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Introduction 1
“You ’ll find your way, John. You always do.”

-Benjamin Linus to John Locke

Modern societies rely heavily on information. If information was to stay in one
place, then there would be no much use of it. This is what led to the vast devel-
opment and employment of information networks, ranging from simple computer

networks to advanced telecommunication networks. In any of these cases, information
travels throughout the network and it is imperative to find its way from its source to its
destination.

In the case of computer networks, information (represented as data) is divided into
packets that are routed from the source towards the destination through intermediate
nodes. Each packet consists of a header (that contains information about the source and
the destination) and the payload (that contains the actual data). In each intermediate
node it must be decided where to forward the packet based on a routing table and the
destination. The destination address is looked up in the routing table to decide the
action to be taken (see Figure 1.1). This process of searching in the routing table is
called address lookup.

Figure 1.1: A simple depiction of address lookup for routing purposes. Destination address G is
looked up and found to belong in range [C,D).

A lot of research is available regarding routing and its issues. This thesis focuses
specifically on the address lookup problem in the context of internet routing and presents
an efficient and scalable hardware design for address lookup based on the novel Range
Trie algorithm introduced by I. Sourdis in [26].

The rest of this introductory chapter is organized as follows: Section 1.1 explains in
more details the address lookup and gives an overview of its use in a variety of research
fields. Section 1.2 focuses on the specifics of the address lookup current problems that
motivated this thesis. Section 1.3 states the goals of this thesis and its contributions.
Finally, section 1.4 concludes this chapter with an overview of the thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Address Lookup

It was previously stated that our focus is on address lookup. Address lookup is an
elementary operation in computer networks (and information exchange networks in gen-
eral). Every network routing element must support it and its significance triggered the
development of the address lookup research field.

In computer networks, each network element is characterized by its Internet Protocol
(IP) address. In the case of Internet Protocol version 4 (IPv4), each IP address is
represented as a 32-bits wide binary number. Address lookup for computer networks
may be defined as the procedure of determining the range that an IP address belongs to,
out of a given set of IP address ranges (routing table). Given an address space [0, 2n) and
k unique IP addresses/bounds Ai, where 0 < Ai < 2n − 1 and i = 1, 2, ..., k, that define
k + 1 address ranges Rj (j = 1, 2, ..., k + 1), then an address lookup is to determine the
range Rj an incoming address AIN belongs to. In the case of IPv4, n = 32. Figure 1.2
depicts graphically an example address lookup, as specified above, for an address space
consisting of 6 ranges (k = 5) and an incoming address AIN belonging in range R3

(A2 ≤ AIN < A3).

Figure 1.2: Address lookup problem specification

Address lookup is not limited just to computer networks. It could also be applied
to other research fields that may or may not relate to network routing. In general, this
lookup process narrows down to determining in which range an address belongs to out
of a given set of ranges.

A variety of research domains may need this function and thus a lot of research effort
has been spent on address lookup. A list of some of these research fields follows:

• In internet routing [22], as mentioned, routers need to forward packets based on
the destination IP address of a packet. The decision is made by searching the
destination IP address in the router’s lookup table.

• In packet classification [31], [13], [24], [9] a lookup must be performed for one or
more of the packet header fields to classify the packet based on a set of rules and
then perform a defined action.

• In interprocessor communication, the newly proposed progressive address transla-
tion of virtual addresses to physical ones [16] needs to perform a translation lookup
as the interprocessor communication shares a common address space.
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The rest of this thesis will focus more on the application of address lookup of IP
addresses for routing purposes. In any case, the findings of this thesis could be applied
to all the mentioned research fields that have a need for address lookup.

1.2 Problem Statement

In the previous section, it was stated that a lot of research has been performed on address
lookup for a variety of research fields. The question now is why deal with address lookup,
since it is already a mature research domain, as old as network routing. In this section
the issues that motivated this thesis are presented.

The rapid growth of internet traffic (see Figure 1.3), the increase in the number of
network devices and the subsequent growing size of routing tables make more difficult for
address lookup to keep pace with the increasing need for faster processing rates posed by
the technological advancements in communication speed and bandwidth. Furthermore,
the transition from the 32-bits wide IPv4 addresses to 128-bits wide IPv6 addresses
demands for address lookup solutions that may scale efficiently in terms of the address
width.

Figure 1.3: Projected U.S. Internet traffic growth until 2011 and for 2015. An exabyte equals to
260 bytes. (Source: [30])

The currently available lookup solutions have started lagging behind; they may have
worked well for past routing conditions but need to be improved in order to handle
the multi-gigabits-per-second traffic rates. In particular, a mechanism is desired for ad-
dress lookup that has low latency, high throughput and low memory requirements. At
the same time, it should scale efficiently when the address width and/or the number
of ranges increases. By scaling efficiently, we mean that an increase in address width
and/or the number of ranges should affect minimally the latency, throughput and mem-
ory requirements. Out of these requirements, extra effort must be placed on the memory
requirements because the size/bandwidth of the memories tends to dictate the efficiency
and cost of the implementations.

Although these requirements are targeted for dealing with upcoming internet routing
problems, there are present also to the other research fields that use address lookup
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and they could benefit from solving these problems. In packet classification, a high
throughput is still needed for looking up the multiple fields of the incoming packets,
although the number of ranges is significantly smaller than those of internet routing.
Similarly, in interprocessor communication [16], where the number of ranges is also small,
there are higher constraints for lookup latency and throughput in order to sustain the
performance of multicore systems.

In general, it could be said that the problem is that address lookup has the trend
of becoming the bottleneck in the systems that they use it. An address lookup must be
performed at wire speeds. At the same time the other requirements for a good lookup
scheme (memory, scalability) should be considered [33]. The problem of designing such
a scheme is the main motivation behind this thesis.

There is already a variety of algorithms and methods for address lookup that have
started lagging behind, as already mentioned. This thesis focuses on the Range Trie
algorithm introduced by I. Sourdis in [26] that promises to solve these problems.

The Range Trie algorithm posed an extra motivation behind this thesis because it is
addressed here from the aspect of hardware design and implementation. Although the
work in [25] and [6] proved the benefits of the Range Trie algorithm, this thesis focuses
on an efficient hardware design and implementation of the Range Trie in order to sustain
its benefits in a real-world design.

1.3 Thesis Goals and Contributions

In the previous section, the problems that arise in current solutions for address lookup
were described. This thesis tries to solve the problems mentioned before by an efficient
hardware design and implementation of the Range Trie algorithm.

The goal of this thesis is a design and implementation of the Range Trie algorithm
that exploits optimally the inherit characteristics of the Range Trie structure: (a) low
lookup latency, (b) high throughput, (c) low memory requirements, (d) acceptable scal-
ability of (a)-(c) in terms of the lookup address width and number of address ranges.

The contributions of this thesis are:

• A hardware design of the Range Trie algorithm: For the first time, the
Range Trie algorithm is designed for a hardware implementation. During the de-
sign, extra effort was used to ensure that the hardware design exploits the charac-
teristics of the Range Trie algorithm, as mentioned in (a)-(d) above. The resulting
design is parameterizable in terms of address width, memory bandwidth and num-
ber of processing stages in order to accommodate the address lookup needs of the
application under consideration.

• A complete design flow for hardware implementation and validation: A
complete design flow was created for generating Range Trie instances. Starting
from the required design parameters and a Range Trie structure, generated by
Ruben de Smet in [6], a synthesizable design of a Range Trie is generated in a
hardware description language, along with the means to (a) configure it according
to the given structure and (b) validate its correct operation.
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• Evaluation of the Range Trie design: A variety of Range Trie instances was
generated and synthesized for 2 ASIC technologies (90nm and 130nm) in order to
evaluate each design point in terms of operating frequency, area, power consump-
tion and memory requirements. This design space exploration proved the Range
Trie scalability and offers the designer a chance to choose the suitable parameters
for its case. A comparison was performed with other existing solutions for address
lookup. The findings may be used accordingly to other research fields that need
address lookup.

The means to achieve the goals and the contributions of this thesis are presented in
the rest of this text’s chapters, as described in the following overview of this thesis.

1.4 Thesis Overview

This section concludes the introductory chapter of this thesis and presents the overview
of the following chapters.

In Chapter 2, the related work that exists in the literature regarding address lookup
is presented. The presented solutions are both algorithmic approaches and hardware-
targeting schemes and they origin mainly from the network routing and packet classifica-
tion research domains. This chapter also introduces and details the Range Trie algorithm
of [26] that is the main focus of this thesis.

Afterwards, the hardware design of the Range Trie algorithm is explained in detail
in Chapter 3. All the design steps are discussed for obtaining a complete, synthesizable
design. Chapter 4 presents and evaluates the results of synthesizing the Range Trie
design for ASIC.

Finally, Chapter 5 concludes this thesis by summarizing its contributions and con-
clusions and by presenting some ground for future works.
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Address lookup is the operation of looking up in a table to find a range that an

incoming address belongs to. As mentioned in Section 1.2, a good address lookup
scheme should have low lookup latency, high throughput, low memory requirements

and good scalability in terms of the lookup table size and the address width. There is
already a variety of address lookup schemes but they have started lagging behind due to
the recent internet traffic/speed growth. Thus, it is imperative to improve on the current
schemes. The Range Trie algorithm, introduced in [26] promises a lookup scheme that
satisfies the posed requirements. This Range Trie approach is the main focus point of
this thesis.

In this chapter, the background material that is needed for the rest of this thesis will
be presented. After discussing on a variety of related designs and algorithms for address
lookup (Section 2.1), the Range Trie algorithm will be described (Section 2.2).

In order to understand the related methods for address lookup, it is important to start
from the first attempts that tried to deal with the causes of the lookup problem.

Initially, the approach that was followed was to reduce the lookup tables growth
rates by using different addressing schemes. The first addressing scheme that was used
was a simple address allocation scheme that divided addresses into three classes. This is
known as the classful addressing scheme. In this scheme the address was split into two
parts: the network part, followed by the host part. There were three different classes of
addresses with different network part widths. Addresses of class A, B, or C consisted
of an 8, 16, or 24-bits network part and a corresponding 24, 16, or 8-bits host part.
Doing an address lookup in this scheme was a relatively simple operation; a lookup
was narrowed down to make an exact prefix match using standard algorithms based on
hashing or binary search. This scheme worked well initially, but the continuous growth
in the number of hosts and networks lead on the exhaustion of the IP address space
rather quickly. Furthermore, the increase in the lookup table size was still prominent.

To deal with the problems of the clasful addressing scheme, the classless interdomain
routing (CIDR) addressing scheme was introduced [11]. With CIDR the prefixes may
be of variable length, instead of 8, 16 or 24-bits wide. This scheme allowed for a more
efficient use of the IP addresses, along with the aggregation of addresses. So, the lookup
tables needed to keep less prefixes. The trade-off was that the lookup process got more
complicated as it was now required to make a longest prefix match instead of an exact
prefix match.

Despite the use of CIDR, the routing tables kept growing. This resulted in a shift
in the research effort from trying to reduce the inherit growth of the lookup table sizes
into finding more efficient lookup methods that are scalable with respect to the number
of lookup table entries. At the same time, the lookup methods should have low memory

7
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requirements, low latency and fast lookup times. A new requirement that appeared with
the introduction of IPv6 was to find lookup algorithms that are also scalable with respect
to the address width.

As already mentioned, there is a plethora of currently available solutions for address
lookup that try to achieve these requirements but have started to lag behind due to
the internet traffic/speed growth. Some of these will be discussed in Section 2.1 of this
chapter. In Section 2.2, the Range Trie algorithm, that is an improvement on the current
solutions, will be presented in detail. The improvements of the Range Trie will be proven
later in Chapter 4. Finally, this chapter concludes with its summary in Section 2.3.

2.1 Related Designs and Algorithms for Address Lookup

In this section, a representative set of address lookup solutions which exist in the related
literature will be presented.

Before proceeding, it must be noted that these solutions approach the address lookup
problem from two equivalent sides; others consider it as a longest prefix matching prob-
lem, others as a range lookup problem. The actual difference is in the way that they
represent the lookup table. The former approaches consider the lookup table as a set
of address prefixes. Each address prefix is in the form of a binary number followed by a
star, which actually represents the range of addresses that start with this binary number.
The latter approaches consider the lookup table as a set of range bounds that define the
address ranges. Both representations of the lookup tables are equivalent (see Table 2.1)
and suitable for address lookup. Although the research problem is the same, the differ-
ence is in the means to solve it. Former approaches research on performing a longest
prefix matching, while the latter try to find a matching range.

Table 2.1: The address ranges represented as equivalent address prefixes. These address
ranges/prefixes will be used as an example lookup table in the methods discussed in the rest
of this section.

Address Range Address Prefix
a [000000, 111111) 0*
b [010000, 010010) 01000*
c [011000, 100000) 011*
d [100000, 111111] 1*
e [100000, 101000) 100*
f [110000, 110100) 1100*
g [110100, 111000) 1101*
h [111000, 111100) 1110*
i [111100, 111111] 1111*

According to the taxonomy of Ruiz-Sanchez et. al. in [22] the existing address lookup
solutions may be categorized into “search on length” or “search on values” approaches
according to the dimension the search is based on (see Figure 2.1). Waldvogel et al. in



2.1. RELATED DESIGNS AND ALGORITHMS FOR ADDRESS LOOKUP 9

[32] added an extra classification of the methods depending on the type of the search
traversal (sequential or binary search on length or values).

Figure 2.1: Address lookup search dimensions. The search space that is being traversed by a
lookup method may be either on the length of the addresses (“search on length”) or on their
values (‘search on values”).

In the rest of this section, a variety of existing designs and algorithms for address
lookup will be presented. These address lookup schemes may not come directly from
the internet routing domain, but from other research domains that also need a form of
address lookup, such as the packet classification research field. The presented related
work is a mixture of algorithmic approaches to address lookup and hardware-targeting
address lookup designs.

Specifically, in Sections 2.1.1 through 2.1.5 the sequential “search on length” ap-
proaches are considered starting from the elementary binary trie structure (in Section
2.1.1) and proceeding to more advanced trie structures. Then a binary “search on length”
approach will be discussed in Section 2.1.6. Afterwards, the basics of sequential “search
on values” will be presented in Section 2.1.7, followed by the binary “search on values”
approach of range trees in Section 2.1.8. This section concludes with a set of hardware-
targeting approaches in Sections 2.1.9 through 2.1.13.

2.1.1 Binary Trie

The most natural way to perform longest prefix matching for the purposes of address
lookup is to represent the address prefixes using a trie. A trie performs a sequential
“search on length”. As shown on Figure 2.2, a trie is a tree-based data structure allowing
the organization of prefixes on a binary basis by using the bits of prefixes to direct the
branching [22].

Each node of the binary trie has at most two children, each one corresponding to
the next bit of the address prefixes. A search in a trie is guided by the bits of the
destination address. At each node, the search branches either left or right, depending on
the next bit of the incoming address. This means that at the level l of the range trie, the
l most significant bits of the incoming address have been inspected and address prefixes
of length l may be matched. The search ends when there are no more branches to take
and the search result is the last address prefix node encountered.
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Figure 2.2: A binary trie for a set of address prefixes. Prefix nodes are shown in a darker color.
As an example, the path followed to match the incoming address 010000 to prefix B is shown.

As mentioned, a binary trie search is a “search on length” sequential approach. At
every step through the trie, the search space is reduced and a better match is trying
to be found. A binary trie lookup for incoming addresses of length W takes O(W )
steps. This means that the binary tries doesn’t scale well in terms of the address width.
Furthermore, they produce an unbalanced decision tree with large depth and relatively
high memory requirements.

2.1.2 Path-Compressed Tries

An improvement on the binary tries, presented in Section 2.1.1, are the path-compressed
tries which are also a sequential “search on length” approach. Binary tries often suffer
from long search paths that are a long sequence of one-child nodes (i.e. address prefix
B in Figure 2.2). It may be avoided to traverse such paths and also reduce the needed
memory by invoking a technique called path compression. Path compression removes
one-way branch nodes, so that each non-leaf node has two child nodes, resulting in a
more balanced trie with less levels. That way, during the traversal of the decision tree,
some bits of the incoming address may not be inspected.

An example of applying path-compression on the trie of Figure 2.2 may be seen in
Figure 2.3. Note that additional information is stored on the trie to ensure the correct
matching operation during the traversal of the trie: (a) each node is annotated with the
bit position of the incoming address to be inspected next and (b) prefixes may need to
be stored in the nodes where path-compression was applied in order to perform a check
that the prefix match is valid (due to the non-inspection of some bits on the one-child
nodes paths, the depth of a node is no longer equal to the length of the address prefix
stored).

Traversing the path-compressed trie is similar to the one of binary tries, except for
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the following differences: (a) the bit of the incoming address to be inspected is the
one indicated by the bit-number field in the visited node, instead of just the next bit,
and (b) when a prefix node is encountered, a comparison to the actual address prefix is
performed. If a match occurs, the prefix is stored as a match and the traversal continues.
The procedure stops when reaching a leaf node or when a mismatch occurs. The result
of the lookup is the last matched prefix.

Figure 2.3: A path-compressed trie for a set of address prefixes. Prefix nodes are shown in a
darker color. As an example, the path followed to match the incoming address 010000 to prefix
B is shown. The inspection starts from the 1st bit of the incoming address (0) and thus we go to
the left. This is a prefix node, so a successful prefix matching is performed for the corresponding
part of the incoming address (0) and prefix A is stored as a match. Then we skip the 2nd bit of
the incoming address and its 3rd bit (0) will be inspected as indicated by the bit-number field and
thus we go to the left. This is again a prefix node, so a successful prefix matching is performed
for the corresponding part of the incoming address (01000) and prefix B is stored as a match.
Since this is a leaf node, the process completes and it reports a match to prefix B.

Path-compression was first introduced in the PATRICIA scheme by Morrison in [19].
This was modified later by Sklower, in [23], to also support longest prefix matching
and non-contiguous masks. The most commonly available implementation of a path-
compressed trie is the one found in the BSD Unix kernel, also known as BSD trie, where
during the lookup process a backtrack occurs in order to retrieve the longest prefix match.
This means that the worst-case search time is O(2 ∗W ), where W is the address width.
Even for a efficient implementation of the BSD trie, the worst-case search time would
be at best O(W ). This indicates that the path-compressed trie does not scale well in
terms of the address width. This is the reason why the rest sequential “search on length”
approaches to be presented focus on improving the worst-case search time complexity
by reducing the trie depth furthermore.

2.1.3 Multibit Tries

Multibit tries are an improvement of the binary tries. They are a sequential “search on
length” approach that provides a constant factor improvement. Instead of inspecting
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one bit at a time, they inspect several bits simultaneously. The number of bits that are
inspected per step is called stride. As a result, the trie depth decreases and the branching
factor of a node increases, as each node has now 2k child nodes, where k is the stride.
A multibit trie may have a fixed stride (all nodes of a level have the same stride) or
a variable stride. The process of searching in a multibit trie is almost identical to the
binary trie, except that more bits may be inspected per step. An example variable-stride
multibit trie based on the binary trie of Figure 2.2 is depicted in Figure 2.4.

Figure 2.4: A variable-stride multibit trie for a set of address prefixes. Prefix nodes are shown in
a darker color. The stride of each node is the number of bits that need to be inspected in the next
search step. Note the duplication and prefix expansion of nodes A, D and C. As an example, the
path followed to match the incoming address 010000 to prefix B is shown.

Choosing the optimal strides is a trade-off between search speed (trie depth) and
memory requirements (number of nodes). Because multibit tries cannot support arbi-
trary prefix lengths, it is needed to transform the prefix addresses into a compatible set
where some prefixes need to be expanded. For example, in Figure 2.4, prefixes A and
A needed to be expanded into 2 bits and prefix C into 4 bits. Prefix expansion leads
to more memory use. Also, using a fixed stride tends to waste more memory due to
unnecessary node duplications.

In [28], Srinivasan et al. present a method to select the optimal strides for fixed-stride
tries and variable-stride tries, based on the given address prefixes. They use dynamic
programming in order to minimize memory requirements and guarantee a worst-case
search time.

Another practical approach for choosing the strides was followed from Gupta et al.
in [12]. They noticed that in a typical backbone router of the time most of the address
prefixes had a length of 24 bits or less. So, they opted for a first-level stride of 24 bits
and a second-level stride of 8 bits. In this way, only two steps are needed for address
lookup in the cost of extra memory resources (i.e. just the first-level memory size is 32
MBytes).
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2.1.4 Level-Compressed Tries

Nilsson et al. in [20] combined the multibit trie (see Section 2.1.3) with the path compres-
sion technique (see Section 2.1.2) to gain in search time. The new scheme they introduced
is also a sequential “search on length” approach and is called Level-Compressed Tries
(LC-Tries). In level-compression, k-level full binary subtries are recursively replaced
with a corresponding one-level k-stride multibit trie. That way the initial k levels are
“compressed” into one and the search time is reduced. An example LC-Trie is shown on
Figure 2.5, based on the path-compressed trie of Figure 2.3.

Figure 2.5: A Level-Compressed trie for a set of address prefixes. It is the result of transforming
the path-compressed trie of Figure 2.3 into a multibit trie. As an example, the path followed to
match the incoming address 010000 to prefix B is shown.

An optimization to the level-compression technique is to loose the criterion for subtrie
replacement. Instead of demanding a full binary subtrie, we may demand only a fraction
of branches to be present. The required fraction is represented by the fill factor x
(0 < x ≤ 1) that may be used as the deciding value. The fill factor offers the possibility
of a trade-off between time (trie levels) and memory requirements (number of nodes);
using low fill factors decreases the trie depth, by increasing the branching factor, but
may introduce unnecessary leaf nodes.

This approach of combining multibit tries with compression yields fast search times
and has been used by various schemes, like the full expansion/compression scheme by
Crescenzi et al. in [5] and the Lulea algorithm by Degermark et al. in [7].

2.1.5 Hierarchical Intelligent Cuttings (HiCuts)

The Hierarchical Intelligent Cuttings (HiCuts) algorithm introduced by Gupta and
McKeown in [14] is targeted for packet classification, where the search space is multi-
dimensional.

In HiCuts, heuristic methods are used to partition the multi-dimensional space and
to create a tree to search the partitioned space. Each leaf node of a HiCuts tree rep-
resents a small set (bucket) of matches that must be searched sequentially in order to
obtain the best match. The characteristics of the HiCuts tree are decided based on the
characteristics of the search space. The parameters of the HiCuts heuristics may be
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tuned in for a trade-off between search time and memory requirements.
In our problem domain, where we deal with address lookup, the search space is single-

dimensional. An example HiCuts tree for address lookup is depicted in Figure 2.6. Note
that HiCuts actually constructs a variable-stride multibit trie with leaf nodes containing
more than one address ranges.

Figure 2.6: A HiCuts tree for address lookup for a set of address prefixes. The HiCuts method
has been applied for a single dimension in order to support the single-dimensional search space
of address lookup. The maximum bucket size was set to 2 and the maximum number of cuts
was set to 4. Bucket nodes are shown in a darker color. An example traversal for matching the
incoming address 010000 is shown. Traversing the HiCuts tree directs us to bucket {A, B}, where
a sequential longest matching procedure matches the incoming address to the address prefix B.

A similar approach to HiCuts was introduced by Woo in [34], called modular packet
classification. This is a solution for the packet classification problem based on a multi-
stage search over ternary strings representing the classification rules. There are three
steps of searching performed to classify a packet: search an index jump table that points
to a search tree, searching the corresponding tree to reach a bucket, search into the bucket
to retrieve a match. The second and third search resemble the HiCuts procedure. The
interesting part is the beginning of the search where selected bits of the input packet are
addressing the index jump table. An example of modular packet classification modified
for address lookup is depicted in Figure 2.7.

2.1.6 Binary Search on Length

The trie “search on length” approaches presented so far were sequential approaches;
in each step one or more bits of the incoming address were inspected leading to the
reduction of the search space. Another sequential “search on length” approach would
be to organize prefixes into different hash-tables according to their lengths and start the
search from the hash-table holding the longest prefixes using hash techniques [32]. The
latter technique does not result in a reduction of search time.

Waldvogel et al. in [32] suggested a binary “search on length” approach where the
search space is reduced by half after every step. In each step the corresponding length
hash-table is searched to check if a match exists in the given length and to decide how
to proceed; in which half to continue the search. To ensure choosing the correct next
step (checking for shorter or longer length) extra prefixes (called markers) are added to
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Figure 2.7: The modular packet classification approach for address lookup for a set of address
prefixes. The approach has been applied for a single dimension in order to support the single-
dimensional search space of address lookup. The maximum bucket size was set to 2 an the
maximum number of cuts was set to 4. Bucket nodes are shown in a darker color. Biti denotes
the bit to be inspected. An example traversal for matching the incoming address 110000 is shown.
Traversing the structure is the same with HiCuts, except for the first step were bits Bit5 and Bit3
(10) are searched in the index jump table and guide the search to the corresponding search tree.

Figure 2.8: A binary “search on length” approach for a set of address prefixes. Prefix nodes are
shown in a darker color. Markers are notated with ‘M’. The trie is not used during the search; it
is present only for clarification. As an example, the path followed to match the incoming address
11000010 to prefix K is shown. We begin by searching in the table for length 4 and a match
occurs with prefix f, so we move to search the table for length 6. A match occurs with the marker
110000*, so we move to search the table for length 7, where the final match with prefix K is found.
(If the marker 110000* was not there, then a mismatch would have happened and we could not
finally get the correct prefix match. If the incoming address was not an exact match with prefix
K, then we would not be able to get the correct prefix match (i.e. prefix F). This is why marker
nodes also hold the best matching prefix (i.e. prefix F) so far.)
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the tables. So, when looking for a match in a specific prefix length table, if a match is
found, the search proceeds to longer lengths; otherwise it proceeds to shorter lengths.

To perform the binary “search on length” a binary tree and the corresponding length
prefix hash-tables are needed. Figure 2.8 is an example of such a structure. The trie in
the figure is not needed but it is shown for clarification purposes. The search is performed
by traversing the binary tree on the right-side. Depending on the visited node of the
binary tree, the corresponding hash-table is checked for a match. Each hash-table for
prefix length l stores the prefixes and markers of the level l of the trie.

2.1.7 Sequential Search on Values

The simplest method for address lookup is a sequential “search on values”. In this an
exhaustive linear search is performed; the incoming address is attempted to be matched
with each one of the address prefixes one by one. Every time that there is a match, the
longest match is kept and the process continues until all the address prefixes have been
checked. Although this scheme is straightforward and independent of the address width,
the required time scales linearly with the number of address prefixes, so it is prohibited
to be used in the current internet traffic conditions. Non-sequential “search on value”
approaches are preferable and are presented in the following sections.

2.1.8 Range Tree

The range tree is a typical binary “search on values” approach. Instead of moving on
the length dimension, the search is performed by moving on the values dimension. This
means that the range tree performs value comparisons to traverse the search space.

The search in a range tree is done in a similar way as the known binary search.
In every node, one value is compared against the incoming address. Depending on the
outcome of the comparison, we move to the next corresponding node, until a leaf node
is reached and get a range match. The range tree divides the search space in two parts
after every comparison. So, it is important to choose the optimal values to compare in
every step. It must be noted that we no longer try to match address prefixes, but rather
find the address range that an incoming address belongs to. This means that the values
to be compared at each step must have the same width as the incoming address and the
address prefixes have been expanded to this common length.

An example range tree may be seen in Figure 2.9. Note that the range table covers
the entire address space. Range trees lead to more balances trees, with smaller depth,
but the cost of memory accesses is higher, since more data need to be retrieved per step.

A descendant method of the range tree is the multiway range tree [33], where instead
of a single comparison per step, more comparisons are performed. In a multiway range
tree, internal nodes may have k branches by perfomring k-1 comparisons. An example
multi-way range tree is shown in Figure 2.10 and is the equivalent of the single-way range
tree of Figure 2.9. It can be seen that the tree depth was further reduced at the expense
of higher needed memory bandwidth and resources.
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Figure 2.9: A binary range tree for a set of address prefixes translated into range bounds. Range
nodes are shown in a darker color. As an example, the path followed to match the incoming
address 010000 to range R2 (prefix B) is shown. The search starts from the root node, where
incoming address 010000 is compared to 101000 and is found to be smaller (L). Thus, we visit
next its left child, where 010000 is found to be less (L) than 010010. The process continues until
the range node R2 is reached.

Figure 2.10: A multiway range tree for a set of address prefixes translated into range bounds.
Range nodes are shown in a darker color. As an example, the path followed to match the incoming
address 110000 to range R7 (prefix F) is shown. The search starts from the root node, where
incoming address 110000 is compared against 100000, 101000 and 111100 and is found to be
larger (GE) than 101000 and less than 111100. Thus, we visit next the right node of the second
level, where 110000 is found to be egual (GE) to 110000 and less (L) than 110100. So, we visit
next node R7 which happens to be a range node and the search is completed.

2.1.9 TCAMs

Using the hardware element of Ternary Content Addressable Memories (TCAMs) is an
attractive hardware-based solution for constant-time address lookup. A TCAM, un-
like regular memories, is addressable by data. The user supplies a query data and the
memory tries to find it and returns the address that the data are stored (if they exist).
Furthermore, TCAMs allow a third matching state “X” (don’t care), instead of matching
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just zeros and ones. This means that a memory entry in TCAMs may hold the binary
value of the address prefix to be matched, along with a mask specifying which bits of
the memory entry should be compared to the query data.

Such a structure is all that is needed to perform address lookup. The TCAM is set
up with the address prefixes/masks, so that a longest prefix match may be done in every
clock cycle (O(1) search time). Using TCAMs is like performing an exhaustive sequential
“search on values” but in a completely parallel fashion; all the comparisons happen at
the same time due to the TCAM structure (see Figure 2.11).

Figure 2.11: The TCAM structure for address lookup for a set of address prefixes. Note the
existence of a priority encoder because multiple memory entries may match for a single search
key. The TCAM has been properly set up with the address prefixes values and masks. An example
lookup for matching the incoming address 010000 is shown.

Although TCAMs offer the best available lookup time, their use is reasonable only
for small lookup tables. TCAMs suffer from four deficiencies [31]: (1) high cost per
bit compared to other memory technologies, (2) storage inefficiency, (3) high power
consumption, (4) limited scalability to long input keys.

In [27], Spitznagel et al. introduced the extended TCAM to address the power
consumption and storage inefficiency problems of TCAMs by limiting the active regions
of the device during a search and by employing a multi-level memory hierarchy. Despite
the improvements, using TCAMs is still not a suitable solution for the future large-scale
lookup problems.

2.1.10 IPstash

In [17], Kaxiras and Keramidas proposed a memory architecture (the IPStash) for ad-
dress lookup that acts as a TCAM replacement. Their approach offers higher perfor-
mance and significant power savings compared to the TCAM approach, while allowing
for high update rates.

Their proposed architecture is similar to the set-associative caches but is designed
to facilitate address lookup (in particular longest prefix matching). IPStash holds a
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complete lookup table instead of just a small part of the data set (as caches do). It is
based on the observation that address lookup only requires associativity depending on
the routing table characteristics. To perform the address lookup in IPStash, first they
define the index and tag parts of the incoming addresses. The index is set to a static
length (i.e. the 8 most significant bits) and the tag is set to be a variable-number of
N following bits. The IPStash lookup process consists of, first, storing the prefixes into
a set-associative structure according to their indices and then determine within a set
which is the longest prefix match based on the tags (see Figure 2.12).

Figure 2.12: The IPStash architecture for address lookup (longest prefix matching) for a set of
address prefixes. The index (8 most significant bits) of the incoming address is used to “retrieve”
(using an indexing function) a set of candidate matching prefixes out of a set-associative structure.
Then each prefix in the set is attempted to be matched to the incoming address. What needs to
be matched is the tag of the incoming address (the N bits following the index). The tag may be
of variable length and this length is stored in the structure. Since there may be many candidate
matches, the longest prefix match is chosen by determining which matched tag is wider.

To benefit from this approach they investigated on the lookup table characteristics
in order to increase the index length (to address a larger number of sets) and partition
the lookup table into classes (each with its own index). The resulting increase in index
numbers and, thus, the requirement of extra hash functions led to the application of skew
associativity where different indexing functions are used for each of the set-associative
ways.

2.1.11 Bloom Filters

The Bloom filter, conceived by Bloom in 1970 [3], is a probabilistic data structure that
is used to test if an element is a member of a set of elements or not. A Bloom filter is
actually a bit-vector of m bits, initially all set to 0. Alongside, there are k hash functions
defined, each one of them mapping a set element to one of the m bits of the Bloom filter.
Before using the Bloom filter, it must be programmed for the given set of elements. To
add a set element A, the element A is fed to the k hash functions in order to get k
bit-vector positions and set them to 1. To search if an element B is part of the set of
elements, the element B is fed to the k hash functions to get k bit-vector positions. If
any of the bits in these k positions is 0, then B is not part of the set. Otherwise, if all
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bits are 1, then B belongs to the set with a certain probability; B may either be a part
of the set or not (false positive). This ambiguity comes from the fact that the bits of the
Bloom filter may be set by any of the set elements. The probability of a false positive
may be reduced (but not eliminated) by changing (a) the number of entries stored in a
filter, (b) the size of the filter, (c) the number of hash functions used to probe the filter.
An example of a Bloom filter is shown on Figure 2.13.

Figure 2.13: An example of the Bloom filter data structure. In this case the Bloom filter is 15-bits
wide and there are three hash functions. The original set element that programs the Bloom filter
is a, b, c. The 3 hash functions are applied for each element, resulting in the filling with ones
of the corresponding positions in the bit-vector. Searching if element d belongs in the set fails,
because one of the bits retrieved from the hash functions is 0. Examples of a successful search
(for element c) and a false positive search (for element f) are also shown.

Another approach to Bloom filters are the counting Bloom filters [4], where m coun-
ters are used instead of an m bit-vector. The use of counters allows the deletion of
elements from the original element set by decrementing the respective counters. This
dynamically changing of the element set was not possible on the original Bloom filters.
The trade-off is that a counting Bloom filter will occupy more space compared to the
original Bloom filters.

Dharmapurikar et al. in [8] used Bloom filters for address lookup. Their approach
consists of sorting the address prefixes by prefix length. For each prefix length they
associated a Bloom filter and programmed it. Also, hash-tables were constructed for
each prefix length. The search on this approach starts by performing parallel queries to
the Bloom filters by querying the respective part of the incoming address. The result is
a bit-vector stating the matches for each prefix length (false positives may occur in it).
Afterwards, the corresponding length hash-tables are searched, starting from the longest
prefix length ones. The search stops when a match is found or when all hash-tables
indicated by the bit-vector have been searched. Searching in the hash-tables eliminates
the effect of false positives.

Their motivation for using Bloom filters was to avoid the inefficient TCAMs and
use modest amounts of SRAMs. The proposed architecture managed to achieve bet-
ter performance and scalability than TCAM approaches. They researched on system
configurations (amount and allocation of memories) to minimize the number of hash-
table searches per address lookup. To succeed they introduced the use of (a) asymmetric
Bloom filters (scaled width Bloom filters depending on the prefix distribution), (b) direct
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lookup arrays (for smaller hash-tables) and (c) controlled prefix expansion1 (to reduce
the number of required filters). Performance may now stay constant for longer address
widths or larger lookup tables, as long as memory requirements scale linearly with the
number of address prefixes. Using Bloom filters for address lookup achieved on average-
case one hash search per lookup or, at worst-case, two hash searches and one array access
per lookup.

2.1.12 Tree Bitmap

Eatherton et al. in [10] introduced the tree bitmap data structure that resembles a
multibit trie and the compression techniques of Lulea [7]. Their main effort was into
compressing the address prefixes as much as possible in order to reduce the memory
access width of the lookup process.

Figure 2.14: The tree bitmap data structure. In (a), the original trie is shown partitioned into
3-stride multibit nodes. Each multibit node holds a position to an array as shown in (b). Note
the single pointer to the beginning of the child array. The result array and result pointers are
not shown (assume that the dark shaded prefix nodes point to it). The way to retrieve the two
bitmaps of a multibit node is shown in (c).

1Controlled prefix expansion [28] selects a small number of prefix lengths to be searched. The address
prefixes with different length, than the selected ones, are expanded into multiple entries of the next
higher selected length.
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They used a data structure where they first partition the original trie into multibit
nodes. Each multibit node is a k-level tree of the trie. For each multibit node, the
necessary search information are encoded as: (a) a pointer to the children multibit nodes,
(b) a bitmap for the internal stored prefixes of the multibit node and (c) a bitmap for
the external pointers of the multibit node. All child nodes of a multibit node are stored
contiguously in the memory, thus a single child pointer is required per node. At every
step of the search, a multibit node produces the pointer to the next multibit node to be
processed at the next step. When the search terminates, a result pointer points to the
result array to determine the action to be taken by the lookup process. An example of
a tree bitmap data structure is shown in Figure 2.14.

The tree bitmap data structure may be used with any structure of modern memories
by tuning the multibit node strides for the specific memory characteristics. Changing
the stride affects the number of bits that represent each multibit node data structure.
Eatherton et al. applied a set of optimizations to further reduce the size of multibit nodes,
such as: (a) initial array optimization, where an initial array is used like in modular
packet classification (see Section 2.1.5), (b) end node optimization, where multibit nodes
containing just a prefix node are eliminated and the necessary data are integrated to
the parent multibit node, (c) split tree bitmaps, where the two bitmaps of a multibit
node are retrieved through separated memory accesses, (d) segmented bitmaps, where
a bitmap is split in two and (e) using CAM nodes that occupy the same space with a
multibit node that has few internal prefixes.

2.1.13 Pipelines

Assuming that the lookup decision trees are stored in a memory, then performing the
decision tree traversal requires multiple memory accesses to match the incoming address.
To make the process faster a multiple-stage pipeline may be used, where the decision tree
is organized in a multitude of memory units. The main issue with pipeline approaches
is how to organize the decision tree in the pipeline stages in a balanced way to keep the
memory utilization high, while retaining the ability for fast updates.

A lot of research exists on mapping a decision tree to pipeline stages. A simple
approach is to match a tree level to a pipeline stage. In [15], Hasan and Vijaykumar
describe a more elaborate scheme where a trie is mapped to pipeline stages based on
the height of its nodes. They managed to achieve a scalable design that guarantees
worst-case performance bounds.

Another approach to pipeline is the use of circular pipelines, where a lookup may be
initiated at any stage. Using a circular pipeline decouples the number of pipeline stages
from the number of decision tree levels. In [18], Kumar et al. introduced the Circular,
Adaptive and Monotonic Pipeline (CAMP) architecture, which is an extension of the
circular pipelines. In CAMP, a trie is split into a root sub-trie and multiple leaf sub-tries
(see Figure 2.15). The root sub-trie is implemented as a table that directs which leaf
sub-trie to visit. Each leaf sub-trie is mapped to start at a different pipeline stage. They
developed a mapping algorithm that results into a large number of small memory stages
that facilitates a high troughput.
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Figure 2.15: The CAMP pipeline architecture for address lookup (longest prefix matching) for a
set of address prefixes. In (a), the original trie is depicted along with its partition into the root
sub-trie and the leaf sub-tries. There has been a prefix expansion to ensure that all prefixes are
longer than 2-bits. In (b), the leaf sub-tries are mapped to the pipeline stages and the pipeline
stage to enter is determined by looking in the root sub-trie table.

2.2 The Range Trie

In the previous section, a multitude of current address lookup schemes was presented.
These schemes have not managed to keep up with the pace of the internet traffic/speed
growth. This pointed out the need for an address lookup method that has (a) low latency,
(b) high throughput, (c) low memory requirements and (d) maintain these properties
even if the lookup table size and address width are increasing. Furthermore, it would be
useful if the lookup structure is fast to construct and update. A method promising to
solve these problems, is the Range Trie algorithm introduced by Sourdis in [26] and it
is presented in this section.

The Range Trie is a new approach for address lookup. It is considered to be between
the range tree approaches and the trie approaches; hence the name Range Trie. While
tries perform an exact match in parts of addresses and range trees perform comparisons
of full addresses, the Range Trie lies between them by performing comparisons of parts
of addresses. It may not be categorized neither as a “search on length” approach, nor as
a “search on values” approach, but rather as a combination, as it tries to combine the
benefits of each concept.

The Range Trie is a tree data structure that is traversed to perform the search,
according to the algorithm specifications. The key effort during the construction of a
Range Trie is to perform as many comparisons (on parts of addresses) as possible per
traversal step and thus utilizing optimally the given memory bandwidth. Also, that way
the branching factor of each node increases, resulting into a shorter tree structure.

In the rest of this section, all the details regarding the Range Trie algorithm are
presented. Specifically, in Section 2.2.1 the Range Trie is introduced in more details,
followed by Section 2.2.2, where the rules that guide the construction of a Range Trie are
defined. In Section 2.2.3 the complete Range Trie structure is described, along with the
search method to traverse the Range Trie to retrieve the matching range. An automatic
way to construct a Range Trie structure using heuristic approaches is outlined in Section
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2.2.4. Section 2.2.5 outlines the required modifications of the Range Trie algorithm in
order to support also longest prefix matching. Finally, Section 2.2.6 concludes the Range
Trie description by summarizing its achievements.

2.2.1 Range Trie description

The Range Trie tackles efficiently the address lookup problem in the context of internet
routing, but it may be used in other research fields requiring a form of lookup. The
address lookup problem is defined as follows: Given an address space [0, 2n) and r unique
IP addresses/bounds Ai, where 0 < Ai < 2n−1 and i = 1, 2, ..., r, that define r+1 address
ranges Rj (j = 1, 2, ..., r + 1), then an address lookup is to determine the range Rj an
incoming address AIN belongs to.

The Range Trie method consists of both a structure and an algorithm to search
the structure. In particular, the Range Trie is a tree-like structure, resembling the
multiway range tree (see Section 2.1.8). At every step of the multiway range tree, k full
comparisons were performed of the incoming address against k values in order to decide
which node to visit on the next step. This approach is straightforward at the expense of
performing full width comparisons and under-utilizing the available memory bandwidth.
On the contrary, the Range Trie exploits the characteristics of the values to be compared
per node in order to perform as many comparisons as possible and avoid unnecessary
comparisons. This is done by performing comparisons only on selected parts of values,
instead of full-width values. Actually, a Range Trie reduces the number of bits to be
compared and, given a memory bandwidth, increases the number of comparisons per
step. As a result, the depth of the Range Trie gets smaller compared to a range tree
with the same available memory bandwidth.

As mentioned, the Range Trie is a tree-like structure and, in every step, one of its
nodes is visited to decide which node to visit next until reaching a result (a matching
range). A Range Trie node N maps to an address range [Na, Nb) and divides it into k+1
subranges R1, ..., Rk+1, where R1 = [Na, A1), ..., Ri = [Ai−1, Ai), ..., Rk+1 = [Ak, Nb)
and Ai ∈ [Na, Nb), i ≤ k. The length of the range that node N maps to is defined as
D = Nb − Na. A Range Trie node is depicted in Figure 2.16. One final remark is that
the union of the nodes ranges in a single tree level equals to the entire address space and
the union of the children nodes ranges equals to the parent’s address range.

Figure 2.16: A Range Trie node mapping to an address range [Na, Nb) and dividing it into k + 1
subranges R1, ..., Rk+1.

Before presenting an example of a Range Trie and the way to traverse it, it is impor-
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tant to understand the fundamental concepts and rules (described in the next section)
that differentiate the Range Trie from the existing address lookup solutions.

2.2.2 Range Trie fundamental concepts and rules

The main idea behind the Range Trie algorithm is that in every step a plurality of com-
parisons is performed on selected parts of comparison values. The effort is on minimizing
the comparison widths and, thus, performing as many comparisons as possible per node,
for a given memory bandwidth. That way the branching factor increases and the Range
Trie depth decreases. In this section, the Range Trie fundamental concepts and rules
will be discussed, that help into achieving the goal of minimizing the comparison widths.

The development of the Range Trie was based on the following general observations:

• Nodes closer to the root compare addresses that are sparser in the address space.
Thus, there is no need to compare their suffixes.

• Nodes closer to the leafs compare addresses that are denser in the address space.
Thus, their prefixes may be shared or omitted.

• Other nodes that may need to compare addresses that are sparser or denser in the
address space can compare the respective part of the addresses that results in the
best tree balance.

Performing as many comparisons as possible is achieved by exploiting the character-
istics of the values to be compared per step. Thus, the following 5 rules were established
to minimize the comparison widths:

1. Rule 1: Omit the common prefix of the node borders.

2. Rule 2: Share addresses’ common prefix.

3. Rule 3: Share addresses’ common suffix.

4. Rule 4: Omit address suffix of value ‘0’.

5. Rule 5: Align addresses.

These rules guide us to compare only parts of addresses that can have variable width.
Unnecessary or common information is omitted or reduced. Rules 1-4 may be applied
independently as they do not interfere with each other. Special care must be taken for
combining Rule 5 with others. Applying the rules may be seen as an encoding process of
the comparison values. At the same time, the correctness of the lookup procedure must
be ensured.

In the rest of this section, each one of the Range Trie rules will be explained. For
proof of their correctness you may see [26].
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2.2.2.1 Rule 1: Omit the common prefix of the node borders

The first rule suggests that if there is a common prefix of length L at the node borders
Na and Nb of a node N that maps to range [Na, Nb), then this common prefix (the L
most significant bits) can be omitted from all the comparisons included in node N.

An example application of Rule 1 may be seen in Figure 2.17. In the top of this
figure, there is a node mapping to address range [0xFFFF0000, 0xFFFFFFFF). If an
incoming address AIN reaches this node, then we know for sure that it belongs in the
address range of the node. Even more, the node borders share a common prefix of 16
bits (0xFFFF) that will be also common to the incoming address and the rest node
bounds. So, this common prefix may be omitted and instead compare the rest bits of
the incoming address to the rest bits of the node bounds. The result of applying Rule
1 in the initial node is seen in the bottom of the figure. It may be seen that the ranges
are identical, despite the omission of the node common prefix.

Figure 2.17: An example application of Rule 1. The top node is converted into the equivalent
bottom node after removing the comparison of the node borders’ common prefix. The dashes
represent the non-compared bits.

2.2.2.2 Rule 2: Share addresses’ common prefix

The second rule suggests that if there is a common prefix (CP) of length L at all the
node bounds Ai of a node N that maps to address range [Na, Nb), then this common
prefix (the L most significant bits) can be shared among the multiple node comparisons
and get compared separately. In particular, if the incoming address AIN prefix of length
L is less than CP, then AIN ∈ [Na, A1). If it is greater than CP, then AIN ∈ [Ak, Nb).
If it is equal, then the rest bits of AIN are compared against the rest bits of the Ai to
determine the matching range.

An example application of Rule 2 may be seen in Figure 2.18. In the top of this figure,
there is a node that compares three addresses (A1, A2, A3) to match the 4 ranges in
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[0xDDDD0000, 0xFFFF1111). These three addresses share a 16-bit wide common prefix
(0xEEEE). Instead of performing 3 full-width comparisons, it is possible to perform
one separate 16-bit comparison on the common prefix and share its result with the 3
comparisons on the rest bits of the 3 addresses, according to Rule 2. The resulting node
may be seen on the bottom of the figure, along with which range to match depending
on the outcome of the comparisons.

Figure 2.18: An example application of Rule 2. The top node is converted into the equivalent
bottom node after sharing the 16-bit common prefix. The dashes represent the non-compared bits.

2.2.2.3 Rule 3: Share addresses’ common suffix

The third rule suggests that if there is a common suffix (CS) of length L at all the node
bounds Ai of a node N that maps to address range [Na, Nb), then this common suffix
(the L least significant bits) can be shared among the multiple node comparisons and
get compared separately. In particular, if the incoming address AIN prefix of length
W − L is less than the prefix of length W − L of Ai, then AIN ∈ [Ai−1, Ai). If it is
greater, then AIN ∈ [Ai, Ai+1). If it is equal, then then the match result depends on the
comparison of the suffix of length L of AIN against the CS. If it is less than the CS, then
AIN ∈ [Ai−1, Ai). If it is greater or equal, thenAIN ∈ [Ai, Ai+1). Note that Na ≡ A0

and Nb ≡ Ak+1.
An example application of Rule 3 may be seen in Figure 2.19. In the top of this

figure, there is a node that compares two addresses (A1, A2) to match the 3 ranges
in [0xAAAA2222, 0xDDDD3333). These two addresses share a 16-bit wide common
suffix (0x1111). Instead of performing 2 full-width comparisons, it is possible to perform
one separate 16-bit comparison on the common suffix and share its result with the 2
comparisons on the rest bits of the 2 addresses, according to Rule 3. The resulting node
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may be seen on the bottom of the figure, along with which range to match depending
on the outcome of the comparisons.

Figure 2.19: An example application of Rule 3. The top node is converted into the equivalent
bottom node after sharing the 16-bit common suffix. The dashes represent the non-compared bits.

2.2.2.4 Rule 4: Omit address suffix of value ‘0’

The fourth rule states that if a node bound Ai of a node N that maps to address
range [Na, Nb) has a suffix of length L that is zero-valued, then this zero suffix may be
omitted from the respective comparison in node N. The match result is then obtained
by performing a comparison of the rest bits of the truncated Ai with the respective bits
of the incoming address AIN .

What this rule claims is that a zero-value suffix does not need to be compared, since
we always know the outcome of the comparison (comparing to zero will always yield
greater or equal). An example application of Rule 4 may be seen in Figure 2.20. In the top
of this figure, there is a node mapping to address range [0xAAAA1111, 0xDDDD2222).
Both addresses A1 and A2 have a zero suffix of 16-bits and 24-bits respectively. Since
the outcome of comparing the zero suffix to the respective bits of the incoming address
is always GE, then there is no reason into comparing these bits, resulting into the node
seen in the bottom of the figure. It may be seen that the ranges are identical, despite
the omission of the zero suffix.

2.2.2.5 Rule 5: Align addresses

This rule states that the lookup of an incoming address AIN in a node N that maps to
address range [Na, Nb) and compares node bounds Ai is equivalent to the lookup of the
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Figure 2.20: An example application of Rule 4. The top node is converted into the equivalent
bottom node after omitting the suffixes of value ‘0’. The dashes represent the non-compared bits.

address AIN − Na in a node N’ that maps to address range [0, Nb − Na) and compares
bounds A′

i ≡ Ai − Na.
The purpose of this rule is to align the addresses in a node in such a way that a wide

zero-valued common prefix appears and then perform narrower comparisons. It can be
calculated that the width of the comparisons will be L = log2(Na−Nb) in the worst case.
Thus the useful bits of the incoming address that we need to subtract and then compare
will also be L. This means that the subtraction AIN − Na suffices to be calculated for
the L least significant bits.

Figure 2.21: An example application of Rule 5. The top node is converted into the equivalent
bottom node after address alignment. The dashes represent the non-compared bits.
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Although Rules 1-4 can be applied independently to one another, Rule 5 is a spe-
cial case. It can be combined with Rule 1, as it maximizes the common node prefix,
but it must be applied before Rule 2. Regarding Rules 3-4, Rule 5 may be combined
independently with them.

An example application of Rule 5 may be seen in Figure 2.21. In the top of this
figure, there is a node mapping to address range [0x3FFFFFF0, 0x4000000F). These
node borders have just one bit common prefix. By aligning the addresses of this node by
subtracting 0x3FFFFFF0 we get the node on the bottom side of the figure. This aligned
node now has 24-bits node borders common prefix and only 2 8-bit comparisons need
to be performed. Note that only an 8-bit subtraction on the incoming address suffices,
since the 24 most significant bits of the subtraction result are known to be zero.

2.2.3 Range Trie structure and algorithm

In the previous section it was described how to apply the five Range Trie rules to minimize
the comparison widths and thus optimally utilize the given memory bandwidth. In this
section, the method to search in a Range Trie structure will be presented.

The Range Trie, as already mentioned, is a tree structure that spans in a number of
levels and is used to match an incoming address AIN to a range Ri. At each level there
is a number of nodes, except the top level where is just one node (the root node). This
structure may be used to perform address lookup under the guidance of an algorithm
that directs the decisions made during the lookup process. An example Range Trie is
shown in Figure 2.22.

Figure 2.22: An example of a Range Trie structure for a given set of 7 address ranges Ri. There
are two levels in total. Nodes contain the necessary information for choosing the next node to
visit, until reaching a leaf node. Leaf nodes are drawn in a darker shade. An example traversal
for matching incoming address 0xDDDD4444 to address range R7 is shown.

There are two types of nodes in a Range Trie: the leaf nodes (indicating a range



2.2. THE RANGE TRIE 31

match) and the internal nodes. Internal nodes contain information about (a) the number
of comparisons to be performed, (b) which bits of the incoming address to compare, (c)
the values to be compared with and (d) the branches to the nodes of the next level. If
it is needed, each node might also suggest (a) to share a common prefix comparison,
(b) to share a common suffix comparison and (c) perform an address alignment. In any
case, the node also offers the necessary information, like the common prefix position and
value, the common suffix position and value, the alignment value to subtract from AIN .
It must be noted that the nodes are a result of following the 5 rules defined in Section
2.2.2.

Assume that we need to lookup the incoming address AIN . The search starts by
first visiting the root node. The information in the root node are used to perform
the necessary comparisons. If needed there could also be a prefix comparison, a suffix
comparison and a subtraction on the incoming address. The outcome of the comparisons
dictates which will be the next node (of the second level) to visit. This decision process
is then repeated until a leaf node is reached, which suggest that AIN has been matched
to the range Ri that it belongs to.

Figure 2.23: A Range Trie node N and its children. Node N stores the necessary information
for choosing the next node to visit. The depicted node does not share common prefix/suffix or
align addresses by subtraction. The children nodes Ni may be either leaf nodes or internal nodes.
Note that all the GE branches, except the last one are not used for branching to a next node Ni,
since their result is identical to the L branch of the next comparison. The dashes represent the
non-compared bits.

As already mentioned, choosing the next node to visit is based on the outcome
of the performed comparisons in the current node. Assume that we are currently in
node N (see Figure 2.23) that performs k comparisons (not counting shared prefix/suffix
comparisons). This means that there would be k + 1 outgoing branches to next level
nodes Ni, where 1 ≤ i ≤ k + 1. To decide which Ni node to visit next, the following
steps must be performed (based on the node information):

1. If an address alignment must be performed, then the subtraction value is subtracted
from the indicated bits of AIN .

2. Then the k comparisons are performed on the indicated bits of AIN against the k
comparison values. Each comparison may result in greater or equal (GE) or less
(L).
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• If the result of comparison 1 is L, we set Ni = N1 as the node to visit next.

• If the result of comparison k is GE, we set Ni = Nk+1 as the node to visit
next.

• Otherwise, there is a comparison j �= k that results in GE and a comparison
j + 1 that results in L. Thus, we set Ni = Nj+1 as the node to visit next.

3. If there is a common prefix sharing, then the corresponding prefix bits of AIN are
compared against the common prefix.

• If the result of the comparison is L, we set N1 as the node to visit next.

• If the result of the comparison is G, we set Nk+1 as the node to visit next.

• If the result of the comparison is E, we set as the next node to visit the node
Ni that was set in step 2.

4. If there is a common suffix sharing, then the corresponding suffix bits of AIN are
compared against the common suffix.

• If the result of the comparison is GE, we set as the next node to visit the
node Ni that was set in step 2.

• If the result of the comparison is L, we set as the next node to visit the
previous node Ni−1 than the one (Ni) that was set in step 2. If in step 2, N1

was set as the next node, then N1 is set as the next node to visit.

Although the steps were presented sequentially, the respective comparisons may be
performed in parallel and afterwards decide the next node to visit, based on the outcome
of the comparisons. This process repeats in every visited node of the Range Trie, until
a leaf node is reached that reports the range that AIN belongs to.

2.2.4 Construction of a Range Trie

In the previous section, the Range Trie structure was detailed, along with the process to
traverse it. In this section, an automatic way to generate the Range Trie structure for a
given set of address ranges is outlined.

Given a set of k address bounds Ai that define k +1 address ranges Rj , a Range Trie
must be constructed following the 5 Range Trie rules (see Section 2.2.2) and having the
defined structure (see Section 2.2.3). The construction process should take advantage
of the inherit characteristics of the Range Trie and maximally exploit the 5 Range Trie
rules. It is also needed that the generation of a Range Trie to be fast enough. There
are two targets during the Range Trie generation: (a) minimize the number of bits to
compare per comparison (in order to fully utilize the given memory bandwidth, maximize
the numbers of outgoing branches per node and create low depth Range Tries) and (b)
create a balanced Range Trie (where nodes branch to subtrees of equal or similar depth).

Sourdis et al. in [26] and [25] proposed the use of heuristic methods for generating
Range Tries. Heuristic methods are preferred because they are faster to complete and
give near-optimal results, rather than trying to find the optimal solution. Two different
recursive approaches were followed: top-down (the root node is created first, then the
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children nodes, until reaching the leaf nodes) and bottom-up (the leaf nodes are created
first, then their parent nodes, until reaching the root node). For each heuristic approach,
two variations were created: one allowing comparisons of only a single length per node
and one allowing comparisons of variable lengths. The resulting four heuristic methods
are outlined below. A more detailed description of these may be found in [26], [25] and
[6].

• Top-Down with Single Length Comparisons (TD-SLC):

1. Apply Range Trie rules 5, 1, 4; address alignment, omit node borders’ common
prefix, omit zero-valued address suffix.

2. Determine the comparison width that maximizes the number of branches.

3. Assume that all addresses in the set are to be compared according to the deter-
mined comparison width. Omit address suffixes that exceed the comparison
width by assuming that they are equal to zero.

4. Create the defined groups.

5. Merge adjacent groups until the number of needed comparisons is reduced to
the number of available comparison resources. Apply Range Trie rules 2 and
3 to share common address prefixes and suffixes. The resulting groups are the
node branches and their borders are the comparisons to perform.

6. Repeat Steps 1-5 recursively for the created children nodes.

7. Terminate when each group contains only a basic address range Ri.

• Top-Down with Variable Length Comparisons (TD-VLC):

– This is same as TC-SLC, except Step 5 that is modified as follows: Merge
adjacent small groups and split large groups. Splitting is achieved by adding
an extra comparison of longer length. The number and widths of the available
comparison resources should be considered.

• Bottom-Up with Single Length Comparisons (BU-SLC):

1. Apply the Range Trie rules and select the first b addresses Ai > Gd (i.e., Ai,
Ai+1, ..., Ab) that can be compared at one node based on the single-length
available comparison resources. Gd is initially 0.

2. Set as the selected groups’ upper bound (Gu) any point in the address space,
where Gu ∈ (At, Ab] and t/b = C (C is a user defined constant), such that Gu

has the longest zero-valued suffix. The resulting group that maps to the node
is the [Gd, Gu).

3. Repeat the above, starting from the upper bound of the previous group
(Gnew

d = Gprev
u ), until all addresses Ai are grouped.

4. Repeat steps 1-3 recursively using as a new set of Ai addresses the bounds Gi

of the previous level.

5. Terminate when all addresses are processed in a single iteration (root node
reached).
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• Bottom-Up with Variable Length Comparisons (BU-VLC):

– This is same as BU-SLC, except Step 1 where the available comparison re-
sources may now be of variable lengths.

Out of these four heuristic methods, the bottom up approaches were found to provide
better results. The constructed Range Trie is balanced with a small depth. The drawback
of using bottom-up heuristics is that the execution time increases compared to the top-
down ones.

2.2.5 A Range Trie supporting longest prefix matching

As it have been mentioned, the address lookup problem may be approached in two
equivalent ways; as a range lookup problem or as a longest prefix matching problem. Up
until now, the presented Range Trie solution approached it as a range lookup problem.
In this section, the necessary modifications to perform longest prefix matching using a
Range Trie will be presented.

To support longest prefix matching in a Range Trie means that more information need
to be stored in the Range Trie nodes. Since a Range Trie has the same tree structure as a
range tree of unlimited memory bandwidth and number of branches per node, the range
tree approach of [29] and [22] may be followed for supporting longest prefix matching in
a Range Trie.

The idea is that the Range Trie should also store the prefixes in the internal Range
Trie nodes, rather than only the leaf nodes (where a range is matched). These prefixes
will be actually stored in an external array, rather than on the nodes, to reduce the
memory requirements. Modifying the technique of [29] the following must be stored in
the Range Trie nodes:

• A pointer to a prefix, along with the prefix length, must be stored at every Range
Trie node that maps to a range that is part of the prefix, while the parent node’s
range is not part of the prefix.

• For every address compared in a Range Trie node, a counter must be stored holding
the number of prefixes having an endpoint on that address.

Supporting longest prefix matching in a Range Trie offers also the fundamentals for
an efficient Range Trie updating scheme. By manipulating the counters, the pointers and
the addresses compared in a Range Trie node, it is possible to insert or delete addresses
that define new ranges. This will not be explained further, since the incremental updating
of a Range Trie was out of scope of this thesis.

2.2.6 Range Trie achievements

Through Sections 2.2.1-2.2.4 all the details of the Range Trie method were presented,
starting from the basic concepts behind the Range Trie, until a full description of the
Range Trie structure, lookup process and construction process.

All of these pointed out that the Range Trie satisfies the properties that motivated
its development:
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• Low latency : The latency of a Range Trie depends on the depth of the tree struc-
ture. The Range Trie requires a low depth tree structure due to the following
reasons:

– The number of bits to compare per comparison is minimized by sharing com-
mon prefix/suffix comparison results, by omitting unnecessary comparisons
and by aligning addresses.

– The number of comparisons per node is maximized resulting in a high branch-
ing factor per node.

• High throughput : The operations to perform per search step are simplified and may
be done in a fast manner.

• Low memory requirements: A limited amount of memory is required to store a
Range Trie. Also, the given memory bandwidth is fully utilized due to the min-
imization of the number of bits to compare per comparison and due to the good
balance of the Range Trie.

• Better scalability : The latency and memory requirements are scaling well, both in
terms of the address width and the number of address ranges, due to the following
reasons:

– The property of comparing parts of addresses allows the good scalability in
terms of the address width.

– The property of the good balance of a Range Trie allows the good scalability
in terms of the number of address ranges.

The characteristics of the Range Trie that resulted in these properties will be ex-
ploited during the hardware design and implementation of the Range Trie. In the chap-
ter to follow, the hardware design of the Range Trie is explained in detail and all the
design steps are discussed for obtaining a synthesizable and validated design.

2.3 Summary

In this chapter, the background material that is needed for the rest of this thesis was
presented. After discussing on a variety of related designs and algorithms for address
lookup in Section 2.1, the Range Trie address lookup method, which is the main focus
of this thesis, was presented in Section 2.2.

In Section 2.1, a representative set of related designs and algorithms for address
lookup that exists in the literature was presented. The presented methods came from
the internet routing and the packet classification research domains. They were a mix-
ture of algorithmic approaches to address lookup and hardware-targeting address lookup
designs. The algorithmic approaches were classified based on the dimension of the per-
formed search (“search on length” or “search on values”) and on the type of the search
traversal (sequential or binary). First the sequential “search on length” approaches were
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presented that are based on a trie structure (Binary Trie, Path Compressed Tries, Multi-
bit Tries, Level-Compressed Tries and HiCuts), followed by a binary “search on length”
approach. Afterwards, the basics of the sequential “search on values” approach were pre-
sented, followed by the binary “search on values” approaches that are based on a range
tree structure (Range Tree, Multiway Range Tree). Finally, a set of hardware-targeting
solutions was presented (TCAMs, IPStash, Bloom Filters, Tree Bitmaps, pipelines).

Because of the internet traffic/speed growth, the previously presented methods have
started lagging behind. In Section 2.2, the novel address lookup approach of Range Tries
(introduced by Sourdis in [26]) was presented in detail. The Range Trie is between the
“search on length” and “search on values” approaches and delivers a method with (a) low
latency, (b) high throughput, (c) low memory requirements and (d) good scalability in
terms of address width and lookup table size. The Range Trie is a specific tree structure
with a multitude of nodes per level, along with a specific algorithm to traverse the tree
structure. The presented Range Trie structure performs range matching and it can also
be extended to support longest prefix matching. In each node, comparisons are performed
on parts of addresses based on the 5 Range Trie rules that formulate the fundamental
concepts behind the Range Trie development. Based on the 5 rules, the parts of addresses
to compare are minimized by sharing common prefix/suffix comparisons, by omitting
unnecessary comparisons and by aligning the addresses to be compared. Minimizing
the parts of addresses to compare, results in a higher utilization of the given memory
bandwidth, in an increase of the branches per node and in a decrease of the Range
Trie depth. Generating a Range Trie structure is done in an automated way based on
heuristic methods that exploit the 5 Range Trie rules.
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In this chapter, the hardware design of the Range Trie method will be presented.

Based on the description of the Range Trie (see Section 2.2), all the design steps will
be discussed for obtaining a complete Range Trie design. The design effort was to

exploit the Range Trie method inherit characteristics into building a fast, efficient and
scalable design.

The Range Trie method (see Figure 3.1) is an iterative method to traverse the Range Trie
structure and match the range that the incoming address AIN belongs to. According to
the method, in every iteration a node is visited, the necessary comparisons on parts of
addresses are performed and the next node to visit is decided. This process ends when
a leaf node is reached and the matching range is reported. Since the Range Trie method
is based on bit-level manipulation of addresses (such as selecting parts of addresses,
performing comparisons, selecting a branch to take, etc.), it is efficient to design it in
hardware without excluding a potential software-based Range Trie implementation that
could still benefit from the Range Trie improvements.

Figure 3.1: An abstract block diagram of the Range Trie method. The details to design the Range
Trie hardware are the focus of this chapter.

Transforming the Range Trie method into a hardware design means that each of
the method’s steps must be carried out by an equivalent hardware design. It is evident
that the hardware design will consist of a memory structure (where the Range Trie
node data are stored that direct the performed comparisons) and a number of iteration
functional units (where the comparisons are performed and the next node to visit is
decided) organized in a pipeline fashion.

Specifications of the design: In the rest of this chapter, the complete Range Trie
design will be presented that is parameterizable in the following attributes:

• Memory bandwidth: The allowed memory bandwidth (BW) may be 256, 512 or

37
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1024 bits wide.

• Address width: The incoming address width (W) may be 32 (IPv4), 64 or 128
(IPv6) bits.

• Number of Range Trie iterations (levels): This number indicates how many itera-
tions are needed in the worst-case for a Range Trie to match a range, according to
the given Range Trie structure.

• Memory depth per Range Trie iteration (level): This set of numbers indicates
the memory entries that shall be stored in the memory structure per Range Trie
iteration, according to the given Range Trie structure.

• Output width: The output of the Range Trie will be the matching range and not
the action to be performed. In other words, the Range Trie design will output
the address that the matching range resides in an action array. For generalization
purposes, we opted not to include the action array in the Range Trie design, since
its size requirements are unknown and depend on the address lookup requirements
of the system that the Range Trie will be used in. So, it was safe to require that the
Range Trie just outputs the matching range number. The output width depends
on the size of the lookup table (number of matching ranges).

All the details that lead to a complete Range Trie design will be presented in this
chapter. Section 3.1 elaborates on the design of the Range Trie iteration unit. After
presenting the limitations that were posed on the general Range Trie method for an
efficient hardware design, the necessary components to build all possible instances of
Range Trie iteration units are presented. At the same time, the control signals (according
to the node information) that drive the correct operation of an iteration will be defined.
Afterwards, in Section 3.2, the chosen memory structure will be presented. The way
that the node information must be stored in the memories and the way that the memory
is organized/addressed will be presented, along with the details on migrating a Range
Trie structure into the memory structure. Section 3.3 combines the memory structure
with the iteration units to form the complete Range Trie design in a pipeline fashion.
Alongside, the top-level Range Trie module and its usage will be presented. Finally, this
chapter concludes with its summary in Section 3.4.

3.1 Range Trie iteration

In Section 2.2, the Range Trie method was presented. In general, it may be defined
as a three step iterative method, where given a Range Trie structure, (a) we visit a
node, (b) perform the necessary comparisons and (c) decide which node to visit next.
The basic block of the Range Trie design is the iteration functional unit, where all the
necessary computations and decisions are made (steps b and c) given a current node N.
In this section, all the details for the Range Trie iteration unit hardware design will be
discussed. It must be noted that the design effort was to minimize the required time to
perform the computation. This will be evident throughout all the design choices.
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When a Range Trie node N is visited, the following actions are performed during the
iteration (see Figure 3.2), according to the information stored in node N. The node
N information are retrieved from the adjacent memory structure, as described later in
Sections 3.2 and 3.3.

1. The incoming address AIN is prepared for comparison: The parts of AIN to be
compared are selected, according to the node information. If needed, a subtraction
is performed for alignment purposes.

2. The comparison of the parts of AIN is performed against the values defined by the
node N information.

3. The results of the comparisons are interpreted.

4. Based on the comparison results and (possible) shared prefix/suffix comparison
results, the branch to be taken is decided in order to visit the correct node in the
next iteration.

Figure 3.2: An abstract block diagram of the Range Trie method focusing on the iteration steps.

Limitations on the Range Trie iteration for an efficient hardware design: The
Range Trie algorithm for address lookup, presented in Section 2.2, is a general algorithm
to be used in any possible configuration. I.e. any part of an incoming address may be
compared, or any comparison width may be used, or any subtraction width for alignment
may be used, etc. The hardware design could be as general as the Range Trie method
in the cost of extra needed hardware, higher memory requirements and a higher clock
cycle. If this was the case, then designing the Range Trie on hardware would not yield
any significant performance benefits. This led to posing some valid limitations on the
Range Trie method to ensure the efficiency of the hardware design. Actually, the Range
Trie method was developed by having the hardware design in mind, so it is not a stretch
to limit the Range Trie in such a way. The work in [25] and [6] assumed the Range Trie
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limitations for hardware purposes, while constructing a Range Trie, and it was found
out that they were not hampering the Range Trie benefits.

For the purposes of an efficient hardware design the following attributes and limita-
tions of the Range Trie were set as follows:

• Memory bandwidth (BW): The Range Trie is designed for available memory band-
widths of 256, 512 and 1024 bits.

• Address width (W): The Range Trie is designed for possible address widths of 32
(IPv4), 64 and 128 (IPv6) bits.

• Number of available comparators: In every iteration of the Range Trie method a
number of comparisons must be performed using a number of comparators. As-
suming that the used comparators are W-bits wide, we limited the number of
comparators used per iteration to k = BW/W .

• Comparison widths: For address width W , the possible comparison widths that
may be used are 8, 2 ∗ 8, 4 ∗ 8, ..., W . As it was mentioned, the Range Trie design
uses k = BW/W comparators per step. Each one of these is W bits wide and
may be configured to perform s comparisons of variable width [w1, w2, ..., ws]. The
sum of the comparison widths wi to be performed should be at-most W . The
comparison widths wi may be 8, 2 ∗ 8, 4 ∗ 8, ..., W . The allowed combinations of
comparison widths are those that the sum of two consecutive comparison widths
wi + wi+1, where i is odd, is one of the available comparison widths (8, 2 ∗ 8, 4 ∗ 8,
..., W ). Comparator k is always configured to perform W bits wide comparisons.

• Position of address parts to compare: The parts of addresses to compare should
be equal to the possible comparison widths (8, 2 ∗ 8, 4 ∗ 8, ..., W ) and they must
be accessible by shifting the incoming address by a number of 2-bits shifts.

• Subtraction width for address alignment: The subtractor for performing the ad-
dress alignment was limited to be W/4 bits wide.

The heuristic construction methods in [25] and [6] were tailored to these hardware
limitations and provided with a Range Trie structure that is compatible with the hard-
ware design.

Brief overview of the Range Trie iteration hardware design: Before explaining
the iteration design it is useful to present a brief overview of the designed hardware to
have a better idea of the issues to be discussed throughout Sections 3.1.1-3.1.4. Figure
3.3 presents such an iteration hardware overview where the various iteration steps are
indicated. The iteration hardware follows the previously set limitations and implements
the decision process as defined by the Range Trie method (see Section 2.2.3). The
depicted Range Trie iteration hardware is for an incoming address width (W) of 32 bits
and an available memory bandwidth (BW).

Generally speaking, the four iteration steps are designed as follows and operate ac-
cording to the visited node information:
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Figure 3.3: An abstract block diagram depicting the hardware design of the Range Trie iteration.
The exact details of the required hardware to perform each iteration step will be discussed in the
coming sections.

1. The incoming address AIN is byte-aligned (using the shifter). If needed, the byte-
aligned address is subtracted to perform the address bounds’ alignment. Then the
byte-selection occurs using one level of 4-to-1 multiplexors to select the parts of
AIN to be compared in every comparator.

2. The comparisons are performed between the predetermined values and the parts
of AIN using k = BW/W comparators. Each comparator comprises of 8-bit com-
parators, whose results may be combined to form 16-bit comparisons, 32-bit com-
parisons, etc. In parallel with the k comparators, the common prefix/suffix com-
parisons are performed using two W − 8 bit wide comparators.

3. The comparison results (of the k comparators) are interpreted into a single value
(range), after filtering out the invalid comparison results.

4. According to the computed range and the common prefix/suffix comparison re-
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sults, the correct branch to follow is chosen (out of 0, max branch, range,
range + 1), while following the decision criteria of the Range Trie method.

The two parameters that mainly affect the Range Trie iteration hardware design are
the available memory bandwidth (BW) and the incoming address width (W), as these two
values indicate the number of employed comparators, the widths of the internal signals
and the used variation of the units. As already mentioned, in this thesis, the Range Trie
was designed for a specific combination of available memory bandwidths (256, 512 or
1024 bits wide) and incoming address widths (32, 64 or 128 bits), as these values result
into representative designs which can be evaluated in terms of scalability.

In the rest of this section, all the details for the hardware design of a Range Trie iteration
unit will be presented. The required components will be described for all possible com-
binations of the memory bandwidth and address width parameters in order to support
the generation of every possible Range Trie instance. Alongside, the control signals for
performing the required computations will be defined in order to formulate the way to
represent the node information.

In particular, in the next four sections the hardware design of the units needed for
performing each of the iteration actions will be explained, while targeting a fast and
scalable design. Afterwards, Section 3.1.5 will conclude the description of the Range
Trie iteration hardware by combining all required units to form the complete iteration
functional unit, along with an overview of the designed iteration unit.

3.1.1 Selecting parts of addresses

The Range Trie method is based on performing comparisons on parts of addresses. In
this section, it will be explained how we designed the hardware for selecting parts of
addresses, along with the possible alignment of addresses by subtraction.

The first action to be performed during an iteration is to prepare the values to be
compared, based on the incoming address AIN and the current visited node N informa-
tion. Assume that we are currently visiting an internal Range Trie node N, that the
given memory bandwidth (BW) is 256, 512 or 1024 bits and that the incoming address
AIN width (W) is 32, 64 or 128 bits. It has been mentioned that the hardware design
uses k = BW/W comparators. The necessary node N information to prepare the values
to be compared per comparator are the following:

• The common prefix length (CP) and the common suffix length (CS): These range
between 0 and W − 8, where W is the incoming address width, and must be a
multiplicand of 2. Also, the following must hold: CS + CP ≤ W − 8.

• The subtraction value (SUB) for alignment purposes: If SUB = 0, then no align-
ment is performed. Otherwise, it must be an W/4 bits wide value.

• The comparison widths of the comparisons to be performed per comparator: There
are k = BW/W comparators in total. Each one is W bits wide and performs a set
[w1, w2, ..., ws] of s variable-length comparisons. The allowed comparison lengths
may be 8, 2∗8, 4∗8, ..., W . The sum of the comparison widths wi to be performed
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should be W . The allowed combinations of comparison widths are those that
the sum of two consecutive comparison widths wi + wi+1, where i is odd, is one
of the available comparison widths (2 ∗ 8, 4 ∗ 8, ..., W ). The k-th comparator
always performs a full-length (W bits) comparison. A given comparator may be
disabled completely. If a comparison within a comparator must be disabled, the
comparison width must still be set and the disabling is achieved by storing zeros in
the respective bits of the comparison value. In case an alignment must occur, then
the only allowed comparison width is W/4. I.e. the allowed comparison widths for
a 32-bit wide comparator are [32], [16 16], [16 8 8], [8 8 16], [8 8 8 8].

All of these information are enough to determine which parts of AIN to select for
comparison. At the same time, the allowed values of these information show the hardware
limitations posed on the Range Trie method for an efficient hardware design.

What needs to be done is to select the parts of the incoming address and possibly
perform a subtraction for address alignment purposes (see Figure 3.4). The selection
means stripping the CP most significant bits and the CS least significant bits of AIN

and select 8, 2 ∗ 8, 4 ∗ 8, ..., or W bits from the remaining AIN bits, according to the
comparison widths per comparator. Also, a subtraction might need to be performed in
the selected part of AIN .

Figure 3.4: An abstract block diagram of the Range Trie iteration focusing on iteration step 1.

There are numerous ways to perform these tasks. In the rest of this section, the
chosen design for preparing the values for comparison is presented. Since a part of AIN

must be selected, AIN must be aligned properly and then feed the comparators with the
selected part. Instead of performing the alignment using a shifter that might need to shift
0, 2, 4, ..., or W − 8 positions, we used two levels of alignments. First, a byte-alignment
is performed by shifting AIN by 0, 2, 4 or 6 bits left. Then the corresponding parts are
selected by performing byte-selection on the shifted AIN . This is advantageous, since the
byte-alignment is performed by simple 4-to-1 multiplexors and the byte-selection using
(W/8)-to-1 multiplexors. The benefit of limiting the address parts to be obtained by
2-bits shifts may already be seen. If any part was to be chosen, then the byte-alignment
would require a slower 8-to-1 multiplexor instead of a 4-to-1 multiplexor.
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Using the two levels of alignments is beneficial for other reasons as well. The byte-
alignment is common for all the k comparators, while the byte-selection is different for
each comparator depending on the comparison widths performed by each comparator.
If just one level of alignment was to be used, then the byte-alignment would have to be
replicated for each comparator, resulting into redundant logic replication. Furthermore,
the design of each alignment level was simplified, since the byte-alignment is performed
in the same way for every possible incoming address width and the byte-selection for
address width W is performed by using the byte-selection hardware for address width
W/2.

Another factor that led to the use of two levels of alignment was the need for (possible)
subtraction on the selected part of addresses. Instead of using a subtractor for each
comparator after an address part has been chosen, we may now employ the subtractor
after byte-alignment. Since the subtraction width is know to be always W/4, that meant
that after byte-alignment it is possible to subtract on the correct part of address and
then byte-select the correct part of the address.

Up to this point we mentioned the existence of k comparators and the need to select
parts of addresses for each one of them. The special case of the k-th comparator must
be noted, which always performs a full-width W -bits comparison. This means that no
address part selection is needed for it. The reason for using such a comparator is to take
even more advantage of the given memory bandwidth. In most of the iterations, when
there is a shared common prefix/suffix, we occupy W − 8 bits of the memory bandwidth
to hold the common prefix/suffix value to be compared. In case that there is not a
shared common prefix/suffix and the rest k− 1 perform full width comparisons, then an
extra comparison may be performed by using the k-th comparator and by storing one
extra value to be compared in place of the now non-existent common prefix/suffix value.
Using the extra k-th comparator further utilizes the memory bandwidth, does not affect
the critical path and the only configuration signal it needs is a simple enable/disable.

Finally, there is the prefix/suffix value of AIN that needs to be compared (if needed)
in the prefix and suffix comparators. Selecting the prefix/suffix of AIN is trivial and is
explained in a later section, when the prefix/suffix comparators are introduced.

To summarize, first a 0, 2, 4 or 6-bits left shift is performed on AIN , then the byte to
be selected is subtracted by SUB (if needed) and finally the bytes are selected according
to the comparison widths per comparator. This process is not needed for the k-th
comparator.

To perform these operations three hardware units were designed. The left-shifter
with 0-filling, the subtractor unit and the comparison value constructor. These will
be detailed afterwards for all possible incoming address widths. In order to drive the
correct operation of the units, we used two parameters: (a) shift ctrl (2-bits wide) that
determines the number of left shifts for byte-alignment and (b) start byte (log2(W/8)
bits wide) that determines the most significant byte for byte-selection. These values are
set as follows:

• If there is no alignment (SUB = 0), then the part to be selected starts after the
common prefix. Thus, shift ctrl = CP%8 and start byte = (W/8 − 1) − CP/8.
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• If alignment must be performed, then the part to be selected is W/4 bits long
and ends before the common suffix. Thus, start byte = CS/8 + (CS%8 �= 0) and
shift ctrl = 0 (if CS%8 = 0) or shift ctrl = 8 − CS%8 (if CS%8 �= 0).

The three required hardware units will be described in the rest of this section, for all
possible incoming address widths (32, 64, 128 bits). The given memory bandwidth does
not affect these components, apart from the times that they are going to be used in the
complete design. After presenting each unit, the way to integrate all of them will be
shown, along with the means to configure all the necessary control signals for a correct
operation.

3.1.1.1 Left-shifter with 0-filling

The left-shifter with 0-filling is responsible for shifting AIN left by 0, 2, 4 or 6 bits,
while filling the least significant bits with zeros. As mentioned, this shifting is needed to
“byte-align” the incoming address and, thus, simplifying the selection of address parts
to be compared.

The hardware design of the left-shifter is depicted in Figure 3.5. The input is the
W-bit wide AIN and the number of bit-shifts is controlled by the 2-bit shift ctrl signal.
The possible values of shift ctrl are “00”, “01”, “10” and “11” representing 0, 2, 4 or
6-bits shift respectively. The output is the shifted AIN by 0, 2, 4 or 6-bits left with
0-filling. As seen in Figure 3.5, the shifter is implemented using an array of W/2 4-to-
1 multiplexors. Although the figure depicts the shifter for incoming address width of
32-bits, the design is similar for 64 and 128-bits.

The shifted AIN output of the left-shifter will then be passed to the following sub-
tractor unit to perform a subtraction, if needed.

3.1.1.2 Subtractor unit

The subtractor unit performs a subtraction (if needed) on a part of the shifted incoming
address. This subtraction is done according to the Rule 5 of the Range Trie method (see
Section 2.2.2) in order to align the address bounds in a given Range Trie node N.

The subtraction speed on hardware depends highly on the length of the operands.
For that reason, we limited the subtraction width to W/4, as mentioned before, without
affecting the Range Trie method benefits. Furthermore, to eliminate the cost of a slow
subtraction, we employed advanced subtraction techniques.

The input to the subtractor unit is the W-bit wide shifted AIN that the left-shifter
outputs. Then the W/4 bits wide SUB value is subtracted from W/4 bits of AIN . The
part of AIN to subtract is defined by the start byte parameter. The output of the
subtractor unit is identical to the input, except the subtracted part.

In the hardware design of the subtractor unit we used an adder instead of a subtractor,
which is an equivalent solution as long as SUB is the 2’s-complement of the value to
subtract. This is not done in hardware due to the high cost of 2’s-complementing a
binary number. Instead, the 2’s-complement of the value to subtract should be provided
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Figure 3.5: The left-shifter with 0-filling. In the top of the figure, the block diagram of the unit is
depicted, along with its usage. In the bottom, the specific hardware design is shown for the case
of 32-bits wide incoming address.

directly to the subtractor unit. In case that a subtraction is not needed, then SUB should
be set to 0.

In the rest of this section, the designs for the subtractor units for incoming address
widths (W) of 32, 64 and 128-bits will be presented in detail.

Subtractor unit for W=32: The subtractor unit for incoming address width of 32-
bits must perform an 8-bit wide subtraction to one of the 4 bytes of the shifted AIN .
The bytes of the shifted AIN are counted from right-to-left and the 2-bit value start byte
determines which byte of the shifted AIN to subtract. The rest bytes remain unaltered.

Since the target is a fast design, we used 4 parallel adders (each 8-bits wide) to
perform the subtraction. The alternative would be to use just one adder. This alternative
was dismissed since it would require a 4-to-1 multiplexor before the subtraction to choose
the correct byte of the shifted AIN and an array of multiplexors after the subtraction to
place the subtracted byte in the correct position in the output.

The design that was chosen is shown in Figure 3.6. It may be seen that just one
byte of the shifted AIN is subtracted by SUB, depending on the start byte. To achieve
this, an array of 4 8-bit adders is used to subtract SUB out of each byte. Then an array
of 2-to-1 multiplexors chooses if a addition result or the original value will be output,
depending on the start byte.

In order to design a fast subtraction unit the effort was placed on using advanced
fast adders. We opted to design the 8-bit adders as a two-level carry select adder, each
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Figure 3.6: The subtractor unit for incoming address width of 32-bits. In the top of the figure, the
block diagram of the unit is depicted, along with its usage. In the bottom, the specific hardware
design is shown for the case of 32-bits wide incoming address. The design details of the used 8-bit
adders are shown in Figure 3.7 assuming a carry-in of 0-value. The multiplexor control signals
that state if start byte is “11”, “10”, “01” or “00” are computed through simple logic functions.

level using a fast 4-bit carry lookahead adder [21]. The design of the 8-bit carry select
adder may be seen in Figure 3.7. It must be noted that carry lookahead adders and
carry select adders are a fast solution for addition in the expense of extra logic. The
same adder design concept will be used later on to build wider adders out of narrower
ones.

Subtractor unit for W=64 and W=128: Since the subtractor unit design depends
on the length of the incoming address (W), it is necessary to design it for W=64 and
W=128.

As mentioned, the subtract value (SUB) width is limited to W/4 bits, while the part
of the shifted AIN to subtract may start in any byte of the shifted AIN . This means
that the additions to be performed must be W/4 bits wide and that the start byte now
is log2(W/8) bits wide.

A similar design is used as the subtractor unit for W=32. The differences are (a) in
the additions width (16-bits adders for W=64 and 32-bits adders for W=128) and (b)
in the way that the output is formed based on the addition results (as the part to be
subtracted is still chosen on a byte basis).
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Figure 3.7: The 8-bit carry select adder design. It uses two levels of 4-bit carry lookahead adders.
The first level (see right adder) adds the 4 least significant bits of the operands. The second level
(see two left adders) adds the 4 most significant bits of the operands for an assumed carry-in of
0 and 1 and then chooses the correct result according to the carry-out of the first level. The 4-bit
carry lookahead adders are designed based on standard fast logic functions (see [21]).

Since the adders width is larger for W=64 and W=128, it is even more imperative
to use a fast addition scheme. The new adders that are needed (16 and 32-bits wide)
are designed in the same fashion as the 8-bit adders for the subtractor unit for W=32
(see Figure 3.7). To build a 16-bit carry select adder, the 4-bit carry lookahead adders
of Figure 3.7 were replaced by the whole 8-bit carry select adder. In the same way, the
32-bit carry select adders were designed. Using this adder design, we achieved to design
a wide adder (i.e. 32-bits wide) that has almost the delay of a 4-bit carry lookahead
adder, plus the delays for selecting the correct results based on the correct carry-ins.
This was achieved in the cost of extra hardware logic.

The subtractor units for W=64 and W=128 may perform a subtraction in every byte
of the incoming shifted AIN based on the start byte value. The start byte is 3-bits wide
for W=64 and 4-bits wide for W=128. Assuming that start byte is i, then a 16-bits
addition must be done on bytes i + 1 and i, for W=64, and a 32-bits addition on bytes
i+3, i+2, i+1 and i, for W=128. Since the bytes to be added must be compatible with
the number of bytes of the shifted AIN (total bytes are 8 for W=64 and 16 for W=128),
then the allowed values of start byte are [0, 6] for W=64 (i + 1 must be less than 8) and
[0, 12] for W=128 (i + 3 must be less than 16).

It is evident that there are 7 possible 16-bit additions for W=64 and 13 possible
32-bit additions for W=128. Although there are overlaps between the needed additions,
separate parallel adders are used for each address part to ensure the minimum delay.
Figures 3.8 and 3.9 depict the designs of the subtractor units for W=64 and W=128
bits respectively. As in the subtractor unit for W=32, an array of W/4 bit adders is
used followed by an array of multiplexors that choose either the addition result or the
initial address part, according to a part of the start byte value. Furthermore, there is
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an extra needed final multiplexor to choose the correct output, according to the rest of
the start byte value.

Variations on the subtractor unit - A variable-width subtractor unit: Up until
now, the performed subtractions had a constant-width of W/4 bits in order to maintain
a static subtraction delay. This was posed as a limitation on the hardware Range Trie
design, as mentioned in the beginning of Section 3.1. A variation of the subtractor unit
that allows variable-width subtractions will be presented in this paragraph.

According to the Range Trie method rules (see Section 2.2.2), the subtraction is
performed (if needed) to align the bounds of a given Range Trie node N and increasing
the subtraction width might increase the efficiency of a Range Trie structure. At the
same time, widening the subtraction, increases the delay of the subtractor unit. For
that reason, we decided to explore the possibility of a subtractor unit with a variable
subtraction width. The subtraction width is limited to be either W/4 (as before) or
W/2. Not every possible subtraction width is allowed. These subtraction widths were
chosen since the subtraction may be performed using two existing consecutive W/4 wide
subtractors and do not add to the complexity of the design. The effects of using this
variable-width subtractor unit will be explored later in Chapter 4. In any case, in the
rest of the Range Trie hardware design the use of the constant-width subtractor will be
assumed.

The node information for controlling such a variable-width subtraction are different
than before. First, a wider SUB value (W/2 bits long) must be used to hold either the
W/4 bits long subtract value or the W/2 bits long subtract value. Also, a signal is needed
to indicate the length of the subtraction (W/4 or W/2 bits).

The start byte value width remains log2(W/8) and its semantics are the same as
before. Furthermore, as in the constant-width subtractor units, there are also limitations
on the possible values of start byte. Specifically:

• For W=32: The allowed subtraction widths are 8 and 16 bits. The total number of
bytes are 4. When performing 8-bit subtractions, the allowed values of start byte
are [0, 3]. When performing 16-bit subtractions, then they are [0, 2].

• For W=64: The allowed subtraction widths are 16 and 32 bits. The total number of
bytes are 8. When performing 16-bit subtractions, the allowed values of start byte
are [0, 6]. When performing 32-bit subtractions, then they are [0, 4].

• For W=128: The allowed subtraction widths are 32 and 64 bits. The total num-
ber of bytes are 16. When performing 32-bit subtractions, the allowed values of
start byte are [0, 12]. When performing 64-bit subtractions, then they are [0, 8].

The hardware design of the variable-width subtractor units shares a great deal of
similarity with the constant-width subtractor units presented before. The way that the
array of adders is organized is identical. The same number and types of adders are used
and the same parts of the shifted AIN are subtracted per adder. The main difference is
the extra logic for deciding which value to subtract per part.

The design of the variable-width subtractor unit for W=32 is depicted in Figure 3.10
and it will be described against its constant-width counterpart of Figure 3.6. Since the
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Figure 3.8: The subtractor unit for incoming address width of 64-bits. In the top of the figure, the
block diagram of the unit is depicted, along with its usage. In the bottom, the specific hardware
design is shown for the case of 64-bits wide incoming address. The 16-bit adders are designed in
a similar way as the 8-bit adders of Figure 3.7. The allowed values of the 3-bit start byte are [0,
6]. The control signals for the multiplexors that are after the adders are computed through simple
logic functions that inspect the two most significant bits of start byte. The control signal for the
final multiplexor is identical to the least significant bit of start byte.
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Figure 3.9: The subtractor unit for incoming address width of 128-bits. In the top of the figure,
the block diagram of the unit is depicted, along with its usage. In the bottom, the specific hardware
design is shown for the case of 128-bits wide incoming address. The 32-bit adders are designed
in a similar way as the 8-bit adders of Figure 3.7. The allowed values of the 4-bit start byte are
[0, 12]. The control signals for the multiplexors that are after the adders are computed through
simple logic functions that inspect the two most significant bits of start byte. The control signal
for the final multiplexor is identical to the two least significant bits of start byte.

variable-width subtractor units for W=64 and W=128 are obtained in the same manner,
they will not be detailed in this paragraph.

The variable-width subtractor unit for W=32 of Figure 3.10 may perform either 8 or
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Figure 3.10: The variable-width subtractor unit for incoming address width of 32-bits. In the
top of the figure, the block diagram of the unit is depicted, along with its usage. In the bottom,
the specific hardware design is shown for the case of 32-bits wide incoming address, along with
the logic functions that drive its operation. This design is a modification of the constant-width
subtractor unit of Figure 3.6. The variations for W=64 and W=128 bits may be designed in
a similar way based on their constant-width counterparts. The 8-bit adders are the carry select
adders of Figure 3.7. The allowed values of the 2-bit start byte are [0, 3] (when subtraction width
is 8-bits) and [0, 2] (when subtraction width is 16-bits).

16-bits subtraction (depending on the signal 8’/16). The SUB signal holds the value to
subtract and it is 16-bits wide. In case of an 8-bit subtraction the actual value is stored
in the 8 least significant bits of SUB. Once again, SUB must be the 2’s-complement of
the actual value to be subtracted, since the subtraction is done using adders.

The design for the variable-width subtractor unit for W=32 also uses 4 8-bit carry
select adders (as depicted in 3.7) and adds the corresponding byte of the shifted AIN to
the correct part of the SUB value (if needed). Assuming that start byte is i, then the
8 least significant bits of SUB are added to byte i of the shifted AIN . In case that the
subtraction width is set to 16-bits, then an extra addition must occur, where the 8 most
significant bits of SUB are added to byte i + 1 of the shifted AIN . In case of a 16-bits
subtraction, the two 8-bit adders must be connected for a correct carry propagation. In
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the rest bytes of the shifted AIN no addition is performed (by actually adding a 0-value
to them).

The procedure that was just described is what differentiates the variable-width sub-
tractor unit from its constant-width counterpart. To achieve this, the two following
modifications were made. These two modifications may be seen in Figure 3.10, along
with the logic functions that ensure the correct operation of the variable-width subtractor
unit.

• Each adder z is connected to its right adder z − 1 through the carry-out of the
right adder z − 1. In particular, the carry-out of z − 1 must be considered by z,
whenever there is a 16-bit subtraction that starts in byte i = z − 1.

• The 8-bit value to be added in adder z is chosen out of the 0-value or the 8 least
significant bits of SUB or the 8 most significant bits of SUB, based on the start byte
and the subtraction width (8’/16). The hardware that was used for this selection
is a 2-to-1 multiplexor followed by an array of AND-gates.

To conclude, the details of the hardware design of the subtractor unit were presented for
the cases of incoming address widths of 32, 64 and 128 bits. The usage and semantics
of each case were presented, along with a variation of the subtractor unit that performs
variable-width subtractions. The presented subtraction units operate on the incoming
address only when an address alignment is needed. If there is no need for alignment
the incoming address remains unaltered. In any case, the output of the subtractor unit
is passed to the comparison value constructor to byte-select the parts of the incoming
address to be compared later on at the comparators.

3.1.1.3 Comparison value constructor

The comparison value constructor is the unit responsible for the second level of the
selection of parts of the incoming address AIN . There is one such unit per employed
comparator, since the comparison value constructor creates the value to be compared
in the corresponding comparator. The input of the comparison value constructor is the
subtracted AIN coming out of the subtractor unit.

The necessary values needed to select the parts of the subtracted AIN to be compared
in comparator i are: (a) the comparison widths for comparator i and (b) the start byte
(that is common to all comparators per iteration). These values are obtained out of the
currently visited node information.

Assuming that start byte is i ∈ [0, W/8] (bytes are counted from right-to-left) and
the comparison widths for a comparator are [w1, ..., ws], then:

• For each wj , the wj-bit long part of the subtracted AIN is selected that starts in
bit (i+1)∗8−1 of the subtracted AIN (bits are counted from right-to-left starting
from 0). In case the combination of i and wj is such that the available part to
select is less than wj bits, then the rest bits are set to zeros. Since the allowed
comparison widths may be 8, 2∗8, 4∗8, ..., W , then this process is narrowed down
to a byte-selection, instead of a bit-selection.
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• The comparison value to be compared in the comparator is a concatenation of all
the selected parts in order.

The hardware that is needed for the comparison value construction is just an array
of (W/8)-to-1 multiplexors. Each multiplexor is connected to all bytes of the subtracted
AIN and there are control logic functions that dictate which byte to select per multi-
plexor, according to the start byte and the widths to be selected.

It is evident that the comparison value constructor design depends on the the incom-
ing address width (W). For that reason, the respective designs for W=32, W=64 and
W=128 bits will be presented in the rest of this section. It is also shown that the design
is modular, since the designs for W=64 and W=128 use the logic controls of the design
for W/2.

Comparison value constructor for W=32: The comparison value constructor for
incoming address width of 32 bits performs the byte-selection of the subtracted AIN

according to a given start byte and a set of comparison widths. The start byte may be
any of [0, 3] (the bytes are counted from right-to-left). The allowed sets of comparison
widths are [32], [16 16], [8 8 16], [16 8 8] and [8 8 8 8], according to the limitations
posed in the beginning of Section 3.1. A comparator may be disabled and this case is
not dealt during the comparison value construction, but during the interpretation of the
comparison results.

To better understand what the comparison value constructor does and its hardware
design, Table 3.1 shows what is the desired output in terms of the start byte and the
possible comparison widths.

Out of the expected output of Table 3.1, the following set of functions may be derived
that describe the operation of the comparison value constructor. Note that the required
subtraction on start byte are assumed to allow overflow (i.e. if start byte = 1, then
start byte − 3 = 2).

• OutByte3 = Bytestart byte

• OutByte2 = Bytestart byte−1 (if [32] or [16 16] or [16 8 8])
OutByte2 = Bytestart byte (if [8 8 16] or [8 8 8 8])

• OutByte1 = Bytestart byte−2 (if [32])
OutByte1 = Bytestart byte (if [16 16] or [16 8 8] or [8 8 16] or [8 8 8 8])

• OutByte0 = Bytestart byte−3 (if [32])
OutByte0 = Bytestart byte−1 (if [16 16] or [8 8 16])
OutByte0 = Bytestart byte (if [16 8 8] or [8 8 8 8])

• Byte3 must be dealt as a 0-value, when start byte < 3
Byte2 must be dealt as a 0-value, when start byte < 2
Byte1 must be dealt as a 0-value, when start byte < 1

These previous functions point that the byte selection process may be easily designed
based on the values of start byte and the comparison widths. Before presenting the
actual hardware design the representation of the comparison widths in binary format
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Table 3.1: The desired operation of the comparison value constructor for incoming address width
of 32 bits. All the possible combinations of start byte and comparison widths are present. Bytei

denotes the respective byte of the subtracted AIN (bytes are counted from right-to-left starting
from 0). The starred entries are for the cases where the comparison width exceeds the subtracted
AIN width and will be set to 0. These were chosen in a way to follow the pattern of the non-starred
entries and thus leading to simplified selection logic.

Comparator widths Start byte Output
OutByte3 OutByte2 OutByte1 OutByte0

[32] 3 Byte3 Byte2 Byte1 Byte0

2 Byte2 Byte1 Byte0 Byte3∗
1 Byte1 Byte0 Byte3∗ Byte2∗
0 Byte0 Byte3∗ Byte2∗ Byte1∗

[16 16] 3 Byte3 Byte2 Byte3 Byte2

2 Byte2 Byte1 Byte2 Byte1

1 Byte1 Byte0 Byte1 Byte0

0 Byte0 Byte3∗ Byte0 Byte3∗
[8 8 16] 3 Byte3 Byte3 Byte3 Byte2

2 Byte2 Byte2 Byte2 Byte1

1 Byte1 Byte1 Byte1 Byte0

0 Byte0 Byte0 Byte0 Byte3∗
[16 8 8] 3 Byte3 Byte2 Byte3 Byte3

2 Byte2 Byte1 Byte2 Byte2

1 Byte1 Byte0 Byte1 Byte1

0 Byte0 Byte3∗ Byte0 Byte0

[8 8 8 8] 3 Byte3 Byte3 Byte3 Byte3

2 Byte2 Byte2 Byte2 Byte2

1 Byte1 Byte1 Byte1 Byte1

0 Byte0 Byte0 Byte0 Byte0

must be decided. This representation is also used as the configuration of the comparator.
Since there are 5 different sets of comparison widths, plus the possibility of a disabled
comparator, 3 bits suffice to represent these 6 different cases. We chose to use just 3
bits in order to minimize the size of the control signals. The binary representation of
the comparator modes for W=32 are shown in table 3.2.

The hardware design design of the comparison value constructor for W=32 is de-
picted in Figure 3.11. It consists of an array of 4 8-bit wide 4-to-1 multiplexors. Each
multiplexor selects one byte of the input according to the multiplexor control signals. In
case the selected byte must be converted to 0, the AND-gates are used.

The multiplexor control signals are computed based on the start byte and the com-
parator mode, according to the set of functions described above. The logic needed for
that is also shown on Figure 3.11. To calculate the necessary subtractions start byte− i,
where i ∈ [1, 3], no subtractor will be used. Since the start byte is just 2-bits wide and
the i is always known, the start byte − i are easily calculated through one level logic
functions.
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Table 3.2: The binary representation of comparator modes for incoming address width of 32 bits.
The case of a disabled comparator is not dealt by the comparison value constructor.

Comparator mode Encoding
disabled 111

[32] 100
[16 16] 011
[8 8 16] 010
[16 8 8] 001
[8 8 8 8] 000

Figure 3.11: The comparison value constructor for incoming address width of 32-bits. In the
top of the figure, the block diagram of the unit is depicted. The usage of the unit is described
in Table 3.1. In the bottom, the specific hardware design is shown for the case of 32-bits wide
incoming addresses, along with the module that computes the multiplexor control signals. The
allowed values of the 2-bit start byte are [0, 3]. The 3-bit cmp mode must follow the values in
Table 3.2. The AND-gates’ control signals (start byte < i) and the subtractions start byte − i
are calculated through simple logic functions not shown on the figure.

Comparison value constructor for W=64 and W=128: The hardware designs of
the comparator value constructors for incoming address widths (W) of 64 and 128 bits
share the same principles as the one for W=32: there will be an array of W/8 8-bit wide
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(W/8)-to-1 multiplexors, along with AND-gates to turn bytes of the incoming subtracted
AIN into 0 and logic to compute the multiplexors control signals for byte selection.

The main difference is in the computation of the multiplexor control signals due to the
different allowed values of start byte and comparison widths. For W=64, the start byte
may be in [0, 7] and for W=128 in [0, 15]. The allowed comparison widths for W=64 and
W=128 are actually a combination of the allowed comparison widths for W/2 plus an
allowed full-width comparison W. Since the allowed comparison widths for W=32 are
[32], [16 16], [8 8 16], [16 8 8], [8 8 8 8], then i.e. for W=64 the comparison widths may
be [64], [32 : 32], [16 16 : 16 16], [8 8 8 8 : 8 8 8 8], [32 : 16 16], [8 8 8 8 : 16 16], etc.
I.e. for W=128 they may be [128], [64 : 64], [32 32 : 32 32], [16 16 16 16 : 64], [32 32 :
8 8 16 32], etc. This means that the number of possible sets of comparison widths are
1 + 5 ∗ 5 = 26 for W=64 and 1 + 26 ∗ 26 = 677 for W=128. These numbers are actually
27 and 678 due to the possibility of a disabled comparator.

The expected operation of the comparison value constructor for a given set of com-
parison widths and a start byte follows the same principles as for W=32 (see Table 3.1),
so it will not be repeated here.

An important design decision had to be made at this point regarding the binary
representation of the comparison widths sets (comparator modes). Previously, the 6
possible comparator modes for W=32 were represented minimally using 3 bits. The
same approach could be followed here by using 5 bits (or 10 bits) to represent the 27
(or 677) possible comparator modes for W=64 (or W=128). That way the number of
bits to store a comparator mode is minimized. The drawback is that the logic functions
for identifying a comparator mode get more complex, along with the extra difficulty and
time needed to analyze beforehand the 27 and 678 different possibilities.

Instead of the previous approach, another approach was used for the binary repre-
sentation of the comparator modes for W=64 and W=128. Since a comparator mode for
W=64 and W=128 is a combination of the comparator modes for W/2, then a concate-
nation of the binary representations for W/2 may be used. This means that 2∗3 = 6 bits
(or 2∗6 = 12 bits) are needed to represent a comparator mode for W=64 (or W=128) out
of two 3-bits (or 6-bits) comparator modes for W=32 (or W=64). The resulting binary
representations of comparator modes for W=64 and W=128 may be seen in Tables 3.3
and 3.4 respectively. Although this approach uses more bits to represent a comparator
mode than the previous one, it is considered beneficial since it simplifies the design pro-
cess (existing logic from the W/2 designs may be used) with a minimized extra cost of
1 (or 2) bits per comparator mode.

The hardware designs of the comparison value constructors are depicted in Figures
3.12 and 3.13 for W=64 and W=128 respectively. These designs have an array of W/8 8-
bit wide (W/8)-to-1 multiplexors that select a byte according to the multiplexor control
logic (using the control logic of the design for W/2). Also, there is an array of AND-gates
that may turn a Bytei into a 0-value, when start byte < i for 1 ≤ i ≤ W/8 − 1.

As mentioned, the selection of bytes for a given W may be performed using the
existing logic from the design for W/2. As the comparator mode for W is a concatenation
of two comparator modes for W/2, two instances of the selection logic for W/2 will be
used to drive the byte selection for W. Each instance will be fed with the corresponding
comparator mode half. Both instances will be fed with the log2(W/16) least significant
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Table 3.3: The binary representation of comparator modes for incoming address width of 64 bits.
Each comparator mode is a combination of the possible comparator modes for W=32 (see Table
3.2), except the new comparator mode [64]. The binary representation is a concatenation of
the respective binary representations for W=32 (see Table 3.2), except the full-width comparison
mode [64] which is represented as 100101 to avoid collision with other existing representations.
The case of a disabled comparator is not dealt by the comparison value constructor.

Comparator mode Encoding
disabled 111111
[64] 100101
[32 : 32] 100 100
[32 : 16 16] 100 011
[32 : 8 8 16] 100 010
[32 : 16 8 8] 100 001
[32 : 8 8 8 8] 100 000
[16 16 : 32] 011 100
[16 16 : 16 16] 011 011
[16 16 : 8 8 16] 011 010
[16 16 : 16 8 8] 011 001
[16 16 : 8 8 8 8] 011 000

Comparator mode Encoding
[8 8 16 : 32] 010 100
[8 8 16 : 16 16] 010 011
[8 8 16 : 8 8 16] 010 010
[8 8 16 : 16 8 8] 010 001
[8 8 16 : 8 8 8 8] 010 000
[16 8 8 : 32] 001 100
[16 8 8 : 16 16] 001 011
[16 8 8 : 8 8 16] 001 010
[16 8 8 : 16 8 8] 001 001
[16 8 8 : 8 8 8 8] 001 000
[8 8 8 8 : 32] 000 100
[8 8 8 8 : 16 16] 000 011
[8 8 8 8 : 8 8 16] 000 010
[8 8 8 8 : 16 8 8] 000 001
[8 8 8 8 : 8 8 8 8] 000 000

bits of the start byte. These instances may choose one out of W/16 bytes, so extra logic
must be added to ensure the correct selection out of W/8 bytes. The needed extra logic
narrows down to computing an extra control bit per multiplexor (the most significant
bit of each multiplexor control signal) that dictates whether to select the byte from the
upper half or the lower half of the incoming subtracted AIN .

This extra bit (for W) is computed as a function of the start byte and the com-
puted multiplexor control signals (for W/2) per multiplexor (mux

W/2
i ). There are three

conditions that need to be identified: (a) if start byte ≥ W/16, (b) if mux
W/2
i >

start byte%(W/16), (c) if the comparator mode is [W ]. In general, whenever only one
of these conditions is true, then the extra bit is set to 1 (the byte is selected from the
upper half of the incoming subtracted AIN ), otherwise it is set to 0 (the byte is selected
from the lower half). For a more specific description of the control signal computation,
see the logic functions in Figures 3.12 and 3.13.

Although it is more complex to compute the multiplexor control signals for larger
incoming address widths, no delay is added to the complete design due to this extra
complexity. This is the case because the computation is not on the critical path of
the iteration design. What affects the delay is the extra multiplexor delay due to its
increased depth.

To conclude, the comparison value constructor is the final hardware unit needed to
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Table 3.4: The binary representation of comparator modes for incoming address width of 128 bits.
Each comparator mode is a combination of the possible comparator modes for W=64 (see Table
3.3), except the new comparator mode [128]. The binary representation is a concatenation of the
respective binary representations for W=64 (see Table 3.3), except the full-width comparison mode
[128] which is represented as 100100100110 to avoid collision with other existing representations.
The case of a disabled comparator is not dealt by the comparison value constructor. The presented
comparator modes in the table are not all the possible ones.

Comparator mode Encoding
disabled 111111111111
[128] 100100100110
[64 : 64] 100101 100101
[64 : 32 32] 100101 100100
[64 : 32 16 16] 100101 100011
... ...
[32 32 : 64] 100100 100101
[32 32 : 32 32] 100100 100100
[32 32 : 32 16 16] 100100 100011
... ...
[32 16 16 : 64] 100011 100101
[32 16 16 : 32 32] 100011 100100
[32 16 16 : 32 16 16] 100011 100011
... ...
... ...

perform the selection of the parts of the incoming address. The integration of the com-
parison value constructor with the left-shifter and the subtractor unit will be described
in the next section, along with the way to configure the signals that drive the operation
of these units, according to the node information.

3.1.1.4 Integrating the units for “selecting parts of addresses”

Up to this point, the necessary hardware units for the selection of parts of addresses were
detailed (the left-shifter and the comparison value constructor). Also, the subtractor unit
was presented that performs (if needed) an alignment to the incoming address. Since
the target is a Range Trie that may have an incoming address width (W) of 32, 64 or
128 bits, all the necessary variations of the units were detailed. In this section, the way
to integrate and configure all of these units is detailed in order to perform successfully
the selection of parts of the incoming address AIN .

Figure 3.14 depicts the way to integrate these units for a given incoming address
width (W) and a given memory bandwidth (BW). A single left-shifter unit is fed by the
incoming address AIN . The shifted AIN is passed to the subtractor unit for W. Finally,
the subtracted AIN is the input to k − 1 comparison value constructor for W. Since the
number of comparators to be used in an iteration is k = BW/W (where W may be 256,
512 or 1024 bits) and the k-th comparator performs only full-length comparisons (to be
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Figure 3.12: The comparison value constructor for incoming address width of 64-bits. In the top
of the figure, the block diagram of the unit is depicted. In the bottom, an abstract hardware design
is shown for the case of 64-bits wide incoming addresses. Note the use of logic from the design
for W=32 (see Figure 3.11) to compute the multiplexor control signals. The allowed values of
the 3-bit start byte are [0, 7]. The 6-bit cmp mode must follow the values in Table 3.3. The
AND-gates’ control signals (start byte < i) and the 2-bit comparisons (muxi > start byte(1 : 0))
are calculated through simple logic functions not shown on the figure.

used only if all other k− 1 comparators perform also full-length comparisons), it suffices
to employ k−1 comparison value constructors. Each comparison value constructor feeds
the respective comparator to perform the designated comparisons. The k-th comparator
does not need any form of comparison value preparation and it is fed directly with the
incoming AIN . The same applies for the prefix/suffix comparator.

For the correct selection of the address parts, the control signals of the units must be
set up as directed by the node information. The node information consist of: the possible
common prefix length (CP), the possible common suffix length (CS), the possible subtract
value and the comparison widths to be performed per comparator. The specifications of
these values were presented in the beginning of Section 3.1.1. These values are translated
into the necessary control signals as follows:

• Shift ctrl (2-bits wide):
If SUB = 0, then shift ctrl = (CP%8)/2. Otherwise, shift ctrl = 0 (if CS%8 =
0) or shift ctrl = (8 − CS%8)/2 (if CS%8 �= 0)

• Start byte (log2(W/8)-bits wide):
If SUB = 0, then start byte = (W/8 − 1) − CP/8.
Otherwise, start byte = CS/8 + (CS%8 �= 0).



3.1. RANGE TRIE ITERATION 61

Figure 3.13: The comparison value constructor for incoming address width of 128-bits. In the top
of the figure, the block diagram of the unit is depicted. In the bottom, an abstract hardware design
is shown for the case of 128-bits wide incoming addresses. Note the use of logic from the design
for W=64 (see Figure 3.12) to compute the multiplexor control signals. The allowed values of
the 4-bit start byte are [0, 15]. The 12-bit cmp mode must follow the values in Table 3.4. The
AND-gates’ control signals (start byte < i) and the 3-bit comparisons (muxi > start byte(2 : 0))
are calculated through simple logic functions not shown on the figure.

• SUB ((W/4)-bits wide):
This is the 2’s-complement of the value to be subtracted. In case there is no
subtraction, it must be set to 0.

• Cmp modei (z-bits wide):
The comparator mode that each of the k − 1 comparators operates in. According
to the comparison widths to be performed per comparator, the Cmp modei (where
1 ≤ i ≤ k − 1) is represented in binary according to Tables 3.2, 3.3 and 3.4 for
W=32, 64 and 128 respectively. The width (z) of Cmp modei is 3-bits (for W=32),
6-bits (for W=64) or 12-bits (for W=128).

The selection of parts of addresses may now be performed correctly and the result is
the values to be compared afterwards in the array of the k comparators. The required
comparator units for performing the comparison are presented in the coming section.

3.1.2 Performing the comparisons

The basic operation during a Range Trie iteration is performing a number of comparisons
between parts of the incoming address AIN and predetermined values, according to the
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Figure 3.14: The integrated hardware design for selecting parts of addresses for a given incoming
address width (W) of 32, 64 or 128 bits and a given memory bandwidth (BW) of 256, 512 or
1024 bits. The employed hardware units are the corresponding variations that were presented
previously in this section.

node information (see Figure 3.15). The purpose of the comparisons is to determine
which node to visit next. In the previous section the way to select and prepare the
parts of AIN for comparison was presented. In this section, the necessary hardware for
performing the comparisons will be presented. In later sections, the hardware required
for interpreting the results of the comparisons and deciding which node to visit next will
be discussed.

Figure 3.15: An abstract block diagram of the Range Trie iteration focusing on iteration step 2.

It has been mentioned that a Range Trie iteration uses an array of k = BW/W com-
parators for a given incoming address width (W) and a given memory bandwidth (BW).
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Each of these comparators performs a number of variable-width comparisons (except the
k-th full-width comparator) according to the possible comparison widths (see Tables 3.2,
3.3 and 3.4). Since the parts of the incoming address to compare have a variable width,
each comparator must be able to compare 8, 2 ∗ 8, 4 ∗ 8, ..., and W bits and output
all the possible comparison results. At this point, the possible comparator modes are
not used (each comparator outputs all the possibly needed results). At a later stage the
comparator mode will be used to interpret the comparison results.

At the same time, there is the possibility of needed prefix/suffix comparisons (ac-
cording to the node information). For that reason, apart from the k comparators, special
comparators for the possible shared prefix/suffix must be designed. These comparators
are different than the variable-width comparators, since a single comparison result is
required and the maximum width of the comparison is W − 8 bits. Also, to perform the
correct comparison the prefix and suffix of the incoming address must be first extracted
and then compared to the shared prefix and suffix..

All of the aforementioned comparators will operate in parallel. Before presenting
their design, it must be noted that the result of the k-th full-width comparator will be
used afterwards only when the rest k − 1 comparators are also configured as full-width
comparators. In that case there is no point for a common prefix/suffix comparison and
its result is disregarded.

In the rest of this section, the two required hardware units (the variable-width com-
parators and the prefix/suffix comparators) will be described for all possible incoming
address widths (32, 64, 128 bits). The given memory bandwidth does not affect these
components, apart from the times that they are going to be used in the complete design.
After presenting each unit, the way to integrate all of them will be shown, along with
the means to ensure a correct operation.

3.1.2.1 The variable-width comparators

As mentioned, the variable-width comparators must be able to compare 8, 2∗8, 4∗8, ...,
and W bits and output all the possible comparison results, in order to support all the
possible comparator modes of Tables 3.2, 3.3 and 3.4. Since the minimum comparison
width is 8-bits and all the possible comparison widths are 2i∗8, a W-bits wide comparator
is designed as an array of W/8 8-bits wide comparators. Every subsequent pair of 8-
bits wide comparators is connected (with simple connection logic) to form a 2 ∗ 8-bits
comparator, etc. For each performed comparison between values X and Y the following
results must be output:

• Equal (E): If X = Y , then E = 1. Otherwise, E = 0.

• Greater equal or less (GE′/L): If X ≥ Y , then GE′/L = 0. Otherwise, GE′/L = 1.

The hardware design of the variable-width comparator for incoming address width
(W) of 32-bits is depicted in Figure 3.16. Note that the 8-bit comparison results are
connected in an inverted tree manner to form the wider comparison results. Since the
effort was to minimize the latency of the comparator, the 8-bit comparators were designed
as two connected 4-bit comparators.
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Figure 3.16: The variable-width comparator for an incoming address width (W). In the top of
the figure, the block diagram of the units for W=32, 64 and 128 are depicted. In the bottom,
an abstract hardware design is shown for the case of 32-bits wide incoming addresses. The 8-
bits wide comparators and the connection logic are implemented as simple logic functions not
presented here.

The variable width-comparators for W=64 and W=128 are designed in the same way
as the one for W=32. Since the design is modular, two instances of the variable-width
comparator for W/2, along with the same connection logic, may be used to form the
W-bit comparator. This means that the inverted tree depth and the number of outputs
increase, since the possible comparison results are more (see block diagrams in Figure
3.16).

3.1.2.2 The prefix/suffix comparators

The prefix/suffix comparator unit must be able to perform two comparisons on a possible
shared common prefix and suffix, according to the node information. The necessary
node information are: (a) the common prefix length (CP) and value (CPvalue), (b) the
common suffix length (CS) and value (CSvalue). It has been established that CP and CS
are a multiplicand of 2 and that CP + CS ≤ W − 8. The purpose of the prefix/suffix
comparator is to perform two comparisons: (a) the common prefix comparison (between
the CP-bits prefix of AIN and the CPvalue) and (b) the common suffix comparison
(between the CS-bits suffix of AIN and the CSvalue). Out of each comparison the GE’/L
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and E results are required (as were defined before).
For the prefix/suffix comparisons, the worst-case comparison width is W − 8 bits.

For that reason two parallel W − 8 bits wide comparators will be used. These compara-
tors are constructed in a similar way as the aforementioned variable-width comparators.
They consist of an array of (W/8)− 1 8-bits wide comparators connected in an inverted
tree manner to form a W − 8 bits wide comparator. Only the results of the complete
comparison are output.

Since the used comparators are W − 8 bits wide and the actual comparisons are CP
and CS bits wide (where CP and CS might be less than W − 8), the compared values
must be extended to W − 8 bits while filling the rest bits with zeros. This is achieved
using a prefix mask and a suffix mask. Both masks are W − 8 bits wide. The CP most
significant bits of the prefix mask are set to ones, while the CS least significant bits of
the suffix mask are set to ones. The rest bits of the masks are set to zeros. To create
the masks the CP and CS values must be encoded in binary and fed to the prefix/suffix
comparator unit.1

Applying the prefix mask on the W − 8 most significant bits of the incoming address
AIN retrieves the prefix of AIN , while filling the rest bits with zeros. In a similar reverse
manner the suffix of AIN is obtained.

A similar preparation occurs for the CPvalue and the CSvalue. Since CP+CS ≤ W−8,
the CPvalue and CSvalue are stored in a single W − 8 bits entry (CP/CSvalues) in order
to minimize the memory requirements. Applying the prefix mask and the suffix mask
separately to this entry is enough to retrieve the compatible forms of the CPvalue and
CSvalue. At this point, all the comparison operands are correct and W − 8 bits wide.

The hardware design of the prefix/suffix comparator unit is depicted in Figure 3.17.
It consists of two decoders that generate the prefix and suffix masks based on the encoded
prefix/suffix mask. The corresponding parts of AIN and the CP/CSvalues are obtained
through the AND-gates, while using the prefix/suffix masks. Then the two W − 8
comparators are used to perform the comparisons between the masked values. Although
the depicted design is an example for W=32, it may easily adapted for W=64 and
W=128.

3.1.2.3 Integrating the units for “performing the comparisons”

In the previous paragraphs the necessary hardware units for performing the necessary
comparisons were detailed (the variable-width comparators and the prefix/suffix com-
parators). Since the target is a Range Trie that may have an incoming address width
(W) of 32, 64 or 128 bits, all the necessary variations of the units were designed. In
this section, the way to integrate and configure all of these units is detailed in order to
perform successfully the comparisons between parts of the incoming address AIN and
the predetermined values, according to the node information.

Figure 3.18 depicts how to employ the required comparators in parallel for a given
incoming address width (W) and a given memory bandwidth (BW). Just an array of

1Since CP and CS are always multiplicands of 2, then it suffices to encode the CP/2 and CS/2 values,
as they require less bits. Therefore, CP and CS require �log2(W − 8)/2� bits each. I.e. the encoded
mask for both CP and CS will require 8 bits for W=32, 10 bits for W=64 and 12 bits for W=128.
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Figure 3.17: The prefix/suffix comparator unit for incoming address width of W-bits. In the top
of the figure, the block diagram of the unit is depicted. In the bottom, an abstract hardware design
is shown for the case of 32-bits wide incoming addresses. The mask decoders are implemented as
simple priority decoders. The used comparators are implemented similarly to the variable-width
comparators of Figure 3.16. Note that the incoming address prefix and suffix are connected to X
of each comparator, while the common prefix and suffix are connected to Y.

k = BW/W variable-width comparators for W is needed, along with a prefix/suffix
comparator unit for W. Note that the prepared parts of AIN are connected as the
X operand of the comparators, while the predetermined comparison values are the Y
operand of the comparators.

Figure 3.18: The integrated hardware design for performing the required comparisons for a given
incoming address width (W) of 32, 64 or 128 bits and a given memory bandwidth (BW) of
256, 512 or 1024 bits. The employed hardware units are the corresponding variations that were
presented previously in this section.
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To perform the comparisons as required by the Range Trie node, a number of values
need to be configured to make the units operate correctly. All of the following values are
predetermined and are set before starting the operation of the Range Trie hardware.

• Comparison values i: Each of the k comparators performs a number of variable-
width comparisons according to a specified comparator mode. The first operands
(X) of the comparisons, the parts of AIN , have been prepared accordingly by the
hardware design. The second operand of the comparisons (Y), the comparison
values i, must hold the respective values that will be compared according to the
node information. Each comparison value i must be W-bits wide. Assuming that
comparator i performs s comparisons according to its comparator mode [w1, ..., ws],
then the comparison value i is a concatenation of s comparison values, each wj bits
wide. In case a comparison of length wj needs to be disabled, then the correspond-
ing wj bits of the comparison value i must be set to zeros. Comparison value k for
the k-th full-width comparison must be set correctly only when this comparator is
to be used, otherwise it suffices to set its comparator mode into disabled.

• Common prefix/suffix values (CP/CSvalues): This is a W − 8 bits wide value
holding the common prefix (CP bits wide) and common suffix (CS bits wide) of the
Range Trie node. The CP most significant bits of CP/CSvalues hold the common
prefix value (if any). The CS least significant bits hold the common suffix value (if
any). The rest bits are set to zeros.

• Common prefix/suffix encoded masks (CP/CSmask): This is a 2 ∗ �log2(W − 8)/2	
bits wide value holding the encoded prefix/suffix masks. The first half holds the
binary encoding of CP/2, while the other half holds the binary encoding of CS/2,
where CP and CS are the respective common prefix and suffix lengths. In case
there is no shared prefix/suffix, then the respective half must be set to zeros.

To conclude, this hardware setup compares parts of AIN with predetermined values
and provides all the possible comparison results in the form of GE′/L and E signals.
The first operand of the comparisons are the parts of AIN and the second one are the
predetermined values. This means that the comparison results tell if the corresponding
parts of AIN are greater-equal/less and equal/not-equal to the corresponding comparison
values.

Not all of these comparison results will be used for deciding which node to visit in the
next iteration. During the comparisons the comparator mode is not taken into account.
This will happen later. Another example of this case is the use of the full-width k-th
comparator and the prefix/suffix comparator unit. These two units operate in parallel
all the time but their results will never be considered at the same iteration. Using the
k-th comparator results may happen when all of the rest k − 1 comparators operate in
full-width mode and thus there is no need for common prefix/suffix comparison.

All the comparisons results are now available and need to be interpreted according
to the node information before deciding which node to visit next. In the next section,
the hardware used for interpreting the comparison results will be presented.
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3.1.3 Interpreting the comparison results

According to the Range Trie method, during an iteration a number (c) of comparisons
is performed on parts of the incoming address AIN against c predetermined values.
Alongside, a prefix/suffix comparison may be performed on the prefix/suffix of AIN

against the common prefix/suffix. Depending on the results of the comparisons, the
next Range Trie node to visit is determined.

Before proceeding into deciding the next node to visit, the results of the c comparisons
must be interpreted into a single value (see Figure 3.19). This section describes the
hardware design that interprets the comparison results into a single value. This single
value represents the range that the part of AIN belongs to out of the ranges defined by
the c predetermined values. Assume that in an iteration the parts of AIN are compared
against c predetermined values. These values are the bounds of the c + 1 ranges where
the part of AIN may belong to.

Figure 3.19: An abstract block diagram of the Range Trie iteration focusing on iteration step 3.

As described in the previous section, the c comparisons are performed in an array of
k = BW/W variable-width comparators, where BW is the available memory bandwidth
and W is the incoming address width. Each of the k comparators outputs all the possible
results for every possible allowed comparison width. For interpreting the comparison
results, only the valid comparison results must be considered. The valid comparison
results are obtained based on the comparator modes. I.e. assume that W=32 and the
comparator mode for comparator i is [8 8 16], then we consider as valid comparison
results the GE′/L and E coming out of the first 8-bit comparison, the second 8-bit
comparison and the second 16-bit comparison of comparator i.

There is also the possibility of disabled comparisons within a comparator (identified
by a 0-valued predetermined comparison value) and completely disabled comparators
(identified by a comparator mode representing the disabled mode). If this is the case,
the respective comparison results are disregarded.

The issue still remains on how to interpret the valid comparison results. Since the
c predetermined values are compared in an increasing order in the k comparators, it
suffices to add (or encode) the c valid GE′/L results into a single binary value (range).
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Thus, it holds that 0 ≤ range ≤ c and it is possible to identify each of the c+1 matching
ranges. This selected interpretation scheme means that the reported ranges are counted
from right-to-left, meaning that: (a) if the result of comparison c is L, then the reported
range is 0, (b) if the result of comparison 1 is GE, then the reported range is c, (c)
otherwise if the result of comparison i is GE and i + 1 is L (where i < c), then the
reported range is c − i. This described process is a translation of Step 2 of the Range
Trie method (see Section 2.2.3).

Alongside with the range computation it is required to interpret the E results of
the valid comparisons. In a later stage it will be required to determine if the part of
AIN is equal to any of the predetermined values (for interpreting a possible common
suffix match according to Range Trie Rule 3). Since it may be equal to only one of the
predetermined values, it is enough to perform a logic-OR to all the valid E signals.

To conclude, the interpretation of the comparator results narrows down to (a) adding the
valid GE′/L results and (b) performing a logic-OR of the valid E results. The results are
the range that the part of AIN belongs to (0 ≤ range ≤ c + 1) and a signal indicating if
the part of AIN is equal to one of the c predetermined values. During this interpretation
the possible prefix/suffix comparison results are not taken into consideration.

This whole process may be considered as an encoding task performed in two levels
in hardware:

• First, there is a partial encoder per comparator that computes a partial range
value and an partial equal signal based on the respective valid comparison re-
sults of the comparator. The valid comparison results are determined based on
the comparator mode and the comparison values (to identify disabled comparisons
when there are 0-valued comparison values). The resulting partial range will be
�log2(W/8 + 1)	 bits wide2 and is the sum of the valid GE′/L results of the com-
parator, except for the k-th comparator where the partial equal is 1-bit wide3. The
resulting partial equal is the logic-OR of the valid E results of the comparator.

• Afterwards, there is a unit that adds the k partial ranges values into the sin-
gle range value, while calculating the global equal signal as a logic-OR of the
partial equals. The resulting range will be �log2((k − 1) ∗ (W/8) + 1)	 bits wide4.

In the rest of this section the hardware units needed for interpreting the comparison
results will be presented (the partial encoder, the enable unit and the partial encodings
adder). All the necessary details will be discussed for designing these units for all possible
memory bandwidths (256, 512, 1024 bits) and incoming address widths (32, 64, 128 bits).
Afterwards, the way to integrate all of these units to perform the interpretation of the
results will be presented.

2The maximum number of comparisons performed by a single comparator is W/8 (when only 8-bit
comparisons widths are used), resulting into W/8 + 1 possible partial ranges.

3The k-th full-width comparator performs only one comparison.
4The maximum number of comparisons performed in a Range Trie iteration are (k−1)∗ (W/8) (when

all k − 1 comparators operate using only 8-bit comparisons widths), resulting into (k − 1) ∗ (W/8) + 1
possible ranges.
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3.1.3.1 Enable unit

It has been mentioned that c comparisons are performed using the k comparators during
a Range Trie iteration. Each comparator is assigned with a comparator mode (see Tables
3.2, 3.3 and 3.4) that indicates which of its results should be considered for interpretation
purposes. The c comparisons do not necessary use all the comparators. For that reason
we introduced a comparator mode that disables a comparator completely (actually the
comparator mode indicates that ). Furthermore, there is the possibility that comparisons
within a comparator are not utilized. The purpose of the enable unit is to tackle with
this case and provide the information on whether a comparison is disabled within a
comparator.

One solution would be to just add new comparator modes that indicate disabled
comparisons within a comparator. This would result in extra bits needed for representing
the comparator modes, the logic for identifying each comparator mode would become
more complicated and the scalability to wider incoming address widths would be affected.

Instead we chose to hold the information of a disabled comparison within the com-
parison value itself. Whenever there is a comparison that is not needed, the respective
bits must be set to zeros beforehand. This scheme allows for an easy detection of dis-
abled comparisons (by performing logic-OR on the bits of the comparison values) while
no extra bits are needed for indicating a disabled comparison.

We assumed that the c comparisons are assigned contiguously to the k comparators.
This meant that only the right-most comparisons within a comparator may be disabled.
I.e. for W=32, the following comparator modes are possible now: [16 X], [16 8 X], [8 X
X X], [8 8 X X], [8 8 8 X], where X denotes a disabled comparison. Since the comparator
modes must follow the ones in Table 3.2, the respective comparator modes are set to:
[16 16], [16 8 8], [8 8 8 8], [8 8 8 8], [8 8 8 8]. At the same time the 16, 8, 24, 16, 8 least
significant bits respectively of the comparison value are set to zeros.

As mentioned, the purpose of the enable unit is to identify if a comparison is disabled
by performing a logic-OR on the respective bits of the comparison value. Figure 3.20
depicts the hardware design of the enable unit for W=32. This unit determines if the
8-bit comparisons or the second 16-bit comparison are enabled. The inspection of the 8
most significant bits of the comparison value is not needed for W=32 but it is present
to assist the construction of the enable units for wider incoming address widths.

For W=64, an array of 2 enable units for W=32 will be used. As the comparator
modes for W=64 are a concatenation of the comparator modes for W=32, the comparator
modes with disabled comparisons must be set as for W=32. For that reason an extra rule
was added: a disabled 32-bit wide comparison within a 64-bit comparator is translated
into a [8 8 8 8] comparison. In a similar way the enable unit for W=128 is constructed
as an array of 4 enable units for W=32.

The signals produced by the enable units will be used afterwards by the partial
encoders to help determine which comparison results are valid. As there is one partial
encoder employed per comparator, there is one enable unit per comparator, except the
k-th full-width comparator which operates only in an enabled/disabled manner and may
not have disabled comparisons within itself (since it performs just one comparison).
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Figure 3.20: The enable unit for incoming address width of W-bits. In the left part of the figure,
the block diagram of the unit is depicted for all possible W. In the right part, the hardware design
is shown for the case of 32-bits wide incoming addresses.

3.1.3.2 Partial encoder

The partial encoder is responsible for the first level of interpretation of the comparison
results. One partial encoder is deployed per comparator and interprets the comparison
results per comparator. Based on which comparisons are valid (according to the respec-
tive comparator mode and the enable unit’s output), it adds the valid GE′/L results and
performs a logic-OR on the valid E results of the respective comparator. The output of
the partial encoder are: (a) the partial range indicating the range that the part of AIN

belongs to out of the ranges specified by the specific comparator comparisons and (b)
the partial equal indicating if the part of AIN is equal to any of the values compared in
the comparator.

The hardware design for the partial encoder for 32-bits wide incoming addresses is
depicted in Figure 3.21. It consists of two parts, one responsible for adding the valid
GE′/L results and one for performing the logic-OR of the valid E results.

First, regarding the addition of the valid GE′/L results, it must be mentioned that
the maximum number of comparisons performed by a W-bit wide comparison is W/8.
So, there are potentially W/8 GE′/L valid results that must be added resulting into a
�log2(W/8 + 1)	 bits wide number (the partial range).

For the case of W=32, an adder that adds 4 bits into one 3-bit number was designed.
The input to the adder must be only the valid GE′/L results. For that reason there is
the logic that nullifies an invalid comparison result, based on the comparator mode and
the enable unit signals. Also, since the adder adds 4 results, while the comparator results
are more, groups of mutually exclusive signals were assigned to each input of the adder.
Assuming that the adder adds bits a, b, c and d, the comparison results are assigned as
follows:

• a is the GE′/L result of one of the following comparisons:

– the 32-bit comparison (if the comparator mode is [32])

– the first 16-bit comparison (if the comparator mode is [16 X])
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Figure 3.21: The partial encoder unit for incoming address width of 32-bits. In the top of the
figure, the block diagram of the unit is depicted. In the bottom, the hardware design is shown
consisting of logic for computing the partial range and the partial equal. The control signals
detecting the comparator modes are computed using simple logic functions according to the binary
representation of the comparator modes (see Table 3.2). The 4-to-3 adder is designed as three
logic functions according to the logic table defining the required addition.

– the first 8-bit comparison (if the comparator mode is [8 8 X] and the first
8-bit comparison is enabled)

• b is the GE′/L result of the second 8-bit comparison (if the comparator mode is [8
8 X] and the second 8-bit comparison is enabled)

• c is the GE′/L result of one of the following comparisons:

– the second 16-bit comparison (if the comparator mode is [X 16])

– the third 8-bit comparison (if the comparator mode is [X 8 8] and the third
8-bit comparison is enabled)

• d is the GE′/L result of the fourth 8-bit comparison (if the comparator mode is
[X 8 8] and the fourth 8-bit comparison is enabled)

• a, b, c and d are zero when the comparator mode is set to disabled

A similar process is followed for calculating the logic-OR of the valid E signals.
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Using levels of OR-gates, AND-gates and multiplexors (as depicted in Figure 3.21), the
following functionality is achieved:

• If the comparator mode is set to disabled, then the partial equal is set to 0.

• If the comparator mode is [32], then the partial equal is the E of the 32-bit compar-
ison, otherwise it is the logic-OR of partial equal lower and partial equal upper.

– If the comparator mode is [16 X], then the partial equal upper is the E of
the first 16-bit comparison.
If the comparator mode is [8 8 X], then it is the logic-OR of the first and
second 8-bit comparisons (if both 8-bit comparisons are enabled).

– If the comparator mode is [X 16], then the partial equal upper is the E of
the second 16-bit comparison (if the comparison is enabled).
If the comparator mode is [X 8 8], then it is the logic-OR of the third and
fourth 8-bit comparisons (if both 8-bit comparisons are enabled).

The partial encoder for W=64 and 128 is designed using the same principles. Each
of these uses two instances of a partial encoder for W/2 (one for the upper half and
one of the lower half of the comparison results) taking advantage from the way that the
comparator modes were defined (see Tables 3.2, 3.3 and 3.4). Extra logic was added to
form the actual partial range and partial equal out of the ones computed by the inner
partial encoders for W/2.

To conclude, the partial encoder adds the valid GE′/L signals and performs a logic-
OR on the valid E signals of the respective comparator to form the partial range and
partial equal values. Such a partial encoder is deployed per each used comparator,
except for the full-width k-th comparator where only one comparison is performed and
the computation of its 1-bit partial range and partial equal reduces to a simple logic
function of its 1-bit results with its 1-bit comparator mode (enabled or disabled).

3.1.3.3 Partial encodings adder (Top-level encoding)

The second level of the interpretation/encoding of the comparison results is performed
by the partial encodings adder. This unit is responsible for adding/encoding the
partial ranges of the k comparators into the single desired range value. Alongside,
it performs a logic-OR of the k partial equal values to form the single equal value. As
mentioned before, the range indicates the range that the part of AIN belongs to out of
the ranges specified by all the performed comparisons and equal indicates if the part of
AIN is equal to any of the compared values.

The hardware design of the partial encodings adder consists of an adder and a logic-
OR. Performing the logic-OR of the k partial equals is straightforward. On the other
hand, the adder design depends highly on the number of used comparators per Range
Trie instance, since it has to add k = BW/W partial ranges, where BW is the available
memory bandwidth and W is the incoming address width. In particular, since the BW
may be 256, 512 or 1024 bits and W may be 32, 64 or 128 bits, k may be one of the
following values 2, 4, 8, 16, 32. This implied that a different adder should be designed
for each possible k to facilitate the generation of every possible Range Trie hardware
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instance. Before explaining the chosen approach for the adder designs, their expected
input and output must be specified.

The adder must add k partial ranges, where:

• The first k − 1 partial ranges are coming out of the first k − 1 partial encoders.
These partial ranges are �log2(W/8 + 1)	 bits wide each.

• The last 1-bit partial range of the partial encoder for the k-th comparator. This
should be added only when the k-th full-width comparator is enabled and the rest
k − 1 comparators are used as full-width comparators.

The output of the adder is a single range which is �log2((k − 1) ∗ (W/8) + 1)	 bits
wide, because the maximum number of comparisons performed in a Range Trie iteration
are (k − 1) ∗ (W/8) (when all k − 1 comparators operate using only 8-bit comparisons
widths), resulting into (k − 1) ∗ (W/8) + 1 possible ranges.

Instead of using regular adders to perform the addition of the k partial ranges, an
advanced addition technique was used based on carry-save adders [21]. A carry-save
adder tree reduces the k numbers into 2 using O(log2k) levels of carry-save adders5.
Then a regular addition may be done to compute the final result. This is advantageous
because each carry-save adder level has a delay of just a full-adder and the final addition
is narrower. On the contrary, using regular adders would result in a delay equal to
propagating the result through k − 1 slow adders.

A further optimization was posed by integrating the addition of the 1-bit k-th
partial range into one of the rest k − 1 partial ranges and thus requiring the addi-
tion of one less number. This was possible since the k-th partial range is present only
when the rest k−1 comparisons are full-width and thus their partial ranges hold useful
information only in their least significant bit.

An example depicting the operation of the carry-save adder tree designed for W=32
and BW=256 is shown in Figure 3.22. The 7 partial ranges are added using 4 carry-
save adder levels. The 8-th partial range is integrated with one of the 7 partial ranges.
Finally there is a 3-bit carry-lookahead adder to add the remaining 2 numbers into the
range.

In order to ensure the minimum number of carry-save adder levels of the required
partial encoder adder (and thus minimize the adder delay), the carry-save adder trees
were designed for each of the possible values of k following the same principles.

To conclude, the partial encodings adder completes the interpretation of the com-
parison results. It computes the range value (by adding the k partia ranges using the
carry-save adder tree and a carry-lookahead adder) and the equal value (by performing
a logic-OR on the k partial equals). An example design for W=32 and BW=256 is
depicted in Figure 3.23.

3.1.3.4 Integrating the units for “interpreting the comparisons results”

In the previous paragraphs the hardware design of the units for interpreting the com-
parison results was detailed. These units (the enable unit, the partial encoder and the

5A W-bit wide carry-save adder is an array of W full-adders. It adds 3 W-bit numbers resulting into
2 W-bit numbers which are the sum and carry outputs of the full adders.
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Figure 3.22: The operation of the carry-save adder tree used in the partial encodings adder
unit for incoming address width of 32-bits and available memory bandwidth of 256-bits. In such
a case there are k = 8 comparators employed in the iteration requiring for the addition of 8
partial ranges. There are 4 levels of carry-save adders. Each carry-save adder is denoted by a
box that adds the three numbers in the box into two numbers (connected with edges). In the final
level there is a carry-lookahead adder to add 3-bits of the level 4 results. The operation is depicted
using the dot-notation, meaning each bit is represented as a dot. To translate this diagram into
hardware. Note that the 1st partial range is integrated with the 8-th partial range using simple
logic.

Figure 3.23: The partial encodings adder unit for incoming address width of 32-bits and available
memory bandwidth of 256-bits. In such a case there are k = 8 comparators employed in the
iteration requiring for the addition of 8 partial ranges and the logic-OR of 8 partial equals.
The carry-save adder adds the 8 partial ranges according to the designed 4-level tree of Figure
3.22. The carry-lookahead adder performs the final addition of Figure 3.22.

partial encodings adder) were designed for all possible incoming address widths (W) and
available memory bandwidths (BW) to facilitate the generation of every possible Range
Trie instance. In this paragraph the way to integrate all of these units will be presented.
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Figure 3.24 depicts the interconnection between the units. There is an array of
k − 1 enable units that compute which comparisons within a comparator are enabled.
There is no need for a k-th enable unit, sine the k-th full-width comparator operates
in a disabled/enabled fashion determined directly by its comparator mode. Afterwards,
there is an array of k partial encoders that are fed by the k comparator results. Each
partial encoder computes a partial range and a partial equal based on the respective
comparator mode and the enable unit’s results. Finally, all the partial ranges and
partial equals are processed by the partial encodings adder to produce the final range
and equal signals.

Figure 3.24: The integrated hardware design for interpreting the comparisons results for a given
incoming address width (W) of 32, 64 or 128 bits and a given memory bandwidth (BW) of
256, 512 or 1024 bits. The employed hardware units are the corresponding variations that were
presented previously in this section. Note that the k-th partial encoder is not the same as the rest
as it implemented using simpler logic because of the simplified incoming results and comparator
mode.

For the correct operation of these units, the comparator modes and the comparison
values must be set accordingly. Actually, these values have already been set for using
them with precedent hardware units (the comparison value constructors and the com-
parators). The only extra detail is to make sure that whenever a comparison within a
comparator is disabled, the respective bits of the comparator value must be set to zeros
and the respective comparator mode must be one of the valid ones (see Tables 3.2, 3.3
and 3.4).

To conclude, the interpretation of the comparison results considers only the valid
comparison results of the c comparisons performed in an iteration and provides with
(a) the range that the part of AIN belongs to out of the c + 1 ranges defined by the c
comparisons and (b) the equal signal that states if the part of AIN is equal to one of
the c compared values. Note that the c+1 ranges are counted from right-to-left starting
from 0 until c.
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Up to this point, only the c comparison results coming out of the k comparators were
taken into consideration. In the next step, where the next node to visit is decided, the
possible prefix/suffix comparison results will also be considered.

3.1.4 Deciding which branch to follow

In every iteration of a Range Trie, a Range Trie node is visited, a set of comparisons
is performed and the next node to visit must be decided. Up until now, only the c
comparisons performed in the k comparators were considered for computing the range
that the part of the incoming address AIN belongs to out of the c + 1 ranges defined by
the c comparisons. Since there is the possibility of common prefix/suffix comparisons,
their results should also be considered (see Figure 3.25) for making the final decision
on the next range that the part of AIN belongs to out of the c + 1 possible ones (in
other words, the node to visit next). This section discusses the design details regarding
choosing the next node to visit.

Figure 3.25: An abstract block diagram of the Range Trie iteration focusing on iteration step 4.

The process of deciding the next range based on all the comparison results was
described in the Range Trie method in Section 2.2.3. Since the next ranges are counted
in hardware from right-to-left, some modifications were done on the decision process
resulting into the following process:

• Interpreting the c comparisons results indicate a range to visit next.

• If there is a common prefix comparison, then:

– If the result of the comparison is L, the next range is c.

– If the result of the comparison is G, the next range is 0.

– If the result of the comparison is E, the next range is the same as range.

• If there is a common suffix comparison, then:

– If the result of the comparison is GE, the next range is the same as range.
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– If the result of the comparison is L, the next range is range + 1. If range is
equal to c, then next range is range.

Out of this process, it may be seen that there is a set of values that may be needed
to decide the next range. These are the following:

• The range that was computed before while interpreting the results of the c com-
parisons. This range is already available.

• The number of comparisons c that are performed during an iteration. This number
will be called max range from now on.

• A signal is max range indicating if the range is equal to c (max range).

• The range + 1.

• The results of the common prefix/suffix comparisons and an indication if these
results are valid.

Computing the max range: The simple solution for being aware of the max range
value would be to store it in memory, but this would result in extra memory requirements.
Instead we decided to calculate it on the fly, since its computation was not residing on
the critical path of the hardware.

As mentioned, the max range is actually the number of comparisons performed in
the k comparators. It may computed in the same way that the range was computed
in Section 3.1.3 assuming that all the k comparators result into GE′/L = 1. For that
reason two new hardware units were designed for every possible incoming address width
(W) and available memory bandwidth (BW):

• The max range partial encoder unit: This is identical to the partial encoder (see
paragraph 3.1.3.2) assuming that all GE′/L are set to 1. This led to a simplifi-
cation of its underlying logic. A max range partial encoder is also employed per
comparator and computes a max partial range based on the respective compara-
tor mode and the results of the respective enable unit. Since the partial equal is
not needed for computing the max range, the respective logic was removed from
the max range partial encoder.

• The max range partial encodings adder unit: This is identical to the adder used
in the partial encodings adder (see paragraph 3.1.3.3). One instance of this unit
is employed to add the k max partial ranges to calculate the max range. The
max range will be �log2((k − 1) ∗ (W/8) + 1)	 bits wide.

Computing the is max range: Determining whether the range is equal to max range
could be done using a comparator after the range is computed, but this would add extra
delay to the critical path of the computations. Instead, a more simple solution would be
to inspect directly the results of the comparisons, in particular the result of the left-most
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comparison performed in comparator 1. If the GE′/L result of this comparison is 1, then
the range is equal to c (max range).

To perform this check, a new unit was designed for every possible W that inspects
the correct GE′/L result of the left-most comparison. This unit, called max range detect
unit, is employed only once per iteration. Based on the comparator mode of comparator
1 and the results of comparator 1, it decides whether range is equal to max range. I.e.,
for W=32, if the comparator mode of comparator 1 is [32] it inspects if the GE′/L result
of the 32-bit comparison is 1; if the comparator mode is [16 X], it inspects the GE′/L
result of the first 16-bit comparison; if the comparator mode is [8 8 X], it inspects the
GE′/L result of the first 8-bit comparison.

Validating the prefix/suffix comparison results: To decide whether the value
of the next range will be range or 0 or max range or range + 1, the prefix/suffix
comparison results are required. These are directly accessible from the prefix/suffix
comparator unit. Furthermore, to make sure that these results are valid the prefix/suffix
mask must be inspected. The prefix/suffix mask holds a binary representation of the
lengths of the possible shared prefix/suffix. In case the length of the prefix (or suffix)
is zero (determined by a logic-OR on the respective half of the prefix/suffix mask),
then the prefix (or suffix) comparison results should not be considered for deciding the
next range.

Computing range + 1: To compute range + 1 an incrementor was designed using the
Ling’s approach to fast addition [21] resulting into an incrementor that requires three
levels of logic gates. The designed incrementor outputs either range or range+ 1 (if the
common suffix comparison result is L and range �= max range).

The hardware design integrating all the required units for computing the next range is
depicted in Figure 3.26. Note that range, max range, is max range, the prefix/suffix
comparisons results and the prefix/suffix mask are connected to the next range unit,
where the decision is made according to the Range Trie method.

To conclude, the hardware design that was presented in this section calculates the
next range that the part of AIN belongs to while taking into account all the comparison
results (including the common prefix/suffix comparisons). This next range actually in-
dicates which branch of the current node to follow and, subsequently, which node of the
next Range Trie level to visit in the next iteration. This decision is taken according to
the Range Trie algorithm and rules (as presented in Section 2.2). This step concludes the
Range Trie iteration tasks. What needs to happen afterwards is to calculate the location
that the Range Trie node resides in the memory hierarchy. This will be explained later
in Sections 3.2 and 3.3.

3.1.5 Top-level iteration module

In the previous four sections, the necessary hardware units for performing a Range Trie
iteration were detailed. Each unit was designed for all possible incoming address widths
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Figure 3.26: The integrated hardware design for deciding the next range value according to the
results of all the comparisons (including the prefix/suffix comparisons) for a given incoming
address width (W) of 32, 64 or 128 bits and a given memory bandwidth (BW) of 256, 512 or
1024 bits. The next range unit consists of multiplexors and an incrementor to choose the correct
value of next range. The prefix/suffix comparison results are considered only if they are valid
(the common prefix/suffix length are not zero). Note that the max range partial encoder unit for
the k-th comparator is reduced to passing the comparator mode of the k-th comparator directly to
the max range partial encodings adder.

(32, 64 and 128 bits) and available memory bandwidths (256, 512 and 1024 bits). This
section concludes the design of the Range Trie iteration module by integrating all the
units and by formulating the top-level module.

The complete Range Trie iteration module performs the following operation: given an
incoming address AIN and a Range Trie node (represented as a set of values), it compares
parts of AIN according to the node information and computes the range that AIN belongs
to out of the ranges defined in the node. The answer that the iteration module provides
is actually the outgoing branch of the current node that must be followed for the next
iteration of the Range Trie method. The branches are counted from right-to-left starting
from 0 until c (the number of comparisons performed in the current iteration).

Figure 3.27 depicts the top-level iteration module to be used in a Range Trie design
with a given incoming address width (W) and a given available memory bandwidth
(BW). These two parameters affect the underlying design of the iteration module and
the size of the values required to define the iteration. Figure 3.28 shows the integrated
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design of all the units needed to perform a Range Trie iteration.

Figure 3.27: The top-level Range Trie iteration module for a given incoming address width (W)
and a given available memory bandwidth (BW). The design of the iteration is depicted in Figure
3.28 as an integration of all the units presented in the previous sections.

Apart from the W-bits wide incoming address AIN , the Range Trie iteration hardware
is driven by the following values that define which parts of AIN to compare in an iteration
against which values:

• Shift ctrl (2-bits wide) and start byte (log2(W/8) bits wide): Based on the possible
common prefix length (CP), common suffix length (CS) and the existence of a
required subtraction, the shift ctrl and start byte determine the position within
the AIN that the part to select for comparison starts.

• Subtract value (W/4 bits wide): In case an address alignment must be performed,
the subtract value is set as the 2’s-complement of the value to be subtracted from
the selected part of AIN .

• The common prefix/suffix mask (2 ∗ �log2(W − 8)/2	 bits wide): The first half is
the binary representation of CP/2, while the second half is the representation of
CS/2.

• The comparator modes for the k = BW/W comparators consisting of:

– The k − 1 comparator modes that determine the widths of the comparisons
performed in each of the k − 1 comparators. The allowed comparator modes
may be seen in Tables 3.2, 3.3 and 3.4. The width of each comparator mode is
3-bits (for W=32), 6-bits (for W=64) or 12-bits (for W=128). In case a whole
comparator is not used, then the comparator mode must be set to disabled. In
case there are disabled comparisons within a comparator, a valid comparator
mode according to the tables must still be used. The comparisons must be
performed starting from the left-most comparator 1.

– The k-th comparator mode that determines if the k-th comparator is enabled
or disabled. The k-th comparator performs only full-width comparisons and it
may be used only when all other comparators are configured also as full-width
comparators.

• The comparison values for the k = BW/W comparators (BW bits wide): As the
comparator modes defined the widths of the comparisons to be performed per
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Figure 3.28: The complete hardware design of the Range Trie iteration for a given incoming
address width (W) and a given available memory bandwidth (BW). The corresponding variations
of the units (presented in the previous sections) are selected and connected to form the complete
iteration hardware.

comparator, the comparison values must be set accordingly to indicate against
which value to compare the selected parts of AIN . In case a comparison within a
comparator is disabled, then the respective bits of the comparison value must be
set to zeros. Note that the comparison values are aa long as the available memory
bandwidth. The first (k − 1) ∗ W correspond to the values to be compared in
the k − 1 comparators. The W least significant bits hold either the value to be
compared in the k-th comparator (only if it used), either the W − 8 bits wide
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common prefix/suffix to be compared in the prefix/suffix comparator.

All of these values actually represent the node information transformed into a data
structure that is compatible with our Range Trie iteration hardware design. Such data
structures are going to be stored and retrieved from the adjacent memory structure,
whenever we want to visit a Range Trie node and perform an iteration. More on these
will be presented in later sections (Sections 3.2 and 3.3).

This section concluded the Range Trie iteration hardware design by integrating all the
required units for all possible values of W and BW. During the design process, the
target was a fast, efficient and scalable design in terms of the given W and BW. The
underlying units were designed in a way that minimizes the required time to perform the
computations within an iteration. Alongside, care was taken to minimize the information
size that drive the iteration in order to maximize the utilization of the given memory
bandwidth and reduce the memory requirements.

At this point it is possible to employ the Range Trie iteration unit for the purposes
of designing the complete Range Trie hardware. The iteration units will be used as a
mean to perform the required comparisons, according to the current node information
residing in the memory structure, and decide which node to visit in the next iteration.
The details regarding the organization of the memory hierarchy and the way to employ
the iteration modules will be presented in the coming sections.

3.2 Storing the Range Trie nodes in memory

The Range Trie method, presented in Section 2.2, directs how to traverse the Range Trie
structure in order to perform address lookup. It consists of three basic steps: (a) visit
a node, (b) perform the required comparisons (as defined by the node information), (c)
decide which node to visit next based on the comparison results. These three steps are
repeated until reaching a leaf node that reports the matching range.

In a hardware design, the ”visit a node” step is translated into retrieving from mem-
ory the node data in order to proceed with steps (b) and (c) afterwards (the range Trie
iteration). In this section, all the details of storing the Range Trie data structure in
memory will be discussed. In particular, the following will be presented in the following
four sections: (a) how the nodes are organized into a memory structure, (b) how the
memory structure is addressed, (c) how the node information are encoded into a node
data structure to be stored in the memory units and (d) what is the hardware design of
the employed memory units.

3.2.1 Memory organization

In this section the way that the Range Trie nodes are organized into a memory structure
will be described. The main motivations behind the proposed memory organization is
to minimize the used memories size both in terms of memory width and memory depth
(number of memory entries) and minimize the unused memory space.

Assume a Range Trie that is L levels deep (it needs L−1 iterations at-most to match
an address to a range). We propose a memory organization consisting of L− 1 memory
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units, each one storing the nodes of the respective Range Trie level. Outside of the Range
Trie design there is also the L-th memory unit (action array) that stores the actions to
be performed per matching range.

The memory organization scheme, that was used, stores the Range Trie nodes of a
single level i contiguously to memory unit i. There are no empty memory entries be-
tween the stored nodes and, thus, the required memory depth is minimized (the required
address width for addressing memory unit i is also minimized).

As an example, assume the Range Trie of Figure 3.29. This Range Trie is 4 levels
deep. A range will be matched in at-most 3 iterations. So, 3 memory units will be
used to store the Range Trie nodes of level 1 to 3. Also, we assumed the existence of a
4th memory unit outside of the hardware design (action array) that stores the matching
ranges’ actions. Each memory unit i will store the nodes of level i starting from the
right-most ones towards the left-most ones. Before storing the nodes into the memory
structure, the Range Trie must be transformed into a more proper format.

Figure 3.29: A generic Range Trie that is 4 levels deep. This will be annotated (as shown in
Figure 3.30) in order to be stored in memory as depicted in Figure 3.31.

First, extra leaf nodes must be added wherever there is a range match that does not
need L-1 iterations to be matched (see Figure 3.30). In the example Range Trie of Figure
3.29, extra leaf nodes for ranges R1, R2, R3, R6 and R7 must be added in levels 2 and
3. These nodes will hold a pointer to memory unit 4 (action array) where the matched
range’s action resides. The addition of such extra leaf nodes is necessary, since we have
to retrieve the correct matching range from the action array. An alternative solution
would be to store the action for i.e. range R3 directly in the level 2 memory. This would
require knowledge of the actions per matching range. This solution was dismissed since
we wanted the design to output the matching range address and then retrieve from the
action array the corresponding match action to be performed.

Secondly, since the range nodes are stored contiguously in the memory units, it is
necessary to know which are the children of a node. In particular, which is the right-most
children of a node. For that reason the Range Trie nodes of Figure 3.29 are annotated
with pointers to their right-most child (see Figure 3.30). Such a pointer is not needed
for the root node, since the first entriy in memory unit 2 will always be its right-most
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Figure 3.30: The generic Range Trie of Figure 3.29 annotated with extra leaf nodes and pointers
to the right-most child of each node in order to store it in memory according to the followed
memory organization.

child. This annotation with right-most children pointers must occur after adding the
extra leaf nodes.

After annotating the original Range Trie in such a way to facilitate its storage in the
memory units, it is possible to store it in the L memory units. As mentioned, the Range
Trie nodes of each level i, will be stored contiguously in the corresponding memory unit
i. One last thing to mention is that the Range Trie’s top level always has just one node,
the root node, so its corresponding memory unit suffices to store just one entry. Instead
of using a memory unit of 1 memory entry, the equivalent memory element of a flip-flop
is used. The storage of the Range Trie of Figure 3.29, after annotating it as depicted in
Figure 3.30, is shown in Figure 3.31. The children pointers are also shown.

Figure 3.31: A Range Trie stored in memory according to the followed memory organization. It
is based on the annotated Range Trie of Figure 3.30. The action array is shown to complete the
memory organization, although it’s not included in the Range Trie design.

To summarize, for a L level Range Trie that performs a range match at-most in L−1
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iterations, L memory units Mi will be used. Extra leaf nodes must be added whenever
a node branch points directly to the bottom level. Each memory unit Mi will hold the
Range Trie nodes of level i starting from the right-most node towards the left-most node.
Memory unit M1 will hold only one entry, the single root node. Memory unit ML is the
action array and will hold all the matching ranges’ actions. Memory unit ML is not
included in the Range Trie design, but the output of the design may be used to address
it.

Since each Range Trie level holds more nodes than its previous one, the depths of the
memory units increase from level i to level i+1. Since the nodes are stored contiguously,
then the number of empty memory entries is minimized. If the number of nodes and
extra leaf nodes in level i is Ni, then the number of entries in memory unit Mi will be
2�log2Ni� resulting in a needed address of �log2Ni	 bits and 2�log2Ni�−Ni empty memory
entries.

An alternative memory organization solution would be to get rid of the children
pointers and store nodes in a non-contiguous fashion. This would mean that nodes
should be always stored in fixed locations resulting in a simpler addressing scheme.
This memory organization would be equivalent to the used one, if the Range Trie was
completely balanced and each node had the maximum possible outgoing branches. It is
evident that such a memory organization could lead to vast amounts of unused memory
entries. As a simple example of this, assume that the Range Trie of Figure 3.30 has a
maximum branching factor of 5. If nodes are to be stored in a non-contiguous way, then
memory unit M1 should store 1 entry, M2 2�log25� = 8 entries, M3 2�log225� = 32 entries
and M4 2�log2125� = 128 entries. On the contrary, the used scheme required 1, 4, 8, 16
entries per memory unit respectively. The benefit of such a memory organization is a
trivial addressing scheme, as it will be explained in the next section, at the expense of
significantly bigger needed memory elements.

3.2.2 Memory addressing scheme

In the previous section, the way to store a Range Trie into the chosen memory organi-
zation was described. This organization was chosen since it minimizes the memory sizes
and the unused memory area. In this section the way to address the proposed memory
organization will be presented.

Assume a Range Trie node N that that has k children nodes Nj (see Figure 3.32(a))
and is stored in the memory according to the chosen memory organization (see Figure
3.32(b)).

It can be seen that the right-most child Nk of node N will reside in the next memory
level in the memory entry with address equal to the pointer stored in node N. The
second-to-right child Nk−1 of node N will reside in memory entry pointer + 1, etc. The
left-most child N1 of node N will reside in memory entry pointer + k − 1. It is evident
that in order to calculate the address of the next memory entry to be retrieved (in other
words, the next node to visit) an addition should be performed. Assume that the k
outgoing branches of node N are counted from right to left starting from 0. Then, if
branch b is followed (0 ≤ b ≤ k−1), the next node Nk−b to visit is stored in the memory
entry pointer + b of the next memory level. This means that in every iteration of the
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Figure 3.32: A Range Trie node N (of Range Trie level i) and its children Nj (of Range Trie
level i + 1) organized in the memory units i and i + 1 (according to Section 3.2.1). In (a), N is
annotated with extra leaf nodes and the pointer to its right-most child. Note that the outgoing
branches of N are counted from right to left starting from 0. In (b), the way that N and its
children are stored in the memory units for levels i and i + 1 is shown.

Range Trie method an addition must be performed between the pointer of the current
node and the number of followed branch b (offset).

Offset adder: For the purposes of calculating the location of the next node to visit,
the offset adder was designed. The offset adder adds the number of the followed branch
(offset) to the pointer to the next memory level. The offset is the output of the
iteration unit that operates according to the current node information and it is �log2((k−
1) ∗ (BW/8) + 1)	 bits wide, since it depends on the memory bandwidth (BW) and
incoming address width (W) parameters of the current Range Trie instance. The pointer
to the right-most child of the current node depends on the next memory level depth and
is as wide as the next memory level address.

We tried to minimize the cost in time of performing this addition by using advanced
adder techniques. Figure 3.33 depicts the designed offset adder. Assume that the width
of offset is c and the width of pointer is d. The offset adder is designed as a two level
carry-select adder taking advantage from the fact that c ≤ d. The first level of the
carry-select adder is a c-bit wide fast carry lookahead adder that adds offset to the c
least significant bits of pointer. The second level must add the carry-out of the first level
to the d − c most significant bits of pointer. This indicated that the second level of the
offset adder may be designed using a fast incrementor.

Since the design of the offset adder depends on BW and W, such an adder should be
designed for every combination of BW and W. Furthermore, the offset adder depends
on the address width of the next memory level, which is not known in advance. That
made it impossible to design beforehand all the possible offset adder variations for every
possible parameters. Instead, a script was written to automatically generate the required
offset adders for a given Range Trie instance.

The aforementioned offset addition could be avoided, if we used the alternative
memory organization scheme (described in 3.2.1) where the nodes are stored in a non-
contiguous fashion. In that particular case, the pointer would not be needed and to cal-
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Figure 3.33: The offset adder that adds an offset (c-bits wide) to a pointer (d-bits wide) in order
to compute the location of the next node to visit in the next memory level. The block diagram of
the unit is depicted along with its abstract hardware design.

culate the address of the next node would narrow down to appending the offset (branch
to be taken) at the end of the current node address. Although such an addressing scheme
is an attractive solution, it was dismissed immediately since the required memory orga-
nization would result into wider memory addresses and thus prohibitive memory sizes
with low utilization.

3.2.3 Range Trie node data structure

In the previous sections it was explained how the Range Trie nodes are organized into
the memory units, along with the required addressing scheme to retrieve the next node
to visit. In this section, the way to represent a Range Trie node into a data structure to
be stored in the memory entries will be described.

Throughout section 3.1 the signals that are needed to drive the correct operation of
an iteration were defined, according to the visited node information. All these signals
form the data structure that must be stored in a corresponding memory entry of the
memory hierarchy. While defining the memory organization, an extra value was added
to the data structure (the pointer to the right-most child of the current node).

The node data structure fields may be classified into the three following parts (also
shown in Figure 3.34(a)):

• Compare values: These are the values to be compared against the parts of the
incoming address AIN . During the development of the Range Trie method the
effort was on performing as many comparisons as possible for a given memory
bandwidth (BW). The purpose of having the memory bandwidth parameter in the
Range Trie design is to investigate the scalability of the Range Trie design for a set
of possible available memory bandwidths. This indicated that the compare values
part should be BW-bits wide.

• Control values: These are the control signals that dictate what comparisons to
perform on which parts of AIN . It consists of the following signals, as de-
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fined throughout section 3.1: shift ctrl, start byte, subtract value, CP/CSmask,
comparator modesi. The size of these signals depends on both BW and W param-
eters. During the design of the iteration hardware, the effort was on minimizing
the size of these control signals.

• Pointer value: This is the pointer for the right-most child of the node (see Section
3.2.2) and it depends on the depth of the next level memory. The pointer widths
are not known in advanced and depend on the given Range Trie structure.

Figure 3.34: The data structure of (a) an internal node and (b) an extra leaf node residing in
memory level i for a given memory bandwidth (BW) and incoming address width (W). The sizes
of each field were determined during the design of the iteration hardware (see Section 3.1). Both
data structures occupy the same number of bits. Note that the size of the pointer value requires
knowledge for the depth of the next level memory unit. Such a pointer is not required for the root
node’s representation.

It is evident that the node data structure size depends on the values of W, BW and
the next memory level depth. Table 3.5 shows the resulting data structure sizes for the
possible values of BW and W, assuming a given pointer size wi+1, since the latter is not
known in advance.

The node data structure that was just presented was for the internal Range Trie
nodes. It is also needed to store the extra leaf nodes in the memory structure. Since
both internal nodes and extra leaf nodes are stored in the same memory units, then
both node types are going to occupy the same number of bits (see Figure 3.34(b)), even
though the extra leaf nodes require less bits. The necessary information to be stored for
the extra leaf nodes are:

• A value indicating that it is a leaf node: The 3-bit value “101” must be stored
in the 3 most significant bits of comparator mode1 field. That value was chosen,
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Table 3.5: The node data structure sizes for all possible values of available memory bandwidth
(BW) and incoming address width (W). The sizes are in bits and are represented as a sum of
the three parts’ sizes: compare + control + pointer value sizes. The next memory level i + 1 is
assumed to be addressed using wi+1 bits.

BW
256 512 1024

W
32 256+42+wi+1 512+66+wi+1 1024+114+wi+1

64 256+50+wi+1 512+74+wi+1 1024+122+wi+1

128 256+63+wi+1 512+87+wi+1 1024+135+wi+1

since it does not clash with the existing binary representations of the comparator
modes (see Tables 3.2, 3.3 and 3.4).

• The pointer to the action array: This value is as wide as the predefined output
width of the Range Trie. It is stored in the most significant bits of the compare
values part and points to the the location in the action array that the matching
range resides.

To conclude, the memory structure was defined. Starting from a Range Trie structure, it
is possible to configure the memory structure in a way to facilitate the operation of the
Range Trie design. To sum up, in every iteration, a node is retrieved from the memory
structure, the comparisons are performed according to the node data structure (compare
values and control values) and the location of the next node to visit is computed (using
the comparison results and the pointer value). Before employing the memory structure
along with the iteration hardware to form the complete pipeline design that performs
the Range Trie method, some hardware design details of the used memory units will be
discussed in the following section.

3.2.4 Memory units’ hardware details

In the previous three sections, the way to organize, address and store the Range Trie
nodes into a number of memory units was described. This section concludes the dis-
cussion on the memory related issues by describing some hardware design details of the
employed memory units.

As mentioned before, one of the parameters of the Range Trie design is the available
memory bandwidth (BW). This parameter serves as a design limitation to dictate the
maximum possible bandwidth of the used memory units and to evaluate different Range
Trie instances on different memory organizations. In the previous section, where the node
data structure was described, it may be seen that the compare values part is already
BW-bits wide. The addition of the control values and pointer value parts leads to the
need for a bandwidth larger than BW bits.

To overcome this limitation, we designed each memory unit as a set of three parallel
memory subunits: one for storing the compare values, one for the control values and
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one for the pointers. These three subunits are addressed by the same address. This
separation also allows for manipulating the three value categories independently of each
other. It is possible now to change a pointer without changing the respective compare
values, etc. For comprehension reasons, in the rest of this thesis, the memory units will
be mentioned as one unit instead of the three subunits.

Figure 3.35 depicts an example of a memory unit design. The proposed memory
units allow the reading or writing of memory entries and the disabling of the memory
units using the following signals:

• Write enable (WEN): This signal allows the writing of memory entries. It was
added to the design in order to be able to configure the memory units with a
given Range Trie structure (according to the Sections 3.2.1-3.2.3) and to allow the
modification of memory entries while the Range Trie hardware is in operation. Each
subunit is driven by a separate WEN, allowing for the independent manipulation
of their data.

• Chip enable (CEN): This signal enables or disables the memory unit. Since there
is a chance that a memory unit might not need to be accessed, then it may be
disabled. When a memory unit is disabled, it does not consume power. Thus, dis-
abling unused memory units minimizes the power dissipation by avoiding unneeded
memory accesses. This ability is further utilized by the fact that the memory units
actually consist of a number of smaller memory blocks. When accessing a specific
memory block within a memory unit, the rest memory blocks are disabled to avoid
unnecessary power dissipation.

Figure 3.35: An abstract hardware design of the level i memory unit for a given memory bandwidth
(BW) and incoming address width (W). Assume that level i memory unit is addressed by wi

bits and level i + 1 memory unit by wi+1 bits. According to BW, W and wi+1, the widths
(CMP, CTRL, PTR) of each memory subunit (compare, control, pointer values) are computed
(see Section 3.2.3).

To conclude, a number of memory units (as the ones described in this section) will be



92 CHAPTER 3. DESIGN AND IMPLEMENTATION

employed in the complete Range Trie design, along with the iteration functional units
(as described in Section 3.1). The memory units will be organized/addressed according
to the chosen memory hierarchy (as described in Sections 3.2.1-3.2.2) and will hold the
Range Trie nodes represented in a data structure (as explained in Section 3.2.3). In
the next section, the Range Trie design will be completed by integrating the memory
structure with the iteration hardware into a complete pipeline.

3.3 The complete Range Trie design

The Range Trie method (as presented in Section 2.2.3) is an iterative process consisting
of three steps: (a) visit a node, (b) perform a number of comparisons (according to the
node information) and (c) decide which node to visit next. This process ends when a leaf
node is reached (the incoming address AIN is matched to a range). In Sections 3.1 and
3.2, the iteration functional unit (performing steps (b) and (c)) and the chosen memory
structure (that stores the nodes to be visited) were presented.

In this section both of these will be integrated in a pipeline fashion to form the
complete Range Trie hardware design. In particular, the chosen pipeline scheme will
be presented, along with its hardware design details according to the given Range Trie
parameters (that were presented in the beginning of this chapter). Afterwards, the
complete Range Trie top-level module and its usage will be described, concluding with
some high level details of the complete Range Trie design.

3.3.1 Integrating the iteration hardware and the memory structure
into a pipeline

The iterative nature of the Range Trie method indicated that the complete design should
be designed as a pipeline consisting of a number of pipeline stages. This section presents
the complete Range Trie design as an integration of the iteration functional units (see
Section 3.1) and the memory structure (see Section 3.2) into a pipeline.

By pipelining the traversal of the Range Trie structure, a high throughput of one
packet per clock cycle may be sustained. Using a pipeline allows the matching of an
incoming address AIN to a range per clock cycle, instead of waiting for a number of
clock cycles before providing a new AIN . To further increase the throughput of the
design, we separated the iteration hardware and the memory accesses into two different
pipeline stages. In a pipeline the clock cycle is determined by the slowest pipeline stage.
Separating the iteration hardware and the memory accesses into two pipeline stages
results into two quicker pipeline stages with a smaller clock delay.

Assume that the given Range Trie structure is L-levels deep, meaning that an in-
coming address AIN is matched to a range in at-most L − 1 iterations. The pipeline
that is designed for the given Range Trie has (L− 1) ∗ 2− 1 pipeline stages (as depicted
abstractly in Figure 3.36). Each iteration consists of two pipeline stages: (a) one for
accessing the memory unit i (to retrieve a node from level i of the Range Trie) and (b)
one for performing the computations according to the retrieved node (to decide which
node to retrieve from memory unit i + 1). Note that memory unit 1 does not have a
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pipeline stage of each own, since it holds just one entry (the root node) and may be
stored as a pipeline register6.

Figure 3.36: The abstract pipeline of a Range Trie design. The given Range Trie is L-levels deep
and matches a range in at-most L−1 iterations and thus requiring (L−1)∗2−1 pipeline stages.
The pipeline stages are separated with the required pipeline registers.

There are many issues regarding the actual design of the pipeline, not evident in Figure
3.36. Figure 3.37 depicts the complete Range Trie pipeline design that also deals with
the following issues:

• Matching a range in less than L − 1 iterations: If a node retrieved from memory
level i is an extra leaf node (detected by inspecting the 3 most significant bits of
the comparator mode 1 field in the node data structure), then the rest pipeline
stages (including the memory units) are disabled and the pointer to the action
array (stored in the most significant bits of the node data structure) is propagated
to the output (through the next address pipeline registers). Note that in any case
the output of the pipeline is a pointer to the action array holding the action for
the matched range (the action array is not included in the pipeline).

• Invoking the offset adder: If a node retrieved from memory level i is an internal
Range Trie node, then in the next pipeline stage the iteration functional unit
operates according to the retrieved node information. The output of the functional
unit is added to the pointer (stored in the retrieved node) by using an offset adder.
The result of the addition is the memory entry to retrieve from the next pipeline
stage (memory level i + 1). Note that this addition is not needed for the first
iteration.

• Disabling the unused memory units: The memory units might need to be disabled
if a matching range has already been found or there is no incoming address to
match. The enable pipeline register propagates a signal that enables/disables the
memory units accordingly.

• Variable number of iterations (bypassing iteration 1): In general, a Range Trie
pipeline is tailored to a specific Range Trie structure. To offer an extra degree of
flexibility, the ability to bypass iteration 1 was added. This reduces the number of

6The pipeline registers are placed between pipeline stages and their use is to propagate useful values
(such as the AIN ) from one stage to the next.
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Figure 3.37: The complete Range Trie pipeline hardware design for a given set of parameters.
The given Range Trie is L-levels deep and matches a range in at-most L− 1 iterations and thus
requiring (L−1)∗2−1 pipeline stages. The pipeline stages are separated with the required pipeline
registers. Note that not all the design details are depicted in the figure. I.e. the simple logic that
controls the memory configuration is not shown.

pipeline stages to (L − 2) ∗ 2 − 1 and may be used for at-most L − 1 levels deep
Range Tries. To support this, an array of multiplexors was added in pipeline stage
2 to control (by the use all stages signal) the input of the next pipeline registers.

• Supporting memory units writing: To allow the configuration/alteration of memory
entries extra memory control signals were added that allow to write a memory entry
to one of the available memories at a time.

• Range Trie handshaking signals: To offer the user of the Range Trie a complete
interface during the operation of the design, the load new and valid output control
signals were added. The first one must be set when a new incoming address is to
be matched. The latter one is set whenever the output of the design is a valid one.
Note that the output will be set correctly (L−1)∗2 clock cycles after a new input.
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From Figure 3.37 it may be seen how the pipeline depends on the set Range Trie
instance parameters. These parameters are the incoming address width (W), the avail-
able memory bandwidth (BW), the number of iterations (L), the address width of each
memory level (w2, w3, ..., wL−1) and the output width (wL). All of these parameters are
tailored according to the given Range Trie structure that the hardware design is going
to implement. Since these parameters are not known in advance, a script was created
that automatically generates a Range Trie pipeline.

During the pipeline design process, the target was again an efficient, scalable, fast
Range Trie design. Since the complete design has now been explained, it is possible to
move up one level of abstraction and present the Range Trie top-level module in the next
section.

3.3.2 The Range Trie top-level module

In the previous sections, all the details have been presented to design all possible instances
of a Range Trie design. This section finalizes the Range Trie design by presenting its
top-level module and the way to use it for address lookup.

Assuming an incoming address width (W) that may be 32, 64 or 128-bits and the
available memory bandwidth (BW) that may be 256, 512 or 1024-bits, a Range Trie
structure is constructed for a given set of R ranges using the heuristic construction
methods of Section 2.2.4. The resulting Range Trie structure is the one to be translated
into an equivalent hardware design. Out of the Range Trie structure it is possible to
define all the parameters of the respective Range Trie design. In particular, the number
of iterations (L), the address widths of each memory level (w2, w3, ..., wL−1) and the
output width (wL = �log2R	). After defining the parameters, the complete Range Trie
pipeline may be generated following the one presented in Section 3.3.1.

The resulting Range Trie design is represented by the top-level module depicted in
Figure 3.38. This module may be used to perform address lookup on the specified Range
Trie. Before starting the operation of the Range Trie hardware, the memory units must
be configured to store the Range Trie node data structures according to the chosen
memory organization scheme (see Section 3.2).

Using the Range Trie hardware is as simple as placing a new incoming address AIN

to be matched in every clock cycle, while setting the load new control signal. After
(L− 1) ∗ 2 clock cycles, the Range Trie reports the range that AIN belongs to out of the
R given ranges. The reported range is actually the location in the action array where
the matched range action resides. The action array is not included in the design, since
the actions per range are not known in advance and because they depend on the system
where the Range Trie is employed.

The Range Trie design may now be used as a lookup engine is every sys-
tem/application that requires a form of address lookup. I.e. a backbone router may
employ a Range Trie for performing the address lookup of the incoming packets’ desti-
nation addresses and then decide what action to perform on the incoming packet.

This section concluded this chapter and completed the description of the Range Trie
design that was the main focus of this thesis. The iteration functional units and the
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Figure 3.38: The Range Trie top-level module for a given Range Trie structure (that determines
the parameter values). Before starting the operation of the Range Trie, the memory units must
be configured through the memory configuration signals. The wi denotes the address width of
memory unit i. The memory unit L (action array) is not included in the design and is addressed
by the Range Trie output.

memory units were integrated into forming the complete design in a pipeline fashion.
The following chapters are going to focus on the evaluation of the proposed design in
terms of various performance metrics.

3.4 Summary

In this chapter, the complete hardware design of the Range Trie address lookup method
was presented in a bottom-up fashion. Starting from the iteration functional unit (in
Section 3.1) and the chosen memory structure (in Section 3.2), a complete pipeline was
formed (in Section 3.3) that implements the Range Trie address lookup method (as it was
formulated in Section 2.2). All required hardware units were described that are needed
for designing every possible instance of a Range Trie, according to its parameters. During
the design, the effort was to exploit the Range Trie method inherit characteristics into
building a fast, efficient and scalable hardware design with low memory requirements.

The Range Trie method is an iterative method, where (a) a node is visited, (b) a
number of comparisons is performed on parts of the incoming address and (c) the next
node to visit is decided, until a leaf node is reached and a match is reported. In Sec-
tion 3.1, the hardware design of the Range Trie iteration was presented. This hardware
performs the following four actions: (1) select parts of the incoming address for com-
parison and (possibly) perform address bound alignment, (2) perform the comparisons
and (possibly) the shared prefix/suffix comparisons, (3) interpret the comparison results
and (4) decide which outgoing branch of the current node to follow, according to the
comparison results, following the Range Trie method’s decision criteria. The required
hardware units were designed to perform these actions. All required variations of the
units were designed (and presented) in order to support the generation of every possible
Range Trie instance. During the design process the necessary signals that control the
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iteration were defined, according to the current node information. This resulted in the
formulation of the way that the current node information must be represented for the
correct operation of a given iteration.

In Section 3.2, the memory structure was defined where the Range Trie structure
must be stored. This memory structure is used for retrieving the node information (in
every iteration) stored as a specified data structure. In particular, a memory structure
was defined that consists of as many memory levels as the Range Trie levels. The way
to organize the Range Trie nodes into the memory levels was presented, along with the
way to address the memory levels in order to retrieve the next node to visit. Finally,
the node data structure was formally specified in order to store a Range Trie node into
the memory hierarchy. During the specification of the memory structure the motivation
was to minimize the memory requirements and maximize the memory utilization.

Finally, in Section 3.3, the complete Range Trie design was presented as an integration
of the iteration hardware and the memory structure. The used approach was to pipeline
the iteration hardware and the memory structure to design the iterative Range Trie
method, while creating a design that offers high throughput and that is scalable in terms
of the incoming address width and the number of ranges in the lookup table.





Evaluation 4
The previous chapter presented the complete Range Trie design as a pipeline of inter-

leaving iteration stages and memory access stages. All the details were discussed
on how to design every possible Range Trie instance given a set of its defining

parameters. In this chapter a number of Range Trie instances are generated and syn-
thesized for ASIC implementation (90nm and 130nm) in order to retrieve the design’s
performance metrics. The goal of this chapter is to evaluate the Range Trie design’s scal-
ability in terms of the incoming address width and the number of ranges in the lookup
table. Along with the evaluation based on the performance metrics, other interesting
issues regarding the Range Trie design will also be investigated.

After presenting the experimental setup that was used for the synthesis purposes in
Section 4.1, a variety of iteration stages is generated, synthesized and evaluated in Section
4.2. Afterwards, in Section 4.3, a number of complete Range Trie designs is generated,
synthesized and evaluated in terms of operating frequency, area, power consumption and
memory requirements. Alongside, the Range Trie method is compared with existing
solutions to show its improvements.

4.1 Experimental setup

In this section the experimental setup will be presented in order to define the details
surrounding the used synthesis process. That way it will be possible to synthesize and
evaluate the designed hardware in the following sections.

It was decided to evaluate the performance of the Range Trie on an ASIC implemen-
tation. In particular, we used the 90nm and 130nm ASIC processes. The synthesis was
performed using the Synopsys Design Compiler tool. The synthesis process [2] that was
followed was a basic one, meaning that we performed the necessary steps to acquire tim-
ing, power and area estimates of the designs under consideration. We did not followed
the rest steps in the ASIC design flow that lead to a complete implementation (i.e. for
tape-out purposes).

To be able to perform the synthesizes we obtained the respective foundry libraries for
90nm and 130nm technologies. We used the standard performance libraries (90nm SP
and 130nm SP) of UMC-Faraday [1].

Alongside, we used technology libraries of the same type that define memory units in
order to implement the memory structure of the Range Trie. Since the available memory
units were not tailored to match exactly our needs, we opted to generate the required
memory units out of the available ones. This meant that the generated memories were
not the optimal ones because logic was replicated (such as the address selection logic)
and because memory elements were unused (since the generated memory units could not
match exactly the size of the required units).

99
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During the synthesis process, the designs were constrained in terms of clock time in
order to minimize the synthesized critical path and increase the operating frequency, as
high speed was the target during the whole design process. The constraints were chosen
in a way that did not make the tool to produce unnecessary large power consumption
and area. A number of synthesizes were performed per design in order to retrieve the
best results. To ensure the correctness of the synthesis results, each synthesized design
was validated beforehand.

The synthesis results that we were interested in were: the clock cycle (operating
frequency), the estimated power consumption1 and the area2 of the designs. In the rest
of this chapter the synthesis results for a variety of hardware designs will be presented
in order to evaluate the Range Trie design.

4.2 Evaluation of the iteration stage

The Range Trie design (as presented in Chapter 3) is a pipeline design consisting of
interleaving iteration and memory access stages. In this section the iteration stage hard-
ware will be evaluated in terms of various metrics (operating frequency, area, power
consumption). The hardware under consideration was synthesized for all possible val-
ues of incoming address width (W=32, 64, 128 bits) and available memory bandwidth
(BW=256, 512, 1024 bits) to investigate on the design’s scalability. Furthermore, a set
of variations of the iteration stage hardware was also synthesized to research on the effect
of various design choices.

The iteration stage was chosen to be evaluated independently of the complete Range
Trie pipeline since it is the core of the Range Trie method and it is where the novelties
of the Range Trie method are evident. By introducing and evaluating some variations of
the iteration stage, that are actually variations of the Range Trie method, the effect of
certain design choices is examined. In particular the following iteration stage variations
were generated for evaluation purposes:

1. Full iteration stage: This is the complete iteration stage that was chosen for the
final complete design.

2. Full iteration stage with a variable-width subtractor and without a subtractor : To
investigate on the effect of the bound alignment subtractor, two variations of the
iteration stage were generated: one allowing for a wider variable-width subtraction
and one where no bound alignment is performed.

3. Iteration stage without memory addressing hardware: To investigate on the cost
of computing the next memory entry to retrieve, a variation of the iteration stage
was generated consisting of just the iteration hardware.

4. Basic iteration stage without a subtractor and memory addressing hardware: This
is a basic variation of the iteration stage where the memory addressing units and

1The power consumption results reported by the Synopsys Design Compiler are calculated as an
estimation and not based on the actual usage of the underlying logic.

2The reported area corresponds to the area occupied by the logic cells.
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the internal subtractor (for bound alignment) were eliminated. Its purpose is to
measure the efficiency of a stripped down version of the iteration stage.

These variations are depicted abstractly on Figure 4.1 and where chosen that way
since they consist of modifications that have an effect on the critical path of the iteration
stage and therefore the speed of the resulting design.

Figure 4.1: The five generated variations of the iteration stage for evaluation purposes. In (a),
the full iteration stage is depicted as it was used in the complete pipeline design (see Figure
3.37). In (b)-(e), the iteration stage has been modified by varying the subtractor used for bound
alignment or by eliminating the hardware required for the chosen addressing scheme. The red
line on the diagrams depicts abstractly the critical path of each variation.

Full iteration stage: The full iteration stage, consisting of the Range Trie iteration
hardware (for a given W and BW) followed by the offset adder and a multiplexor (as
depicted in Figure 4.1(a)) was synthesized for all possible values of W and BW in both
90nm and 130nm ASIC technologies. The obtained results (operating frequency, area
and power consumption) may be seen in Tables 4.1 and 4.2 for the 90nm and 130nm
technologies respectively. These results are depicted graphically in Figures 4.2 and 4.3
respectively.

Out of these results there are some observations to be made. Moving to larger BW
decreases the operating frequency, while the power consumption and area increase. This
is expected because the increase of BW for a given W increases the number of used
comparators in an iteration. Using more comparators means that the logic to interpret
the comparison results gets more complicated with an increased critical path. At the
same time, more hardware units are replicated resulting in the increase of area and power
consumption.

Another thing to be noticed is that moving to wider incoming address widths (W) for
a given BW decreases the operating frequency, while the power consumption and area
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Table 4.1: The operating frequency, area and power consumption results obtained after synthe-
sizing the full iteration stage for all possible values of W and BW using 90nm ASIC technology.

Full iteration stage (90nm)
Frequency Area Power

W BW (MHz) (mm2) (mW)
256 729.93 0.046 11.49

32 512 645.16 0.077 17.30
1024 591.72 0.142 30.56
256 714.29 0.095 19.85

64 512 595.24 0.149 26.45
1024 534.76 0.242 40.74
256 621.12 0.208 36.59

128 512 555.56 0.281 45.06
1024 478.47 0.432 62.54
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Figure 4.2: Graphic depiction of the operating frequency, area and power consumption results
obtained after synthesizing the full iteration stage for all possible values of W and BW using
90nm ASIC technology. The exact result values may be seen in Table 4.1.

consumption increases. This was also expected because a wider W means more complex
selection logic, more complex comparators and slower interpretation hardware.

The above observations are evident for both ASIC technologies (90nm and 130nm).
One last thing to notice is that moving from 90nm to 130nm leads to lower operating
frequencies (almost half), roughly the same area and reduced power consumptions. These
changes were expected because smaller technology widths result into higher operating
speed at the cost of higher power consumption. It is now a decision of the system
designer to choose the ASIC technology that fits its needs, where more factors are taken
into consideration, such as the manufacturing cost. In the rest of this section, the rest
iteration variations are evaluated only for 90nm ASIC technologies.

To conclude, the most efficient design out of the 9 synthesized ones is the one with
the narrower W and BW; the 32x256 iteration stage design. This doesn’t necessarily
rule out the rest design points. As it will be explained in Section 4.3, choosing the
parameters of the complete Range Trie design is a process coupled with a given Range
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Table 4.2: The operating frequency, area and power consumption results obtained after synthe-
sizing the full iteration stage for all possible values of W and BW using 130nm ASIC technology.

Full iteration stage (130nm)
Frequency Area Power

W BW (MHz) (mm2) (mW)
256 321.54 0.043 7.26

32 512 288.18 0.076 11.39
1024 250.00 0.139 18.96
256 315.46 0.083 12.31

64 512 263.85 0.138 16.77
1024 235.29 0.238 26.24
256 284.09 0.189 22.90

128 512 245.70 0.276 30.48
1024 207.47 0.421 38.00
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Figure 4.3: Graphic depiction of the operating frequency, area and power consumption results
obtained after synthesizing the full iteration stage for all possible values of W and BW using
130nm ASIC technology. The exact result values may be seen in Table 4.2.

Trie structure, where the target is a fast design with as few pipeline stages as possible
and minimized memory requirements.

Effect of the bound alignment subtractor: As described in Section 3.1.1.2, the
Range Trie iteration uses a subtractor to align the address bounds of a Range Trie node
according to Rule 5 of the Range Trie method (see Section 2.2.2). The purpose of Rule
5 is to further reduce the depth of a Range Trie structure, while utilizing optimally the
available memory bandwidth.

Performing a subtraction is a slow operation whose speed depends on the width of
the operands. For that reason, it was limited to W/4 bits in the full iteration stage.
According to Rule 5, there may be benefits into using a wider subtractor. In this para-
graph, the cost of using the subtractor is evaluated. In particular, the following three
variations of the iteration stage are compared:

• The full iteration stage, that performs fixed W/4 wide subtractions. This is the
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variation that was evaluated previously and the one used in the complete Range
Trie design.

• The full iteration stage with a variable-width subtractor (varSub) that allows W/4
or W/2 wide subtractions3.

• The full iteration stage without a subtractor (noSub), which means that Rule 5 is
never used while constructing a Range Trie structure.

The full iteration stage with a variable-width subtractor and the full iteration stage
without a subtractor (as depicted in Figure 4.1(b-c)) were synthesized for all possible
values of W and BW in 90nm ASIC technologies. The obtained results (operating
frequency, area and power consumption) may be seen in Tables 4.3 and 4.4 for each of
the two variations respectively. These results are compared against the full iteration
stage results in Figure 4.4.

Table 4.3: The operating frequency, area and power consumption results obtained after synthesiz-
ing the full iteration stage with a variable-width subtractor for all possible values of W and BW
using 90nm ASIC technology.

Full iteration stage
with a variable-width subtractor (90nm)

Frequency Area Power
W BW (MHz) (mm2) (mW)

256 641.03 0.046 10.47
32 512 595.24 0.079 16.54

1024 531.91 0.147 28.51
256 588.24 0.083 14.88

64 512 523.56 0.140 22.75
1024 476.19 0.255 38.36
256 512.82 0.162 23.31

128 512 476.19 0.258 36.22
1024 416.67 0.421 53.25

For each of the synthesized variations it still holds that moving to wider incoming
address widths (W) and wider given memory bandwidths (BW) results in a decrease in
the operating frequency and an increase in power consumption and area.

Out of Figure 4.4 some more expected observations may be made regarding the
resulting performance metrics. It may be seen that not using a subtractor results into
significantly higher operating frequencies (up to 840 MHz for 32x256). Using a variable-
width subtractor has a big impact on operating frequency due to the need for a two times
wider subtraction than using a fixed-width subtractor. As expected, the full iteration
stage with the fixed-width subtractor lies between the other two in terms of operating
frequency. Regarding the power consumption and the area, not using a subtractor is

3The variable-width subtractor design was presented in Section 3.1.1.2
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Table 4.4: The operating frequency, area and power consumption results obtained after synthesiz-
ing the full iteration stage without a subtractor for all possible values of W and BW using 90nm
ASIC technology.

Full iteration stage
without a subtractor (90nm)

Frequency Area Power
W BW (MHz) (mm2) (mW)

256 840.34 0.044 11.55
32 512 751.88 0.084 19.76

1024 657.89 0.151 31.74
256 833.33 0.062 15.82

64 512 684.93 0.110 23.39
1024 625.00 0.206 38.28
256 729.93 0.071 15.17

128 512 625.00 0.146 26.40
1024 540.54 0.299 46.45
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Figure 4.4: Evaluating the effect of bound alignment on the full iteration stage. The operating
frequency, area and power consumption results are depicted. These were obtained after synthe-
sizing three variations of full iteration stage for all possible values of W and BW using 90nm
ASIC technology. The variations are: full iteration stage with a fixed-width subtractor (black
lines), full iteration stage with variable-width subtractor (blue lines) and full iteration stage with-
out subtractor (green lines). The exact result values may be seen in Tables 4.1, 4.3 and 4.4
respectively.

the only approach resulting into lower area and power consumption, especially for larger
values of W and BW.

Evaluating which approach is the best depends on the Range Trie structure under
consideration. Not using a subtractor is definitely an attractive solution but it means
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eliminating bound alignment during the construction of a Range Trie. This effectively
results into a deeper Range Trie (as proven in [6]) that requires more pipeline stages and
underutilizes the memory. On the contrary, using a variable-width subtractor allows
for wider subtraction and, thus, more possibilities of applying the bound alignment rule.
That way the number of Range Trie levels may be reduced at the cost of a slower iteration
stage. For the complete Range Trie design we opted for the middle solution, the fixed-
width subtractor that offers the advantages of using the bound alignment without a high
cost on the performance metrics. However, the other two approaches may be used if
considered beneficial of a given Range Trie structure.

Effect of the memory organization scheme: The full iteration stage that was eval-
uated so far also includes the required memory addressing hardware, according to the
chosen memory organization scheme (Section 3.2). In particular, the memory addressing
hardware consists of the offset adder and a multiplexor that is used for dealing with leaf
nodes. In this section, the memory addressing hardware is eliminated from the iteration
stage to evaluate the cost of the chosen memory organization scheme.

The iteration stage without the memory addressing hardware (as depicted in Figure
4.1(d)) was synthesized for all possible values of W and BW in 90nm ASIC technologies.
The obtained results (operating frequency, area and power consumption) may be seen in
Table 4.5. These results are compared against the full iteration stage results in Figure
4.5.

Table 4.5: The operating frequency, area and power consumption results obtained after synthesiz-
ing the iteration stage without the memory addressing hardware for all possible values of W and
BW using 90nm ASIC technology.

Iteration stage
without memory addressing hardware (90nm)

Frequency Area Power
W BW (MHz) (mm2) (mW)

256 862.07 0.044 12.73
32 512 751.88 0.078 21.31

1024 680.27 0.144 34.28
256 826.45 0.096 23.28

64 512 689.66 0.142 29.22
1024 617.28 0.252 49.64
256 729.93 0.216 43.66

128 512 636.94 0.292 52.91
1024 540.54 0.417 66.10

From Figure 4.5 the benefits of eliminating the memory addressing hardware may be
seen. The operating frequency is higher, the power consumption is less and the area re-
mains almost similar. These observations indicate the benefits of using a simple memory
addressing scheme where no offset addition needs to be performed. However choosing
such a scheme would require a fixed location of Range Trie nodes in the memory struc-
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Figure 4.5: Evaluating the effect of the chosen memory addressing hardware on the iteration
stage. The operating frequency, area and power consumption results are depicted. These were
obtained after synthesizing (a) the full iteration stage (black lines) and (b) the iteration stage
without memory addressing hardware (blue lines) for all possible values of W and BW using
90nm ASIC technology. The exact result values may be seen in Tables 4.1 and 4.5 respectively.

ture. That would require significantly larger memory units where most of the memory
entries would not be used. Furthermore, eliminating the memory addressing hardware
removes the support of leaf nodes in intermediate Range Trie levels. This issue may be
dealt by allowing Range Trie structures that contain leaf nodes only on the bottom level.

Basic iteration stage: The last iteration stage variation that was generated is a basic
one where both the alignment subtractor and the memory addressing hardware are elim-
inated. From the previous discussion we concluded that it is better not to remove these
elements, since that would lead in a deeper pipeline with larger memory requirements.
However, such a basic iteration stage is still viable and it would be interesting to see how
efficiently an iteration is performed in that case.

The basic iteration stage (as depicted in Figure 4.1(e)) was synthesized for all possible
values of W and BW in 90nm ASIC technologies. The obtained results (operating
frequency, area and power consumption) may be seen in Table 4.6. These results are
compared against the full iteration stage results in Figure 4.6.

As expected, the synthesize results of the basic iteration stage are significantly better
against the ones of the full iteration stage. It is worth noting the best possible oper-
ating frequency was encountered in this variation (1.01 GHz for 32x256). However, as
mentioned, using this iteration hardware variation has negative effects on the complete
Range Trie design.

To conclude this section, five different variations of the iteration stage were generated
and evaluated in terms of operating frequency, area and power consumption. The gen-
eration of these variations was targeting the modification of the critical path in order
to evaluate mainly the effect on the operating frequency under various design scenarios.
The resulting operating frequencies varied from 416.67 MHz up to 1010.10 MHz. We
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Table 4.6: The operating frequency, area and power consumption results obtained after synthe-
sizing the iteration stage without the memory addressing hardware and without the subtractor for
all possible values of W and BW using 90nm ASIC technology.

Basic iteration stage
without memory addressing hardware

and without a subtractor (90nm)
Frequency Area Power

W BW (MHz) (mm2) (mW)
256 1010.10 0.041 13.12

32 512 877.19 0.081 22.33
1024 746.27 0.150 36.03
256 952.38 0.053 14.73

64 512 800.00 0.106 24.93
1024 709.22 0.214 44.87
256 819.67 0.067 15.94

128 512 714.29 0.150 31.87
1024 606.06 0.301 51.73

256 512 1024
400

500

600

700

800

900

1000

1100

BW

O
pe

ra
tin

g 
fr

eq
ue

nc
y 

(M
H

z)

Operating frequency

 

 
W=32
W=64
W=128
W=32 (basic)
W=64 (basic)
W=128 (basic)

256 512 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

BW

A
re

a 
(m

m
2 )

Area

256 512 1024
10

20

30

40

50

60

70

BW

P
ow

er
 c

on
su

m
pt

io
n 

(m
W

)
Power consumption

Figure 4.6: Comparing the full iteration stage (that was used in the complete pipeline) against
the basic iteration stage (where the subtractor and memory addressing schemes were removed).
The operating frequency, area and power consumption results of both variations are depicted after
synthesizing (a) the full iteration stage (black lines) and (b) the basic iteration stage (green lines)
for all possible values of W and BW using 90nm ASIC technology. The exact result values may
be seen in Tables 4.1 and 4.6 respectively.

opted to use the first evaluated variation (the full iteration stage) that offers operating
frequencies that range between 478.47 MHz and 729.93 MHz, along with a nice tradeoff
on the resulting memory requirements and number of pipeline stages. In the next section
the complete Range Trie pipeline will be evaluated, while using as an iteration stage the
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full iteration stage.

4.3 Evaluation of the complete design

In this section the complete Range Trie hardware design (as presented in Chapter 3)
is evaluated in terms of operating frequency, area, power consumption and memory
requirements. Along with the evaluation based on the performance metrics, other inter-
esting issues regarding the Range Trie design will also be discussed. Since the Range
Trie design is parameterizable in many of its aspects (incoming address width, available
memory bandwidth, number of iterations, memory sizes per level and output width), a
set of representative Range Trie instances was generated and synthesized for ASIC to
investigate on the scalability of the Range Trie design.

Choosing and generating the Range Trie instances for evaluation: Before pre-
senting the synthesis results for the generated Range Trie instances, the chosen Range
Trie instances will be defined, along with the used process to generate them.

In general, a Range Trie hardware instance is tailored to a specific Range Trie struc-
ture that performs lookup on a predefined lookup table consisting of a number of ranges.
To be more specific, in order to obtain a compatible Range Trie instance, this process
must be followed:

1. Given a lookup table consisting of N ranges, the heuristic construction methods
of [6], that were described briefly in Section 2.2.4, must be employed to generate
a Range Trie structure. The heuristic construction methods must be tailored to
the specific hardware implementation, meaning that the same incoming address
width (W) and available memory bandwidth (BW) are given as a parameter to
the construction method. As a result a Range Trie structure is obtained that is L
levels deep and contains in every node the required information in order to perform
the lookup.

2. Given the obtained Range Trie structure, the parameters of a specific Range Trie
hardware instance may be decided: the incoming address width (W), the available
memory bandwidth (BW), the number of iteration stages in the pipeline (L − 1),
the required memory entries per memory level (m1, ..., mL−1) and the output
width (�o = log2N	).

3. The chosen parameters are then used to automatically generate a Range Trie in-
stance that may perform the address lookup based on the initial lookup table4.

For the evaluation purposes, we decided to generate a set of representative Range
Trie instances in order to investigate on the scalability of the design. The chosen in-
stances vary in terms of incoming address width (W=32, 64, 128 bits), available memory
bandwidth (BW=256, 512, 1024 bits) and number of ranges in the lookup table (N=256,
512, ..., 256K, 512K ranges). To obtain the respective Range Trie instances the previous

4Before starting the operation of the hardware, the memory units must be configured according to
the Range Trie node information and the chosen memory organization.
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Table 4.7: The 39 generated Range Trie instances that vary in terms of incoming address width
(W), available memory bandwidth (BW) and number of ranges in the lookup table (N). The rest
of the design parameters, such as the number of iteration stages (L-1) and the sizes of the memory
units (mi), were decided after constructing the respective Range Trie structures. These design
instances were synthesized for ASIC and the synthesis results will be presented afterwards.

W BW N L-1 m1 m2 m3 m4 m5 m6 m7 o
32 256 256-1K 3 1 32 512 20

2K-32K 4 1 32 512 8K 20
64K-512K 5 1 32 512 8K 64K 20

32 512 256 2 1 64 20
512-8K 3 1 64 1K 20

16K-256K 4 1 64 1K 32K 20
512K 5 1 64 1K 32K 64K 20

32 1024 256-1K 2 1 128 20
2K-64K 3 1 128 4K 20

128K-256K 4 1 128 4K 16K 20
512K 4 1 128 4K 32K 20

64 256 256 3 1 32 256 20
512-4K 4 1 32 256 2K 20
8K-64K 5 1 32 256 2K 32K 20

128K-256K 6 1 32 256 2K 32K 128K 20
512K 6 1 32 256 2K 32K 256K 20

64 512 256-4K 3 1 64 1K 20
8K-128K 4 1 64 1K 32K 20

256K 5 1 64 1K 32K 64K 20
512K 5 1 64 1K 32K 128K 20

64 1024 256-512 2 1 128 20
1K-32K 3 1 128 4K 20

64K-128K 4 1 128 4K 32K 20
256K-512K 4 1 128 4K 64K 20

128 256 256-512 4 1 32 128 512 20
1K-8K 5 1 32 128 512 8K 20

16K-64K 6 1 32 128 512 8K 64K 20
128K 7 1 32 128 512 8K 64K 128K 20
256K 7 1 32 128 512 8K 64K 256K 20
512K 7 1 32 128 512 8K 64K 512K 20

128 512 256-1K 3 1 64 512 20
2K-32K 4 1 64 512 16K 20

64K-128K 5 1 64 512 16K 64K 20
256K 5 1 64 512 16K 128K 20
512K 5 1 64 512 16K 256K 20

128 1024 256-16K 3 1 128 4K 20
32K-128K 4 1 128 4K 32K 20

256K 4 1 128 4K 64K 20
512K 4 1 128 4K 128K 20
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process was followed5. Table 4.7 shows the 39 resulting designs for every possible value
of W, BW and N. Note that a common output width (o = 20 bits) was assumed that
suffices to represent the number of the matched range. Also, many instances with a
different N were grouped into one, as the number of iterations was the same for each N.

Synthesis results: Each of the 39 Range Trie instances of Table 4.7 was synthesized
for 90nm and 130nm ASIC technologies. The resulting operating frequency, area and
power consumption for every synthesized Range Trie are shown in Table 4.8. Figures
4.7, 4.8 and 4.9 depict graphically the operating frequency, area and power consumption
results respectively of all the synthesized Range Trie instances at 90nm ASIC technology.
Figures 4.10, 4.11 and 4.12 depict graphically the operating frequency, area and power
consumption results respectively of all the synthesized Range Trie instances at 130nm
ASIC technology.

By inspecting the synthesis results various observations may be made. First, re-
garding the operating frequency of the Range Trie, it may be seen that it mirrors the
findings during the evaluation of the iteration stage (Section 4.2). Designs with a wider
incoming address (W) and wider available memory bandwidths (BW) have a smaller
operating frequency (Figures 4.7 and 4.10), as it was the case with the iteration stage
itself. It may be seen that the operating frequency scales nicely with the increase of W.
Moving from designs with W=32 (IPv4) towards W=128 (IPv6) decreases the operating
frequency with 100MHz on average, although the W has been quadrupled. In general,
the operating frequency ranges from 442MHz up to 694MHz for 90nm ASIC technology
and from 191MHz up to 296MHz for 130nm.

It was found that the longest critical path of the complete design sometimes lies
within the iteration stage and sometimes within the memory access stage (especially
when large memory units are used). This indicated that the pipeline was balanced. To
further improve on the operating frequency of the complete design another variation of
the iteration stage may be used, as the ones presented in Section 4.2, at the cost of
different memory requirements and number of iterations.

Note that in the complete design the operating frequency is smaller than the ones
from the respective iteration stage (Table 4.1) because other issues come into play, such
as the wiring fanout. This is also evident by the decrease of the operating frequency when
moving to larger lookup tables that require larger memories and, thus, more wiring. In
this case the operating frequency also scales well. As an example for the Range Trie
design with W=32 and BW=256, moving from 32K ranges to 512K ranges results in
just 30MHz operating frequency reduction.

In general, it may be claimed that the operating frequency scales efficiently when
moving to wider incoming addresses and larger lookup tables, as depicted also in Figures
4.7 and 4.10, where the operating frequencies of all synthesized instances are depicted for
90nm and 130nm technologies respectively. One last thing to mention is that changing
the ASIC technology has the expected effect on operating frequencies; moving to the
slower 130nm process results in less than half operating frequency.

5The bottom-up heuristic construction method with variable length comparisons was used for obtain-
ing the Range Trie structures. The original lookup tables were assumed to consist of N ranges distributed
uniformly in the address space. Also, the address bound alignment was activated.
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Table 4.8: The operating frequency, area and power consumption results obtained after synthe-
sizing the 39 Range Trie instance of Table 4.7 using 90nm and 130nm ASIC technologies.

90nm 130nm
W BW N Freq. Area Power Freq. Area Power

(MHz) (cm2) (W) (MHz) (cm2) (W)
32 256 256-1K 694.44 0.018 0.461 296.74 0.062 0.821

2K-32K 666.67 0.082 1.026 280.11 0.139 1.399
64K-512K 632.91 0.590 5.076 275.48 0.658 3.370

32 512 256 625.00 0.011 0.233 271.00 0.060 0.733
512-8K 628.93 0.031 0.515 249.38 0.117 1.344

16K-256K 609.76 0.479 3.957 247.52 0.601 3.039
512K 574.71 1.363 10.542 245.70 1.557 6.603

32 1024 256-1K 558.66 0.021 0.403 219.78 0.113 1.142
2K-64K 546.45 0.124 1.088 220.26 0.294 2.246

128K-256K 529.10 0.529 3.811 219.30 0.751 3.571
512K 540.54 0.934 6.664 217.39 1.210 5.099

64 256 256 671.14 0.014 0.295 271.74 0.066 0.794
512-4K 645.16 0.032 0.462 268.10 0.105 1.183
8K-64K 621.12 0.285 2.489 265.25 0.377 2.207

128K-256K 628.93 1.296 10.620 262.47 1.469 6.658
512K 588.24 2.306 17.636 262.47 2.560 11.101

64 512 256-4K 561.80 0.033 0.476 233.64 0.119 1.218
8K-128K 546.45 0.481 3.649 230.41 0.602 2.785

256K 543.48 1.366 9.989 229.89 1.560 6.052
512K 549.45 2.269 16.452 232.02 2.539 9.504

64 1024 256-512 526.32 0.023 0.378 213.22 0.115 1.162
1K-32K 507.61 0.126 0.956 207.04 0.296 2.151

64K-128K 487.80 0.937 6.200 207.04 1.213 4.761
256K-512K 502.51 1.747 12.130 202.43 2.131 7.644

128 256 256-512 571.43 0.030 0.573 246.31 0.102 1.168
1K-8K 543.48 0.094 1.008 238.66 0.184 1.545

16K-64K 555.56 0.599 4.618 239.23 0.727 3.544
128K 543.48 1.611 11.862 237.53 1.820 7.698
256K 540.54 2.621 18.069 237.53 2.911 11.843
512K 500.00 4.640 31.727 236.41 5.093 20.108

128 512 256-1K 537.63 0.039 0.706 215.05 0.125 1.212
2K-32K 500.00 0.269 2.130 213.68 0.374 1.919

64K-128K 495.05 1.179 8.012 220.75 1.362 5.159
256K 505.05 2.096 13.940 216.45 2.360 8.523
512K 497.51 3.921 25.717 212.77 4.344 15.245

128 1024 256-16K 450.45 0.135 0.904 190.48 0.305 1.986
32K-128K 446.43 0.968 5.805 191.94 1.237 4.573

256K 442.48 1.799 10.751 191.57 2.167 7.340
512K 442.48 3.461 20.650 191.20 4.030 12.949
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Figure 4.7: Graphic depiction of the operating frequency results obtained after synthesizing all
Range Trie instances using 90nm ASIC technology. The exact result values may be seen in Table
4.8.
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Figure 4.8: Graphic depiction of the area results obtained after synthesizing all Range Trie in-
stances using 90nm ASIC technology. The exact result values may be seen in Table 4.8.

0

5

10

15

20

25

30

512K
256K

128K
64K32K16K8K4K

#ranges

2K

Power consumption (BW=256)

1K51225632

W

6412
8

P
ow

er
 c

on
su

m
pt

io
n 

(W
)

0

5

10

15

20

25

30

512K
256K

128K
64K32K16K8K4K

#ranges

2K

Power consumption (BW=512)

1K51225632

W

6412
8

P
ow

er
 c

on
su

m
pt

io
n 

(W
)

0

5

10

15

20

25

30

512K
256K

128K
64K32K16K8K4K

#ranges

2K

Power consumption (BW=1024)

1K51225632

W

6412
8

P
ow

er
 c

on
su

m
pt

io
n 

(W
)

90nm

Figure 4.9: Graphic depiction of the power consumption results obtained after synthesizing all
Range Trie instances using 90nm ASIC technology. The exact result values may be seen in Table
4.8.
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Figure 4.10: Graphic depiction of the operating frequency results obtained after synthesizing all
Range Trie instances using 130nm ASIC technology. The exact result values may be seen in Table
4.8.
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Figure 4.11: Graphic depiction of the area results obtained after synthesizing all Range Trie
instances using 130nm ASIC technology. The exact result values may be seen in Table 4.8.
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Figure 4.12: Graphic depiction of the power consumption results obtained after synthesizing all
Range Trie instances using 130nm ASIC technology. The exact result values may be seen in Table
4.8.
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While the operating frequency results were following the results of the iteration stage
evaluation and depend mainly on the incoming address width and less on the lookup
table size, the case is different for the area and power consumption results. The area and
power consumption depend highly on the lookup table size and the incoming address
width (Figures 4.8-4.9 and 4.11-4.12). Increasing the number of ranges results in the
need for deeper Range Trie structures that require more pipeline stages and, thus, larger
memory units per stage. As the vast amount of the occupied area consists of non-
combinational (memory) elements, moving to larger lookup tables increases the power
consumption and the area because the memory requirements increase. This increase is
more evident when moving to the larger sizes of the lookup tables (64K - 512K) and
at the same time moving to wider incoming addresses. As an example, for W=32, the
power consumption and area remain low for most of the lookup table sizes, but given
a large lookup table size (512K), moving from W=32 to W=64 increases the area and
power consumption by 3.5 times and moving from W=64 to W=128 increases them by
2 times.

Not definite conclusions based on the synthesis results can be made for the scaling of
area and power consumption because the obtained area and power consumption results
were also affected by the used memory units. As mentioned in Section 4.1, the used
memory units were designed out of a set of available memory units for the specific ASIC
technologies. This meant the replication of unnecessary logic and the employment of
unnecessary memory elements, resulting into larger than needed area and power con-
sumption. The use of inappropriate memory units (that differed for 90nm and 130nm
technologies) was also the reason that moving from 90nm to 130nm technology provided
incoherent area and power consumption results; for some designs the power consumption
was larger in 130nm and for others it was smaller (as it should be). Especially for the
power consumption the results are prohibitively large for some designs. This situation
was furthermore intensified by the fact that the Synopsys Design Compiler measures the
power consumption as an estimation, instead of calculating based on the actual usage
of the hardware, and that rendered out the design optimizations for saving power (such
as disabling the memory units that don’t need to be accessed). However, the area and
power consumption results still give an indication regarding the real scaling when moving
to wider incoming addresses and larger lookup tables.

Before concluding the evaluation of the synthesis results, it is useful to present an-
other set of obtained results (Figure 4.13). This time the synthesized designs were
under-constrained to retrieve the area and power consumption results as a function of
throughput (measured in Gbps). The target was to see how the designs performed in the
following actual wire speeds: in OC-48 (2.5Gbps), OC-192 (10Gbps), OC-768 (40Gbps)
and OC-3072 (160Gbps). Since this set of designs targets real conditions, the IPv4 and
IPv6 variants (with an available memory bandwidth of 256 bits) were synthesized that
support 256K and 512K number of ranges in the lookup table. A minimum sized packet
of 40 bytes was assumed.

Figure 4.13 offers the chance to see how the power consumption and area results are
affected depending on the throughput. It may be seen that area remains unaffected,
while the power consumption decreases in orders of magnitude when a low throughput is
required. This also points that a designer may generate a design that is more fitting with
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his needs, if for example he is interested in a lookup mechanism with low throughput.
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Figure 4.13: The power consumption and area results as a function of throughput. The results
correspond to IPv4 and IPv6 address lookup using lookup tables ranging from 256 to 512K entries.
The used ASIC technology was the 90nm one.

To conclude the evaluation of the synthesis results, the presented results showed that
the Range Trie’s operating frequency scales well in terms of incoming address width and
lookup table size. A maximum operating frequency of 694MHz was achieved. Moving
from IPv4 addresses (32-bits) to the wider IPv6 ones (128-bits) results on average in
a 100MHz moderate decrease of the operating frequency. Using larger lookup tables
results on very small decreases of operating frequency. As an extreme case, moving from
256 to 512K lookup tables decreases the operating frequency by a value ranging between
8MHz to 90MHz, depending the specifics of the design. The worst achieved operating
frequency was 442MHz, when the lookup table size and incoming address width were
maximized. All of these meant that, assuming a 40 bytes sized packet, the Range Trie
design may support OC-3072 (160Gbps) wire speeds even for 512K ranges.

Regarding the area and power consumption, moving to significantly larger lookup
tables (64K-512K ranges) and to wider incoming addresses (when already using a large
lookup table) results in a big increase of these two performance metrics. In the rest
cases, area and power consumption scaled efficiently in terms of the address width and
the lookup table size. In any case, the area and power consumption depend mainly on
the memory requirements and scale according to the memory requirements scaling. So,
as the operating frequency was shown to scale efficiently enough, it remains to show the
nice scaling of the memory requirements (and number of iterations).

Evaluation of memory requirements and number of iterations: Another impor-
tant aspect of the Range Trie design is the total required memory to store a Range Trie
structure and the number of required iteration stages. As mentioned before, these two
parameters affect greatly the occupied area and the power consumption. Furthermore,
the number of required iteration stages indicates the total number of pipeline stages and
therefore the latency to match an incoming address to a range. In the following text
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some results are going to be presented regarding the scaling of the memory requirements
and the number of levels in terms of the incoming address width and the lookup table
size.

The main idea behind the Range Trie method was to design a lookup mechanism
with low latency, high troughput and low memory requirements. At the same time it is
essential that these properties scale efficiently for an increasing incoming address width
and lookup table size.

Figure 4.14 depicts the number of required iterations for the synthesized Range Trie
instances. These values were decided based on the number of levels of the respective
Range Trie structure (Table 4.7). It may be seen that the number of iterations ranged
from 2 up to 7. In general, the number of iterations scaled well for the synthesized designs.
Moving to a wider incoming address (W) might inflict at-most one extra iteration, while
moving from the smallest (256) to the largest (512K) lookup tables inflicts at-most three
extra iterations. At the same time, using a wider memory bandwidth (BW) resulted on
average to one less iteration.
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Figure 4.14: The number of iterations of the synthesized Range Trie designs. They were decided
based on the depth of the respective Range Trie structure (see Table 4.7).

Although the number of iterations scales well, it is desirable to have as few as possible
iterations. This is desired for two reasons. First, less iteration stages means a narrower
pipeline with lower latency. Secondly, the addition of even just one iteration requires
a respective memory unit which size gets even bigger for deeper iteration levels. The
absolute lookup latency and the memory requirements for the synthesized designs are
depicted in Figures 4.15 and 4.16.

The reason for presenting the absolute lookup latency results is that in case a quick
match is required instead of a high throughput, then a different design point may be
better to be chosen. From Figure 4.15 it may be seen that there are cases were different
design points share almost the same absolute lookup latency.

Regarding the memory requirements (Figure 4.16), they were found to scale well, ex-
cept for the larger lookup tables (64K-512K ranges) and wider incoming addresses (when
already using a large lookup table). The worst-case encountered memory requirements
(when having 512K ranges and 128-bits wide addresses) were approximately 24MBytes.
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Figure 4.15: The absolute lookup latency of the synthesized Range Trie designs using 90nm ASIC
technology. It is calculated based on the total number of pipeline stages (L − 1) ∗ 2, where L is
the Range Trie structure depth, and the duration of each clock cycle.
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Figure 4.16: The Memory requirements of the synthesized Range Trie designs. They are calculated
based on the required memory entries per iteration (see Table 4.7) for the respective Range Trie
structure.

In the best-case the memory requirements were in the order of a few KBytes. The
area and power consumption was found to scale in the same manner as the memory
requirements.

The Range Trie hardware design could not be compared directly to other existing
hardware solutions due to the different platforms that were used by others. Other so-
lutions were implemented on various FPGAs, others using different ASIC technologies,
while others were just software-based solutions. To get an idea where the Range Trie
stands compared to other solutions, it may be compared based on the characteristics
that matter most to the Range Trie design; the number of tree levels and the subsequent
memory requirements.

Since the purpose of the Range Trie is to be used for real-life address lookup, it is
interesting to see how it compares against existing lookup methods (presented in Section
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2.1) when using real routing tables from existing internet backbone exchange points.
In Figures 4.17 and 4.18 the number of Range Trie structure levels and its memory
requirements are compared respectively against other methods. It may be seen that in
both cases the Range Trie outperforms the existing solutions. Moreover, taking into
account that the number of iterations and the memory requirements of the Range Trie
scale efficiently in terms of the incoming address width and the lookup table size, places
the Range Trie method as a future-proof address lookup solution.

Figure 4.17: Comparison of the number of tree levels of various lookup methods under real routing
tables of some actual backbone internet exchange points [25].

Figure 4.18: Comparison of the memory requirements of various lookup methods under real
routing tables of some actual backbone internet exchange points [25].

To conclude this chapter, the proposed Range Trie design was evaluated in terms of
operating frequency, power consumption and area. It was found out that it performs the
address lookup process with low latency, high throughput, small memory requirements
and that all of these properties scale efficiently when the address width and the number of
ranges in the lookup table increase. Furthermore, as the design is highly parameterizable,
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it offers the possibility of exploring the design space to choose a Range Trie instance that
fits the specific needs of the system to be used in.

4.4 Summary

In this chapter the proposed Range Trie design was evaluated in terms of operating fre-
quency, power consumption and area, after synthesizing a variety of Range Trie instances
for 90nm and 130nm ASIC technologies. The target was to investigate on the Range
Trie’s performance and its scalability for increasing address widths and lookup tables.

Section 4.1 set up the required background regarding the experimental setup that
was used for performing the synthesizes. The Synopsys Design Compiler tool was used
for synthesizing the design for 90nm and 130nm ASIC technologies using the respective
foundry libraries of UMC-Faraday.

Before evaluating the complete Range Trie design, that is a pipeline of interleaving
iteration stages and memory access stages, the iteration stage was evaluated by itself in
Section 4.2. A set of variations of the iteration stage were generated and synthesized for
every possible values of incoming address width (W) and available memory bandwidth
(BW). This was done to investigate the effect of various design choices on the iteration
stage’s performance. In particular, we investigated on the cost of the bound alignment
subtractor (fixed-width subtractor, variable-width subtractor or eliminated subtractor)
and the chosen memory organization scheme. This investigation targeted mainly the
operating frequency. The variations of the iteration stages performed as expected. Out
of the five generated variations we opted to choose the one that has a fixed-width bound
alignment subtractor and that uses the chosen memory organization scheme. It’s op-
erating frequency ranged from 478MHz up to 729MHz. The best achieved operating
frequency was 1.01GHz for the basic iteration stage variation, where the bound align-
ment subtractor and the memory addressing hardware were eliminated.

In Section 4.3 the complete Range Trie pipeline design was evaluated. First, a set
of representative Range Trie instances was generated to cover a variety of design points.
The resulting instances supported incoming address widths of 32, 64 and 128 bits and
lookup tables consisting of 256 up to 512K ranges. The Range Trie instances were
synthesized and their operating frequency, power consumption and area was reported.
All of the findings indicated that the Range Trie method is a future-proof address lookup
solution with low latency, high throughput and small memory requirements, while all of
these properties scale efficiently when the address width and the number of ranges in
the lookup table increase.

In particular, a maximum operating frequency of 694MHz was achieved. Moving
from IPv4 addresses (32-bits) to the wider IPv6 ones (128-bits) resulted on average in
a 100MHz decrease of the operating frequency. Using larger lookup tables resulted on
very small decreases of operating frequency. The worst achieved operating frequency
was 442MHz, when the lookup table size and incoming address width were maximized.
At the same time, the memory requirements were found to scale also well, except for
the larger lookup tables (64K-512K ranges) and wider incoming addresses (when already
using a large lookup table). The worst-case encountered memory requirements were ap-
proximately 24MBytes. The area and power consumption was found to scale in the same
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manner as the memory requirements. Also, it was found out that the Range Trie design
may support OC-3072 (160Gbps) wire speeds even for 512K ranges. Finally, the Range
Trie method was compared against existing lookup methods in real-life conditions and it
was shown that the number of Range Trie structure levels and its memory requirements
outperform the existing solutions.
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Conclusions 5
The rapid growth of internet traffic, the increase in the number of network devices

and the subsequent growing size of routing tables make more difficult for address
lookup to keep pace with the increasing need for faster processing rates posed by

the technological advancements in communication speed and bandwidth. Furthermore,
the transition from the 32-bits wide IPv4 addresses to 128-bits wide IPv6 addresses de-
mands for address lookup solutions that may scale efficiently in terms of the address
width. Unfortunately, the currently available lookup solutions have started lagging be-
hind and address lookup tends to become the bottleneck in the systems that they use
it. This indicated that a method is desired for address lookup that has low latency, high
throughput and low memory requirements. At the same time, these properties should
scale efficiently when the address width and/or the number of ranges increases.

The problem of designing such a method was the main issue of this thesis. This thesis
focused on the Range Trie algorithm introduced by I. Sourdis in [26] that promises
to solve these problems. In particular, the Range Trie method was designed here for
a hardware implementation in order to end up with an efficient hardware design and
implementation of the Range Trie.

This chapter summarizes in Section 5.1 the issues that were addressed by this thesis,
along with the proposed solution and the findings of the performed research. Section 5.2
presents the contributions of the performed research, while Section 5.3 concludes this
thesis with some suggestions for future works.

5.1 Summary

In Chapter 2, a representative set of related designs and algorithms for address lookup
that exists in the literature was presented. These were a mixture of algorithmic ap-
proaches to address lookup and hardware-targeting address lookup designs. The al-
gorithmic approaches were classified based on the dimension of the performed search
(“search on length” or “search on values”) and on the type of the search traversal (se-
quential or binary). Because these approaches have started lagging behind and lack
efficient scaling properties, the novel address lookup approach of the Range Trie was
decided to be designed for a hardware implementation in this thesis. The Range Trie is
between the “search on length” and “search on values” approaches and delivers a method
with (a) low latency, (b) high throughput, (c) low memory requirements and (d) good
scalability in terms of address width and lookup table size. The Range Trie is a specific
tree structure with a multitude of nodes per level, along with a specific algorithm to tra-
verse the tree structure. In each node, comparisons are performed on parts of addresses
based on 5 Range Trie rules that formulate the fundamental concepts behind the Range
Trie development. Based on the 5 rules, the parts of addresses to compare are minimized

123
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by sharing common prefix/suffix comparisons, by omitting unnecessary comparisons and
by aligning the addresses to be compared. Minimizing the parts of addresses to com-
pare, results in a higher utilization of the given memory bandwidth, in an increase of
the branches per node and in a decrease of the Range Trie depth. Generating a Range
Trie structure is done in an automated way based on heuristic methods that exploit the
5 Range Trie rules.

The Range Trie method is an iterative method, where (a) a node is visited, (b)
a number of comparisons is performed on parts of the incoming address and (c) the
next node to visit is decided, until a leaf node is reached and a match is reported. In
Chapter 3, the complete hardware design of the Range Trie address lookup method was
presented in a bottom-up fashion. Starting from the iteration functional unit and the
chosen memory structure, a complete pipeline was formed. All required hardware units
were described that are needed for designing every possible instance of a Range Trie,
according to its parameters. During the design, the effort was to exploit the Range Trie
method inherit characteristics into building a fast, efficient and scalable hardware design
with low memory requirements.

Specifically, also in Chapter 3, the hardware design of the Range Trie iteration was
presented. This hardware performs the following four actions: (1) select parts of the
incoming address for comparison and (possibly) perform address bound alignment, (2)
perform the comparisons and (possibly) the shared prefix/suffix comparisons, (3) inter-
pret the comparison results and (4) decide which outgoing branch of the current node
to follow, according to the comparison results, following the Range Trie method’s deci-
sion criteria. During the iteration design process the necessary signals that control the
iteration were defined, according to the current node information. This resulted in the
formulation of the way that the current node information must be represented for the
correct operation of a given iteration. Afterwards, the memory structure was defined
where the Range Trie structure must be stored. This memory structure is used for re-
trieving the node information (in every iteration) stored as a specified data structure. In
particular, a memory structure was defined that consists of as many memory levels as
the Range Trie levels. The way to organize the Range Trie nodes into the memory levels
was presented, along with the way to address the memory levels in order to retrieve the
next node to visit.

In Chapter 4 the proposed Range Trie design was evaluated in terms of operating
frequency, power consumption and area. First, the iteration stage was evaluated by itself.
A set of variations of the iteration stage were generated and synthesized to investigate
the effect of various design choices on the iteration stage’s performance, such as the
address alignment subtractor and the memory addressing scheme. The variations of the
iteration stages performed as expected.

Afterwards, a set of representative Range Trie instances was generated and synthe-
sized for 90nm and 130nm ASIC technologies to cover a variety of design points. The
resulting instances supported incoming address widths of 32, 64 and 128 bits and lookup
tables consisting of 256 up to 512K ranges. Based on the resulting performance metrics,
we investigated on the Range Trie’s performance and its scalability for increasing address
widths and lookup tables. All of the findings indicated that the Range Trie method is a
future-proof address lookup solution with low latency, high throughput and small mem-
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ory requirements, while all of these properties scale efficiently when the address width
and the number of ranges in the lookup table increase.

In particular, a maximum operating frequency of 694MHz was achieved. Moving
from IPv4 addresses (32-bits) to the wider IPv6 ones (128-bits) resulted on average in
a 100MHz decrease of the operating frequency. Using larger lookup tables resulted on
very small decreases of operating frequency. The worst achieved operating frequency
was 442MHz, when the lookup table size and incoming address width were maximized.
At the same time, the memory requirements were found to scale also well, except for the
larger lookup tables (64K-512K ranges) and wider incoming addresses (when already
using a large lookup table). The worst-case encountered memory requirements were
approximately 24MBytes. The area and power consumption were found to scale in the
same manner as the memory requirements. Also, it was found out that the Range Trie
design may support OC-3072 (160Gbps) wire speeds even for 512K ranges. Finally, the
Range Trie was compared against existing lookup methods in real-life conditions and it
was shown that the number of Range Trie method levels and its memory requirements
outperform the existing solutions.

5.2 Contributions

The main issue addressed by this thesis was the design and implementation of the Range
Trie algorithm in a way that exploits optimally the inherit characteristics of the Range
Trie method, which are: (a) low lookup latency, (b) high throughput, (c) low memory
requirements, (d) good scalability of (a)-(c) in terms of the lookup address width and
number of address ranges.

The contributions of this thesis are:

• A hardware design of the Range Trie algorithm: For the first time, the
Range Trie method was successfully designed for a hardware implementation. All
the required units were designed to form the complete Range Trie design. During
the design process, extra effort was put to ensure the efficiency of the designed
hardware. Every element was designed while having in mind to maintain the low
latency, the high throughput and the low memory requirements. The resulting
design is parameterizable in terms of address width, memory bandwidth and num-
ber of processing stages in order to accommodate the address lookup needs of the
application under consideration. At the same time, the proposed design was well
structured to allow easily its generation according to the parameters.

• A complete design flow for hardware implementation and validation: A
complete design flow was created for generating Range Trie instances. Starting
from a Range Trie structure, the design parameters are defined and a Range Trie
hardware design may be generated that is tailored to that specific Range Trie
structure. Alongside, all the necessary issues were addressed regarding the ASIC
implementation, the validation and the configuration of the hardware design.

• Evaluation of the Range Trie design: A set of representative Range Trie in-
stances was generated and synthesized for 90nm and 130nm ASIC technologies to
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cover a variety of design points. The resulting instances supported incoming ad-
dress widths of 32, 64 and 128 bits and lookup tables consisting of 256 up to 512K
ranges. Each design point was evaluated in terms of operating frequency, area,
power consumption and memory requirements. This design space exploration in-
vestigated and showed the Range Trie’s scalability for increasing address widths
and lookup tables. Apart from that, the evaluation presented the trade-offs be-
tween different Range Trie instances in order to allow the selection of the suitable
instance for a particular application. All of these placed the Range Trie method
as a future-proof address lookup solution

5.3 Future suggestions

This section concludes this thesis by suggesting some ideas for future works and improve-
ments on the Range Trie hardware design. Some of these proposals for future work are
the following:

• Incremental updating: In order to make the Range Trie method more complete,
the support for updating the stored Range Trie structure must be added. The
updating mechanism must be fast enough and be able to handle fast update rates.
The benefits of the Range Trie design should be preserved. At the same time, the
updating mechanism should be designed in a way that does not block the lookup
operation while updating, or at least block it for the minimum possible time.

• Longest prefix matching: The Range Trie design may be augmented to sup-
port also longest prefix matching. The current design supports only exact range
matching.

• Generalizing the design: It would also be interesting to investigate on the
possible benefits of making the Range Trie hardware more general, in order to
become as general as the Range Trie method. As an example question, having a
completely variable-width comparator that could compare any possible part of an
incoming address would yield any improvements, without hampering the design’s
performance, or not?

• Memory organization schemes: Other memory organization schemes may be
developed that allow for a more uniform memory distribution, where all memory
levels have a similar smaller size. This could be achieved by using a circular
pipeline. Alongside, other memory addressing schemes could be investigated, such
as using hashing to address a memory, in order to avoid the offset addition and
utilize more the memory units.

• Pipeline improvements: The used pipeline may be re-invented by splitting the
current iteration stage into more stages in order to increase the operating frequency.
Another pipeline approach could be to use a circular pipeline where a lookup may
be initiated at any possible stage.
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• ASIC design process: Finally, the whole synthesis process may be done more
precisely by reaching up to the final steps of the ASIC design process and by going
through other steps, like exact floorplanning. At the same time, even smaller ASIC
technologies may be used to reach higher operating frequencies. It would also be
beneficial to use more appropriate memory units that do not lead in excessive area
and power results.
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