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Self-similarity matrix based slow-time
feature extraction for human target in
high-resolution radar

yuan he, pascal aubry, francois le chevalier and alexander yarovoy

A new approach is proposed to extract the slow-time feature of human motion in high-resolution radars. The approach is
based on the self-similarity matrix (SSM) of the radar signals. The Mutual Information is used as a measure of similarity.
The SSMs of different radar signals (high-resolution range profile, micro-Doppler, and range-Doppler video sequence) are
compared, and the angel-invariant property of the SSMs is demonstrated. The SSM for different activities (i.e. walking
and running) is extracted from range-Doppler video sequence and analyzed. Finally, simulation result is validated by experi-
mental data.
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I . I N T R O D U C T I O N

Extraction of human behavior from radar data is important
for a wide range of security and safety applications [1, 2].
One of the reported approaches is to use high-resolution
range profiles (HRRP) to analyze human range-based signa-
tures. HRRP allows for extraction of the micro-motions
induced by different parts of the human body [3]. Another
approach is to use the micro-Doppler image to analyze
target Doppler-based signatures [4]. As a tool to illustrate
Doppler spectra along the slow-time axis, the micro-
Doppler images have been studied widely due to their poten-
tial in human classification [5]. The range-Doppler (RD)
images were also used to analyze distributed human scatterers
[2]. Although HHRP, micro-Doppler, and RD images all show
certain target information, they are restricted to observe
targets in either range, Doppler or RD, and the target slow-
time evolution has not been addressed in all these signals.

Slow-time behavior for human motions (e.g. walking, crawl-
ing, and running) is unique. For example, the standard walking
procedure can normally be seen as a periodic movement with a
certain cadence frequency. Human periodic motion has been
recently analyzed in camera-based systems [6, 7]. Cutler and
Davis [6] proposed using self-similarity matrix (SSM) of one
optical image sequence to detect and analyze periodic
motions. For action recognition, Junejo et al. [8] claimed that
an important structural stability of SSM can be found for a
moving person observed by different cameras. Although

radar signals differ significantly from optical images, in this
paper we will demonstrate that the SSM theory can be extended
for radar signals with some adequate modifications.

Our approach is to apply SSM to extract the slow-time feature
of typical human radar backscattering (i.e. HRRP, micro-
Doppler image, and RD video sequence). Range-Doppler video
sequence (RDVS) [9] is one sequence of RD images, as a
function of slow-time. RDVS not only preserves the target
range information, but also keeps the Doppler information, as
a function of slow-time. The SSMs obtained from different
signals will be analyzed, and their angle-invariant characteristic
will be demonstrated by comparing the SSMs from radars
deployed at different locations. Fourier transform-based period-
icity detection method will be developed to extract the cadence
frequency of the human gait from SSMs. Finally, the proposed
approach will be validated on experimental data.

This paper is organized as follows. The radar backscatter-
ing from the walking human model is described in Section
II. Section III discusses SSM of human backscattering in
radar. Section IV addresses the gait periodicity detection
from SSM. Section V demonstrates the measurement result.
Section VI presents the conclusion.

I I . R A D A R R E F L E C T I O N
S I M U L A T E D B Y H U M A N M O D E L

A) Human target motion model
Two different human motion models have commonly been
used in the literature: mathematical parametric model [10]
and empirical non-parametric model [2]. Although paramet-
ric models are designed for some specific motions (i.e.
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walking and running), empirical non-parametric models,
which are based on human motion capture data, are
usually more realistic and accurate. In CMU database [11],
a motion capture system consisting of 12 infrared cameras
and 41 markers attached to a human body, was used to
record motions. Datasets of various motion types (e.g.
walking, running, and jumping) are provided. For this
study, we select five most crucial markers (i.e. torso, left
hand, right hand, left foot, and right foot), and an equal
RCS is assumed for the reflection from all the markers for
simplicity. Then we construct human range profiles by
coherently summing the echoes from different parts of the
human body. According to the human kinematic studies
[5], one complete human gait of our model consists of four
main phases (see Fig. 1): (1) double support (both feet are
on the ground), (2) right stance (only the right foot is on
the ground), (3) double support, and (4) left stance (only
the left foot is on the ground).

B) Radar signals of the human target
Currently there are three tools to analyze radar targets,
namely HRRP, micro-Doppler images, and RD images.
Range profile is used as the most common tool due to its
simplicity. We simulated range profiles for a walking
human model (Fig. 1) using Gaussian pulses with an oper-
ational frequency from 0.8 to 1.6 GHz (210 dB), which pro-
vides a theoretical down-range resolution of 0.18 m. The
range profiles simulated show the slow-time evolution of
five different scatterers (see Fig. 2). The largest fluctuations
in the range profiles result from the backscattering of the
feet, and the reflections of the torso and hands are heavily
overlapped. Although a certain level of target signatures is
preserved in range profiles, the range profiles do not show
the Doppler information.

The micro-Doppler of a walking human can be derived by
applying time-frequency transform to the range profiles.
Different transforms (e.g. short-time Fourier transform and
Wigner–Ville distribution) can be chosen considering the
trade-off between Doppler resolution and cross-term interfer-
ence. The micro-Doppler image corresponding to the range
profiles in Fig. 2, computed by short-time Fourier transform,
is shown in Fig. 3. Unlike the range profiles, micro-Doppler

preserves the target Doppler signature, while it neglects the
range information.

Similar to the micro-Doppler image, RD image is also
derived from range profiles. The basic idea of RD processing
is to apply Fourier transform to analyze the samples from a
fixed range bin over a few successive range responses. The
RD image is constructed by the spectra in all the range bins.
Although the micro-Doppler image describes the target
Doppler signature over a certain period, the RD image only
shows the RD signature at one specific instant. The main
stages of one human gait, corresponding to the phases in
Fig. 1, are illustrated in four RD images (Fig. 4). A cyclic
movement is constructed by the RD responses of the arms
and the feet around the torso contour. Note that the arm
responses are difficult to separate from the torso response,
since they overlap with each other.

The range profiles and the micro-Doppler image both illus-
trate the target movement as a function of the slow-time,
whereas the RD image describes the RD pattern at one par-
ticular instant. Therefore, we proposed RDVS [9] previously
to describe the slow-time evolution of target RD signatures.
As shown in Fig. 5, RDVS is built by successive RD frames.
One pulse repetition interval (PRI) can be used as a typical

Fig. 1. One complete human gait.

Fig. 2. Simulated human target range profiles.
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interval between two frames. Only five of all the RDVS frames
are shown here, and the human RD contours between con-
secutive frames are also demonstrated.

Range profiles, micro-Doppler image, and RDVS repre-
sent the radar time series based on range, Doppler, and RD
signatures, respectively. As we shall see, they all exhibit
unique self-similarity characteristics, due to the cyclic
human movement. In the next section, the self-similarity
characteristic of these three different radar signals will be
analyzed.

I I I . S S M O F H U M A N
B A C K S C A T T E R I N G

A) Self-similarity matrix (SSM)
Recurrence is quite common in dynamic systems, and multi-
dimensional time series is usually used to represent such
systems. Eckmann et al. first proposed the recurrence plot
(RP) [12] to perform time series analysis of dynamic
systems. As a variant of RP, SSM [6] can be considered as a
generalization of the correlation matrix, measuring the
“similarity” – rather than just the correlation – between suc-
cessive samples of the multidimensional time series. SSM is
also an effective tool to analyze system behaviors, since the
textures in SSM (e.g. the peaks and valleys, if we illustrate
SSM as an image) are distinctive for different time series.

In the field of video processing, SSM has already been suc-
cessfully applied for analyzing human motions in video
sequences, such as multi-view human action recognition [8],
human gait recognition [7, 13], and video matching [14].
For the application of camera-based human action recogni-
tion, Junejo et al. [8] claimed that an important structural sta-
bility of SSM can be found for a moving person observed with
different cameras. This indicates that, while cameras observe
the person from various ranges and perspectives, a similar
slow-time feature (i.e. SSM) can still be captured.

Since range profiles, micro-Doppler image, and RDVS can
all be seen as multi-dimensional time series, SSM should also
be useful to analyze them. Although radar signals differ sig-
nificantly from camera-based optical images, we will

Fig. 3. Simulated human target micro-Doppler image.

Fig. 4. The range-Doppler images of the simulated human gait (the person is walking toward the radar with a constant velocity).
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demonstrate that the SSM theory can be usefully extended to
radar signals.

The range profiles, micro-Doppler image, and RDVS are
represented by multi-dimensional time series S ¼ {F1,
F2,. . .,FN}. The dimension of S depends on the specific type
of the radar signal. Taking the range profiles for example,
they are the time series consisting of N one-dimensional
vectors (pulse responses). Similarly, micro-Doppler time
series are composed of N one-dimensional vectors (Doppler
responses), and RDVS time series have N two-dimensional
vectors (RD images). Then, the SSM of S is defined as a
square symmetric matrix:

dij
[ ]

i,j=1,2,...,N=

d11 d12 . . . d1N

d21 d22 . . . d2N

. . . . . . . . . . . .

dN1 dN2 . . . dNN

⎛
⎜⎜⎝

⎞
⎟⎟⎠. (1)

Here dij denotes the similarity coefficient, which measures
the degree of similarity between Fi and Fj.

Fig. 5. Simulated range Doppler video sequence of the human target.

Fig. 6. Alignment of the range profiles.

Fig. 7. Alignment of the range-Doppler video sequence.
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The exact form of the SSM depends on the similarity
measure used for calculating dij. Different similarity mea-
sures have already been proposed [15]. The selection of a
specific measure depends on particular applications.
Mutual information (MI) [16], a well-known statistical
measure for comparing vectors, is selected to compute the
SSM for radar signals. Unlike other classical measures (e.g.
Euclidean distance, normalized cross-correlation) that
compare intensities directly, the MI approach, which is
based on Information Theory, computes the statistical
dependence between two vectors using histograms.
Accordingly, MI-based SSM is independent of exact target
profiles (range, Doppler, or RD) and thus is less sensitive
to the range alignment process – an essential step to
compute SSM in the next section.

Since MI describes the shared information between two
vectors statistically, the MI-based SSM does provide a
simple way to quantitatively exhibit time series patterns.

The MI between vector X and Y is defined by:

I(X; Y) = H(X) + H(Y) − H(X, Y), (2)

where H(X ) denotes the Shannon entropy of vector X, and
H(X,Y) indicates the joint entropy of X and Y. Shannon
entropy [17] quantifies the expected information contained
in a vector. It has been widely used in radar-related applica-
tions. In [18], entropy-based approach is applied to remove
noise in micro-Doppler images. The threshold used in
denoise procedure is selected by maximizing the sum of the
object and background entropies. Entropy is also used to
assess the additional information introduced by new features
in human target classification [19]. In this study, MI is
defined via the entropy concept. The entropy of vector X is

Fig. 8. Self-similarity matrix of radar signals.
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defined by:

H(X) = −
∑M

m=1

Pm log2 Pm, (3)

where M is the number of histogram bins used to estimate the
empirical probability density. The histogram meets the follow-
ing condition:

Np =
∑M

k=1

Nk, (4)

where Np denotes the size of the vector X, and Nk indicates
the number of the samples whose intensities fall into the kth
bin. The empirical probability density in the mth bin is given
by:

Pm = Nm

Np
(m = 1, 2, . . . , M). (5)

Similarly, the joint entropy H(X,Y) can also be defined as:

H(X, Y) = −
∑M

m=1

∑M

n=1

Pmn log2 Pmn, (6)

where Pmn denotes the joint empirical probability density of
vector X and Y. More precisely, Pmn indicates the probability
for a given sample, which falls into the mth bin in histogram
i21, to be located in the nth bin in histogram i (it is a kind of
transition probability). It is given by:

Pmn = Nq

Np
, (7)

where Nq is the size of class set Qmn. The set Qmn is defined as:

Qmn = l|g(i−1, l) = m, g(i, l) = n
{ }

, (8)

where g(i,l) is the operator to get the histogram value of vector
i at sample l(1 ≤ l ≤ Np), and 1 ≤ m, n, ≤ M. Note that here
we assume X and Y have the same size Np.

Then, MI can be derived by equations (2), (3), and (6) as:

I(X; Y) =
∑M

m=1

∑M

n=1

Pmn log2
Pmn

PmPn
. (9)

It can be analyzed as a similarity measure between the
actual empirical joint probability, Pmn, and the empirical
joint probability in the case of independent vectors, PmPn.
Finally, the entries in SSM can be obtained by:

dij = I(Fi; Fj). (10)

B) Extracting SSM of radar signals
In general, extracting the SSM of the radar signals consists of
the following steps. First, we track the targets in range or RD
domain. Then the range profiles (or RDVS) are aligned using

target trajectory information. The aligned range-profiles and
RDVS can be seen in Figs 6 and 7, respectively. Note that
the micro-Doppler image does not require alignment, since
it naturally sums the information from all the range cells.
Although this study did use the position of the torso marker
as the centroid in alignment for simplicity, more details
about tracking and alignment for real data can be found in
our previous work [20]. It is also worth pointing out that
accurate tracking is not necessarily required for computing
SSM, since MI depends on histograms, rather than the
target profiles. At last, MI-based SSM can be computed for dif-
ferent radar signals.

The SSMs of different radar signals are shown in Fig. 8.
We may note the following unique properties of SSM: (1)
The diagonal shows the maximum amplitude of each row,
because the MI between one image and itself is always
maximum; (2) The repeated structures demonstrate the peri-
odic characteristic of the human motion, such as the bright
lines parallel to the main diagonal in (a) and (c), and the
bright “square” in (b). Although the textures of (a), (b),
and (c) all show some distinctive target signatures, the SSM
of RDVS in (c) obviously demonstrates the target periodic
characteristic in a more direct and simple way. One possible
explanation could be that RDVS is more informative than
range profiles and micro-Doppler image, as both range and
Doppler information of the target are used. The parallel
lines in (c) are experimentally found to be corresponding
to the cyclic motion of the human, and in fact the distance
between two parallel lines indicates the period of a half
cycle of the human motion (i.e. one complete motion of
one leg).

C) Angle-invariant characteristic of SSM
Since SSM mainly exhibits the self-repeating information of the
target motion, and MI is independent of target range/Doppler
profiles, SSM is considered to be invariant to radar observation
angles. Strictly speaking, SSM is not fully angle-invariant
around 908 and 2708, since targets can often not be detected
in these angles (detection is the pre-condition for analyzing
SSM). The SSMs (Figs 9(b)–9(e)) were simulated from four

Fig. 9. A person is walking from P1 to P2. Radars are deployed at four
locations.
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different radar locations, and the simulation scenario is shown
in Fig. 9(a). Results show that the HRRP-based SSMs presents
weaker periodic structures, and the micro-Doppler-based
SSMs are not robust at some angles (i.e. 1358, 2258). On the
contrary, the RDVS-based SSMs demonstrate similar periodic

textures in all aspect angles. This concludes that RDVS is able
to produce robust angle-invariant SSMs. These important
characteristics of SSM indicate its potential in the applications
of target association, classification and recognition in multi-
static radars.

Fig. 9. Self-similarity matrix of different radar signals from four radar locations.
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D) Component analysis of SSM
Since the RDVS-based SSM is seen to be more robust, it has
been used for further analysis. The SSMs of different body
parts are shown in Fig. 10. Although the SSM of the torso
and hands (Fig. 10(a)) show only weak similarity along the
slow-time axis, the SSM of the torso and feet (Fig. 10(b))
show clear bright lines that are parallel to the main diagonal.
This indicates that the most obvious contribution for SSM is
from the combination of torso and feet. One possible reason
for this phenomenon could be that the responses of feet and
torso are more separable in one RD image, which results in
larger contour changes in the adjacent frames of the RDVS.
It can also be inferred from the results that the hands move-
ment seems less periodic than the feet movement, and thus
spreads over the SSM image.

I V . G A I T P E R I O D I C I T Y A N A L Y S I S

Periodicity is an important feature of human motion. Fourier
transform is a common tool to analyze the frequency

components of periodic motion. To determine the gait period-
icity, we estimate the spectrum amplitudes of all the row
vectors in SSM. The vectors are detrended linearly, and the
final spectrum of SSM is estimated by averaging the spectra
obtained from all the row vectors [13]. The cadence frequen-
cies of the four RDVS-based SSMs in Fig. 9 are shown in
Fig. 11. Similar cadence frequencies (around 1.7 Hz) are
obtained from all the radars. This result demonstrates again
the angle-invariant characteristic of SSM shown in Fig. 9.
The SSMs for a walking/running person (see Figs 12(a) and
12(b)) clearly show the difference between two actions in
terms of different repetitive parallel lines. Figure 12(c)
points out that different human activities (i.e. walking and
running) can be distinguished according to their cadence fre-
quencies (1.7 and 2.7 Hz). Therefore, SSM can be a promising
tool for human target classification and recognition.

V . E X P E R I M E N T A L V A L I D A T I O N

A) Measurement set-up
The measurement was conducted in a room at Delft
University of technology to provide a typical indoor environ-
ment. An m-sequence pseudo-noise radar equipped with one
transmitting horn antenna and two receiving horn antennas
was used for the data acquisition (Fig. 13(a)). The operational
frequency band (at 210 dB level) of the radar is 0.8–1.6 GHz,
which gives a down-range resolution of 0.187 m. The sam-
pling clock frequency is 4.5 GHz and the length of the sam-
pling window in propagation time is 113 ns, which covers
an unambiguous range of 16.95 m. In the receiver, the
received signal is correlated with a replica recorded from the
transmitter. Thus a long m-sequence signal is compressed to
a short impulse and the signal-to-noise-ratio is increased sig-
nificantly via pulse compression. The PRI is 0.06 s, which
leads to a maximum unambiguous Doppler frequency of
8.33 Hz for the RD processing. The measurement was
carried out with one human target moving in the room
from P1 to P2 (Fig. 13(b)) with a constant velocity.

Fig. 10. Self-similarity matrix of different body parts.

Fig. 11. Cadence frequencies extracted from the SSMs in Fig. 9.
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Fig. 12. Gait analysis for different human activities.

Fig. 13. Measurement setup and scenario.
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B) Range-doppler video sequences
The RDVS was generated by RD processing in each receiver.
Each frame was computed with a CPI duration of 1 s (16 suc-
cessive pulses), and the time between two successive frames is
one PRI around 0.06 s. The range profiles used for generating
RDVS is shown in Figs 14(a) and 14(b), and the RD frames in
both channels at one specific slow-time instant are illustrated
in Figs 14(c) and 14(d). For simplicity, the maximum ampli-
tude of each RD image was selected as the centroid of the
human target for target alignment.

C) Self-similarity matrix
The SSMs obtained in different receivers are shown in Figs
15(a) and 15(b). It can be noted that they are very similar to
the SSMs obtained in the previous simulation (see Figs 8 and
9). The periodic characteristic of the human motion is demon-
strated clearly by the repeated lines, and the time between two
parallel lines indicates the period of a half cycle of the human
motion. The pixelization of these two images is due to the
lower frame repetition frequency (16.7 Hz) of the RDVS,
whereas 120 Hz was used in previous simulations. The
cadence frequencies of the two SSMs are shown in Fig. 15(c).
Similar cadence frequencies (around 1 Hz) were obtained in

both receivers. This proves again the angle-invariant charac-
teristic of the SSM. Finally, it is interesting to point out that
SSM preserves rich target information, and cadence frequency
is just one of the examples. Further investigation can be
interesting to analyze SSM and extract more target signatures
from it.

V I . C O N C L U S I O N

This study introduces the SSM approach to analyze human
slow-time behavior in the high-resolution radar. Motion
capture data were used to model typical radar signals (i.e.
range profiles, micro-Doppler image, and RDVS). The self-
similarity matrices with MI as the similarity measure have
been computed for simulated data. All the SSMs showed a sig-
nificant level of human periodic information. The SSM of the
RDVS has been further analyzed, and its angle-invariant char-
acteristic has been demonstrated. Fourier transform-based
periodicity detection was developed to determine the
cadence frequency, and different human activities (i.e.
walking and running) were separated from each other based
on the cadence frequencies. Finally, real experiments were
conducted to validate the simulation results. Using the pro-
posed slow-time feature, the SSM-based approach has good

Fig. 14. Human backscattering in multistatic UWB radar.
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potential for separation of multiple human targets observed by
a single high-resolution radar as well as target association in
distributed radar systems for area surveillance. In future, the
sensitivity of SSM to noise, clutter, and multipath will have
to be analyzed in detail.
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