | 0,004 | 26,897 | core | | 0,415 | 47,921 | 0,039 | 10,702 | 1,172 | 31,267 | 3,810 | 0,001 | 0,667 | 0,753 | 000'0 | 96,466 | core | | 0,488 | 47,445 | 0,032 | 10,812 | 0,982 | 32,539 | 3,626 | 000'0 | 0,570 | 0,738 | 900'0 | 266'96 | core | | 0,430 | 48,324 | 0,046 | 10,824 | 1,168 | 31,844 | 3,356 | 0000'0 | 0,801 | 0,622 | 000'0 | 97,081 | core | | 0,519 | 47,346 | 0,055 | 10,939 | 0,760 | 33,819 | 2,967 | 00000 | 0,364 | 0,695 | 000'0 | 97,311 | core | | 0,344 | 48,406 | 000'0 | 10,893 | 1,186 | 31,590 | 3,517 | 000'0 | 0,657 | 0,622 | 0,007 | 96,943 | core | | 0,637 | 45,594 | 0,032 | 10,620 | 0,511 | 34,869 | 2,819 | 0,063 | 0,391 | 0,579 | 0,050 | 95,989 | core | | 0,473 | 48,026 | 0,042 | 10,644 | 1,174 | 31,344 | 3,964 | 0,010 | 0,828 | 0,732 | 0,004 | 96,891 | core | | 0,467 | 48,508 | 0,081 | 10,796 | 1,155 | 32,018 | 3,558 | 00000 | 0,901 | 0,856 | 000'0 | 97,979 | core | | | | | | | | | | | | | | | | 0,428 | 49,838 | 0,030 | 10,599 | 1,368 | 30,729 | 3,353 | 00000 | 0,894 | 0,561 | 000'0 | 97,450 | middle | | 0,509 | 47,191 | 0,030 | 10,827 | 0,764 | 33,743 | 2,806 | 0,004 | 995'0 | 0,942 | 0,011 | 97,153 | middle | | 0,458 | 47,910 | 0,005 | 10,817 | 1,175 | 31,511 | 3,822 | 000'0 | 0,627 | 0,783 | 000'0 | 96,867 | middle | | 0,498 | 47,477 | 0,062 | 10,793 | 0,971 | 32,712 | 3,580 | 0,004 | 0,577 | 0,758 | 600'0 | 97,198 | middle | | 0,500 | 48,608 | 000'0 | 10,715 | 1,096 | 32,252 | 3,313 | 000'0 | 0,578 | 0,674 | 000'0 | 97,498 | middle | | 0,490 | 46,958 | 0,035 | 10,796 | 0,802 | 33,631 | 3,053 | 000'0 | 0,350 | 0,675 | 0,008 | 96,661 | middle | | 0,443 | 48,536 | 0,053 | 10,741 | 1,156 | 31,890 | 3,369 | 00000 | 0,557 | 0,599 | 000'0 | 97,109 | middle | | 0,598 | 46,440 | 600'0 | 10,927 | 0,540 | 35,403 | 2,923 | 000'0 | 0,489 | 0,618 | 000'0 | 97,741 | middle | | 0,499 | 47,776 | 0,042 | 10,510 | 1,162 | 31,489 | 3,857 | 000'0 | 1,001 | 0,803 | 0,002 | 96,725 | middle | | 0,483 | 48,406 | 0,044 | 10,810 | 1,014 | 32,181 | 3,202 | 0000'0 | 0,631 | 0,817 | 0,001 | 97,331 | middle | | | | | | | | | | | | | | | | 0,383 | 49,376 | 0,016 | 10,753 | 1,246 | 31,371 | 3,217 | 00000 | 0,571 | 0,674 | 0,007 | 97,372 | rim | | 0,469 | 48,155 | 600'0 | 10,836 | 1,129 | 31,761 | 3,593 | 0,005 | 0,613 | 0,784 | 0,001 | 97,119 | rim | | 0,508 | 47,004 | 000'0 | 10,765 | 0,790 | 33,467 | 3,308 | 00000 | 0,554 | 0,765 | 0,004 | 96,931 | rim | | 0,552 | 47,460 | 0,035 | 10,972 | 0,646 | 35,159 | 2,830 | 00000 | 0,286 | 0,620 | 000'0 | 98,465 | rim | | 0,403 | 48,561 | 0,044 | 10,756 | 1,191 | 31,886 | 3,394 | 00000 | 0,641 | 0,641 | 0,002 | 97,249 | rim | | 0,450 | 47,068 | 000'0 | 10,974 | 0,739 | 34,168 | 3,031 | 0,003 | 0,451 | 0,858 | 0,011 | 97,573 | rim | | Table 25 C | Core middle | om win bac | otuomorii oc | 2 Il ai otivossim to | to in 11 2 2 | | | | | | | | Table 25. Core, middle and rim measurements of muscovite in JI 2-2. JI 4-2 biotite | Na20 | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | L. | Ti02 | כ | Total | Comment | |-------------|------------|------------|-----------------------------------|--------------------|----------|--------|--------|-------|-------|-------|--------|---------| | 0,062 | 36,111 | 0,277 | 9,643 | 8,515 | 15,844 | 22,053 | 0,000 | 0,027 | 3,091 | 0,115 | 95,701 | core | | 0,075 | 35,723 | 0,300 | 9,600 | 8,330 | 15,992 | 20,881 | 0,055 | 0,007 | 3,152 | 0,125 | 94,211 | core | | 0,083 | 36,133 | 0,285 | 609'6 | 8,707 | 15,889 | 20,804 | 00000 | 0,140 | 3,239 | 0,130 | 94,931 | core | | 0,107 | 36,176 | 0,291 | 9,756 | 8,944 | 16,012 | 21,309 | 0,074 | 0,080 | 2,871 | 0,118 | 95,677 | core | | 0,077 | 35,855 | 0,299 | 9,529 | 8,255 | 15,967 | 21,026 | 0,021 | 0,031 | 2,772 | 0,158 | 93,971 | core | | 0,109 | 36,082 | 0,265 | 9,493 | 8,748 | 15,791 | 21,720 | 0,054 | 0,000 | 2,809 | 0,135 | 95,179 | core | | 0,074 | 36,223 | 0,298 | 805'6 | 8,737 | 15,877 | 21,240 | 00000 | 00000 | 2,907 | 0,131 | 94,978 | core | | 0,081 | 35,927 | 0,293 | 9,633 | 8,458 | 15,207 | 21,655 | 0,031 | 0,098 | 3,462 | 0,119 | 94,919 | core | | 0,072 | 36,100 | 0,345 | 9,634 | 8,964 | 15,737 | 21,159 | 0,026 | 090'0 | 3,162 | 0,153 | 95,365 | core | | 1,014 | 46,306 | 0,429 | 608'0 | 10,213 | 8,990 | 17,185 | 11,701 | 00000 | 0,744 | 0,044 | 97,560 | core | | | | | | | | | | | | | | | | 0,075 | 35,837 | 0,326 | 9,650 | 8,489 | 15,924 | 21,634 | 0,035 | 660'0 | 3,052 | 0,105 | 95,160 | middle | | 0,097 | 35,690 | 0,307 | 9'929 | 8,416 | 16,012 | 21,359 | 0,012 | 0,259 | 3,118 | 0,140 | 94,925 | middle | | 090'0 | 35,959 | 0,263 | 6,693 | 8,867 | 15,554 | 20,501 | 0,011 | 0,000 | 3,365 | 0,124 | 94,405 | middle | | 090'0 | 36,308 | 0,283 | 9,447 | 8,850 | 15,780 | 21,876 | 0,076 | 900'0 | 2,774 | 0,121 | 95,579 | middle | | 0,093 | 35,827 | 0,303 | 9,413 | 8,380 | 15,848 | 20,642 | 0,039 | 0,068 | 2,789 | 0,150 | 93,497 | middle | | 980'0 | 35,964 | 0,273 | 9,512 | 8,618 | 16,149 | 21,114 | 0,035 | 0,070 | 2,861 | 0,136 | 94,758 | middle | | 0,110 | 36,004 | 0,253 | 9)206 | 8,804 | 15,654 | 20,775 | 0,064 | 0,017 | 2,771 | 0,131 | 94,070 | middle | | 660'0 | 35,743 | 0,327 | 9,535 | 8,305 | 15,263 | 21,260 | 0,085 | 0,025 | 3,513 | 0,134 | 94,259 | middle | | 0,101 | 36,111 | 0,300 | 9,652 | 9,095 | 15,985 | 20,971 | 0,021 | 0,047 | 3,252 | 0,118 | 92,606 | middle | | 0,993 | 46,643 | 0,514 | 0,817 | 10,421 | 8,374 | 17,040 | 11,506 | 0,032 | 999'0 | 0,046 | 97,108 | middle | | | | | | | | | | | | | | | | 0,073 | 35,840 | 0,266 | 9,612 | 8,771 | 16,649 | 20,482 | 0,014 | 0,095 | 2,312 | 0,120 | 94,167 | rim | | 0,117 | 35,487 | 0,363 | 9,633 | 8,283 | 16,152 | 21,514 | 0,008 | 00000 | 3,033 | 0,116 | 94,680 | rim | | 0,064 | 20,291 | 0,211 | 5,346 | 5,723 | 9,181 | 13,535 | 600'0 | 990'0 | 1,945 | 0,446 | 56,705 | rim | | 0,099 | 36,381 | 0,294 | 9,508 | 8,583 | 16,022 | 21,470 | 0,073 | 0,065 | 2,774 | 0,120 | 95,367 | rim | | 0,050 | 29,274 | 0,225 | 7,421 | 7,257 | 13,307 | 18,424 | 0,020 | 0,061 | 2,166 | 0,308 | 78,447 | rim | | 0,063 | 35,813 | 0,245 | 9,419 | 8,495 | 16,091 | 20,270 | 0,055 | 0,150 | 2,769 | 0,109 | 93,409 | rim | | 0,061 | 30,499 | 0,180 | 7,884 | 7,731 | 13,585 | 18,573 | 0,075 | 600'0 | 2,194 | 0,174 | 80,939 | rim | | 0,061 | 35,938 | 0,313 | 9,483 | 8,138 | 16,007 | 21,057 | 0,033 | 0,005 | 3,357 | 0,137 | 94,521 | rim | | 0,081 | 35,860 | 0,276 | 6,797 | 8,841 | 16,764 | 20,154 | 0,046 | 0,050 | 3,008 | 0,117 | 94,947 | rim | | 1,125 | 45,471 | 0,393 | 0,914 | 10,070 | 9,391 | 16,557 | 11,515 | 0,000 | 0,680 | 0,056 | 96,284 | rim | | Table 26. C | ore middle | and rim me | Core, middle and rim measurements | s of hiotite in II | n II 4-2 | | | | | | | | Table 26. Core, middle and rim measurements of biotite in Jl 4-2. # JI 4-7 biotite | Na2O | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | LL. | Ti02 | ס | Total | Comment | |------------|------------|--------------------------------|-------|-------------------------|--------|--------|-------|-------|-------|-------|--------|---------| | 0,050 | 35,245 | 0,424 | 9,524 | 6,228 | 15,221 | 25,966 | 000'0 | 0,387 | 3,163 | 0,087 | 96,119 | core | | 0,073 | 35,208 | 0,439 | 9,465 | 6,157 | 15,763 | 26,612 | 000'0 | 0,210 | 2,802 | 0,088 | 602'96 | core | | 690'0 | 34,516 | 0,416 | 8,076 | 998′9 | 16,627 | 26,080 | 000'0 | 0,381 | 2,329 | 0,065 | 95,250 | core | | 060'0 | 35,311 | 0,429 | 9,153 | 6,524 | 15,418 | 25,658 | 000'0 | 0,283 | 2,640 | 0,097 | 95,473 | core | | 0,034 | 35,717 | 0,372 | 9,729 | 6,314 | 15,793 | 56,069 | 000'0 | 0,339 | 2,982 | 990'0 | 97,257 | core | | 0,088 | 35,032 | 0,407 | 9,348 | 6,554 | 14,874 | 25,264 | 0,027 | 0,616 | 2,854 | 0,091 | 94,876 | core | | 080'0 | 35,526 | 0,347 | 9,481 | 6,520 | 15,480 | 25,478 | 000'0 | 0,571 | 2,509 | 0,083 | 95,855 | core | | 0,049 | 35,108 | 0,411 | 9,248 | 6,229 | 15,493 | 26,038 | 0,002 | 0,362 | 2,597 | 0,082 | 95,453 | core | | 0,062 | 35,219 | 0,349 | 9,530 | 6,232 | 15,856 | 25,460 | 000'0 | 0,461 | 3,020 | 0,089 | 96,072 | core | | | | | | | | | | | | | | | | 0,061 | 35,130 | 0,429 | 9,437 | 6,226 | 15,473 | 25,379 | 000'0 | 0,334 | 2,880 | 0,094 | 95,281 | middle | | 0,078 | 35,186 | 0,362 | 9,451 | 6,223 | 15,672 | 26,747 | 000'0 | 0,392 | 2,685 | 0,072 | 96,687 | middle | | 0,087 | 35,466 | 0,417 | 9,473 | 99'9 | 15,900 | 24,663 | 000'0 | 0,207 | 2,557 | 0,081 | 95,411 | middle | | 0,043 | 29,887 | 0,598 | 2,916 | 7,838 | 17,461 | 30,770 | 0,159 | 0,169 | 1,599 | 0,061 | 91,438 | middle | | 0,088 | 35,649 | 0,457 | 9,541 | 6,338 | 15,458 | 26,755 | 000'0 | 0,315 | 2,393 | 0,100 | 86,938 | middle | | 0,104 | 34,581 | 0,377 | 8,208 | 6,783 | 15,588 | 25,974 | 0,026 | 0,395 | 2,456 | 0,084 | 94,391 | middle | | 0,067 | 35,312 | 0,417 | 6,567 | 6,367 | 15,671 | 26,107 | 000'0 | 0,405 | 2,843 | 680'0 | 829'96 | middle | | 0,097 | 35,172 | 0,399 | 9,285 | 909'9 | 14,686 | 25,680 | 000'0 | 0,280 | 2,692 | 0,095 | 94,860 | middle | | 0,059 | 35,388 | 0,411 | 9,324 | 6,798 | 15,413 | 25,011 | 000'0 | 0,576 | 2,318 | 0,085 | 95,121 | middle | | 0,089 | 35,423 | 0,392 | 9,376 | 6,351 | 15,390 | 25,962 | 000'0 |
0,230 | 2,772 | 0,075 | 95,946 | middle | | 0,048 | 35,289 | 0,424 | 688'6 | 6,201 | 15,701 | 25,282 | 000'0 | 0,203 | 2,855 | 0,088 | 95,375 | middle | | | | | | | | | | | | | | | | 0,068 | 33,891 | 0,436 | 8,010 | 6,549 | 15,818 | 27,067 | 0,001 | 0,243 | 2,500 | 0,074 | 94,538 | rim | | 0,034 | 33,641 | 0,379 | 7,684 | 5,997 | 16,963 | 25,468 | 0,031 | 0,188 | 3,161 | 0,075 | 93,525 | rim | | 0,063 | 35,306 | 0,445 | 9,291 | 6,243 | 15,766 | 26,905 | 000'0 | 0,271 | 2,039 | 960'0 | 96,289 | rim | | 0,056 | 35,053 | 0,452 | 9,305 | 6,252 | 16,014 | 26,740 | 000'0 | 0,235 | 2,349 | 0,104 | 96,438 | rim | | 0,045 | 35,366 | 0,425 | 9,592 | 6,153 | 16,012 | 25,946 | 000'0 | 0,267 | 2,852 | 0,076 | 96,605 | rim | | 060'0 | 34,411 | 0,405 | 9,271 | 9/9/9 | 15,033 | 25,957 | 0,007 | 0,507 | 2,629 | 0,131 | 94,874 | rim | | 0,043 | 34,219 | 0,345 | 9,357 | 6,761 | 15,837 | 23,632 | 000'0 | 0,426 | 2,208 | 960'0 | 92,734 | rim | | 0,067 | 35,279 | 0,480 | 9,430 | 6,318 | 15,408 | 26,919 | 0,018 | 0,308 | 2,729 | 0,079 | 96,887 | rim | | 0,050 | 34,917 | 0,417 | 9,340 | 6,296 | 15,383 | 25,481 | 00000 | 0,281 | 2,874 | 0,087 | 94,988 | rim | | Table 27 C | ore middle | Core middle and rim measuremen | | te of hiotite in 11 5.2 | 116.2 | | | | | | | | Table 27. Core, middle and rim measurements of biotite in JI 5-2. JI 5-1 biotite | | | | 1 | | 1 | | 1 | | | | | | | | | | | 1 | | | | | 1 | | | | | | | | | |-----|---------|----------------------| | | Comment | core middle rin | rim | rim | rin | rin | rim | rim | rim | rim | | | | Total | 94,757 | 94,537 | 96,434 | 94,240 | 93,918 | 95,269 | 94,635 | 95,465 | 94,933 | 95,156 | 94,264 | 94,801 | 95,311 | 94,856 | 93,935 | 95,247 | 94,402 | 890'56 | 94,467 | 94,045 | 92,325 | 95,007 | 95,070 | 93,510 | 94,843 | 94,347 | 94,997 | 94,452 | 95,069 | | | | <u></u> | 0,094 | 0,105 | 0,114 | 0,114 | 0,085 | 0,107 | 0,115 | 0,135 | 0,111 | 0,097 | 0,107 | 860'0 | 0,121 | 0,112 | 660'0 | 0,100 | 060'0 | 0,118 | 0,101 | 0,119 | 0,133 | 0,092 | 0,118 | 0,113 | 0,113 | 0,094 | 0,134 | 0,127 | 0,095 | | | | Ti02 | 3,642 | 3,727 | 3,049 | 3,576 | 2,677 | 3,215 | 3,470 | 3,699 | 3,599 | 3,252 | 3,916 | 3,773 | 2,875 | 3,540 | 2,706 | 3,048 | 3,225 | 3,587 | 3,548 | 2,955 | 3,847 | 3,780 | 3,147 | 3,523 | 2,616 | 2,779 | 3,533 | 3,146 | 3,186 | | | | ட | 0,072 | 0,322 | 0,244 | 0,109 | 0,278 | 0,158 | 0,119 | 0,309 | 0,223 | 0,275 | 0,211 | 0,330 | 0,167 | 0,171 | 0,249 | 0,291 | 0,246 | 0,218 | 0,200 | 0,218 | 0,167 | 0,298 | 0,317 | 0,105 | 0,249 | 0,184 | 0,144 | 0,204 | 0,217 | | | | CaO | 0,001 | 0,035 | 00000 | 0,040 | 0,151 | 950'0 | 0,143 | 0,007 | 00000 | 0,000 | 0,031 | 0,042 | 0,123 | 0,034 | 0,012 | 0,025 | 090'0 | 00000 | 0,029 | 0000'0 | 00000 | 0,046 | 0,020 | 0,007 | 0,015 | 0,071 | 0,112 | 0,038 | 00000 | | | | FeO | 19,785 | 19,918 | 20,983 | 19,928 | 21,668 | 20,640 | 20,130 | 20,102 | 20,378 | 19,481 | 19,791 | 19,877 | 20,937 | 20,344 | 21,903 | 20,529 | 19,767 | 19,972 | 20,234 | 19,102 | 19,876 | 20,003 | 21,168 | 20,041 | 20,383 | 19,786 | 19,917 | 19,804 | 18,814 | | | | AI203 | 18,482 | 18,438 | 18,773 | 18,228 | 18,177 | 18,230 | 18,294 | 18,803 | 18,059 | 18,959 | 18,087 | 18,793 | 18,712 | 18,521 | 17,812 | 18,154 | 18,267 | 18,683 | 18,118 | 18,878 | 17,129 | 18,439 | 18,196 | 18,299 | 18,781 | 18,773 | 18,620 | 18,778 | 18,292 | 1 5.1 | | | MgO | 7,981 | 7,929 | 8,125 | 7,860 | 7,440 | 8,305 | 8,039 | 7,806 | 8,130 | 8,315 | 7,754 | 7,933 | 8,093 | 7,929 | 7,326 | 8,508 | 8,118 | 7,911 | 8,048 | 8,552 | 7,984 | 8,041 | 7,990 | 8,109 | 8,613 | 8,388 | 7,864 | 8,050 | 8,726 | of hiotite in II 5_1 | | | K20 | 9,361 | 9,281 | 9,691 | 9,341 | 9,228 | 9,201 | 9,390 | 9,461 | 9,428 | 9,340 | 9,252 | 9,327 | 9,473 | 9,299 | 9,370 | 9,361 | 9,345 | 9,382 | 9,291 | 6)303 | 9,186 | 9,297 | 9,532 | 9,327 | 9,103 | 9,470 | 9,294 | 9,323 | 9,119 | Sellramante | | | MnO | 0,092 | 0,054 | 0,059 | 0,052 | 0,168 | 0,024 | 0,049 | 0,032 | 0,039 | 0,039 | 0,076 | 0,077 | 0,079 | 9/0′0 | 0,186 | 0,047 | 0,067 | 0,067 | 0,020 | 0,018 | 0,072 | 090'0 | 660'0 | 960'0 | 0,052 | 0,064 | 0,075 | 960'0 | 0,054 | om win bac | | | Si02 | 35,007 | 34,589 | 35,277 | 34,769 | 33,916 | 35,032 | 34,713 | 34,907 | 34,783 | 35,206 | 34,836 | 34,418 | 34,556 | 34,606 | 34,165 | 35,024 | 35,092 | 34,947 | 34,658 | 34,685 | 33,695 | 34,767 | 34,438 | 33,646 | 34,778 | 34,579 | 35,050 | 34,715 | 33,374 | Core middle | | | Na20 | 0,256 | 0,253 | 0,190 | 0,216 | 0,195 | 0,293 | 0,204 | 0,207 | 0,209 | 0,262 | 0,276 | 0,234 | 0,198 | 0,227 | 0,174 | 0,235 | 0,181 | 0,199 | 0,233 | 0,262 | 0,299 | 0,280 | 0,130 | 0,218 | 0,203 | 0,191 | 0,251 | 0,211 | 0,231 | Table 28 Co | | - 1 | 1 | # JI 5-2 biotite | Na20 | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | L. | Ti02 | ס | Total | Comment | |-------|--------|-------|-------|-------|--------|--------|-------|-------|-------|-------|--------|---------| | 0,150 | 35,275 | 0,130 | 8/9/6 | 8,775 | 19,134 | 18,333 | 0,037 | 9/000 | 3,108 | 0,053 | 94,835 | core | | 0,137 | 35,296 | 0,174 | 669'6 | 8,645 | 19,198 | 18,645 | 0,000 | 0,057 | 3,239 | 0,048 | 95,229 | core | | 0,095 | 35,220 | 0,177 | 9,725 | 9,748 | 18,737 | 17,257 | 000'0 | 000'0 | 2,758 | 0,049 | 93,916 | core | | 960'0 | 34,790 | 0,174 | 9,598 | 9,042 | 18,793 | 17,550 | 060'0 | 0,014 | 2,807 | 0,071 | 93,155 | core | | 0,120 | 35,252 | 0,149 | 9,612 | 8,691 | 18,443 | 18,053 | 600'0 | 0,012 | 3,422 | 0,116 | 93,982 | core | | 0,126 | 35,029 | 0,147 | 965'6 | 9,058 | 18,628 | 17,886 | 0,020 | 0,000 | 3,222 | 0,122 | 93,941 | core | | 0,125 | 35,054 | 0,206 | 9,495 | 8,911 | 18,192 | 18,299 | 000'0 | 0,033 | 3,228 | 0,050 | 93,711 | core | | 0,128 | 34,869 | 0,192 | 9,692 | 8,447 | 19,055 | 18,114 | 0,015 | 960'0 | 3,036 | 0,155 | 93,870 | core | | 980′0 | 34,907 | 0,130 | 9,675 | 8,643 | 18,794 | 18,236 | 000'0 | 960'0 | 2,800 | 0,134 | 93,569 | core | | | | | | | | | | | | | | | | 0,138 | 35,191 | 0,194 | 9,557 | 8,871 | 18,998 | 18,289 | 0,005 | 0,032 | 3,114 | 0,054 | 94,552 | middle | | 0,160 | 35,416 | 0,189 | 9,538 | 8,613 | 18,802 | 18,445 | 0,008 | 0,092 | 3,290 | 0,103 | 94,743 | middle | | 680'0 | 35,160 | 0,196 | 9,645 | 9,675 | 18,988 | 17,504 | 0000 | 0,174 | 2,604 | 0,030 | 94,140 | middle | | | | | | | | | | | | | | | | 0,127 | 33,794 | 0,145 | 9,214 | 8,609 | 17,959 | 18,039 | 00000 | 0,118 | 3,135 | 0,028 | 91,243 | rim | | 0,076 | 35,262 | 0,152 | 962'6 | 6,767 | 19,062 | 17,548 | 00000 | 0,000 | 2,590 | 0,044 | 94,428 | rim | | 0,139 | 34,979 | 0,149 | 6,760 | 8,942 | 18,226 | 17,958 | 0,016 | 0,024 | 3,377 | 0,110 | 93,779 | rim | | 0,169 | 31,728 | 0,120 | 8,576 | 7,842 | 16,631 | 16,038 | 0,083 | 0,071 | 2,952 | 0,117 | 84,411 | rim | | 0,135 | 35,124 | 0,197 | 9,611 | 8,725 | 18,418 | 18,291 | 000'0 | 0,175 | 3,176 | 0,027 | 93,933 | rim | | 0,115 | 34,731 | 0,163 | 9,630 | 8,643 | 18,775 | 18,237 | 0,037 | 00000 | 2,791 | 0,159 | 93,377 | rim | | | | | | | | | | | | | | | Table 29. Core, middle and rim measurements of biotite in Jl 5-2. JI 5-7 biotite | 달 |---------| | Comment | core middle rim | rin | rim | rim | rim | rin | rim | rim | rim | | Total | 96,416 | 95,891 | 95,543 | 95,814 | 95,871 | 95,511 | 95,461 | 94,809 | 95,651 | 95,814 | 95,355 | 96,971 | 94,326 | 95,691 | 95,905 | 95,751 | 94,763 | 94,592 | 94,388 | 95,142 | 92,836 | 95,730 | 94,748 | 95,973 | 92,979 | 90,306 | 90,212 | 95,312 | 92,860 | 93,201 | 96,201 | 94,585 | | ס | 0,189 | 0,250 | 0,220 | 0,235 | 0,219 | 0,253 | 0,218 | 0,208 | 0,183 | 0,226 | 0,195 | 0,166 | 0,228 | 0,224 | 0,205 | 0,206 | 0,221 | 0,213 | 0,201 | 0,195 | 0,226 | 0,208 | 0,193 | 0,164 | 0,237 | 0,211 | 0,203 | 0,233 | 0,207 | 0,223 | 0,197 | 0,204 | | Ti02 | 2,914 | 2,756 | 2,893 | 2,903 | 2,817 | 2,942 | 2,871 | 2,865 | 2,990 | 2,981 | 2,898 | 2,896 | 2,698 | 2,934 | 2,898 | 2,629 | 2,991 | 2,783 | 2,892 | 3,057 | 2,932 | 2,911 | 2,960 | 2,993 | 2,648 | 2,706 | 2,657 | 2,638 | 2,901 | 2,786 | 2,901 | 2,952 | | L | 0,260 | 0,322 | 0,288 | 0,341 | 690'0 | 0,230 | 0,256 | 0,233 | 0,220 | 0,196 | 0,295 | 0,423 | 0,342 | 0,311 | 0,275 | 0,353 | 0,266 | 0,346 | 0,414 | 0,325 | 0,301 | 0,364 | 0,269 | 0,137 | 0,262 | 0,161 | 0,394 | 0,224 | 000'0 | 0,175 | 0,347 | 0,186 | | CaO | 000'0 | 0,000 | 0,015 | 000'0 | 000'0 | 000'0 | 000'0 | 0,000 | 00000 | 0,010 | 000'0 | 0,002 | 0,018 | 0,004 | 0,000 | 00000 | 0,003 | 000'0 | 0,017 | 000'0 | 0,050 | 000'0 | 000'0 | 0,017 | 0,068 | 0,016 | 000'0 | 0,016 | 0,017 | 0,005 | 0,049 | 0,026 | | FeO | 27,370 | 27,100 | 27,494 | 27,160 | 27,456 | 27,461 | 26,914 | 26,529 | 27,114 | 27,004 | 26,875 | 27,763 | 26,607 | 27,097 | 27,245 | 27,309 | 27,335 | 26,756 | 27,315 | 27,105 | 27,263 | 27,546 | 26,636 | 27,627 | 26,603 | 25,777 | 26,126 | 27,042 | 28,355 | 25,885 | 27,306 | 26,973 | | AI203 | 18,949 | 19,049 | 18,341 | 18,563 | 18,632 | 18,122 | 18,789 | 18,442 | 18,427 | 18,692 | 18,393 | 19,081 | 18,540 | 18,412 | 18,668 | 18,751 | 18,095 | 18,487 | 18,038 | 18,193 | 18,627 | 18,323 | 18,316 | 18,535 | 18,351 | 17,537 | 17,466 | 18,689 | 18,173 | 18,330 | 18,750 | 18,236 | | MgO | 3,146 | 3,197 | 3,083 | 3,161 | 3,065 | 3,182 | 3,072 | 3,074 | 3,106 | 3,158 | 3,157 | 3,185 | 3,062 | 3,123 | 3,152 | 3,155 | 3,217 | 3,065 | 3,243 | 3,074 | 3,071 | 3,153 | 3,042 | 3,207 | 3,197 | 2,989 | 2,973 | 3,178 | 3,507 | 3,075 | 3,185 |
3,145 | | K20 | 9,645 | 9,562 | 9,628 | 9,526 | 9,713 | 9,403 | 9,469 | 9,571 | 9,572 | 9,564 | 9,612 | 9,671 | 9,353 | 9,519 | 9,672 | 9,533 | 9,294 | 9,483 | 9,189 | 9,594 | 9,436 | 9,524 | 9,562 | 865'6 | 8,789 | 8,937 | 8,639 | 665'6 | 7,654 | 9,388 | 968'6 | 9,535 | | MnO | 0,377 | 0,377 | 0,334 | 0,334 | 0,375 | 0,300 | 0,326 | 0,301 | 0,297 | 0,365 | 0,347 | 0,334 | 0,350 | 0,351 | 0,349 | 0,399 | 0,320 | 0,334 | 0,330 | 0,398 | 0,328 | 0,373 | 0,362 | 0,314 | 0,356 | 0,291 | 0,339 | 0,391 | 0,345 | 0,355 | 0,327 | 0,345 | | Si02 | 33,650 | 33,431 | 33,366 | 33,759 | 33,534 | 33,715 | 33,613 | 33,678 | 33,821 | 33,693 | 33,662 | 33,581 | 33,300 | 33,843 | 33,544 | 33,545 | 33,112 | 33,259 | 32,912 | 33,324 | 33,702 | 33,482 | 33,486 | 33,413 | 32,554 | 31,708 | 31,563 | 33,362 | 31,681 | 33,062 | 33,847 | 33,048 | | Na20 | 0,062 | 0,039 | 0,052 | 0,029 | 950'0 | 0,041 | 0,082 | 0,051 | 0,055 | 0,053 | 680'0 | 0,084 | 0,023 | 0,055 | 0,059 | 990'0 | 0,071 | 090'0 | 0,056 | 0,058 | 9/0′0 | 0,046 | 0,079 | 0,063 | 0,077 | 680′0 | 950'0 | 0,087 | 0,062 | 0,041 | 0,073 | 0,059 | JI 1-1 hornblende | Na20 | Si02 | MnO | K20 | Mgo | AI203 | FeO | CaO | L | OiN | Ti02 | Total | Comment | |-------|-----------------|-------|-------|------------------|----------|--------|--------|-------|-------|-------|--------|---------| | 1,113 | 43,500 | 0,469 | 0,881 | 8,260 | 14,040 | 17,350 | 11,840 | 0,061 | 0,035 | 0,748 | 98,366 | core | | 0,959 | 45,580 | 0,387 | 0,682 | 9,610 | 12,060 | 16,750 | 12,040 | 000'0 | 0,017 | 0,482 | 98,597 | core | | 0,965 | 45,340 | 0)360 | 0,641 | 9,550 | 12,600 | 16,520 | 12,120 | 0,098 | 0,013 | 0,384 | 98,641 | core | | 0,924 | 46,290 | 0,347 | 0,570 | 10,470 | 11,230 | 15,410 | 12,200 | 000'0 | 0,022 | 0,605 | 98,092 | core | | 1,011 | 44,630 | 0,337 | 989'0 | 9,130 | 13,110 | 16,170 | 11,870 | 960'0 | 0,028 | 0,509 | 929'26 | core | | 0,929 | 45,610 | 0,432 | 0,655 | 10,030 | 11,880 | 15,780 | 12,080 | 000'0 | 0,026 | 0,454 | 98,082 | core | | 1,019 | 44,400 | 0,395 | 0,675 | 6,380 | 12,450 | 16,430 | 11,830 | 0,256 | 000'0 | 0,808 | 689'26 | core | | 1,012 | 44,740 | 0,301 | 0,707 | 9,360 | 12,390 | 16,150 | 11,970 | 0,000 | 0,058 | 0,814 | 97,563 | core | | 0,616 | 48,280 | 0,363 | 0,381 | 11,540 | 8,840 | 14,850 | 11,840 | 000'0 | 0,044 | 0,212 | 97,014 | core | | 0,841 | 46,350 | 0,340 | 069'0 | 10,010 | 11,090 | 15,680 | 11,940 | 0,141 | 0,042 | 0,647 | 97,795 | core | | 0,825 | 46,460 | 0,311 | 0,615 | 10,550 | 10,510 | 15,590 | 11,950 | 000'0 | 0,038 | 0,692 | 97,579 | core | | 0,910 | 45,380 | 0,371 | 0,630 | 9,630 | 11,110 | 15,450 | 11,750 | 000'0 | 0,000 | 0,426 | 95,745 | core | | | | | | | | | | | | | | | | 0,962 | 45,520 | 0,380 | 0,665 | 009'6 | 11,730 | 16,840 | 11,930 | 0,044 | 00000 | 0,569 | 98,286 | middle | | 0,963 | 45,960 | 908'0 | 0,588 | 098'6 | 11,580 | 16,010 | 11,950 | 0,194 | 0,091 | 0,748 | 98,291 | middle | | 0,864 | 46,370 | 0,416 | 0,500 | 10,750 | 10,670 | 15,740 | 12,000 | 0,133 | 0,029 | 0,461 | 98,010 | middle | | 0,940 | 45,730 | 0,364 | 0,733 | 9,540 | 11,980 | 16,300 | 12,010 | 0,057 | 0,032 | 0,657 | 98,424 | middle | | 0,979 | 44,840 | 0,367 | 0,657 | 9,300 | 12,670 | 15,580 | 11,840 | 0,000 | 0,020 | 0,763 | 92,060 | middle | | 0,993 | 45,770 | 0,389 | 0,579 | 9,870 | 11,830 | 16,470 | 12,030 | 0,055 | 0,000 | 0,509 | 98,562 | middle | | 0,759 | 47,940 | 0,371 | 0,595 | 11,020 | 9,610 | 15,520 | 12,040 | 0,000 | 0,042 | 0,560 | 98,482 | middle | | 0,881 | 46,340 | 0,304 | 0,574 | 10,040 | 11,360 | 15,560 | 12,100 | 000'0 | 0,036 | 0,580 | 97,774 | middle | | 0,733 | 47,950 | 0,352 | 0,467 | 11,130 | 9,310 | 15,380 | 11,960 | 000'0 | 00000 | 0,332 | 97,614 | middle | | | | | | | | | | | | | | | | 0,831 | 46,500 | 0,317 | 0,561 | 10,020 | 10,910 | 16,170 | 11,890 | 0,000 | 0,019 | 0,359 | 97,623 | rim | | 0,983 | 45,560 | 0,393 | 0,743 | 099'6 | 11,430 | 16,800 | 11,850 | 0,019 | 0,054 | 0,594 | 98,143 | rim | | 0,683 | 42,820 | 0,331 | 1,128 | 9,630 | 12,940 | 16,200 | 11,140 | 0,103 | 0,012 | 0,501 | 95,531 | rim | | 0,788 | 46,660 | 0,385 | 0,501 | 10,310 | 10,270 | 15,110 | 11,960 | 0,106 | 00000 | 0,549 | 96,703 | rim | | 0,954 | 45,200 | 0,317 | 0,649 | 9,770 | 12,060 | 15,680 | 12,110 | 0,133 | 0,050 | 0,872 | 97,831 | rim | | 1,128 | 44,190 | 0,319 | 0,641 | 9,620 | 12,710 | 15,950 | 11,920 | 0,085 | 0,000 | 0,608 | 97,262 | rim | | 0,952 | 45,160 | 0,299 | 0,673 | 9,620 | 12,200 | 15,620 | 11,830 | 0,000 | 0,000 | 0,831 | 97,264 | rim | | 0,850 | 46,070 | 0,380 | 969'0 | 10,200 | 10,540 | 16,290 | 11,970 | 00000 | 0,000 | 0,732 | 97,735 | rim | | 0,938 | 46,490 | 0,360 | 0,535 | 10,170 | 10,940 | 16,080 | 12,010 | 0,007 | 0,020 | 0,603 | 98,217 | rim | | 0,737 | 47,470 | 0,383 | 0,501 | 10,580 | 069'6 | 15,530 | 12,030 | 0,125 | 0,000 | 0,818 | 97,922 | rim | | 0,812 | 47,180 | 0,322 | 0,569 | 10,530 | 10,760 | 15,480 | 12,090 | 0,048 | 0,000 | 0,389 | 98,190 | rim | | 1407 | o ellebeion one | | | 1 d d au - d 2 - | A 11 4 A | | | | | | | | Table 31. Core, middle and rim measurements of hornblende in Jl 1-4. # JI 1-4 hornblende | 4 ا |---------| | Comment | core middle rim rin | | Total | 97,911 | 94,998 | 97,632 | 97,920 | 98,479 | 98,295 | 97,479 | 96,950 | 97,921 | 98,230 | 98,484 | 97,985 | 98,617 | 95,961 | 98,108 | 966'86 | 98,173 | 98,573 | 97,624 | 98,506 | 98,429 | 98,645 | 98,316 | 96,357 | 98,020 | 98,113 | 98,134 | 97,959 | 97,475 | 98,823 | 98,794 | 98,150 | 97,559 | | Ti02 | 0,472 | 0,578 | 0,803 | 0,296 | 0,687 | 0,589 | 0,526 | 0,383 | 0,449 | 0,395 | 965'0 | 0,599 | 0,623 | 0,380 | 0,759 | 0,894 | 0,429 | 0,567 | 0,271 | 0,394 | 0,556 | 0,625 | 0,703 | 0,308 | 0,483 | 0,558 | 0,340 | 0,714 | 0,518 | 909'0 | 0,444 | 909'0 | 0,757 | | OiN | 0,000 | 0,000 | 0,013 | 0,030 | 800'0 | 0,029 | 600'0 | 0,010 | 0,028 | 0,053 | 0,039 | 600'0 | 0,018 | 0,000 | 0,000 | 000'0 | 0,080 | 000'0 | 0,021 | 0,043 | 0,035 | 0,020 | 0,015 | 0,000 | 0,039 | 0,000 | 0,019 | 0,011 | 0,008 | 0,018 | 000'0 | 0,000 | 0,000 | | L. | 0,040 | 0,068 | 0,000 | 00000 | 9:00'0 | 000'0 | 000'0 | 0,000 | 0,024 | 0,000 | 000'0 | 0,074 | 000'0 | 0,044 | 00000 | 0,029 | 0,026 | 0,073 | 000'0 | 000'0 | 0,051 | 0,055 | 0,168 | 0,000 | 0,000 | 0,000 | 0000 | 000'0 | 0,015 | 0,000 | 0,237 | 000'0 | 000'0 | | CaO | 11,610 | 14,180 | 11,560 | 11,540 | 11,550 | 11,740 | 11,760 | 10,060 | 11,420 | 11,510 | 11,700 | 11,650 | 11,590 | 11,380 | 11,730 | 11,790 | 11,760 | 11,510 | 11,540 | 11,570 | 11,790 | 11,760 | 11,660 | 11,020 | 11,630 | 11,800 | 11,510 | 11,520 | 11,640 | 11,620 | 11,520 | 11,870 | 11,690 | | FeO | 19,290 | 18,220 | 18,820 | 19,350 | 19,250 | 19,550 | 18,900 | 18,900 | 19,060 | 19,500 | 19,030 | 19,440 | 19,710 | 17,760 | 20,240 | 20,200 | 18,330 | 19,230 | 18,740 | 18,950 | 19,570 | 19,020 | 18,870 | 19,210 | 18,260 | 18,810 | 19,520 | 18,940 | 18,740 | 19,560 | 19,450 | 19,190 | 18,530 | | AI203 | 15,880 | 13,180 | 16,550 | 16,890 | 13,260 | 12,690 | 15,270 | 17,020 | 17,290 | 16,400 | 15,170 | 15,300 | 16,030 | 13,570 | 15,140 | 13,160 | 14,090 | 15,640 | 17,060 | 16,480 | 16,430 | 15,120 | 13,670 | 16,930 | 16,330 | 16,720 | 17,780 | 12,730 | 12,900 | 15,860 | 16,900 | 15,060 | 13,720 | | MgO | 6,630 | 6,740 | 6,430 | 6,120 | 7,560 | 7,800 | 6,740 | 6,610 | 6,120 | 6,330 | 7,460 | 6,850 | 6,320 | 7,460 | 6,400 | 7,480 | 7,370 | 6,810 | 5,920 | 6,750 | 6,150 | 7,510 | 7,650 | 6,410 | 6,930 | 099'9 | 5,390 | 7,830 | 7,950 | 6,740 | 6,260 | 6,790 | 7,470 | | K20 | 1,120 | 0,630 | 1,045 | 0,561 | 0,933 | 1,230 | 0,826 | 1,440 | 0,845 | 1,137 | 1,186 | 0,903 | 1,059 | 0,614 | 1,560 | 1,360 | 0,714 | 0,746 | 0,613 | 0,698 | 1,121 | 1,240 | 1,063 | 0,646 | 0,844 | 0,961 | 0,678 | 1,010 | 0,929 | 1,055 | 0,919 | 0,885 | 0,962 | | MnO | 0,494 | 0,604 | 0,510 | 0,483 | 0,551 | 0,427 | 0,515 | 0,481 | 0,562 | 0,487 | 0,510 | 0,538 | 0,518 | 0,470 | 0,456 | 0,554 | 0,533 | 0,477 | 0,444 | 0,459 | 0,498 | 0,472 | 0,428 | 0,454 | 0,473 | 0,421 | 0,572 | 0,482 | 0,482 | 0,434 | 0,468 | 0,447 | 0,527 | | Si02 | 41,130 | 39,510 | 40,580 | 41,440 | 43,500 | 43,040 | 41,640 | 40,740 | 40,750 | 41,210 | 41,570 | 41,360 | 41,400 | 43,100 | 40,730 | 42,500 | 43,540 | 42,170 | 41,650 | 41,820 | 40,940 | 41,640 | 42,870 | 40,100 | 41,670 | 40,880 | 41,020 | 43,710 | 43,020 | 41,630 | 41,330 | 41,920 | 42,610 | | Na2O | 1,182 | 1,196 | 1,270 | 1,165 | 1,070 | 1,012 | 1,233 | 1,179 | 1,324 | 1,153 | 1,184 | 1,216 | 1,215 | 1,158 | 1,034 | 0,978 | 1,115 | 1,283 | 1,242 | 1,329 | 1,190 | 1,156 | 1,169 | 1,279 | 1,327 | 1,273 | 1,206 | 0,994 | 1,049 | 1,240 | 1,249 | 1,236 | 1,149 | Table 32. Core, middle and rim measurements of hornblende in Jl 1-4. # JI 4-3 hornblende | Na20 | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | L. | OiN | Ti02 | Total | Comment | |----------|---------------------------|--------|-------|----------------------------|----------|--------|--------|-------|-------|-------|--------|---------| | 1,167 | 42,780 | 0,289 | 1,390 | 089'6 | 13,420 | 16,050 | 11,750 | 0,088 | 0,070 | 0,933 | 97,640 | core | | 1,071 | 42,250 | 0,262 | 1,300 | 9,070 | 13,110 | 17,000 | 11,800 | 0,037 | 000'0 | 0,944 | 97,104 | core | | 1,172 | 43,350 | 0,249 | 1,270 | 10,320 | 13,140 | 14,860 | 11,850 | 0,035 | 0,022 | 0,883 | 97,183 | core | | 1,155 | 43,270 | 0,278 | 1,430 | 9,530 | 13,660 | 16,120 | 11,600 | 0,083 | 0,048 | 0,995 | 98,201 | core | | 896′0 | 43,310 | 988'0 | 1,270 | 9,040 | 12,560 | 16,960 | 11,870 | 0,210 | 000'0 | 0,947 | 97,519 | core | | 1,095 | 42,160 | 0,238 | 1,310 | 8,660 | 14,350 | 16,860 | 11,930 | 00000 | 000'0 | 1,099 | 97,819 | core | | 1,142 | 43,330 | 988'0 | 1,270 | 065'6 | 13,360
 15,810 | 11,800 | 000'0 | 0,018 | 968'0 | 97,563 | core | | 1,086 | 43,460 | 0,345 | 1,220 | 9,400 | 12,380 | 16,870 | 11,870 | 0,147 | 000'0 | 1,013 | 97,812 | core | | 1,063 | 43,490 | 0,269 | 1,290 | 10,130 | 13,290 | 15,310 | 11,960 | 0,189 | 000'0 | 0,858 | 97,921 | core | | 1,084 | 43,930 | 0,218 | 1,168 | 10,040 | 12,540 | 15,360 | 11,860 | 0,026 | 000'0 | 0,868 | 97,106 | core | | 1,140 | 42,450 | 0,287 | 1,430 | 065'6 | 14,220 | 15,460 | 11,800 | 0,246 | 000'0 | 1,079 | 97,739 | core | | 1,169 | 43,120 | 0,303 | 1,370 | 096′6 | 13,680 | 15,570 | 11,750 | 0,209 | 0,028 | 1,069 | 98,310 | core | | 1,110 | 43,080 | 0,294 | 1,320 | 9,280 | 13,590 | 16,000 | 12,020 | 0,093 | 0,016 | 0,943 | 97,825 | core | | 1,039 | 43,390 | 0,290 | 1,260 | 065'6 | 13,450 | 16,030 | 11,900 | 000'0 | 0,026 | 1,006 | 98,032 | core | | 1,149 | 43,750 | 0,330 | 1,210 | 086'6 | 13,090 | 15,620 | 11,840 | 0,178 | 0,010 | 0,922 | 98,129 | core | | | | | | | | | | | | | | | | 1,070 | 42,530 | 0,298 | 1,380 | 8,760 | 14,090 | 16,620 | 11,810 | 0,195 | 000'0 | 1,098 | 97,937 | middle | | 1,141 | 43,030 | 0,339 | 1,290 | 099'6 | 13,890 | 15,650 | 11,770 | 0,122 | 0,032 | 0,914 | 97,903 | middle | | 1,099 | 43,670 | 0,294 | 1,061 | 9,930 | 13,010 | 16,120 | 11,810 | 000'0 | 0,032 | 0,820 | 97,883 | middle | | 1,092 | 42,790 | 0,347 | 1,230 | 9,180 | 12,920 | 16,980 | 11,880 | 600'0 | 000'0 | 1,012 | 97,476 | middle | | 1,049 | 42,770 | 0,330 | 1,310 | 9,530 | 12,990 | 15,790 | 11,910 | 0,011 | 0,010 | 1,067 | 808'96 | middle | | 1,073 | 43,310 | 0,283 | 1,280 | 9,530 | 12,820 | 16,000 | 11,750 | 9/0′0 | 000'0 | 0,946 | 97,118 | middle | | 1,198 | 41,980 | 0,271 | 1,540 | 9,200 | 14,420 | 16,010 | 11,900 | 0,291 | 0,015 | 1,113 | 616'16 | middle | | 1,093 | 43,370 | 0,314 | 1,280 | 9,720 | 12,860 | 16,240 | 11,970 | 0,037 | 0,019 | 1,070 | 98,055 | middle | | 1,140 | 43,780 | 0,265 | 1,185 | 9,480 | 13,010 | 17,090 | 11,890 | 0,152 | 000'0 | 068'0 | 98,934 | middle | | Toble 32 | Soring complete more care | ow olk | | O I ni obaoldarod to stace | 0 7 11 4 | | | | | | | | Table 33. Core and middle measurements of hornblende in JI 4-3. # JI 4-3 hornblende continued | Na20 | Si02 | MnO | K20 | MgO | AI203 | FeO | CaO | ட | OiN | Ti02 | Total | Comment | |------------|---|-------------|--------------|--------|--------|--------|--------|-------|--------|-------|--------|---------| | 1,119 | 42,200 | 0,316 | 1,270 | 9,330 | 12,650 | 16,250 | 11,970 | 0,161 | 0,000 | 1,045 | 96,349 | rim | | 1,117 | 41,800 | 0,300 | 1,330 | 9,180 | 13,360 | 16,270 | 11,890 | 0,081 | 0,000 | 0,994 | 96,335 | rim | | 1,051 | 42,610 | 0,262 | 1,310 | 000'6 | 13,180 | 16,610 | 11,970 | 0,168 | 0,015 | 0,916 | 97,274 | rim | | 1,106 | 42,740 | 0,289 | 1,280 | 9,220 | 12,960 | 16,970 | 11,900 | 0,108 | 0,046 | 0,981 | 97,692 | rim | | 1,079 | 44,030 | 0,348 | 1,137 | 10,050 | 12,450 | 15,760 | 11,810 | 0,105 | 0000'0 | 0,919 | 97,716 | rim | | 0,980 | 43,650 | 0,247 | 1,190 | 9,280 | 12,600 | 16,860 | 12,050 | 0,162 | 0,000 | 1,304 | 98,399 | rim | | 1,082 | 43,150 | 0,319 | 1,175 | 9,790 | 12,980 | 16,160 | 11,940 | 0,087 | 0,012 | 0,880 | 97,621 | rim | | 1,063 | 43,100 | 0,323 | 1,230 | 9,700 | 12,700 | 16,070 | 12,030 | 0,079 | 0,023 | 0,903 | 97,297 | rim | | 1,118 | 43,190 | 0,321 | 1,280 | 9,580 | 12,990 | 15,980 | 12,000 | 00000 | 0000'0 | 0,948 | 97,437 | rim | | 1,118 | 42,960 | 0,328 | 1,510 | 10,140 | 14,020 | 14,250 | 11,940 | 0,261 | 0,012 | 1,064 | 97,604 | rim | | 1,072 | 44,170 | 0,247 | 1,141 | 9,920 | 12,370 | 16,290 | 11,780 | 0,094 | 0000'0 | 0,922 | 98,050 | rim | | 1,142 | 43,240 | 0,310 | 1,370 | 9,730 | 13,860 | 15,730 | 11,790 | 0,177 | 0,010 | 1,003 | 98,384 | rim | | 1,022 | 43,460 | 0,283 | 1,300 | 9,050 | 12,940 | 17,430 | 12,050 | 0,105 | 0,018 | 1,114 | 98,772 | rim | | Table 27 B | Table 34 Rim measurements of hornblende i | monte of ho | nrahlanda in | 11.4.2 | | | | | | | | | ble 34. Rim measurements of hornblende in JI 4- JI 5-3 hornblende | Na2O | SiO2 | MnO | K20 | MgO | AI203 | FeO | CaO | ш | Ti02 | ס | Total | Comment | |-------------|----------------------------------|------------|------------|---------------------------|---------------|--------|--------|--------|-------|-------|--------|---------| | 1,830 | 40,835 | 0,180 | 0,541 | 12,933 | 14,161 | 11,464 | 11,767 | 0,109 | 2,187 | 0,020 | 966'56 | core | | 1,256 | 42,331 | 0,324 | 0,908 | 11,751 | 13,260 | 13,531 | 10,871 | 0,012 | 2,125 | 0,104 | 96,491 | core | | 1,570 | 41,530 | 0,278 | 0,935 | 12,128 | 14,371 | 11,987 | 11,500 | 0,061 | 2,186 | 0,067 | 662'96 | core | | 2,107 | 42,172 | 0,244 | 0,523 | 13,826 | 13,419 | 10,747 | 11,534 | 0000'0 | 2,097 | 0,008 | 96,694 | core | | 1,716 | 42,487 | 0,285 | 0,562 | 13,081 | 13,149 | 11,722 | 11,605 | 0,108 | 2,070 | 0,016 | 96,771 | core | | 1,398 | 42,574 | 0,380 | 0,535 | 11,279 | 13,307 | 13,813 | 11,615 | 0,128 | 1,969 | 0,077 | 97,004 | core | | 1,764 | 41,247 | 0,238 | 0,548 | 13,414 | 13,206 | 11,337 | 11,756 | 0,146 | 2,245 | 0,012 | 95,855 | core | | 1,390 | 42,130 | 0,319 | 0,664 | 11,470 | 13,459 | 13,336 | 11,500 | 0,040 | 2,164 | 0,129 | 96,613 | core | | 1,985 | 42,099 | 0,199 | 0,558 | 13,907 | 13,659 | 10,458 | 11,648 | 0,231 | 2,134 | 900'0 | 908'96 | core | | 1,126 | 42,469 | 0,371 | 1,095 | 9,265 | 13,641 | 16,016 | 10,710 | 0,000 | 1,563 | 0,259 | 96,488 | core | | | | | | | | | | | | | | | | 2,058 | 41,575 | 0,221 | 0,561 | 13,612 | 13,949 | 10,617 | 11,833 | 0,111 | 2,224 | 0,020 | 96,775 | middle | | 1,278 | 41,396 | 0,273 | 0,901 | 11,096 | 13,909 | 13,579 | 11,313 | 0,027 | 2,211 | 0,125 | 96,149 | middle | | 1,667 | 41,842 | 0,259 | 0,571 | 13,001 | 14,196 | 10,783 | 11,866 | 0,094 | 2,236 | 0,031 | 96,552 | middle | | 1,964 | 41,929 | 0,191 | 0,509 | 13,705 | 12,734 | 11,049 | 11,452 | 0,198 | 2,058 | 0,013 | 95,755 | middle | | 1,199 | 41,590 | 0,366 | 0,923 | 10,257 | 13,767 | 14,722 | 11,037 | 0,158 | 1,878 | 0,180 | 95,971 | middle | | 1,382 | 41,688 | 0,304 | 0,625 | 9,721 | 14,268 | 14,847 | 11,483 | 000'0 | 2,136 | 0,148 | 692'96 | middle | | 1,994 | 41,726 | 0,165 | 0,616 | 13,984 | 14,097 | 10,511 | 11,630 | 0,137 | 2,215 | 0,016 | 62,067 | middle | | 1,199 | 40,900 | 0,354 | 0,707 | 866'6 | 13,750 | 15,962 | 10,665 | 0,079 | 1,765 | 0,192 | 95,503 | middle | | 1,612 | 41,791 | 0,345 | 0,595 | 11,668 | 14,242 | 12,806 | 11,709 | 0,210 | 2,230 | 0,072 | 97,187 | middle | | 1,679 | 41,814 | 0,252 | 0,546 | 12,916 | 13,656 | 10,964 | 11,759 | 0,102 | 2,355 | 0,024 | 96,027 | middle | | 1,127 | 42,431 | 0,480 | 1,071 | 9,374 | 13,194 | 16,284 | 10,535 | 0,105 | 2,174 | 0,177 | 898'96 | middle | | | | | | | | | | | | | | | | 1,351 | 41,233 | 0,402 | 0,612 | 8,877 | 14,256 | 16,013 | 11,454 | 0,000 | 1,987 | 0,294 | 96,413 | rim | | 1,192 | 40,741 | 0,386 | 0,727 | 6/0/6 | 13,483 | 15,791 | 11,207 | 0,141 | 1,853 | 0,273 | 94,787 | rim | | 1,454 | 41,817 | 0,257 | 0,596 | 12,256 | 13,266 | 12,002 | 11,645 | 0000'0 | 2,134 | 0,089 | 95,542 | rim | | 1,697 | 43,089 | 0,237 | 0,512 | 13,920 | 12,402 | 10,463 | 11,941 | 0,148 | 1,890 | 0,045 | 96,296 | rim | | 1,239 | 41,741 | 0,437 | 0,597 | 8,889 | 13,359 | 15,771 | 11,526 | 0,000 | 1,617 | 0,219 | 95,346 | rim | | 1,239 | 40,825 | 0,339 | 0,721 | 9,440 | 13,303 | 15,663 | 11,698 | 0,021 | 1,821 | 0,245 | 95,267 | rim | | 1,531 | 42,155 | 0,348 | 0,531 | 10,428 | 14,028 | 14,347 | 11,815 | 0,133 | 1,943 | 0,046 | 97,243 | rim | | 1,187 | 41,551 | 0,379 | 0,540 | 9,139 | 12,727 | 16,512 | 10,799 | 0,000 | 1,662 | 0,209 | 94,658 | rim | | 1,298 | 42,029 | 0,318 | 0,573 | 9,171 | 13,891 | 16,057 | 11,042 | 0,000 | 1,789 | 0,160 | 96,292 | rim | | 1,334 | 42,158 | 0,373 | 0,556 | 9,418 | 14,196 | 15,537 | 11,392 | 000'0 | 2,116 | 0,085 | 97,190 | rim | | Table 35. C | Core. middle and rim measurement | and rim me | asurements | s of hornblende in Il 5-3 | nde in II 5-3 | ا | | | | | | | Table 35. Core, middle and rim measurements of hornblende in JI 5-3. ## Appendix IV: EMP data thin sections Figure 79. BSE of thin section JI 1-1, measuring location 1 (top) and zoom-in of the square (bottom). Figure 80. BSE of thin section JI 1-1, measuring location 3. Figure 81. BSE of thin section JI 1-1, measuring location 4 (top) and zoom-in of the square (bottom). Figure 82. BSE of thin section JI 1-1, measuring locations 4 (top) and 5 (bottom). Figure 83. BSE of thin section JI 1-1, measuring locations 8 (top) and 9 (bottom). 1-15 0,243 54,045 3-1 1,020 44,905 | SIO2 | 50,944 | 44,917 | 42,347 | 52,593 | 49,166 | 48,567 | 53,229 | 52,936 | 49,056 | 50,124 | 48,442 | 54,045 | 44,905 | |---|---|---|---|--|---|---|---|---
---|---|--|---|--| | MnO | 0,357 | 0,304 | 0,370 | 0,406 | 0,400 | 0,331 | 0,479 | 0,403 | 0,371 | 0,396 | 0,377 | 0,332 | 0,361 | | K2O | 0,275 | 0,860 | 1,003 | 0,167 | 0,415 | 0,545 | 0,151 | 0,149 | 0,350 | 0,299 | 0,508 | 0,165 | 0,541 | | MgO | 12,906 | 8,671 | 7,682 | 13,767 | 12,033 | 11,292 | 14,231 | 13,785 | 12,238 | 12,684 | 11,197 | 14,485 | 9,247 | | Al2O3 | 6,014 | 13,401 | 15,760 | 3,932 | 7,557 | 8,895 | 3,371 | 4,066 | 7,556 | 6,801 | 8,644 | 2,827 | 12,469 | | FeO | 13,790 | 16,185 | 17,139 | 13,314 | 14,796 | 15,604 | 13,511 | 13,634 | 14,637 | 14,218 | 15,657 | 13,245 | 16,159 | | CaO | 12,362 | 12,230 | 12,196 | 12,486 | 12,519 | 12,382 | 12,460 | 12,537 | 12,481 | 12,342 | 12,393 | 12,498 | 12,170 | | TiO2 | 0,161 | 0,436 | 0,513 | 0,103 | 0,163 | 0,205 | 0,148 | 0,086 | 0,220 | 0,138 | 0,185 | 0,056 | 0,463 | | Cr2O3 | 0,120 | 0,178 | 0,056 | 0,002 | 0,020 | 0,041 | 0,046 | 0,010 | 0,013 | 0,064 | 0,068 | 0,027 | 0,058 | | Cl | 0,011 | 0,000 | 0,011 | 0,005 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,009 | 0,000 | 0,000 | 0,002 | | F | 0,021 | 0,000 | 0,000 | 0,000 | 0,234 | 0,010 | 0,000 | 0,058 | 0,000 | 0,043 | 0,088 | 0,000 | 0,044 | | Total | 97,496 | 98,199 | 98,307 | 97,116 | 97,847 | 98,566 | 97,936 | 98,018 | 97,547 | 97,682 | 98,185 | 97,923 | 97,420 | | | • | • | • | • | • | • | · | • | • | • | • | • | • | | Na(I) | 0,154 | 0,291 | 0,356 | 0,096 | 0,183 | 0,197 | 0,087 | 0,106 | 0,178 | 0,165 | 0,189 | 0,068 | 0,294 | | Si(IV) | 7,421 | 6,633 | 6,308 | 7,650 | 7,221 | 7,085 | 7,682 | 7,642 | 7,195 | 7,314 | 7,108 | 7,774 | 6,683 | | Mn(II) | 0,044 | 0,038 | 0,047 | 0,050 | 0,050 | 0,041 | 0,059 | 0,049 | 0,046 | 0,049 | 0,047 | 0,040 | 0,046 | | K(I) | 0,051 | 0,162 | 0,191 | 0,031 | 0,078 | 0,101 | 0,028 | 0,027 | 0,065 | 0,056 | 0,095 | 0,030 | 0,103 | | Mg(II) | 2,802 | 1,909 | 1,706 | 2,985 | 2,635 | 2,456 | 3,062 | 2,967 | 2,676 | 2,759 | 2,449 | 3,106 | 2,052 | | Al(III) | 1,032 | 2,332 | 2,767 | 0,674 | 1,308 | 1,529 | 0,573 | 0,692 | 1,306 | 1,170 | 1,495 | 0,479 | 2,187 | | Fe(II) | 1,680 | 1,999 | 2,135 | 1,620 | 1,817 | 1,904 | 1,631 | 1,646 | 1,795 | 1,735 | 1,921 | 1,593 | 2,011 | | Ca(II) | 1,929 | 1,935 | 1,947 | 1,946 | 1,970 | 1,935 | 1,927 | 1,939 | 1,961 | 1,930 | 1,948 | 1,926 | 1,941 | | Ti(IV) | 0,018 | 0,048 | 0,057 | 0,011 | 0,018 | 0,022 | 0,016 | 0,009 | 0,024 | 0,015 | 0,020 | 0,006 | 0,052 | | Cr(III) | 0,014 | 0,021 | 0,007 | 0,000 | 0,002 | 0,005 | 0,005 | 0,001 | 0,002 | 0,007 | 0,008 | 0,003 | 0,007 | | F | 0,010 | 0,000 | 0,000 | 0,000 | 0,109 | 0,005 | 0,000 | 0,026 | 0,000 | 0,020 | 0,041 | 0,000 | 0,021 | | • | 0,010 | 0,000 | 0,000 | 0,000 | 0,103 | 0,003 | 0,000 | 0,020 | 0,000 | 0,020 | 0,041 | 0,000 | 0,021 | | Σ cations | 15,145 | 15,369 | 15,521 | 15,065 | 15,282 | 15,277 | 15,070 | 15,080 | 15,249 | 15,201 | 15,280 | 15,027 | 15,375 | | charge | 46,008 | 46,000 | 46,000 | 46,000 | 46,092 | 46,004 | 46,000 | 46,022 | 46,000 | 46,017 | 46,034 | 46,000 | 46,017 | | | | | | | | | | | | | | | | | point | 3-2 | 3-3 | 3-4 | 3-5 | 3-6 | 3-7 | 4-1 | 4-2 | 4-3 | 4-4 | 4-5 | 4-6 | 4-7 | | Na2O | 1,024 | 1,038 | 0,935 | 0,909 | 0,932 | 1,005 | 0,998 | 0,952 | 1,126 | 0,719 | 0,896 | 0,966 | 0,912 | | Na2O
SiO2 | 1,024
44,445 | 1,038
45,035 | 0,935
45,681 | 0,909
46,451 | 0,932
46,036 | 1,005
45,025 | 0,998
45,939 | 0,952
45,021 | 1,126
43,705 | 0,719
48,016 | 0,896
46,785 | 0,966
45,824 | 0,912
46,586 | | Na2O
SiO2
MnO | 1,024
44,445
0,356 | 1,038
45,035
0,414 | 0,935
45,681
0,295 | 0,909
46,451
0,341 | 0,932
46,036
0,423 | 1,005
45,025
0,323 | 0,998
45,939
0,392 | 0,952
45,021
0,319 | 1,126
43,705
0,414 | 0,719
48,016
0,355 | 0,896
46,785
0,335 | 0,966
45,824
0,372 | 0,912
46,586
0,434 | | Na2O
SiO2
MnO
K2O | 1,024
44,445
0,356
0,696 | 1,038
45,035
0,414
0,683 | 0,935
45,681
0,295
0,611 | 0,909
46,451
0,341
0,600 | 0,932
46,036
0,423
0,576 | 1,005
45,025
0,323
0,636 | 0,998
45,939
0,392
0,548 | 0,952
45,021
0,319
0,694 | 1,126
43,705
0,414
0,770 | 0,719
48,016
0,355
0,475 | 0,896
46,785
0,335
0,487 | 0,966
45,824
0,372
0,605 | 0,912
46,586
0,434
0,510 | | Na2O
SiO2
MnO
K2O
MgO | 1,024
44,445
0,356
0,696
8,889 | 1,038
45,035
0,414
0,683
9,378 | 0,935
45,681
0,295
0,611
9,546 | 0,909
46,451
0,341
0,600
10,196 | 0,932
46,036
0,423
0,576
9,581 | 1,005
45,025
0,323
0,636
9,445 | 0,998
45,939
0,392
0,548
9,779 | 0,952
45,021
0,319
0,694
9,295 | 1,126
43,705
0,414
0,770
8,430 | 0,719
48,016
0,355
0,475
11,100 | 0,896
46,785
0,335
0,487
10,305 | 0,966
45,824
0,372
0,605
9,996 | 0,912
46,586
0,434
0,510
9,894 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3 | 1,024
44,445
0,356
0,696
8,889
13,174 | 1,038
45,035
0,414
0,683
9,378
12,477 | 0,935
45,681
0,295
0,611
9,546
11,659 | 0,909
46,451
0,341
0,600
10,196
10,607 | 0,932
46,036
0,423
0,576
9,581
12,056 | 1,005
45,025
0,323
0,636
9,445
12,038 | 0,998
45,939
0,392
0,548
9,779
11,519 | 0,952
45,021
0,319
0,694
9,295
12,038 | 1,126
43,705
0,414
0,770
8,430
13,928 | 0,719
48,016
0,355
0,475
11,100
9,052 | 0,896
46,785
0,335
0,487
10,305
10,616 | 0,966
45,824
0,372
0,605
9,996
11,502 | 0,912
46,586
0,434
0,510
9,894
10,903 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO | 1,024
44,445
0,356
0,696
8,889
13,174
16,433 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517 | 0,909
46,451
0,341
0,600
10,196
10,607
15,794 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985 | 0,998
45,939
0,392
0,548
9,779
11,519
16,302 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863 | 0,719
48,016
0,355
0,475
11,100
9,052
15,078 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798 | 0,966
45,824
0,372
0,605
9,996
11,502
15,654 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 1,024
44,445
0,356
0,696
8,889
13,174
16,433
12,276 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144 | 0,909
46,451
0,341
0,600
10,196
10,607
15,794
12,212 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983 | 0,998
45,939
0,392
0,548
9,779
11,519
16,302
11,989 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863
12,181 | 0,719
48,016
0,355
0,475
11,100
9,052
15,078
12,344 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798
12,342 | 0,966
45,824
0,372
0,605
9,996
11,502
15,654
12,012 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 1,024
44,445
0,356
0,696
8,889
13,174
16,433
12,276
0,631 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651 | 0,909
46,451
0,341
0,600
10,196
10,607
15,794
12,212
0,600 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835 | 0,998
45,939
0,392
0,548
9,779
11,519
16,302
11,989
0,514 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863
12,181
0,712 | 0,719
48,016
0,355
0,475
11,100
9,052
15,078
12,344
0,396 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798
12,342
0,264 | 0,966
45,824
0,372
0,605
9,996
11,502
15,654
12,012
0,499 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,024
44,445
0,356
0,696
8,889
13,174
16,433
12,276
0,631
0,087 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651
0,035 |
0,909
46,451
0,341
0,600
10,196
10,607
15,794
12,212
0,600
0,040 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035 | 0,998
45,939
0,392
0,548
9,779
11,519
16,302
11,989
0,514
0,039 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863
12,181
0,712
0,084 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798
12,342
0,264
0,038 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,024
44,445
0,356
0,696
8,889
13,174
16,433
12,276
0,631
0,087
0,007 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651
0,035 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863
12,181
0,712
0,084
0,000 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798
12,342
0,264
0,038
0,000 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005
0,000 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651
0,035
0,000
0,064 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,005
0,050 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006
0,165 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,024
44,445
0,356
0,696
8,889
13,174
16,433
12,276
0,631
0,087
0,007 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651
0,035 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006 | 1,126
43,705
0,414
0,770
8,430
13,928
16,863
12,181
0,712
0,084
0,000 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 | 0,896
46,785
0,335
0,487
10,305
10,616
15,798
12,342
0,264
0,038
0,000 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005
0,000 | 0,935
45,681
0,295
0,611
9,546
11,659
15,517
12,144
0,651
0,035
0,000
0,064 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,005
0,050 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006
0,165 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,004
0,005
0,000
98,424 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,005
0,050
97,343 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006
0,165
97,756 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117
97,328 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005
0,000
98,424 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,005
0,050
97,343 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,006
0,165
97,756 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117
97,328 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 | 1,038
45,035
0,414
0,683
9,378
12,477
16,456
12,256
0,589
0,094
0,005
0,000
98,424 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,005
0,050
97,343 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,165
97,756 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 | 0,966 45,824 0,372 0,605 9,996
11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117
97,328 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,000 98,016 0,294 6,590 0,045 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367
0,266
6,775
0,053 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,050
97,343
0,290
6,703
0,041 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 | 0,952
45,021
0,319
0,694
9,295
12,038
16,397
12,243
0,656
0,040
0,165
97,756 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117
97,328
0,262
6,908
0,055 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,000 98,016 0,294 6,590 0,045 0,132 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367
0,266
6,775
0,053
0,108 | 1,005
45,025
0,323
0,636
9,445
12,038
15,985
11,983
0,835
0,035
0,050
97,343
0,290
6,703
0,041
0,121 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 97,866 0,256 6,896 0,042 0,092 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 | 0,912
46,586
0,434
0,510
9,894
10,903
15,589
12,053
0,278
0,099
0,003
0,117
97,328
0,262
6,908
0,055
0,096 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 0,294 6,590 0,045 0,132 1,965 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,116 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 | 0,932
46,036
0,423
0,576
9,581
12,056
16,116
12,247
0,316
0,028
0,000
0,097
98,367
0,266
6,775
0,053
0,108
2,102 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,005 0,050 97,343 0,290 6,703 0,041 0,121 2,096 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 2,063 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 0,092 2,264 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 0,294 6,590 0,045 0,132 1,965 2,302 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 2,171 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,116 2,043 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 1,848 | 0,932 46,036 0,423 0,576 9,581 12,056 16,116 12,247 0,316 0,028 0,000 0,097 98,367 0,266 6,775 0,053 0,108 2,102 2,091 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,035 0,005 97,343 0,290 6,703 0,041 0,121 2,096 2,112 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 2,006 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 2,063 2,113 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 2,439 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 1,569 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 0,092 2,264 1,844 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 2,009 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 1,905 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 0,294 6,590 0,045 0,132 1,965 2,302 2,038 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 2,171 2,032 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,116 2,043 1,930 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 1,848 1,953 | 0,932 46,036 0,423 0,576 9,581 12,056 16,116 12,247 0,316 0,028 0,000 0,097 98,367 0,266 6,775 0,053 0,108 2,102 2,091 1,984 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,035 0,005 0,050 97,343 0,290 6,703 0,041 0,121 2,096 2,112 1,990 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 2,006 2,014 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 2,063 2,113 2,042 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 2,439 2,096 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 1,569 1,855 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 0,092 2,264 1,844 1,947 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 2,009 1,941 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 1,905 1,933 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(III) Al(III) Fe(II) Ca(II) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 0,294 6,590 0,045 0,132 1,965 2,302 2,038 1,950 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 2,171 2,032 1,939 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,116 2,043 1,930 1,935 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 1,848 1,953 1,935 | 0,932 46,036 0,423 0,576 9,581 12,056 16,116 12,247 0,316 0,028 0,000 0,097 98,367 0,266 6,775 0,053 0,108 2,102 2,091 1,984 1,931 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,035 0,005 0,050 97,343 0,290 6,703 0,041 0,121 2,096 2,112 1,990 1,911 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 2,006 2,014 1,898 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 2,063 2,113 2,042 1,953 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 2,439 2,096 1,940 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 1,569 1,855 1,946 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896
0,042 0,092 2,264 1,844 1,947 1,949 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 2,009 1,941 1,908 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 1,905 1,933 1,915 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,007 0,000 98,016 0,294 6,590 0,045 0,132 1,965 2,302 2,038 1,950 0,070 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 2,171 2,032 1,939 0,065 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,043 1,930 1,935 0,073 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 1,848 1,953 1,935 0,067 | 0,932 46,036 0,423 0,576 9,581 12,056 16,116 12,247 0,316 0,028 0,000 0,097 98,367 0,266 6,775 0,053 0,108 2,102 2,091 1,984 1,931 0,035 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,035 0,005 0,050 97,343 0,290 6,703 0,041 0,121 2,096 2,112 1,990 1,911 0,094 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 2,006 2,014 1,898 0,057 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,006 0,165 97,756 0,275 6,704 0,040 0,132 2,063 2,113 2,042 1,953 0,073 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 2,439 2,096 1,940 0,080 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 1,569 1,855 1,946 0,044 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 0,092 2,264 1,844 1,947 1,949 0,029 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 2,009 1,941 1,908 0,056 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 1,905 1,933 1,915 0,031 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) Cr(III) | 1,024 44,445 0,356 0,696 8,889 13,174 16,433 12,276 0,631 0,087 0,000 98,016 0,294 6,590 0,045 0,132 1,965 2,302 2,038 1,950 0,070 0,010 | 1,038 45,035 0,414 0,683 9,378 12,477 16,456 12,256 0,589 0,094 0,005 0,000 98,424 0,297 6,649 0,052 0,129 2,064 2,171 2,032 1,939 0,065 0,011 | 0,935 45,681 0,295 0,611 9,546 11,659 15,517 12,144 0,651 0,035 0,000 0,064 97,111 0,270 6,793 0,037 0,116 2,116 2,043 1,930 1,935 0,073 0,004 | 0,909 46,451 0,341 0,600 10,196 10,607 15,794 12,212 0,600 0,040 0,000 0,062 97,786 0,261 6,868 0,043 0,113 2,247 1,848 1,953 1,935 0,067 0,005 | 0,932 46,036 0,423 0,576 9,581 12,056 16,116 12,247 0,316 0,028 0,000 0,097 98,367 0,266 6,775 0,053 0,108 2,102 2,091 1,984 1,931 0,035 0,003 | 1,005 45,025 0,323 0,636 9,445 12,038 15,985 11,983 0,835 0,005 0,050 97,343 0,290 6,703 0,041 0,121 2,096 2,112 1,990 1,911 0,094 0,004 | 0,998 45,939 0,392 0,548 9,779 11,519 16,302 11,989 0,514 0,039 0,003 0,079 98,067 0,286 6,788 0,049 0,103 2,154 2,006 2,014 1,898 0,057 0,005 | 0,952 45,021 0,319 0,694 9,295 12,038 16,397 12,243 0,656 0,040 0,065 97,756 0,275 6,704 0,040 0,132 2,063 2,113 2,042 1,953 0,073 0,005 | 1,126 43,705 0,414 0,770 8,430 13,928 16,863 12,181 0,712 0,084 0,000 0,068 98,252 0,324 6,495 0,052 0,146 1,868 2,439 2,096 1,940 0,080 0,010 | 0,719 48,016 0,355 0,475 11,100 9,052 15,078 12,344 0,396 0,054 0,006 0,026 97,609 0,205 7,064 0,044 0,089 2,434 1,569 1,855 1,946 0,044 0,006 | 0,896 46,785 0,335 0,487 10,305 10,616 15,798 12,342 0,264 0,038 0,000 0,000 97,866 0,256 6,896 0,042 0,092 2,264 1,844 1,947 1,949 0,029 0,004 | 0,966 45,824 0,372 0,605 9,996 11,502 15,654 12,012 0,499 0,024 0,002 0,077 97,501 0,278 6,793 0,047 0,114 2,209 2,009 1,941 1,908 0,056 0,003 | 0,912 46,586 0,434 0,510 9,894 10,903 15,589 12,053 0,278 0,099 0,003 0,117 97,328 0,262 6,908 0,055 0,096 2,187 1,905 1,933 1,915 0,031 0,012 | Table 36. EMP measurements of representative amphibole of JI 1-1 based on 23 oxygens. 46,038 46,020 46,031 46,065 46,027 46,010 46,000 46,030 46,024 point Na2O SiO2 charge 46,000 46,000 46,025 1-4 0,546 50,944 1-5 1,017 44,917 1-6 1,232 42,347 1-7 0,342 52,593 1-8 0,643 49,166 1-9 0,698 48,567 1-10 0,310 53,229 1-11 0,378 52,936 1-12 0,625 49,056 1-13 0,584 50,124 1-14 0,663 48,442 46,046 | point | 4-8 | 4-9 | 4-10 | 4-11 | 4-12 | 4-16 | 4-17 | 4-27 | 4-28 | 4-29 | 5-1 | 5-2 | 5-3 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,935 | 0,953 | 0,821 | 1,031 | 0,485 | 0,898 | 0,769 | 0,962 | 1,034 | 0,898 | 1,070 | 1,095 | 0,936 | | SiO2 | 45,929 | 45,925 | 46,595 | 45,473 | 51,486 | 46,751 | 47,668 | 45,253 | 44,731 | 46,619 | 44,024 | 43,593 | 44,651 | | MnO | 0,374 | 0,355 | 0,392 | 0,306 | 0,338 | 0,392 | 0,410 | 0,336 | 0,405 | 0,328 | 0,321 | 0,334 | 0,336 | | K2O | 0,630 | 0,538 | 0,538 | 0,637 | 0,191 | 0,528 | 0,505 | 0,730 | 0,736 | 0,513 | 0,746 | 0,886 | 0,859 | | MgO | 10,052 | 9,821 | 10,232 | 9,532 | 13,363 | 9,982 | 10,927 | 9,297 | 9,278 | 10,075 | 8,743 | 8,615 | 9,357 | | Al2O3 | 11,164 | 11,325 | 10,568 | 11,655 | 4,918 | 11,092 | 9,311 | 12,354 | 12,411 | 10,775 | 13,246 | 12,706 | 11,617 | | FeO | 16,092 | 15,881 | 15,946 | 15,940 | 14,037 | 15,426 | 15,264 | 16,559 | 16,195 | 15,491 | 16,906 | 17,448 | 16,788 | | CaO | 12,316 | 12,513 | 12,151 | 12,207 | 12,598 | 12,208 | 12,363 | 12,132 | 12,283 | 12,351 | 12,157 | 12,113 | 12,261 | | TiO2 | 0,399 | 0,877 | 0,446 | 0,536 | 0,159 | 0,315 | 0,580 | 0,717 | 0,775 | 0,410 | 0,743 | 0,917 | 0,831 | | Cr2O3 | 0,040 | 0,031 | 0,067 | 0,071 | 0,007 | 0,005 | 0,022 | 0,066 | 0,011 | 0,046 | 0,046 | 0,000 | 0,036 | | Cl | 0,001 | 0,005 | 0,005 | 0,000 | 0,000 | 0,000 | 0,000 | 0,017 | 0,000 | 0,103 | 0,001 | 0,011 | 0,012 | | F | 0,000 | 0,014 | 0,000 | 0,003 | 0,038 | 0,008 | 0,000 | 0,000 | 0,001 | 0,000 | 0,040 | 0,004 | 0,000 | | Total | 97,932 | 98,231 | 97,760 | 97,390 | 97,604 | 97,602 | 97,819 | 98,419 | 97,860 | 97,586 | 98,026 | 97,718 | 97,681 | | | | | | | | | | | | | | | | | Na(I) | 0,268 | 0,272 | 0,235 | 0,297 | 0,137 | 0,257 | 0,219 | 0,275 | 0,298 | 0,257 | 0,309 | 0,318 | 0,271 | | Si(IV) | 6,793 | 6,766 | 6,883 | 6,760 | 7,500 | 6,894 | 7,009 | 6,676 | 6,640 | 6,889 | 6,551 | 6,538 | 6,669 | | Mn(II) | 0,047 | 0,044 | 0,049 | 0,039 | 0,042 | 0,049 | 0,051 | 0,042 | 0,051 | 0,041 | 0,040 | 0,042 | 0,043 | | K(I) | 0,119 | 0,101 | 0,101 | 0,121 | 0,035 | 0,099 | 0,095 | 0,137 | 0,139 | 0,097 | 0,142 | 0,170 | 0,164 | | Mg(II) | 2,216 | 2,157 | 2,253 | 2,112 | 2,902 | 2,194 | 2,395 | 2,045 | 2,053 | 2,219 | 1,939 | 1,926 | 2,083 | | Al(III) | 1,946 | 1,967 | 1,840 | 2,042 | 0,844 | 1,928 | 1,614 | 2,148 | 2,171 | 1,877 | 2,323 | 2,246 | 2,045 | | Fe(II) | 1,990 | 1,957 | 1,970 | 1,982 | 1,710 | 1,902 | 1,877 | 2,043 | 2,011 | 1,914 | 2,104 | 2,189 | 2,097 | | Ca(II) | 1,952 | 1,975 | 1,923 | 1,944 | 1,966 | 1,929 | 1,948 | 1,918 | 1,954 | 1,956 | 1,938 | 1,947 | 1,962 | | Ti(IV) | 0,044 | 0,097 | 0,050 | 0,060 | 0,017 | 0,035 | 0,064 | 0,080 | 0,087 | 0,046 | 0,083 | 0,103 | 0,093 | | Cr(III) | 0,005 | 0,004 | 0,008 | 0,008 | 0,001 | 0,001 | 0,003 | 0,008 | 0,001 | 0,005 | 0,005 | 0,000 | 0,004 | | F | 0,000 | 0,007 | 0,000 | 0,001 | 0,018 | 0,004 | 0,000 | 0,000 | 0,000 | 0,000 | 0,019 | 0,002 | 0,000 | | | | | | | | | | | | | | | | | Σ cations | 15,381 | 15,341 | 15,312 | 15,365 | 15,154 | 15,287 | 15,275 | 15,372 | 15,405 | 15,301 | 15,435 | 15,480 | 15,431 | | charge | 46,000 | 46,005 | 46,000 | 46,001 | 46,015 | 46,003 | 46,000 | 46,000 | 46,000 | 46,000 | 46,016 | 46,002 | 46,000 | | point | 5-4 | 5-6 | 8-1 | 8-2 | 8-3 | 8-4 | 8-5 | 8-6 | 8-7 | 8-8 | 8-9 | 8-10 | 8-11 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 1,215 | 0,162 | 1,011 | 1,042 | 0,825 | 0,120 | 1,123 | 0,976 | 0,204 | 0,129 | 0,293 | 0,470 | 0,202 | | SiO2 | 44,297 | 54,257 | 44,549 | 44,506 | 46,062 | 54,577 | 43,178 | 45,095 | 56,480 | 55,099 | 53,981 | 51,539 | 53,909 | | MnO | 0,385 | 0,392 | 0,405 | 0,429 | 0,482 | 0,398 | 0,351 | 0,323 | 0,285 | 0,372 | 0,412 | 0,393 | 0,325 | | K2O | 0,601 | 0,031 | 0,811 | 0,918 | 0,647 | 0,027 | 0,969 | 0,793 | 0,049 | 0,030 | 0,087 | 0,233 | 0,044 | | MgO | 8,967 | 14,788 | 9,081 | 8,830 | 9,241 | 14,720 | 7,937 | 9,099 | 14,472 | 15,141 | 14,496 | 13,275 | 14,288 | | Al2O3 | 12,450 | 1,914 | 12,590 | 12,034 | 9,480 | 1,453 | 12,643 | 11,677 | 1,043 | 1,338 | 2,874 | 5,205 | 2,406 | | FeO | 17,185 | 13,116 | 16,611 | 16,807 | 17,762 | 13,117 | 18,154 | 16,844 | 12,466 | 13,154 | 13,174 | 13,889 | 13,296 | | CaO | 12,103 | 12,967 | 12,261 | 12,191 | 12,174 | 12,503 | 11,784 | 12,120 | 12,120 | 12,496 | 12,476 | 12,618 | 12,947 | | TiO2 | 0,740 | 0,102 | 0,747 | 0,867 | 0,578 | 0,000 | 0,990 | 0,622 | 0,005 | 0,028 | 0,089 | 0,133 | 0,088 | | Cr2O3 | 0,066 | 0,055 | 0,196 | 0,157 | 0,128 | 0,015 | 0,125 | 0,119 | 0,000 | 0,058 | 0,073 | 0,000 | 0,085 | | CI | 0,002 | 0,004 | 0,003 | 0,007 | 0,010 | 0,000 | 0,003 | 0,000 | 0,042 | 0,001 | 0,006 | 0,000 | 0,000 | | F | 0,000 | 0,028 | 0,000 | 0,000 | 0,000 | 0,009 | 0,025 | 0,041 | 0,000 | 0,046 | 0,092 | 0,000 | 0,067 | | Total | 98,011 | 97,803 | 98,264 | 97,786 | 97,387 | 96,935 | 97,270 | 97,692 | 97,157 | 97,873 | 98,013 | 97,755 | 97,629 | | | | | | | | | | | | | | | | | Na(I) | 0,351 | 0,045 | 0,291 | 0,302 | 0,240 | 0,034 | 0,330 | 0,282 | 0,057 | 0,036 | 0,082 | 0,132 | 0,057 | | Si(IV) | 6,599 | 7,824 | 6,605 | 6,646 | 6,915 | 7,919 | 6,535 | 6,725 | 8,105 | 7,919 | 7,768 | 7,486 | 7,798 | | Mn(II) | 0,049 | 0,048 | 0,051 |
0,054 | 0,061 | 0,049 | 0,045 | 0,041 | 0,035 | 0,045 | 0,050 | 0,048 | 0,040 | | K(I) | 0,114 | 0,006 | 0,153 | 0,175 | 0,124 | 0,005 | 0,187 | 0,151 | 0,009 | 0,006 | 0,016 | 0,043 | 0,008 | | Mg(II) | 1,991 | 3,179 | 2,007 | 1,966 | 2,068 | 3,184 | 1,791 | 2,023 | 3,096 | 3,244 | 3,110 | 2,875 | 3,081 | | Al(III) | 2,186 | 0,325 | 2,200 | 2,118 | 1,677 | 0,248 | 2,255 | 2,052 | 0,176 | 0,227 | 0,487 | 0,891 | 0,410 | | Fe(II) | 2,141 | 1,582 | 2,060 | 2,099 | 2,230 | 1,592 | 2,298 | 2,101 | 1,496 | 1,581 | 1,586 | 1,687 | 1,608 | | Ca(II) | 1,932 | 2,004 | 1,948 | 1,951 | 1,958 | 1,944 | 1,911 | 1,937 | 1,864 | 1,924 | 1,924 | 1,964 | 2,007 | | Ti(IV) | 0,083 | 0,011 | 0,083 | 0,097 | 0,065 | 0,000 | 0,113 | 0,070 | 0,001 | 0,003 | 0,010 | 0,015 | 0,010 | | Cr(III) | 0,008 | 0,006 | 0,023 | 0,019 | 0,015 | 0,002 | 0,015 | 0,014 | 0,000 | 0,007 | 0,008 | 0,000 | 0,010 | | F | 0,000 | 0,013 | 0,000 | 0,000 | 0,000 | 0,004 | 0,012 | 0,019 | 0,000 | 0,021 | 0,042 | 0,000 | 0,031 | | | | | | | | | | | | | | | | | Σ cations | 15,454 | 15,030 | 15,422 | 15,426 | 15,355 | 14,977 | 15,480 | 15,396 | 14,839 | 14,991 | 15,041 | 15,141 | 15,028 | | charge | 46,000 | 46,011 | 46,000 | 46,000 | 46,000 | 46,003 | 46,010 | 46,016 | 46,000 | 46,018 | 46,035 | 46,000 | 46,026 | Table 37. EMP measurements of representative amphibole of JI 1-1 based on 23 oxygens (continued). | point | 9-1 | 9-2 | 9-3 | 9-4 | 9-5 | 9-6 | 9-7 | |-----------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 1,671 | 0,392 | 1,056 | 1,248 | 0,364 | 0,410 | 1,196 | | SiO2 | 42,864 | 51,531 | 44,194 | 42,599 | 53,270 | 52,547 | 42,701 | | MnO | 0,408 | 0,345 | 0,365 | 0,389 | 0,398 | 0,295 | 0,349 | | K2O | 0,906 | 0,192 | 0,850 | 1,003 | 0,140 | 0,216 | 1,002 | | MgO | 7,944 | 13,730 | 8,923 | 7,832 | 14,637 | 13,585 | 8,181 | | Al2O3 | 13,107 | 4,018 | 13,100 | 14,174 | 2,969 | 3,550 | 14,104 | | FeO | 18,002 | 13,013 | 16,597 | 17,813 | 13,258 | 14,519 | 17,014 | | CaO | 11,756 | 12,744 | 12,275 | 12,141 | 12,203 | 12,634 | 11,879 | | TiO2 | 0,902 | 0,156 | 0,739 | 1,186 | 0,092 | 0,102 | 1,068 | | Cr2O3 | 0,088 | 0,055 | 0,112 | 0,086 | 0,085 | 0,079 | 0,099 | | Cl | 0,180 | 0,011 | 0,005 | 0,012 | 0,020 | 0,028 | 0,014 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,039 | 0,066 | 0,000 | | Total | 97,787 | 96,185 | 98,215 | 98,480 | 97,454 | 97,997 | 97,604 | | | | | | | | | | | Na(I) | 0,489 | 0,112 | 0,304 | 0,362 | 0,102 | 0,116 | 0,348 | | Si(IV) | 6,469 | 7,585 | 6,558 | 6,366 | 7,718 | 7,637 | 6,406 | | Mn(II) | 0,052 | 0,043 | 0,046 | 0,049 | 0,049 | 0,036 | 0,044 | | K(I) | 0,174 | 0,036 | 0,161 | 0,191 | 0,026 | 0,040 | 0,192 | | Mg(II) | 1,787 | 3,013 | 1,974 | 1,745 | 3,162 | 2,944 | 1,830 | | Al(III) | 2,331 | 0,697 | 2,291 | 2,496 | 0,507 | 0,608 | 2,494 | | Fe(II) | 2,272 | 1,602 | 2,060 | 2,226 | 1,607 | 1,765 | 2,135 | | Ca(II) | 1,901 | 2,010 | 1,952 | 1,944 | 1,894 | 1,967 | 1,909 | | Ti(IV) | 0,102 | 0,017 | 0,082 | 0,133 | 0,010 | 0,011 | 0,121 | | Cr(III) | 0,011 | 0,006 | 0,013 | 0,010 | 0,010 | 0,009 | 0,012 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,018 | 0,030 | 0,000 | | | | | | | | | | | Σ cations | 15,589 | 15,120 | 15,440 | 15,524 | 15,085 | 15,133 | 15,490 | | charge | 46,000 | 46,000 | 46,000 | 46,000 | 46,015 | 46,026 | 46,000 | | Na2O 0,110 0,105 0,080 0,030 SiO2 36,774 36,924 36,963 35,721 MnO 0,185 0,209 0,293 0,242 K2O 9,305 9,819 9,917 8,451 MgO 11,163 10,893 10,509 11,271 Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mg(II) | | | | | | |---|-----------|--------|--------|--------|--------| | SiO2 36,774 36,924 36,963 35,721 MnO 0,185 0,209 0,293 0,242 K2O 9,305 9,819 9,917 8,451 MgO 11,163 10,893 10,509 11,271 Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) | point | 4-23 | 4-24 | 4-25 | 4-26 | | MnO 0,185 0,209 0,293 0,242 K2O 9,305 9,819 9,917 8,451 MgO 11,163 10,893 10,509 11,271 Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) | Na2O | 0,110 | 0,105 | 0,080 | 0,030 | | K2O 9,305 9,819 9,917 8,451 MgO 11,163 10,893 10,509 11,271 Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 Cl 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) <th>SiO2</th> <th>36,774</th> <th>36,924</th> <th>36,963</th> <th>35,721</th> | SiO2 | 36,774 | 36,924 | 36,963 | 35,721 | | MgO 11,163 10,893 10,509 11,271 Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) | MnO | 0,185 | 0,209 | 0,293 | 0,242 | | Al2O3 18,345 18,473 18,242 18,882 FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 Cl 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II)< | K2O | 9,305 | 9,819 | 9,917 | 8,451 | | FeO 17,983 17,912 18,063 18,908 CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 Cl 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) <th>MgO</th> <th>11,163</th> <th>10,893</th> <th>10,509</th> <th>11,271</th> | MgO | 11,163 | 10,893 | 10,509 | 11,271 | | CaO 0,085 0,160 0,116 0,075 TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 Cl 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) <th>Al2O3</th> <th>18,345</th> <th>18,473</th> <th>18,242</th> <th>18,882</th> | Al2O3 | 18,345 | 18,473 | 18,242 | 18,882 | | TiO2 0,908 1,060 1,294 1,015 Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F | FeO | 17,983 | 17,912 | 18,063 | 18,908 | | Cr2O3 0,010 0,032 0,011 0,045 CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations< | CaO | 0,085 | 0,160 | 0,116 | 0,075 | | CI 0,002 0,002 0,006 0,005 F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186
1,279 AI(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 | TiO2 | 0,908 | 1,060 | 1,294 | 1,015 | | F 0,219 0,140 0,271 0,203 Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Cr2O3 | 0,010 | 0,032 | 0,011 | 0,045 | | Total 94,997 95,670 95,650 94,762 Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Cl | 0,002 | 0,002 | 0,006 | 0,005 | | Na(I) 0,016 0,015 0,012 0,004 Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | F | 0,219 | 0,140 | 0,271 | 0,203 | | Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Total | 94,997 | 95,670 | 95,650 | 94,762 | | Si(IV) 2,789 2,784 2,798 2,720 Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | | | | | | | Mn(II) 0,012 0,013 0,019 0,016 K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Na(I) | 0,016 | 0,015 | 0,012 | 0,004 | | K(I) 0,900 0,945 0,958 0,821 Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Si(IV) | 2,789 | 2,784 | 2,798 | 2,720 | | Mg(II) 1,262 1,224 1,186 1,279 Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Mn(II) | 0,012 | 0,013 | 0,019 | 0,016 | | Al(III) 1,640 1,642 1,627 1,695 Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | K(I) | 0,900 | 0,945 | 0,958 | 0,821 | | Fe(II) 1,141 1,130 1,143 1,204 Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Mg(II) | 1,262 | 1,224 | 1,186 | 1,279 | | Ca(II) 0,007 0,013 0,009 0,006 Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Al(III) | 1,640 | 1,642 | 1,627 | 1,695 | | Ti(IV) 0,052 0,060 0,074 0,058 Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Fe(II) | 1,141 | 1,130 | 1,143 | 1,204 | | Cr(III) 0,001 0,002 0,001 0,003 F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Ca(II) | 0,007 | 0,013 | 0,009 | 0,006 | | F 0,053 0,033 0,065 0,049 Σ cations 7,819 7,828 7,826 7,806 | Ti(IV) | 0,052 | 0,060 | 0,074 | 0,058 | | Σ cations 7,819 7,828 7,826 7,806 | Cr(III) | 0,001 | 0,002 | 0,001 | 0,003 | | / / / | F | 0,053 | 0,033 | 0,065 | 0,049 | | / / / | | | | | | | charge 22,044 22,028 22,055 22,041 | Σ cations | 7,819 | 7,828 | 7,826 | 7,806 | | | charge | 22,044 | 22,028 | 22,055 | 22,041 | Table 38. EMP measurements of representative amphibole of JI 1-1 based on 23 oxygens (continued) (top) and biotite based on 11 oxygen (bottom). | point | 1-16 | 1-17 | 1-18 | 1-19 | 1-20 | 4-13 | 4-14 | 4-15 | |-----------|--------|---------|--------|--------|--------|--------|--------|--------| | Na2O | 0,031 | 0,910 | 0,000 | 0,007 | 0,037 | 0,934 | 0,029 | 0,021 | | SiO2 | 40,466 | 42,423 | 38,815 | 39,286 | 39,114 | 45,545 | 39,103 | 39,029 | | MnO | 0,000 | 0,000 | 0,105 | 0,123 | 0,143 | 0,337 | 0,139 | 0,103 | | K2O | 0,134 | 0,053 | 0,009 | 0,003 | 0,005 | 0,603 | 0,000 | 0,022 | | MgO | 0,016 | 0,000 | 0,024 | 0,005 | 0,008 | 9,818 | 0,020 | 0,016 | | Al203 | 34,665 | 33,673 | 29,461 | 29,053 | 29,619 | 11,587 | 29,006 | 28,901 | | FeO | 0,154 | 0,174 | 5,804 | 6,394 | 5,800 | 15,593 | 6,553 | 6,802 | | CaO | 24,418 | 23,347 | 24,000 | 23,843 | 24,085 | 12,209 | 23,841 | 23,883 | | TiO2 | 0,000 | 0,021 | 0,110 | 0,000 | 0,035 | 0,277 | 0,116 | 0,063 | | Cr2O3 | 0,007 | 0,000 | 0,011 | 0,015 | 0,000 | 0,000 | 0,000 | 0,000 | | Cl | 0,011 | 0,013 | 0,007 | 0,009 | 0,001 | 0,002 | 0,000 | 0,004 | | F | 0,000 | 0,043 | 0,000 | 0,079 | 0,000 | 0,000 | 0,042 | 0,000 | | Total | 99,900 | 100,636 | 98,344 | 98,782 | 98,847 | 96,905 | 98,831 | 98,843 | | | | | | | | | | | | Na(I) | 0,004 | 0,129 | 0,000 | 0,001 | 0,006 | 0,147 | 0,004 | 0,003 | | Si(IV) | 2,999 | 3,112 | 3,021 | 3,053 | 3,028 | 3,689 | 3,040 | 3,036 | | Mn(II) | 0,000 | 0,000 | 0,007 | 0,008 | 0,009 | 0,023 | 0,009 | 0,007 | | K(I) | 0,013 | 0,005 | 0,001 | 0,000 | 0,000 | 0,062 | 0,000 | 0,002 | | Mg(II) | 0,002 | 0,000 | 0,003 | 0,001 | 0,001 | 1,186 | 0,002 | 0,002 | | Al(III) | 3,028 | 2,911 | 2,703 | 2,661 | 2,702 | 1,106 | 2,657 | 2,650 | | Fe(II) | 0,010 | 0,011 | 0,378 | 0,416 | 0,376 | 1,056 | 0,426 | 0,443 | | Ca(II) | 1,939 | 1,835 | 2,002 | 1,985 | 1,998 | 1,060 | 1,986 | 1,991 | | Ti(IV) | 0,000 | 0,001 | 0,006 | 0,000 | 0,002 | 0,017 | 0,007 | 0,004 | | Cr(III) | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,010 | 0,000 | 0,019 | 0,000 | 0,000 | 0,010 | 0,000 | | | | | | | | | | | | Σ cations | 7,995 | 8,003 | 8,121 | 8,125 | 8,122 | 8,346 | 8,131 | 8,138 | | charge | 25,000 | 25,008 | 25,000 | 25,016 | 25,000 | 25,000 | 25,009 | 25,000 | | point | 3-8 | 3-9 | 4-18 | 4-19 | 4-20 | 4-21 | 4-22 | 4-30 | 4-31 | 9-9 | 9-10 | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Na2O | 6,313 | 5,887 | 4,810 | 5,770 | 5,616 | 6,223 | 5,182 | 5,630 | 4,841 | 7,302 | 5,738 | | SiO2 | 56,474 | 55,571 | 53,907 | 56,010 | 55,220 | 55,931 | 54,542 | 55,638 | 53,913 | 58,717 | 56,363 | | MnO | 0,013 | 0,000 | 0,036 | 0,000 | 0,000 | 0,000 | 0,002 | 0,011 | 0,027 | 0,022 | 0,000 | | K20 | 0,047 | 0,091 | 0,047 | 0,045 | 0,065 | 0,051 | 0,068 | 0,063 | 0,030 | 0,151 | 0,130 | | MgO | 0,002 | 0,002 | 0,001 | 0,000 | 0,118 | 0,000 | 0,000 | 0,012 | 0,000 | 0,023 | 0,003 | | Al2O3 | 28,362 | 28,455 | 30,306 | 28,904 | 28,565 | 28,142 | 29,677 | 28,969 | 30,291 | 26,530 | 28,809 | | FeO | 0,123 | 0,110 | 0,127 | 0,080 | 0,230 | 0,157 | 0,147 | 0,034 | 0,025 | 0,342 | 0,094 | | CaO | 9,218 | 10,082 | 12,087 | 10,256 | 10,443 | 9,819 | 11,157 | 10,494 | 12,073 | 7,794 | 10,108 | | TiO2 | 0,000 | 0,023 | 0,000 | 0,000 | 0,000 | 0,027 | 0,000 | 0,000 | 0,000 | 0,019 | 0,012 | | Cr2O3 | 0,008 | 0,000 | 0,000 | 0,014 | 0,010 | 0,000 | 0,000 | 0,000 | 0,046 | 0,000 | 0,000 | | Cl | 0,005 | 0,021 | 0,012 | 0,012 | 0,010 | 0,002 | 0,003 | 0,000 | 0,000 | 0,031 | 0,012 | | F | 0,000 | 0,056 | 0,038 | 0,090 | 0,000 | 0,102 | 0,001 | 0,051 | 0,114 | 0,023 | 0,000 | | Total | 100,564 | 100,269 | 101,352 | 101,140 | 100,275 | 100,411 | 100,778 | 100,881 | 101,312 | 100,937 | 101,266 | | | | | | | | | | | | | | | Na(I) | 0,546 | 0,513 | 0,417 | 0,498 | 0,489 | 0,542 | 0,450 | 0,487 | 0,420 | 0,629 | 0,494 | | Si(IV) | 2,521 | 2,497 | 2,408 | 2,494 | 2,482 | 2,510 | 2,442 | 2,484 | 2,410 | 2,607 | 2,502 | | Mn(II) | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | | K(I) | 0,003 | 0,005 | 0,003 | 0,003 | 0,004 | 0,003 | 0,004 | 0,004 | 0,002 | 0,009 | 0,007 | | Mg(II) | 0,000 | 0,000 | 0,000 | 0,000 | 0,008 | 0,000 | 0,000 | 0,001 | 0,000 | 0,002 | 0,000 | | Al(III) | 1,492 | 1,507 | 1,595 | 1,517 | 1,513 | 1,489 | 1,566 | 1,524 | 1,596 | 1,388 | 1,507 | | Fe(II) | 0,005 | 0,004 | 0,005 | 0,003 | 0,009 | 0,006 | 0,006 | 0,001 | 0,001 | 0,013 | 0,003 | | Ca(II) | 0,441 | 0,485 | 0,578 | 0,489 | 0,503 | 0,472 | 0,535 | 0,502 | 0,578 | 0,371 | 0,481 | | Ti(IV) | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,002 | 0,000 | 0,000 | | F | 0,000 | 0,008 | 0,005 | 0,013 | 0,000 | 0,014 | 0,000 | 0,007 | 0,016 | 0,003 | 0,000 | | | | | | | | | | | | | | | Σ cations | 5,008 | 5,012 | 5,007 | 5,004 | 5,008 | 5,023 | 5,002 | 5,003 | 5,009 | 5,018 | 4,995 | | charge | 16,000 | 16,007 | 16,005 | 16,011 | 16,000 | 16,012 | 16,000 | 16,006 | 16,014 | 16,003 | 16,000 | Table 39. EMP measurements of representative epidote of JI 1-1 based on 12.5 oxygens (top) and plagioclase based on 8 oxygen (bottom). Figure 84. BSE of thin section JI 2-1, measuring location 1. Figure
85. BSE of thin section JI 2-1, measuring location 1 (top) and 3 (bottom). Figure 86. BSE of thin section JI 2-1, measuring location 3 (top) and 6 (bottom). Figure 87. BSE of thin section JI 2-1, measuring location 1 (top) and 3 (bottom). | point | 3-16 | 3-17 | 3-18 | 3-19 | 3-20 | 6-5 | 6-6 | 6-7 | 6-8 | 6-9 | 4-11 | 4-12 | 4-13 | 4-14 | |---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 1,100 | 1,287 | 1,610 | 1,067 | 0,384 | 1,290 | 1,400 | 1,174 | 1,190 | 0,635 | 1,530 | 1,460 | 1,181 | 1,340 | | SiO2 | 46,380 | 46,390 | 45,230 | 46,480 | 51,760 | 44,620 | 45,010 | 44,060 | 44,160 | 48,190 | 45,040 | 43,860 | 46,630 | 46,630 | | MnO | 0,278 | 0,272 | 0,194 | 0,317 | 0,426 | 0,366 | 0,254 | 0,573 | 0,511 | 0,593 | 0,322 | 0,290 | 0,284 | 0,263 | | K2O | 0,490 | 0,546 | 0,296 | 0,476 | 0,132 | 0,626 | 0,467 | 0,634 | 0,589 | 0,326 | 0,402 | 0,614 | 0,505 | 0,293 | | MgO | 11,340 | 11,730 | 11,740 | 11,190 | 13,340 | 10,290 | 11,500 | 7,340 | 8,120 | 10,260 | 10,770 | 9,900 | 11,190 | 12,480 | | Al203 | 10,100 | 10,760 | 13,580 | 9,860 | 3,520 | 11,580 | 12,890 | 10,090 | 10,670 | 6,530 | 13,050 | 13,370 | 10,140 | 11,800 | | FeO | 15,300 | 13,900 | 13,020 | 15,680 | 15,490 | 15,900 | 13,070 | 21,220 | 20,060 | 18,410 | 14,230 | 15,670 | 15,160 | 12,910 | | CaO | 11,970 | 11,950 | 11,240 | 11,800 | 12,140 | 11,800 | 11,840 | 11,390 | 11,610 | 11,870 | 11,710 | 11,780 | 11,970 | 11,960 | | TiO2 | 0,541 | 0,522 | 0,531 | 0,480 | 0,184 | 0,619 | 0,428 | 0,894 | 0,795 | 0,233 | 0,527 | 0,583 | 0,507 | 0,420 | | Cr2O3 | 0,073 | 0,098 | 0,061 | 0,022 | 0,018 | 0,011 | 0,048 | 0,000 | 0,025 | 0,129 | 0,069 | 0,092 | 0,117 | 0,080 | | Cl | 0,051 | 0,019 | 0,015 | 0,023 | 0,036 | 0,056 | 0,036 | 0,070 | 0,091 | 0,220 | 0,026 | 0,064 | 0,024 | 0,011 | | F | 0,254 | 0,191 | 0,158 | 0,000 | 0,023 | 0,299 | 0,000 | 0,076 | 0,000 | 0,000 | 0,101 | 0,113 | 0,146 | 0,257 | | Total | 97,877 | 97,664 | 97,676 | 97,395 | 97,452 | 97,457 | 96,944 | 97,521 | 97,821 | 97,395 | 97,777 | 97,797 | 97,854 | 98,445 | | | | | | | | | | | | | | | | | | Na(I) | 0,316 | 0,367 | 0,456 | 0,307 | 0,109 | 0,375 | 0,400 | 0,349 | 0,350 | 0,185 | 0,436 | 0,421 | 0,338 | 0,377 | | Si(IV) | 6,868 | 6,831 | 6,606 | 6,889 | 7,598 | 6,686 | 6,630 | 6,750 | 6,696 | 7,237 | 6,623 | 6,520 | 6,884 | 6,769 | | Mn(II) | 0,035 | 0,034 | 0,024 | 0,040 | 0,053 | 0,046 | 0,032 | 0,074 | 0,066 | 0,075 | 0,040 | 0,037 | 0,036 | 0,032 | | K(I) | 0,093 | 0,103 | 0,055 | 0,090 | 0,025 | 0,120 | 0,088 | 0,124 | 0,114 | 0,062 | 0,075 | 0,116 | 0,095 | 0,054 | | Mg(II) | 2,503 | 2,575 | 2,556 | 2,472 | 2,919 | 2,299 | 2,525 | 1,676 | 1,835 | 2,297 | 2,361 | 2,194 | 2,463 | 2,701 | | Al(III) | 1,763 | 1,867 | 2,338 | 1,722 | 0,609 | 2,045 | 2,238 | 1,822 | 1,907 | 1,156 | 2,262 | 2,342 | 1,764 | 2,019 | | Fe(II) | 1,895 | 1,712 | 1,590 | 1,944 | 1,902 | 1,992 | 1,610 | 2,719 | 2,544 | 2,312 | 1,750 | 1,948 | 1,872 | 1,567 | | Ca(II) | 1,899 | 1,885 | 1,759 | 1,874 | 1,909 | 1,894 | 1,869 | 1,870 | 1,886 | 1,910 | 1,845 | 1,876 | 1,894 | 1,860 | | Ti(IV) | 0,060 | 0,058 | 0,058 | 0,054 | 0,020 | 0,070 | 0,047 | 0,103 | 0,091 | 0,026 | 0,058 | 0,065 | 0,056 | 0,046 | | Cr(III) | 0,009 | 0,011 | 0,007 | 0,003 | 0,002 | 0,001 | 0,006 | 0,000 | 0,003 | 0,015 | 0,008 | 0,011 | 0,014 | 0,009 | | F | 0,119 | 0,089 | 0,073 | 0,000 | 0,011 | 0,142 | 0,000 | 0,037 | 0,000 | 0,000 | 0,047 | 0,053 | 0,068 | 0,118 | | | | | | | | | | | | | | | | | | Σ | 15,440 | 15,444 | 15,450 | 15,393 | 15,147 | 15,528 | 15,444 | 15,487 | 15,491 | 15,275 | 15,459 | 15,530 | 15,416 | 15,436 | | cations | 46 100 | 46.075 | 46.061 | 46.000 | 46.000 | 46 110 | 46.000 | 46.024 | 46.000 | 46,000 | 46.040 | 46.045 | 46.057 | 46.000 | | charge | 46,100 | 46,075 | 46,061 | 46,000 | 46,009 | 46,119 | 46,000 | 46,031 | 46,000 | 46,000 | 46,040 | 46,045 | 46,057 | 46,099 | Table 40. EMP measurements of representative amphibole of JI 2-1 based on 23 oxygen. | point | 1-1 | 1-2 | 1-3 | 1-4 | 1-5 | 1-6 | 3-1 | 3-3 | 3-4 | 3-5 | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Na2O | 0,040 | 0,025 | 0,000 | 0,013 | 0,016 | 0,047 | 0,024 | 0,038 | 0,055 | 0,036 | | SiO2 | 38,400 | 38,400 | 38,230 | 38,430 | 38,350 | 37,960 | 38,140 | 38,380 | 37,930 | 37,760 | | MnO | 1,217 | 1,017 | 0,750 | 4,140 | 2,230 | 1,001 | 2,440 | 0,974 | 0,760 | 0,451 | | K2O | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | MgO | 1,860 | 2,240 | 2,310 | 1,282 | 1,396 | 1,690 | 1,930 | 1,910 | 1,940 | 1,840 | | Al2O3 | 22,370 | 22,660 | 22,600 | 22,530 | 22,340 | 22,500 | 22,250 | 22,390 | 22,440 | 22,630 | | FeO | 27,150 | 25,860 | 26,340 | 24,520 | 26,270 | 26,870 | 25,600 | 27,160 | 26,600 | 27,290 | | CaO | 11,280 | 11,270 | 11,130 | 11,670 | 11,440 | 11,440 | 11,280 | 11,240 | 11,420 | 11,120 | | TiO2 | 0,115 | 0,089 | 0,102 | 0,104 | 0,110 | 0,110 | 0,123 | 0,142 | 0,076 | 0,038 | | Cr2O3 | 0,038 | 0,000 | 0,000 | 0,000 | 0,030 | 0,044 | 0,031 | 0,010 | 0,013 | 0,011 | | Cl | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | 0,010 | 0,000 | 0,007 | 0,015 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Total | 102,469 | 101,571 | 101,462 | 102,689 | 102,182 | 101,663 | 101,828 | 102,244 | 101,240 | 101,191 | | | | | | | | | | | | | | Na(I) | 0,006 | 0,004 | 0,000 | 0,002 | 0,002 | 0,007 | 0,004 | 0,006 | 0,008 | 0,005 | | Si(IV) | 2,969 | 2,974 | 2,967 | 2,970 | 2,977 | 2,957 | 2,966 | 2,971 | 2,961 | 2,952 | | Mn(II) | 0,080 | 0,067 | 0,049 | 0,271 | 0,147 | 0,066 | 0,161 | 0,064 | 0,050 | 0,030 | | K(I) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Mg(II) | 0,214 | 0,259 | 0,267 | 0,148 | 0,162 | 0,196 | 0,224 | 0,220 | 0,226 | 0,214 | | Al(III) | 2,039 | 2,069 | 2,067 | 2,052 | 2,044 | 2,066 | 2,039 | 2,043 | 2,064 | 2,085 | | Fe(II) | 1,756 | 1,675 | 1,710 | 1,585 | 1,705 | 1,750 | 1,665 | 1,758 | 1,736 | 1,784 | | Ca(II) | 0,934 | 0,935 | 0,926 | 0,966 | 0,951 | 0,955 | 0,940 | 0,932 | 0,955 | 0,931 | | Ti(IV) | 0,007 | 0,005 | 0,006 | 0,006 | 0,006 | 0,006 | 0,007 | 0,008 | 0,004 | 0,002 | | Cr(III) | 0,002 | 0,000 | 0,000 | 0,000 | 0,002 | 0,003 | 0,002 | 0,001 | 0,001 | 0,001 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | | | | | | | | | | | | | Σ | 8,007 | 7,988 | 7,993 | 7,999 | 7,996 | 8,006 | 8,008 | 8,002 | 8,006 | 8,006 | | cations | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | | charge | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | | point | 6-1 | 6-2 | 6-3 | 6-4 | 4-1 | 4-2 | 4-3 | 4-4 | 4-5 | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Na2O | 0,014 | 0,028 | 0,010 | 0,041 | 0,030 | 0,000 | 0,024 | 0,038 | 0,045 | | SiO2 | 38,360 | 38,200 | 38,290 | 38,140 | 37,990 | 37,990 | 38,100 | 37,760 | 37,980 | | MnO | 0,469 | 1,900 | 2,130 | 1,020 | 0,633 | 0,425 | 0,885 | 0,680 | 0,575 | | K2O | 0,000 | 0,000 | 0,000 | 0,000 | 0,013 | 0,000 | 0,000 | 0,000 | 0,000 | | MgO | 1,910 | 1,690 | 1,530 | 2,110 | 1,594 | 2,000 | 1,900 | 1,645 | 1,603 | | Al2O3 | 22,540 | 22,360 | 22,260 | 22,450 | 22,470 | 22,490 | 22,500 | 22,330 | 22,540 | | FeO | 27,850 | 26,160 | 25,810 | 26,330 | 27,300 | 26,700 | 26,700 | 27,530 | 27,530 | | CaO | 11,190 | 11,410 | 11,480 | 11,180 | 11,390 | 11,720 | 11,240 | 11,220 | 11,280 | | TiO2 | 0,060 | 0,166 | 0,156 | 0,132 | 0,107 | 0,132 | 0,111 | 0,150 | 0,105 | | Cr2O3 | 0,010 | 0,048 | 0,000 | 0,016 | 0,011 | 0,075 | 0,068 | 0,031 | 0,010 | | Cl | 0,000 | 0,000 | 0,000 | 0,000 | 0,025 | 0,009 | 0,010 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Total | 102,403 | 101,961 | 101,666 | 101,419 | 101,564 | 101,541 | 101,538 | 101,385 | 101,667 | | | | | | | | | | | | | Na(I) | 0,002 | 0,004 | 0,002 | 0,006 | 0,005 | 0,000 | 0,004 | 0,006 | 0,007 | | Si(IV) | 2,966 | 2,967 | 2,981 | 2,967 | 2,963 | 2,955 | 2,965 | 2,954 | 2,959 | | Mn(II) | 0,031 | 0,125 | 0,140 | 0,067 | 0,042 | 0,028 | 0,058 | 0,045 | 0,038 | | K(I) | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | | Mg(II) | 0,220 | 0,196 | 0,178 | 0,245 | 0,185 | 0,232 | 0,220 | 0,192 | 0,186 | | Al(III) | 2,054 | 2,047 | 2,042 | 2,059 | 2,065 | 2,062 | 2,064 | 2,059 | 2,070 | | Fe(II) | 1,801 | 1,699 | 1,680 | 1,713 | 1,781 | 1,737 | 1,738 | 1,801 | 1,794 | | Ca(II) | 0,927 | 0,950 | 0,958 | 0,932 | 0,952 | 0,977 | 0,937 | 0,941 | 0,942 | | Ti(IV) | 0,003 | 0,010 | 0,009 | 0,008 | 0,006 | 0,008 | 0,006 | 0,009 | 0,006 | | Cr(III) | 0,001 | 0,003 | 0,000 | 0,001 | 0,001 | 0,005 | 0,004 | 0,002 | 0,001 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | | | | | | | | | | | | Σ | 8,004 | 8,000 | 7,990 | 7,998 | 8,001 | 8,004 | 7,996 | 8,009 | 8,003 | | cations | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | | charge | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | Table 41. EMP measurements of representative garnet of JI 2-1 based on 12 oxygen. | point | 1-8 | 1-9 | 1-10 | 1-11 | 1-14 | 1-15 | 6-10 | 6-11 | 6-12 | 6-13 | |-----------|---------|---------|---------|--------|---------|---------|--------|--------|---------|--------| | Na2O | 7,810 | 10,430 | 10,190 | 8,360 | 11,390 | 11,860 | 9,930 | 5,450 | 7,460 | 7,430 | | SiO2 | 61,610 | 65,340 | 65,360 | 61,060 | 67,170 | 67,590 | 64,680 | 56,650 | 58,930 | 58,800 | | MnO | 0,009 | 0,052 | 0,022 | 0,000 | 0,000 | 0,000 | 0,000 | 0,069 | 0,013 | 0,000 | | K2O | 3,020 | 0,510 | 0,248 | 1,600 | 0,017 | 0,010 | 0,502 | 5,050 | 0,158 | 0,128 | | MgO | 0,269 | 0,015 | 0,000 | 0,060 | 0,000 | 0,012 | 0,056 | 0,306 | 0,000 | 0,011 | | Al2O3 | 25,760 | 21,980 | 22,560 |
25,180 | 20,690 | 20,580 | 22,190 | 29,020 | 26,300 | 26,110 | | FeO | 0,482 | 0,308 | 0,105 | 0,177 | 0,058 | 0,033 | 0,111 | 0,487 | 0,114 | 0,150 | | CaO | 1,550 | 1,520 | 2,270 | 3,140 | 1,780 | 0,118 | 1,860 | 1,960 | 7,160 | 7,220 | | TiO2 | 0,040 | 0,028 | 0,013 | 0,010 | 0,010 | 0,010 | 0,000 | 0,000 | 0,025 | 0,009 | | Cr2O3 | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,023 | 0,024 | 0,000 | 0,032 | 0,000 | | Cl | 0,014 | 0,037 | 0,054 | 0,017 | 0,007 | 0,000 | 0,018 | 0,012 | 0,000 | 0,000 | | F | 0,062 | 0,000 | 0,103 | 0,051 | 0,000 | 0,048 | 0,025 | 0,017 | 0,000 | 0,010 | | Total | 100,625 | 100,220 | 100,936 | 99,656 | 101,122 | 100,283 | 99,396 | 99,021 | 100,192 | 99,869 | | | | | | | | | | | | | | Na(I) | 0,670 | 0,889 | 0,863 | 0,723 | 0,960 | 1,004 | 0,852 | 0,480 | 0,644 | 0,644 | | Si(IV) | 2,727 | 2,873 | 2,856 | 2,724 | 2,921 | 2,951 | 2,864 | 2,573 | 2,626 | 2,629 | | Mn(II) | 0,000 | 0,002 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,003 | 0,000 | 0,000 | | K(I) | 0,171 | 0,029 | 0,014 | 0,091 | 0,001 | 0,001 | 0,028 | 0,293 | 0,009 | 0,007 | | Mg(II) | 0,018 | 0,001 | 0,000 | 0,004 | 0,000 | 0,001 | 0,004 | 0,021 | 0,000 | 0,001 | | Al(III) | 1,344 | 1,139 | 1,162 | 1,324 | 1,061 | 1,059 | 1,158 | 1,554 | 1,381 | 1,376 | | Fe(II) | 0,018 | 0,011 | 0,004 | 0,007 | 0,002 | 0,001 | 0,004 | 0,019 | 0,004 | 0,006 | | Ca(II) | 0,074 | 0,072 | 0,106 | 0,150 | 0,083 | 0,006 | 0,088 | 0,095 | 0,342 | 0,346 | | Ti(IV) | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,001 | 0,000 | | F | 0,009 | 0,000 | 0,014 | 0,007 | 0,000 | 0,007 | 0,004 | 0,002 | 0,000 | 0,001 | | | | | | | | | | | | | | Σ cations | 5,023 | 5,016 | 5,007 | 5,024 | 5,029 | 5,024 | 4,999 | 5,037 | 5,009 | 5,009 | | charge | 16,007 | 16,000 | 16,012 | 16,006 | 16,000 | 16,006 | 16,003 | 16,002 | 16,000 | 16,001 | | point | 6-14 | 6-15 | 6-16 | 6-18 | 4-6 | 4-7 | 4-10 | 4-15 | 4-16 | |-----------|--------|--------|--------|--------|--------|---------|--------|---------|--------| | Na2O | 7,130 | 0,000 | 0,000 | 0,012 | 1,211 | 11,090 | 7,680 | 11,120 | 10,460 | | SiO2 | 59,240 | 38,660 | 36,910 | 38,570 | 46,350 | 67,560 | 59,360 | 67,340 | 65,570 | | MnO | 0,034 | 0,082 | 0,029 | 0,078 | 0,000 | 0,018 | 0,000 | 0,000 | 0,000 | | K2O | 2,820 | 0,012 | 0,010 | 0,000 | 0,010 | 0,309 | 0,322 | 0,135 | 0,030 | | MgO | 0,041 | 0,030 | 0,587 | 0,032 | 0,009 | 0,052 | 0,010 | 0,000 | 0,000 | | Al2O3 | 26,960 | 28,700 | 27,410 | 29,190 | 24,450 | 21,090 | 25,670 | 20,570 | 21,780 | | FeO | 0,255 | 7,430 | 5,880 | 6,940 | 0,269 | 0,131 | 0,080 | 0,208 | 0,116 | | CaO | 2,940 | 23,800 | 22,510 | 23,560 | 23,160 | 0,270 | 6,590 | 0,570 | 1,900 | | TiO2 | 0,037 | 0,064 | 0,000 | 0,010 | 0,000 | 0,010 | 0,010 | 0,000 | 0,000 | | Cr2O3 | 0,000 | 0,000 | 0,015 | 0,048 | 0,000 | 0,009 | 0,000 | 0,000 | 0,000 | | Cl | 0,000 | 0,000 | 0,000 | 0,000 | 0,016 | 0,014 | 0,014 | 0,307 | 0,010 | | F | 0,000 | 0,000 | 0,000 | 0,100 | 0,149 | 0,000 | 0,032 | 0,009 | 0,063 | | Total | 99,457 | 98,778 | 93,351 | 98,540 | 95,625 | 100,552 | 99,766 | 100,259 | 99,929 | | | | | | | | | | | | | Na(I) | 0,620 | 0,000 | 0,000 | 0,001 | 0,116 | 0,936 | 0,666 | 0,944 | 0,892 | | Si(IV) | 2,657 | 1,933 | 1,940 | 1,930 | 2,289 | 2,939 | 2,655 | 2,949 | 2,885 | | Mn(II) | 0,001 | 0,003 | 0,001 | 0,003 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | | K(I) | 0,161 | 0,001 | 0,001 | 0,000 | 0,001 | 0,017 | 0,018 | 0,008 | 0,002 | | Mg(II) | 0,003 | 0,002 | 0,046 | 0,002 | 0,001 | 0,003 | 0,001 | 0,000 | 0,000 | | Al(III) | 1,425 | 1,691 | 1,698 | 1,722 | 1,423 | 1,081 | 1,353 | 1,062 | 1,129 | | Fe(II) | 0,010 | 0,311 | 0,258 | 0,290 | 0,011 | 0,005 | 0,003 | 0,008 | 0,004 | | Ca(II) | 0,141 | 1,275 | 1,267 | 1,263 | 1,226 | 0,013 | 0,316 | 0,027 | 0,090 | | Ti(IV) | 0,001 | 0,002 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,001 | 0,002 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | 0,016 | 0,023 | 0,000 | 0,005 | 0,001 | 0,009 | | | | | | | | | | | | | Σ cations | 5,020 | 5,219 | 5,212 | 5,215 | 5,067 | 4,996 | 5,012 | 4,997 | 5,001 | | charge | 16,000 | 16,000 | 16,000 | 16,013 | 16,020 | 16,000 | 16,004 | 16,001 | 16,007 | Table 42. EMP measurements of representative plagioclase of JI 2-1 based on 8 oxygen. | Comment | 1-12 | 1-13 | 3-21 | 3-22 | |-----------|--------|--------|--------|--------| | Na2O | 0,256 | 0,011 | 0,018 | 0,029 | | SiO2 | 43,700 | 43,870 | 43,350 | 43,120 | | MnO | 0,018 | 0,020 | 0,000 | 0,000 | | K2O | 0,000 | 0,000 | 0,024 | 0,022 | | MgO | 0,019 | 0,000 | 0,000 | 0,010 | | Al2O3 | 24,890 | 24,960 | 24,670 | 25,100 | | FeO | 0,311 | 0,723 | 1,223 | 0,208 | | CaO | 26,630 | 26,810 | 27,140 | 26,980 | | TiO2 | 0,090 | 0,026 | 0,000 | 0,010 | | Cr2O3 | 0,000 | 0,021 | 0,000 | 0,000 | | Cl | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,083 | 0,000 | 0,000 | | Total | 95,914 | 96,524 | 96,425 | 95,479 | | | | | | | | Na(I) | 0,039 | 0,002 | 0,003 | 0,004 | | Si(IV) | 3,401 | 3,402 | 3,377 | 3,374 | | Mn(II) | 0,001 | 0,001 | 0,000 | 0,000 | | K(I) | 0,000 | 0,000 | 0,002 | 0,002 | | Mg(II) | 0,002 | 0,000 | 0,000 | 0,001 | | Al(III) | 2,283 | 2,281 | 2,265 | 2,314 | | Fe(II) | 0,020 | 0,047 | 0,080 | 0,014 | | Ca(II) | 2,220 | 2,228 | 2,265 | 2,262 | | Ti(IV) | 0,005 | 0,002 | 0,000 | 0,001 | | Cr(III) | 0,000 | 0,001 | 0,000 | 0,000 | | F | 0,000 | 0,020 | 0,000 | 0,000 | | | | | | | | Σ cations | 7,972 | 7,964 | 7,993 | 7,972 | | charge | 25,000 | 25,017 | 25,000 | 25,000 | Table 43. EMP measurements of representative clinozoisite of JI 2-1 based on 12.5 oxygen. Figure 88. BSE of thin section JI 2-2, measuring locations 1 (top) and 2 (bottom). Figure 89. BSE of thin section JI 2-2, measuring locations 3 (top) and 4 (bottom). Figure 90. BSE of thin section JI 2-2, measuring location 5. | point | 1-4 | 1-5 | 1-6 | 1-7 | 1-8 | 2-4 | 2-5 | 2-6 | 3-4 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,466 | 0,500 | 0,459 | 0,458 | 0,478 | 0,488 | 0,553 | 0,482 | 0,409 | | SiO2 | 46,350 | 46,730 | 46,580 | 48,260 | 46,780 | 47,170 | 46,220 | 47,450 | 47,420 | | MnO | 0,047 | 0,056 | 0,086 | 0,018 | 0,009 | 0,038 | 0,000 | 0,000 | 0,111 | | K2O | 10,670 | 10,570 | 10,650 | 10,270 | 10,580 | 10,660 | 10,740 | 10,670 | 11,040 | | MgO | 1,010 | 1,056 | 1,220 | 1,548 | 1,115 | 1,111 | 0,879 | 1,113 | 0,990 | | Al2O3 | 32,760 | 32,320 | 31,580 | 30,070 | 32,180 | 32,000 | 33,490 | 31,880 | 32,630 | | FeO | 3,710 | 3,670 | 3,810 | 3,910 | 3,230 | 3,450 | 3,240 | 3,700 | 3,340 | | CaO | 0,032 | 0,026 | 0,000 | 0,035 | 0,036 | 0,009 | 0,035 | 0,010 | 0,000 | | TiO2 | 0,950 | 0,793 | 0,805 | 0,539 | 0,772 | 0,754 | 0,633 | 0,747 | 1,016 | | Cr2O3 | 0,000 | 0,000 | 0,023 | 0,000 | 0,000 | 0,019 | 0,000 | 0,000 | 0,023 | | Cl | 0,007 | 0,000 | 0,008 | 0,000 | 0,000 | 0,015 | 0,011 | 0,000 | 0,012 | | F | 1,077 | 1,560 | 1,281 | 1,351 | 0,999 | 1,248 | 0,979 | 1,311 | 0,695 | | Total | 97,079 | 97,280 | 96,501 | 96,459 | 96,180 | 96,961 | 96,778 | 97,363 | 97,686 | | | | | | | | | | | | | Na(I) | 0,061 | 0,066 | 0,061 | 0,061 | 0,063 | 0,064 | 0,072 | 0,063 | 0,053 | | Si(IV) | 3,137 | 3,180 | 3,186 | 3,291 | 3,178 | 3,198 | 3,124 | 3,209 | 3,162 | | Mn(II) | 0,003 | 0,003 | 0,005 | 0,001 | 0,001 | 0,002 | 0,000 | 0,000 | 0,006 | | K(I) | 0,921 | 0,918 | 0,929 | 0,893 | 0,917 | 0,922 | 0,926 | 0,920 | 0,939 | | Mg(II) | 0,102 | 0,107 | 0,124 | 0,157 | 0,113 | 0,112 | 0,089 | 0,112 | 0,098 | | Al(III) | 2,613 | 2,592 | 2,545 | 2,417 | 2,577 | 2,557 | 2,668 | 2,541 | 2,564 | | Fe(II) | 0,210 | 0,209 | 0,218 | 0,223 | 0,184 | 0,196 | 0,183 | 0,209 | 0,186 | | Ca(II) | 0,002 | 0,002 | 0,000 | 0,003 | 0,003 | 0,001 | 0,003 | 0,001 | 0,000 | | Ti(IV) | 0,048 | 0,041 | 0,041 | 0,028 | 0,039 | 0,038 | 0,032 | 0,038 | 0,051 | | Cr(III) | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,001 | | F | 0,230 | 0,336 | 0,277 | 0,291 | 0,215 | 0,268 | 0,209 | 0,280 | 0,147 | | | | | | | | | | | | | Σ cations | 7,097 | 7,117 | 7,111 | 7,073 | 7,074 | 7,091 | 7,097 | 7,093 | 7,062 | | charge | 22,194 | 22,283 | 22,233 | 22,245 | 22,181 | 22,225 | 22,176 | 22,236 | 22,123 | Table 44. EMP measurements of representative muscovite of JI 2-2 based on 11 oxygen. | point | 3-5 | 3-6 | 3-7 | 3-8 | 4-6 | 5-4 | 5-5 | 5-6 | 5-7 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,451 | 0,471 | 0,512 | 0,487 | 0,511 | 0,541 | 0,517 | 0,476 | 0,324 | | SiO2 | 47,470 | 47,080 | 46,150 | 46,630 | 45,350 | 45,800 | 45,780 | 47,050 | 46,990 | | MnO | 0,022 | 0,018 | 0,036 | 0,044 | 0,000 | 0,000 | 0,018 | 0,080 | 0,011 | | K2O | 10,910 | 10,760 | 10,930 | 10,640 | 10,920 | 10,790 | 10,870 | 10,680 | 10,850 | | MgO | 1,111 | 1,006 | 0,782 | 1,055 | 0,498 | 0,827 | 0,787 | 1,120 | 1,158 | | Al2O3 | 31,890 | 32,350 | 33,900 | 32,560 | 35,570 | 33,780 | 33,990 | 32,150 | 31,610 | | FeO | 3,530 | 3,330 | 3,140 | 3,570 | 3,090 | 3,500 | 3,220 | 3,500 | 3,780 | | CaO | 0,000 | 0,018 | 0,008 | 0,033 | 0,010 | 0,000 | 0,012 | 0,000 | 0,023 | | TiO2 | 0,884 | 0,977 | 0,726 | 0,938 | 0,688 | 0,707 | 0,698 | 0,774 | 0,545 | | Cr2O3 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,020 | 0,011 | | Cl | 0,000 | 0,000 | 0,000 | 0,013 | 0,000 | 0,010 | 0,011 | 0,000 | 0,009 | | F | 1,246 | 1,014 | 0,587 | 1,414 | 0,533 | 0,982 | 0,738 | 1,251 | 0,985 | | Total | 97,514 | 97,023 | 96,771 | 97,384 | 97,170 | 96,936 | 96,641 | 97,100 | 96,298 | | | | | | | | | | | | | Na(I) | 0,059 | 0,062 | 0,067 | 0,064 | 0,066 | 0,071 | 0,068 | 0,063 | 0,043 | | Si(IV) | 3,203 | 3,175 | 3,098 | 3,162 | 3,029 | 3,098 | 3,089 | 3,187 | 3,200 | | Mn(II) | 0,001 | 0,001 | 0,002 | 0,003 | 0,000 | 0,000 | 0,001 | 0,005 | 0,001 | | K(I) | 0,939 | 0,926 | 0,936 | 0,920 | 0,930 | 0,931 | 0,936 | 0,923 | 0,943 | | Mg(II) | 0,112 |
0,101 | 0,078 | 0,107 | 0,050 | 0,083 | 0,079 | 0,113 | 0,118 | | Al(III) | 2,536 | 2,571 | 2,682 | 2,602 | 2,800 | 2,693 | 2,703 | 2,567 | 2,537 | | Fe(II) | 0,199 | 0,188 | 0,176 | 0,202 | 0,173 | 0,198 | 0,182 | 0,198 | 0,215 | | Ca(II) | 0,000 | 0,001 | 0,001 | 0,002 | 0,001 | 0,000 | 0,001 | 0,000 | 0,002 | | Ti(IV) | 0,045 | 0,050 | 0,037 | 0,048 | 0,035 | 0,036 | 0,035 | 0,039 | 0,028 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | | F | 0,266 | 0,216 | 0,125 | 0,303 | 0,113 | 0,210 | 0,157 | 0,268 | 0,212 | | | | | | | | | | | | | Σ cations | 7,095 | 7,074 | 7,078 | 7,110 | 7,083 | 7,110 | 7,093 | 7,095 | 7,086 | | charge | 22,224 | 22,182 | 22,105 | 22,255 | 22,095 | 22,177 | 22,133 | 22,226 | 22,179 | | point | 1-1 | 1-2 | 1-3 | 2-1 | 2-2 | 2-3 | 3-1 | 3-2 | 3-3 | 4-1 | 4-2 | 4-3 | 4-4 | 5-1 | 5-2 | 5-3 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,010 | 0,018 | 0,103 | 0,036 | 0,012 | 0,008 | 0,082 | 0,027 | 0,036 | 0,015 | 0,007 | 0,000 | 0,030 | 0,102 | 0,097 | 0,007 | | SiO2 | 26,110 | 23,810 | 24,510 | 25,200 | 25,380 | 27,330 | 23,800 | 24,830 | 23,590 | 23,400 | 23,550 | 23,500 | 24,130 | 23,350 | 23,350 | 23,600 | | MnO | 0,318 | 0,442 | 0,313 | 0,352 | 0,288 | 0,305 | 0,386 | 0,332 | 0,410 | 0,376 | 0,552 | 0,459 | 0,375 | 0,459 | 0,454 | 0,459 | | K2O | 1,230 | 0,013 | 0,070 | 0,460 | 1,023 | 1,790 | 0,019 | 0,035 | 0,035 | 0,007 | 0,000 | 0,142 | 0,421 | 0,022 | 0,014 | 0,062 | | MgO | 4,260 | 4,110 | 4,470 | 4,820 | 4,130 | 4,660 | 4,160 | 4,500 | 3,910 | 4,250 | 4,410 | 4,380 | 4,860 | 4,540 | 4,570 | 4,310 | | Al2O3 | 21,480 | 21,600 | 21,280 | 21,090 | 20,420 | 19,760 | 21,410 | 20,410 | 22,030 | 21,850 | 21,960 | 22,260 | 21,030 | 21,720 | 21,810 | 21,350 | | FeO | 32,580 | 39,200 | 39,370 | 37,440 | 33,080 | 34,990 | 39,970 | 39,490 | 39,480 | 39,790 | 38,950 | 38,580 | 38,270 | 39,180 | 38,960 | 38,760 | | CaO | 0,031 | 0,000 | 0,063 | 0,009 | 0,129 | 0,031 | 0,022 | 0,095 | 0,013 | 0,025 | 0,020 | 0,000 | 0,009 | 0,079 | 0,067 | 0,014 | | TiO2 | 4,560 | 0,144 | 0,255 | 0,522 | 6,160 | 2,140 | 0,057 | 0,125 | 0,092 | 0,075 | 0,102 | 0,145 | 0,149 | 0,086 | 0,082 | 0,115 | | Cr2O3 | 0,000 | 0,000 | 0,032 | 0,000 | 0,000 | 0,026 | 0,000 | 0,028 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | 0,013 | 0,008 | | Cl | 0,000 | 0,010 | 0,000 | 0,017 | 0,000 | 0,000 | 0,010 | 0,018 | 0,000 | 0,008 | 0,000 | 0,000 | 0,013 | 0,010 | 0,000 | 0,000 | | F | 0,043 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Total | 90,621 | 89,347 | 90,466 | 89,946 | 90,622 | 91,040 | 89,916 | 89,890 | 89,595 | 89,806 | 89,551 | 89,467 | 89,285 | 89,547 | 89,417 | 88,684 | Na(I) | 0,002 | 0,003 | 0,017 | 0,006 | 0,002 | 0,001 | 0,014 | 0,005 | 0,006 | 0,003 | 0,001 | 0,000 | 0,005 | 0,017 | 0,017 | 0,001 | | Si(IV) | 2,181 | 2,090 | 2,121 | 2,172 | 2,131 | 2,304 | 2,084 | 2,165 | 2,067 | 2,051 | 2,061 | 2,054 | 2,114 | 2,049 | 2,049 | 2,087 | | Mn(II) | 0,022 | 0,033 | 0,023 | 0,026 | 0,020 | 0,022 | 0,029 | 0,025 | 0,030 | 0,028 | 0,041 | 0,034 | 0,028 | 0,034 | 0,034 | 0,034 | | K(I) | 0,131 | 0,001 | 0,008 | 0,051 | 0,110 | 0,192 | 0,002 | 0,004 | 0,004 | 0,001 | 0,000 | 0,016 | 0,047 | 0,002 | 0,002 | 0,007 | | Mg(II) | 0,530 | 0,538 | 0,577 | 0,619 | 0,517 | 0,586 | 0,543 | 0,585 | 0,511 | 0,555 | 0,575 | 0,571 | 0,635 | 0,594 | 0,598 | 0,568 | | Al(III) | 2,115 | 2,234 | 2,170 | 2,143 | 2,021 | 1,963 | 2,210 | 2,098 | 2,275 | 2,257 | 2,265 | 2,293 | 2,172 | 2,246 | 2,256 | 2,225 | | Fe(II) | 2,276 | 2,877 | 2,849 | 2,699 | 2,323 | 2,467 | 2,927 | 2,880 | 2,893 | 2,916 | 2,850 | 2,820 | 2,804 | 2,875 | 2,859 | 2,866 | | Ca(II) | 0,003 | 0,000 | 0,006 | 0,001 | 0,012 | 0,003 | 0,002 | 0,009 | 0,001 | 0,002 | 0,002 | 0,000 | 0,001 | 0,007 | 0,006 | 0,001 | | Ti(IV) | 0,287 | 0,010 | 0,017 | 0,034 | 0,389 | 0,136 | 0,004 | 0,008 | 0,006 | 0,005 | 0,007 | 0,010 | 0,010 | 0,006 | 0,005 | 0,008 | | Cr(III) | 0,000 | 0,000 | 0,002 | 0,000 | 0,000 | 0,002 | 0,000 | 0,002 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | | F | 0,011 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | Σ cations | 7,546 | 7,786 | 7,789 | 7,751 | 7,525 | 7,675 | 7,815 | 7,781 | 7,794 | 7,818 | 7,801 | 7,798 | 7,816 | 7,832 | 7,826 | 7,797 | | charge | 22,010 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | Table 45. EMP measurements of representative muscovite of JI 2-2 based on 11 oxygen (continued) (top) and biotite based on 11 oxygen (bottom). | | noint | 1-9 | 1-10 | 1-11 | 1-12 | 1-13 | 1-14 | 1-15 | 2-7 | 2-8 | 2-10 | 2-11 | 2-12 | 2-13 | |---|---|--|--|--|---|---|--|--|---|---|--|---
--|--| | | point
Na2O | | | | | | | | | | | | | | | Map | | | | | | · · | | | • | | | · · | | • | | NACO Color | | | | | | | | | | | | | | | | Mag | | • | | | • | | • | | | • | | · · | | | | | | • | | | | | • | | | | | | | | | Feb | _ | • | | | | | | | | | | · · | | | | Carl 1,440 3,450 3,500 0,004 0,016 0,045 0,045 0,075 0,012 0,003 0,003 0,003 0,003 0,001 0,001 0,000 | | | | | | | | | | | | | | | | | | 3,030 | | | 3,500 | | | 0,045 | | 0,795 | | 0,033 | | | | Care | | | | | | | | | | | | | | | | F | Cr2O3 | 0,000 | 0,007 | 0,000 | 0,000 | 0,007 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | | 0,000 | 0,000 | | Nation 100,341 97,513 99,670 100,488 101,482 90,160 100,530 99,544 99,975 100,686 101,754 101,067 100,290 | Cl | 0,000 | 0,014 | 0,013 | 0,000 | 0,025 | 0,011 | 0,000 | 0,024 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Neg | F | 0,018 | 0,000 | 0,000 | 0,040 | 0,105 | 0,000 | 0,162 | 0,079 | 0,000 | 0,052 | 0,000 | 0,060 | 0,118 | | | Total | 100,341 | 97,513 | 99,670 | 100,438 | 101,482 | 90,160 | 100,530 | 99,564 | 99,975 | 100,686 | 101,754 | 101,067 | 100,290 | | | | | | | | | | | | | | | | | | Name | Na(I) | 0,781 | 0,749 | 0,801 | 0,826 | 0,057 | 0,003 | 0,067 | 0,887 | 0,926 | 0,085 | 0,073 | 0,052 | 0,921 | | No No No No No No No No | Si(IV) | 2,806 | 2,754 | 2,798 | 2,802 | 2,968 | 1,584 | 2,964 | 2,900 | 2,944 | 2,975 | 2,976 | 2,960 | 2,911 | | Ng(III 0.001 0.005 0.001 0.000 0.001 0.439 0.001 0.006 0.003 0.000 0.000 0.001 0.005 A(IIII) | Mn(II) | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,018 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | 0,000 | 0,001 | | | K(I) | 0,036 | 0,121 | 0,016 | 0,009 | 0,961 | 0,030 | 0,941 | 0,065 | 0,010 | 0,924 | 0,930 | 0,966 | 0,044 | | Fe(II) 0,000 0,005 0,000 0,000 0,001 1,956 0,002 0,002 0,004 0,002 0,002 0,008 Ca(II) 0,104 0,007 0,007 0,007 0,007 0,007 0,007 0,007 0,007 0,007 TI(IV) 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Ca(III) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Cations 4,991 5,022 5,003 5,013 5,028 5,025 5,026 5,017 4,909 5,019 5,011 5,029 5,024 Cations 4,991 5,022 5,003 16,005 16,013 16,003 16,005 16,005 16,005 16,005 Cations 4,991 5,022 5,003 5,018 5,028 5,026 5,026 5,017 4,909 5,019 5,011 5,029 5,024 Cations 4,991 5,022 5,003 16,005 16,013 16,005 16,005 16,005 16,005 Cations 4,991 5,022 5,003 5,018 5,028 5,026 5,026 5,017 4,909 5,019 5,011 5,029 5,024 Cations 4,991 5,022 5,003 5,018 5,028 5,028 5,026 5,017 4,909 5,019 5,011 5,029 5,024 Cations 4,991 5,022 5,003 5,018 5,028 5,028 5,026 5,026 5,027 5,000 5,000 5,000 5,000 5,000 Cations 4,991 5,022 5,003 5,018 5,028 5,028 5,026 5,026 5,017 4,909 5,019 5,010 5,000 Cations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Cations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Cations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Cations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Cations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Cations 5,000 5, | Mg(II) | 0,001 | 0,005 | 0,001 | 0,000 | 0,001 | 0,439 | 0,001 | 0,006 | 0,003 | 0,000 | 0,000 | 0,001 | 0,005 | | Ca(II) 0.143 0.070 0.172 0.165 0.002 0.001 0.002 0.037 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 < | Al(III) | 1,224 | 1,317 | 1,214 | 1,209 | 1,038 | 1,587 | 1,048 | 1,126 | 1,068 | 1,029 | 1,028 | 1,045 | 1,104 | | T(IV) 0,001 0,000 0,001 0,000 <t< th=""><th>Fe(II)</th><th>0,000</th><th>0,005</th><th>0,000</th><th>0,000</th><th>0,001</th><th>1,956</th><th>0,004</th><th>0,012</th><th>0,002</th><th>0,004</th><th>0,002</th><th>0,002</th><th>0,008</th></t<> | Fe(II) | 0,000 | 0,005 | 0,000 | 0,000 | 0,001 | 1,956 | 0,004 | 0,012 | 0,002 | 0,004 | 0,002 | 0,002 | 0,008 | | cr(III) 0,000 | Ca(II) | 0,143 | 0,070 | 0,172 | 0,165 | 0,002 | 0,001 | 0,002 | 0,019 | 0,037 | 0,001 | 0,002 | 0,002 | 0,032 | | E 0,003 0,000 0,000 0,016 0,015 0,000 0,024 0,011 0,000 0,008 0,000 0,009 0,016 E cations 4,991 5,022 5,003 5,013 5,028 5,629 5,026 5,017 4,990 5,019 5,011 5,029 5,026 charge 16,002 16,000 0,000 0,000 16,000 10,000 <th< th=""><th>Ti(IV)</th><th>0,001</th><th>0,000</th><th>0,001</th><th>0,000</th><th>0,000</th><th>0,010</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,001</th><th>0,000</th></th<> | Ti(IV) | 0,001 | 0,000 | 0,001 | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | | Σ cations 4,991 5,022 5,003 5,013 5,028 5,629 5,026 5,017 4,990 5,011 5,020 5,026 charge 16,002 16,000 16,000 16,003 16,003 16,003 16,000 | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Point Part | F | 0,003 | 0,000 | 0,000 | 0,006 | 0,015 | 0,000 | 0,024 | 0,011 | 0,000 | 0,008 | 0,000 | 0,009 | 0,016 | | Point 2-14 2-15 3-10 3-11 3-12 3-13 3-15 3-16 3-17 3-18 3-19 3-20 3-21 Na2O 0,936 1,003 10,270 0,753 0,780 9,600 11,000 9,610 10,160 9,540 10,410 10,400 0,372 SiO2 64,220 64,870 65,590 64,360 64,210 64,110 66,630 61,890 64,760 63,940 65,440 64,760 62,270 MnO 0,000 0,047 0,011 0,000 0,007 0,000 0,000 0,000 0,018 0,000 0,031 0,000 0,020 K2O 15,660 15,630 1,210 16,150 16,070 0,302 0,479 1,250 0,117 1,970 1,410 0,780 16,580 MgO 0,337 0,051 0,102 0,034 0,000 0,025 0,013 0,032 0,012 0,038 0,128 0,030 0,016 Al2O3 18,880 19,060 21,940 19,090 19,150 23,110 21,740 22,780 22,640 23,660 22,120 22,130 18,890 FeO 0,151 0,070 0,661 0,099 0,034 0,040 0,049 0,130 0,040 0,276 0,456 0,162 0,049 TiO2 0,010 0,023 0,020 0,000 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,023 0,020 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Cr2O3 0,010 0,002 0,036 0,000 0,000 0,014 0,014 0,000 0,000 0,000 0,000 0,000 Total 99,761 100,791 100,531 100,507 100,278 100,430 101,228 98,532 100,116 100,124 100,369 99,432 98,263 Na(I) 0,084 0,089 0,874 0,667
0,070 0,818 0,928 0,851 0,866 0,817 0,887 0,894 0,034 Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Nn(II) 0,008 0,003 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 A(III) 1,028 1,029 1,135 1,037 1,042 1,197 1,115 1,226 1,172 1,231 1,146 1,156 1,054 Fe(III) 0,006 0,003 0,004 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Ca(II) 0,005 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,0 | Σ cations | 4,991 | 5,022 | 5,003 | 5,013 | 5,028 | 5,629 | 5,026 | 5,017 | 4,990 | 5,019 | 5,011 | 5,029 | 5,026 | | Na2O | charge | 16,002 | 16,000 | 16,000 | 16,005 | 16,013 | 16,000 | 16,020 | 16,009 | 16,000 | 16,006 | 16,000 | 16,007 | 16,014 | | SiO2 64,220 64,870 65,590 64,360 64,210 64,110 66,630 61,890 64,760 63,940 65,440 64,760 62,270 | | | | | | | | | | | | | | | | MnO 0,000 0,047 0,011 0,000 0,007 0,000 0,000 0,018 0,000 0,031 0,000 0,020 K2O 15,660 15,630 1,210 16,150 16,070 0,302 0,479 1,250 0,117 1,970 1,410 0,780 16,580 MgO 0,337 0,051 0,102 0,034 0,000 0,025 0,013 0,032 0,012 0,038 0,128 0,030 0,016 Al2O3 18,880 19,060 21,940 19,990 19,150 23,110 21,740 22,780 22,640 23,660 22,120 22,130 18,890 FeO 0,151 0,070 0,661 0,099 0,034 0,040 0,430 0,266 0,456 0,162 0,049 CaO 0,107 0,000 0,661 0,099 0,014 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 Tio2 | point | 2-14 | 2-15 | 3-10 | 3-11 | 3-12 | 3-13 | 3-15 | 3-16 | 3-17 | 3-18 | 3-19 | 3-20 | 3-21 | | K2O 15,660 15,630 1,210 16,150 16,070 0,302 0,479 1,250 0,117 1,970 1,410 0,780 16,580 MgO 0,337 0,051 0,102 0,034 0,000 0,025 0,013 0,032 0,012 0,038 0,128 0,030 0,016 Al2O3 18,880 19,060 21,940 19,090 19,150 23,110 21,740 22,640 23,660 22,120 22,130 18,890 FeO 0,151 0,070 0,661 0,099 9,034 0,040 0,130 0,040 0,276 0,456 0,162 0,049 CaO 0,107 0,000 0,690 0,014 9,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | Na2O | 0,936 | 1,003 | 10,270 | 0,753 | 0,780 | 9,600 | | 9,610 | 10,160 | 9,540 | 10,410 | | 0,372 | | MgO 0,337 0,051 0,102 0,034 0,000 0,025 0,013 0,032 0,012 0,038 0,128 0,030 0,016 Al2O3 18,880 19,060 21,940 19,090 19,150 23,110 21,740 22,780 22,640 23,660 22,120 22,130 18,890 FeO 0,151 0,070 0,661 0,099 0,034 0,040 0,049 0,130 0,040 0,276 0,456 0,162 0,049 CaO 0,107 0,000 0,690 0,014 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,023 0,020 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,000 <th>Na2O
SiO2</th> <th>0,936
64,220</th> <th>1,003
64,870</th> <th>10,270
65,590</th> <th>0,753
64,360</th> <th>0,780
64,210</th> <th>9,600
64,110</th> <th>11,000
66,630</th> <th>9,610
61,890</th> <th>10,160
64,760</th> <th>9,540
63,940</th> <th>10,410
65,440</th> <th>10,400
64,760</th> <th>0,372
62,270</th> | Na2O
SiO2 | 0,936
64,220 | 1,003
64,870 | 10,270
65,590 | 0,753
64,360 | 0,780
64,210 | 9,600
64,110 | 11,000
66,630 | 9,610
61,890 | 10,160
64,760 | 9,540
63,940 | 10,410
65,440 | 10,400
64,760 | 0,372
62,270 | | Al2O3 18,880 19,060 21,940 19,090 19,150 23,110 21,740 22,780 22,640 23,660 22,120 22,130 18,890 FeO 0,151 0,070 0,661 0,099 0,034 0,040 0,049 0,130 0,040 0,276 0,456 0,162 0,049 CaO 0,107 0,000 0,699 0,014 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,0023 0,020 0,000 0 | Na2O
SiO2
MnO | 0,936
64,220
0,000 | 1,003
64,870
0,047 | 10,270
65,590
0,011 | 0,753
64,360
0,000 | 0,780
64,210
0,007 | 9,600
64,110
0,000 | 11,000
66,630
0,000 | 9,610
61,890
0,000 | 10,160
64,760
0,018 | 9,540
63,940
0,000 | 10,410
65,440
0,031 | 10,400
64,760
0,000 | 0,372
62,270
0,020 | | FeO 0,151 0,070 0,661 0,099 0,034 0,040 0,130 0,040 0,276 0,456 0,162 0,049 CaO 0,107 0,000 0,690 0,014 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,023 0,020 0,000 | Na2O
SiO2
MnO
K2O | 0,936
64,220
0,000
15,060 | 1,003
64,870
0,047
15,630 | 10,270
65,590
0,011
1,210 | 0,753
64,360
0,000
16,150 | 0,780
64,210
0,007
16,070 | 9,600
64,110
0,000
0,302 | 11,000
66,630
0,000
0,479 | 9,610
61,890
0,000
1,250 | 10,160
64,760
0,018
0,117 | 9,540
63,940
0,000
1,970 | 10,410
65,440
0,031
1,410 | 10,400
64,760
0,000
0,780 | 0,372
62,270
0,020
16,580 | | CaO 0,107 0,000 0,690 0,014 0,018 3,200 1,158 1,940 2,370 0,678 0,319 1,048 0,049 TiO2 0,010 0,023 0,020 0,000 0,010 0,000 | Na2O
SiO2
MnO
K2O
MgO | 0,936
64,220
0,000
15,060
0,337 | 1,003
64,870
0,047
15,630
0,051 | 10,270
65,590
0,011
1,210
0,102 | 0,753
64,360
0,000
16,150
0,034 | 0,780
64,210
0,007
16,070
0,000 | 9,600
64,110
0,000
0,302
0,025 | 11,000
66,630
0,000
0,479
0,013 | 9,610
61,890
0,000
1,250
0,032 | 10,160
64,760
0,018
0,117
0,012 | 9,540
63,940
0,000
1,970
0,038 | 10,410
65,440
0,031
1,410
0,128 | 10,400
64,760
0,000
0,780
0,030 | 0,372
62,270
0,020
16,580
0,016 | | TiO2 0,010 0,023 0,020 0,000 0,010 0,029 0,000 0,000 0,000 0,030 0,010 0,000 Cr2O3 0,010 0,000 0,036 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,001 0,001 0,000 0,001 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,000 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,0 | Na2O
SiO2
MnO
K2O
MgO
Al2O3 | 0,936
64,220
0,000
15,060
0,337
18,880 | 1,003
64,870
0,047
15,630
0,051
19,060 | 10,270
65,590
0,011
1,210
0,102
21,940 | 0,753
64,360
0,000
16,150
0,034
19,090 | 0,780
64,210
0,007
16,070
0,000
19,150 | 9,600
64,110
0,000
0,302
0,025
23,110 | 11,000
66,630
0,000
0,479
0,013
21,740 | 9,610
61,890
0,000
1,250
0,032
22,780 | 10,160
64,760
0,018
0,117
0,012
22,640 | 9,540
63,940
0,000
1,970
0,038
23,660 | 10,410
65,440
0,031
1,410
0,128
22,120 | 10,400
64,760
0,000
0,780
0,030
22,130 | 0,372
62,270
0,020
16,580
0,016
18,890 | | Cr2O3 0,010 0,000 0,036 0,000 0,000 0,019 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 <t< th=""><th>Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO</th><th>0,936
64,220
0,000
15,060
0,337
18,880
0,151</th><th>1,003
64,870
0,047
15,630
0,051
19,060
0,070</th><th>10,270
65,590
0,011
1,210
0,102
21,940
0,661</th><th>0,753
64,360
0,000
16,150
0,034
19,090
0,099</th><th>0,780
64,210
0,007
16,070
0,000
19,150
0,034</th><th>9,600
64,110
0,000
0,302
0,025
23,110
0,040</th><th>11,000
66,630
0,000
0,479
0,013
21,740
0,049</th><th>9,610
61,890
0,000
1,250
0,032
22,780
0,130</th><th>10,160
64,760
0,018
0,117
0,012
22,640
0,040</th><th>9,540
63,940
0,000
1,970
0,038
23,660
0,276</th><th>10,410
65,440
0,031
1,410
0,128
22,120
0,456</th><th>10,400
64,760
0,000
0,780
0,030
22,130
0,162</th><th>0,372
62,270
0,020
16,580
0,016
18,890
0,049</th></t<> | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO | 0,936
64,220
0,000
15,060
0,337
18,880
0,151 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456 |
10,400
64,760
0,000
0,780
0,030
22,130
0,162 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049 | | Cl 0,049 0,037 0,000 0,007 0,000 0,001 0,014 0,001 0,000 0,000 0,000 0,001 F 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 Total 99,761 100,791 100,531 100,507 100,278 100,430 101,228 98,532 100,116 100,124 100,369 99,432 98,263 Na(I) 0,084 0,089 0,874 0,067 0,070 0,818 0,928 0,851 0,866 0,817 0,887 0,894 0,034 Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Mn(II) 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,049 | | F 0,000 0,000 0,000 0,000 0,000 0,014 0,126 0,886 0,000 0,009 0,000 0,083 0,000 Total 99,761 100,791 100,531 100,507 100,278 100,430 101,228 98,532 100,116 100,124 100,369 99,432 98,263 Na(I) 0,084 0,089 0,874 0,067 0,070 0,818 0,928 0,851 0,866 0,817 0,887 0,894 0,034 Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Mn(II) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 K(I) 0,888 0,914 0,068 0,949 0,946 0,017 0,027 0,073 0,007 0,111 0,079 0,044 1,001 Mg(| Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,049 | | Total 99,761 100,791 100,531 100,507 100,278 100,430 101,228 98,532 100,116 100,124 100,369 99,432 98,263 Na(I) 0,084 0,089 0,874 0,067 0,070 0,818 0,928 0,851 0,866 0,817 0,887 0,894 0,034 Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Mn(II) 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 <th>Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3</th> <th>0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010</th> <th>1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000</th> <th>10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036</th> <th>0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000
0,000</th> <th>0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000</th> <th>9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000</th> <th>11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019</th> <th>9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000</th> <th>10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000</th> <th>9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000</th> <th>10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024</th> <th>10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029</th> <th>0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,049
0,000</th> | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000
0,000 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,049
0,000 | | Na(I) 0,084 0,089 0,874 0,067 0,070 0,818 0,928 0,851 0,866 0,817 0,887 0,894 0,034 Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Mn(II) 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010
0,010 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,000 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,009
0,000
0,000 | | Si(IV) 2,968 2,973 2,880 2,965 2,963 2,816 2,900 2,826 2,845 2,823 2,877 2,871 2,948 Mn(II) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,003 0,002 0,001 0,002 0,001 0,002 0,001 0,003 0,002 0,001 0,002 0,001 0,001 0,011 0,002 0,002 0,001 0,011 0,002 0,002 0,001 0,011 0,002 0,002 0,001 0,011 0,002 0,002 0,005 0,011 0 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010
0,010
0,049
0,000 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000
0,000
0,007 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,000
0,014 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886 |
10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
0,000 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,000 | | Mn(II) 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,000 0,001 0,001 0,007 0,014 1,001 Mg(II) 0,023 0,003 0,007 0,002 0,000 0,002 0,001 0,002 0,001 0,003 0,008 0,002 0,001 Al(III) 1,028 1,029 1,135 1,037 1,042 1,197 1,115 1,226 1,172 1,231 1,146 1,156 1,054 Fe(II) 0,006 0,003 0,024 0,004 0,001 0,001 0,002 0,005 0,001 0,010 0,017 0,006 0,002 Ca(II) 0,005 0,000 0,032 0,001 0,000 0,001 0,001 0,001 </th <th>Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl</th> <th>0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010
0,010
0,049
0,000</th> <th>1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000</th> <th>10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000</th> <th>0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000
0,000
0,007</th> <th>0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000</th> <th>9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,000
0,014</th> <th>11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126</th> <th>9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886</th> <th>10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000</th> <th>9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009</th> <th>10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
0,000</th> <th>10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083</th> <th>0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,000</th> | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl | 0,936
64,220
0,000
15,060
0,337
18,880
0,151
0,107
0,010
0,010
0,049
0,000 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000 | 0,753
64,360
0,000
16,150
0,034
19,090
0,099
0,014
0,000
0,000
0,007 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,000
0,014 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
0,000 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,000 | | K(I) 0,888 0,914 0,068 0,949 0,946 0,017 0,027 0,073 0,007 0,111 0,079 0,044 1,001 Mg(II) 0,023 0,003 0,007 0,002 0,000 0,002 0,001 0,002 0,001 0,003 0,008 0,002 0,001 Al(III) 1,028 1,029 1,135 1,037 1,042 1,197 1,115 1,226 1,172 1,231 1,146 1,156 1,054 Fe(II) 0,006 0,003 0,024 0,004 0,001 0,001 0,002 0,005 0,001 0,010 0,017 0,006 0,002 Ca(II) 0,005 0,000 0,032 0,001 0,001 0,121 0,032 0,015 0,050 0,002 Ti(IV) 0,000 0,001 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000
100,531 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 0,007 0,000 100,507 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
0,000
100,278 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,000
0,014
100,430 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886
98,532 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009
100,124 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
0,000
100,369 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,009
0,000
0,017
0,000
98,263 | | Mg(II) 0,023 0,003 0,007 0,002 0,000 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,003 0,008 0,002 0,001 Al(III) 1,028 1,029 1,135 1,037 1,042 1,197 1,115 1,226 1,172 1,231 1,146 1,156 1,054 Fe(II) 0,006 0,003 0,024 0,004 0,001 0,001 0,002 0,005 0,001 0,010 0,017 0,006 0,002 Ca(II) 0,005 0,000 0,032 0,001 0,001 0,015 0,054 0,095 0,112 0,032 0,015 0,050 0,002 Ti(IV) 0,000 0,001 0,000 0,000 0,001 0,000 <th>Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total</th> <th>0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761</th> <th>1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791</th> <th>10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000
100,531</th> <th>0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 0,007 0,000 100,507</th> <th>0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278</th> <th>9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,014
100,430</th> <th>11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228</th> <th>9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886
98,532</th> <th>10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116</th> <th>9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009
100,124</th> <th>10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369</th> <th>10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432</th> <th>0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263</th> | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000
100,531 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 0,007 0,000 100,507 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,014
100,430 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,000
0,014
0,886
98,532 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,000
0,013
0,009
100,124 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369 |
10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263 | | Al(III) 1,028 1,029 1,135 1,037 1,042 1,197 1,115 1,226 1,172 1,231 1,146 1,156 1,054 Fe(II) 0,006 0,003 0,024 0,004 0,001 0,001 0,002 0,005 0,001 0,017 0,006 0,002 Ca(II) 0,005 0,000 0,032 0,001 0,001 0,015 0,054 0,095 0,112 0,032 0,015 0,050 0,002 Ti(IV) 0,000 0,001 0,000 0,000 0,001 0,000 <td< th=""><th>Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total</th><th>0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000</th><th>1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791</th><th>10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
100,531</th><th>0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507</th><th>0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278
0,070
2,963
0,000</th><th>9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,014
100,430
0,818
2,816</th><th>11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000</th><th>9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,014
0,886
98,532</th><th>10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116
0,866
2,845
0,001</th><th>9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,013
0,009
100,124
0,817
2,823</th><th>10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369</th><th>10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000</th><th>0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263</th></td<> | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
100,531 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278
0,070
2,963
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,014
100,430
0,818
2,816 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,014
0,886
98,532 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116
0,866
2,845
0,001 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,013
0,009
100,124
0,817
2,823 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263 | | Fe(II) 0,006 0,003 0,024 0,004 0,001 0,001 0,002 0,005 0,001 0,017 0,006 0,002 Ca(II) 0,005 0,000 0,032 0,001 0,001 0,015 0,054 0,095 0,112 0,032 0,015 0,050 0,002 Ti(IV) 0,000 0,001 0,000 0,000 0,001 0,000 0,0 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791
0,089
2,973
0,002 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
100,531
0,874
2,880
0,000 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 100,507 0,067 2,965 0,000 0,949 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278
0,070
2,963
0,000 | 9,600
64,110
0,000
0,302
0,025
23,110
0,040
3,200
0,029
0,000
0,014
100,430
0,818
2,816
0,000 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000 | 9,610
61,890
0,000
1,250
0,032
22,780
0,130
1,940
0,000
0,014
0,886
98,532
0,851
2,826
0,000 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116
0,866
2,845
0,001
0,007 | 9,540
63,940
0,000
1,970
0,038
23,660
0,276
0,678
0,000
0,013
0,009
100,124
0,817
2,823
0,000
0,111 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369
0,887
2,877
0,001 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000
0,044 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263
0,034
2,948
0,001
1,001 | | Ca(II) 0,005 0,000 0,032 0,001 0,001 0,151 0,054 0,095 0,112 0,032 0,015 0,050 0,002 Ti(IV) 0,000 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,001 0,000 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
0,037
0,000
100,791
0,089
2,973
0,002
0,914
0,003 | 10,270
65,590
0,011
1,210
0,102
21,940
0,661
0,690
0,020
0,036
0,000
0,000
100,531
0,874
2,880
0,000
0,068 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 | 0,780
64,210
0,007
16,070
0,000
19,150
0,034
0,018
0,010
0,000
0,000
100,278
0,070
2,963
0,000
0,946
0,000 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,001 100,430 0,818 2,816 0,000 0,017 0,002 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000
0,027
0,001 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 | 10,160
64,760
0,018
0,117
0,012
22,640
0,040
2,370
0,000
0,000
0,000
100,116
0,866
2,845
0,001
0,007 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,001 0,001 0,0124 0,817 2,823 0,000 0,111 0,003 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369
0,887
2,877
0,001
0,079
0,008 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000
0,044 | 0,372
62,270
0,020
16,580
0,016
18,890
0,049
0,000
0,000
0,017
0,000
98,263
0,034
2,948
0,001
1,001 | | Ti(IV) 0,000 0,001 0,001 0,000 0,000 0,001 0,000 < | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III) | 0,936 64,220 0,000 15,060 0,337
18,880 0,151 0,107 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
100,791
0,089
2,973
0,002
0,914
0,003
1,029 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,001 100,430 0,818 2,816 0,000 0,017 0,002 1,197 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
2,900
0,000
0,027
0,001
1,115 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,001 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369
0,887
2,877
0,001
0,079
0,008
1,146 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000
0,044
0,002
1,156 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 | | Cr(III) 0,000 0,000 0,001 0,000 0,000 0,001 0,000 0,001 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,000 F 0,000 0,000 0,000 0,000 0,000 0,002 0,017 0,128 0,000 0,001 0,000 0,012 0,000 Σ cations 5,003 5,013 5,023 5,025 5,024 5,002 5,027 5,077 5,004 5,026 5,032 5,024 5,043 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,023
0,000
100,791
0,089
2,973
0,002
0,914
0,003
1,029
0,003 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
2,900
0,000
0,027
0,001
1,115
0,002 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,001 0,003 1,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369
0,887
2,877
0,001
0,079
0,008
1,146
0,017 | 10,400
64,760
0,000
0,780
0,030
22,130
0,162
1,048
0,010
0,029
0,000
0,083
99,432
0,894
2,871
0,000
0,044
0,002
1,156
0,006 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 | | F 0,000 0,000 0,000 0,000 0,000 0,000 0,002 0,017 0,128 0,000 0,001 0,000 0,012 0,000 Σ cations 5,003 5,013 5,023 5,025 5,024 5,002 5,027 5,077 5,004 5,026 5,032 5,024 5,043 | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 0,005 | 1,003
64,870
0,047
15,630
0,051
19,060
0,070
0,000
0,037
0,000
100,791
0,089
2,973
0,002
0,914
0,003
1,029
0,003
0,000 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 0,032 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 0,001 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 0,151 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
2,900
0,000
0,027
0,001
1,115
0,002
0,054 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 0,095 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 0,112 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 0,032 | 10,410
65,440
0,031
1,410
0,128
22,120
0,456
0,319
0,030
0,024
0,000
100,369
0,887
2,877
0,001
0,079
0,008
1,146
0,017
0,015 | 10,400 64,760 0,000 0,780 0,030 22,130 0,162 1,048 0,010 0,029 0,000 0,083 99,432 0,894 2,871 0,000 0,044 0,002 1,156 0,006 0,050 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 0,002 | | Σ cations 5,003 5,013 5,023 5,025 5,024 5,002 5,027 5,077 5,004 5,026 5,032 5,024 5,043 | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 0,005 0,000 | 1,003 64,870 0,047 15,630 0,051 19,060 0,070 0,000 0,023 0,000 100,791 0,089 2,973 0,002 0,914 0,003 1,029 0,003 0,000 0,001 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 0,032 0,001 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 0,001 0,000 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 0,000 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 0,151 0,001 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
2,900
0,000
0,027
0,001
1,115
0,002
0,054
0,000 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 0,095 0,000 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 0,112 0,000 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 0,032 0,000 | 10,410 65,440 0,031 1,410 0,128 22,120 0,456 0,319 0,030 0,024 0,000 100,369 0,887 2,877 0,001 0,079 0,008 1,146 0,017 0,015 0,001 | 10,400 64,760 0,000 0,780 0,030 22,130 0,162 1,048 0,010 0,029 0,000 0,083 99,432 0,894 2,871 0,000 0,044 0,002 1,156 0,006 0,050 0,000 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 0,000 | | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) Cr(III) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 0,005 0,000 0,000 | 1,003 64,870 0,047 15,630 0,051 19,060 0,070 0,000 0,023 0,000 100,791 0,089 2,973 0,002 0,914 0,003 1,029 0,003 0,000 0,001 0,000 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 0,032 0,001 0,001 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 0,001 0,000 0,000 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 0,001 0,000 0,000 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 0,151 0,001 0,000 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000
0,027
0,001
1,115
0,002
0,054
0,000
0,001 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 0,095 0,000 0,000 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 0,112 0,000 0,000 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 0,032 0,000 0,000 | 10,410 65,440 0,031 1,410 0,128 22,120 0,456 0,319 0,030 0,024 0,000 100,369 0,887 2,877 0,001 0,079 0,008 1,146 0,017 0,015 0,001 | 10,400 64,760 0,000 0,780 0,030 22,130 0,162 1,048 0,010 0,029 0,000 0,083 99,432 0,894 2,871 0,000 0,044 0,002 1,156 0,006 0,050 0,000 0,001 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 0,002 0,000 0,000 |
| | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) Cr(III) | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 0,005 0,000 0,000 | 1,003 64,870 0,047 15,630 0,051 19,060 0,070 0,000 0,023 0,000 100,791 0,089 2,973 0,002 0,914 0,003 1,029 0,003 0,000 0,001 0,000 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 0,032 0,001 0,001 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,007 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 0,001 0,000 0,000 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 0,001 0,000 0,000 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 0,151 0,001 0,000 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000
0,027
0,001
1,115
0,002
0,054
0,000
0,001 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 0,095 0,000 0,000 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 0,112 0,000 0,000 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 0,032 0,000 0,000 | 10,410 65,440 0,031 1,410 0,128 22,120 0,456 0,319 0,030 0,024 0,000 100,369 0,887 2,877 0,001 0,079 0,008 1,146 0,017 0,015 0,001 | 10,400 64,760 0,000 0,780 0,030 22,130 0,162 1,048 0,010 0,029 0,000 0,083 99,432 0,894 2,871 0,000 0,044 0,002 1,156 0,006 0,050 0,000 0,001 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 0,002 0,000 0,000 | | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) Cr(III) F | 0,936 64,220 0,000 15,060 0,337 18,880 0,151 0,107 0,010 0,010 0,049 0,000 99,761 0,084 2,968 0,000 0,888 0,023 1,028 0,006 0,005 0,000 0,000 0,000 | 1,003 64,870 0,047 15,630 0,051 19,060 0,070 0,000 0,023 0,000 100,791 0,089 2,973 0,002 0,914 0,003 1,029 0,003 0,000 0,001 0,000 0,001 0,000 | 10,270 65,590 0,011 1,210 0,102 21,940 0,661 0,690 0,020 0,036 0,000 100,531 0,874 2,880 0,000 0,068 0,007 1,135 0,024 0,032 0,001 0,001 0,000 | 0,753 64,360 0,000 16,150 0,034 19,090 0,099 0,014 0,000 0,000 100,507 0,067 2,965 0,000 0,949 0,002 1,037 0,004 0,001 0,000 0,000 0,000 0,000 | 0,780 64,210 0,007 16,070 0,000 19,150 0,034 0,018 0,010 0,000 0,000 100,278 0,070 2,963 0,000 0,946 0,000 1,042 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 9,600 64,110 0,000 0,302 0,025 23,110 0,040 3,200 0,029 0,000 0,014 100,430 0,818 2,816 0,000 0,017 0,002 1,197 0,001 0,151 0,001 0,000 0,002 | 11,000
66,630
0,000
0,479
0,013
21,740
0,049
1,158
0,000
0,019
0,014
0,126
101,228
0,928
2,900
0,000
0,027
0,001
1,115
0,002
0,054
0,000
0,017 | 9,610 61,890 0,000 1,250 0,032 22,780 0,130 1,940 0,000 0,014 0,886 98,532 0,851 2,826 0,000 0,073 0,002 1,226 0,005 0,005 0,000 0,000 0,128 | 10,160 64,760 0,018 0,117 0,012 22,640 0,040 2,370 0,000 0,000 100,116 0,866 2,845 0,001 0,007 0,001 1,172 0,001 0,112 0,000 0,000 0,000 0,000 | 9,540 63,940 0,000 1,970 0,038 23,660 0,276 0,678 0,000 0,013 0,009 100,124 0,817 2,823 0,000 0,111 0,003 1,231 0,010 0,032 0,000 0,000 0,001 | 10,410 65,440 0,031 1,410 0,128 22,120 0,456 0,319 0,030 0,024 0,000 100,369 0,887 2,877 0,001 0,079 0,008 1,146 0,017 0,015 0,001 0,001 0,000 | 10,400 64,760 0,000 0,780 0,030 22,130 0,162 1,048 0,010 0,029 0,000 0,083 99,432 0,894 2,871 0,000 0,044 0,002 1,156 0,006 0,050 0,000 0,001 0,012 | 0,372 62,270 0,020 16,580 0,016 18,890 0,049 0,000 0,000 0,017 0,000 98,263 0,034 2,948 0,001 1,001 0,001 1,054 0,002 0,002 0,000 0,000 0,000 | Table 46. EMP measurements of representative plagioclase of JI 2-2 based on 8 oxygen. | point | 3-22 | 3-23 | 3-24 | 4-8 | 4-9 | 4-10 | 4-12 | 4-13 | 4-14 | 4-15 | 4-16 | 5-8 | 5-9 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------| | Na2O | 0,404 | 1,220 | 0,943 | 11,420 | 11,440 | 11,260 | 0,638 | 1,127 | 0,794 | 10,910 | 10,510 | 0,632 | 1,015 | | SiO2 | 61,770 | 63,850 | 62,560 | 66,650 | 66,730 | 67,140 | 62,780 | 61,720 | 63,680 | 65,580 | 65,760 | 60,770 | 64,620 | | MnO | 0,020 | 0,000 | 0,036 | 0,000 | 0,027 | 0,000 | 0,016 | 0,013 | 0,000 | 0,000 | 0,011 | 0,058 | 0,000 | | K2O | 16,410 | 15,210 | 15,780 | 0,193 | 0,095 | 0,148 | 16,360 | 15,510 | 16,200 | 0,430 | 0,736 | 15,860 | 15,800 | | MgO | 0,056 | 0,000 | 0,078 | 0,000 | 0,010 | 0,013 | 0,000 | 0,039 | 0,010 | 0,028 | 0,019 | 0,265 | 0,008 | | Al203 | 19,040 | 19,370 | 19,080 | 20,610 | 20,460 | 20,600 | 19,230 | 18,950 | 19,130 | 21,020 | 21,680 | 18,490 | 19,210 | | FeO | 0,014 | 0,000 | 0,032 | 0,067 | 0,029 | 0,089 | 0,000 | 0,000 | 0,023 | 0,038 | 0,087 | 0,115 | 0,025 | | CaO | 0,056 | 0,021 | 0,054 | 0,305 | 0,420 | 0,303 | 0,013 | 0,034 | 0,044 | 0,467 | 0,580 | 0,079 | 0,011 | | TiO2 | 0,000 | 0,027 | 0,012 | 0,000 | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | 0,009 | 0,000 | | Cr2O3 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,027 | 0,000 | 0,000 | 0,000 | 0,012 | 0,000 | 0,000 | 0,000 | | Cl | 0,015 | 0,000 | 0,038 | 0,010 | 0,000 | 0,000 | 0,000 | 0,014 | 0,000 | 0,044 | 0,023 | 0,030 | 0,010 | | F | 0,162 | 0,000 | 0,072 | 0,020 | 0,000 | 0,000 | 0,000 | 0,000 | 0,084 | 0,016 | 0,240 | 0,000 | 0,000 | | Total | 97,948 | 99,698 | 98,685 | 99,275 | 99,211 | 99,580 | 99,047 | 97,407 | 99,966 | 98,545 | 99,645 | 96,308 | 100,700 | | | | | | | | | | | | | | | | | Na(I) | 0,037 | 0,109 | 0,086 | 0,977 | 0,979 | 0,959 | 0,058 | 0,104 | 0,071 | 0,942 | 0,901 | 0,059 | 0,090 | | Si(IV) | 2,941 | 2,954 | 2,944 | 2,941 | 2,945 | 2,949 | 2,943 | 2,938 | 2,958 | 2,919 | 2,908 | 2,936 | 2,966 | | Mn(II) | 0,001 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,002 | 0,000 | | K(I) | 0,997 | 0,898 | 0,947 | 0,011 | 0,005 | 0,008 | 0,978 | 0,942 | 0,960 | 0,024 | 0,042 | 0,977 | 0,925 | | Mg(II) | 0,004 | 0,000 | 0,005 | 0,000 | 0,001 | 0,001 | 0,000 | 0,003 | 0,001 | 0,002 | 0,001 | 0,019 | 0,001 | | Al(III) | 1,068 | 1,056 | 1,058 | 1,072 | 1,064 | 1,066 | 1,062 | 1,063 | 1,047 | 1,103 | 1,130 | 1,053 | 1,039 | | Fe(II) | 0,001 | 0,000 | 0,001 | 0,002 | 0,001 | 0,003 | 0,000 | 0,000 | 0,001 | 0,001 | 0,003 | 0,005 | 0,001 | | Ca(II) | 0,003 | 0,001 | 0,003 | 0,014 | 0,020 | 0,014 | 0,001 | 0,002 | 0,002 | 0,022 | 0,027 | 0,004 | 0,001 | | Ti(IV) | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,024 | 0,000 | 0,011 | 0,003 | 0,000 | 0,000 | 0,000 | 0,000 | 0,012 | 0,002 | 0,034 | 0,000 | 0,000 | | | | | | | | | | | | | | | | | Σ cations | 5,052 | 5,020 | 5,047 | 5,018 | 5,015 | 5,001 | 5,044 | 5,053 | 5,040 | 5,013 | 5,013 | 5,056 | 5,022 | | charge | 16,021 | 16,000 | 16,009 | 16,002 | 16,000 | 16,000 | 16,000 | 16,000 | 16,010 | 16,002 | 16,028 | 16,000 | 16,000 | | point | 5-11 | 5-12 | 5-13 | 5-14 | 5-15 | 5-16 | 5-17 | |-----------|--------|--------|--------|--------|--------|---------|--------| | Na2O | 0,737 | 0,746 | 10,960 | 11,400 | 11,390 | 0,799 | 0,719 | | SiO2 | 63,060 | 63,120 | 66,100 | 67,150 | 67,030 | 64,720 | 62,900 | | MnO | 0,036 | 0,000 | 0,000 | 0,000 | 0,000 | 0,022 | 0,029 | | K2O | 16,100 | 16,200 | 0,200 | 0,110 | 0,171 | 15,940 | 16,020 | | MgO | 0,000 | 0,000 | 0,016 | 0,010 | 0,000 | 0,039 | 0,075 | | Al2O3 | 19,180 | 19,250 | 21,000 | 20,440 | 20,440 | 19,540 | 19,020 | | FeO | 0,010 | 0,007 | 0,092 | 0,016 | 0,010 | 0,079 | 0,070 | | CaO | 0,017 | 0,015 | 0,955 | 0,217 | 0,175 | 0,060 | 0,034 | | TiO2 | 0,012 | 0,000 | 0,000 | 0,000 | 0,000 | 0,047 | 0,014 | | Cr2O3 | 0,000 | 0,019 | 0,016 | 0,000 | 0,000 | 0,000 | 0,000 | | Cl | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,023 | 0,009 | | F | 0,023 | 0,091 | 0,165 | 0,077 | 0,000 | 0,000 | 0,000 | | Total | 99,174 | 99,449 | 99,513 | 99,420 | 99,217 | 101,268 | 98,890 | | | | | | | | | | | Na(I) | 0,067 | 0,068 | 0,939 | 0,973 | 0,973 | 0,071 | 0,065 | | Si(IV) | 2,949 | 2,949 | 2,922 | 2,956 | 2,954 | 2,955 | 2,950 | | Mn(II) | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | | K(I) | 0,961 | 0,965 | 0,011 | 0,006 | 0,010 | 0,929 | 0,958 | | Mg(II) | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,003 | 0,005 | | Al(III) | 1,057 | 1,060 | 1,094 | 1,061 | 1,062 | 1,052 | 1,051 | | Fe(II) | 0,000 | 0,000 | 0,003 | 0,001 | 0,000 | 0,003 | 0,003 | | Ca(II) | 0,001 | 0,001 | 0,045 | 0,010 | 0,008 | 0,003 | 0,002 | | Ti(IV) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,002 | 0,000 | | Cr(III) | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,003 | 0,013 | 0,023 | 0,011 | 0,000 | 0,000 | 0,000 | | | | | | | | | | | Σ cations | 5,037 | 5,043 | 5,016 | 5,008 | 5,007 | 5,017 | 5,036 | | charge | 16,003 | 16,011 | 16,019 | 16,009 | 16,000 | 16,000 | 16,000 | Table 47. EMP measurements of representative plagioclase of JI 2-2 based on 8 oxygen (continued). Figure 91. BSE of thin section JI 4-6, measuring locations 1 (top) and 2 (bottom). Figure 92. BSE of thin section JI 4-6, measuring location 3 (top) and 4 (bottom). Figure 93. BSE of thin section JI 4-6, measuring location 7. | point | 1-17 | 1-18 | 1-19 | 2-10 | 2-11 | 2-12 | 2-13 | 3-7 | 3-8 | 3-9 | 3-10 | 4-13 | 4-14 | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Na2O | 0,000 | 0,000 |
0,027 | 0,040 | 0,036 | 0,014 | 0,065 | 0,111 | 0,071 | 0,085 | 0,023 | 0,027 | 0,098 | | SiO2 | 38,130 | 38,130 | 37,980 | 37,980 | 38,050 | 37,940 | 37,910 | 38,110 | 37,970 | 38,010 | 37,870 | 38,010 | 37,680 | | MnO | 1,264 | 0,938 | 0,691 | 0,785 | 0,668 | 0,880 | 0,601 | 0,708 | 0,747 | 0,849 | 0,710 | 0,700 | 0,684 | | K2O | 0,019 | 0,012 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,042 | 0,020 | 0,010 | 0,000 | 0,000 | 0,022 | | MgO | 0,769 | 0,975 | 1,085 | 1,161 | 1,135 | 1,175 | 1,167 | 1,213 | 1,161 | 1,104 | 1,366 | 1,253 | 1,165 | | Al203 | 21,960 | 21,800 | 21,280 | 21,760 | 21,850 | 21,900 | 21,920 | 21,830 | 21,620 | 21,760 | 21,480 | 21,910 | 21,790 | | FeO | 29,850 | 30,540 | 29,090 | 30,990 | 29,740 | 31,200 | 29,250 | 29,630 | 29,890 | 29,010 | 30,410 | 30,200 | 28,760 | | CaO | 10,360 | 9,790 | 11,410 | 9,110 | 10,420 | 8,480 | 11,140 | 10,210 | 10,070 | 10,690 | 9,670 | 10,080 | 10,940 | | TiO2 | 0,101 | 0,014 | 0,101 | 0,070 | 0,069 | 0,039 | 0,214 | 0,077 | 0,010 | 0,124 | 0,056 | 0,055 | 0,052 | | Cr2O3 | 0,009 | 0,014 | 0,028 | 0,000 | 0,008 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Cl | 0,015 | 0,000 | 0,000 | 0,000 | 0,016 | 0,000 | 0,000 | 0,013 | 0,000 | 0,007 | 0,000 | 0,014 | 0,024 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Total | 102,476 | 102,213 | 101,691 | 101,896 | 101,992 | 101,627 | 102,267 | 101,944 | 101,558 | 101,650 | 101,584 | 102,248 | 101,215 | | | | | | | | | | | | | | | | | Na(I) | 0,000 | 0,000 | 0,004 | 0,006 | 0,005 | 0,002 | 0,010 | 0,017 | 0,011 | 0,013 | 0,004 | 0,004 | 0,015 | | Si(IV) | 2,980 | 2,988 | 2,988 | 2,986 | 2,981 | 2,988 | 2,962 | 2,985 | 2,990 | 2,984 | 2,985 | 2,974 | 2,972 | | Mn(II) | 0,084 | 0,062 | 0,046 | 0,052 | 0,044 | 0,059 | 0,040 | 0,047 | 0,050 | 0,056 | 0,047 | 0,046 | 0,046 | | K(I) | 0,002 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,004 | 0,002 | 0,001 | 0,000 | 0,000 | 0,002 | | Mg(II) | 0,090 | 0,114 | 0,127 | 0,136 | 0,133 | 0,138 | 0,136 | 0,142 | 0,136 | 0,129 | 0,161 | 0,146 | 0,137 | | Al(III) | 2,023 | 2,014 | 1,973 | 2,016 | 2,018 | 2,033 | 2,018 | 2,015 | 2,006 | 2,013 | 1,995 | 2,020 | 2,025 | | Fe(II) | 1,951 | 2,002 | 1,914 | 2,037 | 1,949 | 2,055 | 1,911 | 1,941 | 1,968 | 1,905 | 2,004 | 1,976 | 1,897 | | Ca(II) | 0,868 | 0,822 | 0,962 | 0,767 | 0,875 | 0,716 | 0,932 | 0,857 | 0,850 | 0,899 | 0,817 | 0,845 | 0,924 | | Ti(IV) | 0,006 | 0,001 | 0,006 | 0,004 | 0,004 | 0,002 | 0,013 | 0,005 | 0,001 | 0,007 | 0,003 | 0,003 | 0,003 | | Cr(III) | 0,001 | 0,001 | 0,002 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | | | | | | | | | | | | | | | | Σ cations | 8,003 | 8,004 | 8,021 | 8,005 | 8,009 | 7,994 | 8,022 | 8,013 | 8,013 | 8,009 | 8,016 | 8,015 | 8,021 | | charge | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | Table 48. EMP measurements of representative garnet of JI 4-6 based on 12 oxygen. | Na2O 0,086 0,074 0,087 0,104 0,000 0,015 0,010 0,029 0,000 0,000 SiO2 37,840 37,790 37,900 37,700 37,850 38,260 37,740 37,220 37,770 38,130 MnO 0,685 0,714 0,708 0,750 0,745 0,423 0,790 1,125 0,857 0,401 K2O 0,028 0,025 0,015 0,006 0,000 0,000 0,000 0,001 0,001 0,000 0,001 0,001 0,001 0,000 0,001 </th <th></th> <th>5-8</th> | | 5-8 | |--|--------|---------| | SiO2 37,840 37,790 37,900 37,700 37,850 38,260 37,740 37,220 37,770 38,130 MnO 0,685 0,714 0,708 0,750 0,745 0,423 0,790 1,125 0,857 0,401 K2O 0,028 0,025 0,015 0,006 0,000 0,000 0,000 0,031 0,000 0,021 MgO 1,089 1,200 1,105 1,067 1,416 0,595 1,003 1,024 0,928 0,491 Al2O3 21,590 21,710 22,020 21,950 22,140 22,650 21,560 21,940 21,410 22,550 FeO 29,080 30,730 30,180 28,640 31,480 26,300 29,120 30,850 28,750 25,760 CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0, | | | | MnO 0,685 0,714 0,708 0,750 0,745 0,423 0,790 1,125 0,857 0,401 K2O 0,028 0,025 0,015 0,006 0,000 0,000 0,001 </th <th>0,036</th> <th>0,030</th> | 0,036 | 0,030 | | K2O 0,028 0,025 0,015 0,006 0,000 0,000 0,000 0,031 0,000 0,021 MgO 1,089 1,200 1,105 1,067 1,416 0,595 1,003 1,024 0,928 0,491 Al2O3 21,590 21,710 22,020 21,950 22,140 22,650 21,560 21,940 21,410 22,550 FeO 29,080 30,730 30,180 28,640 31,480 26,300 29,120 30,850 28,750 25,760 CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 38,330 | 37,930 | | MgO 1,089 1,200 1,105 1,067 1,416 0,595 1,003 1,024 0,928 0,491 Al2O3 21,590 21,710 22,020 21,950 22,140 22,650 21,560 21,940 21,410 22,550 FeO 29,080 30,730 30,180 28,640 31,480 26,300 29,120 30,850 28,750 25,760 CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,010 0,001 0,000 <th< th=""><th>0,505</th><th>0,611</th></th<> | 0,505 | 0,611 | | Al2O3 21,590 21,710 22,020 21,950 22,140 22,650 21,560 21,940 21,410 22,550 FeO 29,080 30,730 30,180 28,640 31,480 26,300 29,120 30,850 28,750 25,760 CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,010 0,021 0,000 0,000 0,000 0,000 0,000 0,000 Cl 0,028 0,007 0,014 0,000 | 0,000 | 0,000 | | FeO 29,080 30,730 30,180 28,640 31,480 26,300 29,120 30,850 28,750 25,760 CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,010 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 F 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 0,582 | 1,067 | | CaO 11,050 9,310 10,100 10,950 8,400 13,500 11,390 9,450 11,390 14,430 TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,011 0,021 0,000 0,000 0,000 0,000 0,000 0,000 Cl 0,028 0,007 0,014 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 22,510 | 22,200 | | TiO2 0,106 0,013 0,000 0,063 0,000 0,036 0,109 0,051 0,125 0,050 Cr2O3 0,000 0,000 0,010 0,021 0,000 0,00 | 26,030 | 28,590 | | Cr2O3 0,000 0,000 0,010 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 <th< th=""><th>14,140</th><th>11,220</th></th<> | 14,140 | 11,220 | | CI 0,028 0,007 0,014 0,000 0,000 0,016 0,000 0, | 0,055 | 0,032 | | F 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 0,000 | 0,010 | | The state of s | 0,010 | 0,000 | | Total 101,583 101,571 102,138 101,252 102,031 101,795 101,723 101,720 101,230 101,833 1 | 0,000 | 0,000 | | | 02,198 | 101,690 | | | | | | Na(I) 0,013 0,011 0,013 0,016 0,000 0,002 0,002 0,004 0,000 0,000 | 0,005 | 0,005 | | Si(IV) 2,978 2,981 2,970 2,970 2,970 2,975 2,970 2,943 2,983 2,966 | 2,972 | 2,970 | | Mn(II) 0,046 0,048 0,047 0,050 0,050 0,028 0,053 0,075 0,057 0,026 | 0,033 | 0,041 | | K(I) 0,003 0,003 0,001 0,001 0,000 0,000 0,000 0,003 0,000 0,002 | 0,000 | 0,000 | | Mg(II) 0,128 0,141 0,129 0,125 0,166 0,069 0,118 0,121 0,109 0,057 | 0,067 | 0,125 | | Al(III) 2,003 2,018 2,034 2,038 2,048 2,076 2,000 2,045 1,993 2,067 | 2,057 | 2,049 | | Fe(II) 1,914 2,027 1,978 1,887 2,066 1,710 1,916 2,040 1,899 1,676 | 1,688 | 1,872 | | Ca(II) 0,932 0,787 0,848 0,924 0,706 1,125 0,960 0,801 0,964 1,202 | 1,175 | 0,941 | | Ti(IV) 0,006 0,001 0,000 0,004 0,000 0,002 0,006 0,003 0,007 0,003 | 0,003 | 0,002 | | Cr(III) 0,000 0,000 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 | 0,000 | 0,001 | | F 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 | 0,000 | 0,000 | | | | | | Σ cations 8,022 8,016 8,020 8,015 8,006 7,986 8,025 8,035 8,013 7,999 | 8,000 | 8,005 | | charge 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 | 24,000 | 24,000 | | point | 1-8 | 1-9 | 1-10 | 1-11 | 2-4 | 2-5 | 2-7 | 3-1 | 3-3 | 3-4 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,077 | 0,101 | 0,052 | 0,130 | 0,114 | 0,146 | 0,126 | 0,152 | 0,118 | 0,121 | | SiO2 | 35,050 | 35,030 | 34,860 | - | 34,790 | 34,630 | 34,700 | | 34,400 | 34,660 | | | - | | | 34,510 | | | | 34,240 | | | | MnO | 0,116 | 0,093 | 0,142 | 0,067 | 0,086 | 0,138 | 0,101 | 0,116 | 0,103 | 0,120 | | K2O | 9,530 | 9,490 | 9,510 | 9,350 | 9,440 | 9,500 | 9,280 | 9,540 | 9,450 | 9,460 | | MgO | 3,720 | 3,740 | 3,690 | 3,660 | 3,860 | 3,890 | 4,510 | 3,730 | 3,770 | 4,070 | | Al2O3 | 17,380 | 17,890 | 17,390 | 17,080 | 16,890 | 16,310 | 16,730 | 16,630 | 16,520 | 16,560 | | FeO | 28,070 | 28,260 | 28,120 | 27,410 | 28,750 | 29,040 | 28,150 | 29,260 | 29,050 | 29,050 | | CaO | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,133 | 0,009 | 0,000 | 0,010 | | TiO2 | 3,040 | 2,460 | 3,010 | 3,480 | 3,470 | 3,630 | 2,570 | 3,460 | 3,240 | 2,780 | | Cr2O3 | 0,000 | 0,000 | 0,000 | 0,000 | 0,023 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | | Cl | 0,123 | 0,108 | 0,102 | 0,137 | 0,127 | 0,101 | 0,139 | 0,122 | 0,133 | 0,109 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,034 | 0,042 | 0,000 | 0,144 | | Total | 97,106 | 97,172 | 96,887 | 95,824 | 97,550 | 97,385 | 96,484 | 97,302 | 96,785 | 97,084 | | | | | | | | | | | | | | Na(I) | 0,012 | 0,015 | 0,008 | 0,020 | 0,017 | 0,022 | 0,019 | 0,023 | 0,018 | 0,019 | | Si(IV) | 2,741 | 2,736 | 2,734 | 2,731 | 2,720 | 2,722 | 2,739 | 2,702 | 2,722 | 2,739 | | Mn(II) | 0,008 | 0,006 | 0,009 | 0,004 | 0,006 | 0,009 | 0,007 | 0,008 | 0,007 | 0,008 | | K(I) | 0,951 | 0,946 | 0,951 | 0,944 | 0,942 | 0,953 | 0,935 | 0,960 | 0,954 | 0,954 | | Mg(II) | 0,434 | 0,435 | 0,431 | 0,432 | 0,450 | 0,456 | 0,531 | 0,439 | 0,445 | 0,479 | | Al(III) | 1,602 | 1,647 | 1,607 | 1,593 | 1,556 | 1,511 | 1,557 | 1,547 | 1,541 | 1,542 | | Fe(II) | 1,836 | 1,846 | 1,844 | 1,814 | 1,880 | 1,909 | 1,858 | 1,931 | 1,922 | 1,920 | | Ca(II) | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,011 | 0,001 | 0,000 | 0,001 | | Ti(IV) | 0,179 | 0,145 | 0,178 | 0,207 | 0,204 | 0,215 | 0,153 | 0,205 | 0,193 | 0,165 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,008 | 0,010 | 0,000 | 0,036 | | | • | • | • | , | • | • | • | • | • | , | | Σ cations | 7,761 | 7,776 | 7,764 | 7,747 | 7,776 | 7,796 | 7,810 | 7,816 | 7,801 | 7,826 | | charge | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,007 | 22,009 | 22,000 | 22,030 | Table 49. EMP measurements of representative garnet of JI 4-6 based on 12 oxygen (continued) (top) and biotite based on 11 oxygen (bottom). | point | 3-5 | 4-5 | 4-6 | 4-7 | 4-10 | 4-11 | 5-12 | 5-13 | 5-14 | 5-15 | |-----------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,317 | 0,088 | 0,147 | 0,174 | 0,183 | 0,120 | 0,145 | 0,084 | 0,133 | 0,094 | | SiO2 | 33,840 | 37,400 | 34,640 | 34,260 | 33,480 | 33,690 | 33,880 | 34,270 | 33,600 | 33,770 | | MnO | 0,142 | 0,178 | 0,112 | 0,114 | 0,078 | 0,088 | 0,142 | 0,144 | 0,131 | 0,118 | | K2O | 9,240 | 10,160 | 9,410 | 9,230 | 9,290 | 9,240 | 9,370 | 9,470 | 9,310 | 9,110 | | MgO | 3,850 | 3,920 | 3,760 | 3,720 | 3,730 | 3,600 | 3,770 | 3,630 | 3,650 | 3,650 | | Al203 | 16,400 | 17,600 | 16,760 | 16,560 | 16,490 | 16,580 | 16,520 | 16,670 | 16,710 | 15,810 | | FeO | 29,050 | 31,020 | 28,720 | 28,570 | 26,880 | 28,260 | 28,020 | 28,810 | 28,780 | 28,900 | | CaO | 0,051 | 0,010 | 0,000 | 0,019 | 0,056 | 0,036 | 0,000 | 0,000 | 0,000 | 0,013 | | TiO2 | 2,900 | 4,220 | 3,420 | 3,260 | 3,190 | 3,330 | 3,770 | 3,950 | 3,810 | 4,740 | | Cr2O3 | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,009 | 0,000 | 0,020 | 0,000 | 0,000 | | Cl | 0,133 | 0,126 | 0,129 | 0,125 | 0,118 | 0,113 | 0,096 | 0,120 | 0,118 | 0,136 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,032 | 0,000 | | Total | 95,923 | 104,723 | 97,108 | 96,032 | 93,494 | 95,066 | 95,712 | 97,167 | 96,275 | 96,340 | | | | | | | | | | | | | | Na(I) | 0,049 | 0,012 | 0,022 | 0,027 | 0,029 | 0,019 | 0,022 | 0,013 | 0,021 | 0,015 | | Si(IV) | 2,708 | 2,729 | 2,723 | 2,725 | 2,724 | 2,708 | 2,702 | 2,698 | 2,676 | 2,687 | | Mn(II) | 0,010 | 0,011 | 0,007 | 0,008 | 0,005 | 0,006 | 0,010 | 0,010 | 0,009 | 0,008 | | K(I) | 0,943 | 0,946 | 0,944 | 0,936 | 0,964 | 0,948 | 0,953 | 0,951 | 0,946 | 0,925 | | Mg(II) | 0,459 | 0,426 | 0,441 | 0,441 | 0,452 | 0,431 | 0,448 | 0,426 | 0,433 | 0,433 | | Al(III) | 1,547 | 1,513 | 1,553 | 1,552 | 1,581 | 1,571 | 1,553 | 1,547 | 1,568 | 1,483 | | Fe(II) | 1,944 | 1,893 | 1,888 | 1,900 | 1,829 | 1,900 | 1,869 | 1,897 | 1,917 | 1,923 | | Ca(II) | 0,004 | 0,001 | 0,000 | 0,002 | 0,005 | 0,003 | 0,000 | 0,000 | 0,000 | 0,001 | | Ti(IV) | 0,175 | 0,232 | 0,202 | 0,195 | 0,195 | 0,201 | 0,226 | 0,234 | 0,228 | 0,284 | | Cr(III) | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,008 | 0,000 | | | | | | | | | | | | | | Σ cations | 7,840 | 7,762 | 7,781 | 7,786 | 7,786 | 7,788 | 7,783 | 7,776 | 7,798 | 7,758 | | charge | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,000 | 22,007 | 22,000 | | point | 1-12 | 1-13 | 1-14 | 1-15 | 1-16 | 2-14 | 2-15 | 2-16 | 2-17 | 2-18 | 2-19 | 3-13 | 3-14 | 3-15 | 3-16 | |-----------|--------|--------|--------|--------|--------|--------|--------|---------|--------|---------|---------|---------|--------|--------|---------| | Na2O | 0,791 | 0,683 | 0,688 | 0,163 | 0,194 | 0,737 | 5,370 | 10,770 | 0,782 | 5,860 | 5,560 | 3,830 | 0,418 | 0,657 | 4,400 | | SiO2 | 63,330 | 63,030 | 63,120 | 35,150 | 34,480 | 63,530 | 54,210 | 67,440 | 63,430 | 55,980 | 55,690 | 51,400 | 50,150 | 63,090 | 52,390 | | MnO | 0,031 | 0,000 | 0,000 | 0,080 | 0,108 | 0,000 | 0,013 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,020 | 0,025 | 0,013 | | K20 | 15,530 | 15,670 | 15,630 | 9,560 | 9,410 | 15,600 | 0,134 | 0,176 | 15,500 | 0,127 | 0,104 | 0,072 | 3,230 | 15,530 | 0,068 | | MgO | 0,000 | 0,014 | 0,000 | 3,810 | 4,010 | 0,000 | 0,000 | 0,000 | 0,010 | 0,000 | 0,000 | 0,015 | 4,280 | 0,000 | 0,000 | | Al2O3 | 18,990 | 19,210 | 19,230 | 17,780 | 16,770 | 19,160 | 29,250 | 21,380 | 19,060 | 28,150 | 29,130 | 31,660 | 25,430 | 19,160 | 30,900 | | FeO | 0,027 | 0,049 | 0,081 | 27,920 | 28,390 | 0,076 | 0,168 | 0,020 | 0,142 | 0,117 | 0,226 | 0,341 | 3,810 | 0,269 | 0,217 | | CaO | 0,000 | 0,000 | 0,014 | 0,052 | 0,017 | 0,000 | 10,570 | 1,050 | 0,000 | 9,710 | 10,250 | 13,190 | 1,061 | 0,112 | 12,290 | | TiO2 | 0,053 | 0,015 | 0,020 | 3,120 | 3,350 | 0,027 | 0,012 | 0,000 | 0,016 | 0,043 | 0,013 | 0,013 | 0,015 | 0,044 | 0,000 | | Cr2O3 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,009 | 0,000 | 0,000 | 0,000 | 0,028 | 0,012 | 0,000 | 0,000 | 0,000 | 0,000 | | Cl | 0,075 | 0,000 | 0,000 | 0,122 | 0,134 | 0,010 | 0,000 | 0,000 | 0,000 | 0,000 | 0,006 | 0,000 | 0,108 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,179 | 0,000 | 0,000 | 0,022 | 0,000 | 0,000 | 0,181 | 0,000 | 0,000 | 0,035 | 0,142 | 0,094 | 0,054 | | Total | 98,827 | 98,670 | 98,964 | 97,758 | 96,864 | 99,170 | 99,728 | 100,836 | 99,122 | 100,016 | 100,990 | 100,555 | 88,665 | 98,980 | 100,331 | | | | | | | | | | | | | | | | | | | Na(I) | 0,072 | 0,062 | 0,062 | 0,018 | 0,022 | 0,067 | 0,471 | 0,906 | 0,071 | 0,510 | 0,480 | 0,336 |
0,041 | 0,060 | 0,386 | | Si(IV) | 2,962 | 2,953 | 2,957 | 1,983 | 1,975 | 2,960 | 2,451 | 2,926 | 2,965 | 2,515 | 2,481 | 2,324 | 2,535 | 2,953 | 2,368 | | Mn(II) | 0,001 | 0,000 | 0,000 | 0,004 | 0,005 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | | K(I) | 0,927 | 0,937 | 0,934 | 0,688 | 0,688 | 0,927 | 0,008 | 0,010 | 0,924 | 0,007 | 0,006 | 0,004 | 0,208 | 0,927 | 0,004 | | Mg(II) | 0,000 | 0,001 | 0,000 | 0,320 | 0,342 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,001 | 0,322 | 0,000 | 0,000 | | Al(III) | 1,047 | 1,061 | 1,062 | 1,182 | 1,132 | 1,052 | 1,559 | 1,093 | 1,050 | 1,490 | 1,530 | 1,687 | 1,515 | 1,057 | 1,646 | | Fe(II) | 0,001 | 0,002 | 0,003 | 1,317 | 1,360 | 0,003 | 0,006 | 0,001 | 0,006 | 0,004 | 0,008 | 0,013 | 0,161 | 0,011 | 0,008 | | Ca(II) | 0,000 | 0,000 | 0,001 | 0,003 | 0,001 | 0,000 | 0,512 | 0,049 | 0,000 | 0,467 | 0,489 | 0,639 | 0,057 | 0,006 | 0,595 | | Ti(IV) | 0,002 | 0,001 | 0,001 | 0,132 | 0,144 | 0,001 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,001 | 0,002 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,027 | 0,000 | 0,000 | 0,003 | 0,000 | 0,000 | 0,027 | 0,000 | 0,000 | 0,005 | 0,023 | 0,014 | 0,008 | | | | | | | | | | | | | | | | | | | Σ cations | 5,012 | 5,016 | 5,021 | 5,647 | 5,669 | 5,011 | 5,008 | 4,985 | 5,018 | 4,997 | 4,996 | 5,004 | 4,841 | 5,016 | 5,007 | | charge | 16,000 | 16,000 | 16,022 | 16,000 | 16,000 | 16,003 | 16,000 | 16,000 | 16,023 | 16,000 | 16,000 | 16,004 | 16,019 | 16,012 | 16,007 | Table 50. EMP measurements of representative biotite of JI 4-6 based on 11 oxygen (continued) (top) and feldspar based on 8 oxygen (bottom). | point | 3-17 | 3-18 | 3-19 | 3-20 | 4-19 | 4-22 | 4-23 | 4-24 | 4-25 | 4-26 | 5-16 | 5-17 | 5-18 | 5-19 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,206 | 0,381 | 0,887 | 5,110 | 2,730 | 4,770 | 1,048 | 0,863 | 0,700 | 2,630 | 0,752 | 0,653 | 7,720 | 4,750 | | SiO2 | 48,110 | 50,020 | 62,980 | 53,950 | 49,210 | 53,040 | 63,200 | 62,570 | 62,640 | 48,460 | 63,100 | 63,590 | 59,420 | 53,300 | | MnO | 0,016 | 0,029 | 0,000 | 0,000 | 0,007 | 0,022 | 0,031 | 0,000 | 0,036 | 0,000 | 0,013 | 0,000 | 0,000 | 0,000 | | K2O | 1,660 | 2,300 | 15,160 | 0,188 | 0,255 | 0,091 | 15,270 | 15,020 | 15,630 | 0,654 | 15,530 | 15,560 | 0,100 | 0,122 | | MgO | 3,390 | 3,380 | 0,017 | 0,000 | 0,533 | 0,010 | 0,010 | 0,010 | 0,010 | 0,295 | 0,000 | 0,000 | 0,000 | 0,154 | | Al203 | 26,850 | 26,290 | 19,160 | 29,460 | 32,330 | 30,200 | 19,200 | 19,230 | 19,050 | 32,550 | 19,050 | 18,960 | 25,840 | 30,110 | | FeO | 4,520 | 4,160 | 0,063 | 0,125 | 0,884 | 0,027 | 0,045 | 0,029 | 0,121 | 0,336 | 0,023 | 0,034 | 0,023 | 0,312 | | CaO | 1,620 | 0,841 | 0,156 | 10,980 | 11,700 | 11,550 | 0,024 | 0,022 | 0,043 | 12,570 | 0,000 | 0,000 | 6,780 | 11,130 | | TiO2 | 0,037 | 0,041 | 0,059 | 0,028 | 0,049 | 0,000 | 0,022 | 0,027 | 0,056 | 0,000 | 0,036 | 0,060 | 0,010 | 0,011 | | Cr2O3 | 0,010 | 0,000 | 0,000 | 0,000 | 0,013 | 0,021 | 0,023 | 0,000 | 0,010 | 0,000 | 0,000 | 0,000 | 0,013 | 0,000 | | Cl | 0,073 | 0,204 | 0,019 | 0,000 | 0,018 | 0,000 | 0,014 | 0,000 | 0,009 | 0,082 | 0,016 | 0,025 | 0,000 | 0,007 | | F | 0,161 | 0,121 | 0,000 | 0,000 | 0,191 | 0,061 | 0,021 | 0,099 | 0,000 | 0,000 | 0,204 | 0,035 | 0,000 | 0,030 | | Total | 86,652 | 87,767 | 98,501 | 99,840 | 97,921 | 99,793 | 98,909 | 97,871 | 98,304 | 97,576 | 98,725 | 98,918 | 99,907 | 99,926 | | | | | | | | | | | | | | | | | | Na(I) | 0,021 | 0,037 | 0,081 | 0,448 | 0,246 | 0,419 | 0,095 | 0,079 | 0,064 | 0,238 | 0,068 | 0,059 | 0,668 | 0,416 | | Si(IV) | 2,477 | 2,538 | 2,952 | 2,439 | 2,285 | 2,404 | 2,953 | 2,953 | 2,950 | 2,259 | 2,964 | 2,969 | 2,650 | 2,410 | | Mn(II) | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | | K(I) | 0,109 | 0,149 | 0,906 | 0,011 | 0,015 | 0,005 | 0,910 | 0,904 | 0,939 | 0,039 | 0,931 | 0,927 | 0,006 | 0,007 | | Mg(II) | 0,260 | 0,256 | 0,001 | 0,000 | 0,037 | 0,001 | 0,001 | 0,001 | 0,001 | 0,021 | 0,000 | 0,000 | 0,000 | 0,010 | | Al(III) | 1,629 | 1,572 | 1,058 | 1,570 | 1,769 | 1,613 | 1,057 | 1,070 | 1,057 | 1,788 | 1,055 | 1,043 | 1,358 | 1,605 | | Fe(II) | 0,195 | 0,176 | 0,002 | 0,005 | 0,034 | 0,001 | 0,002 | 0,001 | 0,005 | 0,013 | 0,001 | 0,001 | 0,001 | 0,012 | | Ca(II) | 0,089 | 0,046 | 0,008 | 0,532 | 0,582 | 0,561 | 0,001 | 0,001 | 0,002 | 0,628 | 0,000 | 0,000 | 0,324 | 0,539 | | Ti(IV) | 0,001 | 0,002 | 0,002 | 0,001 | 0,002 | 0,000 | 0,001 | 0,001 | 0,002 | 0,000 | 0,001 | 0,002 | 0,000 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,026 | 0,019 | 0,000 | 0,000 | 0,028 | 0,009 | 0,003 | 0,015 | 0,000 | 0,000 | 0,030 | 0,005 | 0,000 | 0,004 | | | | | | | | | | | | | | | | | | Σ cations | 4,783 | 4,776 | 5,011 | 5,005 | 4,971 | 5,005 | 5,021 | 5,009 | 5,021 | 4,985 | 5,020 | 5,002 | 5,007 | 5,000 | | charge | 16,022 | 16,016 | 16,000 | 16,000 | 16,024 | 16,007 | 16,003 | 16,012 | 16,000 | 16,000 | 16,026 | 16,004 | 16,000 | 16,004 | | | | | | | | | | | | | | | | | | point | 2-6 | 3-2 | 3-6 | |-----------|--------|--------|--------| | Na2O | 1,280 | 1,201 | 1,149 | | SiO2 | 39,860 | 40,400 | 40,480 | | MnO | 0,056 | 0,156 | 0,093 | | K2O | 1,850 | 1,710 | 1,730 | | MgO | 3,490 | 3,510 | 3,550 | | Al2O3 | 12,920 | 12,350 | 12,870 | | FeO | 25,920 | 26,390 | 25,700 | | CaO | 11,070 | 11,150 | 11,300 | | TiO2 | 1,850 | 1,509 | 1,489 | | Cr2O3 | 0,031 | 0,000 | 0,000 | | Cl | 0,146 | 0,154 | 0,123 | | F | 0,000 | 0,000 | 0,000 | | Total | 98,472 | 98,530 | 98,484 | | | | | | | Na(I) | 0,389 | 0,365 | 0,348 | | Si(IV) | 6,254 | 6,341 | 6,328 | | Mn(II) | 0,007 | 0,021 | 0,012 | | K(I) | 0,370 | 0,342 | 0,345 | | Mg(II) | 0,816 | 0,821 | 0,827 | | Al(III) | 2,389 | 2,285 | 2,371 | | Fe(II) | 3,401 | 3,464 | 3,360 | | Ca(II) | 1,861 | 1,875 | 1,893 | | Ti(IV) | 0,218 | 0,178 | 0,175 | | Cr(III) | 0,004 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,000 | | | | | | | Σ cations | 15,711 | 15,693 | 15,659 | | charge | 46,000 | 46,000 | 46,000 | Table 51. EMP measurements of representative feldspar of JI 4-6 based on 8 oxygen (continued) (top) and amphibole based on 23 oxygen (bottom). Figure 94. BSE of thin section JI 5-3, measuring locations 1 (top) and 2 (bottom). Figure 95. BSE of thin section JI 5-3, measuring locations 3 (top) and 5 (bottom). Figure 96. BSE of thin section JI 5-3, measuring locations 6 (top) and 7 (bottom). | | 2.42 | 2.44 | 2.45 | 2.47 | 2.40 | 2.4 | 2.2 | 2.2 | 2.4 | 2.5 | 2.6 | | |--|---|--|---|--|---|--|--|--|--|--|--|--| | point | 2-13 | 2-14 | 2-15 | 2-17 | 2-19 | 3-1 | 3-2 | 3-3 | 3-4 | 3-5 | 3-6 | 5-3 | | Na2O | 1,315 | 1,166 | 1,131 | 1,351 | 1,234 | 0,915 | 1,364 | 1,730 | 1,238 | 1,680 | 1,278 | 1,344 | | SiO2 | 41,401 | 42,271 | 42,718 | 41,132 | 43,478 | 42,498 | 41,748 | 42,043 | 41,877 | 42,358 | 41,087 | 41,435 | | MnO | 0,395 | 0,410 | 0,413 | 0,434 | 0,375 | 0,415 | 0,391 | 0,231 | 0,371 | 0,328 | 0,382 | 0,427 | | K2O | 0,501 | 0,563 | 0,543 | 0,507 | 0,502 | 1,047 | 0,564 | 0,569 | 0,750 | 0,531 | 0,568 | 0,619 | | MgO | 7,895 | 8,039 | 8,378 | 7,897 | 8,777 | 9,282 | 9,410 | 13,104 | 8,626 | 12,719 | 9,204 | 7,525 | | Al2O3 | 14,957 | 14,217 | 13,505 | 14,810 | 13,219 | 13,582 | 14,754 | 14,487 | 13,895 | 14,055 | 14,077 | 14,735 | | FeO | 17,414 | 17,778 | 17,426 | 17,449 | 17,082 | 16,268 | 15,477 | 10,794 | 16,806 | 11,444 | 16,206 | 18,025 | | CaO | 11,392 | 11,505 | 11,419 | 11,338 | 11,414 | 10,860 | 11,641 | 11,818 | 11,273 | 11,735 | 11,149 | 11,425 | | TiO2 | 2,091 | 1,737 | 1,747 | 2,085 | 1,710 | 2,181 | 2,259 | 2,163 | 1,902 | 2,075 | 2,069
| 2,067 | | Cr2O3 | 0,029 | 0,025 | 0,000 | 0,006 | 0,004 | 0,020 | 0,000 | 0,000 | 0,031 | 0,007 | 0,000 | 0,000 | | Cl | 0,186 | 0,284 | 0,187 | 0,213 | 0,194 | 0,238 | 0,097 | 0,010 | 0,259 | 0,014 | 0,278 | 0,369 | | F | 0,000 | 0,044 | 0,000 | 0,072 | 0,000 | 0,000 | 0,141 | 0,043 | 0,000 | 0,025 | 0,000 | 0,000 | | Total | 97,534 | 97,956 | 97,425 | 97,216 | 97,945 | 97,252 | 97,765 | 96,972 | 96,970 | 96,957 | 96,235 | 97,888 | | | • | • | • | • | • | · | · | • | • | • | • | • | | Na(I) | 0,384 | 0,339 | 0,330 | 0,396 | 0,357 | 0,266 | 0,394 | 0,493 | 0,363 | 0,480 | 0,377 | 0,393 | | Si(IV) | 6,228 | 6,343 | 6,420 | 6,224 | 6,479 | 6,376 | 6,225 | 6,185 | 6,328 | 6,245 | 6,245 | 6,244 | | Mn(II) | 0,050 | 0,052 | 0,053 | 0,056 | 0,047 | 0,053 | 0,049 | 0,029 | 0,047 | 0,041 | 0,049 | 0,055 | | K(I) | 0,096 | 0,108 | 0,104 | 0,098 | 0,095 | 0,200 | 0,107 | 0,107 | 0,145 | 0,100 | 0,110 | 0,119 | | Mg(II) | 1,771 | 1,798 | 1,877 | 1,781 | 1,950 | 2,076 | 2,092 | 2,874 | 1,943 | 2,795 | 2,086 | 1,691 | | Al(III) | 2,652 | 2,514 | 2,392 | 2,641 | 2,322 | 2,402 | 2,593 | 2,512 | 2,475 | 2,793 | 2,522 | 2,617 | | | 2,191 | 2,231 | | 2,208 | 2,322 | 2,402 | | | 2,473 | 1,411 | 2,060 | | | Fe(II) | | | 2,190 | | | | 1,930 | 1,328 | | | | 2,272 | | Ca(II) | 1,836 | 1,850 | 1,839 | 1,838 | 1,823 | 1,746 | 1,860 | 1,863 | 1,825 | 1,854 | 1,816 | 1,845 | | Ti(IV) | 0,237 | 0,196 | 0,198 | 0,237 | 0,192 | 0,246 | 0,253 | 0,239 | 0,216 | 0,230 | 0,237 | 0,234 | | Cr(III) | 0,003 | 0,003 | 0,000 | 0,001 | 0,000 | 0,002 | 0,000 | 0,000 | 0,004 | 0,001 | 0,000 | 0,000 | | F | 0,000 | 0,021 | 0,000 | 0,034 | 0,000 | 0,000 | 0,066 | 0,020 | 0,000 | 0,012 | 0,000 | 0,000 | | | | | | | | | | | | | | | | Σ cations | 15,448 | 15,435 | 15,403 | 15,480 | 15,394 | 15,409 | 15,504 | 15,629 | 15,470 | 15,599 | 15,501 | 15,469 | | charge | 46,000 | 46,018 | 46,000 | 46,029 | 46,000 | 46,000 | 46,056 | 46,017 | 46,000 | 46,010 | 46,000 | 46,000 | point | 5-4 | 5-5 | 5-7 | 6-1 | 6-2 | 6-4 | 6-6 | 6-7 | 6-9 | 7-1 | 7-2 | 7-4 | | point
Na2O | 5-4 1,228 | 5-5 1,313 | 5-7 1,309 | 6-1 1,270 | 6-2 1,486 | 6-4 1,685 | 6-6 1,541 | 6-7 1,213 | 6-9 0,317 | 7-1 1,629 | 7-2 1,502 | 7-4 1,220 | | | | | | | | | | | | | | | | Na2O | 1,228 | 1,313 | 1,309 | 1,270 | 1,486 | 1,685 | 1,541 | 1,213 | 0,317 | 1,629 | 1,502 | 1,220 | | Na2O
SiO2 | 1,228
41,334 | 1,313
40,793 | 1,309
41,378 | 1,270
42,954 | 1,486
41,790 | 1,685
41,646 | 1,541
41,872 | 1,213
41,826 | 0,317
52,379 | 1,629
41,786 | 1,502
40,999 | 1,220
42,246 | | Na2O
SiO2
MnO
K2O | 1,228
41,334
0,357
0,613 | 1,313
40,793
0,471
0,584 | 1,309
41,378
0,382
0,960 | 1,270
42,954
0,271
0,701 | 1,486
41,790
0,418
0,556 | 1,685
41,646
0,222
0,567 | 1,541
41,872
0,253
0,503 | 1,213
41,826
0,331
0,608 | 0,317
52,379
0,639
0,092 | 1,629
41,786
0,297
0,537 | 1,502
40,999
0,455
0,815 | 1,220
42,246
0,406
0,661 | | Na2O
SiO2
MnO
K2O
MgO | 1,228
41,334
0,357
0,613
7,742 | 1,313
40,793
0,471
0,584
7,631 | 1,309
41,378
0,382
0,960
8,282 | 1,270
42,954
0,271
0,701
12,295 | 1,486
41,790
0,418
0,556
9,480 | 1,685
41,646
0,222
0,567
13,506 | 1,541
41,872
0,253
0,503
13,314 | 1,213
41,826
0,331
0,608
8,382 | 0,317
52,379
0,639
0,092
13,870 | 1,629
41,786
0,297
0,537
12,529 | 1,502
40,999
0,455
0,815
7,392 | 1,220
42,246
0,406
0,661
9,244 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3 | 1,228
41,334
0,357
0,613
7,742
14,222 | 1,313
40,793
0,471
0,584
7,631
14,325 | 1,309
41,378
0,382
0,960
8,282
14,590 | 1,270
42,954
0,271
0,701
12,295
14,327 | 1,486
41,790
0,418
0,556
9,480
14,931 | 1,685
41,646
0,222
0,567
13,506
13,532 | 1,541
41,872
0,253
0,503
13,314
12,526 | 1,213
41,826
0,331
0,608
8,382
14,701 | 0,317
52,379
0,639
0,092
13,870
4,314 | 1,629
41,786
0,297
0,537
12,529
14,529 | 1,502
40,999
0,455
0,815
7,392
14,018 | 1,220
42,246
0,406
0,661
9,244
13,841 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO | 1,228
41,334
0,357
0,613
7,742
14,222
17,671 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976 | 1,309
41,378
0,382
0,960
8,282
14,590
16,981 | 1,270
42,954
0,271
0,701
12,295
14,327
11,746 | 1,486
41,790
0,418
0,556
9,480
14,931
14,952 | 1,685
41,646
0,222
0,567
13,506
13,532
10,641 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223 | 1,629
41,786
0,297
0,537
12,529
14,529
12,250 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324 | 1,309
41,378
0,382
0,960
8,282
14,590
16,981
11,000 | 1,270
42,954
0,271
0,701
12,295
14,327
11,746
11,903 | 1,486
41,790
0,418
0,556
9,480
14,931
14,952
11,696 | 1,685
41,646
0,222
0,567
13,506
13,532
10,641
12,072 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579 | 1,629
41,786
0,297
0,537
12,529
14,529
12,250
11,793 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286
1,940 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236 | 1,309
41,378
0,382
0,960
8,282
14,590
16,981
11,000
2,041 | 1,270
42,954
0,271
0,701
12,295
14,327
11,746
11,903
2,297 | 1,486
41,790
0,418
0,556
9,480
14,931
14,952
11,696
2,231 | 1,685
41,646
0,222
0,567
13,506
13,532
10,641
12,072
1,960 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579
0,173 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 | 1,270
42,954
0,271
0,701
12,295
14,327
11,746
11,903
2,297
0,025 | 1,486
41,790
0,418
0,556
9,480
14,931
14,952
11,696
2,231
0,076 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579
0,173
0,061 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286
1,940
0,000
0,336 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579
0,173
0,061
0,073 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297
0,025 0,064 0,016 | 1,486
41,790
0,418
0,556
9,480
14,931
14,952
11,696
2,231
0,076
0,037
0,040 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579
0,173
0,061
0,073
0,000 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286
1,940
0,000
0,336 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267 | 0,317
52,379
0,639
0,092
13,870
4,314
16,223
9,579
0,173
0,061
0,073 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172
97,043 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
CI
F
Total | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286
1,940
0,000
0,336
0,000
96,653 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172
97,043 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 | 1,685
41,646
0,222
0,567
13,506
13,532
10,641
12,072
1,960
0,057
0,024
0,138
95,987 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 1,228
41,334
0,357
0,613
7,742
14,222
17,671
11,286
1,940
0,000
0,336
0,000
96,653 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172
97,043 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 0,384 6,255 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 | 1,685
41,646
0,222
0,567
13,506
13,532
10,641
12,072
1,960
0,057
0,024
0,138
95,987 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994
0,360
6,430 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172
97,043
0,389
6,228
0,061 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 0,384 6,255 0,049 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333
0,353
6,280
0,042 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994
0,360
6,430
0,052 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 | 1,313
40,793
0,471
0,584
7,631
14,325
17,976
11,324
2,236
0,004
0,369
0,172
97,043
0,389
6,228
0,061
0,114 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032
0,096 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333
0,353
6,280
0,042
0,116 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994
0,360
6,430
0,052
0,128 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668
0,428 6,214 0,053 0,105 2,101 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032
0,096
2,962 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333
0,353
6,280
0,042
0,116
1,876 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
0,398
0,000
95,994
0,360
6,430
0,052
0,128
2,098 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032
0,096
2,962
2,203 | 1,213
41,826
0,331
0,608
8,382
14,701
16,554
11,437
2,055
0,019
0,267
0,000
97,333
0,353
6,280
0,042
0,116
1,876
2,601 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
95,994
0,000
95,994
0,360
6,430
0,052
0,128
2,098
2,483 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032
0,096
2,962
2,203
1,518 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
95,994
0,000
95,994
0,360
6,430
0,052
0,128
2,098
2,483
2,075 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(III)
Al(III)
Fe(II)
Ca(II) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 1,853 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 1,782 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 1,862 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 1,863 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 1,929 | 1,541 41,872 0,253 0,503 13,314 12,526 12,160 11,579 2,670 0,000 0,029 0,173 96,540 0,446 6,248 0,032 0,096 2,962 2,203 1,518 1,851 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 1,493 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 1,857 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530
1,875 | 1,220 42,246 0,406 0,661 9,244 13,841 16,301 11,357 0,410 0,000 0,398 0,000 95,994 0,360 6,430 0,052 0,128 2,098 2,483 2,075 1,852 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 0,222 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 0,230 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 | 1,541
41,872
0,253
0,503
13,314
12,526
12,160
11,579
2,670
0,000
0,029
0,173
96,540
0,446
6,248
0,032
0,096
2,962
2,203
1,518 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 0,232 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530 | 1,220
42,246
0,406
0,661
9,244
13,841
16,301
11,357
0,410
0,000
95,994
0,000
95,994
0,360
6,430
0,052
0,128
2,098
2,483
2,075 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(III)
Al(III)
Fe(II)
Ca(II) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 1,853 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 1,782 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 1,862 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 1,863 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 1,929 | 1,541 41,872 0,253 0,503 13,314 12,526 12,160 11,579 2,670 0,000 0,029 0,173 96,540 0,446 6,248 0,032 0,096 2,962 2,203 1,518 1,851 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 1,493 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 1,857 |
1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530
1,875 | 1,220 42,246 0,406 0,661 9,244 13,841 16,301 11,357 0,410 0,000 0,398 0,000 95,994 0,360 6,430 0,052 0,128 2,098 2,483 2,075 1,852 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 0,222 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 1,853 0,257 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 1,782 0,232 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 1,862 0,252 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 1,863 0,250 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 1,929 0,220 | 1,541 41,872 0,253 0,503 13,314 12,526 12,160 11,579 2,670 0,000 0,029 0,173 96,540 0,446 6,248 0,032 0,096 2,962 2,203 1,518 1,851 0,300 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 0,232 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 1,493 0,019 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 1,857 0,257 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530
1,875
0,076 | 1,220 42,246 0,406 0,661 9,244 13,841 16,301 11,357 0,410 0,000 0,398 0,000 95,994 0,360 6,430 0,052 0,128 2,098 2,483 2,075 1,852 0,047 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II)
Ti(IV)
Cr(III) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 0,222 0,000 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 1,853 0,257 0,000 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 1,782 0,232 0,000 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 1,862 0,252 0,003 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 1,863 0,250 0,009 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 1,929 0,220 0,007 | 1,541 41,872 0,253 0,503 13,314 12,526 12,160 11,579 2,670 0,000 0,029 0,173 96,540 0,446 6,248 0,032 0,096 2,962 2,203 1,518 1,851 0,300 0,000 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 0,232 0,002 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 1,493 0,019 0,007 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 1,857 0,257 0,000 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530
1,875
0,076
0,003 | 1,220 42,246 0,406 0,661 9,244 13,841 16,301 11,357 0,410 0,000 0,398 0,000 95,994 0,360 6,430 0,052 0,128 2,098 2,483 2,075 1,852 0,047 0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II)
Ti(IV)
Cr(III) | 1,228 41,334 0,357 0,613 7,742 14,222 17,671 11,286 1,940 0,000 0,336 0,000 96,653 0,363 6,295 0,046 0,119 1,758 2,553 2,251 1,842 0,222 0,000 | 1,313 40,793 0,471 0,584 7,631 14,325 17,976 11,324 2,236 0,004 0,369 0,172 97,043 0,389 6,228 0,061 0,114 1,737 2,578 2,295 1,853 0,257 0,000 | 1,309 41,378 0,382 0,960 8,282 14,590 16,981 11,000 2,041 0,000 97,101 0,384 6,255 0,049 0,185 1,866 2,599 2,147 1,782 0,232 0,000 | 1,270 42,954 0,271 0,701 12,295 14,327 11,746 11,903 2,297 0,025 0,064 0,016 97,848 0,360 6,272 0,034 0,131 2,676 2,466 1,434 1,862 0,252 0,003 | 1,486 41,790 0,418 0,556 9,480 14,931 14,952 11,696 2,231 0,076 0,037 0,040 97,668 0,428 6,214 0,053 0,105 2,101 2,616 1,859 1,863 0,250 0,009 | 1,685 41,646 0,222 0,567 13,506 13,532 10,641 12,072 1,960 0,057 0,024 0,138 95,987 0,487 6,212 0,028 0,108 3,003 2,379 1,327 1,929 0,220 0,007 | 1,541 41,872 0,253 0,503 13,314 12,526 12,160 11,579 2,670 0,000 0,029 0,173 96,540 0,446 6,248 0,032 0,096 2,962 2,203 1,518 1,851 0,300 0,000 | 1,213 41,826 0,331 0,608 8,382 14,701 16,554 11,437 2,055 0,019 0,267 0,000 97,333 0,353 6,280 0,042 0,116 1,876 2,601 2,079 1,840 0,232 0,002 | 0,317 52,379 0,639 0,092 13,870 4,314 16,223 9,579 0,173 0,061 0,073 0,000 97,704 0,089 7,618 0,079 0,017 3,007 0,740 1,973 1,493 0,019 0,007 | 1,629 41,786 0,297 0,537 12,529 14,529 12,250 11,793 2,325 0,000 0,037 0,000 97,704 0,464 6,142 0,037 0,101 2,745 2,517 1,506 1,857 0,257 0,000 | 1,502
40,999
0,455
0,815
7,392
14,018
19,716
11,404
0,658
0,027
0,955
0,000
97,725
0,447
6,291
0,059
0,160
1,691
2,535
2,530
1,875
0,076
0,003 | 1,220 42,246 0,406 0,661 9,244 13,841 16,301 11,357 0,410 0,000 0,398 0,000 95,994 0,360 6,430 0,052 0,128 2,098 2,483 2,075 1,852 0,047 0,000 | Table 52. EMP measurements of representative amphibole of JI 5-3 based on 23 oxygen. | point | 2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 2-6 | 2-7 | 2-8 | 2-9 | 2-10 | 2-11 | 2-12 | 3-7 | |---|--|--|--|---|---|--|---|--|--|---|--|---|--| | Na2O | 2,058 | 1,508 | 2,470 | 3,503 | 3,705 | 2,098 | 3,807 | 7,648 | 3,221 | 7,709 | 2,691 | 7,401 | 3,115 | | SiO2 | 47,575 | 46,346 | 48,444 | 51,114 | 51,630 | 48,060 | 51,548 | 60,059 | 50,335 | 60,085 | 49,128 | 59,900 | 50,239 | | MnO | 0,022 | 0,000 | 0,000 | 0,011 | 0,000 | 0,000 | 0,045 | 0,004 | 0,000 | 0,000 | 0,000 | 0,000 | 0,018 | | K2O | 0,065 | 0,043 | 0,007 | 0,012 | 0,026 | 0,140 | 0,030 | 0,033 | 0,040 | 0,053 | 0,015 | 0,066 | 0,017 | | MgO | 0,063 | 0,009 | 0,000 | 0,001 | 0,006 | 0,120 | 0,022 | 0,008 | 0,000 | 0,000 | 0,002 | 0,000 | 0,018 | | Al2O3 | 34,153 | 35,013 | 33,865 | 32,269 | 32,077 | 34,100 | 31,900 | 25,818 | 32,579 | 26,208 | 33,754 | 26,261 | 32,081 | | FeO | 0,233 | 0,181 | 0,094 | 0,096 | 0,058 | 0,293 | 0,063 | 0,087 | 0,199 | 0,173 | 0,067 | 0,063 | 0,269 | | CaO | 16,404 | 17,753 | 15,722 | 14,133 | 13,801 | 16,370 | 13,410 | 6,791 | 14,470 | 7,053 | 15,554 | 7,195 | 14,771 | | TiO2 | 0,019 | 0,006 | 0,014 | 0,000 | 0,025 | 0,000 | 0,020 | 0,031 | 0,019 | 0,008 | 0,000 | 0,000 | 0,015 | | Cr2O3 | 0,002 | 0,000 | 0,000 | 0,000 | 0,009 | 0,026 | 0,029 | 0,000 | 0,000 | 0,000 | 0,009 | 0,000 | 0,001 | | Cl | 0,063 | 0,006 | 0,000 | 0,000 | 0,018 | 0,022 | 0,013 | 0,000 | 0,011 | 0,000 | 0,000 | 0,007 | 0,000 | | F | 0,114 | 0,013 | 0,001 | 0,000 | 0,045 | 0,155 | 0,061 | 0,075 | 0,000 | 0,000 | 0,000 | 0,041 | 0,062 | | Total
| 100,709 | 100,872 | 100,617 | 101,139 | 101,377 | 101,314 | 100,919 | 100,522 | 100,872 | 101,289 | 101,220 | 100,915 | 100,580 | | | | | | | | | | | | | | | | | Na(I) | 0,182 | 0,133 | 0,218 | 0,305 | 0,322 | 0,185 | 0,332 | 0,657 | 0,282 | 0,658 | 0,235 | 0,634 | 0,274 | | Si(IV) | 2,171 | 2,116 | 2,201 | 2,298 | 2,315 | 2,181 | 2,321 | 2,662 | 2,274 | 2,645 | 2,217 | 2,645 | 2,280 | | Mn(II) | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,002 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | | K(I) | 0,004 | 0,003 | 0,000 | 0,001 | 0,001 | 0,008 | 0,002 | 0,002 | 0,002 | 0,003 | 0,001 | 0,004 | 0,001 | | Mg(II) | 0,004 | 0,001 | 0,000 | 0,000 | 0,000 | 0,008 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | | Al(III) | 1,837 | 1,884 | 1,813 | 1,710 | 1,695 | 1,824 | 1,693 | 1,349 | 1,734 | 1,360 | 1,795 | 1,367 | 1,716 | | Fe(II) | 0,009 | 0,007 | 0,004 | 0,004 | 0,002 | 0,011 | 0,002 | 0,003 | 0,008 | 0,006 | 0,003 | 0,002 | 0,010 | | Ca(II) | 0,802 | 0,868 | 0,765 | 0,681 | 0,663 | 0,796 | 0,647 | 0,322 | 0,700 | 0,333 | 0,752 | 0,340 | 0,718 | | Ti(IV) | 0,001 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,001 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,001 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,016 | 0,002 | 0,000 | 0,000 | 0,006 | 0,022 | 0,009 | 0,011 | 0,000 | 0,000 | 0,000 | 0,006 | 0,009 | | | | | | | | | | | | | | | | | Σ cations | 5,010 | 5,011 | 5,001 | 5,000 | 5,001 | 5,013 | 5,002 | 4,997 | 5,001 | 5,005 | 5,003 | 4,992 | 5,002 | | charge | 16,014 | 16,002 | 16,000 | 16,000 | 16,005 | 16,019 | 16,007 | 16,009 | 16,000 | 16,000 | 16,000 | 16,005 | 16,007 | point | 3-8 | 3-9 | 3-10 | 3-11 | 3-12 | 5-8 | 5-9 | 5-10 | 5-11 | 5-12 | 5-13 | 5-14 | 6-10 | | point
Na2O | 3-8 8,389 | 3-9
4,509 | 3-10 9,376 | 3-11 3,693 | 3-12 8,386 | 5-8 1,981 | 5-9 5,825 | 5-10 7,114 | 5-11 3,245 | 5-12 8,449 | 5-13 3,435 | 5-14 8,039 | 6- 10 2,712 | | _ | | | | | | | | | | | | | | | Na2O | 8,389 | 4,509 | 9,376 | 3,693 | 8,386 | 1,981 | 5,825 | 7,114 | 3,245 | 8,449 | 3,435 | 8,039 | 2,712 | | Na2O
SiO2 | 8,389
61,509 | 4,509
53,289 | 9,376
63,437 | 3,693
51,460 | 8,386
61,127 | 1,981
47,593 | 5,825
56,327 | 7,114
58,932 | 3,245
50,644 | 8,449
61,463 | 3,435
50,294 | 8,039
60,972 | 2,712
49,194 | | Na2O
SiO2
MnO | 8,389
61,509
0,007 | 4,509
53,289
0,000 | 9,376
63,437
0,045 | 3,693
51,460
0,000 | 8,386
61,127
0,002 | 1,981
47,593
0,000 | 5,825
56,327
0,011 | 7,114
58,932
0,000 | 3,245
50,644
0,000 | 8,449
61,463
0,000 | 3,435
50,294
0,029 | 8,039
60,972
0,004 | 2,712
49,194
0,000 | | Na2O
SiO2
MnO
K2O | 8,389
61,509
0,007
0,055 | 4,509
53,289
0,000
0,037 | 9,376
63,437
0,045
0,070 | 3,693
51,460
0,000
0,025 | 8,386
61,127
0,002
0,052 | 1,981
47,593
0,000
0,038 | 5,825
56,327
0,011
0,055 | 7,114
58,932
0,000
0,599 | 3,245
50,644
0,000
0,020 | 8,449
61,463
0,000
0,071 | 3,435
50,294
0,029
0,010 | 8,039
60,972
0,004
0,077 | 2,712
49,194
0,000
0,105 | | Na2O
SiO2
MnO
K2O
MgO | 8,389
61,509
0,007
0,055
0,002 | 4,509
53,289
0,000
0,037
0,000 | 9,376
63,437
0,045
0,070
0,001 | 3,693
51,460
0,000
0,025
0,000 | 8,386
61,127
0,002
0,052
0,000 | 1,981
47,593
0,000
0,038
0,012 | 5,825
56,327
0,011
0,055
0,000 | 7,114
58,932
0,000
0,599
0,077 | 3,245
50,644
0,000
0,020
0,000 | 8,449
61,463
0,000
0,071
0,000 | 3,435
50,294
0,029
0,010
0,003 | 8,039
60,972
0,004
0,077
0,001 | 2,712
49,194
0,000
0,105
0,099 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3 | 8,389
61,509
0,007
0,055
0,002
24,628 | 4,509
53,289
0,000
0,037
0,000
30,664 | 9,376
63,437
0,045
0,070
0,001
23,633 | 3,693
51,460
0,000
0,025
0,000
31,610 | 8,386
61,127
0,002
0,052
0,000
24,667 | 1,981
47,593
0,000
0,038
0,012
34,070 | 5,825
56,327
0,011
0,055
0,000
28,589 | 7,114
58,932
0,000
0,599
0,077
26,395 | 3,245
50,644
0,000
0,020
0,000
32,475 | 8,449
61,463
0,000
0,071
0,000
24,700 | 3,435
50,294
0,029
0,010
0,003
31,728 | 8,039
60,972
0,004
0,077
0,001
25,322 | 2,712
49,194
0,000
0,105
0,099
32,330 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO | 8,389
61,509
0,007
0,055
0,002
24,628
0,020 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100
0,000 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676
0,000 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100
0,000
0,000 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000
0,008 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007
0,010 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676
0,000
0,000 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3 | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100
0,000
0,000 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000
0,008
0,004 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000
0,017 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007
0,010 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676
0,000
0,000 |
3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000
0,000
0,138 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100
0,000
0,000
0,000
0,031 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000
0,008
0,004
0,015 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000
0,000
0,000 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000
0,000
0,084 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000
0,017
0,030 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007
0,010
0,015
0,007 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676
0,000
0,000
0,000 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,000
0,007 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000
0,000
0,138 | 4,509
53,289
0,000
0,037
0,000
30,664
0,094
12,100
0,000
0,000
0,000
0,031 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000
0,008
0,004
0,015 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000
0,000
0,000 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000
0,000
0,084 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000
0,017
0,030 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007
0,010
0,015
0,007 | 7,114
58,932
0,000
0,599
0,077
26,395
0,317
6,676
0,000
0,000
0,000 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,000
0,007 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000
0,000
0,138
100,492 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,000 100,711 | 9,376
63,437
0,045
0,070
0,001
23,633
0,079
4,181
0,000
0,008
0,004
0,015
100,842 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000
0,000
0,058
100,356 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000
0,000
0,084
99,903 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000
0,017
0,030
100,406 | 5,825
56,327
0,011
0,055
0,000
28,589
0,083
10,129
0,007
0,010
0,015
0,007
101,052 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,000 1,000 100,128 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000
100,298 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
0,000
99,769 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,000
0,000
100,626 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,000
0,000
99,907 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
CI
F
Total | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000
0,138
100,492 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000
0,000
0,058
100,356 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000
0,084
99,903 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,000
0,017
0,030
100,406 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,000 100,128 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000
100,298 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000
99,907 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 8,389
61,509
0,007
0,055
0,002
24,628
0,020
5,792
0,010
0,000
0,138
100,492 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 0,393 2,393 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 | 3,693
51,460
0,000
0,025
0,000
31,610
0,005
13,529
0,000
0,000
0,058
100,356 | 8,386
61,127
0,002
0,052
0,000
24,667
0,000
5,608
0,012
0,000
0,084
99,903 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,001 100,128 0,615 2,629 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000
100,298 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000
99,907 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 0,393 2,393 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,000 0,058 100,356 0,324 2,328 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,000 0,084 99,903 0,723 2,718 0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,001 100,128 0,615 2,629 0,000 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352
0,283
2,278
0,000 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000
100,298
0,725
2,719
0,000 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
0,000
99,769
0,304
2,295
0,001 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000
99,907 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 0,393 2,393 0,000 0,002 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 | 3,693 51,460
0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,005 100,356 0,324 2,328 0,000 0,001 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,000 0,084 99,903 0,723 2,718 0,000 0,003 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406
0,175
2,173
0,000
0,002 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,001 100,128 0,615 2,629 0,000 0,034 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352
0,283
2,278
0,000
0,001 | 8,449
61,463
0,000
0,071
0,000
24,700
0,056
5,548
0,000
0,002
0,011
0,000
100,298
0,725
2,719
0,000
0,004 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769
0,304
2,295
0,001
0,001 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626
0,688
2,692
0,000
0,004 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
99,907
0,241
2,250
0,000
0,006 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 0,393 2,393 0,000 0,002 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,005 100,356 0,324 2,328 0,000 0,001 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406
0,175
2,173
0,000
0,002 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,001 100,128 0,615 2,629 0,000 0,034 0,005 | 3,245
50,644
0,000
0,020
0,000
32,475
0,045
14,916
0,007
0,000
0,000
101,352
0,283
2,278
0,000
0,001
0,000 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,002 0,011 0,000 100,298 0,725 2,719 0,000 0,004 0,000 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769
0,304
2,295
0,001
0,001 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626
0,688
2,692
0,000
0,004
0,000 | 2,712
49,194
0,000
0,105
0,099
32,330
0,276
15,176
0,010
0,000
0,006
0,000
99,907
0,241
2,250
0,000
0,006
0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,001 100,711 0,393 2,393 0,000 0,002 0,000 1,623 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,005 100,356 0,324 2,328 0,000 0,001 0,000 1,686 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406
0,175
2,173
0,000
0,002
0,001
1,834 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,001 100,128 0,615 2,629 0,000 0,034 0,005 1,388 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,007 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,002 0,011 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769
0,304
2,295
0,001
0,001
0,000
1,706 | 8,039
60,972
0,004
0,077
0,001
25,322
0,038
6,168
0,000
0,000
0,007
0,000
100,626
0,688
2,692
0,000
0,004
0,000
1,318 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,031 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 | 1,981
47,593
0,000
0,038
0,012
34,070
0,056
16,626
0,000
0,017
0,030
100,406
0,175
2,173
0,000
0,002
0,001
1,834
0,002 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,007 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,002 0,011 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 | 3,435
50,294
0,029
0,010
0,003
31,728
0,061
14,204
0,005
0,000
0,000
99,769
0,304
2,295
0,001
0,000
1,706
0,002 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 0,007 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
Cl
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 0,275 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,031 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 0,582 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 0,197 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 0,656 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 0,267 | 1,981 47,593 0,000 0,038 0,012 34,070 0,056 16,626 0,000 0,017 0,030 100,406 0,175 2,173 0,000 0,002 0,001 1,834 0,002 0,813 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 0,483 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 0,319 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,007 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 0,719 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,011 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 0,263 | 3,435 50,294 0,029 0,010 0,003 31,728 0,061 14,204 0,005 0,000 0,000 0,000 99,769 0,304 2,295 0,001 0,000 1,706 0,002 0,694 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 0,292 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 0,744 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
CI
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 0,275 0,000 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,031 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 0,582 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 0,197 0,000 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 0,656 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 1,293 0,000 0,267 0,000 | 1,981 47,593 0,000 0,038 0,012 34,070 0,056 16,626 0,000 0,017 0,030 100,406 0,175 2,173 0,000 0,002 0,001 1,834 0,002 0,813 0,000 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 0,483 0,000 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 0,319 0,000 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,000 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 0,719 0,000 | 8,449
61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,001 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 0,263 0,000 | 3,435 50,294 0,029 0,010 0,003 31,728 0,061 14,204 0,005 0,000 0,000 99,769 0,304 2,295 0,001 0,000 1,706 0,002 0,694 0,000 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 0,292 0,000 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 0,744 0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
CI
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 0,275 0,000 0,000 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,031 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 0,582 0,000 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 0,197 0,000 0,000 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 0,656 0,000 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 1,293 0,000 0,267 0,000 0,000 | 1,981 47,593 0,000 0,038 0,012 34,070 0,056 16,626 0,000 0,017 0,030 100,406 0,175 2,173 0,000 0,002 0,001 1,834 0,002 0,813 0,000 0,000 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 0,483 0,000 0,000 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 0,319 0,000 0,000 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 0,719 0,000 0,000 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,001 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 0,263 0,000 0,000 | 3,435 50,294 0,029 0,010 0,003 31,728 0,061 14,204 0,005 0,000 0,000 99,769 0,304 2,295 0,001 0,000 1,706 0,002 0,694 0,000 0,000 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 0,292 0,000 0,000 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 0,744 0,000 0,000 | | Na2O
SiO2
MnO
K2O
MgO
Al2O3
FeO
CaO
TiO2
Cr2O3
CI
F
Total
Na(I)
Si(IV)
Mn(II)
K(I)
Mg(II)
Al(III)
Fe(II)
Ca(II) | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 0,275 0,000 0,000 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,000 0,031 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 0,582 0,000 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 0,197 0,000 0,000 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 0,656 0,000 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 1,293 0,000 0,267 0,000 0,000 | 1,981 47,593 0,000 0,038 0,012 34,070 0,056 16,626 0,000 0,017 0,030 100,406 0,175 2,173 0,000 0,002 0,001 1,834 0,002 0,813 0,000 0,000 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 0,483 0,000 0,000 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 0,319 0,000 0,000 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 0,719 0,000 0,000 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,001 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 0,263 0,000 0,000 | 3,435 50,294 0,029 0,010 0,003 31,728 0,061 14,204 0,005 0,000 0,000 99,769 0,304 2,295 0,001 0,000 1,706 0,002 0,694 0,000 0,000 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 0,292 0,000 0,000 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 0,744 0,000 0,000 | | Na2O SiO2 MnO K2O MgO Al2O3 FeO CaO TiO2 Cr2O3 Cl F Total Na(I) Si(IV) Mn(II) K(I) Mg(II) Al(III) Fe(II) Ca(II) Ti(IV) Cr(III) F | 8,389 61,509 0,007 0,055 0,002 24,628 0,020 5,792 0,010 0,000 0,138 100,492 0,720 2,722 0,000 0,003 0,000 1,284 0,001 0,275 0,000 0,000 0,019 | 4,509 53,289 0,000 0,037 0,000 30,664 0,094 12,100 0,000 0,001 0,001 100,711 0,393 2,393 0,000 0,002 0,000 1,623 0,004 0,582 0,000 0,000 0,000 | 9,376 63,437 0,045 0,070 0,001 23,633 0,079 4,181 0,000 0,008 0,004 0,015 100,842 0,797 2,783 0,002 0,004 0,000 1,222 0,003 0,197 0,000 0,000 0,002 | 3,693 51,460 0,000 0,025 0,000 31,610 0,005 13,529 0,000 0,000 0,058 100,356 0,324 2,328 0,000 0,001 0,000 1,686 0,000 0,656 0,000 0,000 0,000 | 8,386 61,127 0,002 0,052 0,000 24,667 0,000 5,608 0,012 0,000 0,084 99,903 0,723 2,718 0,000 0,003 0,000 1,293 0,000 1,293 0,000 0,267 0,000 0,000 0,012 | 1,981 47,593 0,000 0,038 0,012 34,070 0,056 16,626 0,000 0,001 0,017 0,030 100,406 0,175 2,173 0,000 0,002 0,001 1,834 0,002 0,813 0,000 0,000 0,000 | 5,825 56,327 0,011 0,055 0,000 28,589 0,083 10,129 0,007 0,010 0,015 0,007 101,052 0,502 2,506 0,000 0,003 0,000 1,499 0,003 0,483 0,000 0,000 0,000 0,001 | 7,114 58,932 0,000 0,599 0,077 26,395 0,317 6,676 0,000 0,000 0,031 100,128 0,615 2,629 0,000 0,034 0,005 1,388 0,012 0,319 0,000 0,000 0,000 0,000 | 3,245 50,644 0,000 0,020 0,000 32,475 0,045 14,916 0,007 0,000 0,000 101,352 0,283 2,278 0,000 0,001 0,000 1,721 0,002 0,719 0,000 0,000 0,000 0,000 | 8,449 61,463 0,000 0,071 0,000 24,700 0,056 5,548 0,000 0,002 0,011 0,000 100,298 0,725 2,719 0,000 0,004 0,000 1,288 0,002 0,263 0,000 0,000 0,000 | 3,435 50,294 0,029 0,010 0,003 31,728 0,061 14,204 0,005 0,000 0,000 99,769 0,304 2,295 0,001 0,000 1,706 0,002 0,694 0,000 0,000 0,000 0,000 | 8,039 60,972 0,004 0,077 0,001 25,322 0,038 6,168 0,000 0,000 100,626 0,688 2,692 0,000 0,004 0,000 1,318 0,001 0,292 0,000 0,000 0,000 | 2,712 49,194 0,000 0,105 0,099 32,330 0,276 15,176 0,010 0,000 0,006 0,000 99,907 0,241 2,250 0,000 0,006 0,007 1,743 0,011 0,744 0,000 0,000 0,000 | Table 53. EMP measurements of representative plagioclase of JI 5-3 based on 8 oxygen. | point | 6-11 | 6-12 | 6-13 | 6-14 | 6-15 | 7-6 | 7-7 | 7-8 | 7-9 | |-----------|---------|--------|--------|--------|---------|--------|---------|---------|---------| | Na2O | 8,584 | 5,365 | 9,351 | 2,743 | 7,992 | 4,309 | 7,134 | 2,633 | 7,318 | | SiO2 | 61,257 | 53,960 | 61,535 | 48,895 | 60,918 | 52,012 | 59,698 | 48,458 | 59,166 | | MnO | 0,029 | 0,000 | 0,000 | 0,000 | 0,007 | 0,002 | 0,025 | 0,000 | 0,052 | | K2O | 0,056 | 0,041 | 0,045 | 0,036 | 0,073 | 0,120 | 0,077 | 0,011 | 0,050 | | MgO | 0,006 | 0,003 | 0,011 | 0,041 | 0,000 | 0,010 | 0,002 | 0,016 | 0,000 | | Al2O3 | 24,467 | 28,937 | 23,657 | 32,767 | 25,221 | 30,429 | 26,040 | 33,046 | 26,284 | | FeO | 0,054 | 0,155 | 0,200 | 0,143 | 0,029 | 0,065 | 0,117 | 0,078 | 0,180 | | CaO | 5,674 | 10,884 | 4,670 | 15,187 | 6,255 | 12,644 | 7,405 | 15,769 | 7,514 | | TiO2 | 0,022 | 0,000 | 0,008 | 0,015 | 0,000 | 0,000 | 0,000 | 0,011 | 0,012 | | Cr2O3 | 0,000 | 0,000 | 0,000 | 0,000 | 0,017 | 0,008 | 0,000 | 0,008 | 0,000 | | CI | 0,003 | 0,005 | 0,004 | 0,001 | 0,004 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,019 | 0,000 | 0,056 | 0,000 | 0,063 | 0,000 | 0,081 | 0,000 | 0,041 | | Total | 100,162 | 99,349 | 99,512 | 99,828 | 100,551 | 99,599 | 100,545 | 100,030 | 100,600 | | | | | | | | | | | | | Na(I) | 0,739 | 0,473 | 0,810 | 0,243 | 0,685 | 0,380 | 0,614 | 0,233 | 0,630 | | Si(IV) | 2,718 | 2,451 | 2,748 | 2,237 | 2,694 | 2,368 | 2,648 | 2,216 | 2,628 | | Mn(II) | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,002 | | K(I) | 0,003 | 0,002 | 0,003 | 0,002 | 0,004 | 0,007 | 0,004 | 0,001 | 0,003 | | Mg(II) | 0,000 | 0,000 | 0,001 | 0,003 | 0,000 | 0,001 | 0,000 | 0,001 | 0,000 | | Al(III) | 1,280 | 1,549 | 1,245 | 1,767 | 1,315 | 1,633 | 1,361 | 1,781 | 1,376 | | Fe(II) | 0,002 | 0,006 | 0,007 | 0,005 | 0,001 | 0,002 | 0,004 | 0,003 | 0,007 | | Ca(II) | 0,270 | 0,530 | 0,223 | 0,744 | 0,296 | 0,617 | 0,352 | 0,773 | 0,358 | | Ti(IV) | 0,001 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Cr(III) | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,003 | 0,000 | 0,008 | 0,000 | 0,009 | 0,000 | 0,011 | 0,000 | 0,006 | | | | | | | | | | | | | Σ cations | 5,013 | 5,011 | 5,038 | 5,002 | 4,997 | 5,009 | 4,985 | 5,009 | 5,003 | | charge | 16,002 | 16,000 | 16,007 | 16,000 | 16,007 | 16,000 | 16,010 | 16,000 | 16,005 | | point | 1-9 | 2-16 | 2-18 | 5-1 | 5-2 | 5-6 | 6-8 | 7-3 | |-----------|--------|--------|--------|--------|--------|--------|--------|--------| | Na2O | 0,137 | 0,151 | 0,203 | 0,165 | 0,225 | 0,190 | 0,155 | 0,232 | | SiO2 | 36,311 | 35,247 | 33,436 | 35,385 | 36,190 | 34,755 | 36,418 | 35,257 | | MnO | 0,153 | 0,154 | 0,142 | 0,107 | 0,173 | 0,189 | 0,105 | 0,134 | | K2O | 8,911 | 8,335 | 5,669 | 8,470 | 8,481 | 6,533 | 8,356 | 8,069 | | MgO | 10,770 | 11,200 | 12,433 | 10,542 | 10,556 | 11,978 | 11,205 | 11,416 | | Al2O3 | 16,635 | 17,140 | 16,546 | 16,504 | 16,549 | 16,848 | 16,332 | 16,429 | | FeO | 20,401 | 19,428 | 20,913 | 20,159 | 19,935 | 18,749 | 18,676 | 19,650 | | CaO | 0,007 | 0,038 | 0,105 | 0,064 | 0,095 | 0,161 | 0,071 | 0,075 | | TiO2 | 1,840 | 2,360 | 1,502 | 2,431 | 2,341 | 1,731 | 2,653 | 2,301 | | Cr2O3 | 0,000 | 0,016 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | Cl | 0,409 | 0,427 | 0,415 | 0,504 | 0,389 | 0,389 | 0,378 | 0,401 | | F |
0,000 | 0,000 | 0,095 | 0,000 | 0,001 | 0,000 | 0,019 | 0,000 | | Total | 95,482 | 94,400 | 91,325 | 94,217 | 94,847 | 91,435 | 94,275 | 93,874 | | | | | | | | | | | | Na(I) | 0,020 | 0,023 | 0,031 | 0,025 | 0,033 | 0,029 | 0,023 | 0,035 | | Si(IV) | 2,776 | 2,712 | 2,659 | 2,743 | 2,775 | 2,728 | 2,789 | 2,730 | | Mn(II) | 0,010 | 0,010 | 0,010 | 0,007 | 0,011 | 0,013 | 0,007 | 0,009 | | K(I) | 0,869 | 0,818 | 0,575 | 0,838 | 0,830 | 0,654 | 0,816 | 0,797 | | Mg(II) | 1,228 | 1,285 | 1,474 | 1,218 | 1,207 | 1,402 | 1,279 | 1,318 | | Al(III) | 1,499 | 1,555 | 1,551 | 1,508 | 1,496 | 1,559 | 1,474 | 1,500 | | Fe(II) | 1,304 | 1,250 | 1,391 | 1,307 | 1,279 | 1,231 | 1,196 | 1,273 | | Ca(II) | 0,001 | 0,003 | 0,009 | 0,005 | 0,008 | 0,014 | 0,006 | 0,006 | | Ti(IV) | 0,106 | 0,137 | 0,090 | 0,142 | 0,135 | 0,102 | 0,153 | 0,134 | | Cr(III) | 0,000 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | | F | 0,000 | 0,000 | 0,024 | 0,000 | 0,000 | 0,000 | 0,005 | 0,000 | | | | | | | | | | | | Σ cations | 7,813 | 7,794 | 7,789 | 7,793 | 7,774 | 7,732 | 7,743 | 7,802 | | charge | 22,000 | 22,000 | 22,020 | 22,000 | 22,000 | 22,000 | 22,004 | 22,000 | Table 54. EMP measurements of representative plagioclase of JI 5-3 based on 8 oxygen (continued) (top) and biotite based on 11 oxygen (bottom). ## Appendix V: Argon dating Figure 97. Stepwise heating results of hornblende in Jl 1-1. Figure 98. Stepwise heating results of K-feldspar in JI 1-3. Figure 99. Stepwise heating results of hornblende in Jl 1-4. Figure 100. Stepwise heating results of K-feldspar in JI 1-4. Figure 101. Stepwise heating results of K-feldspar in JI 2-2. JI 4-2 Biotite Figure 102. Stepwise heating results of biotite in JI 4-2. Figure 103. Stepwise heating results of K-feldspar in JI 4-2. Figure 104. Stepwise heating results of hornblende in JI 4-3. Figure 105. Stepwise heating results of K-feldspar in JI 4-3. Figure 106. Stepwise heating results of K-feldspar in JI 4-5. Figure 107. Stepwise heating results of Biotite in JI 4-7. Figure 108. Stepwise heating results of K-feldspar in JI 4-7. Figure 109. Stepwise heating results of Biotite in JI 5-1. Figure 110. Stepwise heating results of K-feldspar in JI 5-1. Figure 111. Stepwise heating results of biotite in JI 5-2. Figure 112. Stepwise heating results of K-feldspar in JI 5-2. Figure 113. Stepwise heating results of hornblende in Jl 5-3. Figure 114. Stepwise heating results of K-feldspar in JI 5-5. Figure 115. Stepwise heating results of biotite in Jl 5-7. Figure 116. Stepwise heating results of K-feldspar in JI 5-7. # JI 4-2 Biotite Single Grain Figure 117. Single grain results of biotite in JI 4-2. Figure 118. Single grain results of biotite in JI 4-7. Figure 119. Single grain results of biotite in JI 5-1. # Appendix VI: Pseudosections ### Modal abundances JI 1-1 Figure 120. Modal abundance isopleths plotted onto a pseudosection for varying O_2 concentrations. The best fit of the cluster of isopleths is used for further modelling. See next page for continuation. O_2 = 0.04 wt% was found the best fit. Figure 121. Modal abundance isopleths plotted onto a pseudosection for varying O_2 concentrations (top) and varying CO_2 concentration with O_2 fixed at 0.04 wt% (bottom). The best fit of the cluster of isopleths is used for further modelling. See next page for continuation. Figure 122. Modal abundance isopleths plotted onto a pseudosection for varying CO_2 concentration with O_2 fixed at 0.04 wt%. The best fit of the cluster of isopleths is used for further modelling. A CO_2 fraction of 0.3 (0.3 CO_2 + 0.7 H_2O) was found as best fit. # **Isopleths JI 1-1** Figure 123. Chemical compositional isopleths of amphibole and plagioclase at a CO_2 fraction of 0.2 and 0.3. A best clustered fit of chemistry and modal abundances is found for CO_2 = 0.3. ### Modal abundances JI 2-1 Figure 124. Modal abundance isopleths plotted onto a pseudosection for varying CO_2 concentrations. The best fit of the cluster of isopleths with the stable mineral assemblage of the pertinent minerals in thin section is used for further modelling. See next page for continuation. $CO_2 = 0.2$ was found the best fit. Figure 125. Continuation of Figure 124. Modal abundance isopleths plotted onto a pseudosection for varying CO_2 concentrations. The best fit of the cluster of isopleths with the stable mineral assemblage of the pertinent minerals in thin section is used for further modelling. See next page for continuation. $CO_2 = 0.2$ was found the best fit. ### **Isopleths JI 2-1** Figure 126. Chemical compositional isopleths of plagioclase and amphibole at varying CO_2 fractions (to be continued in Figure 127 and Figure 128). A best clustered fit of chemistry and the pertinent mineral assemblage in thin section is found for $CO_2 = 0.2$. Figure 127. Continuation of chemical compositional isopleths of plagioclase and amphibole at varying CO_2 fractions. A best clustered fit of chemistry and the pertinent mineral assemblage in thin section is found for CO_2 = 0.2. Figure 128. Continuation of chemical compositional isopleths of plagioclase and amphibole at varying CO_2 fractions. A best clustered fit of chemistry and the pertinent mineral assemblage in thin section is found for CO_2 = 0.2. # Modal abundances JI 4-6 Figure 129. Modal abundance isopleths plotted onto a pseudosection for varying O_2 concentrations. The best fit of the cluster of isopleths with the stable mineral assemblage of the pertinent minerals in thin section is used for further modelling. See next page for continuation. $O_2 = 0.4$ was found the best fit. ### Modal abundance and isopleths JI 4-6 Figure 130. Continuation of modal abundance isopleths plotted onto a pseudosection for varying O_2 concentrations (top left) and chemical compositional isopleths of garnet for varying O_2 concentrations. The best combined fit of the cluster of isopleths with the stable mineral assemblage of the pertinent minerals in thin section and compositional isopleths for garnet is used for further modelling. $O_2 = 0.4$ was found the best fit.