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Summary

Research question
The topic of this dissertation is the numerical computation of the forward and inverse Non-
linear Fourier Transform (NFT) for the Korteweg–de Vries equation (KdV), for sampled
signals that decay sufficiently fast on both sides. With NFTs certain non-linear Partial Dif-
ferential Equations (PDEs) can be solved in a way that is analogous to solving linear Ordi-
nary Differential Equations (ODEs) and PDEs by means of the ordinary Fourier transform.
Similarly to the linear Fourier transform, NFTs can be used to analyse, synthesise, filter and
predict signals. Existing numerical NFT algorithms suffer from either or both a limited accu-
racy or a long computation time, which limit the usability of the KdV-NFT for engineering
problems. In this dissertation we develop new algorithms that achieve a higher accuracy or
require a shorter computation time.

Design methods
We implemented existing numerical algorithms inMathworksMatlab in floating point arith-
metic to analyse their behaviour. Thereafterwe designed new algorithms that avoid the unde-
sirable behaviour of the existing algorithms. We demonstrated the improvements by means
of benchmark tests. Furthermore we implemented some of the new algorithms in the pro-
gramming language C in the Fast Non-linear Fourier Transform (FNFT) software library.

Results
We have developed algorithms to compute the continuous KdV-NFT spectrum and the ei-
genvalues andnorming constants of the discreteKdV-NFT spectrum. Furthermorewe devel-
oped an algorithm to compute the contribution of the discrete spectrum to the inverse KdV-
NFT. The continuous KdV-NFT spectrum can now be computed with a fast algorithm at a
comparable error tolerance to theNon-linear Schrödinger Equation (NSE)-NFT.Thatmeans
that the computational complexity has been reduced from𝑂(𝐷2) to𝒪(𝐷(log(𝐷))2), where
𝐷 is the number of samples, without a significant deterioration of the accuracy. The eigen-
values of the discrete KdV-NFT spectrum can now be computed reliably andmore efficiently
than before. The norming constants can now be computed in all known cases without the
anomalous errors that were observed for older algorithms. That means an improvement
of the accuracy by several orders of magnitude. The contribution of the inverse KdV-NFT
can now be computed for discrete spectra with three to seven times as many eigenvalues in
comparison to previously available algorithms.

ix



x Summary

Conclusions and applications
The KdV can be used as a model for nearly linear wave phenomena that propagate in one
direction. These are found in a plethora of physical applications. The algorithms that we
presented in this dissertation can be used for the analysis, synthesis, filtering and prediction
of sampled data from such systems. Their higher accuracy and/or shorter computation time
thus brings the KdV-NFT a step closer to the engineering practice.



Samenvatting

Onderzoeksvraag
Dit proefschrift gaat over de numerieke berekening van de voorwaartse en inverse niet-recht-
evenredige Fourier transformatie (NFT) voor deKorteweg–De-Vriesvergelijking (KdV).Met
NFTs kunnen bepaalde niet-recht-evenredige partiële differentiaalvergelijkingen opgelost
worden op een wijze die vergelijkbaar is met het oplossen van recht evenredige gewone en
partiële differentiaalvergelijkingen met behulp van de gewone Fourier transformatie. Even-
als de gewone Fouriertransformatie kan een NFT gebruikt worden voor het analyseren, syn-
thetiseren, filteren en voorspellen van signalen. Bestaande numerieke NFT algoritmen ken-
nen een beperkte nauwkeurigheid en/of vergen een lange rekentijd, waardoor de bruikbaar-
heid van de KdV-NFT voor technische vraagstukken beperkt is. In dit proefschrift ontwik-
kelen we nieuwe algoritmen die een hogere mate van nauwkeurigheid realiseren danwel een
kortere rekentijd vergen.

Ontwerpmethoden
We hebben bestaande numerieke algoritmen geïmplementeerd in Mathworks Matlab op ba-
sis van zwevendekommagetallen om het gedrag daarvan te analyseren. Vervolgens hebben
we nieuwe algoritmen ontworpen die het onwenselijke gedrag van de bestaande algoritmen
vermijden. De verbeteringen hebben we aangetoond door middel van benchmarkonderzoe-
ken. Enkele van de ontwikkelde algoritmen hebben we tevens uitgevoerd in de program-
meertaal C in de FNFT softwarebibliotheek.

Resultaten
we hebben algoritmen ontwikkeld om het continue KdV-NFT spectrum en de eigenwaarden
en de normeringsconstanten van het discrete KdV-NFT spectrum te berekenen. Tevens heb-
ben we een algoritme ontwikkeld om de bijdrage van het discrete spectrum aan de inverse
KdV-NFT te berekenen. Het continue KdV-NFT spectrum kan nu worden berekend met
een snel algoritme binnen een vergelijkbare foutmarge. Dat houdt in dat de complexiteits-
graad van 𝑂(𝐷2) is teruggebracht tot slechts 𝒪(𝐷(log(𝐷))2), waarin 𝐷 staat voor het aan-
tal bemonsteringen, zonder noemenswaardige verslechtering van de nauwkeurigheid. De
eigenwaarden van het discrete KdV-NFT spectrum kunnen nu betrouwbaar berekend wor-
den en efficiënter dan voorheen. De normeringsconstanten kunnen nu, voor zover bekend,
in alle gevallen berekend worden zonder de abnormale fouten die in oudere algoritmen op-
traden. Dat betekent dat we de nauwkeurigheid hebben verbeterd met meerdere ordes van
grootte. De bijdrage van de inverse KdV-NFT kan nu worden berekend voor discrete spec-
tra met drie- tot zevenmaal zoveel eigenwaarden in vergelijking tot voorheen beschikbare
algoritmen.
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xii Samenvatting

Conclusie en toepassingen
De KdV vergelijking kan gebruikt worden als model voor bijna recht evenredige golfver-
schijnselen die zich in één richting bewegen. Deze treft men aan in een veelheid aan prak-
tische toepassingsgebieden. De algoritmen die we hebben gepresenteerd in dit proefschrift
kunnen gebruikt worden voor het analyseren, synthetiseren, filteren en voorspellen van be-
monsterde signalen die afkomstig zijn van dergelijke systemen. De hogere nauwkeurigheid
en kortere rekentijd van deze algoritmen brengt de KdV-NFT derhalve een stap dichter bij
de technische praktijk.



1
Introduction

‘I believe I shall best introduce this phænomenon by describing the circumstances of my own
first acquaintance with it. I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses when the boat suddenly stopped — not so the mass
of water in the channel which it had put in motion; it accumulated round the prow of the

vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined

heap of water, which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty feet long and a

foot and a half in height. Its height gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance

interview with that singular and beautiful phænomenon which I have called the Wave of
Translation, a name which it now very generally bears; which I have since found to be an

important element in almost every case of fluid resistance, and ascertained to be the type of
that great moving elevation of the sea, which, with the regularity of a planet, ascends our

rivers and rolls along our shores.’

John Scott Russell [120]

1.1. The history of solitary waves and the Korteweg–de
Vries equation (KdV)

TheScottish ship designer John Scott Russell was the first to recognise the unusual behaviour
of a solitary wave, a single hump of water that travels in shallow water without changing its
shape. His observation led him to conduct a series of experiments in a wave tank that he
set up in his backyard. He found that the speed of a solitary wave is proportional to its
amplitude. Unfortunately, the publication of his results [120] was not well received. Russell’s

1
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2 1. Introduction

observations could not be explained by the wave equations that were known at that time.
This led in particular the mathematical physicists George Biddell Airy and George Gabriel
Stokes to dismiss Russells observations. [5, 74]

It took several decades before the appropriate mathematical model for Russell’s obser-
vation was discovered. Although an equivalent representation was published first by Joseph
Valentin Boussinesq [18] (as cited in [94, §2]) themodel was named after Diederik Korteweg
and Gustav de Vries as the Korteweg–de Vries equation (KdV)1 [76]:

𝜕 𝑞(𝑥, 𝑡)
𝜕𝑡 + 6 𝑞(𝑥, 𝑡)𝜕 𝑞(𝑥, 𝑡)

𝜕𝑥 + 𝜕3 𝑞(𝑥, 𝑡)
𝜕𝑥3 = 0. (1.1)

(Equation (1.1) is a normalised form of the Korteweg–de Vries equation (KdV) in which 𝑡
represents the normalised time, 𝑥 represents the normalised position with respect to a refer-
ence frame that moves with a certain constant speed and 𝑞(𝑥, 𝑡) represents the normalised
free surface elevation. The normalisation can be found in Chapter 4.) Korteweg and De
Vries assumed in their derivation that the fluid is incompressible and irrotational and that
the waves are long-crested, long but not too tall with respect to the water depth, and travel
in one direction [76]. Although the KdV is a non-linear Partial Differential Equation (PDE),
Korteweg and De Vries found a set of solutions that were describable with an exact formula
[5, Eq. (1.1.6)]:

𝑞(𝑥, 𝑡) = 2𝑘2 sech2(𝑘(𝑥 − 4𝑘2𝑡) − 𝜑), (1.2)

where sech2(𝜃) ≔ 4 (e−𝜃 + e𝜃)−2
, 𝜑 is a real valued free parameter, and 𝑘 is a positive free

parameter. Equation (1.2) describes a wave with a constant symmetric shape with a single
crest and no trough that moves at a constant speed: a solitary wave. This is illustrated in
Fig. 1.1. The solitary wave solutions of the KdV were in perfect agreement with Russell’s ob-
servations from half a century earlier: A single hump of water that travels without changing
its shape, at a constant speed that has an affine relation to its amplitude. [74]

Again half a century later, Martin Kruskal and Norman Zabusky conducted simulations
on a digital computer. They made new remarkable observations about the solitary waves of
theKdV: If two spatially separated solutions of the formof (1.2)with a different amplitude are
superposed such that the taller (and thus faster) wave can catch upwith the smaller one, both
waves re-emerge after the collision in their original shape. Furthermore, they2 found that
every other localized hump of water would split into one or more waves of the form of (1.2),
plus some radiation. Because this behaviour reminded them of particles, they introduced
the term soliton. [5, 74]

Shortly thereafter Gardner, Greene, Kruskal, and Miura [53] found a method to solve
the initial value problem for the KdV: the scattering transform. (Later this transform would

1By the spelling rules ofDutch names, an infix like demust be capitalizedwhenever it is usedwithout being preceded
by another part of that same person’s name, such as a first name [131]. Therefore, the correct spelling is Korteweg–
De Vries equation (KDV), with an upper case D. Nevertheless, we will adopt the unfortunately firmly established
lower case d in the name of the equation and its acronym.
2In [74] this second observation is attributed to both Kruskal and Zabusky, with reference to [162]. However, this
observation is not reported in the latter. In [53], which was co-authored by Kruskal, the same observation seems
to be attributed to an at that time unpublished work of Zabusky alone, without further specification.
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Figure 1.1: Schematic illustration of the solitary wave solution (1.2) of the KdV (1.1). The surface profile 𝑞(𝑥, 𝑡)
is plotted at discrete time instants 𝑡. The soliton has an amplitude of 2𝑘2, a wave length at half amplitude of
2
𝑘 ln(√2 + 1) ≈ 1

3𝑘 at any fixed time instant 𝑡 and travels at a constant speed of 4𝑘2. The wave duration at half

amplitude is 1
2𝑘3 ln(√2 + 1) ≈ 1

12𝑘3 at any reference frame fixed position 𝑥 (not shown). The parameter 𝜑
determines the offset with respect to the chosen (𝑥, 𝑡) frame.

acquire its second name: theNon-linear Fourier Transform (NFT), which expresses the anal-
ogy of the method to the Fourier transform for linear PDEs and Ordinary Differential Equa-
tions (ODEs).) Their key observation was that the discrete eigenvalues 𝜆 of the Schrödinger
equation,

( 𝜕2

𝜕𝑥2 + 𝑞(𝑥, 𝑡)) 𝑓 (𝑥, 𝑡) = 𝜆 𝑓 (𝑥, 𝑡), (1.3)

are constant if the potential 𝑞(𝑥, 𝑡) evolves according to the KdV. In analogy to the linear
Fourier transform, they could compute from initial data 𝑞(𝑥, 𝑡0) at any fixed time 𝑡0 a spec-
trum of which the ‘magnitude’ part is constant and of which the ‘phase’ part evolves trivially
as a function of the time 𝑡. The data 𝑞(𝑥, 𝑡0) can then be retrieved from an integral equa-
tion that is known as the Gel’fand–Levitan–Marchenko (GLM) equation. A year later, Lax
[81] found the underpinning mathematical structure that linked the KdV to the Schrödin-
ger equation, a structure that explained the observation by Gardner, Greene, Kruskal, and
Miura [53]. Lax found that the KdV could be written as [45, 81]

𝜕 𝖫(𝑥, 𝑡)
𝜕𝑡 + 𝖫(𝑥, 𝑡) 𝖠(𝑥, 𝑡) − 𝖠(𝑥, 𝑡) 𝖫(𝑥, 𝑡) = 0, (1.4)

where the differential operators 𝖫 and 𝖠 are

𝖫(𝑥, 𝑡) ≔ 𝜕2

𝜕𝑥2 + 𝑞(𝑥, 𝑡), (1.5)

𝖠(𝑥, 𝑡) ≔ −4 𝜕3

𝜕𝑥3 − 6 𝑞(𝑥, 𝑡) 𝜕
𝜕𝑥 − 3𝜕 𝑞(𝑥, 𝑡)

𝜕𝑥 . (1.6)
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Here it should be noted that the Schrödinger equation, (1.3), can bewritten as𝖫(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) =
𝜆 𝑓 (𝑥, 𝑡). If an equation can be written as a Lax pair (1.4) and solved by the NFT, we call it
(Lax-)integrable. The KdV is not the only integrable PDE. Zakharov and Shabat [163] were
the first to demonstrate that another physically significant PDE, the Non-linear Schrödin-
ger Equation (NSE), is also integrable. Ablowitz, Kaup, Newell, and Segur [4] (‘the AKNS
paper’) developed a method to find a wide class of integrable equations and write their scat-
tering transform in a unified way. [5, 74]

Despite early pioneering work on the numerical computation of NFTs by Ablowitz and
Ladik [3], for a few decades the NFT remained mainly a tool that allowed mathematicians to
find and analyse exact solutions of integrable PDEs. Around the start of the thirdmillennium
more researchers became interested in bringing the scattering transform to the engineering
practice. To that end algorithms had to be developed that use sampled initial data 𝑞(𝑥, 𝑡0)
rather than functions [17, 19, 101, 102, 114, 140, 143, 160]. This enabled the use of theNFT as
an analysis tool that reveals the physical structure of measured data from non-linear systems
[23, 25, 103–105, 108, 135, 144, 166]. However, the early numerical methods were slow:
Their computation times scaled quadratically in the number of samples. This motivated the
development of Fast Non-linear Fourier Transforms (FNFTs) [150–152]. These scale almost
linearly in the number of samples. Many recent publications, as well as this dissertation,
present various improvements on aspects of the numerical NFT in computation time and
accuracy, e.g. [29, 32, 50, 60, 90–92, 110–112, 132, 148].

1.2. Applications of the KdV equation
Like linear Fourier analysis applies to systems that are adequately modelled by a linear PDE
or a linear ODE, NFT analysis applies to systems that are adequately modelled by the KdV.
Thus, before we continue with a brief introduction to the KdV-NFT, we discuss which kind
of systems can be modelled by the KdV. These systems have a few aspects in common with
the shallow water wave system for which the KdV was first derived. These aspects regard
both the physical setup and the state of the dynamics that appear therein.

1. The KdV describes a wave phenomenon in one spatial dimension. Therefore either
there must be some kind of wave guide, such as a canal or natural guiding force, or
the waves need to be planar. Furthermore the waves may only travel forwards. Phys-
ical parameters that influence the propagation of the wave (e.g. bathymetry, wave
impedance) should remain the same along the direction of propagation.

2. The KdV typically arises in nearly linear systems that start to show non-linear be-
haviour as the amplitude of the wave phenomenon is increased.

3. TheKdVdescribes relatively long waves. Even in the presence of some additional short
waves, it remains an adequate model for long waves.

4. The KdV describes a lossless system. Therefore it does not apply to significantly lossy
systems or to forced systems where energy is being added to the propagating waves.

Despite these limitations, the KdV was derived and/or experimentally verified for many ap-
plications. We mention some of these applications below.
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1.2.1. Applications in fluid dynamics
Surface gravity waves in a fluid
Surface gravity waves are the weakly non-linear waves at a fluid’s surface for which the KdV
was first derived. As mentioned earlier in this introduction, the first experimental verifica-
tion was [120]. Numerous studies thereafter have confirmed the applicability of the KdV,
e.g. [26, 61, 62, 104, 108, 129, 139]. Although the KdV is a model for long waves, it was
experimentally confirmed by Hammack and Segur [61] that the presence of disturbance in
the form of shorter waves does not invalidate the KdV model, because these shorter wave
components decay rapidly. The dynamics for which the KdV is the most adequate model
may be found in canals and near shorelines. The KdV is frequently encountered in the liter-
ature as a model for tsunami waves. However, it has been questioned if the KdV is the most
appropriate model in this situation, because the Earth’s seas are too short to allow a tsunami
wave to form solitons [35, 36, 57, 88].

Internal gravity waves in a stratified fluid
Stratified fluids consist of two or more layers that stay on top of each other without mixing.
This can for example be due to a difference in chemical substance or temperature. Waves
may occur at the boundary between the layers and these waves are known as internal gravity
waves. The KdV is in some cases an adequate model for this type of waves [166]. The KdV
has for example been proposed as a model for the internal waves of the thermocline along
the equator3 [34]. Research into internal waves in seas is amongst other things important for
offshore platforms, because internal waves can reach damaging amplitudes, even while the
surface waves are modest [37, §3].

Waves of an incompressible fluid in an elastic tube
The KdV has been derived for the dynamics of waves of an incompressible fluid in an elastic
tube [79]. As such, the KdV has been proposed as a model for blood pressure waves in
arteries [158].

Pressure waves in bubbly flows
If a fluid is mixed with small bubbles of gas, the result is a compressible substance. The
(acoustic) pressure waves that can travel through this substance can be modelled by the KdV
[78, 98, 155].

Conduits of buoyant fluid in a more viscous fluid
If a fluid is covered by a fluid of higher density and viscosity, it can buoyantly rise up. Thereby
it forms blobs which are adequately described as solitons of the KdV [65]. This kind of
transport of magma from the Earth’s interior towards the surface is hypothesised as a cause
of volcanic activity [37, §6].

1.2.2. Applications outside fluid dynamics
Non-linear electric transmission lines
Electric transmission lines can be designed to show the non-linear behaviour that is de-
scribed by the KdV. These non-linear transmission lines have applications in electronic cir-
cuit design [119].
3The equator acts as a natural wave guide because of the Coriolis force due to the rotation of the earth.
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Atmospheric Rossby waves
Rossby waves occur in the atmosphere of a planet due to its rotation. They are a major factor
to the climate. These waves too exhibit behaviour that can be modelled by the KdV [117],
[37, §7].

Plasma physics
The KdV has been derived as a model for hydromagnetic plasma waves [52] as well as for
ion-acoustic waves in a cold plasma [154], [37, §8].

Non-linear ultrasonics
Accoustic pulses that travel through a crystalline gold layer were reported in [137] to be in
excellent agreement with the KdV model.

Traffic flow
Besides many systems in physics, the KdV model appears to be applicable to certain human
behaviour as well: The KdV was found to be a suitable model for the density of traffic flow
[64, 96].

1.3. The Nonlinear Fourier Transform (NFT) method
Below, we give a brief introduction to the NFT method with respect to the KdV. The reader
is referred to other sources for derivations and mathematical details, e.g. [5, 10, 43, 46, 79,
100, 128].

The KdV-NFT can be used to solve the KdV (1.1), subject to an initial condition 𝑞(𝑥, 𝑡0):
a spatial signal at a fixed time 𝑡 = 𝑡0. It cannot be used to solve the KdV (1.1), subject to a
boundary condition 𝑞(𝑥0, 𝑡): a time signal at a fixed position 𝑥 = 𝑥0. However, a problem for
which the (1.1) is an appropriate model, can typically be described to the same accuracy by a
KdV in which 𝑥 and 𝑡 change roles. See, e.g. [72, §15]. This other KdV is not mathematically
equivalent, but describes a very similar evolution of 𝑞(𝑥, 𝑡). Naturally, the KdV-NFT can
be applied to this other KdV to solve problems with a boundary condition 𝑞(𝑥0, 𝑡). Hence
depending on the purpose, in all that follows one could interpret 𝑥 as the time coordinate
and 𝑡 as the space coordinate.

Among the ordinary Fourier methods a distinction can be made between Fourier series
and the Fourier transform. The first applies to periodic input signals. That is, there exists a
constant 𝐿 such that 𝑞(𝑥 + 𝐿, 𝑡0) ≡ 𝑞(𝑥, 𝑡0). The second applies to vanishing input signals.
That is, signals that decay sufficiently fast as |𝑥| → ∞. The same distinction can be made for
NFT algorithms. In this dissertation we only look at algorithms for vanishing input signals.
More precisely, these signals must satisfy

∫
∞

−∞
|𝑞(𝑥, 𝑡0)| (1 + |𝑥|) d𝑥 < ∞. (1.7)

Signals that satisfy (1.7) belong to the Faddeev class [48]. For convenience we furthermore
assume that

lim
|𝑥|→∞

𝑞(𝑥, 𝑡0) = 0. (1.8)
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The latter condition excludes some pathological signals that would otherwise complicate the
exposition. In practice, when dealing with sampled input data, the input 𝑞(𝑥, 𝑡0) is often
truncated to some finite window 𝑥 ∈ [𝑋−, 𝑋+], beyond which there is no data available.
The truncated signal satisfies (1.8) trivially. Finally, we only consider real valued signals
𝑞(𝑥, 𝑡) in this dissertation. Complex valued signals 𝑞(𝑥, 𝑡) are meaningless in the majority
(if not all) of the real world applications of the KdV and this restriction enablesmore efficient
numerical algorithms.

As mentioned before, the KdV-NFT spectrum of a vanishing input signal is computed
from the Schrödinger equation (1.3). We start by considering two sets of standard trajectories
𝑓 (𝑥, 𝑡0) that are defined by the Schrödinger equation and a set of boundary conditions at
𝑥 → ±∞ respectively. By virtue of (1.8) the Schrödinger equation reduces to

𝜕2

𝜕𝑥2 𝑓 (𝑥, 𝑡0) = 𝜆 𝑓 (𝑥, 𝑡0) as 𝑥 → ±∞. (1.9)

Hence, we can define specific trajectories 𝑓 = 𝜙, 𝑓 = ̄𝜙, 𝑓 = ̄𝜓 and 𝑓 = 𝜓 that satisfy the
respective boundary conditions

{𝜙(𝑥, 𝑡0, 𝜁) → exp(−j𝜁𝑥)
̄𝜙(𝑥, 𝑡0, 𝜁) → exp(+j𝜁𝑥) as 𝑥 → −∞, (1.10)

{
̄𝜓(𝑥, 𝑡0, 𝜁) → exp(−j𝜁𝑥)

𝜓(𝑥, 𝑡0, 𝜁) → exp(+j𝜁𝑥) as 𝑥 → +∞, (1.11)

where 𝜁 ≔ j√𝜆 and j ≔ √−1. These particular trajectories are known as the Jost solutions
and depend (for other 𝑥) on the input data through the Schrödinger equation. By Abel’s
identity [2, p. 22] the Wronskian of any two trajectories of (1.3) is independent of 𝑥. Thus,
by evaluating the Wronskian of the Jost solutions, we can establish that the Jost solutions are
linearly independent within both sets for all 𝑥, if and only if 𝜁 ≠ 0:

W[𝜙(𝑥, 𝑡0, 𝜁); ̄𝜙(𝑥, 𝑡0, 𝜁)] = lim𝑥→−∞ ∣ 𝜙(𝑥, 𝑡0, 𝜁) ̄𝜙(𝑥, 𝑡0, 𝜁)
𝜕

𝜕𝑥 𝜙(𝑥, 𝑡0, 𝜁) 𝜕
𝜕𝑥

̄𝜙(𝑥, 𝑡0, 𝜁)∣ = 2j𝜁 , (1.12)

W[ ̄𝜓(𝑥, 𝑡0, 𝜁); 𝜓(𝑥, 𝑡0, 𝜁)] = lim𝑥→∞ ∣
̄𝜓(𝑥, 𝑡0, 𝜁) 𝜓(𝑥, 𝑡0, 𝜁)

𝜕
𝜕𝑥

̄𝜓(𝑥, 𝑡0, 𝜁) 𝜕
𝜕𝑥 𝜓(𝑥, 𝑡0, 𝜁)∣ = 2j𝜁 . (1.13)

Since both sets of Jost solutions are linearly independent trajectories of the Schrödinger equa-
tion, a second order ODE, every trajectory of the Schrödinger equation can be parametrised
as a linear combination of either of these sets. The particular linear combination that relates
the two sets of Jost solutions defines the KdV-NFT spectrum. We write

𝜙(𝑥, 𝑡0, 𝜁) ≡ 𝑎(𝜁) ̄𝜓(𝑥, 𝑡0, 𝜁) + 𝑏(𝜁 , 𝑡0) 𝜓(𝑥, 𝑡0, 𝜁), (1.14)
̄𝜙(𝑥, 𝑡0, 𝜁) ≡ ̄𝑏(𝜁 , 𝑡0) ̄𝜓(𝑥, 𝑡0, 𝜁) + ̄𝑎(𝜁) 𝜓(𝑥, 𝑡0, 𝜁), (1.15)
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where the scattering parameters are defined as

𝑎(𝜁) ≔ 1
2j𝜁 W[𝜙(𝑥, 𝑡0, 𝜁); 𝜓(𝑥, 𝑡0, 𝜁)], (1.16)

𝑏(𝜁 , 𝑡0) ≔ 1
2j𝜁 W[ ̄𝜓(𝑥, 𝑡0, 𝜁); 𝜙(𝑥, 𝑡0, 𝜁)], (1.17)

̄𝑏(𝜁 , 𝑡0) ≔ 1
2j𝜁 W[ ̄𝜙(𝑥, 𝑡0, 𝜁); 𝜓(𝑥, 𝑡0, 𝜁)], (1.18)

̄𝑎(𝜁) ≔ 1
2j𝜁 W[ ̄𝜓(𝑥, 𝑡0, 𝜁); ̄𝜙(𝑥, 𝑡0, 𝜁)]. (1.19)

TheKdV-NFT spectrum consists of two parts: A continuous spectrum and a discrete spectrum.
The continuous spectrum is formed by the reflection coefficient

𝑅(𝜁, 𝑡0) ≔ 𝑏(𝜁 , 𝑡0)
𝑎(𝜁) , (1.20)

where 𝜁 is on the real line but not zero. The discrete spectrum consists of a countable number
of eigenvalues 𝜁𝑛 (𝑛 ∈ {1, 2, … , 𝑁}) and corresponding norming constants 𝑏(𝜁𝑛, 𝑡0), defined
by

𝒟(𝑡0) ≔ {(𝜁𝑛, 𝑏(𝜁𝑛, 𝑡0)) ∣ 𝑎(𝜁𝑛) = 0} . (1.21)

It can be shown that all eigenvalues are on the positive imaginary axis and that all eigenvalues
are simple (i.e. their multiplicity cannot be higher than one) [79, p. 50–53]. Each eigenvalue
in the spectrum is associatedwith a soliton. If that soliton appears separated fromother wave
components, then it satisfies (1.2) where 𝑘 = |𝜁𝑛| determines its speed, amplitude, length and
duration.

The time propagation of the scattering parameters and the time propagation of the spec-
trum are easy to compute. The parameter 𝑎(𝜁) is independent of time and 𝑏(𝜁 , 𝑡) evolves
as [53], [5, §1.4]

𝑏(𝜁 , 𝑡) = 𝑏(𝜁 , 𝑡0) exp(−(2j𝜁)3(𝑡 − 𝑡0)). (1.22)

This determines the time evolution of both the continuous spectrum 𝑅(𝜁, 𝑡) and the discrete
spectrum 𝒟(𝑡). The norming constants are thus not constant in time, despite their name.
Apart from (1.22), 𝑡 can be regarded as a constant parameter in the forward and inverse NFT.
Therefore it is often dropped from the notation. However, in this introduction we will write
𝑡0 explicitly to show which variables depend on time, but can be regarded as a constant.

A few remarks are in place regarding different definitions of the KdV-NFT spectrum that
appear in the literature. Firstly, when Gardner, Greene, Kruskal, and Miura [53] introduced
the scattering transform, they used the variable 𝑏 for the reflection coefficient and the variable
𝑎 for the so-called transmission coefficient 𝑇(𝜁) ≔ 1/ 𝑎(𝜁). The influential AKNS paper
however used 𝑎 and 𝑏 as presented here [4, Appendix 3]. Therefore both conventions can
be encountered in the literature. Secondly, in [4] both 𝜙(𝑥, 𝑡0, 𝜁) and 𝑏(𝜁 , 𝑡0) are defined
as above for the KdV, but with an opposite sign for all other PDEs. Thirdly, in the discrete
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spectrum the norming constants 𝑏(𝜁𝑛, 𝑡0) are sometimes replaced by the residues of the
(meromorphic continuation of the) reflection coefficient [5, §1.3]

𝑐(𝜁𝑛, 𝑡0) ≔ 𝑏(𝜁𝑛, 𝑡0)
𝑎′(𝜁𝑛) , where 𝑎′(𝜁) ≔ d

d𝜁 𝑎(𝜁). (1.23)

Lastly, the reflection coefficient used here is the so-called right reflection coefficient. One
could instead make use of the left reflection coefficient, which is obtained by expressing the
Jost solution 𝜓(𝑥, 𝑡0, 𝜁) as a linear combination of 𝜙(𝑥, 𝑡0, 𝜁) and ̄𝜙(𝑥, 𝑡0, 𝜁) instead of the
other way around.

The inverse KdV-NFT is the opposite problem: Given a spectrum (𝑅(𝜁 , 𝑡0), 𝒟(𝑡0)),
find the corresponding signal 𝑞(𝑥, 𝑡0). This problem is mathematically described by the
GLM integral equation. Because this part of the theory is not required within this disserta-
tion, we refer the interested reader to e.g. [5, 40, 53]. In Chapter 5 a partial implementation
of the inverse KdV-NFT is discussed, namely the Crum transform. By the Crum transform
one can add eigenvalues to (or remove eigenvalues from) a signal with a known spectrum.
With the knowledge that (0, ∅) is the spectrum of the trivial signal 𝑞(𝑥, 𝑡0) ≡ 0, the Crum
transform can thus be used to compute the inverse KdV-NFT for every spectrum of the
form (0, 𝒟(𝑡0)). Furthermore, the Crum transform can be used in conjunction with an al-
gorithm that computes the signal for arbitrary spectra of the form (𝑅(𝜁 , 𝑡0), ∅) to become a
complete inverse KdV-NFT algorithm. The Crum transform is further introduced in Chap-
ter 5.

1.4. Numerical computation of the NFT
For numerical computations the Schrödinger equation (1.3) is typically rewritten as a system
of first order ODEs. Thereto one defines an operator

𝗩(𝑥, 𝜁) ≔ ⎡⎢
⎣

𝑣11(𝑥, 𝜁) + 𝑣12(𝑥, 𝜁) 𝜕
𝜕𝑥

𝑣21(𝑥, 𝜁) + 𝑣22(𝑥, 𝜁) 𝜕
𝜕𝑥

⎤⎥
⎦
, (1.24)

where

∣𝑣11(𝑥, 𝜁) 𝑣12(𝑥, 𝜁)
𝑣22(𝑥, 𝜁) 𝑣22(𝑥, 𝜁)∣ ≠ 0, (1.25)

such that (1.3) can be rewritten as
𝜕

𝜕𝑥 𝒇 (𝑥, 𝑡0, 𝜁) = 𝑨(𝑥, 𝑡0, 𝜁) 𝒇 (𝑥, 𝑡0, 𝜁), (1.26)

where the vector valued trajectory is

𝒇 (𝑥, 𝑡0, 𝜁) ≔ 𝗩(𝑥, 𝜁) 𝑓 (𝑥, 𝑡0, 𝜁). (1.27)

The simplest choice for the operator 𝗩(𝑥, 𝜁) is

𝗩C(𝑥, 𝜁) ≔ [ 1
𝜕

𝜕𝑥
] . (1.28)
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Other common choices for the operator 𝗩(𝑥, 𝜁) can be found in Appendix 5.B.1. It is readily
verified that

𝑨C(𝑥, 𝑡0, 𝜁) = [ 0 1
(j𝜁)2 − 𝑞(𝑥, 𝑡0) 0] (1.29)

and that the boundary conditions for the Jost solutions can be written as

𝜱C(𝑥, 𝑡0, 𝜁) ≔ [𝝓C(𝑥, 𝑡0, 𝜁) �̄�C(𝑥, 𝑡0, 𝜁)] (1.30)

→ [ exp(−j𝜁𝑥) exp(j𝜁𝑥)
−j𝜁 exp(−j𝜁𝑥) j𝜁 exp(j𝜁𝑥)] as 𝑥 → −∞, (1.31)

𝜳C(𝑥, 𝑡0, 𝜁) ≔ [ ̄𝝍C(𝑥, 𝑡0, 𝜁) 𝝍C(𝑥, 𝑡0, 𝜁)] (1.32)

→ [ exp(−j𝜁𝑥) exp(j𝜁𝑥)
−j𝜁 exp(−j𝜁𝑥) j𝜁 exp(j𝜁𝑥)] as 𝑥 → +∞. (1.33)

By juxtaposing the Jost solutions in the matrices 𝜱C(𝑥, 𝑡0, 𝜁) and 𝜳C(𝑥, 𝑡0, 𝜁) respectively,
(1.14) can be written compactly as

𝜱C(𝑥, 𝑡0, 𝜁) ≡ 𝜳C(𝑥, 𝑡0, 𝜁) 𝑺(𝜁 , 𝑡0), (1.34)

where the scattering matrix is defined as

𝑺(𝜁 , 𝑡0) ≔ [ 𝑎(𝜁) �̄�(𝜁 , 𝑡0)
𝑏(𝜁 , 𝑡0) ̄𝑎(𝜁) ] . (1.35)

Since the Jost solutions ̄𝝍C(𝑥, 𝑡0, 𝜁) and 𝝍C(𝑥, 𝑡0, 𝜁) are linearly independent, the scattering
parameters can be computed as

𝑺(𝜁 , 𝑡0) = 𝜳−1
C (𝑥, 𝑡0, 𝜁) 𝜱C(𝑥, 𝑡0, 𝜁) (1.36)

at any position 𝑥 (where ⋅ −1 denotes matrix inversion), or as

[ 𝑎(𝜁)
𝑏(𝜁 , 𝑡0)] = 𝜳−1

C (𝑥, 𝑡0, 𝜁) 𝜱C(𝑥, 𝑡0, 𝜁) [1
0] = 𝜳−1

C (𝑥, 𝑡0, 𝜁) 𝝓C(𝑥, 𝑡0, 𝜁) (1.37)

to save computation time if the barred scattering parameters are not required.
To be able to evaluate (1.36) or (1.37), either or both of the sets of Jost solutions will

have to be propagated to the same position 𝑥, thematching point, by numerically integrating
the Schrödinger equation (1.26). The computational complexity of a numerical integrator
typically scales linearly in 𝐷, the number of 𝑥 samples. For the computation of the contin-
uous spectrum 𝑅(𝜁, 𝑡0), the computation needs to be repeated for every desired 𝜁 sample.
If the number of 𝜁 samples is chosen equal to 𝐷, the overall complexity of the computation
of the continuous spectrum is thus 𝒪(𝐷2). Wahls and Poor [150] introduced the FNFT.
Instead of repeating the computation for every desired 𝜁 sample, they first computed a poly-
nomial in exp(j𝜁) that approximates 𝑅(𝜁, 𝑡0). Thereafter they evaluated this polynomial for
every desired sample of 𝜁 . They showed that the overall this algorithm to compute the con-
tinuous spectrum could be implemented with a complexity of only 𝒪(𝐷 (log(𝐷))2). The
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polynomial approximation can be obtained by means of exponential splitting, applied to the
AKNS representation of the Schrödinger equation. The order of the exponential splitting
scheme needs to be high enough to obtain a sufficiently accurate approximation. It turned
out that computations for the KdV-FNFT are considerably more sensitive to inaccuracies in
this polynomial approximation than computations for the FNFT for the NSE, for which the
FNFT was first developed. Therefore in Chapter 2 a set of higher order splitting schemes is
presented, which satisfies the specific requirements of the FNFT.

From (1.21) it can be seen that the computation of the eigenvalues in the discrete spec-
trum is a root finding problem: Find all 𝜁 such that 𝑎(𝜁) = 0. In general this computation
cannot be performed in closed form. Therefore one typically resorts to iterative root finding
techniques, such as Newton–Raphson (NR). Iterative root finding has (for the purpose of the
NFT) two difficulties: It is not known in advance how many roots there are to be found, and
iterative root finders need for every root an initial guess that is within the basin of attraction
of that root for that root finder. The FNFT [150] mitigates these difficulties by approximat-
ing 𝑎(𝜁) as a polynomial in exp(j𝜁). The roots of a polynomial can be found from a finite
eigenvalue problem. However, as mentioned before, their method was primarily developed
for the NSE. When the FNFT is adapted to the KdV, the resulting approximation of 𝑎(𝜁) is
unfortunately not a polynomial in exp(j𝜁). (The approximation of 𝑎(𝜁) also contains factors
(j𝜁)±1 outside an exponent.) Regarding the discrete spectrum the KdV has nonetheless two
advantages over the NSE. Firstly, whereas the eigenvalues of the NSE can be anywhere in
the upper half of the complex plane, those of the KdV are confined to the positive imaginary
axis. Secondly, the Schrödinger equation is an example of a Sturm–Liouville (SL) equation.
Therefore one can make use of SL oscillation theory to compute the number of roots in ad-
vance and to implement an iterative algorithm that finds each of them efficiently. Such an
algorithm is presented in Chapter 3.

Once the set of eigenvalues {𝜁𝑛} is known, it may seem like the computation of the norm-
ing constants 𝑏(𝜁𝑛, 𝑡0) is a matter of evaluating (1.37) for each of the eigenvalues. However,
this computation is numerically highly unstable. For the NSE-NFT Aref [12] and Hari and
Kschischang [63] developed a method to compute the norming constants in a way that can-
cels the dominant source of error. The main idea is to propagate the Jost solutions from
both sides to a matching point 𝑥 = 𝑋0. It turns out that the norming constants can be com-
puted to a much higher precision at that matching point, provided that the matching point
is chosen well and that 𝑎(𝜁𝑛) = 0 is exploited to cancel certain terms in the computation. In
Chapter 4 this method has been adapted to the KdV-NFT. Furthermore, a new and better cri-
terion is presented to select the matching point 𝑋0, which applies to the KdV-NFT as well as
to the NSE-NFT. It is shown that with this criterion the norming constant can be computed
without any significant error.

The forward KdV-NFT by itself can be used as a signal analysis tool for systems that
are adequately described by the KdV. Often it is also desirable to be able to predict the fu-
ture dynamics of such a system. Therefore one needs to be able to compute the inverse
KdV-NFT. A well-known approach for the numerical computation of inverse NFTs is to
first find the inverse transform of the (suitably pre-compensated) continuous spectrum, and
then add the discrete spectrum in a second stage. See, e.g., [40, Sect. 3], [28, Chap. xvii.3.2],
or [122, Sect. 4.2]. We already mentioned thath this second stage is known as the Crum
transform. The Crum transform can be computed in closed form, but already for a mod-



1

12 1. Introduction

est number of eigenvalues it reaches the range and accuracy limits of floating point arith-
metic. In Chapter 5 a numerical algorithm for the Crum transform is presented that care-
fully mitigates these sources of error. In comparison to the state of the art this algorithm
can therefore process three to seven times as many eigenvalues in ordinary floating point
arithmetic. The algorithm in Chapter 5 can be used as an inverse KdV-FNFT for spectra for
which 𝑅(𝜁, 𝑡0) = 0 for all 𝜁 , or as the second stage of an inverse KdV-NFT algorithm when
𝑅(𝜁, 𝑡0) ≠ 0. The computation of the first stage, i.e. the inverse KdV-NFT of a spectrum of
the form (𝑅(𝜁 , 𝑡0), 𝒟(𝑡0)) = (𝑅(𝜁 , 𝑡0) ≠ 0, ∅) is discussed elsewhere, e.g., [28, 40, 122].

1.5. Outline of the dissertation
The topic of this dissertation is the numerical computation of the forward and inverse NFT
for the KdV, for signals with vanishing boundary conditions. Existing algorithms suffer from
either or both a limited accuracy or a long computation time. That limits the usability of the
KdV-NFT for engineering problems. In this dissertation new algorithms are developed that
achieve a higher accuracy or require a shorter computation time.

1.5.1. Chapter 2: Fast computationof thecontinuousKdVspectrum
The FNFT makes use of a polynomial approximation to speed up the computation of the
NFT spectrum. This approximation is obtained from a numerical method that is known
as exponential splitting. It appears that when the FNFT is (naively) applied to the KdV, the
error in the spectrum due to this approximation is high in comparison to the FNFT for other
integrable PDEs. Therefore in Chapter 2 we present new exponential splitting schemes that
satisfy the specific requirements of the FNFT and lead to a higher order approximation. It
is shown that this leads to a lower error in the computed spectrum. The presented schemes
can be applied to the FNFT with respect to the KdV and other integrable PDEs, such as the
NSE.

1.5.2. Chapter 3: Reliable computation of the eigenvalues of the
discrete KdV spectrum

There exist two main approaches to compute the eigenvalues of the discrete KdV spectrum.
The first is based on solving a matrix eigenproblem and the second, known as shooting, uses
an integrator in combination with a root finder. Both approaches have strengths an weak-
nesses. In Chapter 3 we present a shooting algorithm that improves on existing shooting
algorithms. A general purpose gradient based iterative root finding algorithm such as NR
needs a suitable starting value for each eigenvalue. However, it is typically not even known
exactly howmany eigenvalues a spectrum contains.⁴ On the other hand, a carefully designed
specialized iterative root finder for SL equations can reliably compute the number of eigen-
values and find each of them. However, such root finders typically rely heavily on bisection
and therefore require more iterations.

The shooting algorithm that we present in Chapter 3 combines the reliability of a root
finder for SL equations with the lower number of iterations of NR. It is shown that the pre-
sented algorithm is more robust to numerical errors and therefore more reliable than other

⁴There do exist nevertheless bounds on the number of eigenvalues, see [127, §1 and §3].
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shooting algorithms that are currently available. Furthermore it is shown that it typically
saves computation time compared to the conventional bisection based approaches.

1.5.3. Chapter 4: Accurate computation of the norming constants
of the discrete KdV spectrum

In theory, the norming constants of the discrete spectrum can be computed analogously to
the continuous spectrum once the eigenvalues are known. However, this computation is
numerically highly unstable. The norming constants can be computed to a much higher
precision by making use of the bidirectional algorithm. This algorithm was originally de-
veloped for the NSE-NFT and in Chapter 4 it is adapted for the first time for the KdV-NFT.
Furthermore, Chapter 4 presents a significant improvement to the bidirectional algorithm
that also applies to otherNFTs. That is, for the bidirectional algorithm the Jost solutions have
to be propagated from both sides to a suitable matching point. Previously proposed criteria
would not always result in a suitable matching point. In those cases the error in the com-
puted norming constant would still be significant. In Chapter 4 a new criterion is proposed
to select the matching point. In numerical examples, the new criterion is found to perform
reliably even in cases where existing algorithms break down.

1.5.4. Chapter 5: Accurate inverse NFT computation for the dis-
crete KdV spectrum

When computing the inverse KdV-NFT, the contribution of the discrete spectrum can be
computed in closed form by making use of the Crum transform. However, a naive numeri-
cal implementation of the Crum transform quickly reaches the limitations of floating point
arithmetic, both regarding the accuracy and the range of representable numbers. In Chap-
ter 5 a numerical algorithm for theCrum transform is presented that carefullymitigates these
sources of error. It is demonstrated that this new algorithm is considerably more accurate in
floating point arithmetic than benchmark algorithms found in the literature: It can compute
the inverse NFT at the same error tolerance when the discrete spectrum contains between
three and seven times as many eigenvalues.





2
Fast computation of the continuous

KdV spectrum

Non-linear Fourier Transforms (NFTs) enable the analysis of signals governed by certain non-
linear evolution equations in a way that is analogous to how the conventional Fourier trans-
form is used to analyse linear wave equations. Recently, fast numerical algorithms have been
derived for the numerical computation of certain NFTs. In this chapter, we are primarily con-
cerned with fast NFTs with respect to the Korteweg-de Vries equation (KdV), which describes
e.g. the evolution of waves in shallow water. We find that in the KdV case, the fast NFT can
be more sensitive to numerical errors caused by an exponential splitting. We present higher
order splittings that reduce these errors and are compatible with the fast NFT. Furthermore we
demonstrate for the NSE case that using these splittings can make the accuracy of the fast NFT
match that of the conventional NFT.

2.1. Introduction
The Korteweg–de Vries equation (KdV) for a function 𝑞 = 𝑞(𝑥, 𝑡),

𝑞𝑡 + 6𝑞𝑞𝑥 + 𝑞𝑥𝑥𝑥 = 0, (2.1)

where the subscripts 𝑥 and 𝑡 denote partial derivatives, is a well known non-linear differen-
tial equation. It describes a large class of nearly hyperbolic mathematical systems, including
water waves, lattice waves, and hydromagnetic and ion-acoustic waves in a plasma [70, 154,
161]. The initial value problem for the KdV can be solved with a Non-linear Fourier Trans-
form (NFT) in a way that is similar to the way Fourier solved the heat equation with the
linear Fourier transform [53]. Like the linear Fourier transform, NFTs can be used to anal-
yse data. The KdV NFT has for example been used to analyse water waves [25, 33, 106].

Parts of this chapter have been published as P. J. Prins and S. Wahls. “Higher Order Exponential Splittings for the
Fast Non-Linear Fourier Transform of the Korteweg-De Vries Equation”. In: 2018 IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). Apr. 2018, pp. 4524–4528. doi: 10.1109/ICASSP.2018.8461708,
©IEEE. Reprinted with permission.
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(NFTs are also known as scattering transforms in the literature.) Another evolution equa-
tion that can be solved using NFTs is the Non-linear Schrödinger Equation (NSE) [4, 81,
163]. It has recently attracted attention for applications in fibre-optic communication [145].
Unfortunately, most naive numerical implementations of NFTs have a computational com-
plexity of at least 𝒪(𝐷2), making it unattractive for large numbers of samples 𝐷. For the
NSE, recently a Fast Non-linear Fourier Transform (FNFT), an algorithm with a computa-
tional complexity of 𝒪(𝐷 log2𝐷), has been introduced [150].1 Formally, the approach used
for the NSE can also be used to obtain an FNFT for the KdV. However, we observed unex-
pectedly large numerical errors when we tried this. The FNFT algorithm requires an expo-
nential splitting to become fast. (The matrix exponential e𝑨 ≡ exp(𝑨) ≔ ∑∞

𝑘=0 𝑨𝑘/𝑘! in
general does not satisfy exp((𝑨 + 𝑩)𝜀) = exp(𝑨𝜀) exp(𝑩𝜀). Exponential splittings approx-
imate exp((𝑨 + 𝑩)𝜀) up to an error of 𝒪(𝜀𝑛+1), where 𝑛 is the order of accuracy.) We
found that removing the exponential splitting made these errors disappear. A splitting with
a higher order of accuracy can reduce the error, but most spittings known in the literature
unfortunately do not have the special structure that is needed for the FNFT. In this chapter,
we therefore present higher order splittings that have this structure and can thus be used to
obtain FNFTs with reduced errors. More precisely, we are interested in 𝑛-th order accurate
exponential splitting schemes of the general form

e(𝑨+𝑩)𝜀 =
𝑘max

∑
𝑘=0

𝛾𝑘

𝑗max,𝑘

∏
𝑗=0

e𝛼𝑗,𝑘𝑨𝜀e𝛽𝑗,𝑘𝑩𝜀 + 𝒪(𝜀𝑛+1). (2.2)

As will be explained in Section 2.3, if all 𝛼𝑗,𝑘 (or all 𝛽𝑗,𝑘) are rational numbers, we obtain a
suitable form for the FNFT. Two widely used splittings that fulfil these conditions are the
symmetrically weighted sequential splitting and the symmetric Strang splitting, which are
both second order accurate [133, 134]. Suzuki [136] presented an algorithm to find the para-
meters for splittings with any desired order of accuracy, of the form of (2.2) with 𝑘max = 0 ,
but this algorithm results in irrational or even complex coefficients and is not suitable for
our purpose. We remark that the stability of a splitting scheme can be guaranteed if all the
parameters 𝛼𝑗,𝑘, 𝛽𝑗,𝑘 and 𝛾𝑘 in (2.2) are real and non-negative. Unfortunately, then the order
of accuracy is two at most [58, 130]. Higher order schemes may be stable, but that needs to
be determined on a per application basis.

The chapter is structured as follows. In Section 2.2, we summarise the part of the theory
behind the (F)NFTs that is relevant for the purpose of this paper. In Section 2.3, we establish
a sufficient condition for a splitting to be suitable for the FNFT and present several higher
order exponential splitting schemes that fulfil this condition. We demonstrate the value of
these splitting schemes numerically in Section 2.4. The paper is concluded in Section 2.5.

2.2. Preliminaries
In this sectionwe describe the numerical calculation of the reflection coefficient of the Schrö-
dinger equation. This is an intermediate step in the calculation of the NFT of a potential
𝑞(𝑥; 𝑡0) that evolves according to a suitable non-linear differential equation, like the KdV or
the NSE. We will omit the dependence on the fixed time 𝑡0.
1To be precise: This complexity holds for the so-called reflection coefficient when 𝜁 ∈ ℝ (see (2.3)), the case we
consider in this chapter.
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The following differential equation is the basis for the (F)NFT:

𝒗𝑥(𝑥, 𝜁) = 𝑪(𝑥, 𝜁) 𝒗(𝑥, 𝜁) = [−j𝜁 𝑞(𝑥)
𝑟(𝑥) j𝜁 ] 𝒗(𝑥, 𝜁) [4], (2.3)

where j is the imaginary unit. For the KdV the boundary condition

lim𝑥→−∞ 𝒗(𝑥, 𝜁) exp(j𝜁𝑥) = [2j𝜁
1 ] (2.4)

is used and 𝑟(𝑥) ≡ −1 is chosen in (2.3) [4].2 This choice reduces (2.3) to 𝑣2𝑥𝑥 + (𝜁2 +
𝑞(𝑥))𝑣2 = 0 : the Schrödinger equation associated with (2.1) [4]. In this standard form
of the KdV all variables have been made unit-less by normalization. Note that (2.3) is a
generalised scattering problem [22, Sec. 6]. Similar problems appear in many other signal
processing applications [21].

The NFT consists of multiple parts, of which we only need the so-called reflection coef-
ficient 𝑅(𝜁) in this chapter. It is defined in terms of the solution of (2.3) and (2.4), denoted
as

𝒗(𝑥, 𝜁) → 1
𝑇(𝜁)[ 2j𝜁e−j𝜁𝑥

e−j𝜁𝑥 + 𝑅(𝜁)ej𝜁𝑥] as 𝑥 → ∞ [4]. (2.5)

Hence,

𝑅(𝜁) = lim𝑥→∞ (2j𝜁 𝑣2(𝑥, 𝜁)
𝑣1(𝑥, 𝜁) − 1) e−2j𝜁𝑥. (2.6)

The quantity 𝑇(𝜁) is called the transmission coefficient.
As in for example [101], we apply two approximations to calculate (2.6) numerically:

1. The interval 𝑥 ∈ (−∞, ∞) is replaced by 𝑥 ∈ [𝐿−, 𝐿+] , with 𝐿± ‘close’ to ±∞ . The
approximation is exact if 𝑞(𝑥) = 0 for all 𝑥 ∉ [𝐿−, 𝐿+] .

2. The potential 𝑞(𝑥) is approximated by a piecewise constant function, a staircase ̂𝑞(𝑥).
That is, the interval [𝐿−, 𝐿+] is divided into𝐷 subintervals of width 𝜀 = (𝐿+−𝐿−)/𝐷 ,
and in each of these subintervals ̂𝑞(𝑥) = 𝑞𝑖 ≔ 𝑞(𝑥𝑖), where 𝑥𝑖 is the midpoint of the
𝑖-th subinterval. (In the general case, the same is done for 𝑟(𝑥). For the KdV it is
already constant.)

Because ofApproximation 2, (2.3) becomes a linear differential equation for each subinterval,
which is solved as

𝒗(𝑥𝑖 + 𝜀/2, 𝜁) = 𝑮(𝑥𝑖, 𝜁) 𝒗(𝑥𝑖 − 𝜀/2, 𝜁), (2.7)

where

𝑮(𝑥𝑖, 𝜁) ≔ e𝑪(𝑥𝑖,𝜁)𝜀. (2.8)

2We remark that the NSE is obtained for the boundary condition lim𝑥→−∞ 𝒗( 𝑥, 𝜁 ) exp( j𝜁𝑥 ) = [ 1 0 ]⊤ and
𝑟(𝑥) ≡ ± 𝑞∗(𝑥) , where the star denotes the complex conjugate [4].
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Continuity of 𝒗(𝑥, 𝜁) at each of the boundaries of the subintervals allows us to write

𝒗(𝐿+, 𝜁) = 𝑯(𝜁) 𝒗(𝐿−, 𝜁), (2.9)

where

𝑯(𝜁) ≔ 𝑮(𝑥𝐷, 𝜁) 𝑮(𝑥𝐷−1, 𝜁) ⋯ 𝑮(𝑥2, 𝜁) 𝑮(𝑥1, 𝜁). (2.10)

We substitute the result of (2.9)with the boundary condition𝒗(𝐿−, 𝜁) = [ 2j𝜁
1 ] exp(−j𝜁𝐿−)

in (2.6), to approximate the reflection coefficient as3

�̂�(𝜁) = (2j𝜁 2j𝜁 𝐻21(𝜁) + 𝐻22(𝜁)
2j𝜁 𝐻11(𝜁) + 𝐻12(𝜁) − 1) e−2j𝜁𝐿+ . (2.11)

The calculation of 𝑯(𝜁) according to (2.10) requires 𝐷 − 1 matrix multiplications for
each value of 𝜁 . To reduce the computational complexity, Wahls and Poor [150, 151] pro-
posed to approximate the entries of 𝑮(𝑥𝑖, 𝜁) by rational functions with respect to a trans-
formed variable 𝑧(𝜁). Then, after evaluation of (2.10) with fast tree-wise polynomial mul-
tiplication, the entries of 𝑯(𝜁) are rational approximations as well, which can be evaluated
using a fast polynomial evaluation method for each desired value of 𝜁 . This is the idea be-
hind the FNFT. In this chapter, we express this third approximation as follows:

3. Find a rational approximation

̂𝑮(𝑥𝑖, 𝜁) =
𝑚

∑
𝑘=−𝑚

𝑴𝑘+𝑚(𝑞𝑖, 𝑟𝑖) (𝑧(𝜁))𝑘

= (𝑧(𝜁))−𝑚 2𝑚
∑
𝑘=0

𝑴𝑘(𝑞𝑖, 𝑟𝑖) (𝑧(𝜁))𝑘 , (2.12)

for some set of matrix valued coefficients 𝑴𝑘(𝑞𝑖, 𝑟𝑖) , and substitute it in (2.10) to find

�̂�(𝜁) = (𝑧(𝜁))−𝑑 2𝑑
∑
𝑘=0

𝑵𝑘(𝑞𝑖, 𝑟𝑖) (𝑧(𝜁))𝑘 . (2.13)

This result can be used in (2.11).

How can a rational approximation like (2.12) be obtained? — Feced, Zervas, and Muriel
[49] simplified (2.8) by applying a symmetric Strang splitting (see (2.18)) with 𝑪(𝑥𝑖, 𝜁) =
𝑨(𝜁) + 𝑩(𝑥𝑖), where

𝑨(𝜁) ≔ [−j𝜁 0
0 j𝜁] ; 𝑩(𝑥𝑖) ≔ [ 0 𝑞(𝑥𝑖)

𝑟(𝑥𝑖) 0 ] . (2.14)

The result of their approximation, which expresses 𝑮(𝑥𝑖, 𝜁) as a product of matrices that
depend either only on 𝑥𝑖 or only on 𝜁 , is rational in 𝑧(𝜁) ≔ exp(−j𝜁𝜖/2) and can be written
like (2.12). This can for example be seen from Lemma 1 in Section 2.3.

3While the paper [110] on which this chapter is based was being reviewed we noted that we could
use �̄�(−𝜁) = 𝑅(𝜁) in [4, p. 299], in order to obtain an alternative to (2.11): �̂�(𝜁) =
𝐻12 (−𝜁) (2j𝜁 𝐻11 (−𝜁) − 𝐻12 (−𝜁))−1 e−2j𝜁𝐿+ . This equation appears to be less sensitive to numerical er-
rors in 𝑯(𝜁) than (2.11).
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2.3. Higher order splittings
Modification of the NSE FNFT for the KdV seems straightforward: Just use 𝑟(𝑥𝑖) ≡ −1
instead of 𝑟(𝑥𝑖) ≡ ± 𝑞∗(𝑥𝑖) in (2.14), as described in Section 2.2. However, as we will see
in the numerical examples in Section 2.4, then the error in �̂� caused by Approximation 3
can be much higher than what one would expect from the NSE case.3 To reduce this error
(without reducing the step size 𝜀), we want to use splitting schemes with a higher order of
accuracy. Lemma 1 below states that a splitting scheme of the form of (2.2) is suitable for the
FNFT if all parameters 𝛼𝑗,𝑘 are positive rational numbers. (We will omit the dependencies
on 𝜁 and 𝑥𝑖 from here.)

Lemma 1 If 𝑮 is approximated by a splitting scheme of the form of (2.2)with𝑨 and𝑩 defined
in (2.14) and ∑𝑗 𝛼𝑗,𝑘 = 1 ∀𝑘 and 0 < 𝛼𝑗,𝑘 ∈ ℚ ∀𝑗, 𝑘 , then the approximation can bewritten
as (2.12) with 2𝑚 ∈ ℕ.

Proof Write 𝛼𝑗,𝑘 for all 𝑗 and 𝑘 as an irreducible fraction. Let 2𝑚 be the least common
multiple of their denominators and rewrite

e𝛼𝑗,𝑘𝑨𝜀 = e−j𝜁𝜀𝛼𝑗,𝑘 [1 0
0 exp(j𝜁𝜀/𝑚)]

2𝑚𝛼𝑗,𝑘

. (2.15)

Define 𝑧 ≔ exp(j𝜁𝜖/𝑚). Equation (2.2) should hold for any arbitrary step size 𝜀. For 𝜖 = 0
it yields ∑𝑘 𝛾𝑘 = 1 , so substitution of (2.15) in (2.2) results in

̂𝑮 = 𝑧−𝑚
𝑘max

∑
𝑘=0

𝛾𝑘

𝑗max,𝑘

∏
𝑗=0

[1 0
0 𝑧2𝑚𝛼𝑗,𝑘] e𝛽𝑗,𝑘𝑩𝜀. (2.16)

Since 2𝑚𝛼𝑗,𝑘 ∈ ℕ ∀𝑗, 𝑘, (2.16) can be written as (2.12). ■

The following splitting schemes are suitable for the FNFT, because each of them fulfils
the requirements of Lemma 1. The same holds for the dual schemes that can be obtained by
changing every 𝑨 to a 𝑩 and vice versa.

e𝑪𝜀 = e𝑨𝜀e𝑩𝜀 + 𝒪(𝜀2); (2.17)

e𝑪𝜀 = e
1
2 𝑨𝜀e𝑩𝜀e

1
2 𝑨𝜀 + 𝒪(𝜀3) ; (2.18)

e𝑪𝜀 = 9
8e

1
3 𝑨𝜀e

2
3 𝑩𝜀e

2
3 𝑨𝜀e

1
3 𝑩𝜀 − 1

8e𝑨𝜀e𝑩𝜀 + 𝒪(𝜀4); (2.19)

e𝑪𝜀 = 4
3e

1
4 𝑨𝜀e

1
2 𝑩𝜀e

1
2 𝑨𝜀e

1
2 𝑩𝜀e

1
4 𝑨𝜀 − 1

3e
1
2 𝑨𝜀e𝑩𝜀e

1
2 𝑨𝜀 + 𝒪(𝜀5); (2.20)

e𝑪𝜀 = 625
384e

1
5 𝑨𝜀(e

2
5 𝑩𝜀e

2
5 𝑨𝜀)

2
e

1
5 𝑩𝜀 − 81

128e
1
3 𝑨𝜀e

2
3 𝑩𝜀e

2
3 𝑨𝜀e

1
3 𝑩𝜀 + …

1
192e𝑨𝜀e𝑩𝜀 + 𝒪(𝜀6);

(2.21)

e𝑪𝜀 = 81
40e

1
6 𝑨𝜀(e

1
3 𝑩𝜀e

1
3 𝑨𝜀)

2
e

1
3 𝑩𝜀e

1
6 𝑨𝜀 − 16

15e
1
4 𝑨𝜀e

1
2 𝑩𝜀e

1
2 𝑨𝜀e

1
2 𝑩𝜀e

1
4 𝑨𝜀 + …

1
24e

1
2 𝑨𝜀e𝑩𝜀e

1
2 𝑨𝜀 + 𝒪(𝜀7);

(2.22)
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e𝑪𝜀 = 117649
46080 e

1
7 𝑨𝜀(e

2
7 𝑩𝜀e

2
7 𝑨𝜀)

3
e

1
7 𝑩𝜀 − 15625

9216 e
1
5 𝑨𝜀(e

2
5 𝑩𝜀e

2
5 𝑨𝜀)

2
e

1
5 𝑩𝜀 + …

729
5120e

1
3 𝑨𝜀e

2
3 𝑩𝜀e

2
3 𝑨𝜀e

1
3 𝑩𝜀 − 1

9216e𝑨𝜀e𝑩𝜀 + 𝒪(𝜀8);

(2.23)

e𝑪𝜀 = 1024
315 e

1
8 𝑨𝜀(e

1
4 𝑩𝜀e

1
4 𝑨𝜀)

3
e

1
4 𝑩𝜀e

1
8 𝑨𝜀 − 729

280 e
1
6 𝑨𝜀(e

1
3 𝑩𝜀e

1
3 𝑨𝜀)

2
e

1
3 𝑩𝜀e

1
6 𝑨𝜀 + …

16
45e

1
4 𝑨𝜀e

1
2 𝑩𝜀e

1
2 𝑨𝜀e

1
2 𝑩𝜀e

1
4 𝑨𝜀 − 1

360e
1
2 𝑨𝜀e𝑩𝜀e

1
2 𝑨𝜀 + 𝒪(𝜀9).

(2.24)

Equations (2.17) and (2.18) are well-known, as sequential splitting and symmetric Strang
splitting [134] respectively. Equation (2.19) is reported in [27]. Equation (2.20) is known
as the Strang-Richardson scheme (see e.g. [41]). We remark that only the symmetric Strang
splitting has been used for FNFTs so far. We could not find the other schemes in the literature,
so theymay be new. We derived these as follows. We imposed the number of terms 𝑘max and
factors 𝑗max,𝑘 and the order of accuracy 𝑛 in (2.2). In case 𝑛 is evenwe set 𝛽𝑗max, 𝑘,𝑘 = 0 ∀𝑘. (In
words: Every term in an even order accurate splitting has to start and endwith an exponential
of 𝑨.) Then we replaced every matrix exponential by its Taylor series expansion and used
algebraic computational software (Wolfram Mathematica) to find the parameter values 𝛼𝑗,𝑘,
𝛽𝑗,𝑘 and 𝛾𝑘 by equating the appropriate left and right hand side terms. That is, terms that
contain the sameproduct ofmatrices𝑨 and𝑩. These values appear to be unique, with respect
to the particular choices for 𝑘max , 𝑗max,𝑘 and 𝑛 corresponding to (2.17) to (2.24) respectively.
We do not know whether these splittings are part of a family that extends up to arbitrary
order of accuracy; neither do we have direct formulas for the parameters.

Remark 1 Equations (2.12) and (2.16) for 2𝑚 ∈ ℕ are rational in √𝑧, because the denom-
inator 𝑧𝑚 is a positive integer power of √𝑧. Yet, the numerator is a polynomial in 𝑧 (with
matrix-valued coefficients). 2

Remark 2 If the conditions for Lemma 1 hold, except for the positivity of 𝛼𝑗,𝑘 , we can still
obtain a rational approximation that is suitable for the FNFT. The constructive proof be-
comes more complicated in that case and since Lemma 1 suffices for the purpose of this
chapter, we favoured the less general, but clearer result. 2

Remark 3 The constructive proof of Lemma 1 is based on finding a number 𝑚 such that
2𝑚𝛼𝑗,𝑘 ∈ ℤ ∀𝑗, 𝑘 . One could hypothesise that such a number𝑚may still exist when the con-
dition 𝛼𝑗,𝑘 ∈ ℚ does not hold. However, if 2𝑚𝛼𝑗,𝑘 ∈ ℤ ∀𝑗, 𝑘 and ∑𝑗 𝛼𝑗,𝑘 = 1 it follows that
2𝑚 ∈ ℤ and 𝛼𝑗,𝑘 ∈ ℚ ∀𝑗, 𝑘: 1 = ∑𝑗 𝛼𝑗,𝑘 ⇒ 2𝑚 = ∑𝑗 2𝑚𝛼𝑗,𝑘 ∈ ℤ ⇒ 𝛼𝑗,𝑘 ∈ ℚ ∀𝑗, 𝑘. 2

2.4. Numerical examples
In this section we demonstrate the application of the proposed splitting schemes for two po-
tential functions 𝑞(𝑥) for the KdV. As a comparison, we also include an example for the NSE.
For these examples the reflection coefficient is known analytically; the respective equations
provide the ground truth. For the KdV examples, we divide the interval 𝑥 ∈ [−16, 16]
in 𝐷 = 256 sections of width 𝜀 = 1/8 and sample 𝑞(𝑥) at the midpoints of each section
to obtain a staircase approximation. (The interval is large enough to make Approximation 1
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Figure 2.1: The black solid curve with label (2.25) shows the magnitude of the reflection coefficient of a squared
hyperbolic secant potential for the KdV. All other other curves show the magnitude of the error of a numerical
approximation of the reflection coefficient. The numbers between brackets refer to the corresponding equation:
(2.8): error without splitting (due to staircase approximation), (2.17)–(2.24): error with splitting.

negligible for the chosen potentials.) We apply each of the proposed splitting schemes ((2.17)
to (2.24)) as well as the un-split matrix exponential ((2.8)), and calculate the error of the ap-
proximated reflection coefficient (compared to the ground truth) with (2.10) and (2.11). We
omit the transmission coefficient as well as the dual splitting schemes with the roles of 𝑨 and
𝑩 reversed, but we remark that the shown results are representative.

2.4.1. KdV with a squared hyperbolic secant potential
Consider the potential function 𝑞(𝑥) = ̊𝑞 sech2(𝑥) with ̊𝑞 = 9 . The reflection coefficient
for this function is given by

𝑅(𝜁) = cos(π𝛿)
π ⋅ Γ(j𝜁)

Γ(−j𝜁) Γ(1
2 − j𝜁 + 𝛿) Γ(1

2 − j𝜁 − 𝛿), (2.25)

where 𝛿 ≔ √ ̊𝑞 + 1/4 and Γ is the gamma function [79].
The magnitude of this reflection coefficient is shown in Fig. 2.1, as well as the magni-

tude of the error for the various numerical approximations. We see that the error due to
Approximation 2 is below approximately 1% for each value of 𝜁 . Above some frequency, Ap-
proximation 3 becomes the dominant error source for the splitting schemes. One can reduce
this error and increase this frequency by choosing a splitting scheme with a higher order of
accuracy.
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Figure 2.2: The black solid curve with label (2.26) shows the magnitude of the reflection coefficient of a rectangu-
lar potential for the KdV. All other curves show the magnitude of the error of a numerical approximation of the
reflection coefficient. The numbers between brackets refer to the corresponding equation: (2.17)–(2.24): error due
to splitting. The error without splitting (2.8) is zero here, because this potential equals its staircase approximation
exactly.

2.4.2. KdV with a Rectangular potential
The rectangular potential 𝑞(𝑥) = ̊𝑞 = 1 for |𝑥| < 𝑙/2 = 1/2 and 𝑞(𝑥) = 0 else, is repre-
sented exactly by its staircase approximation for the 𝑥 grid we chose. Hence, the errors due
toApproximations 1 and 2will be zero in this case. The reflection coefficient for this function
is given by

𝑅(𝜁) = j𝛾− sin(𝜍𝑙) exp(−j𝜁 𝑙)
cos(𝜍𝑙) − j𝛾+ sin(𝜍𝑙) , (2.26)

where 𝜍 ≔ √ ̊𝑞 + 𝜁2 and 𝛾± ≔ 1
2 (𝜍/𝜁 ± 𝜁/𝜍) [101].

The magnitude of this reflection coefficient is shown in Fig. 2.2, as well as the magnitude
of the error for the various numerical approximations. The error due to Approximation 2
is zero, as expected. The error due to Approximation 3 is reduced by choosing a splitting
scheme with a higher order of accuracy, which increases the frequency up to which the ap-
proximated reflection coefficient is accurate.

2.4.3. NSE with a hyperbolic secant potential
As a comparison, we have included a numerical example for the NSE. We take the potential
function 𝑞(𝑥) = ̊𝑞 j sech(𝑥) with ̊𝑞 = 5.5 and 𝑟(𝑥) = − 𝑞∗(𝑥) . For this example we need a
larger interval to prevent significant truncation errors (Approximation 1) and choose 𝑥 ∈



2.4. Numerical examples

2

23

0 1 2 3 4 5 6 7 8

10−12

10−10

10−8

10−6

10−4

10−2

100

𝜁 [-]

∣𝑅
(𝜁

)∣
[−

];
∣𝑅

(𝜁
)−

𝑅
(𝜁

)∣
[−

]
Magnitude of (the error of) the reflection coefficient

(2.17) (2.21)

(2.18) (2.22)

(2.19) (2.27)

(2.20) (2.8)

Figure 2.3: The black solid curve with label (2.27) shows the magnitude of the reflection coefficient of a hyperbolic
secant potential for the NSE.All other curves show the magnitude of the error of a numerical approximation of
the reflection coefficient. The numbers between brackets refer to the corresponding equation: (2.8): error without
splitting (due to staircase approximation), (2.17)–(2.22): error with splitting.

[−32, 32] while keeping 𝜀 = 1/8 the same, so 𝐷 = 512 . The ground truth reflection
coefficient for this example is given by

𝑅(𝜁) = j sin(π ̊𝑞)
cosh(π𝜁) ⋅

Γ(1
2 − j𝜁 + ̊𝑞) Γ(1

2 − j𝜁 − ̊𝑞)

Γ2(1
2 − j𝜁)

, (2.27)

where Γ is the gamma function [124].
The magnitude of this reflection coefficient is shown in Fig. 2.3, as well as the error for

some of the proposed numerical approximations. Different from the KdV examples, all ap-
proximation errors decay for higher frequencies. Although the absolute error is low at high
frequencies for every splitting scheme, the relative error for the first and second order scheme
is high. We see that the error can be reduced significantly by using one of the schemes be-
tween third and sixth order accuracy, (2.19) to (2.22) respectively. The seventh and eighth
order accurate scheme ((2.23) and (2.24)) are omitted in Fig. 2.3, because the result is on
this scale indistinguishable from the error without splitting, (2.8). That is, the error due to
Approximation 3 in this example becomes negligible compared to the error due to Approx-
imation 2, which means that by choosing a splitting scheme of sufficient order, the FNFT
can reach the same accuracy as any other NFT that uses a staircase approximation of the
potential.
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2.5. Conclusion and discussion
We have presented several exponential splitting schemes that can be incorporated into the
Fast Non-linear Fourier Transforms and investigated their performance for two examples for
the KdV NFT and one example for the NSE NFT, respectively. The presented higher order
splitting schemes allow to increase the numerical accuracy of the NFT without having to
decrease the step size (which might not always be feasible in applications).

Since the calculation time of the FNFT depends partly on the degrees of the rational
approximations, one would like to obtain the maximum accuracy for a certain degree. Our
method results in rational expressions, but their degrees are not monotonically increasing in
the order of accuracy of the splitting schemes. For example, (2.21) with an order of accuracy
of five results in a higher degree than (2.22) with an order of accuracy of six. This obscures
the trade-off between the calculation time of the FNFT and its accuracy.

Remark 4 (Post-review) The numerical errors in the calculation of �̂�(𝜁) with the FNFT
lead to much larger errors in the reflection coefficient in the KdV case compared to the NSE
case. While the paper [110] on which this chapter is based was being reviewed, we noted
that an alternative to (2.11) exists, as mentioned in Footnote 3. When we use it, the two
cases show comparable error behaviour: Fig. 2.1 then looks very similar to Fig. 2.3, with the
results from the highest order splitting schemes overlaying the error without splitting. This
shows that also in the KdV case FNFTs can reach the same accuracies as the conventional
NFT based on a staircase approximation of the potential. 2
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Reliable computation of the

eigenvalues of the discrete KdV
spectrum

We propose a numerical algorithm that computes the eigenvalues of the Korteweg–de Vries
equation (KdV) from sampled input data with vanishing boundary conditions. It can be used
as part of the Non-linear Fourier Transform (NFT) for the KdV.The algorithm that we propose
makes use of Sturm–Liouville (SL) oscillation theory to guaranty that all eigenvalues are found.
In comparison to similar algorithms that are currently available, we show that our algorithm
is more robust to numerical errors and therefore more reliable. Furthermore we show that our
root finding algorithm, which is based on the Newton–Raphson (NR) algorithm, typically saves
computation time compared to the conventional approaches that rely heavily on bisection.

3.1. Introduction

T he Korteweg–de Vries equation (KdV) is a well known non-linear Partial Differential
Equation (PDE). It can serve as a model for a wide variety of nearly hyperbolic, weakly

non-linear processes, such as surface waves in shallow water [24, 25, 61, 76, 106], internal
waves in stratified fluids [166], acoustic waves in metals [137], electrical waves in transmis-
sion lines [119], traffic flow [64] and pressure waves in fluids [1, 95, 155]. See also [37] for a
survey of some (more) applications of the KdV. The normalized form of the KdV which we
consider is

𝜕
𝜕𝑡 𝑞(𝑥, 𝑡) + 6 𝑞(𝑥, 𝑡) 𝜕

𝜕𝑥 𝑞(𝑥, 𝑡) + 𝜕3

𝜕𝑥3 𝑞(𝑥, 𝑡) = 0. (3.1)

Parts of this chapter are in preparation for publication as P. J. Prins and S. Wahls. “Reliable computation of the
eigenvalues of the discrete KdV spectrum”. Manuscript submitted for publication.
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Equation (3.1) can be mapped to the various physical forms of the KdV with dimensional
variables and coefficients by means of affine transformations of 𝑞, 𝑥 and 𝑡 [46, §1.2]. For
simplicity, we can think of 𝑥 and 𝑡 as position and time respectively.

The KdV is the prototypical example of a Lax-integrable PDE. By that, we mean that its
initial value problem can be solved with a technique that is called scattering transform or
Non-linear Fourier Transform (NFT). It parallels the use of the ordinary Fourier transform
for linear PDEs: The temporal evolution of 𝑞(𝑥, 𝑡) is hard to compute, but one can trans-
form it back and forth to a so-called spectrum, of which the evolution is simple to compute
[5, Sect. 1.4], [53]. The price to pay is the calculation of the direct and inverse NFT. At first,
the NFT was an analytical method that allowed mathematicians to compute exact solutions
of the KdV and other Lax-integrable PDEs [4, 53, 81, 163]. Later, algorithms were developed
to use the NFT in numerical computations, when only a sampled input signal is available [3,
17, 19, 101, 102, 114, 140, 143, 160]. This enabled the use of the NFT as an analysis tool
that reveals the physical structure of measured data from non-linear systems [23, 25, 103–
105, 108, 135, 144, 166]. However, the early numerical methods were slow: Their computa-
tion times scaled quadratically in the number of samples. This motivated the development
of fast numerical NFTs [150–152]. These scale almost linearly in the number of samples.
Many recent publications present various improvements on aspects of the numerical NFT
in computation time and accuracy, e.g. [29, 32, 50, 60, 90–92, 110–112, 132, 148].

Before we can zoom in on the specific aspect that we address in this chapter, we have
to outline the mathematical problem that defines the NFT for the KdV, and introduce some
terminology. The KdV-NFT spectrum of a signal 𝑞(𝑥, 𝑡) can be obtained at any fixed time
𝑡 = 𝑡0 from the one-dimensional Schrödinger equation1,2

( 𝜕2

𝜕𝑥2 + 𝑞(𝑥, 𝑡0)) 𝑓 (𝑥, 𝜅, 𝑡0) = 𝜅2 𝑓 (𝑥, 𝜅, 𝑡0). (3.2)

The input signal 𝑞(𝑥, 𝑡0) is also called the potential, because of its role in the Schrödinger
equation (3.2) in the context of quantum mechanics. We call any signal 𝑓 (𝑥, 𝜅, 𝑡0) that sat-
isfies (3.2) a trajectory of the potential 𝑞(𝑥, 𝑡0). Here, we are concerned with real-valued
potentials 𝑞(𝑥, 𝑡) that evolve according to the KdV (3.1) and furthermore satisfy the vanish-
ing boundary condition

∫
∞

−∞
|𝑞(𝑥, 𝑡0)| (1 + |𝑥|) d𝑥 < ∞ and lim

|𝑥|→∞
𝑞(𝑥, 𝑡0) = 0. (3.3)

The KdV-NFT spectrum of such a potential consists of two parts: A continuous spectrum
and a discrete spectrum. The continuous spectrum describes a wave continuum called radia-
tion. We will discuss its computation later, in Chapter 2. The discrete spectrum describes a
countable number of wave components called solitons. It consists of eigenvalues and norm-
ing constants, one of each for every soliton. The eigenvalues are the values 𝜅 = 𝐾𝑛 > 0
for which there exists a trajectory 𝑓 (𝑥, 𝜅, 𝑡0) with finite energy3 such that the Schrödinger

1The reason for this is that the Schrödinger equation (3.2) together with the appropriate evolution equation forms
a Lax-pair that constitutes the KdV [4, 53, 81, 163].
2In most related literature one uses the parameter 𝜁 ≡ j𝜅, where j ≔ √−1. Nevertheless, we use 𝜅 in this chapter
since it simplifies the exposition and keeps all computations in the real domain.
3The energy of 𝑓 (𝑥) is defined as ∫∞

−∞ |𝑓 (𝑥)|2 d𝑥.
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equation (3.2) is satisfied. This trajectory 𝑓 (𝑥, 𝐾𝑛, 𝑡0) is the corresponding eigenfunction.
Each eigenfunction is unique up to a scalar factor. The norming constants can be obtained
from the eigenfunctions, as we will discuss later, in Chapter 4. In this chapter we address the
computation of the eigenvalues.

In the literature two approaches can be found for the computation of the eigenvalues [82,
§2.1], [160, §iv]:

The first approach is to use a finite dimensional approximation of (3.2) that turns its eigen-
problem into a (large) matrix eigenproblem. Collocation methods (e.g. [44, 157]), rational
approximations (e.g. [150]), finite difference methods (e.g. [82, §2.2.1]), and Hill’s method
[39, 67], [142, §8.2.1], [143, §5.1] belong to the first class. The computational complexity
of these methods is at best 𝒪(𝐷2), where 𝐷 is the number of degrees of freedom of the
discretization. The accuracy of these methods quickly deteriorates for faster oscillating tra-
jectories [82, Chap. 2].⁴

The second approach is known as the shooting approach. That is, one reduces the bound-
ary value problem first to an initial value problem by keeping just one boundary condition.
A free parameter, 𝜅 in our case, is introduced to make the initial value problem well-defined.
Then one verifies with an initial value solver if the remainder of the boundary conditions is
also satisfied. This procedure is iterated in a root finder that tries different values of the pa-
rameter until the boundary value problem is solved. Shooting methods can be implemented
with a computational complexity of only 𝒪(𝐷𝑁𝑃), where 𝐷 is the number of samples, 𝑁 is
the number of eigenvalues and 𝑃 is average required number of iterations per eigenvalue.

Basic implementations of the shooting approach cannot guarantee global convergence,
so they may not find every eigenvalue. However, global convergence can be guaranteed by
combining a shooting method with Sturm–Liouville (SL) oscillation theory. (This theory
applies because the Schrödinger equation (3.2) is a specific example of a SL equation.) In
short: According to the SL theory, the number of zero-crossings of the trajectory 𝑓 (𝑥, 𝜅, 𝑡0)
at a fixed value 𝜅 as 𝑥 runs from −∞ to +∞, reveals the number of eigenvalues that is
greater than 𝜅. To make use of this information, we need to track the zero-crossings of the
trajectory. From the Schrödinger equation Prüfer [116] derived a non-linear Ordinary Dif-
ferential Equation (ODE) for the phase of the trajectory: the Prüfer equation. The number
of zero-crossings follows trivially from the phase. The shooting method that relies on the
integration of the Prüfer equation has become known as the Prüfer method [15, 97]. How-
ever, the Prüfer equation is a stiff system which is hard to integrate [82, §2.1]. Alternatively,
one can integrate the Schrödinger equation itself, which is simpler, and meanwhile count
the number of zero-crossings [69, 102, 115]. In this chapter we propose an algorithm that
also uses this method for the computation of the eigenvalues.

The challenge within this method is to count the zero-crossings of the trajectory in a
numerically robust way. Any missed or doubly counted zero-crossing can cause a signifi-
cantly wrong result. Even causes for a miscount that may seem pathological at first sight, are
surprisingly likely to occur in practice, because the root counting procedure is repeated 𝐷
(samples) times 𝑁 (eigenvalues) times 𝑃 (iterations) times, and because the eigenfunctions
that we search are themselves corner cases of the computation. Osborne [102] proposed
to compute the number of zero-crossings by counting sign changes of the trajectory from
sample to sample. However, Christov [33] observed numerical instabilities when he tried to

⁴If (3.2) and (3.3) are observed, 𝑓 (𝑥, 𝐾𝑛, 𝑡0) oscillates faster as 𝐾𝑛 is closer to zero.
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Osborne [102] Matslise 2.0 [85] Proposed

Input Samples Function Samples
Boundary at ±∞ No Only as input Yes
Order 𝒪(𝜀2) 𝒪(𝜀18) 𝒪(𝜀4)
Root finder Bisection Bisection to bracket,

refinement with NR
NR if possible, bisection
for a new starting point

Table 3.1: Characteristics of two SL based algorithms to compute the eigenvalues of the Schrödinger equation found
in the literature, and the proposed algorithm. Matslise 2.0 allows the specification of boundary conditions at ±∞,
but replaces ±∞ internally by finite value before the computation.

use Osbornes algorithm on certain simulation data. Pruess and Fulton [115, §4] and Ixaru,
Meyer, and Berghe [69, §5.2] proposed a more rigorous counter, to cover the possibility
that there is more than one zero-crossing between two consecutive samples. However, their
approach may lead to a miscount if a zero-crossing occurs close to the boundary between
two integration steps. In Section 3.3.2, we will clarify this vulnerability and explain how the
algorithm that we propose mends it.

Another aspect on which we improve on SL based shooting methods that are known in
the literature, is the root finder. The use of SL theory provides upper and lower bounds on the
eigenvalues. This information is most easily incorporated into a bracketing root finder, such
as bisection. (A bracket consists of an upper and lower bound of a certain root.) Unfortu-
nately, bisection has only linear convergence. Some algorithms speed up the convergence by
using a two-stage approach: First, bisection is applied to obtain a (sufficiently tight) bracket
for each root, which contains no other roots. Second, a root finder with a faster convergence
is applied to refine the localization of the eigenvalue. The second stage could for example
use regula falsi [33] or Newton–Raphson (NR) [69, 85, 102]. These algorithms are thus still
limited to linear convergence in the first stage. Algorithms that apply an open root finder
such as NR in the second stage then face the problem of finding an initial guess for which
the iterations do not jump out of the just computed bracket. The algorithm that we propose
in this chapter uses a different approach. Since we typically need to compute all of the eigen-
values for the NFT, there is no need to isolate the eigenvalues upfront and to specify which
one to localize next. Instead, we let the NR procedure converge to any eigenvalue. There-
after, we select a new starting point and let NR converge to another eigenvalue. Meanwhile,
we update the brackets of all the eigenvalues on every iteration of the NR procedure, based
on SL theory. If the next NR iteration is not within the bracket of any of the eigenvalues, we
switch to a new starting point within one of the brackets. This ensures that every iteration
increases our knowledge about the location of at least one of the eigenvalues.

We briefly mention some other relevant aspects that distinguish different root finding
algorithms. These aspects are summarized in Table 3.1 for the proposed algorithm and for
the two algorithms which we use as benchmark algorithms.

• For practical applications of the KdV-NFT we need an algorithm that takes a sam-
pled input signal. Some algorithms that were developed for other purposes, such as
Matslise [85] require a functional description of the input signal instead. In our bench-
mark comparison we will work around this issue by fitting a Fourier series to the data.
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• Some algorithms were developed for finding eigenvalues of the Schrödinger equation
on a finite interval. The KdV-NFT for potentials that satisfy the vanishing boundary
condition (3.3) requires boundary conditions at infinity. Not all algorithms support
this. Matslise [85] allows the specification of boundary conditions at ±∞, but replaces
±∞ internally by a finite value before the computation. That means that not only
the potential is truncated, but also the trajectories. In the NFT literature it is com-
mon practice to exploit the fact that trajectories of the Schrödinger equation can be
written as the sum of two exponentials outside the support of the truncated potential.
Therefore, no truncation of the trajectories is required. We also apply this in the pro-
posed algorithm. We adapt this aspect of Osbornes algorithm [102] accordingly for
the benchmark comparison in this chapter.

• There exist many integrators that can be used to integrate the Schrödinger equation.
If the potential is (piecewise) sufficiently smooth, integrators of higher order are more
accurate, but computationally more expensive per integration step. Matslise [85] uses
an 18th order integrator, but severely reduces the number of integration steps to trade
a part of the accuracy gain for computational cost. We propose to use a specific fourth
order integrator (see Section 3.3.4), because it allows for an accurate computation of
the zero-crossings of the trajectory (see (3.18)).

The rest of this chapter is organized as follows. In Section 3.2wemention a few important
aspects of the eigenvalues of the KdV and introduce two variables that play a fundamental
role in the proposed algorithm to find the eigenvalues. These variables are the scattering
parameter 𝑎(𝜅) and the accounting function 𝑠(−∞, ∞, 𝜅). In Section 3.3 we show how to
compute these parameters numerically at a given value of 𝜅. In Section 3.4 we propose a root
finder that finds the eigenvalues by sampling these parameters, with a lower computational
cost than bisection. In Section 3.5 we evaluate the proposed algorithm by comparing it with
other methods on six different example signals. The chapter is concluded in Section 3.6.

3.2. Preliminaries
Recall that the problem we aim to solve in this chapter is the following. Given a uniformly
sampled potential 𝑞(𝑥, 𝑡0) that satisfies (3.3), find all the eigenvalues. We will search for the
eigenvalues with a shootingmethod. That is, choose a value 𝜅, determine if 𝜅 is an eigenvalue
of 𝑞(𝑥, 𝑡0) and repeat until all the eigenvalues are localized. In this sectionwewill explain two
strategies to determine if 𝜅 is an eigenvalue: The basic method and the one that makes use of
SL oscillation theory. We will also mention the numerical advantages and disadvantages of
both strategies. In Section 3.3 we will explain how to perform the numerical computations
for these strategies. In Section 3.4 we will integrate these strategies in one algorithm that
combines the advantages of both.

3.2.1. Notation
Matrices have an upper case symbol in bold weight (e.g. 𝑨), vectors have a lower case symbol
in bold weight (e.g. 𝝓), scalars have a normal weight (e.g. 𝑥). Constants have an upright
style (e.g. π), real or imaginary variables have a slanted style (e.g. 𝑥), booleans are printed
in a typewriter font (e.g. 𝚏). We will use super scripts l and u for respectively the lower and
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upper boundary value of an interval. 𝒪( ) is used as the Landau ‘big-O’ order symbol. The
symbol ‘≔’ denotes a definition. The symbol ‘←’ means that the left hand side gets the value
of the right hand side (at that point in an algorithm). The symbol ‘∧’ denotes the logical
and operation. The notation ‘|𝑥|’ means the absolute value of 𝑥. The notation ‘⌊𝑥⌉’ means
rounding 𝑥 towards the nearest integer,‘⌈𝑥⌉’ means rounding 𝑥 towards the nearest greater
or equal integer, ‘⌊𝑥⌋’ means rounding 𝑥 towards the nearest lesser or equal integer. We will
make extensive use of the Iverson bracket for piecewise expressions: J𝚋K ≔ 1 if 𝚋 is 𝚝𝚛𝚞𝚎, 0
otherwise. By convention, 𝑥J𝚏𝚊𝚕𝚜𝚎K = 0, even if 𝑥 is infinite or undefined. Single square
brackets [ ] are used for the composition of vectors and matrices. Finally, we write exp( ) for
the natural scalar or matrix exponential function: exp(𝑨) ≡ e𝑨 ≔ ∑∞

𝑖=0 𝑨𝑖/𝑖! .

3.2.2. Eigenvalues of the Korteweg–de Vries equation
As mentioned in Section 3.1, the eigenvalues of the KdV are obtained from the Schrödinger
equation (3.2). It can be shown that if 𝑞(𝑥, 𝑡) is real and evolves according to the KdV (3.1),
then the eigenvalues are constant and isolated (with multiplicity one) [5, 79], and that all
eigenvalues⁵ satisfy 0 < 𝐾2

𝑛 < sup𝑥 𝑞(𝑥, 𝑡) (for all 𝑡) [127, p. 732]. We will index the eigen-
values such that 0 < 𝐾1 < 𝐾2 < ⋯ < 𝐾𝑁 < √sup𝑥 𝑞(𝑥, 𝑡), where 𝑁 ⩾ 0 is the number
of eigenvalues. Since the eigenvalues are constant, we can simplify the notation by dropping
the dependence on the arbitrary fixed time 𝑡 = 𝑡0 of other variables.

3.2.3. Scattering parameter 𝑎(𝜅)
Given any potential 𝑞(𝑥) that satisfies the vanishing boundary condition (3.3), it is readily
verified that as |𝑥| → ∞ all trajectories of the Schrödinger equation (3.2) can be parametrized
as a linear combination of exp(±𝜅𝑥). We can thus define special trajectories that vanish as
𝑥 → ±∞ respectively. These trajectories are known as Jost solutions and satisfy the bound-
ary conditions

lim𝑥→−∞ 𝜙(𝑥, 𝜅) exp(−𝜅𝑥) = 1; (3.4)

lim𝑥→+∞ 𝜓(𝑥, 𝜅) exp(+𝜅𝑥) = 1. (3.5)

Since the eigenfunctions have finite energy, theymust vanish both as 𝑥 → −∞ and as 𝑥 → ∞.
Therefore every eigenfunction must satisfy both (3.4) and (3.5) up to an arbitrary constant
factor: 𝜙(𝑥, 𝐾𝑛) ∝ 𝑓 (𝑥, 𝐾𝑛) ∝ 𝜓(𝑥, 𝐾𝑛). We can use this insight to find the eigenvalues
according to the shooting method. That is, we solve (3.2) for the boundary condition (3.4) at
several values of 𝜅. Then we check if 𝜙(𝑥, 𝜅) satisfies (3.5) up to a scalar factor. To simplify
this check, one defines the scattering parameter 𝑎(𝜅) as follows.

𝑎(𝜅) ≔ W[𝜓, 𝜙]
2𝜅 , (3.6)

where

W[𝜓, 𝜙] ≔ 𝜓(𝑥, 𝜅)𝜕 𝜙(𝑥, 𝜅)
𝜕𝑥 − 𝜙(𝑥, 𝜅)𝜕 𝜓(𝑥, 𝜅)

𝜕𝑥 . (3.7)

⁵From (3.3) it follows that sup𝑥 𝑞(𝑥, 𝑡) ≥ 0. If sup𝑥 𝑞(𝑥, 𝑡) = 0, there are no eigenvalues, so the discrete spectrum
is an empty set.
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The Wronskian W[𝜓, 𝜙], also known as the mismatch function [82, Eq. 2.14], vanishes if
and only if the trajectories 𝜙(𝑥, 𝜅) and 𝜓(𝑥, 𝜅) are proportional. Hence, the eigenvalues 𝐾𝑛
are the values 𝜅 for which 𝑎(𝜅) = 0. Usually one searches for the eigenvalues with a root
finder that also makes use of the gradient 𝑎′(𝜅) ≔ 𝜕

𝜕𝜅 𝑎(𝜅), for example NR. Initially, both
a lower and an upper bound on the eigenvalues are known, see Section 3.2.2. These bounds
can be used to guess suitable starting values for the root finder.

It is unreliable to compute the eigenvalues from samples of 𝑎(𝜅) and 𝑎′(𝜅) only, because
it remains unknown how many eigenvalues there are. Suppose we have two adjacent, non-
zero samples 𝑎(𝜅1) and 𝑎(𝜅2), we can only infer the parity of the number of eigenvalues
between 𝜅1 and 𝜅2: The parity is odd if 𝑎(𝜅1) 𝑎(𝜅2) < 0 and even if 𝑎(𝜅1) 𝑎(𝜅2) > 0. In
the odd case there must be at least one eigenvalue between these samples, which is useful
information. However, in the even case the number of eigenvalues between these samples
could be zero as well as any other even number. No matter how many samples are taken,
there is always a possibility that one or more pairs of eigenvalues are missed. In practice, we
would have to evaluate 𝑎(𝜅) on a very fine 𝜅-grid and hope that odd means one and even
means zero. In that manner we can never be sure that we have localized all the eigenvalues.
Additional information needs to be collected to ensure that no eigenvalues are missed. An
attractive source of additional information is the accounting function, whichwe discuss next.

3.2.4. Accounting function
Since the Schrödinger equation (3.2) is an example of an SL equation, SL oscillation theory
applies. From that theory, it is known that the number of solutions of 𝜙(𝑥, 𝜅0) = 0 for
fixed 𝜅0 and finite real 𝑥 is equal to the number of eigenvalues that is greater than 𝜅0 [165,
Thms. 2.6.2 & 10.12.1.(4)]. We call these solutions zero-crossings for short.⁶ Let us define
the accounting function 𝑠(𝑥l, 𝑥u, 𝜅) as the number of zero-crossings of 𝜙(𝑥, 𝜅) in the open
interval 𝑥 ∈ (𝑥l, 𝑥u) at a fixed value 𝜅. Then 𝑠(−∞, ∞, 𝜅) is equal to the number of eigenval-
ues that is greater than 𝜅. Since all eigenvalues are positive, the total number of eigenvalues
is thus given by 𝑁 = 𝑠(−∞, ∞, 0). Since all the eigenvalues are smaller than √sup𝑥 𝑞(𝑥),
we know a priori that 𝑠(−∞, ∞, 𝜅) = 0 for 𝜅 ≥ √sup𝑥 𝑞(𝑥). When 𝜅 is increased from zero
to √sup𝑥 𝑞(𝑥), the value of the accounting function 𝑠(−∞, ∞, 𝜅) is decremented by one
whenever 𝜅 equals an eigenvalue. We can thus localize the eigenvalues by searching for the
steps in 𝑠(−∞, ∞, 𝜅). The value 𝑠(−∞, ∞, 𝜅) for 𝜅 just above or just below each localized
eigenvalue 𝐾𝑛, reveals the index 𝑛 of that eigenvalue.

The advantage compared to searching for zero-crossings of 𝑎(𝜅) is the following. Re-
call that if we have two adjacent, non-zero samples 𝑎(𝜅1) and 𝑎(𝜅2), we can only infer
whether the number of eigenvalues between 𝜅1 and 𝜅2 is odd (if 𝑎(𝜅1) 𝑎(𝜅2) < 0) or even (if
𝑎(𝜅1) 𝑎(𝜅2) > 0). On the other hand, if we know 𝑠(−∞, ∞, 𝜅1) and 𝑠(−∞, ∞, 𝜅2), their
difference reveals not just the parity of the number of eigenvalues between 𝜅1 and 𝜅2, but
the number itself. There is no risk of missing any closely spaced eigenvalues if the 𝜅-grid is
too coarse.

⁶All these zeros are crossings, because if it were the case that 𝜙(𝑥0, 𝜅0) = 0 and 𝜕
𝜕𝑥 𝜙(𝑥, 𝜅0)∣𝑥=𝑥0

= 0 at the
same fixed position 𝑥0, then (3.2) implies 𝜙(𝑥, 𝜅0) = 0 ∀𝑥, which violates (3.4). Hence 𝜙(𝑥0, 𝜅0) = 0 ⇒
𝜕

𝜕𝑥 𝜙(𝑥, 𝜅0)∣𝑥=𝑥0
≠ 0, implying that 𝜙(𝑥, 𝜅0) must change sign at 𝑥 = 𝑥0.
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Of course, the accounting function is only useful if we can reliably evaluate it in a numer-
ical computation. To that end we have to detect the zero-crossings of 𝜙(𝑥, 𝜅0), where 𝜅0 is
fixed. Thatmay seem like a similar problem as detecting the roots of 𝑎(𝜅): If we would evalu-
ate 𝜙(𝑥, 𝜅0) on an 𝑥-grid and count the sign changes, we might miss pairs of zero-crossings
between two adjacent samples. However, the Schrödinger equation allows us to reliably de-
tect even multiple zero-crossings of 𝜙(𝑥, 𝜅0) between samples. Since 𝜙(𝑥, 𝜅0) is a trajectory
of the Schrödinger equation (3.2), the ‘speed’ at which it oscillates (the slope of the Prüfer
phase) is controlled by the potential 𝑞(𝑥). If the potential is well-behaved between samples,
the oscillation is also well-behaved. For the proposed algorithm we will choose a reconstruc-
tion from the given samples, for which the Schrödinger equation has a piecewise analytic
solution. This solution allows us to compute the number of zero-crossings piece by piece.
We will discuss this further in Section 3.3.

The downside of using the accounting function is that it does not have a gradient to
help finding the eigenvalues. Therefore in Section 3.4 we will apply a NR root finder on the
scattering parameter 𝑎(𝜅) and its gradient 𝑎′(𝜅), and evaluate the accounting function in
parallel in order to bracket each eigenvalue.

3.3. Integration of the Schrödinger equation
In this section we discuss the numerical computation of the scattering parameter 𝑎(𝜅) and
the accounting function 𝑠(−∞, ∞, 𝜅) from the potential 𝑞(𝑥). In Section 3.4 we will incor-
porate these computations in an algorithm that finds the eigenvalues of the KdV efficiently
and accurately.

3.3.1. The sampled and reconstructed potential
We assume that we do not know the true potential 𝑞(𝑥), but only a finite number of samples
on a uniform 𝑥-grid. We are going to define a reconstruction of the potential, for which we
can integrate the Schrödinger equation while keeping track of the number of zero-crossings.
We denote the number of samples by 𝐷 and the step size by 𝜀. That is, if 𝑥1 is the first grid
point, then all the grid points are given by 𝑥𝑑 = 𝑥1 + (𝑑 − 1)𝜀, where 𝑑 ∈ {1, 2, … , 𝐷} and
the known potential samples are 𝑞𝑑 ≔ 𝑞(𝑥𝑑). For notational convenience, we define around
each grid point an interval (𝑥l

𝑑, 𝑥u
𝑑 ) ≔ (𝑥𝑑 − 𝜀

2 , 𝑥𝑑 + 𝜀
2). Indeed, for 𝑑 < 𝐷 it follows that

𝑥l
𝑑+1 = 𝑥u

𝑑 .
We will compute 𝑎(𝜅) and 𝑠(−∞, ∞, 𝜅) first for the simplest reconstruction of the po-

tential from the samples 𝑞𝑑. That is, we use a piecewise constant reconstruction, ̂𝑞(𝑥), by
the midpoint rule. The known potential samples give no information about 𝑞(𝑥) for 𝑥 ∉
(𝑥l

1, 𝑥u
𝐷). Therefore we set in the reconstruction ̂𝑞(𝑥) = 0 for 𝑥 ∉ (𝑥l

1, 𝑥u
𝐷). Hence,

̂𝑞(𝑥) ≔
𝐷

∑
𝑑=1

𝑞𝑑J𝑥l
𝑑 < 𝑥 < 𝑥u

𝑑 K. (3.8)

(Please refer to Section 3.2.1 for the meaning of the Iverson bracket J K.) The eigenvalues
of ̂𝑞(𝑥) approximate those of 𝑞(𝑥) up to an error term 𝒪(𝜀2). After demonstrating the
computation for ̂𝑞(𝑥), we discuss in Section 3.3.4 how to upgrade the method such that the
error term reduces to 𝒪(𝜀4) for sufficiently smooth potentials.
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3.3.2. Numericalcomputationofthe scatteringparameter 𝑎(𝜅)and
the accounting function

In numerical computations, it is convenient to replace (3.6) by an algebraic expression. We
do that by defining vector valued trajectories as

𝒇C(𝑥, 𝜅) ≔ [ 𝑓 (𝑥, 𝜅)
𝜕

𝜕𝑥 𝑓 (𝑥, 𝜅)] . (3.9)

Then (3.6) is equivalent to the algebraic expression

𝑎(𝜅) ≡ 1
2 𝝍⊤

C(𝑥, 𝜅) [ 0 𝜅−1

−𝜅−1 0 ] 𝝓C(𝑥, 𝜅). (3.10)

Both (3.6) and (3.10) hold for all 𝑥. Therefore, 𝑎(𝜅) can be computed at any matching point
𝑥 for which both 𝝓C(𝑥, 𝜅) and 𝝍C(𝑥, 𝜅) are known. For simplicity, we will evaluate (3.10)
at 𝑥 = 𝑥u

𝐷 in the analysis that follows.⁷ Therefore we need to propagate 𝜙(𝑥, 𝜅) as defined in
(3.4) from −∞ to 𝑥u

𝐷. We do that by exactly solving the Schrödinger equation (3.2) in every
constant piece of the reconstruction of the potential, (3.8). Likewise, we propagate 𝜓(𝑥, 𝜅)
as defined in (3.5) back from ∞ to 𝑥u

𝐷.
Furthermore, we evaluate the accounting function. Wewill do that by summing the zero-

crossings of 𝜙(𝑥, 𝜅) in every piecewise constant interval of the reconstructed potential. That
is,

𝑠(−∞, ∞, 𝜅) = 𝑠(−∞, 𝑥l
1, 𝜅) + ⎛⎜

⎝

𝐷
∑
𝑑=1

𝑠(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅)⎞⎟
⎠

+ 𝑠(𝑥u
𝐷, ∞, 𝜅). (3.11)

When we evaluate the accounting function (3.11) numerically, we must be very careful with
the treatment of the number zero. Firstly, to determine the sign of 𝜙(𝑥, 𝜅) near one of
its zero-crossings, we must use the same intermediate value 𝜙(𝑥u

𝑑 , 𝜅) for the computation
of 𝑠(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) as for the computation of 𝜙(𝑥u

𝑑+1, 𝜅) and further. Otherwise the sign of
𝜙(𝑥u

𝑑 , 𝜅) may differ between the two computation paths. We will come back to this in (3.18)
and the discussion thereafter. Secondly, we must be careful to obtain a correct result in case
any intermediate value 𝜙(𝑥u

𝑑 , 𝜅) equals exactly 0. We found that the simplest treatment is
to consider zero as a positive number. That means that we count the crossings at 0−, between
zero and the smallest representable negative number. Since 0− has no representation in finite
precision, these crossings can numerically never lie exactly on an 𝑥 grid point. This allowed
us to write (3.11) as a summation of zero crossings in open rather than closed intervals.

We have to be careful with the case lim𝑥→∞ 𝜙(𝑥, 𝜅) = 0. Even if 𝜙(𝑥, 𝜅) approaches
zero from below as 𝑥 → ∞, we must not count this as a zero crossing. This might sound
obvious at this point, but later, namely in (3.20), it will lead to one strict inequality ‘> 0’,
whereas we need ‘≥ 0’ everywhere else, in accordance with the treatment of zero as a pos-
itive number. This exception is essential for the working of the algorithm when 𝑎(𝐾𝑛) is

⁷If the numerical representation of the trajectories causes an overflow during the computation, a different choice
of 𝑥 is a possible workaround. However, one could also solve it by rescaling the trajectory by a suitable non-zero
scalar factor 𝑐, i.e. 𝒇C(𝑥, 𝜅) ← 𝑐 𝒇C(𝑥, 𝜅), and look for the roots of 𝑐 𝑎(𝜅)), and/or, if 𝜅 ≠ 0, by choosing a more
suitable basis for the representation of the trajectories. Cf. Section 5.3.
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numerically equal to zero for any eigenvalue. It can be verified that lim𝑥→∞ 𝜙(𝑥, 𝜅) = 0
indicates that 𝜅 is an eigenvalue and that the eigenfunctions of 𝐾𝑁 , 𝐾𝑁−2, … approach
zero from above as 𝑥 → ∞, whereas those of 𝐾𝑁−1, 𝐾𝑁−3, … approach from below. By
never counting lim𝑥→∞ 𝜙(𝑥, 𝜅) = 0 as a zero-crossing, we obtain a consistent behaviour
of the accounting function at its steps. Namely, 𝑠(−∞, ∞, 𝐾𝑛) ≔ lim𝜅↓𝐾𝑛

𝑠(−∞, ∞, 𝜅) ≡
lim𝜅↑𝐾𝑛

𝑠(−∞, ∞, 𝜅)−1, where ↓ denotes the limit from above and ↑ denotes the limit from
below.

The lower tail: 𝑥 ∈ (−∞, 𝑥l
1)

In the interval 𝑥 ∈ (−∞, 𝑥l
1) we know that 𝜙(𝑥, 𝜅) satisfies the Schrödinger equation (3.2)

and the boundary condition (3.4). The reconstructed potential ̂𝑞(𝑥) is zero in this interval.
It is readily verified that the solution in this interval is 𝜙(𝑥, 𝜅) ≡ exp(𝜅𝑥). Hence at the
boundary of the next interval we find

𝝓C(𝑥l
1, 𝜅) = [1

𝜅] exp(𝜅𝑥l
1). (3.12)

The Jost solution 𝜙(𝑥, 𝜅) has no zero-crossings in this interval, so 𝑠(−∞, 𝑥l
1, 𝜅) = 0.

The support: 𝑥 ∈ (𝑥l
1, 𝑥u

𝐷)
The computations in this interval are similar to those for the periodic boundary condition
algorithm of Osborne [102], but improve on it by a more robust computation of the account-
ing function. This interval consists of 𝐷 adjacent subintervals (𝑥l

𝑑, 𝑥u
𝑑 ). In each of these

subintervals the potential is constant. Therefore the Schrödinger equation (3.2) in the 𝑑-th
subinterval simplifies to 𝜕2

𝜕𝑥2 𝜙(𝑥, 𝜅) = 𝜅2−𝑞𝑑. The vector-valued Jost solution thus satisfies

𝜕
𝜕𝑥 𝝓C(𝑥, 𝜅) = 𝑨C(𝑞𝑑, 𝜅) 𝝓C(𝑥, 𝜅), (3.13)

where

𝑨C(𝑞𝑑, 𝜅) ≔ [ 0 1
𝜅2 − 𝑞𝑑 0] . (3.14)

By solving (3.13) subject to the boundary condition at 𝑥 = 𝑥l
𝑑, we find at 𝑥 = 𝑥u

𝑑 = 𝑥l
𝑑+1

that

𝝓C(𝑥u
𝑑 , 𝜅) = 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) 𝝓C(𝑥l

𝑑, 𝜅), (3.15)

where the change of state matrix

𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) = exp(𝜀 𝑨C(𝑞𝑑, 𝜅)) = [ cos(𝛾𝜀) 𝜀 sinc(𝛾𝜀)
−𝛾 sin(𝛾𝜀) cos(𝛾𝜀) ] , (3.16)

where

𝛾 ≔ √𝑞𝑑 − 𝜅2, sinc(𝛾𝜀) ≔ sin(𝛾𝜀)
𝛾𝜀 J𝛾𝜀 ≠ 0K + J𝛾𝜀 = 0K.
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We remark that 𝛾 is either real or imaginary, but 𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) is always real.
To count the number of zero-crossings of 𝜙(𝑥, 𝜅) in the 𝑑-th subinterval, it is not suffi-

cient in general to look only at the signs of 𝜙(𝑥u
𝑑 , 𝜅) and 𝜙(𝑥l

𝑑, 𝜅) as in [102]. The simplest
way to see this, is by looking at the structure of the closed form solution of 𝜙(𝑥, 𝜅) in the
𝑑-th subinterval. That is,

𝜙(𝑥, 𝜅) =

⎧{{
⎨{{⎩

𝑐1 exp(−𝑥√𝜅2 − 𝑞𝑑) + 𝑐2 exp(𝑥√𝜅2 − 𝑞𝑑) 𝑞𝑑 − 𝜅2 < 0,
𝑐1 + 𝑐2𝑥 𝑞𝑑 − 𝜅2 = 0,
𝑐1 sin(𝑐2 + 𝑥√𝑞𝑑 − 𝜅2) 𝑞𝑑 − 𝜅2 > 0;

(3.17)

where 𝑐1 and 𝑐2 are real constants. If 𝑞𝑑 − 𝜅2 ≤ 0 (the non-oscillatory case) we see from
(3.17) that the number of zero-crossings in the 𝑑-th interval is either zero or one. Under
that condition the number of zero-crossings can be determined reliably by comparing the
signs of 𝜙(𝑥l

𝑑, 𝜅) and 𝜙(𝑥u
𝑑 , 𝜅). However, the oscillatory case 𝑞𝑑 − 𝜅2 > 0 requires a more

careful computation, because there could bemore than one zero-crossing in the 𝑑-th interval.
In the oscillatory case we need to look at the propagation of the phase of the sine in (3.17)
across the 𝑑-th interval, and compute the number of zero-crossings accordingly. If 0 <
𝜀2(𝑞𝑑 − 𝜅2) < π2, the number of zero-crossings is still at most one. Hence, both ways of
counting 𝑠(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) are valid in this domain. Sign comparison is computationally cheaper,

but switching between the two computations exactly at 𝜀2(𝑞𝑑 −𝜅2) = π2 is numerically not
robust. Therefore we choose to switch at 𝜀2(𝑞𝑑 − 𝜅2) = 32. Hence, we count the number of
zero-crossings in the interval (𝑥l

𝑑, 𝑥u
𝑑 ) as

𝑠(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) =
⎧{
⎨{⎩

∣
q
𝜙(𝑥u

𝑑 , 𝜅) ≥ 0
y

−
q
𝜙(𝑥l

𝑑, 𝜅) ≥ 0
y
∣ (𝜀𝛾)2 < 9,J𝜙(𝑥u

𝑑 , 𝜅) ≥ 0K − J𝜙(𝑥l
𝑑, 𝜅) ≥ 0K + 2⌊ 𝜀𝛾−𝜃(𝑥u

𝑑 )+𝜃(𝑥l
𝑑)

2π ⌉ (𝜀𝛾)2 ≥ 9;
(3.18)

where 𝛾 = √𝑞𝑑 − 𝜅2 , 𝜃(𝑥) ≔ atan2(𝛾 𝜙(𝑥, 𝜅), 𝜕
𝜕𝑥 𝜙(𝑥, 𝜅)), and ‘⌊ ⌉’ means ‘round to the

nearest integer’. The four-quadrant arctangent is defined by

atan2(𝑦, 𝑧) ≔
⎧{{
⎨{{⎩

atan(𝑦
𝑧 ) + πJ𝑧 < 0K(J𝑦 ≥ 0K − J𝑦 < 0K) 𝑧 ≠ 0,

π
2 (J𝑦 ≥ 0K − J𝑦 < 0K) 𝑧 = 0 ∧ 𝑦 ≠ 0,
undefined 𝑧 = 0 ∧ 𝑦 = 0.

(3.19)

The values that are needed to evaluate (3.18) are thus 𝑞𝑑, 𝜅, 𝝓C(𝑥l
𝑑, 𝜅) and 𝝓C(𝑥u

𝑑 , 𝜅) as
computed with (3.15). Note that it is important to follow the definitions above carefully
when either 𝜙(𝑥l

𝑑, 𝜅) = 0, or 𝜙(𝑥u
𝑑 , 𝜅) = 0. That is, zero counts as a positive number.

Let us highlight the merit of (3.18) in comparison to the literature. When we use the
accounting function 𝑠(−∞, ∞, 𝜅) in the search for eigenvalues, we sample it at different
values of 𝜅. The accounting function is a non-increasing staircase function of 𝜅. This fact
is implicitly exploited while bracketing the eigenvalues. Therefore, if a numerical evaluation
of the accounting function is off by only ±1, the perception of the accounting function will
be very different. The error will often remain unnoticed because the implicit assumption
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of a non-increasing staircase prevents the algorithm from taking suitable samples for that.
Hence, it is essential to count every zero-crossing exactly once. As mentioned before, Osborne
[102] relies on the cheap sign check in the upper line of (3.18), for every value of (𝜀𝛾)2.
This may lead to a miscount if π2 ≤ (𝜀𝛾)2 < (2π)2 and will surely lead to a miscount
if (𝜀𝛾)2 ≥ (2π)2. Pruess and Fulton [115, §4], Ixaru, Meyer, and Berghe [69, §5.2], and
Ledoux and Van Daele [84, §4.2] distinguish between the non-oscillatory case (𝜀𝛾)2 ≤ 0
where the cheap sign check suffices, and the oscillatory case (𝜀𝛾)2 > 0 where they all use a
more expensive computation. However, the step size 𝜀 of a sampled input signal is usually
small compared to the fastest oscillation in any of the trajectories in practice, in order to have
a sufficiently accurate representation of that signal. Therefore, most of the oscillatory case
samples will be in the interval 0 < (𝜀𝛾)2 < 9, for which we can safely use the cheap sign
check. Our computation is thus more efficient in this respect.

Furthermore, the oscillatory case computation that is used by [115, §4] is not robust
when a zero-crossing occurs close to 𝑥u

𝑑 . The problem is that the sign of𝜙(𝑥u
𝑑 , 𝜅) is implicitly

computed twice: First from 𝜙(𝑥l
𝑑, 𝜅) and 𝜀𝛾 to count the zeros in the 𝑑th subinterval and

second with (3.15) to obtain the initial condition for the next subinterval, 𝜙(𝑥l
𝑑+1, 𝜅). If

there is a zero-crossing near 𝑥u
𝑑 , then due to numerical inaccuracies one computation may

end up just above zero while the other ends up just below zero. The consequence is then
that this zero-crossing is counted either twice or not at all. We instead compute 𝜙(𝑥u

𝑑 , 𝜅) =
𝜙(𝑥l

𝑑+1, 𝜅) once, with (3.15). As indicated in the bottom case of (3.18), we only use 𝜀𝛾
to count the number of full oscillations (with two zero-crossings each) that remains after
accounting for the initial phase angle 𝜃(𝑥l

𝑑) and final phase angle 𝜃(𝑥u
𝑑 ). This ensures that

with our computation a zero-crossing near 𝑥u
𝑑 = 𝑥l

𝑑+1 is always counted either in the 𝑑th or in
the (𝑑 + 1)th subinterval.

The computation for the oscillatory case that is used by [69, §5.2] and Ledoux and Van
Daele [84, §4.2] also makes use of 𝜙(𝑥u

𝑑 , 𝜅), but it has another vulnerability. Their idea
is to use 𝜙(𝑥u

𝑑 , 𝜅) to add a small correction to the phase propagation 𝜀𝛾. However the
way their equations handle the branch cuts of the (single variable) arctangent function is
not numerically robust. These branch cuts occur in their case (but in our notation) when
𝜕

𝜕𝑥 𝜙(𝑥l
𝑑, 𝜅) = 0 and when 𝜕

𝜕𝑥 𝜙(𝑥u
𝑑 , 𝜅) = 0. The compensation for these branch cuts

takes place when 𝜗(𝑥u
𝑑 ) − (𝜀𝛾 + 𝜗(𝑥l

𝑑)) − π⌊ 1
π(𝜀𝛾 + 𝜗(𝑥l

𝑑))⌋ = ±π
2 , where 𝜗(𝑥) ≔

atan(𝛾 𝜙(𝑥, 𝜅)/( 𝜕
𝜕𝑥 𝜙(𝑥, 𝜅))). Since this requires different comparisons between floating

point numbers, rounding errors will very likely cause glitches near the branch cuts. Equa-
tion (3.18) instead uses 𝜙(𝑥u

𝑑 , 𝜅) in essence to compute a ‘signed parity’ of the number of
zero-crossings and then adds as the third term a ‘correction’ for the number of full cycles
based on 𝜀𝛾 minus a correction for the angles 𝜃(𝑥u

𝑑 ) ∈ (−π, π] and 𝜃(𝑥l
𝑑) ∈ (−π, π].⁸

The merit is that our branch cut compensation always checks, up to multiplication by 𝛾, the
sign of the same floating point number that causes the branch cut.⁹ Hence, if 𝜙(𝑥l

𝑑, 𝜅) is
perturbed near zero, then 𝜃(𝑥l

𝑑) and
q
𝜙(𝑥l

𝑑, 𝜅) ≥ 0
y

in (3.18) are guaranteed to flip simul-
taneously. Likewise, if 𝜙(𝑥u

𝑑 , 𝜅) is perturbed near zero, then 𝜃(𝑥u
𝑑 ) and

q
𝜙(𝑥u

𝑑 , 𝜅) ≥ 0
y
are

⁸That is, the number between the rounding brackets ⌊⌉ in (3.18) should be an integer already, up to the effects of
numerical error.
⁹Numerical multiplication by 𝛾 will not change the sign, since 𝛾 > 3/𝜀 ≫ 0, unless the data is unrealistically
poorly normalized.
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guaranteed to flip simultaneously. This ensures that with our computation, no glitches occur
near the branch cuts of the four-quadrant arctangent.

The higher tail: 𝑥 ∈ (𝑥u
𝐷, ∞)

In the interval (𝑥u
𝐷, ∞) the reconstructed potential is zero. We first solve the Schrödinger

equation (3.2) for the boundary condition 𝝓C(𝑥u
𝐷, 𝜅) in order to find the number of zero-

crossings. Since 𝑞(𝑥) = 0 ≤ 𝜅2, we see from (3.17) that the number of zero-crossings in
this interval is either zero or one. This number can be computed by comparing the sign of
𝜙(𝑥u

𝐷, 𝜅) to the sign of lim𝑥→∞ 𝜙(𝑥, 𝜅) as follows.

𝑠(𝑥u
𝐷, ∞, 𝜅) =

q
[ 1 0 ] 𝝓C(𝑥u

𝐷, 𝜅) < 0 ∧ [ 𝜅 1 ] 𝝓C(𝑥u
𝐷, 𝜅) > 0

y
+ …q

[ 1 0 ] 𝝓C(𝑥u
𝐷, 𝜅) ≥ 0 ∧ [ 𝜅 1 ] 𝝓C(𝑥u

𝐷, 𝜅) < 0
y
.

(3.20)

As discussed earlier in this section, the condition [ 𝜅 1 ] 𝝓C(𝑥u
𝐷, 𝜅) > 0 is the only exception

we must make to counting zero as a positive number, to obtain a consistent behaviour of the
accounting function at the eigenvalues.

Next, we need to compute 𝝍C(𝑥u
𝐷, 𝜅), so that we can compute 𝑎(𝜅) from (3.10) at 𝑥 =

𝑥u
𝐷. We thus solve the Schrödinger equation (3.2) with a potential of zero for the boundary

condition (3.5). It is readily verified that the solution in this interval is 𝜓(𝑥, 𝜅) ≡ exp(−𝜅𝑥).
Hence we obtain at 𝑥 = 𝑥u

𝐷

𝝍C(𝑥u
𝐷, 𝜅) = [ 1

−𝜅] exp(−𝜅𝑥u
𝐷). (3.21)

3.3.3. Numerical computation of the gradient of the scattering pa-
rameter 𝑎(𝜅)

In order to find the roots of 𝑎(𝜅), we will make use of the gradient 𝑎′(𝜅) ≔ d
d𝜅 𝑎(𝜅). If we

take the derivative of (3.10) with respect to 𝜅, we find

[ 𝑎(𝜅)
𝑎′(𝜅)] ≡ 1

2 [ 𝝍⊤
C(𝑥, 𝜅) [ 0 0 ]

𝜕
𝜕𝜅 𝝍⊤

C(𝑥, 𝜅) 𝝍⊤
C(𝑥, 𝜅)]

⎡
⎢⎢⎢
⎣

0 𝜅−1 0 0
−𝜅−1 0 0 0

0 −𝜅−2 0 𝜅−1

𝜅−2 0 −𝜅−1 0

⎤
⎥⎥⎥
⎦

[ 𝝓C(𝑥, 𝜅)
𝜕

𝜕𝜅 𝝓C(𝑥, 𝜅)] ,

(3.22)

where we have used the convenient formulation of the scalar derivative of matrix products
found in [17]. For the computation of 𝑎′(𝜅) we need to extend the equations in Section 3.3.2
as follows. The derivatives with respect to 𝜅 of (3.12) and (3.21) are respectively

𝜕
𝜕𝜅 𝝓C(𝑥l

1, 𝜅) = [1
𝜅] 𝑥l

1 exp(𝜅𝑥l
1); (3.23)

𝜕
𝜕𝜅 𝝍C(𝑥u

𝐷, 𝜅) = [−1
𝜅 ] 𝑥u

𝐷 exp(−𝜅𝑥u
𝐷). (3.24)
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Then 𝜕
𝜕𝜅 𝝓C(𝑥, 𝜅) needs to be propagated from 𝑥 = 𝑥l

1 to 𝑥 = 𝑥u
𝐷. Wewill do that according

to [17, 104]. That is, we augment (3.13) to

𝜕
𝜕𝑥 [ 𝝓C(𝑥, 𝜅)

𝜕
𝜕𝜅 𝝓C(𝑥, 𝜅)] = 𝑨C(𝑞𝑑, 𝜅) [ 𝝓C(𝑥, 𝜅)

𝜕
𝜕𝜅 𝝓C(𝑥, 𝜅)] , (3.25)

where

𝑨C(𝑞𝑑, 𝜅) ≔ [ 𝑨C(𝑞𝑑, 𝜅) [ 0 0
0 0 ]

𝜕
𝜕𝜅 𝑨C(𝑞𝑑, 𝜅) 𝑨C(𝑞𝑑, 𝜅)] =

⎡⎢⎢⎢
⎣

0 1 0 0
𝜅2 − 𝑞𝑑 0 0 0

0 0 0 1
2𝜅 0 𝜅2 − 𝑞𝑑 0

⎤⎥⎥⎥
⎦

. (3.26)

Analogous to (3.15) it follows that

[
𝝓C(𝑥u

𝑑 , 𝜅)
𝜕

𝜕𝜅 𝝓C(𝑥u
𝑑 , 𝜅)] = 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) [ 𝝓C(𝑥l

𝑑, 𝜅)
𝜕

𝜕𝜅 𝝓C(𝑥l
𝑑, 𝜅)] , (3.27)

where the augmented change of state matrix

𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) ≔ exp(𝜀 𝑨C(𝑞𝑑, 𝜅)) = [ 𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) [ 0 0
0 0 ]

𝜕
𝜕𝜅 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅)]

=
⎡⎢⎢⎢⎢
⎣

cos(𝛾𝜀) 𝜀 sinc(𝛾𝜀) 0 0
−𝛾 sin(𝛾𝜀) cos(𝛾𝜀) 0 0
𝜅𝜀2 sinc(𝛾𝜀) 𝜅𝜀

𝛾2 (sinc(𝛾𝜀) − cos(𝛾𝜀)) cos(𝛾𝜀) 𝜀 sinc(𝛾𝜀)
𝜅𝜀(sinc(𝛾𝜀) + cos(𝛾𝜀)) 𝜅𝜀2 sinc(𝛾𝜀) −𝛾 sin(𝛾𝜀) cos(𝛾𝜀)

⎤⎥⎥⎥⎥
⎦

. (3.28)

A root finder that makes use of the gradient usually requires fewer iterations, but each
iteration is computationally costlier. In order to determine if it pays off in this case to use the
gradient, we need to determine if the first outweighs the latter. In Table 3.2 we have therefore
counted the number of FLoating point OPerations (FLOPs) to compute respectively the two
by two matrix 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) and the matrix vector multiplication in (3.15), or the four by

four matrix 𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) and the matrix vector multiplication in (3.27). Since the num-
ber of repetitions of this part of the computation scales proportionally to the (usually large)
number of samples 𝐷, this part dominates the computational cost of evaluating (3.10) or
(3.22) respectively. For the basic operations in Table 3.2 we assumed the number of FLOPs
that was estimated in [68, p. 5]. In practice FLOP counts vary between different implemen-
tations, programming languages, compilers and hardware architectures. Therefore, these
results should be treated as rough estimates. The results in Table 3.2 show that an evalua-
tion of 𝑎(𝜅) alone takes roughly 35𝐷 FLOPs plus overhead. The computation of 𝑎′(𝜅) at the
same value of 𝜅 takes roughly 24𝐷 FLOPs extra. Hence, we estimate that every iteration of
a gradient based root finder is roughly 70 % more expensive than an iteration of a gradient
free root finder.

3.3.4. Upgrade to fourth order accuracy
In Section 3.3.2 we approximated the scattering parameter 𝑎(𝜅) of a potential 𝑞(𝑥). Thereto
we used an exact computation (in infinite precision) for the reconstructed potential ̂𝑞(𝑥),
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Calculation Operation(s) FLOPs

𝛾2 ← 𝑞𝑑 − 𝜅 ⋅ 𝜅 1 × and 1 ± 2

𝛾 ← √𝛾2 1 √ 4
𝛾𝜀 ← 𝛾 ⋅ 𝜀 1 × 1

cos(𝛾𝜀) ← cos(𝛾𝜀) 1 cos 8
sin(𝛾𝜀) ← sin(𝛾𝜀) 1 sin 8

𝜀 sinc(𝛾𝜀) ← sin(𝛾𝜀) ∕ 𝛾 1 ÷ 4
−𝛾 sin(𝛾𝜀) ← −𝛾 ⋅ sin(𝛾𝜀) 1 × and 1 ± 2

Right-multiply a 2 × 2 matrix by a vector 4 × and 2 ± 6

Total FLOPs per 𝜅-sample per 𝑥-sample to compute 𝑎(𝜅) : 35

𝜅𝜀 ← 𝜅 ⋅ 𝜀 1 × 1
𝜅𝜀2 sinc(𝛾𝜀) ← 𝜅𝜀 ⋅ 𝜀 sinc(𝛾𝜀) 1 × 1
𝜅𝜀 sinc(𝛾𝜀) ← 𝜅 ⋅ 𝜀 sinc(𝛾𝜀) 1 × 1
𝜅𝜀 cos(𝛾𝜀) ← 𝜅𝜀 ⋅ cos(𝛾𝜀) 1 × 1

𝜅𝜀(sinc(𝛾𝜀) + cos(𝛾𝜀)) ← 𝜅𝜀 sinc(𝛾𝜀) + 𝜅𝜀 cos(𝛾𝜀) 1 ± 1
𝜅𝜀
𝛾2 (sinc(𝛾𝜀) − cos(𝛾𝜀)) ← (𝜅𝜀 sinc(𝛾𝜀) − 𝜅𝜀 cos(𝛾𝜀)) ∕ 𝛾2 1 ± and 1 ÷ 5

Right-multiply a 2 × 4 matrix by a vector 8 × and 6 ± 14

Extra FLOPs per 𝜅-sample per 𝑥-sample to compute also the gradient 𝑎′(𝜅) : 24

Table 3.2: Count of the amount of FLOPs that is required per 𝑥-sample to compute 𝑎(𝜅) at one sample 𝜅, and
the extra amount for computing also the gradient 𝑎′(𝜅). The underlined expressions should be interpreted as
a single variable with a known quantity. Initially, only the potential sample 𝑞𝑑, the spatial step size 𝜀, and the
spectral parameter 𝜅 are known. The upper part of the table regards the computation of 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) according

to (3.16), and the multiplication in (3.15). This appears to take 35 FLOPs. The lower part of the table regards
the extra operations for the computation of 𝑯C(𝑥l

𝑑, 𝑥u
𝑑 , 𝜅) according to (3.28), and the multiplication in (3.27).

Once the values of the upper part of the table are known, this appears to take 24 additional FLOPs. Hence, the
whole computation of 𝑎(𝜅), 𝑠(−∞, ∞, 𝜅) and 𝑎′(𝜅) takes 59 FLOPs per 𝑥-sample, per 𝜅 sample. The overhead,
that does not depend on the number of samples, is ignored. The number of FLOPs that are required for each
basic operation, are obtained from [68, p. 5]. In practice FLOP counts vary between different implementations,
programming languages, compilers and hardware architectures. Therefore, these results should be treated as rough
estimates.
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defined in (3.8). This piecewise constant reconstruction enabled the relatively simple com-
putation in (3.15) and (3.16). With respect to the true potential 𝑞(𝑥), (3.15) implements
the exponential midpoint rule, which is also known as CF[2]

1 .1⁰ The exponential midpoint
rule provides an approximation of order two in the step size [16, p. 244]. Consequently, we
obtain from (3.10) 𝑎(𝜅) + 𝒪(𝜀3). The same considerations and error order apply to the
computation of the gradient 𝑎′(𝜅) according to (3.22) in Section 3.3.3.

If the potential is sufficiently smooth, a more accurate reconstruction of 𝑎(𝜅) and 𝑎′(𝜅)
can be obtained by using a higher order integrator. In particular, we will use the fourth order
integrator CF[4]

2 [16, Eq. 12]:

𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) ≔ exp( 𝜀
2 𝑨C( ̌𝑞2𝑑, 𝜅)) exp( 𝜀

2 𝑨C( ̌𝑞2𝑑−1, 𝜅)), (3.29)

where

[ ̌𝑞2𝑑−1
̌𝑞2𝑑

] ≔ 1
2√3

⎡⎢
⎣
√3 + 2 √3 − 2
√3 − 2 √3 + 2

⎤⎥
⎦

⎡⎢⎢
⎣

𝑞(𝑥m
𝑑 − 𝜀/(2√3))

𝑞(𝑥m
𝑑 + 𝜀/(2√3))

⎤⎥⎥
⎦
. (3.30)

To obtain the non-equispaced samples of 𝑞(𝑥) that are required in (3.30), we use band limited
interpolation, as proposed in [32]. Since this particular non-equispaced grid consists of
two equispaced grids, the interpolation requires only three11 Fast Fourier Transform (FFT)
computations, with a complexity of 𝒪(𝐷 log(𝐷)), and is thus computationally cheap.

We see that the computation of 𝑯C(𝑥l
𝑑, 𝑥u

𝑑 , 𝜅) in (3.29) has the same structure as the
one in (3.16), for two adjacent steps of step size 𝜀/2. That is, the approximation of 𝑎(𝜅) and
𝑎′(𝜅) that we obtain from the CF[4]

2 integrator are (in infinite precision) the exact results for
the preprocessed potential

̌𝑞(𝑥) ≔
𝐷

∑
𝑑=1

( ̌𝑞2𝑑−1J𝑥l
𝑑 < 𝑥 < 𝑥𝑑K + ̌𝑞2𝑑J𝑥𝑑 < 𝑥 < 𝑥u

𝑑 K)
=

2𝐷
∑
𝑑=1

̌𝑞𝑑J ̌𝑥l
𝑑 < 𝑥 < ̌𝑥u

𝑑 K, (3.31)

where ̌𝑥l
𝑑 ≔ 𝑥l

1 + (𝑑 − 1) 𝜀
2 and ̌𝑥u

𝑑 ≔ ̌𝑥l
𝑑 + 𝜀

2 .
Since we can interpret the approximations by the CF[4]

2 integrator as the exact results
for a real piecewise constant potential, the computations of the accounting function in Sec-
tion 3.3.2 still apply. We only have to use the preprocessed potential samples ̌𝑞𝑑(𝑥), half the
step size 𝜀, and double the number of samples 𝐷.

It is natural to ask if this approach can be extended to integrators of orders above four.
Unfortunately, higher order CF integrators require complex coefficients or negative step sizes

1⁰CF stands for commutator-free quasi-Magnus exponential integrators. The superscript number denotes the order
of accuracy in the step size 𝜀. The subscript denotes the number of matrix exponentials per step.

11If it is permissible to shift the truncation window from 𝑥 ∈ [𝑥l
1, 𝑥u

𝐷] to 𝑥 ∈ [𝑥l
1 ± 𝜀/(2√3), 𝑥u

𝐷 ± 𝜀/(2√3)],
the number of required Fast Fourier Transform (FFT) operations can be reduced to two, by using (instead of two
shifted grids) the original grid on which the samples are known together with one grid that is shifted by ∓𝜀/√3.
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[11, 16]. Therefore these break the aforementioned interpretability on which our approach
relies. Integrators that assume a piecewise polynomial approximation of the potential lead
to more complicated piecewise expressions for the trajectory than (3.17). Thus in (3.18) the
phase propagation changes from 𝜀𝛾 to 𝜀𝛾 + 𝒪(𝜀2), cf. [84]. If these higher order terms
amount to π or more, then (3.18) will no longer count the correct number of zero crossings.
Especially when some of the accuracy gain of such a higher order integrator is traded against
a larger step size 𝜀, these higher order terms might become significant. Dealing with this
effect in a numerically robust way will need further investigation.

3.4. Algorithm to compute the eigenvalues
In this section we present the algorithm that we propose for computing the eigenvalues of
the KdV. We have seen in Section 3.2 that the spectral parameter 𝑎(𝜅) and the accounting
function 𝑠(−∞, ∞, 𝜅) both contain the full information on the eigenvalues 𝐾𝑛. Numerically,
we can only compute these functions for one sample of 𝜅 at a time. Therefore we need a
strategy to choose these samples and a system to accumulate the information that we obtain
at each new sample. We start with the latter in Section 3.4.1. In Sections 3.4.2 and 3.4.3
we proceed with respectively an existing and the proposed strategy to choose the samples 𝜅.
The existing strategy, bisection, both serves as a benchmark algorithm in Section 3.5 and as
a stepping stone towards the exposition of the proposed algorithm.

3.4.1. Bounds on the eigenvalues
Our aim is to find the eigenvalues 𝐾𝑛 from a numerical algorithm. More precisely, we first
want to determine the number of eigenvalues 𝑁. Thereto we compute 𝑁 ← 𝑠(−∞, ∞, 0).
Next, we want to find each eigenvalue 𝐾𝑛 with 𝑛 ∈ {1, 2, … , 𝑁} up some user-selectable
tolerance Δ, with respect to the eigenvalues of the discretized potential. That is, we want
to find 𝑁 lower bounds 𝐾l

𝑛 and 𝑁 upper bounds 𝐾u
𝑛 , such that �̂�𝑛 ∈ (𝐾l

𝑛, 𝐾u
𝑛 ) and 𝐾u

𝑛 −
𝐾l

𝑛 ≤ Δ for all 𝑛 ∈ {1, 2, … , 𝑁}. The interval (𝐾l
𝑛, 𝐾u

𝑛 ) is called a bracket (of the 𝑛th
eigenvalue). Furthermore, we store the value of the scattering parameter 𝑎(𝜅) at all bounds.
In the end we will use those residuals to select for each eigenvalue a best guess between the
lower and upper bound, based on aminimal residual criterion. The bounds together with the
residuals form our current knowledge about the eigenvalues. The initial bounds are the same
for all eigenvalues: 𝐾l

𝑛 ← 0 and 𝐾u
𝑛 ← √max(0, max𝑑 ̌𝑞𝑑). (See Section 3.2.2 and (3.31).)

If max𝑑 ̌𝑞𝑑 ≤ 0, so all samples are non-positive, it follows immediately that the discrete
spectrum is an empty set. In that case there is no need to do any other computations than
this simple check.

To increase our knowledge about the eigenvalues we proceed as follows. We select a value
for 𝜅 and then evaluate the scattering parameter 𝛼 ← 𝑎(𝜅) and the accounting function 𝜍 ←
𝑠(−∞, ∞, 𝜅). In Fig. 3.1 we show how we use these results to update our knowledge about
the eigenvalues. Since the accounting function signifies the number of greater eigenvalues,
its value 𝜍 tells us that 𝐾𝑛 < 𝜅 for 𝑛 ∈ {1, 2, … 𝑁 − 𝜍}. Therefore, 𝜅 is an upper bound on
this subset of the eigenvalues. If this upper bound is tighter than the previously known upper
bound, we overwrite it. Similarly 𝜅 is a lower bound on 𝐾𝑛 for 𝑛 ∈ {𝑁−𝜍+1, … , 𝑁−1, 𝑁}.
If this bound is tighter than the previously known lower bound, we overwrite it.

If 𝛼 = 0, we know that 𝜅 is an eigenvalue. In that case 𝜙(𝑥, 𝜅) → 0 as 𝑥 → ∞, but
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Start 𝑛 ← 𝑛 + 1

𝑛 ← 1 𝑛 ≤ 𝑁 − 𝜍 ? 𝐾u
𝑛 > 𝜅 ?

𝑛 ← 𝑛 + 1

𝐾l
𝑛 < 𝜅 ? 𝑛 ≤ 𝑁 ?

𝛼 = 0 ?

Stop

𝐾u
𝑛 ← 𝜅

𝑎u
𝑛 ← 𝛼

𝐾l
𝑛 ← 𝜅

𝑎l
𝑛 ← 𝛼

𝐾l
𝑁−𝜍 ← 𝜅

𝐾u
𝑁−𝜍 ← 𝜅

𝑎l
𝑁−𝜍 ← 0

𝑎u
𝑁−𝜍 ← 0

Y

N

N

Y

Y

N

N

Y
Y

N

𝜍 = 𝑠(−∞, ∞, 𝜅)
𝛼 = 𝑎(𝜅)

For 1 ≤ 𝑛 ≤ 𝑁 − 𝜍, 𝜅 is an upper bound of 𝐾𝑛 .

For 𝑁 − 𝜍 < 𝑛 ≤ 𝑁, 𝜅 is a lower bound of 𝐾𝑛 .

If 𝛼 = 0, then 𝜅 is 𝐾𝑁−𝜍 .

Figure 3.1: Flow chart of the update of the brackets (𝐾l
𝑛, 𝐾u

𝑛 ) and the respective residuals 𝑎l
𝑛 and 𝑎u

𝑛 at the interval
boundaries. This flow chart is the specification of the lower left block in Fig. 3.2 and block 6 in Fig. 3.3. This update
algorithm makes use of the total number of eigenvalues 𝑁, the current sample 𝜅, the spectral parameter at this
sample 𝜍 = 𝑠(−∞, ∞, 𝜅), and the residual at this sample 𝛼 = 𝑎(𝜅). Every bracket is checked either in the upper
loop for a tightening of the upper bound, or in the lower loop for a tightening of the lower bound. The exceptional
case 𝛼 = 0 indicates that 𝜅 is an eigenvalue. This gets a special treatment, in the lower right block.

as emphasized in Section 3.3.2, we do not count this limit as a zero-crossing. Therefore
𝜙(𝑥, 𝐾𝑁−𝜍) has 𝜍 zero-crossings. Thus, if 𝛼 = 0 we infer that 𝜅 = 𝐾𝑁−𝜍. We store this
conclusion by setting 𝐾l

𝑁−𝜍 ← 𝜅 and 𝐾u
𝑁−𝜍 ← 𝜅.12 The special case 𝐾l

𝑛 = 𝐾u
𝑛 should thus

be considered as a closed rather than an open interval.
In order to shrink a particular interval (𝐾l

𝑛, 𝐾u
𝑛 ), the sample 𝜅 must lie in this interval.

Hence, if 𝜅 does not lie between the currently known bounds of any eigenvalue, the com-
putations 𝛼 ← 𝑎(𝜅) and 𝜍 ← 𝑠(−∞, ∞, 𝜅) will not result in any progress regarding our
knowledge about the eigenvalues. We say that 𝜅 is proper if and only if 𝜅 ∈ ⋃𝑁

𝑛=1(𝐾l
𝑛, 𝐾u

𝑛 ).
We use the properness of 𝜅 as a conditional in the proposed algorithm to prevent such idle
iterations.

3.4.2. Bisection
Osborne [102] proposed to search for the eigenvalues bymeans of bisection. An implementa-
tion of that is shown in Fig. 3.2. In addition to the variables that are explained in Section 3.4.1,
we keep track of a boolean array {𝚋𝑛} that stores if the 𝑛-th eigenvalue is localized. It is thus
updated as 𝚋𝑛 ← (𝐾u

𝑛 − 𝐾l
𝑛 ≤ Δ), for 𝑛 ∈ {1, 2, … , 𝑁}. As long as there are eigenvalues

left to localize, we set 𝜅 by bisecting one of their intervals. After computing 𝛼 ← 𝑎(𝜅) and

12In the flowchart in Fig. 3.1, 𝐾u
𝑁−𝜍 is already set to 𝜅 before reaching the conditional 𝛼 = 0. Therefore technically

only the lower bound 𝐾l
𝑁−𝜍 still has to be overwritten in the lower right block. The current representation is

chosen for conceptual clarity.
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Start

Initialization:
𝑁 ← 𝑠(−∞, ∞, 0);

for all 𝑛 ∈ {1, 2, … , 𝑁}
𝚋𝑛 ← 𝚏𝚊𝚕𝚜𝚎, 𝐾l

𝑛 ← 0,
𝐾u

𝑛 ←√max(0, max
𝑑

̌𝑞𝑑),

𝑎l
𝑛 ← ∞, 𝑎u

𝑛 ← ∞.

𝚏𝚊𝚕𝚜𝚎 ∈ {𝚋𝑛}? Stop

Update {𝚋𝑛} Choose 𝑚 s.t. 𝚋𝑚 = 𝚏𝚊𝚕𝚜𝚎,
𝜅 ← (𝐾l

𝑚 + 𝐾u
𝑚) ∕ 2

Update {𝐾l
𝑛}, {𝐾u

𝑛 },
{𝑎l

𝑛}, and {𝑎u
𝑛}.

𝛼 ← 𝑎(𝜅);
𝜍 ← 𝑠(−∞, ∞, 𝜅)

N

Y

Figure 3.2: Top level flow chart of the bisection benchmark algorithm.

𝜍 ← 𝑠(−∞, ∞, 𝜅), we update the bounds of all the eigenvalues as described in Section 3.4.1
and Fig. 3.1. Then we update {𝚋𝑛} and repeat. Finally, we select as best guess for each eigen-
value the bound with the lowest residual. That is, �̂�𝑛 ≔ 𝐾l

𝑛J|𝑎l
𝑛| < |𝑎u

𝑛 |K + 𝐾u
𝑛 J|𝑎l

𝑛| ≥ |𝑎u
𝑛 |K.

3.4.3. Proposed algorithm
Bisection is a simple technique, but it has only linear convergence. Christov [33] proposed
to use an Illinois type regula falsi root-finder instead, to speed up the convergence. However,
this technique requires initial brackets that contain exactly one eigenvalue, for which he re-
sorted to a grid search. Root finding based on 𝑎(𝜅) and 𝑎′(𝜅) with the NR technique enjoys
a quadratic convergence. However, an open root-finder like NR is more difficult to com-
bine with SL oscillation theory than a bracketing root-finder like bisection. First, one has to
find initial guesses within the basins of attraction of every eigenvalue rather than an initial
bracket. Second, one can only establish convergence to the 𝑛th eigenvalue if the correspond-
ing unit step of the accounting function is sampled both below and above the eigenvalue at
a distance smaller than the tolerance Δ. A possible strategy is to apply a two-step procedure:
First use bisection to find a reasonably tight bracket for each eigenvalue and refine thereafter
with a NR procedure [69, 83, 85]. However, this combines the disadvantages of both tech-
niques: The slow convergence of bisection and the difficulty of keeping NR iterations within
a bracket.

We instead propose a hybrid algorithm that combines quadratic convergence (for most
iterations) with the guarantee that all eigenvalues are localized. In short, we follow the NR
procedure, unless its update results in an improper value 𝜅. (See Section 3.4.1 for the defini-
tion of improper.) Only in that case and at the start we apply one bisection step to obtain a
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Figure 3.3: Top level flow chart of the proposed algorithm.
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new initial value for the NR procedure. The algorithm stops when each eigenvalue is local-
ized. Hence we do not select a priori the order in which we search for the eigenvalues. Thus
we avoid the difficulty of finding an initial guess in the basin of attraction of that eigenvalue.
Instead we allow the NR procedure to converge to any eigenvalue. If it happens to have
started within the basin of attraction of an eigenvalue that is already localized, it will update
to an improper value of 𝜅, typically already in the first iteration. Then we use a bisection step
instead.

A flowchart of the proposed algorithm is shown in Fig. 3.3. The blocks 1 up to and
including 11 form the basis of the algorithm. Let us describe these blocks first. Thereafter
we will explain the purpose and working of blocks 12 up to and including 17.

1. The input of the proposed algorithm is the array of samples ̌𝑞𝑑 that results from
(3.30). Furthermore, the tolerance on the eigenvalues, Δ, must be provided. One
should keep inmind that this is themaximumdeviation of the returned eigenvalues
with respect to the eigenvalues of the discretized potential. The error that is caused
by the sampling and reconstruction of the potential cannot be reduced by choosing
Δ smaller and smaller.

2. The initialization is the same as for the bisection algorithm. See Sections 3.4.1
and 3.4.2.

3. While there are eigenvalues left to localize, continue searching.

4. We select any unlocalized eigenvalue and bisect its currently known bracket. It
makes little difference which of the remaining brackets we choose to bisect. We
choose the lowest 𝑚 for which 𝚋𝑚 = 𝚏𝚊𝚕𝚜𝚎.

5. At the current value 𝜅 we evaluate 𝛼 ← 𝑎(𝜅), 𝛼′ ← 𝑎′(𝜅), and the accounting
function 𝜍 ← 𝑠(−∞, ∞, 𝜅). This is the most computationally expensive step, so we
will count every time the algorithm enters this block as one iteration.

6. We update the brackets of all eigenvalues as described in Section 3.4.1 and Fig. 3.1.

7.–8. If 𝜅 is not a stationary point, we can compute the NR update of 𝜅. That is, 𝜅 ←
𝜅 − 𝛼 ∕ 𝛼′. If the update succeeds, the NR descend continues from the updated
value 𝜅. However, if 𝜅 would become improper after this update (see Section 3.4.1),
we break the NR cycle before the actual update.

9.–10. We consider an eigenvalue as localized if 𝐾u
𝑛 − 𝐾l

𝑛 ≤ Δ. If that condition is met for
any eigenvalue 𝑛 whereas 𝚋𝑛 is still 𝚏𝚊𝚕𝚜𝚎, we set 𝚋𝑛 to 𝚝𝚛𝚞𝚎 and return. Please note
that this is not necessarily the eigenvalue 𝑚 that was selected in block 4, and that in
rare cases we may find more than one eigenvalue at once.

11. When all eigenvalues are localized up to an interval of length Δ at most, we stop
searching. For each eigenvalue 𝑛 ∈ {1, 2, … , 𝑁} we return the bound with the
smallest residual as the best guess. That is, �̂�𝑛 ≔ 𝐾l

𝑛J|𝑎l
𝑛| < |𝑎u

𝑛 |K + 𝐾u
𝑛 J|𝑎l

𝑛| ≥ |𝑎u
𝑛 |K.

If we would only use the part of the algorithm that is described in blocks 1 up to and
including 11, we would already be able to localize all eigenvalues reliably. However it has a
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flaw that makes it fall back to linear convergence. This is because the NR algorithm tends
to converge to a root monotonically: either from above or from below. Let us consider the
spectral parameter 𝑎(𝜅) around a root 𝐾𝑛. More precisely, we look at a neighbourhood of
𝐾𝑛 where 𝑎(𝜅) is either convex or concave. In the convex case, every tangent line to 𝑎(𝜅) in
this neighbourhood crosses zero at 𝜅 > 𝐾𝑛. This crossing represents the NR update. That
means that once 𝜅 enters this neighbourhood, all following updates satisfy 𝜅 > 𝐾𝑛. Thus,
ignoring finite precision effects, the algorithm converges monotonically to 𝐾𝑛 from above.
Upon termination, we will thus have found a tight upper bound of that root. However, since
we require that the bracket (𝐾l

𝑛, 𝐾u
𝑛 ) is smaller than Δ before we consider an eigenvalue

localized, we also need a sufficiently tight lower bound. Unfortunately, this lower bound
can only be found with bisection, since every nearby lower NR iteration would immediately
jump over the already known upper bound. Mutadis mutandis, the same happens if 𝑎(𝜅) is
concave in a neighbourhood of 𝐾𝑛. Therefore, the algorithm as a whole falls back on linear
convergence.13

The blocks 12 up to and including 17 in Fig. 3.3 are added to avoid this. The principle is
that if the NR descend terminates on a tight upper bound, we decrement 𝜅 by Δ to enforce
a tight enough lower bound. Vice versa, we increment 𝜅 by Δ in case of a tight lower bound.
In detail:

12. When the NR cycle terminated without localizing an eigenvalue, there are two pos-
sibilities. Firstly, we might not have started within the basin of attraction of any
eigenvalue that was left to localize. In that case we need to return, to find a new
starting point by bisection. Secondly, due to numerical effects, the NR update will
always become improper near a root of 𝑎(𝜅). When that happens, we have localized
one tight bound of that root. In that case we want to enforce the opposite bound, as
explained before. To distinguish between these two cases, we look at the magnitude
of the NR update that would have taken place.

13.–17. If the value of 𝜅 became a lower bound for one or more eigenvalues (in block 6), we
expect at this point that this bound is tight for at least one of these eigenvalues. In
order to guarantee that this eigenvalue is localized, we try to put an upper bound at
𝜅 +Δ. We expect 𝜅 +Δ to be proper in this case, but we test it nevertheless (in block
15), to guard against unforeseen behaviour. Similarly, if he value of 𝜅 became an
upper bound for one or more eigenvalues, we expect at this point that this bound is
tight for at least one of these eigenvalues. In order to guarantee that this eigenvalue is
localized, we try to put a lower bound at 𝜅−Δ. We do not give any special treatment
to the rare case in which 𝜅 is both a lower bound of one eigenvalue and an upper
bound of another.

3.5. Examples
In this section we will demonstrate the proposed algorithm. We select six different vanish-
ing potentials and compute their eigenvalues with the proposed algorithm and with three

13Thanks to finite precision effects, the NR descend sometimes finds a sufficiently small interval anyway. That
happens if one of the final updates numerically jumps over the root. However, we want to enforce quadratic
convergence in the majority of the cases.
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benchmark algorithms. We first compare the accuracy that the algorithms achieve as a func-
tion of the tolerance Δ. Next, we compare in detail the accuracy and computational cost at
an ideal fixed value Δ.

3.5.1. Benchmark algorithms
We compare the proposed algorithm to two versions of the bisection algorithm that was de-
scribed in Section 3.4.2 and Fig. 3.2. The difference between the two versions lies in the
reconstruction of the potential. By using the reconstruction in (3.8) we obtain the second
order version. We will refer to this benchmark algorithm as Alg. B2. By using the recon-
struction in (3.30) and (3.31) we obtain the fourth order version. We refer to this benchmark
algorithm as Alg. B4. Both Algs. B2 and B4 use the proposed root counter that is described in
Section 3.3.2. We will also test one of the examples with Alg. B2s. That algorithms is equal
to Alg. B2, except that it uses the root counter that was proposed by Osborne [102]. This
particular example shows the problem with that root counter. We remark that we cannot
use the complete algorithm from [102] as a benchmark, since we must at least adapt it to
data with vanishing instead of periodic boundary conditions.

Furthermore, we compare the proposed algorithm to Matslise 2.0 [85].1⁴ We refer to
this eighteenth order benchmark algorithm as Alg. MS18. This algorithm needs an analytic
expression of the input signal 𝑞(𝑥), whereas our algorithm requires samples. Therefore we
use band limited interpolation. That is, we pass an expression of the form

𝑞MS(𝑥) ≔ − ⎛⎜⎜
⎝

𝛼0 +
⌊𝐷/2⌋
∑
𝑑=1

𝛼𝑑 cos(2π𝑑
𝜀𝐷 (𝑥 − 𝑥1)) + ⋯

⌈𝐷/2⌉−1
∑
𝑑=1

𝛽𝑑 sin(2π𝑑
𝜀𝐷 (𝑥 − 𝑥1))⎞⎟⎟

⎠
J𝑥 > 𝑥l

1KJ𝑥 < 𝑥u
𝐷K,

(3.32)

for which we calculate the coefficients 𝛼𝑑 and 𝛽𝑑 with the FFT of the sampled input signal.
The minus sign is required due to the different parametrisation of the Schrödinger equation.
Matslise does not make use of the step size 𝜀 of the data, but automatically chooses a mesh.
Matslise only allows us to specify a tolerance for the squares of the eigenvalues, not for the
eigenvalues themselves. We use the same tolerance Δ as for the other algorithms, but point
out that it has to be interpreted differently for Matslise. We also pass to Matslise the jump
points 𝑥 = 𝑥l

1 and 𝑥 = 𝑥u
𝐷. We obtain the eigenvalues as 𝐾𝑛 = √−𝐸𝑛, where 𝐸𝑛 are the

squared eigenvalues that are returned by Matslise.
In this benchmark, the proposed method is compared with other shooting methods. A

comparison with finite dimensional approximation methods would be more involved due
to several characteristics that differ from the shooting methods. It is therefore beyond the
scope of this work.

3.5.2. Example potentials
We will compute the eigenvalues of the six potentials that are shown in Fig. 3.4. The exact
description of these potentials is as follows.

1⁴We considered Matslise 3.0/Pyslise [14] as well, but this package is currently still under development [13]. In
particular, we found that boundary conditions at infinity are not yet supported.
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Figure 3.4: Potentials of which the eigenvalues are calculated to demonstrate the proposed algorithm. See the main
text for their definitions.
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𝑞1(𝑥) We define 𝑞1(𝑥) ≔ 99 sech2(2𝑥). This is a non-reflectionless1⁵ potential with five
eigenvalues: 𝐾1 = 1, 𝐾2 = 3, 𝐾3 = 5, 𝐾4 = 7, and 𝐾5 = 9 [79, §2.5].

𝑞2(𝑥) We define 𝑞2(𝑥) ≔ 24.99 sech2(𝑥/5). This is a non-reflectionless potential with 25
eigenvalues: 𝐾𝑛 = 0.2𝑛 − 0.1 for 𝑛 ∈ {1, 2, … , 25} [79, §2.5].

𝑞3(𝑥) The reflectionless potential 𝑞3(𝑥) shows a typical far-field pattern with six separated
solitons. We selected its eigenvalues as 𝐾𝑛 ≔ √𝑛, where 𝑛 ∈ {1, 2, … 6}. The norm-
ing constants are set to 𝑏(𝐾𝑛) ≔ (−1 × 1012)𝑛. The required samples of this po-
tential are computed numerically with the Crum transform algorithm of Prins and
Wahls [112].

𝑞4(𝑥) The reflectionless potential 𝑞4(𝑥) forms a wave train with nearly equal eigenvalues.
The eigenvalues are selected as 𝐾𝑛 ≔ 1 + (𝑛 − 5)10−4, where 𝑛 ∈ {1, 2, … 9}.
The norming constants are set to 𝑏(𝐾𝑛) ≔ −(−1)𝑛. The required samples of this
potential are computed numerically with the same Crum transform algorithm [112].

𝑞5(𝑥) Potential 𝑞5(𝑥) is a reflectionless potential with thirty eigenvalues. The eigenvalues
are selected as {𝐾𝑛} ≔ {2 − cos(𝑖) ∣ 𝑖 ∈ {1, 2, … 30}}. We sort this set of eigen-
values such that 𝐾1 < 𝐾2 < ⋯ < 𝐾30, Then, the norming constants are set to
𝑏(𝐾𝑛) ≔ (−1)𝑛106 sin(𝑛), where 𝑛 is the index after sorting. The required samples
of this potential are once again computed numerically with the Crum transform al-
gorithm from [112].

𝑞6(𝑥) This is a rectangular potential which is defined as 𝑞6(𝑥) ≔ 10 J−10 ≤ 𝑥 ≤ 10K. It is
non-reflectionless and it has 21 eigenvalues. There exists no closed form expression to
compute these eigenvalues. However, they can be approximated to any desired finite
precision with e.g. (5.61) on Page 107.

For numerical processing, all potentials are truncated to the respective intervals shown in
Fig. 3.4. Potentials 𝑞1(𝑥) till 𝑞5(𝑥) are sampled on a uniform grid of 104 samples on this
interval, such that for example 𝑥l

1 = −10 and 𝑥u
𝐷 = 10 for potential 𝑞1(𝑥). Potential 𝑞6(𝑥)

is sampled with only two samples, at 𝑥 = −5 and 𝑥 = 5 respectively.

3.5.3. Error measures
Since we know the true eigenvalues of each of the example potentials, we can calculate the
error of the computed eigenvalues. In some cases the numerical algorithms return a differ-
ent number of eigenvalues than the true number of eigenvalues. We will always compare
every true eigenvalue to the computed eigenvalue with the same number of zero-crossings
of the eigenfunction. Thus, the greatest true eigenvalue is compared to the greatest com-
puted eigenvalue etcetera. If the number of computed eigenvalues �̂� is larger than the true
number of eigenvalues 𝑁, we compute a separate error measure that compares the spurious
�̂� − 𝑁 smallest eigenvalues to zero. The thought behind this is that an artificial eigenvalue

1⁵A reflectionless potential is a potential of which the continuous KdV-NFT spectrum is zero, such that the signal
only consists of the (possibly interacting) solitions that are represented by the eigenvalues.
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of (nearly) zero corresponds to a part of the spectrum with (nearly) zero mass, momentum,
and energy. We thus define

RMS
𝑛≤𝑁

{�̂�𝑛+�̂�−𝑁 − 𝐾𝑛} ≔
√
√√
⎷

1
𝑁

𝑁
∑
𝑛=1

(�̂�𝑛+�̂�−𝑁 − 𝐾𝑛)2, (3.33)

RMS
𝑛>𝑁

{�̂�𝑛+�̂�−𝑁} ≔
√
√√
⎷

1
�̂� − 𝑁

�̂�−𝑁
∑
𝑛=1

�̂�2𝑛, if �̂� > 𝑁. (3.34)

In addition, we can indicate the error by the residual of the spectral parameter 𝑎(𝜅) at the
computed eigenvalues. This error measure does not account for discretization errors. The
main benefit is that it can even be calculated if the true eigenvalues are not known, which is
in practice typically the case. Again, we calculate this error for the 𝑁 largest eigenvalues and
the spurious �̂� − 𝑁 smallest eigenvalues separately:

RMS
𝑛≤𝑁

{𝑎(�̂�𝑛)} ≔
√
√√
⎷

1
𝑁

𝑁
∑
𝑛=1

(𝑎(�̂�𝑛+�̂�−𝑁))2
, (3.35)

RMS
𝑛>𝑁

{𝑎(�̂�𝑛)} ≔
√
√√
⎷

1
�̂� − 𝑁

�̂�−𝑁
∑
𝑛=1

(𝑎(�̂�𝑛))2
, if �̂� > 𝑁. (3.36)

Unfortunately, the Matslise benchmark algorithm (MS18) does not provide information on
the residual.

3.5.4. The effect of the tolerance
Both the proposed algorithm and the benchmark algorithms contain a tolerance parameter
Δ to select the desired accuracy. However, they respond very differently to the setting of Δ.
This can be seen in Fig. 3.5. In that figure we compare for the potential 𝑞1(𝑥) the proposed
algorithm to the benchmark algorithms for different settings of Δ.

The top right panel of Fig. 3.5 shows the achieved error RMS𝑛≤𝑁{�̂�𝑛+�̂�−𝑁 − 𝐾𝑛} as a
function of the tolerance Δ. The similar graphs for the example potentials 𝑞2(𝑥) till 𝑞6(𝑥)
are shown in Fig. 3.6. We see that for high values of the tolerance Δ the bisection based
benchmark algorithms (Algs. B2 and B4) achieve an error RMS𝑛≤𝑁{�̂�𝑛+�̂�−𝑁 − 𝐾𝑛} just
below the tolerance Δ. When the tolerance is reduced, both of these algorithms hit an error
floor when the error due to the reconstruction of the potential becomes the dominant source
of error. These error floors depend on the potential as well as on the sampling interval and
truncation. The fourth order error floor of benchmark Alg. B4 is in most cases lower than
the second order error floor of benchmark Alg. B2.1⁶ The proposed algorithm, Alg. NR4,
achieves the fourth order error floor for a much wider range of settings of the tolerance
Δ. The reason is that if the NR descend is successful, it terminates at either a tight upper
or lower bound. The opposite bound is enforced to ensure that the bound is tight enough,

1⁶For example potential 𝑞6(𝑥) the second and fourth order error floor are equal, because a rectangular potential is
a truncated constant. For example potential 𝑞4(𝑥) the error floor is equal for all algorithms. We suspect that the
computation of the samples of 𝑞4(𝑥) is the dominant source of error in that example, due to the close separation
of the eigenvalues.
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Figure 3.5: The plots show a comparison between the proposed algorithm and the three benchmark algorithms for
the example potential 𝑞1(𝑥). The top right panel shows the achieved accuracy as a function of the chosen tolerance
Δ. The bottom right panel shows the number of iterations that is required, as a function of the chosen tolerance
Δ. The left panel shows the resulting trade-off curve. For Alg. MS18 no information is available on the number of
iterations.
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Figure 3.6: The plots show the achieved accuracy as a function of the chosen tolerance Δ for the example potentials
𝑞2(𝑥) till 𝑞6(𝑥) when using the proposed algorithm and the three benchmark algorithms respectively.



3.5. Examples

3

53

but in practice it is the termination point of the NR descend that determines the returned
estimates �̂�𝑛. If the allowable tolerance is very high, the error of the proposed algorithm
may be closer to the tolerance. In those cases one or more NR descends jumped out of
the range of proper values 𝜅, upon which the algorithm checks if the bracket is below the
tolerance. (See block 9 in Fig. 3.3.) If a high tolerance is allowed, that may already be the
case, even if the NR descend did not converge. On the other hand, if we select an extremely
low tolerance, machine precision effects can show up. Among these examples this effect is
only visible for the potential 𝑞1(𝑥), in Fig. 3.5 for Δ = 1 × 10−16 and Δ = 1 × 10−17. In
these cases the tolerance is so small that after the termination of the NR descend, the update
to enforce an opposite bound (blocks 17 and 18 in Fig. 3.3) is too small to find an opposite
bound immediately. It is thus advisable not to choose Δ lower than 1 × 10−15 in double
precision computations.

The invariant behaviour of the proposed algorithm, Alg. NR4, with respect to a wide
range of tolerances Δ is a practical advantage: We do not have to think much about an ap-
propriate setting of Δ, since we obtain the maximum accuracy in the same number of itera-
tions for any reasonable setting. For computations in double precision arithmetic, we would
simply select a default value of Δ = 1 × 10−15.

AlgorithmMS18 does notmake use of the samples that the other algorithms use. Instead
it selects its ownmesh based on the variation of the potential and the user input tolerance [85,
§2.3]. Please recall that Matslise’s tolerance is a tolerance on the squares of the eigenvalues,
and therefore RMS𝑛≤𝑁{�̂�𝑛+�̂�−𝑁 − 𝐾𝑛} < Δ does not have to hold. Nevertheless, wewould
expect that as the tolerance Δ is tightened, the result keeps getting more accurate (at the cost
of computation time) until the truncation of the potential becomes the dominant source of
error. Since the other algorithms suffer likewise from this truncation error, the error floor
of the fourth order algorithms (Algs. B4 and NR4) should be achievable for the eighteenth
order Matslise algorithm as well. Nevertheless, we see in Figs. 3.5 and 3.6 that the error
floor of Alg. MS18 can be much higher than the fourth order error floor. Furthermore, we
see for some of the examples that the error curve is not a monotonically non-decreasing
function of the tolerance, but shows local maxima instead. We also noticed that these error
curves can change significantly if the computation is repeated with a different version of
Matlab, or if the potential is obtained from a slightly different number of samples before
band limited interpolation. According to the current developers, Matslise 3.0/Pyslise uses a
more conservative error estimate and a finer mesh than its predecessor [14]. Therefore we
surmise that the next version, if it allows boundary conditions at infinity, will return stabler
and more accurate results.

In the bottom right panel of Fig. 3.5, we see the effect of the tolerance on the number of
iterations. For the bisection based algorithms, Algs. B2 and B4, the number of iterations in-
creases proportional to log(1/Δ) and is the same for both versions. The proposed algorithm,
Alg. NR4, needs roughly the same number of iterations for every user-selected tolerance Δ.1⁷
Unfortunately we do not have access to the number of iterations (and computational cost per
iteration) of Alg. MS18.

The left panel of Fig. 3.5 shows the trade-off curve between accuracy and number of
iterations that results from the other two panels. We will discuss it in the next subsection.

1⁷If the error is not at the fourth order error floor for high Δ, such as in Fig. 3.6, the algorithm terminates earlier.
Hence in that case the number of iterations also drops.
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3.5.5. Comparison of error and computational cost
The left panel of Fig. 3.5 shows the trade-off curve between accuracy and number of itera-
tions that results from the other two panels. We see that the proposed algorithm, Alg. NR4,
achieves the best achievable accuracy of the fourth order benchmark algorithm, Alg. B4, but
at a much lower number of iterations. Even if we take into account that the iterations of the
proposed algorithm are 70 % more expensive (see Section 3.3.3), the proposed algorithm
remains computationally cheaper.

Hereafter, we want to compare the proposed algorithm to the benchmark algorithms in
more detail, considering computational cost and several kinds of error. For a fair comparison
it would be preferable to fix the error and compare the computational cost, or to fix the
computational cost and compare the errors. That is unfortunately not possible. We can only
fix the tolerance. We set it close to the optimal value for the benchmark algorithm B4. That
is, close to the maximum value Δ for which the error RMS𝑛{�̂�𝑛+�̂�−𝑁 − 𝐾𝑛} is at the error
floor. For example in Fig. 3.5 we see that this is Δ = 1×10−12 for potential 𝑞1(𝑥). The values
for the other potentials can be read likewise from Fig. 3.6. A consequence of this choice is
that the eigenvalue errors of Algs. NR4 and B4 will be both on the fourth order error floor,
so approximately the same. We will furthermore have to keep in mind that Alg. B2 would
be capable of achieving the same error as in this test at less computational cost, by selecting
a higher tolerance. The same likely holds for Alg. MS18, but we cannot verify that since we
have no information on its computational cost for these examples.

In Table 3.3 we show the results at this tolerance for the proposed algorithm, Alg. NR4, as
well as for the three benchmark algorithms, Algs. B2, B4 and MS18. Besides the eigenvalue
error that we have already seen in Figs. 3.5 and 3.6, it also shows the residual error, the
errors which correspond to spurious eigenvalues where applicable and the iteration counts.
Algorithm B2s is equal to Alg. B2, except for the root counter. It uses instead of (3.18) always
the simple sign check, as in the upper case of (3.18). AlgorithmB2s is thus as close as possible
to the algorithm that was proposed in [102], except for the necessary adaptation to vanishing
boundary conditions. We will discuss the results from this algorithm in Section 3.5.6.

Computational cost
Althoughwe optimized the tolerance for the B4 algorithm, Table 3.3 shows that the proposed
algorithm requires only about a fourth of the number of iterations of the bisection based
algorithms for most example potentials. Even when we take into account that iterations
of the proposed algorithm are approximately 70 % more expensive than those of B4 (see
Section 3.3.3) and those ofAlg. B2 are 50 % cheaper than those of B4, the proposed algorithm
remains computationally cheapest. Indeed, Alg. B2 would have achieved approximately the
same error at a lower number of computations if a higher tolerance were selected. However,
the optimal choice for the tolerance is in practice unknown.

The proposed algorithm is typically computationally cheaper than bisection, but Ta-
ble 3.3 shows one exception, namely potential 𝑞4(𝑥). The eigenvalues of 𝑞4(𝑥) are clustered
together and while searching for the first eigenvalue, the bisection algorithms find a tight
bracket for the whole cluster. Therefore the other eight eigenvalues can be localized in few
extra iterations. Algorithm NR4 on the other hand converges first with a long series of NR
iterations from below to the smallest eigenvalue. For the remainder of the cluster this only
gives a reasonably tight lower bound. It finds the upper bound of the cluster with another
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Alg. �̂� Iter. RMS
𝑛≤𝑁

{�̂�𝑛+�̂�−𝑁−𝐾𝑛} RMS
𝑛≤𝑁

{𝑎(�̂�𝑛+�̂�−𝑁)} RMS
𝑛>𝑁

{�̂�𝑛} RMS
𝑛>𝑁

{𝑎(�̂�𝑛)}

𝑞(𝑥) = 𝑞1(𝑥) (𝑁 = 5), Δ = 1 × 10−12

NR4 𝑁 47 1.09 × 10−11 2.47 × 10−16

B4 𝑁 212 1.09 × 10−11 3.89 × 10−14

B2 𝑁 212 6.70 × 10−6 4.43 × 10−14

MS18 𝑁 ⋆ 2.26 × 10−6 ⋆
𝑞(𝑥) = 𝑞2(𝑥) (𝑁 = 25), Δ = 1 × 10−11

NR4 𝑁 202 3.32 × 10−11 2.54 × 10−19

B4 𝑁 881 3.38 × 10−11 1.33 × 10−12

B2 𝑁 881 2.68 × 10−6 1.05 × 10−12

MS18 𝑁+3 ⋆ 6.19 × 10−1 ⋆ 3.68 × 10−1 ⋆
𝑞(𝑥) = 𝑞3(𝑥) (𝑁 = 6), Δ = 1 × 10−11

NR4 𝑁 52 1.09 × 10−11 9.89 × 10−21

B4 𝑁 219 9.69 × 10−12 2.26 × 10−15

B2 𝑁+1 256 7.47 × 10−6 3.62 × 10−16 3.05 × 10−5 5.50 × 10−8

MS18 𝑁 ⋆ 7.93 × 10−10 ⋆
𝑞(𝑥) = 𝑞4(𝑥) (𝑁 = 9), Δ = 1 × 10−5

NR4 𝑁+1 188 4.93 × 10−6 1.06 × 10−46 6.45 × 10−5 3.82 × 10−2

B4 𝑁+1 77 6.90 × 10−6 1.05 × 10−36 6.47 × 10−5 4.21 × 10−2

B2 𝑁+1 77 5.77 × 10−6 1.99 × 10−36 1.03 × 10−4 6.63 × 10−3

MS18 𝑁 ⋆ 2.57 × 10−5 ⋆
𝑞(𝑥) = 𝑞5(𝑥) (𝑁 = 30), Δ = 1 × 10−8

NR4 𝑁 230 6.01 × 10−8 1.49 × 10−36

B4 𝑁 707 6.42 × 10−8 1.30 × 10−28

B2 𝑁+1 733 8.79 × 10−5 6.14 × 10−29 5.35 × 10−4 6.85 × 10−6

MS18 𝑁 ⋆ 1.02 × 10−7 ⋆
𝑞(𝑥) = 𝑞6(𝑥) (𝑁 = 21), Δ = 1 × 10−15

NR4 𝑁 258 2.13 × 10−15 1.70 × 10−23

B4 𝑁 1002 2.07 × 10−15 1.73 × 10−18

B2 𝑁 1002 2.07 × 10−15 2.17 × 10−18

B2s 𝑁−20 52
MS18 𝑁 ⋆ 2.44 × 10−5 ⋆

Table 3.3: Results of finding the eigenvalues of potentials 𝑞1(𝑥), …, 𝑞6(𝑥) (see Fig. 3.4) with four versions of an
automatic eigenvalue finder: Algs. NR4 (proposed), B2, B4 and MS18. Additionally, the results of a fifth algorithm,
Alg. B2s, are shown for the potential 𝑞6(𝑥). Algorithm B2s uses a simple sign check root counter instead of (3.18)
and is otherwise equal to Alg. B2. Table cells of which the value cannot be computed (because the computed number
of eigenvalues �̂� leads to an invalid expression) are left blank. The symbol ⋆ means that the data are missing that
are needed to compute the value in that cell.
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long series of NR iterations that converges to the highest eigenvalue. Both of these series
appear to be atypical cases in which the NR algorithm converges rather slowly.

Spurious eigenvalues
When an algorithm returns more eigenvalues than there should be, we refer to the surplus
of eigenvalues as spurious eigenvalues. More precisely, we consider the �̂� − 𝑁 smallest ei-
genvalues, where �̂� is the numerically calculated number of eigenvalues, as spurious. Those
are the eigenvalues for which the highest numbers of zero-crossings are detected.

Regarding potential 𝑞4(𝑥) we see in Table 3.3 that all algorithms except for Alg. MS18
return one spurious eigenvalue. Algorithm B2 furthermore returns one spurious eigenvalue
for the potentials 𝑞3(𝑥) and 𝑞5(𝑥). In all cases this eigenvalue is close to zero: The eigenvalue
is typically one order of magnitude larger than the error in the true eigenvalues. This is
typical for reflectionless potentials. The reason is that the scattering parameter 𝑎(𝜅) of the
reconstructed potential indeed has an extra root compared to the true potential. However,
this is not problematic in practice, since a near-zero eigenvalue represents in the KdV-NFT
spectrum a component of near-zero ‘mass’, ‘momentum’ and ‘energy’. More precisely, these
are proportional to respectively the first, third and fifth power of the eigenvalue [47, §3.1],
[164, §3]. Therefore, if we would compute the inverse KdV-NFT of a spectrum, the presence
of a very small spurious eigenvalue will have little influence on the resulting potential.

For potential 𝑞2(𝑥) we see in Table 3.3 that Alg. MS18 returns three spurious eigenval-
ues, while the other algorithms find the correct number of eigenvalues. The spurious and
non-spurious eigenvalue errors of Alg. MS18 are also very high in this case. This is because
Alg.MS18 finds the true eigenvalues to reasonable precision, plus some spurious eigenvalues
between the true eigenvalues. The index of some of the smallest true eigenvalues is shifted
by these spurious eigenvalues. This would be expected behaviour for a root finder that does
not use SL oscillation theory. However, this theory makes it possible to index every sin-
gle eigenvalue without knowing the others, by counting the number of zero-crossings of its
eigenfunction [85]. Therefore, this behaviour is remarkable for a root finder that is based on
SL theory.

Residual errors
We have no information on the residual error of Alg.MS18, so we can compare the proposed
algorithm, Alg. NR4, only to the bisection based benchmark Algorithms B2 and B4. When
we look at the residual errors of the non-spurious eigenvalues (RMS

𝑛≤𝑁
{𝑎(�̂�𝑛+�̂�−𝑁)}), we see

that the proposed algorithm, Alg. NR4, achieves in all cases a significantly lower error than
the bisectionAlgorithmsB2 andB4. Nevertheless, the eigenvalue errorRMS

𝑛≤𝑁
{�̂�𝑛+�̂�−𝑁−𝐾𝑛}

of the proposed algorithm is similar to the eigenvalue error of Alg. B4. This shows that the
proposed algorithm gets significantly closer to the eigenvalues of the reconstructed potential
(see (3.31)), but not closer to the eigenvalues of the true potential. Hence, the error of the
proposed search algorithm is negligible compared to the discretization error itself.

3.5.6. Numerical robustness
The potential 𝑞6(𝑥) is included to demonstrate two aspects of the numerical robustness of
the computation of the accounting function that was presented in Section 3.3.2.
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Firstly, the potential 𝑞6(𝑥) demonstrates that the simple sign check (the case (𝜀𝛾)2 <
9 in (3.18) alone, cf. Osborne [102]), is not sufficient. We included in this example Alg.
B2s, which is equal to Alg. B2, except that Alg. B2s uses the simple sign check as a root
counter, instead of (3.18) as a whole. Since there are only two samples plus the higher tail
in this case, Alg. B2s can count maximally three sign changes in total, whereas the correct
accounting function should range to 𝑁 = 21. As we see in Table 3.3, it detects only one
zero crossing at 𝜅 = 0, so that only �̂� = 1 eigenvalue is returned. (That one numerically
computed eigenvalue differs 2.66 × 10−16 from the highest eigenvalue in this spectrum.)
It needs no explanation that the inverse KdV-NFT will be significantly different from the
original potential if 20 of the 21 eigenvalues are missing from its discrete spectrum. Indeed,
the potential 𝑞6(𝑥) is deliberately constructed as an extreme case, but still it illustrates why
the case (𝜀𝛾)2 ≥ 9 in (3.18) is needed.

Secondly, the potential 𝑞6(𝑥) demonstrates the robustness of counting zero-crossings of
the trajectory 𝜙(𝑥) near a boundary 𝑥 = 𝑥u

𝑑 . Because of the even symmetry of 𝑞6(𝑥), 10
out of its 21 eigenfunctions are odd symmetric and thus have a zero-crossing at 𝑥 = 0. For
Algs. NR4, B2 and B4 that is at the boundary between two piecewise constant sections of the
reconstructed potential. (Since Matslise chooses its own grid, we cannot effectively present
Alg. MS18 with this challenge.) With the low number of samples we put this zero-crossing
also numerically as close as possible to 𝑥 = 0 and maximise the risk of counting this zero-
crossing as two or not at all. We see from the results in Table 3.3 that Algs. NR4, B2 and B4
each find all eigenvalues, so we conclude that the computation indeed appears robust against
this source of error.

The results of 𝑞6(𝑥) furthermore show that the eigenvalue error does not improve when
using a fourth order algorithm (Algs. NR4 and B4) rather than a second order algorithm
(Alg. B2). This was to be expected, since in this particular case both approximations result
in the exact true potential.

3.6. Conclusion
In this chapter we presented a numerical algorithm for the computation of eigenvalues of
the KdV-NFT spectrum from sampled data with vanishing boundaries. The proposed al-
gorithm uses a shooting approach with an NR-based root-finder. Nevertheless, because we
make use of SL oscillation theory, we can guarantee that our algorithm finds all the eigen-
values. This theory is in the literature usually combined with a bisection-based root-finder,
because a bracketing root-finder is the natural choice for the type of information that SL
oscillation theory provides. However, NR typically converges faster. Therefore we designed
an algorithm that combines SL oscillation theory with an NR-based root-finder. We have
demonstrated that our algorithm indeed typically saves computation time compared to a bi-
section based root-finder. Furthermore, we have shown that for sampled data with vanishing
boundaries, our algorithm is more robust to numerical rounding errors than other shooting
algorithms that are currently available. Therefore, our algorithm is more reliable.
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Several non-linear fluid mechanical processes, such as wave propagation in shallow water, are
known to generate solitons: localized waves of translation. Solitons are often hidden in a wave
packet at the beginning and only reveal themselves in the far field. With a special signal pro-
cessing technique known as the Non-linear Fourier Transform (NFT), solitons can be detected
and characterized before they emerge. In this chapter we present a new algorithm aimed at
computing the phase shift of solitons in processes governed by the Korteweg–de Vries equation
(KdV) equation. In numerical examples, the new algorithm is found to perform reliably even
in cases where existing algorithms break down.

4.1. Introduction

T he Korteweg–de Vries equation (KdV) is a non-linear partial differential equation that
describes for example the propagation of long internal waves [33] as well as long unidi-

rectional surface waves in shallow1 water [76]. A dimensional form of the KdV is

𝜂 ̃𝑡 + 𝑐𝜂 ̃𝑥 + 𝛼𝜂𝜂 ̃𝑥 + 𝛽𝜂 ̃𝑥 ̃𝑥 ̃𝑥 = 0, (4.1)

where 𝜂 = 𝜂( ̃𝑥, ̃𝑡) [m] is the (free) surface elevation as a function of the time ̃𝑡 [s] and the
position in ̃𝑥 [m] in lab coordinates and where subscripts denote partial derivatives. In the

Parts of this chapter have been published as P. J. Prins and S. Wahls. “Soliton Phase Shift Calculation for the
Korteweg–De Vries Equation”. In: IEEE Access 7 (1 Sept. 12, 2019), pp. 122914–122930. issn: 2169-3536. doi: 10.
1109/access.2019.2932256, under CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/). Minimal changes in text and layout have been made.
1Shallow: The depth is less than 0.22 times the wavelength [25].
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case of free surface waves, the coefficients of (4.1) are

𝑐 = √𝑔ℎ, 𝛼 = 3𝑐
2ℎ , 𝛽 = 𝑐ℎ2

6 ,

where 𝑔 [m/s2] is the gravitational acceleration, ℎ [m] the still water depth, and 𝑐 [m/s] the
phase celerity of the wave [25, 101]. By the changes of variables [61]

𝑡 = 𝑐
6ℎ

̃𝑡, 𝑥 = ̃𝑥 − 𝑐 ̃𝑡
ℎ , 𝑞(𝑥, 𝑡) = 3

2ℎ 𝜂( ̃𝑥(𝑥, 𝑡), ̃𝑡(𝑡)),

we obtain a standard form of the KdV, to wit

𝑞𝑡 + 6𝑞𝑞𝑥 + 𝑞𝑥𝑥𝑥 = 0. (4.2)

All variables in this standard form are unit-less and real. The position 𝑥 in (4.2) is expressed
with respect to a frame that moves with the phase celerity 𝑐, which cancels one term com-
pared to (4.1).

A peculiarity of the KdV is that it evolves anywave packet into a parade of 𝑁 ≥ 0 solitons.
(If there are no solitons, 𝑁 = 0, the wave is fully dispersive and will vanish over time [5,
§1.7.c].) Solitons are waves of translation with the shape of a squared hyperbolic secant,

sech2(𝜃) = (1
2 e−𝜃 + 1

2 e𝜃 )
−2

. (4.3)

After a sufficiently long time 𝑡,

𝑞(𝑥, 𝑡) ≈
𝑁

∑
𝑛=1

̊𝑞𝑛 sech2(𝑘𝑛𝑥 − 𝜔𝑛𝑡 − 𝜑𝑛), (4.4)

where ̊𝑞𝑛 = 2𝑘2
𝑛 and 𝜔𝑛 = 4𝑘3

𝑛 [125, Eq. 17], [126, p. 83, Eq. 3.3], [7, Eq. 2.20a]. The ampli-
tude, wavelength and celerity of a soliton are thus coupled. We call the regime where (4.4)
holds the far field. Otherwise we are speaking of the near field. The near field can in gen-
eral not be described as a linear superposition of wave components, due to the non-linear
interaction between them.

Nevertheless, from near field data we can obtain the free parameters that describe the far
field – the generalized wave numbers 𝑘𝑛 and the phase shifts 𝜑𝑛 – long before individual soli-
tons start to separate from a wave packet. We do that with the so-called scattering transform.
It is a generalization of the common Fourier transform and therefore nowadays often called
Non-linear Fourier Transform (NFT) in the literature [24]. The generalized wave numbers
and phase shifts of the solitons are represented in the NFT spectrum by the so-called eigen-
values 𝜁0𝑛 and norming constants 𝑏(𝜁0𝑛), as will be explained later, and the NFT enables
us to calculate them from the normalised free surface at any fixed time. For brevity and to
conform to the parlance of the NFT, we will hereafter call the normalized free surface at a
fixed time, 𝑞(𝑥, 𝑡0), the potential. It has been shown that the NFT can extract features of wa-
ter waves that remain hidden with linear methods of signal analysis. We remark that most
of the recent research assumes periodic waves [23–25, 106, 107], whereas in this chapter we
consider wave packets [61, 62, 101, 110, 114].
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The main motivation of this chapter is that whereas the numerical computation of the
soliton amplitude, wavelength and celerity from near field data is a solved problem, the nu-
merical computation of the phase shifts 𝜑𝑛 that appear in (4.4) is surprisingly hard. The dif-
ficulty lies in the numerical computation of the aforementioned norming constants 𝑏(𝜁0𝑛)
[55]. This is the problem we deal with in this chapter. There are few publications that deal
with the numerical aspects of the computation of the norming constants for the KdV-NFT.
The paper [114] reports numerical results, but does not disclose how the phase shifts were
calculated numerically. Neither does its companion paper [101]. In [142, §8.2] an algo-
rithm to calculate norming constants is proposed. We will discuss it briefly at the end of
Section 4.3.3, after the required terminology has been established. The authors apply their
algorithm to calculate the norming constants of the potential 𝑞(𝑥, 0) = 2.4 sech2(𝑥) and the
result is used to demonstrate the convergence of an inverse NFT algorithm that they propose.
As far as the calculation of the norming constants is concerned, this potential is a relatively
easy case, because it has a single crest, at 𝑥 = 0, and contains only two solitons (cf. Example
3 in Section 4.4.4). It is not clear at the moment how well this method performs on difficult
examples. In [55] one of the possible ways to compute the norming constants is analysed and
it is concluded that it is necessary to use a high-precision arithmetic, except for the norming
constant of the soliton with the lowest amplitude. Recently two closely related algorithms
have been proposed independently to address the numerical computation of the norming
constants for the NFT that solves the Non-linear Schrödinger Equation (NSE) [12, 63]. In
this chapter we derive a new algorithm to compute the norming constants of the KdV-NFT
that builds on the ideas of [12, 63]. Our key contribution is that we utilize not one but two
different estimators of the norming constant, which greatly improves the reliability of the
algorithm.

The chapter is organized as follows. In Section 4.2 we recapitulate the relevant parts of
the NFT for the KdV. In Section 4.3 we present and motivate our new algorithm to calcu-
late the norming constants; we validate it with numerical examples in Section 4.4 and show
that it is significantly more reliable than a reapplication of the ideas of [12, 63] for the KdV.
This chapter ends with a conclusion in Section 4.5. We have furthermore included several
appendices with supporting information.

4.2. Preliminaries
4.2.1. Notation
In this chapter we typeset variables in italic and constants upright. The constants include j
as the imaginary unit, e as Euler’s number and π as the ratio of a circle’s circumference to
its diameter. For vectors we use lower case bold (𝒗); for matrices upper case bold (𝑨) and 𝑰
denotes the 2 × 2 identity matrix. Scalars are typeset in lower or upper case regular (𝑞, 𝑋0),
where for elements of a matrix two subscripts denote the row and column in that order (𝐴𝑖𝑗).
For operators we use a sans-serif upright font (𝗩). A hat on top of a variable ( ̂𝑞) means an
estimation or approximation of that variable. The set ℝ is the set of real numbers; 𝕀 is the
set of imaginary numbers; ℂ is the set of complex numbers; other sets are denoted with a
capital in calligraphic font (𝒳). The symbol ≔ means that the left hand side is defined by the
right hand side; the symbol ∝ means ‘is proportional to’. We use 𝒪 as the ‘big-O’ Landau
order symbol. We reserve log for the base 10 logarithm and use ln for the natural logarithm,
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with base e. The function exp denotes the exponential with base e, so exp(𝜃) ≔ e𝜃.

4.2.2. Non-Linear Fourier Transform for wave packets
In this subsection, we survey the mathematical background of the NFT for wave packets. By
wave packets we mean a localized real potential 𝑞(𝑥, 𝑡0) with so-called vanishing boundary
conditions. Formally,2

⎧{{
⎨{{⎩

lim
|𝑥|→∞

𝑞(𝑥, 𝑡0) = 0;

∫
∞

−∞
(1 + |𝑥|) |𝑞(𝑥, 𝑡0)| d𝑥 < ∞,

(4.5)

for some fixed time 𝑡0. In this chapter we deal with the case that the function 𝑞(𝑥, 𝑡) further-
more satisfies the KdV (4.2). As a magic step (refer to [4, 81] for the explanation) we use
𝑞(𝑥, 𝑡) as a time-varying potential in the Schrödinger eigenvalue problem:

( 𝜕2

𝜕𝑥2 + 𝑞(𝑥, 𝑡)) 𝑓 (𝑥, 𝜁 , 𝑡) = (j𝜁)2 ⋅ 𝑓 (𝑥, 𝜁 , 𝑡). (4.6)

Then (4.6) has two important types of solutions. Firstly, for all 𝜁 ∈ ℝ\{0} there exist so-
lutions for which the eigenfunctions 𝑓 are power signals,3 and they comprise the so-called
continuous spectrum. This part of the NFT spectrum decays over time; the corresponding
wave components dwindle as a dispersive wave train [7]. The continuous spectrum is thus of
interest for the near-field of a wave, but not in the scope of this chapter. Secondly, there is a
finite number 𝑁 ≥ 0 of distinct solutions for which the eigenfunctions 𝑓 are energy signals.⁴
These solutions comprise the so-called discrete spectrum. The values of 𝜁 that are part of
the discrete spectrum are called eigenvalues and we will denote them as 𝜁0, or when we refer
to a specific eigenvalue as 𝜁01, 𝜁02, etcetera. It can be shown that all eigenvalues of (4.6)
are non-zero imaginary numbers in the upper half plane [4, p. 251], [114, Eq. 3.21], [127,
§3]. When we write hereafter 𝜁 , we mean a non-zero number that is either real or imaginary
unless explicitly indicated otherwise.

It is the discrete spectrum that has our focus in this chapter, for the reason that every
eigenvalue corresponds to one separated soliton in the far field. The discrete spectrum can
be subdivided into two parts. The first part consists of the eigenvalues, which can be shown
to remain constant while the wave evolves [53]. That is, from the near field up to and in-
cluding the far field. Specifically, in (4.4), j𝑘𝑛 = 𝜁0𝑛, so an eigenvalue tells us the amplitude,
wavelength and celerity of the corresponding soliton in the far field and as the solitons evolve
further into the far field we can observe that those indeed remain constant. However, we can
calculate the eigenvalues with the NFT at any fixed 𝑡 = 𝑡0.

The second part of the discrete spectrum contains information about the eigenfunctions.
This part of the spectrum does evolve over time – in an easy to compute way – and contains

2If the KdV is normalized otherwise, such that 𝑞(𝑥, 𝑡0) → ℎ̆ as |𝑥| → ∞ for some finite constant ℎ̆, then (4.2) is
equivalent to 𝑞′

𝑡 +6𝑞′𝑞′
𝑥′ +𝑞′

𝑥′𝑥′𝑥′ = 0, where 𝑥′ ≔ 𝑥−6ℎ̆𝑡 and 𝑞′ ≔ 𝑞−ℎ̆ → 0 as |𝑥′ | → ∞. If the transformed
potential 𝑞′ satisfies (4.5), we can proceed with this scaled KdV.
3𝑓 (𝑥) is a power signal ⇔ lim𝑋→∞

1
2𝑋 ∫𝑋

−𝑋 |𝑓 (𝑥)|2 d𝑥 < ∞.
⁴𝑓 (𝑥) is an energy signal ⇔ ∫∞

−∞ |𝑓 (𝑥)|2 d𝑥 < ∞.
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the additional information we need, to calculate the phase shifts 𝜑𝑛 in (4.4). By the virtue
of (4.5), as |𝑥| → ∞ the Schrödinger eigenvalue problem (4.6) reduces to

𝜕2

𝜕𝑥2 𝑓 (𝑥, 𝜁 , 𝑡) = (j𝜁)2 ⋅ 𝑓 (𝑥, 𝜁 , 𝑡), (4.7)

and hence every eigenfunction of (4.6) reduces in this limit to a linear combination of the
functions exp(±j𝜁𝑥) [79, §2.8]. In particular, we can look for one set of eigenfunctions that
satisfies

⎧{
⎨{⎩

𝜙(𝑥, 𝜁 , 𝑡) → exp(−j𝜁𝑥),
̄𝜙(𝑥, 𝜁 , 𝑡) → exp(j𝜁𝑥)

as 𝑥 → −∞ (4.8)

and another set of eigenfunctions that satisfies

⎧{
⎨{⎩

̄𝜓(𝑥, 𝜁 , 𝑡) → exp(−j𝜁𝑥),
𝜓(𝑥, 𝜁 , 𝑡) → exp(j𝜁𝑥)

as 𝑥 → ∞. (4.9)

These sets of eigenfunctions are known as the Jost solutions and it should be noted that they
are also uniquely defined for all other 𝑥 by (4.6). Each of the two sets of Jost solutions forms
a linearly independent basis for the eigenfunctions of (4.6) and they are related as

[𝜙(𝑥, 𝜁 , 𝑡) ̄𝜙(𝑥, 𝜁 , 𝑡)] = [ ̄𝜓(𝑥, 𝜁 , 𝑡) 𝜓(𝑥, 𝜁 , 𝑡)] 𝑺(𝜁 , 𝑡), (4.10)

where

𝑺(𝜁 , 𝑡) ≔ [ 𝑎(𝜁) ̄𝑏(𝜁 , 𝑡)
𝑏(𝜁 , 𝑡) ̄𝑎(𝜁) ] ∈ ℂ2×2, (4.11)

where the scattering parameters 𝑏(𝜁 , 𝑡) ≡ ̄𝑏(−𝜁, 𝑡) and 𝑎(𝜁) ≡ ̄𝑎(−𝜁) are implicitly de-
fined by (4.10); their explicit definitions can be found in Appendix 4.A. The parameter 𝑎(𝜁)
depends neither on 𝑥 nor on 𝑡; the parameter 𝑏(𝜁 , 𝑡) does not depend on 𝑥, but evolves over
time as [5, Eq. (1.4.10)]

𝑏(𝜁 , 𝑡) = 𝑏(𝜁 , 0) exp(8j𝜁3𝑡). (4.12)

Although the scatteringmatrix𝑺(𝜁 , 𝑡) is in general complex valued, it is real valuedwhen 𝜁 is
an imaginary number, so for the discrete spectrum in particular 𝑺(𝜁0, 𝑡) ∈ ℝ2×2. Another
important property of the scattering matrix is [4, Eq. A3.4][79, Eqs. 2.8.10–2.8.11]

det(𝑺(𝜁 , 𝑡)) = 𝑎(𝜁) ̄𝑎(𝜁) − 𝑏(𝜁 , 𝑡) �̄�(𝜁 , 𝑡) ≡ 1. (4.13)

It can be shown that the set of eigenvalues of (4.6) can be determined from the scattering
matrix as [4, Eq. 1.7b],[79, §2.8]

{𝜁0 ∣ Im(𝜁0) > 0 ∧ 𝑎(𝜁0) = 0} ⊂ 𝕀. (4.14)

Associated to each eigenvalue 𝜁0𝑛 is a norming constant that is given by 𝑏(𝜁0𝑛, 𝑡), which
is in fact not a constant, but a quantity that evolves over time according to (4.12). With this
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norming constant we can finally calculate the phase shifts 𝜑𝑛 in (4.4) as [125, Eq. 25a],[126,
p. 84, Eq. (4.2a)],[7, Eq. 2.20b]

𝜑𝑛 = 1
2 ln(𝑏(𝜁0𝑛, 𝑡)

j 𝑎′(𝜁0𝑛) ) − 4j𝜁3
0𝑛𝑡 − 1

2 ln(−2j𝜁0𝑛) +
𝑁

∑
𝑝=𝑛+1

ln⎛⎜
⎝

𝜁0𝑝 − 𝜁0𝑛
𝜁0𝑝 + 𝜁0𝑛

⎞⎟
⎠
, (4.15)

where |𝜁01| < |𝜁02| < … < |𝜁0𝑁 | is required as the order of the eigenvalues and where

𝑎′(𝜁0𝑛) ≔ d 𝑎(𝜁)
d𝜁 ∣

𝜁=𝜁0𝑛

∈ 𝕀. (4.16)

Among the quantities required in (4.15), the norming constants are especially hard to cal-
culate numerically.⁵ We will substantiate this claim in Section 4.3. The main goal of this
chapter is to still calculate these norming constants accurately, to be able to calculate the
phase shifts.

Not only do the norming constants contain information about the position of the solitons
in the far field, but also of the evolution of the wave in the near field. The calculation of the
latter is howevermore involved due to the non-linear interaction of thewave components. In
the general case one needs to compute the inverse NFT, e.g. [127]; for a pure soliton potential
(i.e. if 𝑏(𝜁 , 𝑡0) = 0 ∀𝜁 ∈ ℝ\{0}) that may contain significant non-linear interactions
between the solitons, simpler methods exist, such as the one described in Appendix 4.F and
the reference therein.

In the remainder of this chapter we drop the dependence on 𝑡 = 𝑡0 from our notation.

Remark 5 (Sign inconsistency in [4])
Thedefinitions used in this chapter for both ̄𝜙(𝑥, 𝜁) and ̄𝑏(𝜁) differ from [4, §III] by aminus
sign, in order to be consistent with [4, Appendix 3]. Appendix 4.E, where we talk about the
Non-linear Schrödinger Equation (NSE), is an exception. 2

4.2.3. Calculation of the scattering matrix
The mathematical definition of the NFT is not convenient for numerical calculations. There-
fore the Schrödinger eigenvalue problem, (4.6), is typically rewritten as a system of first order
differential equations,

𝜕
𝜕𝑥 𝒗(𝑥, 𝜁) = 𝑨(𝑥, 𝜁)⏟

∈ℂ2×2

𝒗(𝑥, 𝜁), where 𝒗(𝑥, 𝜁) ≔ 𝗩(𝜁) 𝑓 (𝑥, 𝜁) ∈ ℂ2×1, (4.17)

and 𝗩(𝜁) is a column vector of length two of operators. In literature different choices are
made for 𝗩(𝜁). We say that each suitable choice results in an analytically equivalent calcu-
lation, expressed in a different basis for the state vector 𝒗(𝑥, 𝜁). In this chapter we make the
special choice

𝗩(𝜁) = 𝗩S(𝜁) ≔ 1
2j𝜁

⎡⎢
⎣

j𝜁 − 𝜕
𝜕𝑥

j𝜁 + 𝜕
𝜕𝑥

⎤⎥
⎦
, (4.18)

⁵One can for example calculate 𝜁0𝑛 and 𝑎′(𝜁0𝑛) as in [17].
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for which

𝑨(𝑥, 𝜁) = 𝑨S(𝑥, 𝜁) = ⎡⎢
⎣

−j𝜁 + 𝑞(𝑥)
2j𝜁

𝑞(𝑥)
2j𝜁

− 𝑞(𝑥)
2j𝜁 j𝜁 − 𝑞(𝑥)

2j𝜁

⎤⎥
⎦
, (4.19)

that simplifies the exposition. We will refer to this choice as the S basis. In Appendix 4.C we
show how our results extend to alternative choices found in literature. For the Jost solutions
with respect to the S basis we let

𝜱S(𝑥, 𝜁) ≔ 𝗩S(𝜁) [𝜙(𝑥, 𝜁) ̄𝜙(𝑥, 𝜁)] = 𝗩S(𝜁) [ ̄𝜓(𝑥, 𝜁) 𝜓(𝑥, 𝜁)] 𝑺(𝜁) (4.20)

by (4.10). Then we left-multiply (4.20) by

𝑬(𝜁𝑥) ≔ [exp(j𝜁𝑥) 0
0 exp(−j𝜁𝑥)] (4.21)

and take the limits for 𝑥 → ∓∞ respectively to obtain

lim𝑥→−∞ 𝑬(𝜁𝑥) 𝜱S(𝑥, 𝜁) = 𝑰, (4.22)

lim𝑥→∞ 𝑬(𝜁𝑥) 𝜱S(𝑥, 𝜁) = 𝑺(𝜁), (4.23)

where we used (4.8) and (4.9). It is useful to note that 𝜱S(𝑥, 𝜁) is invertible for all 𝑥, because
det(𝜱S(𝑥, 𝜁)) = W[𝜙; ̄𝜙] = 2j𝜁 ≠ 0 by (4.51) in Appendix 4.A.

If we are dealing with a potential that satisfies (4.5) and is furthermore zero outside some
window (𝑋−, 𝑋+), the boundary conditions defining the Jost solutions [(4.8) and (4.9)] hold
for all 𝑥 ≥ 𝑋+ or all 𝑥 ≤ 𝑋− respectively. This allows us to replace 𝑥 → −∞ in all the
previous equations by 𝑥 = 𝑋− and 𝑥 → ∞ by 𝑥 = 𝑋+. If we then multiply (4.23) from the
left by 𝑬(−𝜁𝑋−) and from the right by (4.22) we find

𝜱S(𝑋+, 𝜁) = 𝑯S(𝑋−, 𝑋+, 𝜁) 𝜱S(𝑋−, 𝜁), (4.24)

where

𝑯S(𝑋−, 𝑋+, 𝜁) ≔ 𝑬(−𝜁𝑋+) 𝑺(𝜁) 𝑬(𝜁𝑋−). (4.25)

That is, 𝑯S(𝑋−, 𝑋+, 𝜁) is a state transition matrix of (4.17), a matrix that defines a bijec-
tive linear mapping from every initial state vector 𝒗S(𝑋−, 𝜁) to its corresponding final state
vector 𝒗S(𝑋+, 𝜁). The calculation of the scattering matrix 𝑺(𝜁) can then be done by numer-
ically evaluating (4.17) to find 𝑯S(𝑋−, 𝑋+, 𝜁), after which the scattering matrix is found
according to (4.25).

Remark 6 (Why not the ubiquitous AKNS basis?)
An alternative choice of basis results in the so-called Ablowitz–Kaup–Newell–Segur (AKNS)
system [4]. The AKNS system is popular for two reasons. Firstly it is a framework that
covers multiple evolution equations, among which the KdV and the NSE. Secondly, for most
of these evolution equations, the AKNS system is the special choice of basis that simplifies
the exposition, because (4.22) and (4.23) hold for these evolution equations in that basis,
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cf. [4, Eqs. 3.1 and 3.3] respectively. However, for the KdV the special choice appears to be
the S basis instead. Indeed, [4, Eqs. A3.2 and A3.3] for the KdV in the AKNS basis differ
from (4.22) and (4.23) respectively, in the sense that they implicitly use the change of basis
matrix from the S basis to the AKNS basis, see (4.75) in Appendix 4.C. It is hence by the
virtue of the S basis that the exposition in this chapter parallels the one for e.g. the NSE in
the AKNS basis. 2

4.3. Bidirectional algorithm
Recall from the introduction that the eigenvalues 𝜁0 of a potential – a normalized free surface
at any fixed time – signify the amplitude, wavelength and celerity of solitons, but contain no
information about their phase shifts in the far field or their location in general. Therefore
we need for each eigenvalue a second parameter that encodes this information: the norming
constant 𝑏(𝜁0).

It is notoriously hard to calculate norming constants numerically. Let us shortly outline
the reason for this issue. The eigenfunction 𝑓 (𝑥, 𝜁0) should by definition be an energy signal.
Therefore 𝑓 (𝑥, 𝜁0) must be bounded⁶ as 𝑥 → ±∞. For the KdV j𝜁0 < 0, so the Jost solutions

̄𝜙(𝑥, 𝜁0) and ̄𝜓(𝑥, 𝜁0) are by definition unbounded, see (4.8) and (4.9). Hencewe can express
the eigenfunction as a scalar multiple of the remaining, bounded Jost solutions:

𝑓 (𝑥, 𝜁0) ∝ 𝜙(𝑥, 𝜁0) = 𝑏(𝜁0) 𝜓(𝑥, 𝜁0) (4.26)

by (4.10) and (4.14). However, (4.26) will in general not hold exactly in a numerical calcula-
tion. Instead, an eigenfunction is typically represented like

̂𝜙(𝑥, 𝜁0) = ̂𝑎(𝜁0)⏟
≈0

̄𝜓(𝑥, 𝜁0)⏟⏟⏟⏟⏟
unbounded

+ ̂𝑏(𝜁0) 𝜓(𝑥, 𝜁0). (4.27)

The Jost solution ̄𝜓(𝑥, 𝜁0) grows exponentially as 𝑥 → ∞, so when ̂𝑎(𝜁0) is small but not
exactly zero, ̂𝜙(𝑥, 𝜁0) grows exponentially as 𝑥 → ∞. Although this is in principle an error
in ̂𝑎(𝜁0), it will make the calculation of the norming constant 𝑏(𝜁0) ill-conditioned, as illus-
trated inmore detail in Appendix 4.D. For a rigorous analysis of this issue, we refer to Gelash
and Mullyadzhanov [55]. However, we remark that their conclusion that ‘a high precision
arithmetic is required to exclude these errors’ disregards the possibility of using a different
computation than the one they analysed. In this chapter we demonstrate that the need for
high precision arithmetic is overcome by the algorithm that we propose.

The bidirectional algorithm is a numerical method to calculate the norming constants
that lessens the influence of the aforementioned numerical errors significantly. It was pub-
lished byHari andKschischang [63] and simultaneously discovered as the forward-backward
method by Aref [12]. The key idea is to evaluate the norming constant 𝑏(𝜁0) not at a bound-
ary of the window (𝑋−, 𝑋+), but at a point 𝑥 = 𝑋0 in between, and enforce ̂𝑎(𝜁0) = 0 in the
numerical calculation. The algorithm was originally developed and presented for use with
the Zakharov–Shabat (ZS) system (albeit with a change of variables), which is equivalent
to the AKNS system for the NSE. In Section 4.3.1 we extend this method to make it usable
for the KdV and we formulate an overdetermined equation for the calculation of norming

⁶Definition: A function 𝑓 (𝑥) is bounded on a set 𝒳 if and only if there exists a number 𝐵 such that |𝑓 (𝑥)| ≤ 𝐵 < ∞
for all 𝑥 ∈ 𝒳 .
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constants 𝑏(𝜁0). We show in Appendix 4.E that the equations found in [12, 63] respectively
for the calculation of norming constants for the NSE are actually the two different halves of
this overdetermined equation. In Section 4.3.3 we propose a new criterion for the selection
of the matching point 𝑋0 that is observed to minimize the estimation error of the norming
constant ̂𝑏(𝜁0) by utilizing the overdetermined equation as a whole. By minimizing the es-
timation error of the norming constant, we also minimize the estimation error of the phase
shift that is calculated from the norming constant. We summarize the criteria found in lit-
erature in Section 4.3.3 as well, but (as we will show in Section 4.4) our criterion leads to
considerably more reliable estimates of the norming constants than the existing criteria.

4.3.1. Bidirectional algorithm for the KdV equation
We assume again that the potential resembles a wave packet of finite length: The potential
satisfies (4.5) and we can choose a window (𝑋−, 𝑋+) ⊂ ℝ such that the potential 𝑞(𝑥) is
zero outside this window. Let us cut the potential in a point 𝑋0 ∈ (𝑋−, 𝑋+) in a left and a
right part:

𝑞L(𝑥) ≔
⎧{
⎨{⎩

𝑞(𝑥) 𝑥 ∈ (𝑋−, 𝑋0),
0 otherwise;

(4.28)

𝑞R(𝑥) ≔
⎧{
⎨{⎩

𝑞(𝑥) 𝑥 ∈ (𝑋0, 𝑋+),
0 otherwise.

(4.29)

For the state transition matrices from 𝑋− to 𝑋0 and from 𝑋0 to 𝑋+ it holds by (4.24) that

𝑯S(𝑋−, 𝑋+, 𝜁) = 𝑹S(𝜁) 𝑳S(𝜁), (4.30)

where

𝑳S(𝜁) ≔ 𝑯S(𝑋−, 𝑋0, 𝜁) (4.31)

and

𝑹S(𝜁) ≔ 𝑯S(𝑋0, 𝑋+, 𝜁) (4.32)

can be calculated from the potentials 𝑞L(𝑥) and 𝑞R(𝑥) respectively. Then by (4.25),

𝑺(𝜁) = 𝑬(𝜁𝑋+) 𝑯S(𝑋−, 𝑋+, 𝜁) 𝑬(−𝜁𝑋−)
= 𝑬(𝜁𝑋+) 𝑹S(𝜁) 𝑬(−𝜁𝑋0) 𝑬(𝜁𝑋0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑰
𝑳S(𝜁) 𝑬(−𝜁𝑋−) = 𝑺R(𝜁) 𝑺L(𝜁), (4.33)

where 𝑺R(𝜁) and 𝑺L(𝜁) are the scattering matrices for the respective potentials 𝑞R(𝑥) and
𝑞L(𝑥). By (4.13) and Cramer’s rule,

𝑺−1
R (𝜁) = [ ̄𝑎R(𝜁) − ̄𝑏R(𝜁)

−𝑏R(𝜁) 𝑎R(𝜁) ] . (4.34)

We multiply (4.33) for 𝜁 = 𝜁0 from the left by 𝑺−1
R (𝜁0) and from the right by [1 0]⊤

to
find after substitution of 𝑎(𝜁0) = 0 that

[− ̄𝑏R(𝜁0)
𝑎R(𝜁0) ] 𝑏(𝜁0) = [𝑎L(𝜁0)

𝑏L(𝜁0)] , (4.35)
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which is an overdetermined equation fromwhich 𝑏(𝜁0) is to be solved. If 𝑺R(𝜁0) and 𝑺L(𝜁0)
are the exact scattering matrices of any potential ̂𝑞(𝑥) at an exact eigenvalue thereof, (4.35)
will be consistent. Hence, an inconsistency in (4.35) indicates a numerical error that is not
due to e.g. discretisation of the potential. The extend to which (4.35) is consistent appears
to depend heavily on the choice of the matching point 𝑋0, an observation we exploit in
Section 4.3.3 to formulate a new criterion for this choice. To facilitate the discussion thereof,
we use the two rows of (4.35) to define two separate estimators for the norming constant:

̂𝑏1(𝜁0) ≔ − 𝑎L(𝜁0) / �̄�R(𝜁0), (4.36)
̂𝑏2(𝜁0) ≔ 𝑏L(𝜁0) / 𝑎R(𝜁0), (4.37)

which depend implicitly on 𝑋0 via (4.28) and (4.29).
In the derivation above we have not posed any restriction on the way 𝜁0, (the first row

of) 𝑺R(𝜁0), and (the first column of) 𝑺L(𝜁0) are calculated numerically. The bidirectional
algorithm is hence independent on the numerical method by which (4.17) is solved. This
may for example be an exponential integrator method (e.g. [16, 32, 93, 101]) or a collocation
method (e.g. [156, §2.4.3], [143],[142, §8.2]). Furthermore we are free to choose the basis for
this calculation. In the S basis (4.35) becomes, after left-multiplication by ej𝜁𝑋− 𝑬(−𝜁𝑋0),

[−𝑅S12(𝜁0)
𝑅S11(𝜁0) ] 𝑏(𝜁0)ej𝜁(𝑋−+𝑋+) = [𝐿S11(𝜁0)

𝐿S21(𝜁0)] . (4.38)

With the aid of Appendix 4.C we could readily express (4.35) in any other basis we may wish
to use. For example in the ubiquitous AKNS basis we obtain after left-multiplying (4.35) by
ej𝜁𝑋− 𝑬(−𝜁𝑋0) the equivalent expression

⎡
⎢
⎣

−𝑅A12(𝜁0)
2j𝜁0

𝑅A11(𝜁0) + 𝑅A12(𝜁0)
2j𝜁0

⎤
⎥
⎦

𝑏(𝜁0)ej𝜁(𝑋−+𝑋+) =

⎡
⎢
⎣

𝐿A11(𝜁0) + 𝐿A12(𝜁0)
2j𝜁0

−𝐿A11(𝜁0) − 𝐿A12(𝜁0)
2j𝜁0

+ 2j𝜁0 𝐿A21(𝜁0) + 𝐿A22(𝜁0)
⎤
⎥
⎦
,

(4.39)

which demonstrates that the use of the AKNS basis for the KdV is possible at the cost ofmore
complicated equations compared to the S basis.

In Appendix 4.E we link the formulation of (4.35) to the previous work on the bidirec-
tional algorithm, which was solely aimed at calculations for the NSE in the AKNS basis. In
short, both [63] and [12] develop the bidirectional algorithm as described in this chapter,
but [63] finds only (4.36), whereas [12] finds only (4.37) as the estimator for the norming
constant. They furthermore use different criteria to select the matching point, as we will
discuss in Section 4.3.3. However, since we are proposing a criterion that aims to minimize
the error in the phase shift, we need to discuss first – in the next subsection – how this error
is affected by an error in the norming constant.

4.3.2. Phase shift error
We have seen that we can calculate the phase shifts 𝜑𝑛 appearing in (4.4) from the norm-
ing constants 𝑏(𝜁0𝑛) with (4.15). From a numerical estimation of the norming constant,
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̂𝑏(𝜁0𝑛), we can thus calculate an estimation of the phase shift, ̂𝜑𝑛. It is readily verified that
the estimation error in the phase shift satisfies

̂𝜑𝑛 − 𝜑𝑛 = 1
2 ln( ̂𝑏(𝜁0𝑛) / 𝑏(𝜁0𝑛)), (4.40)

when all other variables that appear in (4.15) remain the same. Hence an additive error in
the phase shift is directly related to a multiplicative error in the norming constant.

We must further consider what happens when this multiplicative error is negative. (We
will see in Section 4.4 that this occurs commonly for calculations of the norming constant
according to the benchmark algorithms.) In that case (4.40) evaluates to a complex number,
which is a meaningless result. Empirically, when we reconstruct a potential from an NFT
spectrum that is modified by flipping the sign of one or more norming constants, we obtain
a completely different potential. Hence, a proper measure for the phase shift error is

ℰ( ̂𝑏, 𝑏; 𝜁0) ≔
⎧{
⎨{⎩

1
2 ln( ̂𝑏(𝜁0)/𝑏(𝜁0)) ̂𝑏(𝜁0)/𝑏(𝜁0) > 0,
∞ ̂𝑏(𝜁0)/𝑏(𝜁0) ≤ 0.

(4.41)

Errors in numerical algorithms for the calculation of the NFT emerge for example due to
discretisation of the potential, where there is a trade-off between the error and the required
number of computations. For an exponential integrator method the required number of
computations depends on the number of samples 𝐷 and the relative error in the result is
typically of the order 𝒪(𝐷−𝑝) for some positive integer 𝑝. We remark that then the error
measure defined in (4.41) converges at the same rate, i.e.

∣
̂𝑏(𝜁0) − 𝑏(𝜁0)

𝑏(𝜁0) ∣ = 𝒪(𝐷−𝑝) ⟺ ∣ℰ( ̂𝑏, 𝑏; 𝜁0)∣ = 𝒪(𝐷−𝑝), (4.42)

which can be shown by Taylor expansion.

4.3.3. Choice of matching point
We have shown in Section 4.3.1 how the bidirectional algorithm can be used for the calcula-
tion of the norming constants for theKdV. Two questions are left to answer in this subsection:
How should we choose the matching point 𝑋0 and how do we find the optimal estimate of
a norming constant from the overdetermined equation (4.35)? In this subsection we sum-
marize the existing criteria for choosing the matching point that are known in the literature
for the NSE and we propose a new criterion. In Section 4.4 we will demonstrate with nu-
merical examples that the existing criteria are not suitable for arbitrary vanishing potentials,
whereas the criterion we propose provides the most accurate estimate of the norming con-
stant in every case. By following the proposed criterion the error between the two estimates
– (4.36) and (4.37) respectively – will generally become negligible compared to the discreti-
sation error, in which case we can simply select any of the two as the numerical norming
constant.

Suppose that the potential 𝑞(𝑥) is known on a grid 𝑥 ∈ {𝑋− + 𝑚𝜀 − 1
2𝜀 ∣ 𝑚 ∈

{1, 2, … , 𝐷}}, where the step size 𝜀 ≔ (𝑋+ − 𝑋−)/𝐷. The natural candidates for the match-
ing point are the points exactly in between: 𝑋0 ∈ 𝒳0 ≔ {𝑋− + 𝑚𝜀 ∣ 𝑚 ∈ {1, 2, … , 𝐷 − 1}}.
We propose to select the matching point that both minimizes the relative error between the
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two estimates of the norming constant ( ̂𝑏1(𝜁0) and ̂𝑏2(𝜁0) as defined in (4.36) and (4.37)
respectively) and minimizes the additive error of the phase shifts that can be calculated from
these. That is,

𝑋0 proposed = arg min
𝑋0∈𝒳0

∣ ℰ( ̂𝑏1, ̂𝑏2; ̂𝜁0)∣, (4.43)

with ℰ as defined in (4.41). The intuition behind this choice is that when the numerical error
is small, the two estimates are close to each other. Conversely, when either of the two suffers
from a large numerical error, the two estimates are probably far apart.

In the literature three other criteria are known to select the matching point. These were
all proposed for the calculation of norming constants with respect to the NSE, but we will
use them as benchmarks for the calculation with respect to the KdV anyway, as there are to
our best knowledge no such criteria for the KdV.

• The Hari criterion [63, Algorithm 1] can be summarized as follows: Evaluate for each
eigenvalue 𝜁0 the scattering parameter 𝑎L(𝜁0) as a function of the matching point 𝑋0.
Then select the matching point as

𝑋0 Hari = arg min
𝑋0∈𝒳0

|𝑎L(𝜁0) − 0.5|. (4.44)

• The Aref criterion [12, §III.B] for 𝑋− = −𝑋+ is

𝑋0 Aref = arg min
𝑥∈𝒳0

|𝑞(𝑥)| exp(−2j𝜁0|𝑥|). (4.45)

In case 𝑋− ≠ −𝑋+, two options are given in [12, §III.A]: Shift the potential such that
(𝑋−, 𝑋+) shifts to (𝑋+−𝑋−

−2 , 𝑋+−𝑋−
2 ) and correct for this space translation afterwards,

or pad the potential with zero on one side to enlarge the window until 𝑋− = −𝑋+.
The choice between these two affects the outcome of (4.45). We will refer to these
criteria as the Aref criterion with potential shift or support extension respectively.

• The 1-norm criterion, used by the Fast Non-linear Fourier Transform (FNFT) software
library [152], is

𝑋0 1-norm = arg min
𝑋0∈𝒳0

∣ ∥𝑞L(𝑥)∥1 − ∥𝑞R(𝑥)∥1 ∣. (4.46)

Apart from the bidirectional algorithm one could also estimate the norming constant with a
naive calculation, directly from the scattering matrix:

̂𝑏naive(𝜁0) = [0 1] 𝑺(𝜁0) [1
0] . (4.47)

We treat the naive calculation hereafter in the framework of the bidirectional algorithm by
choosing

𝑋0 naive = 𝑋+ ⇒ ̂𝑏naive(𝜁0) ≡ ̂𝑏2(𝜁0), (4.48)
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where we have used that the scattering matrix 𝑺R(𝜁0) of 𝑞R(𝑥) ≡ 0 is the identity matrix.
Note that ̂𝑏1(𝜁0) is undetermined for 𝑋0 naive.

We remark that the use of a matching point alone does not define the bidirectional algo-
rithm. Some algorithms in the literature (e.g. [142, §8.2.1]) integrate (4.17) separately from
𝑋− to 𝑋0 and from 𝑋+ backwards to 𝑋0 to calculate 𝑳𝔟(𝜁) and 𝑹𝔟(𝜁) respectively (where
𝔟 is their basis of choice) and then calculate 𝑺(𝜁) from the product of 𝑳𝔟(𝜁) and 𝑹𝔟(𝜁), cf.
(4.33). Since 𝑎(𝜁0) = 0 is not exploited in that case, such algorithms are not examples of the
bidirectional algorithm.

4.4. Numerical examples
In this section we compare the numerical calculation of the norming constants according to
the bidirectional algorithm with the proposed criterion to the benchmark criteria listed in
Section 4.3.3. We demonstrate that the bidirectional algorithm with the proposed criterion
computes the correct norming constants even in difficult examples where all other criteria
fail. In each example we start with a potential 𝑞(𝑥) of which the norming constants are
analytically known. Then we calculate the norming constants numerically according to our
proposed criterion as well as each of the benchmark criteria and compare the results.

4.4.1. Example setup
For each example we approximate the potential 𝑞(𝑥) as a piecewise constant function ̂𝑞(𝑥)
that is 0 outside a window 𝑥 ∈ (𝑋−, 𝑋+). The step size is a constant 𝜀 ≔ (𝑋+ − 𝑋−)/𝐷,
where 𝐷 is the number of samples. Each step has the same value as the potential at the
midpoint of the step, so ̂𝑞(𝑥𝑚) = 𝑞(𝑥𝑚) for all 𝑥𝑚 = 𝑋−+𝑚𝜀− 1

2𝜀, where𝑚 ∈ {1, 2, … , 𝐷}.
This approximation of the potential introduces a relative error in the spectrum proportional
to 𝐷−2 [16, 17], thus by (4.42) we expect the error according to the error measure defined
in (4.41) to be of the order 𝒪(𝐷−2).⁷

For the approximated potential ̂𝑞(𝑥) we find the eigenvalues numerically according the
algorithm described in [17, §4] where we take 𝑼(𝑞, 𝜀) = exp(𝜀 𝑨S(𝑥, 𝜁)) [see (4.19)] to
do the calculation in the S basis for the KdV. Then for each eigenvalue we calculate the two
norming constant estimates ̂𝑏1(𝜁0) and ̂𝑏2(𝜁0) according to (4.36) and (4.37) respectively at
every matching point candidate 𝑋0 ∈ 𝒳0. Finally we find the matching point according to
the proposed criterion, (4.43), as well as to the benchmark criteria, (4.44) to (4.46) and (4.48)
respectively.⁸ Wewill report both estimates of the norming constant for each of thematching
point criteria (except for the naive computation), even though their respective sources make
use of only one (see Appendix 4.E).

We display the results for each example in two different ways. Firstly, we choose a low
number of samples 𝐷 for which still the analytically known number of eigenvalues can be
found. We vary the matching point 𝑋0 and plot for every eigenvalue against that the error
between the two norming constants estimates ̂𝑏1(𝜁0) and ̂𝑏2(𝜁0) as well as the error between
both of these estimates and the analytically known norming constant. Secondly, we vary the

⁷Since a piecewise constant interpolation leads (with a suitable 𝑥-grid) to an exact representation of a rectangular
potential, i.e. ̂𝑞(𝑥) ≡ 𝑞(𝑥), such an example shows atypical results for all criteria and is therefore not included.
⁸In case any of the criteria does not have a unique global minimum, we choose the leftmost (lowest) matching point
among the global minima.
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Figure 4.1: Potential 𝑞(𝑥) of ‘Example 1: Two separated solitons’ and the piecewise constant approximation ̂𝑞(𝑥)
thereof with 𝐷 = 100 samples (top), the phase shift error between norming constant estimates �̂�1(𝜁0) and �̂�2(𝜁0)
as a function of the matching point 𝑋0 (middle), and the phase shift error of these two estimates compared to the
true norming constant 𝑏(𝜁0) (bottom). All three plots have the same scale on the horizontal axis.

number of samples 𝐷 and plot for every eigenvalue against that the error between both of
these estimates and the analytically known norming constant, where the matching point is
chosen according to the proposed criterion and each of the benchmark criteria respectively.
We plot these matching points as well against the number of samples.

4.4.2. Example 1: Two separated solitons
For this example we choose a pure soliton potential with two eigenvalues: 𝜁01 = 0.5j with
norming constant 𝑏(𝜁01) = −1010 and 𝜁02 = 0.6j with 𝑏(𝜁02) = 10−12. The resulting
potential consists of two well separated solitons as shown in Fig. 4.1 (top), with the soliton
corresponding to 𝜁01 at 𝑥 ≈ 25 and the one corresponding to 𝜁02 at 𝑥 ≈ −25. We calcu-
lated this potential with the algorithm from [99], with an essential numerical improvement
described in Appendix 4.F.

For the numerical calculation of the NFT we approximate this potential (initially) with
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Figure 4.2: Matching point for the bidirectional algorithm and resulting phase shift errors for different numbers of
samples for ‘Example 1: Two separated solitons’, following the proposed criterion (top row) and three benchmark
criteria (second to fourth row); phase shift error with the naive computation (bottom right).
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a coarse grid of 𝐷 = 100 samples in the interval 𝑥 ∈ (𝑋−, 𝑋+) = (−50, 50) as shown in
Fig. 4.1 (top). Fig. 4.1 (middle) shows the error between the two estimates ̂𝑏1(𝜁0) and ̂𝑏2(𝜁0)
for all matching point candidates 𝑋0 ∈ 𝒳0. (Here and later, errors above a certain threshold
are not shown as they can become very large.) These errors attain a minimum when 𝑋0 is
at the location of the corresponding soliton. Hence, at this location (4.35) is most consistent.
Away from the soliton this error becomes several orders of magnitude larger. Motivated
by this observation we want to know if the numerical error is minimized by choosing the
matching point for each norming constant according the proposed criterion. In Fig. 4.1
(bottom) we plot therefore the error between both respective estimates and the ground truth
and indeed we see that the numerical error of both estimates for both solitons is minimal
when we choose the matching point 𝑋0 according to the proposed criterion.⁹ The main
difference compared to Fig. 4.1middle is that the error reaches an error floor in the vicinity of
the soliton, thereby forming bathtub shaped curves rather than V-shaped curves. This error
floor is caused by the approximation of the potential by a piecewise constant function and can
be lowered by reducing the step size. This is shown in Fig. 4.2, where we plot (as a function
of the number of samples 𝐷) 𝑋0 according to each of the criteria as well as the error of
the resulting norming constant estimates ̂𝑏1(𝜁0) and ̂𝑏2(𝜁0) compared to the true norming
constant 𝑏(𝜁0) for both of the eigenvalues 𝜁0. It can be seen that the bidirectional algorithm
with the proposed criterion is the only one for which the error decay is consistently for all
estimates 𝒪(𝐷−2) – a factor 100 per decade – as expected. The other criteria find norming
constants with an error that shows no convergence and that is several orders of magnitude
larger for one of the eigenvalues or for one of the estimators, ̂𝑏1(𝜁0) or ̂𝑏2(𝜁0). We remark
that curves that leave the graphing area vertically indicate that the neighbouring data point
corresponds to an estimate of the norming constant with the opposite sign, yielding infinite
error by (4.41). The reason why the benchmark criteria perform like this, is that the solitons
in the potential are separated from each other. The benchmark criteria select the matching
point for all eigenvalues either near one of the two solitons or right in the middle, which are
clearly no suitable matching points in every case if we look at Fig. 4.1 (bottom). Hence, even
for this simple potential the proposed criterion is the only one that results in only reliable
estimates for the norming constants.

4.4.3. Example 2: Six partially overlapping solitons
In this example we construct a pure soliton potential with six eigenvalues, 𝜁0𝑛 = 0.1𝑛j for
𝑛 ∈ {1, 2, … , 6}, and norming constants 𝑏(𝜁0𝑛) = (−1)𝑛 exp(8𝑛(−1.01)𝑛). The result-
ing potential is calculated as in Example 1 and consists of two clusters of three overlapping
solitons each: The solitons for odd 𝑛 cluster at 𝑥 ≈ −45, those for even 𝑛 cluster at 𝑥 ≈ +45.

For the numerical calculation of the NFT we approximate this potential with a coarse
grid of 𝐷 = 316 steps in the interval 𝑥 ∈ (−160, 160). The potential and its approximation
are shown in Fig. 4.3 (first plot). The error between the two estimates ̂𝑏1(𝜁0) and ̂𝑏2, (𝜁0)
are shown in Fig. 4.1 (second plot). Again we see that for all norming constants the global

⁹Sharp dips below the error floor, such as in Fig. 4.1 (bottom) for ∣ℰ(�̂�2, 𝑏; 𝜁02)∣ at 𝑋0 = −40 are cases where
the error in the estimate of the norming constant coincidentally cancels the error due to the approximation of
the potential. Since the norming constant is a real number this is not unlikely to happen at some matching point
candidate, but there is no way to find that point without knowledge of the true norming constant and exploit this
effect.
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Figure 4.3: Potential 𝑞(𝑥) of ‘Example 2: Six partially overlapping solitons’ and the piecewise constant approxima-
tion ̂𝑞(𝑥) thereof with 𝐷 = 316 samples (first plot), the phase shift error between norming constant estimates
�̂�1(𝜁0) and �̂�2(𝜁0) as a function of the matching point 𝑋0 (second plot), and the phase shift error of these two
estimates compared to the true norming constant 𝑏(𝜁0) (last two plots). All four plots have the same scale on the
horizontal axis.
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Figure 4.4: Matching point for the bidirectional algorithm and resulting phase shift errors for different numbers
of samples for ‘Example 2: Six partially overlapping solitons’, following the proposed criterion (top row) and three
benchmark criteria (second to fourth row); phase shift error with the naive computation (bottom right).



4.4. Numerical examples

4

77

minimum of this error is for 𝑋0 in the vicinity of the corresponding soliton. In Fig. 4.3 (last
two plots) we show for each eigenvalue the error between both respective estimates and the
ground truth. Similar to Example 1 we see that the numerical error of both estimates for all
solitons is at a minimum when we follow the proposed criterion. Due to the larger window
(𝑋−, 𝑋+) we can recognise the bathtub shapes of the curves better than in Example 1, and
see that the ones for ̂𝑏1(𝜁0) are shifted to the left compared to the corresponding soliton,
whereas the ones for ̂𝑏2(𝜁0) are shifted to the right. Furthermore we see that the bottoms of
the bathtubs become more narrow as the corresponding eigenvalue increases in magnitude,
implying that choosing a good matching point becomes more important as the energy of the
corresponding soliton increases.

We can lower the bottoms of the bathtubs, and thereby the achievable error of the esti-
mate of the norming constant, by increasing the number of samples, as shown in Fig. 4.4.
Again we observe that all of the benchmark criteria return several estimates of the norming
constant with an error that does not decay consistently with an increase of the number of
samples, or is even high throughout. The proposed algorithm in contrast returns estimates
of the norming constant of which the error decays neatly at the expected rate of 𝒪(𝐷−2) for
every eigenvalue and for both estimates thereof.

4.4.4. Example 3: Potential with non-zero continuous spectrum
For the last example we start from the potential 𝑞′(𝑥) = (35/64) sech2(𝑥/4). It has a
non-zero continuous spectrum, meaning that it is not a pure soliton potential. This po-
tential has three eigenvalues, 𝜁0𝑛 = (2𝑛 − 1)j/8 for 𝑛 ∈ {1, 2, 3}, with norming constants
𝑏′(𝜁0𝑛) = (−1)𝑛+1 [79, §5.2]. For this example we translate this potential to the right by
12π to obtain 𝑞(𝑥) ≔ 𝑞′(𝑥 − 12π) = (35/64) sech2(𝑥/4 − 3π). We approximate this po-
tential with a piecewise constant function with (initially) only 𝐷 = 32 steps in the interval
𝑥 ∈ (0, 80). This approximation ̂𝑞(𝑥) and the potential 𝑞(𝑥) itself are shown in Fig. 4.5 (top).
The resulting truncation is deliberately asymmetric with respect to the axis of symmetry of
the potential.1⁰ By Lemma 2 in Appendix 4.B we can calculate that the norming constants
of 𝑞(𝑥) are 𝑏(𝜁0𝑛) = (−1)𝑛+1 exp(−24πj𝜁0𝑛).

In Fig. 4.5 (middle) we show the error between the two estimates of each norming con-
stant. We see that all three curves show a global minimum near the axis of symmetry of the
potential and in Fig. 4.5 (bottom) we show the errors between these two estimates and the
true norming constants, which have a wide global minimum near the axis of symmetry of
the potential. This minimum is quite high because of the limited number of samples.

When we increase the number of samples, we obtain the results shown in Fig. 4.6. The
Hari criterion, the 1-norm criterion, and the proposed criterion select a matching point near
the axis of symmetry of the potential and the errors of all their estimates of the norming con-
stant decay at the expected rate of a factor 100 per decade, 𝒪(𝐷−2). The flooring that is
seen in all these cases from around 𝐷 = 105 samples is because the error due to the trunca-
tion to 𝑥 ∈ (0, 80) becomes dominant compared to the error due to the piecewise constant
approximation itself and could hence be removed by enlarging the window (𝑋−, 𝑋+). For

1⁰We do this because otherwise the staircase approximation ̂𝑞(𝑥) would be even symmetric around 𝑥 = 12π as
well. Since for every even symmetric potential all norming constants are ±1 by Corollary 1 in Appendix 4.B,
we would obtain no error in the norming constant due to the staircase approximation at any number of samples,
except for due to the error in ̂𝜁0.
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Figure 4.5: Potential 𝑞(𝑥) of ‘Example 3: Potential with non-zero continuous spectrum’ and the piecewise constant
approximation ̂𝑞(𝑥) thereof with 𝐷 = 32 samples (top), the phase shift error between norming constant estimates
�̂�1(𝜁0) and �̂�2(𝜁0) as a function of thematching point𝑋0 (middle), and the phase shift error of these two estimates
compared to the true norming constant 𝑏(𝜁0) (bottom). All three plots have the same scale on the horizontal axis.
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Figure 4.6: Matching point for the bidirectional algorithm and resulting phase shift errors for different numbers of
samples for ‘Example 3: Potential with non-zero continuous spectrum’, following the proposed criterion (top row)
and three benchmark criteria (second to fourth row); phase shift error with the naive computation (bottom right).



4

80 4. Accurate computation of the norming constants of the KdV spectrum

this example even the naive computation shows the expected error decay for two of the three
norming constants, the third one floors at a higher level. The Aref criterion11 selects match-
ing points for two of the eigenvalues at the far right end of the potential, which results in
two estimates of the norming constants with a non-decaying error. From this example we
see that in the case of a potential where the solitons are all clustered together, the proposed
criterion performs equally well as the best among the benchmark criteria.

4.5. Conclusion
In this chapter we investigated how to calculate the phase shifts of solitons in the far field of
any wave packet that evolves according to the Korteweg–de Vries equation (KdV) equation.
For that we in particular need to compute the so-called norming constant of each soliton.
The naive method to compute norming constants is however known to be unreliable. We
adapted the bidirectional algorithm, which was originally designed for the computation of
norming constants for theNon-linear Schrödinger Equation (NSE), to theKdV. Furthermore
we proposed a new criterion to select the matching point required for this algorithm. The
criterion is based on the observation that the bidirectional algorithm actually provides two
estimates of each norming constant. The proposed criterion is to select the matching point
that minimizes the difference between these two estimates, which is observed to minimize
also their distance to the true norming constant. We demonstrated with three examples
that the proposed method performs at least as good as existing algorithms, and often several
orders of magnitude better.

Our method was implemented in the FNFT software library [152] and has been applied
to real-world data [26].

4.A. Definitionofthe scatteringparametersof theKdV
equation

By Abel’s identity [2, p. 22], the Wronskian of any two eigenfunctions 𝑓1 and 𝑓2 of (4.6) is
independent of 𝑥:

W[𝑦1(𝑥); 𝑦2(𝑥)] ≔ 𝑦1𝑦2𝑥 − 𝑦1𝑥𝑦2; (4.49)
𝜕

𝜕𝑥 W[𝑦1(𝑥); 𝑦2(𝑥)] ≡ 0. (4.50)

Consequently, we may evaluate Wronskians of the Jost solutions, (4.8) and (4.9), at any con-
venient value 𝑥:

W[𝜙; ̄𝜙] = lim𝑥→−∞ W[𝜙; ̄𝜙] = 2j𝜁 ; (4.51)

W[ ̄𝜓; 𝜓] = lim𝑥→∞ W[ ̄𝜓; 𝜓] = 2j𝜁 . (4.52)

11If there is a matching point 𝑋0 for which 𝑞(𝑋0) = 0, then it minimizes (4.45). Consequently the Aref criterion
with support extension returns a matching point in the zero padding of the potential, which does not give up to
par results. Therefore we use the Aref criterion with potential shift in this example.
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Because these Wronskians are non-zero for 𝜁 ≠ 0, both sets of Jost solutions are linearly
independent for 𝜁 ≠ 0. To relate these two sets, define the scattering parameters as

𝑎(𝜁) ≔ W[𝜙(𝑥, 𝜁 , 𝑡); 𝜓(𝑥, 𝜁 , 𝑡)]
2j𝜁 , (4.53)

𝑏(𝜁 , 𝑡) ≔ W[ ̄𝜓(𝑥, 𝜁 , 𝑡); 𝜙(𝑥, 𝜁 , 𝑡)]
2j𝜁 , (4.54)

̄𝑎(𝜁) ≔ W[ ̄𝜓(𝑥, 𝜁 , 𝑡); ̄𝜙(𝑥, 𝜁 , 𝑡)]
2j𝜁 ≡ 𝑎(−𝜁), (4.55)

̄𝑏(𝜁 , 𝑡) ≔ W[ ̄𝜙(𝑥, 𝜁 , 𝑡) 𝜓(𝑥, 𝜁 , 𝑡)]
2j𝜁 ≡ 𝑏(−𝜁, 𝑡). (4.56)

such that (4.10) holds. The scattering parameters 𝑎(𝜁) and ̄𝑎(𝜁) do not depend on 𝑡 [4,
Eq. 3.8].

4.B. Properties of the scattering parameters of theKdV
equation

Lemma 2 (Space translation) If the scattering matrix of a potential 𝑞(𝑥) is 𝑺(𝜁) as in (4.11),
then the scattering matrix of the potential 𝑞′(𝑥) ≡ 𝑞(𝑥 − 𝑥0) is

𝑺′(𝜁) = 𝑬(𝜁𝑥0) 𝑺(𝜁) 𝑬(−𝜁𝑥0)

= [ 𝑎(𝜁) ̄𝑏(𝜁) exp(2j𝜁𝑥0)
𝑏(𝜁) exp(−2j𝜁𝑥0) ̄𝑎(𝜁) ] , (4.57)

where 𝑬(𝜁𝑥) is defined in (4.21).

Proof The scattering problem for 𝑞′(𝑥) is equivalent to the scattering problem for 𝑞(𝑥′)
with 𝑥′ ≔ 𝑥 − 𝑥0. The Jost solutions in the translated coordinate are

𝜙(𝑥, 𝜁) ≡ 𝜙(𝑥′ + 𝑥0, 𝜁) ≡ 𝜙(𝑥′, 𝜁) exp(−j𝜁𝑥0), (4.58)
̄𝜙(𝑥, 𝜁) ≡ ̄𝜙(𝑥′ + 𝑥0, 𝜁) ≡ ̄𝜙(𝑥′, 𝜁) exp(j𝜁𝑥0), (4.59)
̄𝜓(𝑥, 𝜁) ≡ ̄𝜓(𝑥′ + 𝑥0, 𝜁) ≡ ̄𝜓(𝑥′, 𝜁) exp(−j𝜁𝑥0), (4.60)

𝜓(𝑥, 𝜁) ≡ 𝜓(𝑥′ + 𝑥0, 𝜁) ≡ 𝜓(𝑥′, 𝜁) exp(j𝜁𝑥0). (4.61)

Equation (4.57) follows from filling these out in the definitions of the scattering parame-
ters, (4.53) to (4.56). ■

Remark 7 (Change of 𝑥-coordinate frame)
Although 𝑏(𝜁) and ̄𝑏(𝜁) do not depend on 𝑥 (see Appendix 4.A), 𝑏(𝜁) and �̄�(𝜁) do change
when we change from 𝑥 to a translated coordinate 𝑥′ ≔ 𝑥 − 𝑥0, as we see in Lemma 2. For
the continuous spectrum 𝜁 is real and then this change affects ∠ 𝑏(𝜁) and ∠ �̄�(𝜁), which is
analogous to a phase shift of the ordinary Fourier transform under a translation of the space
coordinate. For the discrete spectrum 𝜁0 is imaginary, and then this change affects |𝑏(𝜁0)|
and |�̄�(𝜁0)| instead. 2
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Lemma 3 (Space reversal) If the scattering matrix of a potential 𝑞(𝑥) is 𝑺(𝜁) as in (4.11),
then the scattering matrix of the potential 𝑞′(𝑥) ≡ 𝑞(−𝑥) is

𝑺′(𝜁) = [0 1
1 0] 𝑺−1(𝜁) [0 1

1 0] = [ 𝑎(𝜁) −𝑏(𝜁)
−�̄�(𝜁) ̄𝑎(𝜁) ] . (4.62)

Proof The scattering problem for 𝑞′(𝑥) is equivalent to the scattering problem for 𝑞(𝑥′)
with 𝑥′ ≔ −𝑥. The Jost solutions in the mirrored coordinate are

𝜙(𝑥, 𝜁) ≡ 𝜓(𝑥′, 𝜁), (4.63)
̄𝜙(𝑥, 𝜁) ≡ ̄𝜓(𝑥′, 𝜁), (4.64)

̄𝜓(𝑥, 𝜁) ≡ ̄𝜙(𝑥′, 𝜁), (4.65)
𝜓(𝑥, 𝜁) ≡ 𝜙(𝑥′, 𝜁). (4.66)

Equation (4.62) follows from filling these out in the definitions of the scattering parame-
ters, (4.53) to (4.56). ■

Corollary 1 (Even symmetric potential) For a potential that is even symmetric, i.e. 𝑞(𝑥) ≡
𝑞(−𝑥), by Lemma 3

𝑏(𝜁) ≡ − ̄𝑏(𝜁). (4.67)

Furthermore, since 𝑎(𝜁0) = 0 for every eigenvalue 𝜁0, from (4.13) and (4.67) norming con-
stants of even symmetric potentials satisfy 𝑏(𝜁0) = ±1. 2

4.C. Otherbases for solvingthe Schrödingereigenvalue
problem

The derivations in Chapter 4 for the S basis can be translated into other bases by means of
similarity transformations. Let 𝔟 indicate any such basis, then the basis dependent variables
are related to the S basis as

𝗩𝔟(𝑥, 𝜁) = 𝑻𝔟
S (𝜁) 𝗩S(𝑥, 𝜁), (4.68)

𝒗𝔟(𝑥, 𝜁) = 𝑻𝔟
S (𝜁) 𝒗S(𝑥, 𝜁), (4.69)

𝜱𝔟(𝑥, 𝜁) = 𝑻𝔟
S (𝜁) 𝜱S(𝑥, 𝜁), (4.70)

𝑨𝔟(𝑥, 𝜁) = 𝑻𝔟
S (𝜁) 𝑨S(𝑥, 𝜁) 𝑻S

𝔟(𝜁), (4.71)
𝑯𝔟(𝑥1, 𝑥2, 𝜁) = 𝑻𝔟

S (𝜁) 𝑯S(𝑥1, 𝑥2, 𝜁) 𝑻S
𝔟(𝜁), (4.72)

where

𝑻S
𝔟(𝜁) = (𝑻𝔟

S (𝜁))−1
. (4.73)

Hereafter we discuss some bases found in literature.

4.C.1. AKNS basis
The AKNS system for the KdV [4] is found with the choice

𝗩A(𝜁) ≔ [j𝜁 − 𝜕
𝜕𝑥

1 ] ⇒ 𝑨A(𝑥, 𝜁) = [−j𝜁 𝑞(𝑥)
𝑟(𝑥) j𝜁 ] , (4.74)
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where 𝑟(𝑥) ≡ −1. The transformation matrices that relate the AKNS basis for the KdV to
the S basis are

𝑻A
S (𝜁) = [2j𝜁 0

1 1] , 𝑻S
A(𝜁) = 1

2j𝜁 [ 1 0
−1 2j𝜁] . (4.75)

We remark that (4.22) and (4.23) expressed in the AKNS basis are equivalent to [4, Eqs. A3.1
and A3.2] respectively. That shows that our definitions are consistent with [4, Appendix 3],
in accordance with the claim in Remark 5.

By setting 𝑟(𝑥) differently, the AKNS system can be used for other non-linear differential
equations [4]. In particular, the choice 𝑟(𝑥) = ± 𝑞∗(𝑥) results in a system for theNSE, which
is also known as the ZS system. In this appendix we mean by AKNS the AKNS system with
𝑟(𝑥) ≡ −1 and refer to the NSE version as ZS.

A variant of the AKNS system is

𝗩Ā(𝜁) ≔ 𝗩A(−𝜁) ⇒ 𝑨Ā(𝑥, 𝜁) = 𝑨A(𝑥, −𝜁), (4.76)

and is for the KdV related the S basis by the transformation matrices

𝑻 Ā
S (𝜁)] [0 −2j𝜁

1 1 ] , 𝑻S
Ā(𝜁) = 1

2j𝜁 [ 1 2j𝜁
−1 0 ] . (4.77)

This basis leads for the KdV to a numerically more accurate calculation of the continuous
spectrum [110, Footnote 3].

4.C.2. Companion basis
Another choice results in a companion system:

𝗩C(𝜁) ≔ [ 1
𝜕

𝜕𝑥
] ⇒ 𝑨C(𝑥, 𝜁) = [ 0 1

(j𝜁)2 − 𝑞(𝑥) 0] . (4.78)

The transformation matrices that relate this basis to the S basis are

𝑻C
S (𝜁) = [ 1 1

−j𝜁 j𝜁] , 𝑻S
C(𝜁) = 1

2j𝜁 [j𝜁 −1
j𝜁 1 ] . (4.79)

The advantage of this basis is that it only requires computations on real numbers for both the
discrete spectrum (𝜁 ∈ 𝕀) and the continuous spectrum (𝜁 ∈ ℝ), whereas the other bases
in this appendix need complex arithmetic for the continuous spectrum. This advantage is
employed by e.g. [106, §17.5.1][17, Eq. 5.3].

4.C.3. Osborne basis
The following choice leads to a close relative of the S basis:

𝗩O(𝜁) ≔ 1
2j𝜁

⎡⎢
⎣

𝜕
𝜕𝑥 − j𝜁
𝜕

𝜕𝑥 + j𝜁
⎤⎥
⎦

⇒ 𝑨O(𝑥, 𝜁) = ⎡⎢
⎣

−j𝜁 + 𝑞(𝑥)
2j𝜁 − 𝑞(𝑥)

2j𝜁
𝑞(𝑥)
2j𝜁 j𝜁 − 𝑞(𝑥)

2j𝜁

⎤⎥
⎦
. (4.80)
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The transformation matrices are given by

𝑻O
S (𝜁) = 𝑻S

O(𝜁) = [−1 0
0 1] . (4.81)

This basis is implicitly used in Osborne [101] and Provenzale and Osborne [114], although
with all matrix equations transposed compared to this appendix.

4.D. Naive computation of the norming constant
A naive numerical computation of the norming constant of a certain eigenvalue 𝜁0 would
use (4.10) to compute the scattering matrix 𝑺(𝜁0) which contains the norming constant
𝑏(𝜁0). However, this computation is ill-conditioned. As an illustration thereof we will add
here a particular small perturbation to this computation and show that this has a large effect
on the result.

Let us consider a potential 𝑞(𝑥) that is zero for all 𝑥 outside a window (𝑋−, 𝑋+) andwith
at least one eigenvalue 𝜁0 for which we have numerically computed the scattering matrix

̂𝑺( ̂𝜁0), in which ̂𝑎( ̂𝜁0) ≠ 0. Now we perturb the potential near 𝑥 = 𝑋+ as

𝑞𝜇(𝑥) =
⎧{
⎨{⎩

𝑞(𝑋+) + 𝜇 𝑋+ − 𝜀 < 𝑥 < 𝑋+,
𝑞(𝑥) otherwise,

(4.82)

where we assume the potential to be approximately constant for 𝑥 ∈ (𝑋+ − 𝜀, 𝑋+). Then
the scattering matrix of the perturbed potential becomes

̂𝑺𝜇( ̂𝜁0) = 𝑬( ̂𝜁0𝑋+) 𝑮S𝜇( ̂𝜁0) 𝑬( ̂𝜁0𝑋+) ̂𝑺( ̂𝜁0), (4.83)

where

𝑮S𝜇( ̂𝜁0) ≔ 𝑯S𝜇(𝑋+ − 𝜀, 𝑋+, ̂𝜁0) (𝑯S(𝑋+ − 𝜀, 𝑋+, ̂𝜁0))−1 (4.84)

first steps back, thereby cancelling the unperturbed potential 𝑞(𝑥), then steps forward with
the perturbed potential 𝑞𝜇(𝑥). Using that for a locally constant potential

𝑯S(𝑋+ − 𝜀, 𝑋+, ̂𝜁0) = exp(𝜀𝑨S(𝑋+, ̂𝜁0)) (4.85)

and likewise for the perturbed potential, it can be shown that

𝑮S𝜇( ̂𝜁0) = [1 − 𝛿 −𝛿
𝛿 1 + 𝛿] + 𝒪(𝜀2), (4.86)

where

𝛿 ≔ 𝜇𝜀 / (−2j ̂𝜁0). (4.87)

Finally after filling out the first order approximation of (4.86) in (4.83), we find

̂𝑏𝜇( ̂𝜁0)
̂𝑏( ̂𝜁0)

≈ 1 + 𝛿 ⋅ ( ̂𝑎( ̂𝜁0)
̂𝑏( ̂𝜁0)

exp(−2j ̂𝜁0𝑋+) + 1). (4.88)
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The numerical error in the computed norming constant is typically large because of the
exponential factor in (4.88). As an example suppose that we have an even symmetric po-
tential, then 𝑏(𝜁0) = ±1 for all eigenvalues (see Corollary 1 in Appendix 4.B). Then if
|𝛿 ̂𝑎( ̂𝜁0)| ≈ 10−15 with 𝛿 ≪ 0.1, the estimation error according to (4.88) is already 10% for
−j𝜁0𝑋+ ≈ 16.

It may seem as if we could apply a change of variables 𝑥 → 𝑥+𝑥0 tomake ( ̂𝑎( ̂𝜁0)/ ̂𝑏( ̂𝜁0))
exp(−2j ̂𝜁0𝑋+) arbitrarily small by lowering 𝑋+. However, application of Lemma 2 in Ap-
pendix 4.B shows that such a change of variables leaves this quantity unchanged.

4.E. Link with previous work on the non-linear Schrö-
dinger equation

Hari and Kschischang [63] use for the NSE a variant of the ZS basis in which any state transi-
tion matrix on an interval that covers all non-zero parts af the potential equals the scattering
matrix. To see this let us write [4, Eqs. 3.1 & 3.3] as [cf. (4.22) and (4.23)]

lim𝑥→−∞ [1 0
0 −1] 𝑬(𝜁𝑥) [𝝓(𝑥, 𝜁) �̄�(𝑥, 𝜁)] = 𝑰, (4.89)

lim𝑥→∞ 𝑬(𝜁𝑥) [𝝓(𝑥, 𝜁) �̄�(𝑥, 𝜁)] = [𝑎(𝜁) �̄�(𝜁)
𝑏(𝜁) − ̄𝑎(𝜁)] . (4.90)

The variables are changed in Hari and Kschischang [63, §IIIA] such that

𝜱H(𝑥, 𝜁) ≔ 𝑬(𝜁𝑥) [𝝓(𝑥, 𝜁) �̄�(𝑥, 𝜁)] . (4.91)

Then for a potential that is zero for all 𝑥 outside an interval (𝑋−, 𝑋+) it follows that [cf. (4.24)]

𝜱H(𝑋+, 𝜁) = 𝑯H(𝑋−, 𝑋+, 𝜁) 𝜱H(𝑋−, 𝜁), (4.92)

where

𝑯H(𝑋−, 𝑋+, 𝜁) = [𝑎(𝜁) − ̄𝑏(𝜁)
𝑏(𝜁) ̄𝑎(𝜁) ] . (4.93)

Hence propagating [1 0]⊤
forward up till the matching point results in [𝑎L(𝜁0) 𝑏L(𝜁0)]⊤

,
whereas propagating [0 1]⊤backward up till thematching point results in [ ̄𝑏R(𝜁0) 𝑎R(𝜁0)]⊤.
Finally 𝑏(𝜁0) is calculated using only the first element of both results:

̂𝑏(𝜁0) = 𝑎L(𝜁0) / ̄𝑏R(𝜁0), (4.94)

which is ̂𝑏1(𝜁0), the estimator according to the first row of (4.35), with the sign difference
explained in Remark 5.

Aref [12] uses the same basis as Hari and Kschischang [63], but calculates the norming
constant as

𝑏(𝜁0) = 𝑆L 21(𝜁0)
𝑆R 11(𝜁0) = 𝑏L(𝜁0)

𝑎R(𝜁0) . (4.95)

This is ̂𝑏2(𝜁0), the estimate that only makes use of is the second row of (4.35).
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4.F. Generationofamultisoliton potential for theKdV
equation

For the generation of themultisoliton potential in Section 4.4.2, wemade use of an algorithm
from [99]. However, we observed that the calculation was only well-conditioned near the
centre of the solitons. In order to use it for the ‘tails’ of the solitons, we adapted the algorithm
as described below.

4.F.1. Simplification of the determinant equation
Consider from [99] the unnumbered equation between (22) and (23). For this equation to be
valid, the denominator matrix must be invertible. Hence, dividing the two determinants is
equivalent to taking the determinant of the product between the inverse of the denominator
matrix (hereafter 𝑫) and the numerator matrix (hereafter 𝑵). Since these two matrices are
equal except for the last column, the aforementioned product (hereafter 𝑸) has a particular
structure that considerably simplifies taking its determinant:

𝑸 ≔ 𝑫−1𝑵 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0 ∗
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 ∗
0 ⋯ 0 1 ∗
0 ⋯ 0 0 𝑐

⎤
⎥
⎥
⎥
⎥
⎦

, (4.96)

where ∗ denotes a number that is not of interest. Hence, |𝑵|/|𝑫| = 𝑐 and this quantity 𝑐 can
be found by solving 𝑫𝒚 = 𝒏 for 𝒚 with a suitable linear solver, where 𝒏 is the last column of
𝑵 and 𝑐 is the last element of 𝒚.

4.F.2. Scaling of the matrix equation
Consider again from [99] the unnumbered equation between (22) and (23) and the alterna-
tive calculation thereof described above. We observed that these equations become badly
scaled in the ‘tails’ of the potential of the KdV, because half of the 𝛽𝑛 parameters tend
to ∞. This can be solved by reformulation of the equation in terms of the 𝛼𝑛 parame-
ters, i.e. by left-multiplying both 𝑵 and 𝑫 by a diagonal matrix diag(𝛼1, 𝛼2, … , 𝛼2𝑁) =
diag(𝛽−1

1 , 𝛽−1
2 , … , 𝛽−1

2𝑁). This results in a condition number of the denominator matrix 𝑫
that tends to a constant as |𝑥| → ∞. We remark that in some cases this scaling results in a
worse condition number near the solitons centres. For such cases we compare the condition
numbers between the original scaling and the one described here for each potential sample
and choose the best conditioned one for the calculation of that potential sample.



5
Accurate inverse NFT computation

for the discrete KdV spectrum

We present an algorithm to compute the 𝑁-fold Crum transform (also known as the dressing
method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This
transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse
Non-linear Fourier Transform. Crum transform algorithms that sequentially add the 𝑁 eigen-
values to the solution with a chain of 𝑁 Darboux transforms have a computational complexity
of 𝒪(𝑁2), but suffer inevitably from singular intermediate results during the computation of
certain regular Crum transforms. Algorithms that add all 𝑁 eigenvalues at once do not have
that flaw, but have a complexity of 𝒪(𝑁3) and are often even less accurate for other reasons.
Our algorithm has a complexity of 𝒪(𝑁2). It makes use of a chain of 2-fold Crum transforms
and, if 𝑁 is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a
time instead of one whenever possible. We prove that with the right eigenvalue ordering, this
avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate
that our algorithm is considerably more accurate in floating point arithmetic than benchmark
algorithms found in the literature. At the same error tolerance, 𝑁 can be three to seven times
as high when using our algorithm instead of the best among the benchmark algorithms.

5.1. Introduction

T he Korteweg–de Vries equation (KdV) is a Partial Differential Equation (PDE) that de-
scribes certain weakly non-linear wave phenomena in one space dimension. Among its

numerous applications are surface waves in shallow water [9, 24, 61, 76, 80]; blood pressure
waves in arteries [1, 95]; internal waves in the ocean, Rosby waves in the atmosphere, plasma
waves, acoustic waves [37, 137]; and electrical waves in non-linear transmission lines [119].
Parts of this chapter are accepted for publication as P. J. Prins and S. Wahls. “An accurate 𝒪(𝑁2) floating point
algorithm for the Crum transform of the KdV equation”. In: Communications in Nonlinear Science and Numerical
Simulation 102.105782 (Nov. 2021), pp. 1–25. issn: 1007-5704. doi: 10.1016/j.cnsns.2021.105782,
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Minimal changes in text
and layout have been made.
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From a mathematical point of view, the KdV has gained fame as the first example of a
non-linear PDE that is (Lax-)integrable [53, 81]. That is, there exist a direct and an inverse
Non-linear Fourier Transform (NFT) (the latter is also known as Inverse Scattering Trans-
form (IST) [4]) that one can use to solve initial value problems for the KdV. The merit of the
conventional Fourier transform is well known in linear system theory: Instead of doing hard
computations on an input signal directly, one transforms it to an alternative representation
called a spectrum. Certain computations, such as the evolution of the input signal, become
simpler in this spectral representation. Finally one finds the result from the inverse trans-
form of the resulting spectrum. With the KdV-NFT, initial value problems for the KdV can
be solved accordingly.

Unlike the conventional Fourier transform, theNFThas long remained an analytical tool
for mathematicians. Due to the non-linear nature of the transform, even simply scaling up
a signal can change the non-linear spectrum dramatically. The impact of numerical inaccu-
racies typically increases as well, making the transform more difficult to compute. Numer-
ical algorithms for the computation of forward and inverse NFTs that are fast and accurate
enough for engineering practice started to appear only recently. See, e.g., [29, 32, 111, 132,
142, 152]. A major motivation for the development of these methods is that NFTs can be
used as a signal processing tool for revealing potentially hidden components such as solitons
that cannot be detected using conventional linear methods [7, 24, 26, 33, 61, 101].

In this chapter, we are concerned with the inverse KdV-NFT for signals that satisfy van-
ishing boundary conditions (defined later by (5.1)). The spectrum of such a signal consists in
general of two parts: a continuous spectrum and a discrete spectrum. The discrete spectrum
consists in its turn of 𝑁 ≥ 0 eigenvalues. The inverse KdV-NFT reconstructs the signal from
its spectrum. This can be expressed analytically as a Gel’fand–Levitan–Marchenko (GLM)
integral equation [5, Eqs. (1.3.37a–c)]. Some numerical approaches are based on solving this
equation, e.g. [122]. Another possibility is to rewrite the inverse KdV-NFT as a Riemann–
Hilbert problem and then use a numerical solver for Riemann–Hilbert problems, e.g. [141–
143]. For a closely related computation, namely of the inverse NFT with respect to the Non-
linear Schrödinger Equation (NSE), Vasylchenkova [147, §3.3] reported several numerical
difficulties with both of these approaches. Yousefi and Kschischang [159] also considered
a Riemann–Hilbert formulation for the inverse NSE-NFT and found that the system would
occasionally become ill-conditioned. It is not clear to which extend the numerical difficulties
for the computation of the inverse NSE-NFT also apply to algorithms for the computation
of the inverse KdV-NFT. The accuracy of the algorithm in [142, 143] is bounded uniformly
in time and space for any given spectrum and chosen order of the used Chebyshev approx-
imation, but the possible influence of the ’difficulty’ of the spectrum on the accuracy is not
discussed. The algorithm in [141] makes it possible to use a high or variable precision arith-
metic to trade computational cost for accuracy. If sufficient computational resources are
available, this makes the accuracy of the spectrum itself the limiting factor in the accuracy
of the reconstructed signal. Sacks and Shin [122, §4.2] point at exponentially growing terms
in the computation of the inverse KdV-NFT as a possible cause of numerical difficulties.
They suggest that it is convenient from a computational point of view to split the compu-
tation in two parts, cf. [40, Sect. 3], [28, Chap. xvii.3.2]. First the inverse transform of the
(suitably pre-compensated) continuous spectrum is computed. The 𝑁 eigenvalues of the
discrete spectrum are added in a second stage, which is also known as the Crum transform.
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The troublesome exponentially growing terms become part of the computation of the Crum
transform. However [122, §4.2] argues that the two-stage approach makes it simpler to mit-
igate their effect on the accuracy. With this approach in mind, we present in this chapter an
algorithm to compute the Crum transform accurately in floating point arithmetic.

From an analytic perspective, the Crum transform for the KdV can be carried out with
an exact direct computation, but its numerical implementations are notoriously inaccurate.
We are not aware of a publication that systematically studies these errors for the KdV case.
However, Chimmalgi [30, Chap. 5] studied a Crum transform with respect to the NSE. He
showed that the error in the result of that Crum transform increases exponentially as a func-
tion of the number of eigenvalues 𝑁. Also for the NSE, Gelash and Agafontsev [54] resorted
to high-precision arithmetic with an accuracy of 100 decimal digits in order to obtain suf-
ficient accuracy for their needs, a strategy that comes at a substantial computational cost.
In this chapter, we therefore instead aim to improve the numerical accuracy of the method
itself. This will enable us to handle cases that normally would have required high-precision
arithmetic, using conventional 64 bit floating point arithmetic (specifically, IEEE 754 dou-
ble precision), which is directly supported by conventional Central Processing Units (CPUs).
Of course, our method could also be implemented using high-precision arithmetic. In that
case, the number of digits required is expected to be lower than with the existing algorithms,
which again translates into a lower computational complexity.

A widely known and relatively simple and efficient way to implement any Crum trans-
form is to add eigenvalues one by one using Darboux transforms [40, 122]. The intermediate
results generated by this sequential approach however can have singularities in the KdV case,
which then propagate into the final result and cause serious numerical problems. It is impor-
tant to note that these intermediate singularities are an artificial by-product of using a chain
of Darboux transforms. They can occur also when the mathematical conditions for the end
result to be non-singular are fulfilled. (Further details will be provided later in Section 5.3.2.)
A non-sequential algorithm for the KdV Crum transform that is free of artificial singulari-
ties was presented in [99]. Unfortunately, this algorithm suffers from large numerical errors
for all but the most simple cases when floating point arithmetic is used. Furthermore, its
complexity order is cubic instead of quadratic. In [111, Sect. iv/App. F], we proposed some
modifications to the algorithm of [99] that improved it just enough for the needs of that
paper. However, when we recently tried to compute the inverse KdV-NFT of the discrete
spectrum of surface waves measured in shallow water [26], we found that even this version
was unable to reconstruct the free surface data with reasonable precision. To the best of our
knowledge, these are the only (numerical) algorithms for the KdVCrum transform that have
been reported in the literature so far.

In this chapter we propose a completely redesigned algorithm for the KdV Crum trans-
form. Weprove (seeTheorem2) that it does not suffer fromartificial singularities, in contrast
to a chain of 𝑁 Darboux transforms. Furthermore, it uses mathematically equivalent but nu-
merically advantageous formulas to avoid several other major sources of numerical error,
without using any (functional) approximation. In numerical examples, our algorithm can
therefore process between three to seven times as many eigenvalues in floating point arithmetic
as existing numerical algorithms (at comparable error levels). At the same time, the compu-
tational complexity of our algorithm is only quadratic. We remark again that the proposed
algorithm is not restricted to 64 bit floating point arithmetic. It could be implemented in
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higher precision arithmetic as well, to combine the accuracy gain of both approaches. Please
be informed that the Crum transform for the KdV generates only solutions to the KdV and
other PDEs that are Lax-integrable via the Schrödinger equation,1 as well as for the Schrö-
dinger equation itself. The same thus applies to the algorithm in this chapter, although some
of the underlying ideas can be carried over.

We structured the remainder of this chapter as follows. In Section 5.2 we introduce the
notation and outline the theory behind the NFT and the Crum transform as far as it is re-
quired to understand the rest of the chapter. In Section 5.3, we discuss several sources of
numerical error that will be avoided by our new algorithm. The new algorithm itself is then
presented (in a fairly self-contained manner) in Section 5.4. The advantages of the new al-
gorithm are illustrated with numerical examples in Section 5.5. The chapter is concluded in
Section 5.6. Lengthy proofs and derivations of some of the results presented in this chapter
are put in appendices, to improve the readability of the main text.

5.2. Preliminaries
5.2.1. Notation
We use a slanted serif font for variables, upright serif for constants, sans-serif for operators
and a calligraphic font for sets. Vectors and indexed vector elements are displayed in bold
lower case and matrices in bold uppercase. Vertical bars, |⋅|, indicate the absolute value of a
scalar, the determinant of amatrix, or the cardinality of a set. We denote the nearest lower in-
teger (floor) by ⌊⋅⌋, the nearest higher integer (ceil) by ⌈⋅⌉, and the nearest integer (round) by
by ⌊⋅⌉. We will use both exp(𝑥) and 𝑒𝑥 to denote the exponential function. The signum func-
tion is defined as sign(𝑥) ≔ 1 for 𝑥 ≥ 0 and sign(𝑥) ≔ −1 for 𝑥 < 0. The binary logarithm
is denoted by lb(𝑥) ≔ log2(𝑥). The symbols ‘∝’ and ‘←’ are used to indicate ‘is proportional
to’ and ‘assign the right hand side to the left hand side’, respectively. The Landau ‘big-O’ or-
der symbol is written as 𝒪 . The sets of real, imaginary, and complex numbers are denoted
by ℝ, 𝕀, and ℂ, respectively. We furthermore use the short hand ℕ𝑏

𝑎 ≔ {𝑎, 𝑎 + 1, … , 𝑏}. If
needed, we use a superscript between round brackets to indicate towhich potential a variable
belongs.

5.2.2. Non-linear Fourier Transform
The purpose we have in mind for our KdV Crum transform algorithm, is the KdV-NFT. In
this section we outline briefly the KdV-NFT in order to establish the connection with the
Crum transform hereafter in Section 5.2.3. For a comprehensive introduction to the NFT
we refer to [6] and the references therein.

We consider the KdV 𝜕
𝜕𝑡𝑞 = −3 𝜕

𝜕𝑥𝑞2 − 𝜕3

𝜕𝑥3 𝑞, where 𝑡 denotes time, 𝑥 denotes location,
and 𝑞 = 𝑞(𝑥, 𝑡). We require that the initial condition at time 𝑡0 is real and satisfies the
vanishing boundary conditions

lim
|𝑥|→∞

𝑞(𝑥, 𝑡0) = 0 and ∫
∞

−∞
|𝑞(𝑥, 𝑡0)| (1 + |𝑥|) d𝑥 < ∞. (5.1)

To find 𝑞(𝑥, 𝑡) for any 𝑡, we first compute theNFT spectrumof the initial condition [110, 111].
Then we propagate this spectrum forward or backward in time by means of simple formulas

1Despite the similarity in name, the NSE is not Lax-integrable via the Schrödinger equation.
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[53], [5, Sect. 1.4]. Finally, the inverse NFT of the propagated spectrum gives 𝑞(𝑥, 𝑡).
For the forward KdV-NFT, one considers the initial condition 𝑞(𝑥, 𝑡0) as the potential

in the Schrödinger eigenvalue problem:2,3

( 𝜕2

𝜕𝑥2 + 𝑞(𝑥, 𝑡0)) 𝑓 (𝑥, 𝜁 , 𝑡0) = (j𝜁)2 𝑓 (𝑥, 𝜁 , 𝑡0), (5.2)

where

j ≔ √−1. (5.3)

We call signals 𝑓 (𝑥, 𝜁 , 𝑡0) that fulfil (5.2) trajectories. The Jost solutions 𝜙(𝑥, ±𝜁, 𝑡0) and
𝜓(𝑥, ±𝜁, 𝑡0) are the specific trajectories that satisfy the respective boundary conditions

𝜙(𝑥, ±𝜁, 𝑡0) → e∓j𝜁𝑥 as 𝑥 → −∞; 𝜓(𝑥, ±𝜁, 𝑡0) → e±j𝜁𝑥 as 𝑥 → ∞. (5.4)

Because the trajectories 𝜓(𝑥, 𝜁 , 𝑡0) and 𝜓(𝑥, −𝜁, 𝑡0) are linearly independent, one can find
parameters 𝑎(𝜁) and 𝑏(𝜁 , 𝑡0) such that⁴

𝜙(𝑥, 𝜁 , 𝑡0) ≡ 𝑎(𝜁) 𝜓(𝑥, −𝜁, 𝑡0) + 𝑏(𝜁 , 𝑡0) 𝜓(𝑥, 𝜁 , 𝑡0). (5.5)

From these parameters one finds the KdV-NFT spectrum (𝑅(𝜁 , 𝑡0), 𝒟(𝑡0)), which consists
of two parts. The continuous spectrum is defined by the so-called reflection coefficient

𝑅(𝜁, 𝑡0) ≔ 𝑏(𝜁 , 𝑡0)/𝑎(𝜁) ∈ ℂ ∀𝜁 ∈ ℝ {0}. (5.6)

The discrete spectrum is defined by the (possibly empty) set

𝒟(𝑡0) ≔ {(𝛾𝑚, 𝑏(j𝛾𝑚, 𝑡0)) ∈ ℝ>0 × ℝ\{0} ∣ 𝑎(j𝛾𝑚) = 0} . (5.7)

To simplify the notation, we omit the dependence on time in the remainder of this chapter.
The values j𝛾𝑚 are known as eigenvalues and 𝑏(j𝛾𝑚) as norming constants. The eigenvalues
are thus the values of 𝜁 for which (5.5) reduces to

𝜙(𝑥, j𝛾𝑚) ≡ 𝑏(j𝛾𝑚) 𝜓(𝑥, j𝛾𝑚). (5.8)

It can be shown that all eigenvalues lie on the upper half of the imaginary axis, i.e. 𝛾𝑚 > 0 for
all 𝑚 ∈ ℕ𝑀

1 = {1, 2, … , 𝑀}, where 𝑀 is the cardinality of the discrete spectrum. Further-
more, all eigenvalues are known to be simple [79, pp. 50–53]. Throughout this chapter we
consider the discrete spectrum as a totally ordered set with 0 < 𝛾1 < 𝛾2 < ⋯ < 𝛾𝑀. Note
that some other sources instead consider the values (j𝛾𝑚)2 as the eigenvalues. Since these
values lie on the negative real axis, the terms ‘highest’ and ‘lowest’ are prone to confusion.
Therefore, we will refer to their magnitude by saying that j𝛾𝑀 is the largest eigenvalue and
j𝛾1 the smallest.

The inverse KdV-NFT recovers the potential 𝑞(𝑥) from a given spectrum (𝑅(𝜁), 𝒟).
The three main approaches for its computation are

2Equation (5.2) establishes a close connection between the NFT and quantum scattering, cf. [28].
3Trajectories of (5.2) are to be understood as solutions in a weak sence [109, pp. 1–2], so henceforward equations
involving trajectories of (5.2) only need to hold almost everywhere.
⁴See e.g. [111, App. A] for the explicit definitions of 𝑎(𝜁) and 𝑏(𝜁, 𝑡0).
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1. reformulating the Schrödinger equation (5.2) as a Gel’fand–Levitan–Marchenko inte-
gral equation,

2. solving an associated Riemann–Hilbert problem, and

3. transferring the Schrödinger equation into the time domain and exploiting causality
principles.

See e.g. [28, Chap. xvii] for an exhaustive survey and [122, 142, 143, 146] for some recently
proposed numerical methods.

As already mentioned in Section 5.1, we consider the approach in which one first finds
the inverse transform of the (suitably pre-compensated) continuous spectrum and subse-
quently adds the eigenvalues by means of a Crum transform. In this chapter, we develop an
accurate algorithm for the computation of the Crum transform that avoids artificial singular-
ities and takes the effects of floating point arithmetic into account. It can either serve as the
second stage of a general inverse KdV-NFT algorithm, or as a stand-alone inverse KdV-NFT
algorithm for reflectionless potentials, potentials with a reflection coefficient of zero.

5.2.3. Crum transform
In this subsection, we briefly review the Crum transform. Detailed derivations can be found
e.g. in [40, Sect. 3], [89], or [59, Chap. 1].

Recall that theWronskianof𝑁 sufficiently oftendifferentiable functions 𝑔1(𝑥),… , 𝑔𝑁(𝑥)
at 𝑥 is given by

W[𝑔1(𝑥); … ; 𝑔𝑁(𝑥)] ≔
∣∣∣∣∣

𝑔1(𝑥) d
d𝑥 𝑔1(𝑥) ⋯ ( d

d𝑥)𝑁−1 𝑔1(𝑥)
⋮ ⋮ ⋮

𝑔𝑁(𝑥) d
d𝑥 𝑔𝑁(𝑥) ⋯ ( d

d𝑥)𝑁−1 𝑔𝑁(𝑥)

∣∣∣∣∣
. (5.9)

Crum [38] used Wronskians to construct new solutions of the Schrödinger equation (5.2) by
updating old ones. Since the Schrödinger equation determines the KdV-NFT spectrum, his
method can be used to generate solutions of the KdV.

Theorem 1 (Crum transform) [40, Thm. 6], [89, Sect. 2.1] Let 𝑓 (𝑥, 𝜁) = 𝑓 (0)(𝑥, 𝜁) be any
trajectory of (5.2) for a potential 𝑞(𝑥) = 𝑞(0)(𝑥) that satisfies (5.1). Let 𝑓 (𝑥, 𝜁𝑛) = 𝜗𝑛(𝑥) for
𝑛 ∈ ℕ𝑁

1 = {1, 2, … , 𝑁} be 𝑁 specific trajectories of (5.2) for 𝑞(𝑥) = 𝑞(0)(𝑥) and 𝜁 = 𝜁𝑛.
Then

𝑓 (𝑁)(𝑥, 𝜁) = 𝖢(𝑁)
(0) 𝑓 (0)(𝑥, 𝜁) ≔ W[𝜗1(𝑥); 𝜗2(𝑥); … ; 𝜗𝑁(𝑥); 𝑓 (0)(𝑥, 𝜁)]

W[𝜗1(𝑥); 𝜗2(𝑥); … ; 𝜗𝑁(𝑥)] (5.10)

is a trajectory of (5.2) for the potential

𝑞(𝑁)(𝑥) = 𝑞(0)(𝑥) + 2 d2

d𝑥2 ln( W[𝜗1(𝑥); 𝜗2(𝑥); … ; 𝜗𝑁(𝑥)]). (5.11)
2

We call 𝑞(0)(𝑥) the background potential, 𝑞(𝑁)(𝑥) the target potential, and 𝜗𝑛(𝑥) the seed
trajectories. The Crum transform for 𝑁 = 1 is also known as the Darboux transform and
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it can be shown that every Crum transform is analytically equivalent to a chain of 𝑁 Dar-
boux transforms [89, Sect. 2.1]. The Crum transform can thus be implemented in one shot,
adding all 𝑁 eigenvalues at once (e.g. [89, Sect. 2.1], [40, Thm. 6]); or sequentially, by re-
peated application of the Darboux transform (e.g., [59, Chap. 1], [40, Thm. 2], [28, Chap.
xvii.3.2], [122, Sect. 4.2]). (In Section 5.3.1, we will propose a novel sequential approach for
the numerical implementation of the Crum transform.)

To establish the connection with the KdV-NFT, we need two properties of the Crum
transform. First, anyWronskian, (5.9), with a repeated entry (i.e., 𝑔𝑛(𝑥) ≡ 𝑔𝑚(𝑥) for𝑛 ≠ 𝑚)
is the determinant of a singular matrix, which equals zero. Therefore, (5.10) implies that the
Crum transform maps all of the seed trajectories to zero, i.e.

𝖢(𝑁)
(0) 𝜗𝑛(𝑥) ≡ 0 ∀𝑛 ∈ ℕ𝑁

1 . (5.12)

Second, 𝖢(𝑁)
(0) is a linear differential operator by the well known fact that the determinant of

a matrix is a multi-linear function of its rows. These two properties allow us to use the Crum
transform for adding 𝑁 eigenvalues to the discrete KdV-NFT spectrum of the background
potential,⁵ as follows.

Let us choose the seed trajectories to be of the form

𝜗𝑛(𝑥) = 𝜙(0)(𝑥, j𝜅𝑛) − (−1)𝑁𝛽𝑛 𝜓(0)(𝑥, j𝜅𝑛), 𝛽𝑛 ≠ 0, 𝜅𝑛 > 0, (5.13)

where 𝛽𝑛 and 𝜅𝑛 are real and finite, j𝜅𝑛 is not an eigenvalue of the background potential, and
𝜙(0)(𝑥, j𝜅𝑛) and 𝜓(0)(𝑥, j𝜅𝑛) are Jost solutions of the background potential. Then the Jost
solutions of the target potential turn out to be [40, Thm. 6], [89, eq. (2.2.10)]

𝜙(𝑁)(𝑥, 𝜁) = (∏𝑁
𝑛=1

1
𝜅𝑛−j𝜁 ) 𝖢(𝑁)

(0) 𝜙(0)(𝑥, 𝜁), j𝜁 ∉ {𝜅1, 𝜅2, … , 𝜅𝑛}; (5.14)

𝜓(𝑁)(𝑥, 𝜁) = (∏𝑁
𝑛=1

−1
𝜅𝑛−j𝜁 ) 𝖢(𝑁)

(0) 𝜓(0)(𝑥, 𝜁), j𝜁 ∉ {𝜅1, 𝜅2, … , 𝜅𝑛}. (5.15)

Using (5.12) to (5.15) and the linearity of 𝖢(𝑁)
(0) , we find

0 ≡ 𝖢(𝑁)
(0) 𝜗𝑛(𝑥) ≡ 𝖢(𝑁)

(0) (𝜙(0)(𝑥, j𝜅𝑛) − (−1)𝑁𝛽𝑛𝜓(0)(𝑥, j𝜅𝑛)) ≡ (5.16)

(𝖢(𝑁)
(0) 𝜙(0)(𝑥, j𝜅𝑛)) − 𝛽𝑛 ((−1)𝑁 𝖢(𝑁)

(0) 𝜓(0)(𝑥, j𝜅𝑛)) ∝ 𝜙(𝑁)(𝑥, j𝜅𝑛) − 𝛽𝑛𝜓(𝑁)(𝑥, j𝜅𝑛)
⇒ 𝜙(𝑁)(𝑥, j𝜅𝑛) ≡ 𝛽𝑛𝜓(𝑁)(𝑥, j𝜅𝑛), (5.17)

where ‘∝’ denotes proportionality. By comparing (5.17) with (5.8) we recognise j𝜅𝑛 as eigen-
values of the target potential, with norming constants 𝑏(𝑁)(j𝜅𝑛) = 𝛽𝑛. If the background
potential already has eigenvalues, these are preserved, but their norming constants change
sign when an odd number of eigenvalues is added.⁶ Thus, when we choose the seed trajec-
tories as in (5.13), the effect of the Crum transform on the discrete spectrum (5.7) is

{(𝛾(𝑁)
𝑚 , 𝑏(𝑁)(j𝛾(𝑁)

𝑚 ))} = {(𝛾(0)
𝑚 , (−1)𝑁𝑏(0)(j𝛾(0)

𝑚 ))} ∪ {(𝜅𝑛, 𝛽𝑛) ∣𝑛 ∈ ℕ𝑁
1 }, (5.18)

⁵The Crum transform can also be used to remove eigenvalues [40, Thm. 3], but in this chapter we only discuss the
use of the Crum transform to add eigenvalues.
⁶To see this, let 𝖢(𝑁)

(0) operate on both sides of (5.8) and then substitute (5.14) and (5.15).
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where ∪ denotes the union of sets. The effect on the continuous spectrum (5.6) is⁷

𝑅(𝑁)(𝜁) = (∏𝑁
𝑛=1

𝜅𝑛−j𝜁
𝜅𝑛+j𝜁 ) 𝑅(0)(𝜁). (5.19)

5.2.4. Dressing method
For numerical computations the Schrödinger equation (5.2) is typically rewritten as a system
of first order ordinary differential equations. Thereto one defines an operator

𝗩(𝑥, 𝜁) ≔ ⎡⎢
⎣

𝑣11(𝑥, 𝜁) + 𝑣12(𝑥, 𝜁) 𝜕
𝜕𝑥

𝑣21(𝑥, 𝜁) + 𝑣22(𝑥, 𝜁) 𝜕
𝜕𝑥

⎤⎥
⎦
, (5.20)

where

∣𝑣11(𝑥, 𝜁) 𝑣12(𝑥, 𝜁)
𝑣22(𝑥, 𝜁) 𝑣22(𝑥, 𝜁)∣ ≠ 0, (5.21)

such that (5.2) can be rewritten as

𝜕
𝜕𝑥 𝒇 (𝑥, 𝜁) = 𝑨(𝑥, 𝜁) 𝒇 (𝑥, 𝜁), (5.22)

where

𝒇 (𝑥, 𝜁) ≔ 𝗩(𝑥, 𝜁) 𝑓 (𝑥, 𝜁) ∈ ℂ2×1. (5.23)

The simplest choice for the operator 𝗩(𝑥, 𝜁) is

𝗩C(𝑥, 𝜁) ≔ [ 1
𝜕

𝜕𝑥
] . (5.24)

Other common choices for the operator 𝗩(𝑥, 𝜁) have been discussed in [111, App. C], see
also Appendix 5.B.1.

We also can rewrite the Crum transform using vector-valued trajectories. This formula-
tion of the Crum transform is known as the dressing method in the literature [86]. Let

𝒇 (𝑥, 𝜁) ≔ 𝗩(𝑥, 𝜁) 𝑓 (𝑥, 𝜁) (5.25)

and

𝝑𝑛(𝑥) ≔ 𝗩(𝑥, 𝜁) 𝜗𝑛(𝑥) (5.26)

denote the vector-valued versions of the trajectories in Theorem 1. The Crum transform can
then be expressed as

𝑞(𝑁)(𝑥) = 𝑞(0)(𝑥) + Δ𝑞(𝑁)
(0) (𝑥) (5.27)

⁷To see this, let 𝖢(𝑁)
(0) operate on both sides of (5.5), use the linearity of 𝖢(𝑁)

(0) and then substitute (5.14) and (5.15).
See also [40, Thm. 6].
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and

𝒇 (𝑁)(𝑥, 𝜁) = 𝑪(𝑁)
(0) (𝑥, 𝜁) 𝒇 (0)(𝑥, 𝜁), (5.28)

where Δ𝑞(𝑁)
(0) (𝑥) is the potential update and 𝑪(𝑁)

(0) (𝑥, 𝜁) is the dressing matrix. Their exact
forms depend on the choice of the operator 𝗩(𝑥, 𝜁), but they always satisfy

Δ𝑞 ∶ ℝ × ℝ × ⨂𝑁
𝑛=1 ℂ2 × ⨂𝑁

𝑛=1 ℝ>0 → ℝ
𝑥, 𝑞(0)(𝑥), 𝝑1(𝑥), … , 𝝑𝑁(𝑥), 𝜅1, … , 𝜅𝑁 ↦ Δ𝑞(𝑁)

(0) (𝑥);

𝑪 ∶ ℝ ×(ℝ ∪ 𝕀) {0}× ⨂𝑁
𝑛=1 ℂ2 × ⨂𝑁

𝑛=1 ℝ>0 → ℂ2×2

𝑥, 𝜁 , 𝝑1(𝑥), … , 𝝑𝑁(𝑥), 𝜅1, … , 𝜅𝑁 ↦ 𝑪(𝑁)
(0) (𝑥, 𝜁).

This formalistic description conveys an important practical merit of the dressing method:
Δ𝑞(𝑁)

(0) (𝑥) and 𝑪(𝑁)
(0) (𝑥, 𝜁) are local functions, which means that in order to compute the

Crum transform at some point 𝑥, the background potential and vector-valued seed trajec-
tories need to be known only at the same specific point. (The Wronskian representation in
Theorem 1 is not local since it requires not only the seed trajectories, but also the first 𝑁 + 1
derivatives thereof.) The elements of 𝝑𝑛(𝑥) are independent linear combinations of 𝜗𝑛(𝑥)
and d

d𝑥 𝜗𝑛(𝑥) by (5.20). In the dressingmethod higher order derivatives can also be replaced
by certain scalar multiples of 𝜗𝑛(𝑥) or d

d𝑥 𝜗𝑛(𝑥) using the fact that every seed trajectory sat-
isfies the Schrödinger equation (5.2) [40, p. 177–178]. (See also Appendix 5.B.2.) Therefore,
the computation of Δ𝑞(𝑁)

(0) (𝑥) and 𝑪(𝑁)
(0) (𝑥, 𝜁) can be carried out using only local, algebraic

computations once the vector-valued seed trajectories 𝝑𝑛(𝑥) are known. We emphasize that
the dressing method is nevertheless an exact reformulation of the Crum transform.

As an example, the dressingmethod formulation of the Darboux transform (i.e. the 𝑁 =
1 case of the Crum transform) with respect to the operator 𝗩C(𝑥, 𝜁) is given by

Δ𝑞(1)
(0)(𝑥) = −2 𝑞(0)(𝑥) + 2

(𝜅1 𝜗1(𝑥) − d 𝜗1(𝑥)
d𝑥 )(𝜅1 𝜗1(𝑥) + d 𝜗1(𝑥)

d𝑥 )
𝜗2

1(𝑥)
(5.29)

and

𝑪(1)
C(0)(𝑥, 𝜁) =

⎡⎢⎢⎢
⎣

−d 𝜗1(𝑥)
d𝑥 / 𝜗1(𝑥) 1

(j𝜁)2 −
(𝜅1 𝜗1(𝑥) − d 𝜗1(𝑥)

d𝑥 )(𝜅1 𝜗1(𝑥) + d 𝜗1(𝑥)
d𝑥 )

𝜗2
1(𝑥)

−d 𝜗1(𝑥)
d𝑥 / 𝜗1(𝑥)

⎤⎥⎥⎥
⎦

,

(5.30)

where

𝜗1(𝑥) = [1 0] 𝝑1C(𝑥) and d 𝜗1(𝑥)
d𝑥 = [0 1] 𝝑1C(𝑥). (5.31)

The derivation of (5.29) and (5.30) is shown in Appendix 5.B.3.
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-10 -8 -6 -4 -2 0 2 4 6 8 𝑥 →−100
−50

0
50

Target potential with 15 eigenvalues

Darboux C

Crum C

Proposed algorithm

↑ 𝑞(15)(𝑥)

Figure 5.1: Target potential with 15 eigenvalues, as sequentially computed with (5.27), (5.29) and (5.30) ( ,
Darboux C), by the dressing method for the same operator for 𝑁 = 15 ( , Crum C), and by the proposed algo-
rithm ( ) respectively, all in 64 bit floating point arithmetic. The graph shows the numerical result of 𝑞(15)(𝑥)
in the domain |𝑥| < 10 for the case 𝜈 = 15 of the benchmark test described in Section 5.5.3. We remark that the
graphs for the Darboux C (minimum value: −5.1 × 105) and Crum C algorithm (minimum value: −5.0 × 104)
are severely truncated from below.

5.3. Sources of numerical error and their mitigation
In practice, numerical implementations of theCrum transform suffer from surprisingly large
errors, even for relatively simple cases. We show an illustrative example in Fig. 5.1, where 15
eigenvalues were added to a zero background potential. The first two lines in Fig. 5.1 were
obtained with the dressing method with respect to the operator 𝗩C(𝑥, 𝜁). The difference be-
tween those two is that the solid line ( ) was obtained by adding the eigenvalues one after
another using (5.27), (5.29) and (5.30), whereas the short dashed line ( ) was obtained by
adding all 15 eigenvalues in a single shot. The long dashed line ( ) finally was obtained
with the novel algorithm that will be proposed in Section 5.4 of this chapter. All computa-
tions were carried out in 64 bit floating point arithmetic. The first two algorithms suffer from
large numerical errors that can be observed in the form of rapid fluctuations. Our proposed
algorithm in contrast finds the target potential with negligible numerical error.

In this section, we prepare the stage for our proposed algorithm by outlining the sources
of such numerical errors and discussing mitigation strategies. The dressing method formu-
lation of the Darboux transform in (5.29) and (5.30) serves as an example for our consider-
ations, which also hold for many other implementations of the Crum transform. Our new
algorithm is then presented in Section 5.4.

5.3.1. Sequential versus direct implementation
A Crum transform for 𝑁 ≥ 2 can be decomposed into a chain of lower order Crum trans-
forms that is analytically equivalent. Such a decomposition is not unique, so there are typi-
cally many different ways to compute a Crum transform. The two extreme cases are

1. adding all 𝑁 eigenvalues at once with a single Crum transform, and

2. adding eigenvalues sequentially with a chain of 𝑁 Darboux transforms.

One might intuitively expect that adding eigenvalues sequentially accumulates more numer-
ical error than adding them all at once. However, Fig. 5.1 shows a counterexample that is
typical for the dressing method in our experience. Furthermore, the computational com-
plexity of adding 𝑁 eigenvalues at once is at least in the order of 𝒪(𝑁3) FLoating point
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OPerations (FLOPs), because for each fixed 𝑥 one either needs to solve a square linear sys-
tem of size 𝑁, or calculate 𝑁-th order determinants. On the other hand, the computational
complexity of adding 𝑁 eigenvalues sequentially is only in the order of 𝒪(𝑁2) FLOPs (e.g.,
[28, p. 348]). Finally, it is hard to mitigate some of the error sources that are outlined in
the remainder of this section when adding all eigenvalues at once (without fixing 𝑁). Since
adding all eigenvalues at once is both slower and more prone to numerical error, we focus
on sequential approaches in the following.

5.3.2. Poles in an intermediate potential
The Crum transform of a background potential that satisfies the vanishing boundary condi-
tions (5.1) is in general not guaranteed to satisfy the same conditions again. In particular,
the target potential may have one or more poles that cause divergence of the integral in (5.1).
This happens if the Wronskian of the seed trajectories in (5.10) and (5.11) vanishes at one or
more points 𝑥 cf. [59, Sect. 1.1.2], [73, Sect. 5.3].

From a physical point of view, we are usually only interested in solutions of the KdV
without poles. However, one issue with sequential implementations of the Crum transform
is that they can introduce poles in intermediate potentials. These poles cause artificial sin-
gularities in the target potential that would not be present if all eigenvalues were added at
once. It turns out that whether a sequential approach introduces artificial singularities or not
depends on the order in which the eigenvalues are added. This is demonstrated in Fig. 5.2.
There we construct the same target potential with two eigenvalues by adding them one by
one in different orders. When the smaller eigenvalue is added first, both the intermediate
and target potential satisfy (5.1). However, when the larger eigenvalue is added first, the
intermediate potential has a pole (cf. [5, eq. (3.4.10)], [73, Sect. 5.3]) that causes an artificial
singularity in the otherwise equal target potential. Apart from an undetermined value at the
artificial singularity this may lead to cusps at nearby 𝑥 grid points caused by catastrophic can-
cellation: the loss of significance when two nearly equal numbers are subtracted in floating
point arithmetic [66, Chap. 1.7].

To avoid artificial singularities, we need to know how to recognise the spectrum of an
absolutely integrable potential, which is fortuitously simple. If a potential is absolutely inte-
grable, then it is known from Sturm–Liouville (SL) oscillation theory that the eigenfunctions
of (5.2) are continuous and have 𝑀 −𝑚 simple zeros, where 𝑀 is the amount of eigenvalues
and 𝑚 ∈ ℕ𝑀

1 is the ordinal number (index) of each eigenvalue when sorted from small to
large [165, Thm. 10.12.1-(4)], [51, Sect. 1]. Hence, each eigenfunction changes sign 𝑀 − 𝑚
times for 𝑥 ∈ ℝ. Because 𝜙(𝑥, 𝜁) > 0 as 𝑥 → −∞ by (5.4) and 𝜙(𝑥, 𝜁) changes sign 𝑀−𝑚
times before approaching +∞, where 𝜓(𝑥, 𝜁) > 0 by (5.4), (5.8) implies

sign(𝑏(j𝛾𝑚)) = (−1)𝑀−𝑚 ∀𝑚 ∈ ℕ𝑀
1 , (5.32)

where

𝛾1 < 𝛾2 < … < 𝛾𝑀. (5.33)

If (5.32) is not satisfied, the potential is not absolutely integrable.
We will call a specific Crum transform regular if both the background and target poten-

tial are absolutely integrable. That is, if both of their spectra satisfy (5.32). When we use the
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(1,−1)

Figure 5.2: Calculation of the target potential with spectrum 𝑅(𝜁) ≡ 0, 𝒟(2) = {(1, −1), (2, 1)} from a zero
background potential by adding the eigenvalues in different orders with Darboux transforms. 1) Smallest first:
From (a) 𝑞(0)(𝑥) ≡ 0, to (b) 𝑞(1)(𝑥) = 2 sech2(𝑥), to (c) 𝑞(2)(𝑥) = 6 sech2(𝑥). 2) Largest first:
From (a) 𝑞(0)(𝑥) ≡ 0, to (d) 𝑞(1)(𝑥) = −8 csch2(2𝑥), to (e) 𝑞(2)(𝑥) = 6 sech2(𝑥) if 𝑥 ≠ 0, but
undefined for 𝑥 = 0 ( ) due to the pole in (d).

Crum transform to add an odd number of eigenvalues, the norming constants of the back-
ground potential all change sign according to (5.18). Therefore a Crum transform is regular
if and only if the background potential is absolutely integrable and the following rules are
obeyed.

Rule 1. When adding one eigenvalue, it must be larger than all eigenvalues of the back-
ground potential [56, p. 269], [149, p. 1388]. Its norming constant must be positive in
the target spectrum, cf. [87, Sect. 6.6], [149, p. 1389].

Rule 2. When adding two eigenvalues simultaneously, no eigenvalue of the background po-
tential may lie between them. The sign of their norming constants must be such that
the target spectrum satisfies (5.32), cf. [123].

Rule 3. When removing one or more eigenvalues, those eigenvalues must satisfy [8, Thm.].
(No additional condition on the norming constants is needed here, because these sat-
isfy (5.32) automatically in this case.)

Rule 4. When adding three or more eigenvalues simultaneously, it must be equivalent to a
chain of the previous three rules.

Not every regular 𝑁-fold Crum transform can be decomposed into a chain of 𝑁 regular Dar-
boux transforms. By Rule 2, a regular Crum transform can add a pair of eigenvalues that are
smaller than some of the eigenvalues of the background potential without introducing arti-
ficial singularities. However, this Crum transform cannot be decomposed into two regular
Darboux transforms by Rule 1. This means that an 𝑁-fold Crum transform that is numeri-
cally implemented as a chain of 𝑁 Darboux transforms cannot avoid artificial singularities
in the computation of certain regular Crum transforms.

The algorithm that we will propose in Section 5.4 decomposes every regular Crum trans-
form into a specific chain of Crum transforms that each add either one or simultaneously
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two eigenvalues. This specific chain contains provably only regular Crum transform steps.
That is, artificial singularities never occur.

5.3.3. Catastrophic cancellation for large |𝑥|
Remarkably, most implementations of the Crum transform show numerical difficulties first
in the vanishing ‘tails’ of the target potential, whereas the potential changesmostly in the cen-
tre, cf. Fig. 5.1. The first cause of that effect (out of two) is the following. In the computation
of the potential update Δ𝑞(𝑁)

(0) (𝑥) and the dressing matrix 𝑪(𝑁)
C(0)(𝑥, 𝜁) (e.g. (5.29) and (5.30))

one encounters factors of the form (𝜅𝑛 𝜗𝑛(𝑥) ∓ d
d𝑥 𝜗𝑛(𝑥)). When the seed trajectories are

chosen as in (5.13), one can verify with (5.4) that lim𝑥→±∞ 𝜅𝑛 𝜗𝑛(𝑥) ∓ d
d𝑥 𝜗𝑛(𝑥) = 0,

whereas lim inf|𝑥|→∞ ∣𝜗𝑛(𝑥)∣ exp(−𝜅𝑛|𝑥|) > 0 for all 𝑛 ∈ ℕ𝑁
1 , i.e. 𝜗𝑛(𝑥) grows exponen-

tially as |𝑥| → ∞. Therefore, calculating the factors (𝜅𝑛 𝜗𝑛(𝑥) ∓ d
d𝑥 𝜗𝑛(𝑥)) from 𝝑𝑛C(𝑥)

will result in catastrophic cancellation when |𝑥| is large enough. We propose to avoid this
problem by choosing a suitable operator 𝗩(𝑥, 𝜁). From (5.20) it follows that

𝜅𝑛 𝜗𝑛(𝑥) ∓ d
d𝑥 𝜗𝑛(𝑥) = (5.34)

[−j𝜁 𝑣22(𝑥, 𝜁) ∓ 𝑣21(𝑥, 𝜁) j𝜁 𝑣12(𝑥, 𝜁) ± 𝑣11(𝑥, 𝜁)] 𝝑𝑛(𝑥)

∣𝑣11(𝑥, 𝜁) 𝑣12(𝑥, 𝜁)
𝑣21(𝑥, 𝜁) 𝑣22(𝑥, 𝜁)∣

∣∣∣∣∣∣∣𝜁=j𝜅𝑛

.

If the operator 𝗩(𝑥, 𝜁) satisfies 𝑣11(𝑥, 𝜁) ≡ −j𝜁 𝑣12(𝑥, 𝜁) and 𝑣21(𝑥, 𝜁) ≡ j𝜁 𝑣22(𝑥, 𝜁),
we can calculate these factors without summation and thus avoid catastrophic cancellation.

The second cause for catastrophic cancellation in the ‘tails’ occurs when a Crum trans-
form is implemented by iterating Darboux transforms. In that case we can see from (5.29)
that every potential update consists of twice subtracting the background potential before
adding a term that depends on the seed trajectories. This results in catastrophic cancellation
at points where the potential update is small compared to the background potential. Because
the ‘tails’ of the potential update are dominated by the lowest eigenvalue being added,⁸ one
should add larger eigenvalues before smaller ones in order to mitigate this error. However,
the rules in Section 5.3.2 say that smaller eigenvalues must be added before larger ones when
using Darboux transforms only. In our algorithm, which will be presented in the next sec-
tion, we will therefore implement the Crum transform as a chain of mainly 2-fold Crum
transforms, and one Darboux transform in case 𝑁 is odd. That allows us to add larger eigen-
values before smaller ones.

5.3.4. Seed trajectories growing exponentially as |𝑥| → ∞
The seed trajectories satisfy lim inf|𝑥|→∞ ∣𝜗𝑛(𝑥)∣ exp(−𝜅𝑛|𝑥|) > 0 for all 𝑛 ∈ ℕ𝑁

1 accord-
ing to (5.13), as was already mentioned in Section 5.3.3. Therefore, they tend to grow larger
than the largest representable number in IEEE 754 double precision floating point numbers
(realmax ≈ e710 [66, Sect. 2.1]) already for moderate values of 𝜅𝑛|𝑥|. This effect causes
numerical problems in naive implementations of the Crum transform. To avoid these prob-
lems, the operator 𝗩(𝑥, 𝜁) in our new algorithm (that will be proposed in Section 5.4) is
⁸From (5.4), (5.11) and (5.13) one can verify that 𝑞(𝑁)(𝑥) − 𝑞(0)(𝑥) ∝ exp(∓2𝜅1𝑥) as 𝑥 → ±∞.
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chosen such that the elements of 𝝑𝑛(𝑥) are bounded even when 𝜗𝑛(𝑥) is not. Specifically,
also in view of Section 5.3.3, we choose⁹

𝗩E(𝑥, 𝜁) ≔ 1
2j𝜁

⎡⎢
⎣

exp(j𝜁𝑥)(j𝜁 − 𝜕
𝜕𝑥)

exp(−j𝜁𝑥)(j𝜁 + 𝜕
𝜕𝑥)

⎤⎥
⎦
. (5.35)

In Appendix 5.B.1 we relate 𝗩E(𝑥, 𝜁) to other operators one encounters in the literature.

5.3.5. Seed trajectories remaining exponentially large or small
The operator in (5.35) ensures that the representation of the seed trajectories is bounded,
but the range of this representation may still be problematic in floating point arithmetic.
For example, if the support of (the significant part of) a potential is far from 𝑥 = 0, the
norming constants 𝑏(j𝛾𝑚) are either very small or very large because norming constants
change exponentially under a translation in 𝑥 of the potential [111, App. B]. In that case we
can see from (5.4), (5.13) and (5.35) that the magnitude of elements of 𝝑𝑛E(𝑥) can be both
very small or very large, at least when |𝑥| is large. For the dressing method we typically need
to calculate products of 2𝑁 of these elements. Even formoderate 𝑁, the magnitudes of these
products can become larger than realmax or smaller than realmin.1⁰

We can mitigate this problem by scaling the vector-valued seed trajectories according
to 𝝑𝑛(𝑥) ← ℎ𝑛(𝑥) 𝝑𝑛(𝑥) before computing the potential update and the dressing matrix,
where ℎ𝑛(𝑥) is a suitable scaling function that is non-zero for all 𝑥. It is important to note
that this a priori scaling step does not require any compensating change in the computation
of the potential update Δ𝑞(𝑁)

(0) (𝑥) and dressing matrix 𝑪(𝑁)
(0) (𝑥, 𝜁). To see this, first let 𝜂𝑛

be a non-zero constant and replace 𝜗𝑛(𝑥) by 𝜂𝑛 𝜗𝑛(𝑥) in Theorem 1. By the multi-linearity
of Wronskians and the well-known fact that ln(𝑎𝑏) = ln(𝑎) + ln(𝑏) (if 𝑎𝑏 ≠ 0), (5.10)
and (5.11) are independent of 𝜂𝑛. Since the dressing method is an exact reformulation of
the Crum transform, the same must hold for (5.27), where the equivalent replacement is
𝝑𝑛(𝑥) ← 𝗩(𝑥, 𝜁) (𝜂𝑛 𝜗𝑛(𝑥)) = 𝜂𝑛 𝝑𝑛(𝑥). By the locality of the dressingmethod, the factor
ℎ𝑛(𝑥) can be treated as a constant, just like 𝜂𝑛. The scaling of 𝝑𝑛(𝑥) by ℎ𝑛(𝑥) therefore does
not require any change in the computation of Δ𝑞(𝑁)

(0) (𝑥) and 𝑪(𝑁)
(0) (𝑥, 𝜁).

To centre the trajectory within the range of representable floating point numbers without
adding unnecessary rounding errors, we will choose the scaling function

ℎ𝑛(𝑥) = 2−⌊ 1
2 lb∣[ 1 0 ] 𝝑𝑛(𝑥)∣+ 1

2 lb∣[ 0 1 ] 𝝑𝑛(𝑥)∣⌉, (5.36)

where

lb(𝑎) = log2(𝑎), (5.37)
⌊⋅⌉ = round(⋅). (5.38)

⁹As an alternative solution, one could represent the seed trajectories by their logarithm, but that would necessitate
cumbersome log arithmetic in every part of the Crum transform.
1⁰In IEEE 754 double precision floating point numbers realmin ≈ e−708 is the smallest representable number
above zero [66, Sect. 2.1].
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5.3.6. Explicit ratios of exponentials in the computation
The computation of the dressing matrix 𝑪(𝑁)

E(0)(𝑥, 𝜁) and the potential update Δ𝑞(𝑁)
(0) (𝑥) in-

volves some explicit exponentials exp(±𝜅𝑛𝑥) that can make intermediate results exceed
realmax. For example, the values on the diagonal of (5.30) could be calculated from
𝝑1E(𝑥) as

−
d

d𝑥 𝜗1(𝑥)
𝜗1(𝑥) =

𝜅1 [− exp(𝜅1𝑥) exp(−𝜅1𝑥)] 𝝑1E(𝑥)
[exp(𝜅1𝑥) exp(−𝜅1𝑥)] 𝝑1E(𝑥)

, (5.39)

where we see potentially troublesome exponentials enter the computation. We propose to
solve this issue by using the analytically equivalent expressions for numerical computations
that are obtained after dividing the numerator and denominator by the dominant exponen-
tial for negative and positive 𝑥 respectively:

−
d

d𝑥 𝜗1(𝑥)
𝜗1(𝑥) =

⎧{{{
⎨{{{⎩

𝜅1 [ − exp(2𝜅1𝑥) 1 ] 𝝑1E(𝑥)
[ exp(2𝜅1𝑥) 1 ] 𝝑1E(𝑥) 𝑥 ≤ 0,

𝜅1 [ −1 exp(−2𝜅1𝑥) ] 𝝑1E(𝑥)
[ 1 exp(−2𝜅1𝑥) ] 𝝑1E(𝑥) 𝑥 > 0.

(5.40)

5.3.7. Division by vanishing seed trajectories
The most convenient expressions for the potential update Δ𝑞(𝑁)

(0) (𝑥) and dressing matrices
𝑪(𝑁)

(0) (𝑥, 𝜁) often contain terms of the form d 𝜗𝑛(𝑥)
d𝑥 / 𝜗𝑛(𝑥).11 See e.g. (5.120) and (5.127).

If there are no zero-crossings in the scalar-valued seed trajectories 𝜗𝑛(𝑥), they are safe to
use since no division by zero can take place. For a regular Darboux transform (𝑁 = 1),
this assumption can be made safely because the Wronskian of the seed trajectories in (5.11)
does not vanish, and for 𝑁 = 1 this Wronskian is the seed trajectory itself. However, for a
regular Crum transform with 𝑁 ≥ 2, individual seed trajectories may vanish even though
their Wronskian does not. When the 𝑛-th seed trajectory vanishes, d 𝜗𝑛(𝑥)

d𝑥 / 𝜗𝑛(𝑥) becomes
singular. Hence for numerical computations we must write the Crum transform such that
the only trajectory-dependent factor appearing in a denominator is the Wronskian of the
seed trajectories.

5.3.8. Clipping for reflectionless target potentials
Theset of all target potentials that can bewritten as theCrum transformof a zero background
potential are called reflectionless potentials in literature. It is known that reflectionless po-
tentials are non-negative. However, in practice negative samples may appear due to finite
precision effects. By setting negative samples to zero for reflectionless target potentials, a
closer approximation of the true target is achieved. In our proposed algorithm we apply this
strategy only if the background potential is zero, because in that case it is simple to determine
that the target potential is reflectionless.

11They are convenient in symbolicmanipulations because the number of scalar-valued variables onwhichΔ𝑞(𝑁)
(0) (𝑥)

and 𝑪(𝑁)
(0) (𝑥, 𝜁) depend is reduced from 3𝑁 + 2 to 2𝑁 + 2.



5

102 5. Accurate inverse NFT computation for the discrete KdV spectrum

5.4. Proposed algorithm
In this section, we present our new algorithm for computing Crum transforms for the KdV.
The algorithm is based on the error analysis from Section 5.3.

5.4.1. 1- and 2-fold Crum transforms
We start with numerically advantageous expressions for the addition of one or two eigenval-
ues. Let us represent the Schrödinger equation and the seed trajectories as in (5.22) using
the operator 𝗩E defined in (5.35). In Appendix 5.B.4, it is shown that the 𝑁-fold Crum
transform with 𝑁 ∈ {1, 2} takes the form

𝑞(𝑁)(𝑥) = (−1)𝑁 𝑞(0)(𝑥) + [ 4 0 ] 𝑴(𝑁)
𝑁−2(𝑥, 0)[ 0

1 ]; (5.41)

𝒇 (𝑁)
E (𝑥, 𝜁) = 𝑪(𝑁)

E(0) 𝒇 (0)
E (𝑥, 𝜁), (5.42)

where

𝑪(𝑁)
E(0) =

𝑁
∑

𝑚=−1
(j𝜁)𝑚 𝑴(𝑁)

𝑚 (𝑥, 𝜁). (5.43)

In order to evaluate (5.41) and (5.42), we require expressions for the matrices 𝑴(𝑁)
𝑚 (𝑥, 𝜁).

For the 1-fold Crum transform (Darboux transform), the matrices are needed for 𝑚 ∈
{−1, 0, 1}. Let 𝜅1 denote the eigenvalue to be added. Furthermore, denote the components
of the corresponding vector-valued seed trajectory by 𝝑1E1 ≔ [ 1 0 ] 𝝑1E(𝑥) and 𝝑1E2 ≔
[ 0 1 ] 𝝑1E(𝑥). We propose to calculate the matrices as

𝑴(1)
−1 (𝑥, 𝜁) =

⎧{{
⎨{{⎩

2𝜅2
1𝝑1E1𝝑1E2
𝑤2−(𝜗1) [ e2𝜅1𝑥 e2(j𝜁+𝜅1)𝑥

−e−2(j𝜁−𝜅1)𝑥 −e2𝜅1𝑥 ] 𝑥 ≤ 0,
2𝜅2

1𝝑1E1𝝑1E2
𝑤2

+(𝜗1) [ e−2𝜅1𝑥 e2(j𝜁−𝜅1)𝑥

−e−2(j𝜁+𝜅1)𝑥 −e−2𝜅1𝑥 ] 𝑥 > 0;
(5.44)

𝑴(1)
0 (𝑥, 𝜁) =

⎧{{
⎨{{⎩

𝜅1(𝝑1E2−𝝑1E1e2𝜅1𝑥)
𝑤−(𝜗1) [ 1 0

0 1 ] 𝑥 ≤ 0,
𝜅1(𝝑1E2e−2𝜅1𝑥−𝝑1E1)

𝑤+(𝜗1) [ 1 0
0 1 ] 𝑥 > 0;

(5.45)

𝑴(1)
1 (𝑥, 𝜁) = [ −1 0

0 1 ]; (5.46)

where

𝑤±(𝜗1) ≔ W[𝜗1(𝑥)]e∓𝜅1𝑥 = 𝝑1E1e(1∓1)𝜅1𝑥 + 𝝑1E2e−(1±1)𝜅1𝑥. (5.47)

The derivation of these expressions can be found in Appendix 5.B.4.
For the 2-fold Crum transform, we require expressions for the matrices 𝑴(2)

𝑚 (𝑥, 𝜁) with
𝑚 ∈ {−1, 0, 1, 2} in order to evaluate (5.41) and (5.42). These matrices depend on 𝜅1, 𝝑1E1,
and 𝝑1E2, as well as 𝜅2 (the second eigenvalue to be added), 𝝑2E1 ≔ [ 1 0 ] 𝝑2E(𝑥), and
𝝑2E2 ≔ [ 0 1 ] 𝝑2E(𝑥). We propose to calculate these matrices as follows.

𝑴(2)
−1 (𝑥, 𝜁) =

⎧{{
⎨{{⎩

2𝜅1𝜅2(𝜅2
2−𝜅2

1)
𝑤2−(𝜗1,𝜗2) [ 𝑚−(𝑥,0) 𝑚−(𝑥,𝜁)

− 𝑚−(𝑥,−𝜁) − 𝑚−(𝑥,0) ] 𝑥 ≤ 0,
2𝜅1𝜅2(𝜅2

2−𝜅2
1)

𝑤2
+(𝜗1,𝜗2) [ 𝑚+(𝑥,0) 𝑚+(𝑥,𝜁)

− 𝑚+(𝑥,−𝜁) − 𝑚+(𝑥,0) ] 𝑥 > 0;
(5.48)
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𝑴(2)
0 (𝑥, 𝜁) =

⎧{{
⎨{{⎩

2(𝜅2
2−𝜅2

1)
𝑤2−(𝜗1,𝜗2)[ 𝑝−(𝑥) 𝑠−(𝑥,𝜁)

𝑠−(𝑥,−𝜁) 𝑝−(𝑥) ] − 𝜅2
2+𝜅2

1
2 [ 1 0

0 1 ] 𝑥 ≤ 0,
2(𝜅2

2−𝜅2
1)

𝑤2
+(𝜗1,𝜗2)[ 𝑝+(𝑥) 𝑠+(𝑥,𝜁)

𝑠+(𝑥,−𝜁) 𝑝+(𝑥) ] − 𝜅2
2+𝜅2

1
2 [ 1 0

0 1 ] 𝑥 > 0;
(5.49)

𝑴(2)
1 (𝑥, 𝜁) =

⎧{{
⎨{{⎩

(𝜅2
2−𝜅2

1)(𝝑1E1e2𝜅1𝑥+𝝑1E2)(𝝑2E1e2𝜅2𝑥+𝝑2E2)
𝑤−(𝜗1,𝜗2) [ 1 0

0 −1 ] 𝑥 ≤ 0,
(𝜅2

2−𝜅2
1)(𝝑1E1+𝝑1E2e−2𝜅1𝑥)(𝝑2E1+𝝑2E2e−2𝜅2𝑥)

𝑤+(𝜗1,𝜗2) [ 1 0
0 −1 ] 𝑥 > 0;

(5.50)

𝑴(2)
2 (𝑥, 𝜁) = [ 1 0

0 1 ]; (5.51)

where

𝑤±(𝜗1, 𝜗2) ≔ ∣𝝑1E1e(1∓1)𝜅1𝑥+𝝑1E2e−(1±1)𝜅1𝑥 𝜅1(𝝑1E1e(1∓1)𝜅1𝑥−𝝑1E2e−(1±1)𝜅1𝑥)
𝝑2E1e(1∓1)𝜅2𝑥+𝝑2E2e−(1±1)𝜅2𝑥 𝜅2(𝝑2E1e(1∓1)𝜅2𝑥−𝝑2E2e−(1±1)𝜅2𝑥)

∣ , (5.52)

𝑚±(𝑥, 𝜁) ≔ ∣𝝑
2
1E1e(2∓2)𝜅1𝑥−𝝑2

1E2e−(2±2)𝜅1𝑥 𝜅1𝝑1E1𝝑1E2e2(j𝜁∓𝜅1)𝑥

𝝑2
2E1e(2∓2)𝜅2𝑥−𝝑2

2E2e−(2±2)𝜅2𝑥 𝜅2𝝑2E1𝝑2E2e2(j𝜁∓𝜅2)𝑥∣ , (5.53)

𝑝±(𝑥) ≔ 1
4(𝜅2

2 − 𝜅2
1)(𝝑1E1e(1∓1)𝜅1𝑥 + 𝝑1E2e−(1±1)𝜅1𝑥)2 × ⋯

(𝝑2E1e(1∓1)𝜅2𝑥 + 𝝑2E2e−(1±1)𝜅2𝑥)2,

(5.54)

𝑠±(𝑥, 𝜁) ≔ ∣∣∣∣
𝜅2

1𝝑1E1𝝑1E2e2(j𝜁∓𝜅1)𝑥 (𝝑1E1e(1∓1)𝜅1𝑥+𝝑1E2e−(1±1)𝜅1𝑥)2

𝜅2
2𝝑2E1𝝑2E2e2(j𝜁∓𝜅2)𝑥 (𝝑2E1e(1∓1)𝜅2𝑥+𝝑2E2e−(1±1)𝜅2𝑥)2

∣∣∣∣
. (5.55)

The derivations of these expressions can also be found in Appendix 5.B.4.
Referring back to Section 5.3.6, we emphasize that for numerical reasons the analytically

equivalent expressions for the cases 𝑥 ≤ 0 and 𝑥 > 0 should not be merged.

5.4.2. General N-fold Crum transform
For 𝑁 > 2 eigenvalues, we propose to proceed as follows. First, order the eigenvalues from
large to small. If 𝑁 is odd, add the largest eigenvalue using the 1-fold Crum transform for-
mula given above. Then, add the remaining eigenvalues in pairs by repeated application of
the 2-fold Crum formula from above. The complete procedure is shown in Algorithm 1.
The matrices 𝑴(𝑁)

𝑚 (𝑥, 𝜁) in the algorithm should be calculated with the equations in Sec-
tion 5.4.1 after dropping the tildes from ̃𝜅1, ̃𝜅2, 𝝑1E(𝑥), 𝝑2E(𝑥) and 𝑁. Note that the inputs
𝑏(𝑁)(j𝜅𝑛) in Algorithm 1 are the desired values of the norming constants of the target spec-
trum. The algorithm flips their sign before processing if that is required according to (5.14),
(5.15) and (5.18).

The specific ordering and pairing of the eigenvalues used by Algorithm 1 ensures that if
the requested 𝑁-fold Crum transform is regular, then every iteration is regular. As a con-
sequence, our algorithm will never introduce artificial singularities into the target potential.
This important advantage is formalized in the following theorem.

Theorem 2 If the background potential 𝑞(0)(𝑥) and the target potential 𝑞(𝑁)(𝑥) are both non-
singular, then all intermediate potentials 𝑞(𝑥) of Algorithm 1 are non-singular.

Proof By iterative application of Lemmas 4 and 5 in Appendix 5.A. ■
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Algorithm 1 Proposed algorithm for the 𝑁-fold Crum transform. A tilde distinguishes the
variables for the current iteration from those for the overall Crum transform. The conditions
in Lines 3 and 4 state that 𝝓(0)

E (𝑥, j𝜅𝑛) and 𝝍(0)
E (𝑥, j𝜅𝑛) are the Jost solutions of (5.22) for

the operator 𝗩E, cf. (5.96).

1: inputs: 𝑞(0)(𝑥), 𝑁, {𝜅𝑛, 𝑏(𝑁)(j𝜅𝑛), 𝝓(0)
E (𝑥, j𝜅𝑛), 𝝍(0)

E (𝑥, j𝜅𝑛)} ∀𝑛 ∈ ℕ𝑁
1

2: require: 0 < 𝜅1 < 𝜅2 < ⋯ < 𝜅𝑁 and none of j𝜅𝑛 is an eigenvalue of 𝑞(0)(𝑥)
3: require: d

d𝑥𝝓(0)
E ≡ 𝑞(0)

2𝜅𝑛
[ −1 − exp(−2𝜅𝑛𝑥)

exp(2𝜅𝑛𝑥) 1 ]𝝓(0)
E , with lim𝑥→−∞𝝓(0)

E = [ 1
0 ] ∀𝜅𝑛

4: require: d
d𝑥𝝍(0)

E ≡ 𝑞(0)

2𝜅𝑛
[ −1 − exp(−2𝜅𝑛𝑥)

exp(2𝜅𝑛𝑥) 1 ] 𝝍(0)
E , with lim𝑥→∞𝝍(0)

E = [ 0
1 ] ∀𝜅𝑛

5: for all 𝑥 do {
6: 𝑞(𝑥) ← 𝑞(0)(𝑥);
7: for all 𝑛 = 1 to 𝑁 do {
8: 𝝑𝑛E(𝑥) ← 𝝓(0)

E (𝑥, j𝜅𝑛) − (−1)𝑁 𝑏(𝑁)(j𝜅𝑛) 𝝍(0)
E (𝑥, j𝜅𝑛);

9: }
10: while 𝑁 > 0 do {
11: 𝑁 ← 1;
12: ̃𝜅1 ← 𝜅𝑁 ;
13: 𝝑1E(𝑥) ← 2−⌊ 1

2 lb∣[ 1 0 ] 𝝑𝑁E(𝑥)∣+ 1
2 lb∣[ 0 1 ] 𝝑𝑁E(𝑥)∣⌉ 𝝑𝑁E(𝑥);

14: if 𝑁 is even then {
15: 𝑁 ← 2;
16: ̃𝜅2 ← 𝜅(𝑁−1);
17: 𝝑2E(𝑥) ← 2−⌊ 1

2 lb∣[ 1 0 ] 𝝑(𝑁−1)E(𝑥)∣+ 1
2 lb∣[ 0 1 ] 𝝑(𝑁−1)E(𝑥)∣⌉ 𝝑(𝑁−1)E(𝑥);

18: }
19: 𝑞(𝑥) ← (−1)𝑁 𝑞(𝑥) + [ 4 0 ] 𝑴(𝑁)

𝑁−2(𝑥, 0)[ 0
1 ];

20: if 𝑞(0)(𝑥) ≡ 0 then {
21: 𝑞(𝑥) ← max(𝑞(𝑥), 0);
22: }
23: 𝑁 ← 𝑁 − 𝑁;
24: for 𝑛 = 1 to 𝑁 do
25: 𝝑𝑛E(𝑥) ← ∑𝑁

𝑚=−1(−𝜅𝑛)𝑚 𝑴(𝑁)
𝑚 (𝑥, j𝜅𝑛) 𝝑𝑛E(𝑥);

26: }
27: }
28: 𝑞(𝑁)(𝑥) ← 𝑞(𝑥);
29: }
30: output: 𝑞(𝑁)(𝑥)
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The conventional method of implementing the Crum transform as a chain of 𝑁 Darboux
transforms does not have this property. (See Section 5.3.2.)

The computational complexity of the proposed algorithm is 𝒪(𝑁2). To see this, note
that the mapping of the remaining seed trajectories to the next potential in Line 25 of Algo-
rithm 1 dominates the complexity for large 𝑁. This mapping is executed (2⌈𝑁/2⌉ − 2) +
(2⌈𝑁/2⌉ − 4) + … + 4 + 2 + 0 = ⌈𝑁/2⌉2 − ⌈𝑁/2⌉ = 𝒪(𝑁2) times.

We emphasize that the proposed algorithm is analytically equivalent to Theorem 1. In
infinite precision, both methods would provide exactly the same result.

5.5. Numerical examples
In this section, we investigate the numerical properties of our proposed algorithm in three
different examples. For each example, we generate a series of discrete target spectra with
increasing numbers of eigenvalues. We compute the corresponding potentials with the pro-
posed algorithm ( ) as well as with three benchmark algorithms, and assess the accuracy
of the results. In this way, we can compare the impact of finite precision effects on the al-
gorithms, which are all numerical implementations of the 𝑁-fold Crum transform.12 The
first benchmark algorithm is the sequential application of the Darboux transform in (5.29)
and (5.30), where each step adds the lowest of the remaining target eigenvalues. We will
refer to this 𝒪(𝑁2) algorithm as Darboux C ( ). The second benchmark algorithm is
the one-shot Crum transform presented in [99], with a complexity of 𝒪(𝑁3). We will call
it Neugebauer vanilla ( ). The third benchmark algorithm is called Neugebauer modified
( ). It is a more accurate version of Neugebauer vanilla that was used/presented in [111,
Sect. iv/App. F]. The complexity of Neugebauer modified is still 𝒪(𝑁3).

5.5.1. Error measures
The relative 2-norm error is a standard error measure to assess the accuracy of a numerically
computed signal. In our case, it takes the form

𝐸0 ≔ ∥𝑞(𝑁) − 𝑞(𝑁)∥
2

/ ∥𝑞(𝑁)∥2 , (5.56)

where 𝑞(𝑁)(𝑥) is the numerically computed target potential and 𝑞(𝑁)(𝑥) the true target po-
tential. The number of test cases for the Crum transform for which the target potential is
known analytically is unfortunately quite small. We will therefore resort to error measures
that can be evaluated without knowing the target potential. Specifically, we consider the
error measures

𝐸𝑝 ≔ ∣
∫∞

−∞ (𝑞(𝑁)(𝑥))𝑝 − (𝑞(0)(𝑥))𝑝 d𝑥
∫∞

−∞ (𝑞(𝑁)(𝑥))𝑝 − (𝑞(0)(𝑥))𝑝 d𝑥
− 1 ∣, 𝑝 ∈ {1, 2}, (5.57)

where 𝑞(0)(𝑥) is the background potential. When the true target potential is unknown, we
can make use of the so-called conserved quantities of the KdV to evaluate the denominator
in (5.57) directly from the spectrum. The first two of these conserved quantities are [5, Sect.

12The analytic sensitivity of the potential to perturbations of the spectrum is discussed elsewhere [71].
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10−15

10−10

10−5

100 (a)

Darboux C

Neugebauer Vanilla

Neugebauer Modified

Proposed algorithm

↑ min(max(𝐸0,1),10−17)

10−15

10−10

10−5

100 (b)↑ min(max(𝐸1,1),10−17)

0 15 30 45 60 75 90 105 120 135 𝜈 →
10−15

10−10

10−5

100 (c)↑ min(max(𝐸2,1),10−17)

Figure 5.3: Results example ‘The discrete spectrum of a squared secant hyperbolic potential’ (Section 5.5.2). The
target potentials, consisting of 𝑁 = ⌈𝜈⌉ eigenvalues, were computed with three benchmark algorithms and the
proposed one. The errors 𝐸1 and 𝐸2 were calculated with (5.60) for 𝜈 ∈ { 1

4 , 2
4 , … , 150} and are shown as lines

( / / / ). Furthermore 𝐸0, 𝐸1, and 𝐸2 were calculated with (5.56) and (5.57) for 𝜈 ∈ ℕ150
1 and

are shown as markers ( / / / ).

1.6], [164]

∫∞
−∞ 𝑞(𝑥) d𝑥 = 1

π ∫∞
−∞ ln(1 − |𝑅(𝜁)|2) d𝜁 + 4 ∑𝑀

𝑚=1 𝛾𝑚; (5.58)

∫∞
−∞ (𝑞(𝑥))2 d𝑥 = − 4

π ∫∞
−∞ 𝜁2 ln(1 − |𝑅(𝜁)|2) d𝜁 + 16

3 ∑𝑀
𝑚=1 𝛾3

𝑚. (5.59)

Since the eigenvalues of the background potential are invariant under the Crum transform,
as is |𝑅(𝜁)| for 𝜁 on the real line by (5.19), it follows from (5.57) to (5.59) that

𝐸𝑝 = ∣
(2𝑝 − 1) ∫∞

−∞ (𝑞(𝑁)(𝑥))𝑝 − (𝑞(0)(𝑥))𝑝 d𝑥

4𝑝 ∑𝑁
𝑛=1 𝜅2𝑝−1

𝑛
− 1 ∣, 𝑝 ∈ {1, 2}. (5.60)

This formula enables us to evaluate 𝐸1 and 𝐸2 even if the true target potential is unknown.
In Section 5.5.2, we will demonstrate that 𝐸1 and 𝐸2 are highly correlated with 𝐸0.

5.5.2. The discrete spectrum of a squared secant hyperbolic poten-
tial

In this example, we start from a zero background potential. We add the 𝑁 = ⌈𝜈⌉ eigenvalues
(𝜅𝑛, 𝑏(⌈𝜈⌉)(j𝜅𝑛)) = (𝜈 − ⌈𝜈⌉ + 𝑛, (−1)⌈𝜈⌉−𝑛), where 𝑛 ∈ ℕ⌈𝜈⌉

1 and 𝜈 is varied from 1
4 to
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10−15

10−10

10−5

100 (a)

Darboux C

Neugebaurer Vanilla

Neugebauer Modified

Proposed algorithm

↑ min(max(𝐸1,1),10−17)

0 5 10 15 20 25 30 35 40 45 𝜈 →
10−15

10−10

10−5

100 (b)↑ min(max(𝐸2,1),10−17)

Figure 5.4: Results example ‘The discrete spectrum of a rectangular potential’ (Section 5.5.3). The target potentials,
consisting of 𝑁 = ⌈𝜈⌉ eigenvalues, were computed with three benchmark algorithms ( / / ) and the
proposed one ( ). The errors 𝐸1 and 𝐸2 were calculated with (5.60) for 𝜈 ∈ {0.5, 0.6, … , 50}.

150 in steps of 1
4 . For each 𝜈 and each of the 4 algorithms, we evaluate the errors 𝐸1 and 𝐸2

according to (5.60) using trapezoidal integration with 𝑥 on a grid from −75 to 75 in steps of
1

40 . If any of the benchmark algorithms returns samples with the value Not a Number (NaN),
we treat those as zero in this calculation.

It can be shown that if 𝜈 ∈ ℕ, then the corresponding target potential is 𝑞(𝜈)(𝑥) =
𝜈(𝜈 + 1) sech2(𝑥) [79, Sect. 2.5]. In those cases, we additionally evaluate 𝐸0 with (5.56) and
evaluate 𝐸1 and 𝐸2 also using (5.57), againmaking use of trapezoidal integration. The results
are shown in Fig. 5.3. We see that at any fixed error tolerance above 10−10, the proposed
algorithm allows us to compute a potential with roughly seven times as many eigenvalues as
the best among the benchmark algorithms. Furthermore we see that the error calculation
according to (5.60) is indeed equivalent to the error calculation according to (5.57), and that
𝐸1 and 𝐸2 are highly correlated with 𝐸0.

5.5.3. The discrete spectrum of a rectangular potential
In this example, we again start from a zero background potential. We add the discrete spec-
trum of the rectangular potential that is given by 𝑞rect(𝑥) ≔ (π𝜈

ℓ )
2

for |2𝑥| < ℓ = 10
and 𝑞rect(𝑥) ≔ 0 otherwise. (We omit the continuous spectrum to demonstrate the pro-
posed algorithm without needing an inverse transformation of the continuous spectrum.)
By equating the reciprocal of [101, eq. (8.11)] to zero, one finds with some work that the
potential has 𝑁 = ⌈𝜈⌉ eigenvalues j𝜅𝑛. The 𝜅𝑛 are the solutions of

√(π𝜈)2 − (ℓ𝜅𝑛)2

ℓ𝜅𝑛
− ℓ𝜅𝑛

√(π𝜈)2 − (ℓ𝜅𝑛)2
= 2 cot(√(π𝜈)2 − (ℓ𝜅𝑛)2 ) (5.61)
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10−15

10−10

10−5

100 (a)

Darboux C

Neugebaurer Vanilla

Neugebauer Modified

Proposed algorithm

↑ max(𝐸1,1)

0 5 10 15 20 25 30 35 40 45 50 𝑁 →
10−15

10−10

10−5

100 (b)↑ max(𝐸2,1)

Figure 5.5: Results of example ‘Non-zero background potential’ (Section 5.5.4). The target potentials, with 2 + 𝑁
eigenvalues, were computed with three benchmark algorithms ( / / ) and the proposed one ( ).
The errors 𝐸1 and 𝐸2 were calculated with (5.60) for 𝑁 ∈ ℕ55

1 .

for which

π√max( 0 , 𝜈2 − (𝑁 − 𝑛 + 1)2 ) < ℓ𝜅𝑛 < π√𝜈2 − (𝑁 − 𝑛)2.

Since 𝑞rect(𝑥) is even symmetric and non-singular, the corresponding norming constants are
𝑏(⌈𝜈⌉)(j𝜅𝑛) = (−1)⌈𝜈⌉−𝑛 by [111, Cor. 1] and (5.32). We vary 𝜈 from 0.5 to 50 in steps of
0.1 and evaluate the errors 𝐸1 and 𝐸2 according to (5.60)13 for all four algorithms with trape-
zoidal integration on a grid from 𝑥 = −350 to 350 in steps of 0.07. If any of the benchmark
algorithms returns samples with the value NaN, we treat those as zero in this calculation.
The results are shown in Fig. 5.4. We see that at any fixed error tolerance above 10−10, the
proposed algorithm allows us to compute a potential with three ormore times asmany eigen-
values as the best among the benchmark algorithms. We remark that the sawtooth pattern in
the result of Neugebauer vanilla is caused by the problems that this algorithm in particular
has with the computation of the ‘tails’ of the potential. The decay of these ‘tails’ is limited
by the smallest eigenvalue. Therefore, the error peaks whenever 𝜈 is slightly larger than an
integer.

5.5.4. Non-zero background potential
In this example, we choose 𝑞(0)(𝑥) ≔ 0.3 sign(𝑥) for −5 < 𝑥 < 10 and 𝑞(0)(𝑥) ≔ 0
otherwise. This background potential has two eigenvalues, j𝛾1 ≈ j0.292 and j𝛾2 ≈ j0.493,
that were computed numerically. (See, e.g., [17, 152].) We want to add up to 55 eigenvalues
in such a way that the target potential is non-singular for every 𝑁 ∈ ℕ55

1 . However, the
addition of any odd number of eigenvalues in the interval (j𝛾1, j𝛾2) would result inevitably
in a singular potential (by (5.18) and (5.32)). Instead, we chose to add 2⌊𝑁/2⌋ eigenvalues

13It is not meaningful for our purpose to compare 𝑞(⌈𝜈⌉)(𝑥) to 𝑞rect(𝑥) since we ignore the non-zero continuous
spectrum of 𝑞rect(𝑥).
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in this interval. If 𝑁 is odd, the remaining target eigenvalue must be larger than j𝛾2. We
achieve this by choosing

{𝜅𝑛∣𝑛 ∈ ℕ𝑁
1 } = {𝐾2+𝐾1

2 + 𝐾2−𝐾1
𝑁 (𝑝 + 1

2) ∣𝑝 ∈ ℤ} ∩ (𝐾1, 𝐾2], (5.62)

where ∩ denotes set intersection, 𝜅1 < 𝜅2 < ⋯ < 𝜅𝑁 , 𝐾1 = 0.292, and 𝐾2 = 0.493+0.001.
We choose the norming constants as 𝑏(𝑁)(j𝜅𝑛) = −(−1)𝑁−𝑛10π𝑛−4.5 for 𝑛 ∈ ℕ𝑁−1

1 and
𝑏(𝑁)(j𝜅𝑁) = −(−1)𝑁10π𝑛−4.5, where π𝑛 is the 𝑛-th decimal digit of π (π1 = 3, π2 = 1,
etc.). The purpose of using π𝑛 is to introduce some pseudorandomness to the example that
is simple to reproduce. Note that the signs of the norming constants are prescribed by the
non-singularity condition (5.32).

The trapezoidal approximation of the integral in the error criterion (5.60) converged
only very slowly in this example. Therefore, we instead approximated the integral in (5.60)
with Clanshaw–Curtis quadrature [138, Sect. 2] in four intervals: ℐ1 = (−250, −5), ℐ2 =
(−5, 0), ℐ3 = (0, 10), and ℐ4 = (10, 250). We chose (29 + 1)-point Chebychev grids in
the closures of ℐ1 and ℐ4, and (213 + 1)-point Chebychev grids in the closures of ℐ2 and
ℐ3. At the endpoints the values were modified such that the potential was smooth in every
interval.1⁴ If any of the benchmark algorithms returns samples with the value NaN, we treat
those as zero for this calculation.

The results are shown in Fig. 5.5. A difference compared to the previous two examples
is that the curves for the Darboux C benchmark algorithm are rather fitful. Only this bench-
mark algorithm suffers artificial singularities in the target potential, at different positions 𝑥
for different 𝑁. However, an artificial singularity deteriorates the error curves of the Dar-
boux C method only if it appears at or nearby a grid point, within the numerical cusp that
surrounds the artificial singularity. (See Section 5.3.2.)

We again observe that the proposed algorithm allows us to add at least three times as
many eigenvalues as the best benchmark algorithm at any fixed error tolerance above 10−10.

5.6. Conclusion
The Crum transform plays an important role in many inverse Non-linear Fourier Transform
(NFT) methods. In this chapter, we have proposed a new algorithm for the numerical com-
putation of the Crum transform for the Korteweg–de Vries equation (KdV). The numerical
accuracy of the new algorithm is much better than that of previous Crum transform algo-
rithms since it carefully avoids several sources of numerical error. In particular, algorithms
which add the eigenvalues one by one with Darboux transforms, suffer from artificial singu-
larities during the calculation of certain regular Crum transforms. We have proven that the
new algorithm on the other hand, computes every regular Crum transform without singu-
larity (see Theorem 2).

The complexity of the new algorithm is quadratic in the number of eigenvalues, There-
fore, it is as fast as the fastest benchmark algorithm. Nevertheless, compared to the most
accurate benchmark algorithm. the new algorithm was able to process between three and
seven times as many eigenvalues in numerical examples.

1⁴Modifying the potential at a single point does not change the value of the integral.
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5.A. Proofs for the absolute integrability of interme-
diate potentials

In this appendixwe prove two lemmaswhich together guarantee that the proposed algorithm
never introduces artificial singularities.

Lemma 4 If 𝑁 is odd and both the background potential 𝑞(0)(𝑥) and the target potential
𝑞(𝑁)(𝑥) are absolutely integrable, then the first intermediate potential, 𝑞(1)(𝑥), obtained with
Algorithm 1 is absolutely integrable.

Proof First, assume that the discrete spectrum of the background potential is non-empty.
Since 𝑞(𝑁)(𝑥) and 𝑞(0)(𝑥) are absolutely integrable,

(5.32) ⇒ sign(𝑏(𝑁)(j𝛾(𝑁)
𝑚 )) = (−1)𝑀+𝑁−𝑚 ∀𝑚 ∈ ℕ𝑀+𝑁

1 , (5.63)

(5.32) ⇒ sign(𝑏(0)(j𝛾(0)
𝑚 )) = (−1)𝑀−𝑚 ∀𝑚 ∈ ℕ𝑀

1 , (5.64)

(5.18) and (5.64) ⇒ sign(𝑏(𝑁)(j𝛾(0)
𝑚 )) = (−1)𝑀+𝑁−𝑚 ∀𝑚 ∈ ℕ𝑀

1 , (5.65)

(5.63) and (5.65) ⇒ sign( 𝑏(𝑁)(j𝛾(𝑁)
𝑀+𝑁)) ≠ sign(𝑏(𝑁)(j𝛾(0)

𝑀 )), (5.66)

(5.66) ⇒ 𝛾(𝑁)
𝑀+𝑁 ≠ 𝛾(0)

𝑀 ⇒ 𝛾(𝑁)
𝑀+𝑁 = 𝜅𝑁 > max𝑚 𝛾(0)

𝑚 . (5.67)

Hence, j𝜅𝑁 becomes the largest eigenvalue of 𝑞(1)(𝑥):

(5.67) ⇒ 𝛾(1)
𝑚 =

⎧{
⎨{⎩

𝜅𝑁 𝑚 = 𝑀 + 1,
𝛾(0)

𝑚 𝑚 ∈ ℕ𝑀
1

(5.68)

(5.68) ⇒ sign(𝑏(1)(j𝛾(1)
𝑚 )) =

⎧{
⎨{⎩

sign( 𝑏(1)(j𝜅𝑁)) 𝑚 = 𝑀 + 1,
sign( 𝑏(1)(j𝛾(0)

𝑚 )) 𝑚 ∈ ℕ𝑀
1

(5.69)

(5.18) and (5.67) ⇒ =
⎧{
⎨{⎩

sign( 𝑏(1)(j𝛾(𝑁)
𝑀+𝑁)) 𝑚 = 𝑀 + 1,

− sign( 𝑏(0)(j𝛾(0)
𝑚 )) 𝑚 ∈ ℕ𝑀

1
(5.70)

(5.18) and (5.64) ⇒ =
⎧{
⎨{⎩
sign( 𝑏(𝑁)(j𝛾(𝑁)

𝑀+𝑁)) 𝑚 = 𝑀 + 1,
−(−1)𝑀−𝑚 𝑚 ∈ ℕ𝑀

1
(5.71)

(5.63) ⇒ = (−1)(𝑀+1)−𝑚 ∀𝑚 ∈ ℕ𝑀+1
1 . (5.72)

From (5.32) and (5.72) it follows that 𝑞(1)(𝑥) is absolutely integrable. If the discrete spectrum
of the background potential is empty, the proof reduces to (5.68) to (5.72), where ℕ𝑀

1 = ℕ0
1

is an empty set. ■

Lemma 5 If 𝑁 is even and both the background potential 𝑞(0)(𝑥) and the target potential
𝑞(𝑁)(𝑥) are absolutely integrable, then the first intermediate potential, 𝑞(2)(𝑥), obtained with
Algorithm 1 is absolutely integrable.

Proof First, assume that the discrete spectrum of the background potential is non-empty.
Since 𝑞(𝑁)(𝑥) and 𝑞(0)(𝑥) are absolutely integrable,

(5.32), 𝑁 even ⇒ sign(𝑏(𝑁)(j𝛾(𝑁)
𝑚 )) = (−1)𝑀−𝑚 ∀𝑚 ∈ ℕ𝑀+𝑁

1 , (5.73)
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(5.32) ⇒ sign(𝑏(0)(j𝛾(0)
𝑚 )) = (−1)𝑀−𝑚 ∀𝑚 ∈ ℕ𝑀

1 , (5.74)

(5.18), (5.74) ⇒ sign(𝑏(𝑁)(j𝛾(0)
𝑚 )) = (−1)𝑀−𝑚 ∀𝑚 ∈ ℕ𝑀

1 , (5.75)

(5.73), (5.75) ⇒
⎧{
⎨{⎩

∣{𝜅𝑛 ∣ 𝛾(0)
𝑚 < 𝜅𝑛 < 𝛾(0)

𝑚+1}∣ mod 2 = 0 ∀𝑚 ∈ ℕ𝑀−1
1 ,

∣{𝜅𝑛 ∣ 𝜅𝑛 > 𝛾(0)
𝑀 }∣ mod 2 = 0.

(5.76)

Hence, j𝜅𝑁 and j𝜅𝑁−1 become successive eigenvalues of 𝑞(2)(𝑥):

(5.76) ⇒ 𝛾(𝑁)
𝑚 =

⎧{{
⎨{{⎩

𝛾(0)
𝑚−𝑁 𝑚 ∈ ℕ𝑀+𝑁

𝑀+𝑁−𝜇+1,
𝜅𝑚+𝜇−𝑀 𝑚 ∈ ℕ𝑀+𝑁−𝜇

𝑀+𝑁−𝜇−1,
⋆ 𝑚 ∈ ℕ𝑀+𝑁−𝜇−2

1 ,
(5.77)

where ⋆ is not of interest and where 𝜇 ≔ ∣{𝛾(0)
𝑚 ∣ 𝛾(0)

𝑚 > 𝜅𝑁}∣ ∈ ℕ𝑀
1 .

(5.73), (5.77) ⇒ sign(𝑏(𝑁)(j𝜅𝑚+𝜇−𝑀)) = sign(𝑏(𝑁)(j𝛾(𝑁)
𝑚 )) = (−1)𝑀−𝑚,

for 𝑚 ∈ ℕ𝑀+𝑁−𝜇
𝑀+𝑁−𝜇−1;

(5.78)

(5.76) ⇒ 𝛾(2)
𝑚 =

⎧{{
⎨{{⎩

𝛾(0)
𝑚−2 𝑚 ∈ ℕ𝑀+2

𝑀−𝜇+3,
𝜅𝑚+𝜇−𝑀 𝑚 ∈ ℕ𝑀−𝜇+2

𝑀−𝜇+1,
𝛾(0)

𝑚 𝑚 ∈ ℕ𝑀−𝜇
1 ;

(5.79)

(5.79) ⇒ sign( 𝑏(2)(j𝛾(2)
𝑚 )) =

⎧{{
⎨{{⎩

sign( 𝑏(2)(𝛾(0)
𝑚−2)) 𝑚 ∈ ℕ𝑀+2

𝑀−𝜇+3,
sign( 𝑏(2)(𝜅𝑚+𝜇−𝑀)) 𝑚 ∈ ℕ𝑀−𝜇+2

𝑀−𝜇+1,
sign( 𝑏(2)(𝛾(0)

𝑚 )) 𝑚 ∈ ℕ𝑀−𝜇
1 ;

(5.80)

(5.18), 𝑁 even ⇒ =
⎧{{
⎨{{⎩

sign( 𝑏(0)(𝛾(0)
𝑚−2)) 𝑚 ∈ ℕ𝑀+2

𝑀−𝜇+3,
sign( 𝑏(𝑁)(𝜅𝑚+𝜇−𝑀)) 𝑚 ∈ ℕ𝑀−𝜇+2

𝑀−𝜇+1,
sign( 𝑏(0)(𝛾(0)

𝑚 )) 𝑚 ∈ ℕ𝑀−𝜇
1 ;

(5.81)

(5.74), (5.78) ⇒ = (−1)(𝑀+2)−𝑚 ∀𝑚 ∈ ℕ𝑀+2
1 . (5.82)

From (5.32) and (5.82) it follows that 𝑞(2)(𝑥) is absolutely integrable. If the discrete spectrum
of the background potential is empty, the proof reduces to (5.77) to (5.82), where 𝑀 = 0 and
therefore 𝜇 = 0, so ℕ𝑀−𝜇

1 = ℕ0
1 and ℕ𝑀+2

𝑀−𝜇+3 = ℕ2
3 are empty sets. ■

5.B. Derivation of the proposed algorithm
Our proposed algorithm decomposes the Crum transform in a specific chain of 1- and 2-
fold Crum transforms. Furthermore, it uses a specific representation of the dressing method
that mitigates numerical errors. In this appendix we show the derivation of the 1- and 2-fold
Crum transforms in this specific representation.

This appendix is organised as follows. In Appendix 5.B.1 we show how to translate be-
tween different representations of the Schrödinger eigenvalue problem. In Appendix 5.B.2
we find expressions for the Wronskians of different trajectories of the Schrödinger eigen-
value problem and their derivatives. These intermediate results are used in Appendix 5.B.3
to derive the two building blocks of the proposed algorithm: the dressing method for 𝑁 = 1
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and 𝑁 = 2 respectively, in their simplest representation from an analytic point of view. Fi-
nally, in Appendix 5.B.4, we translate the results from Appendix 5.B.3 using those from Ap-
pendix 5.B.1 to the numerically advantageous representation in which the dressing method
is used in the proposed algorithm. (See Section 5.4.)

5.B.1. Relation between bases for the dressing method and the
Schrödinger eigenvalue problem

In the main text we introduced two operators that can be used to write the Schrödinger
equation (5.2) as a system of first order equations (5.22) and also for the formulation of
the dressing method (5.27). Here we show how to translate between expressions for either
operator. Both for convenience and to establish the connection to other operators appearing
in literature, we include the principle operator from [111]. Hence we consider

𝗩C(𝑥, 𝜁) ≔ [ 1
𝜕

𝜕𝑥
] , (5.83)

𝗩S(𝑥, 𝜁) ≔ 1
2j𝜁

⎡⎢
⎣
j𝜁 − 𝜕

𝜕𝑥
j𝜁 + 𝜕

𝜕𝑥

⎤⎥
⎦
, (5.84)

𝗩E(𝑥, 𝜁) ≔ 1
2j𝜁

⎡⎢
⎣

ej𝜁𝑥(j𝜁 − 𝜕
𝜕𝑥)

e−j𝜁𝑥(j𝜁 + 𝜕
𝜕𝑥)

⎤⎥
⎦
. (5.85)

The relation between the S basis and several other bases appearing in literature, amongwhich
the C basis, is a similarity transformation, described by transformation matrices 𝑻𝔟

𝔞 (𝑥, 𝜁),
where 𝔞 and 𝔟 are different bases, see [111, App. C]. Their relation to the E basis is not a
similarity transformation, because 𝗩E(𝑥, 𝜁) depends on 𝑥 whereas 𝗩C(𝑥, 𝜁) and 𝗩S(𝑥, 𝜁)
do not, and so 𝑻C

E (𝑥, 𝜁) and 𝑻S
E(𝑥, 𝜁) depend on 𝑥. Therefore, to include the E basis, we

generalise [111, eqs. (70)–(75)] to

𝗩𝔟(𝑥, 𝜁) = 𝑻𝔟
𝔞 (𝑥, 𝜁) 𝗩𝔞(𝑥, 𝜁), (5.86)

𝒇𝔟(𝑥, 𝜁) = 𝑻𝔟
𝔞 (𝑥, 𝜁) 𝒇𝔞(𝑥, 𝜁), (5.87)

𝜱𝔟(𝑥, 𝜁) = 𝑻𝔟
𝔞 (𝑥, 𝜁) 𝜱𝔞(𝑥, 𝜁), (5.88)

𝑨𝔟(𝑥, 𝜁) = 𝑻𝔟
𝔞 (𝑥, 𝜁) 𝑨𝔞(𝑥, 𝜁) 𝑻𝔞

𝔟 (𝑥, 𝜁) + ( 𝜕
𝜕𝑥 𝑻𝔟

𝔞 (𝑥, 𝜁)) 𝑻𝔞
𝔟 (𝑥, 𝜁)

(see (5.98)),
(5.89)

𝑯𝔟(𝑥1, 𝑥2, 𝜁) = 𝑻𝔟
𝔞 (𝑥2, 𝜁) 𝑯𝔞(𝑥1, 𝑥2, 𝜁) 𝑻𝔞

𝔟 (𝑥1, 𝜁), (5.90)

where 𝑻𝔞
𝔟 (𝑥, 𝜁) = (𝑻𝔟

𝔞 (𝑥, 𝜁))−1
, (5.91)

and for the dressing method we add

𝑪𝔟(𝑥, 𝜁) = 𝑻𝔟
𝔞 (𝑥, 𝜁) 𝑪𝔞(𝑥, 𝜁) 𝑻𝔞

𝔟 (𝑥, 𝜁). (5.92)

From (5.83) to (5.85) one can find

𝑻E
S (𝑥, 𝜁) = [ej𝜁𝑥 0

0 e−j𝜁𝑥] ⇒ 𝑻S
E(𝑥, 𝜁) = [e−j𝜁𝑥 0

0 ej𝜁𝑥] ; (5.93)
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𝑻E
C(𝑥, 𝜁) = 1

2j𝜁 [ j𝜁ej𝜁𝑥 −ej𝜁𝑥

j𝜁e−j𝜁𝑥 e−j𝜁𝑥 ] ⇒ 𝑻C
E (𝑥, 𝜁) = [ e−j𝜁𝑥 ej𝜁𝑥

−j𝜁e−j𝜁𝑥 j𝜁ej𝜁𝑥] . (5.94)

Using (5.89), (5.93), and

𝑨S(𝑥, 𝜁) = 𝑞(𝑥)
2j𝜁 [ 1 1

−1 −1] − [j𝜁 0
0 −j𝜁] [111, eq. (20)] (5.95)

we find 𝑨E(𝑥, 𝜁) = 𝑞(𝑥)
2j𝜁 [ 1 exp(2j𝜁𝑥)

− exp(−2j𝜁𝑥) −1 ] , (5.96)

which we use in Algorithm 1, Lines 3 and 4. Finally, from (5.89), (5.94) and (5.96) we find

𝑨C(𝑥, 𝜁) = [ 0 1
(j𝜁)2 − 𝑞(𝑥) 0] , (5.97)

which is, like it should be, the same result as what can be found directly from (5.2), (5.22)
and (5.83).

The derivation of (5.89) is as follows.

𝜕
𝜕𝑥 𝒇𝔟(𝑥, 𝜁) = 𝜕

𝜕𝑥 (𝑻𝔟
𝔞 (𝑥, 𝜁) 𝒇𝔞(𝑥, 𝜁))

= 𝑻𝔟
𝔞 (𝑥, 𝜁) ( 𝜕

𝜕𝑥 𝒇𝔞(𝑥, 𝜁)) + ( 𝜕
𝜕𝑥 𝑻𝔟

𝔞 (𝑥, 𝜁)) 𝒇𝔞(𝑥, 𝜁)

= (𝑻𝔟
𝔞 (𝑥, 𝜁) 𝑨𝔞(𝑥, 𝜁) + ( 𝜕

𝜕𝑥 𝑻𝔟
𝔞 (𝑥, 𝜁))) 𝒇𝔞(𝑥, 𝜁)

= (𝑻𝔟𝔞 (𝑥, 𝜁) 𝑨𝔞(𝑥, 𝜁) 𝑻𝔞
𝔟 (𝑥, 𝜁) + ( 𝜕

𝜕𝑥 𝑻𝔟𝔞 (𝑥, 𝜁)) 𝑻𝔞
𝔟 (𝑥, 𝜁))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑨𝔟(𝑥,𝜁)

𝒇𝔟(𝑥, 𝜁).

(5.98)

5.B.2. Wronskians of trajectories of the Schrödinger equation and
their derivatives

In Appendix 5.B.3 we will need Wronskians of up to 3 trajectories of the Schrödinger equa-
tion and their derivatives up to second order. Let 𝑓𝑛 ≔ 𝑓 (𝑥, 𝜁𝑛) for 𝑛 ∈ {1, 2, 3} be solutions
of the Schrödinger equation (5.2) for the same potential 𝑞 = 𝑞(𝑥):

( 𝜕2

𝜕𝑥2 + 𝑞)𝑓𝑛 = 𝜆𝑛𝑓𝑛, (5.99)

where 𝜆𝑛 ≔ (j𝜁𝑛)2 to shorten notation. Let 𝒇𝑛C ≔ 𝗩C(𝑥, 𝜁𝑛)𝑓𝑛 = [𝑓𝑛
𝜕𝑓𝑛
𝜕𝑥 ]

⊤
. Then,

𝑓𝑛 = [1 0] 𝒇𝑛C, (5.100)
𝜕𝑓𝑛
𝜕𝑥 = [0 1] 𝒇𝑛C, (5.101)

𝜕2𝑓𝑛
𝜕𝑥2 = (𝜆𝑛 − 𝑞)𝑓𝑛 = [𝜆𝑛 − 𝑞 0] 𝒇𝑛C, (5.102)
𝜕3𝑓𝑛
𝜕𝑥3 = − d𝑞

d𝑥 𝑓𝑛 + (𝜆𝑛 − 𝑞)𝜕𝑓𝑛
𝜕𝑥 = [− d𝑞

d𝑥 𝜆𝑛 − 𝑞] 𝒇𝑛C, (5.103)

W[𝑓1] = 𝑓1 = [1 0] 𝒇1C, (5.104)
𝜕

𝜕𝑥 W[𝑓1] = 𝜕𝑓1
𝜕𝑥 = [0 1] 𝒇1C, (5.105)
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𝜕2

𝜕𝑥2 W[𝑓1] = 𝜕2𝑓1
𝜕𝑥2 = [(𝜆1 − 𝑞) 0] 𝒇1C, (5.106)

W[𝑓1; 𝑓2] =
∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥

𝑓2
𝜕𝑓2
𝜕𝑥

∣∣∣∣
= [−𝜕𝑓1

𝜕𝑥 𝑓1] 𝒇2C, (5.107)

𝜕
𝜕𝑥 W[𝑓1; 𝑓2] =

∣
∣
∣
∣

𝑓1
𝜕2𝑓1
𝜕𝑥2

𝑓2
𝜕2𝑓2
𝜕𝑥2

∣
∣
∣
∣
= ∣𝑓1 (𝜆1 − 𝑞)𝑓1

𝑓2 (𝜆2 − 𝑞)𝑓2
∣ = ∣𝑓1 𝜆1𝑓1

𝑓2 𝜆2𝑓2
∣

= [(𝜆2 − 𝜆1)𝑓1 0] 𝒇2C, (5.108)
𝜕2

𝜕𝑥2 W[𝑓1; 𝑓2] = 𝜕
𝜕𝑥 ( 𝜕

𝜕𝑥 W[𝑓1; 𝑓2]) = 𝜕
𝜕𝑥 ([(𝜆2 − 𝜆1)𝑓1 0] 𝒇2C)

= [(𝜆2 − 𝜆1)𝜕𝑓1
𝜕𝑥 0] 𝒇2C + [(𝜆2 − 𝜆1)𝑓1 0] [ 0 1

𝜆2 − 𝑞 0] 𝒇2C

= (𝜆2 − 𝜆1) [𝜕𝑓1
𝜕𝑥 𝑓1] 𝒇2C, (5.109)

W[𝑓1; 𝑓2; 𝑓3] =
∣
∣
∣
∣
∣
∣

𝑓1
𝜕𝑓1
𝜕𝑥

𝜕2𝑓1
𝜕2𝑥

𝑓2
𝜕𝑓2
𝜕𝑥

𝜕2𝑓2
𝜕2𝑥

𝑓3
𝜕𝑓3
𝜕𝑥

𝜕2𝑓3
𝜕2𝑥

∣
∣
∣
∣
∣
∣

=
∣∣∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥 (𝜆1 − 𝑞)𝑓1

𝑓2
𝜕𝑓2
𝜕𝑥 (𝜆2 − 𝑞)𝑓2

𝑓3
𝜕𝑓3
𝜕𝑥 (𝜆3 − 𝑞)𝑓3

∣∣∣∣∣∣

=
∣∣∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥 𝜆1𝑓1

𝑓2
𝜕𝑓2
𝜕𝑥 𝜆2𝑓2

𝑓3
𝜕𝑓3
𝜕𝑥 𝜆3𝑓3

∣∣∣∣∣∣

= ⎡⎢
⎣

∣∣∣∣

𝜕𝑓1
𝜕𝑥 𝜆1𝑓1
𝜕𝑓2
𝜕𝑥 𝜆2𝑓2

∣∣∣∣
+ 𝜆3

∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥

𝑓2
𝜕𝑓2
𝜕𝑥

∣∣∣∣
− ∣𝑓1 𝜆1𝑓1

𝑓2 𝜆2𝑓2
∣⎤⎥
⎦

𝒇3C

= ⎡⎢
⎣

∣∣∣∣

(𝜆3 − 𝜆1)𝑓1
𝜕𝑓1
𝜕𝑥

(𝜆3 − 𝜆2)𝑓2
𝜕𝑓2
𝜕𝑥

∣∣∣∣
(𝜆1 − 𝜆2)𝑓1𝑓2⎤⎥

⎦
𝒇3C, (5.110)

𝜕
𝜕𝑥 W[𝑓1; 𝑓2; 𝑓3] =

∣
∣
∣
∣
∣
∣

𝑓1
𝜕𝑓1
𝜕𝑥

𝜕3𝑓1
𝜕3𝑥

𝑓2
𝜕𝑓2
𝜕𝑥

𝜕3𝑓2
𝜕3𝑥

𝑓3
𝜕𝑓3
𝜕𝑥

𝜕3𝑓3
𝜕3𝑥

∣
∣
∣
∣
∣
∣

=
∣∣∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥 − d𝑞

d𝑥 𝑓1 + (𝜆1 − 𝑞)𝜕𝑓1
𝜕𝑥

𝑓2
𝜕𝑓2
𝜕𝑥 − d𝑞

d𝑥 𝑓2 + (𝜆2 − 𝑞)𝜕𝑓2
𝜕𝑥

𝑓3
𝜕𝑓3
𝜕𝑥 − d𝑞

d𝑥 𝑓3 + (𝜆3 − 𝑞)𝜕𝑓3
𝜕𝑥

∣∣∣∣∣∣

=
∣∣∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥 𝜆1

𝜕𝑓1
𝜕𝑥

𝑓2
𝜕𝑓2
𝜕𝑥 𝜆2

𝜕𝑓2
𝜕𝑥

𝑓3
𝜕𝑓3
𝜕𝑥 𝜆3

𝜕𝑓3
𝜕𝑥

∣∣∣∣∣∣

= ⎡⎢
⎣

∣∣∣∣

𝜕𝑓1
𝜕𝑥 𝜆1

𝜕𝑓1
𝜕𝑥

𝜕𝑓2
𝜕𝑥 𝜆2

𝜕𝑓2
𝜕𝑥

∣∣∣∣
𝜆3

∣∣∣∣

𝑓1
𝜕𝑓1
𝜕𝑥

𝑓2
𝜕𝑓2
𝜕𝑥

∣∣∣∣
−

∣∣∣∣

𝑓1 𝜆1
𝜕𝑓1
𝜕𝑥

𝑓2 𝜆2
𝜕𝑓2
𝜕𝑥

∣∣∣∣
⎤⎥
⎦

𝒇3C

= ⎡⎢
⎣
(𝜆2 − 𝜆1)𝜕𝑓1

𝜕𝑥
𝜕𝑓2
𝜕𝑥

∣∣∣∣

𝑓1 (𝜆3 − 𝜆1)𝜕𝑓1
𝜕𝑥

𝑓2 (𝜆3 − 𝜆2)𝜕𝑓2
𝜕𝑥

∣∣∣∣
⎤⎥
⎦

𝒇3C. (5.111)

5.B.3. Dressing method in C basis
In this section we make use of the results of Appendix 5.B.2 to derive the dressing method
in C basis for the 1- and 2-fold Crum transform.
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Dressing method in C basis for 𝑁 = 1 (Darboux transform)
Starting from Theorem 1, making use of the expressions in Appendix 5.B.2 we derive the
dressing method for the Darboux transform in C basis, (5.27), (5.29) and (5.30), as follows.

𝑓 (1)(𝑥, 𝜁) =
W[𝜗1(𝑥); 𝑓 (0)(𝑥, 𝜁)]

W[𝜗1(𝑥)] =
[− d

d𝑥 𝜗1(𝑥) 𝜗1(𝑥)] 𝒇 (0)
C (𝑥, 𝜁)

𝜗1(𝑥) , (5.112)

𝜕
𝜕𝑥 𝑓 (1)(𝑥, 𝜁) = 𝜕

𝜕𝑥
W[𝜗1(𝑥); 𝑓 (0)(𝑥, 𝜁)]

W[𝜗1(𝑥)] (5.113)

=
W[𝜗1(𝑥)]𝜕 W[𝜗1(𝑥);𝑓 (0)(𝑥,𝜁)]

𝜕𝑥 − d W[𝜗1(𝑥)]
d𝑥 W[𝜗1(𝑥), 𝑓 (0)(𝑥, 𝜁)]

( W[𝜗1(𝑥)])2

=
(𝜗1(𝑥)[ ((j𝜁)2−𝜅2

1) 𝜗1(𝑥) 0 ] − ( d
d𝑥 𝜗1(𝑥))[ − d

d𝑥 𝜗1(𝑥) 𝜗1(𝑥) ]) 𝒇 (0)
C (𝑥, 𝜁)

( 𝜗1(𝑥))2

= [(j𝜁)2 − 𝜅2
1 + (d 𝜗1(𝑥)

d𝑥 / 𝜗1(𝑥))
2

−(d 𝜗1(𝑥)
d𝑥 / 𝜗1(𝑥))] 𝒇 (0)

C (𝑥, 𝜁).

Equations (5.112) and (5.113) imply the trajectory mapping in (5.27) with the dressing ma-
trix in (5.30). Again from Theorem 1 we obtain the potential update:

Δ𝑞(1)
(0)(𝑥) = 𝑞(1)(𝑥) − 𝑞(0)(𝑥) = 2 d2

d𝑥2 ln(W[𝜗1(𝑥)]) = 2 d2

d𝑥2 ln(𝜗1(𝑥))

= 2 d
d𝑥

d
d𝑥 𝜗1(𝑥)
𝜗1(𝑥) = 2

( d2

d𝑥2 𝜗1(𝑥)) 𝜗1(𝑥) − ( d
d𝑥 𝜗1(𝑥))2

( 𝜗1(𝑥))2

= 2
(𝜅2

1 − 𝑞(0)(𝑥))( 𝜗1(𝑥))2− ( d
d𝑥 𝜗1(𝑥))2

( 𝜗1(𝑥))2

= −2 𝑞(0)(𝑥) + 2𝜅2
1 − 2(d 𝜗1(𝑥)

d𝑥 / 𝜗1(𝑥))
2
. (5.114)

This potential update is equivalent to (5.29).

Dressing method in C basis for 𝑁 = 2
Starting from Theorem 1, making use of the expressions in Appendix 5.B.2 we derive the
dressing method for the 2-fold Crum transform in C basis. This result is not used directly
in the main text, but serves as an intermediate step in the derivation in Appendix 5.B.4 of
the dressing method for the 2-fold Crum transform in E basis, which is part of the proposed
algorithm.

𝑓 (2)(𝑥, 𝜁) =
W[𝜗1(𝑥); 𝜗2(𝑥); 𝑓 (0)(𝑥, 𝜁)]

W[𝜗1(𝑥); 𝜗2(𝑥)] (5.115)

=

⎡⎢
⎣

∣∣∣∣

((j𝜁)2−𝜅2
1) 𝜗1(𝑥) d

d𝑥 𝜗1(𝑥)

((j𝜁)2−𝜅2
2) 𝜗2(𝑥) d

d𝑥 𝜗2(𝑥)

∣∣∣∣
(𝜅2

1 − 𝜅2
2) 𝜗1(𝑥) 𝜗2(𝑥)⎤⎥

⎦
𝒇 (0)
C (𝑥, 𝜁)

∣∣∣∣

𝜗1(𝑥) d
d𝑥 𝜗1(𝑥)

𝜗2(𝑥) d
d𝑥 𝜗2(𝑥)

∣∣∣∣
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= (j𝜁)2[ 1 0 ] 𝒇 (0)
C (𝑥, 𝜁) +

⎡⎢
⎣
−

∣∣∣∣

𝜅2
1 𝜗1(𝑥) d

d𝑥 𝜗1(𝑥)

𝜅2
2 𝜗2(𝑥) d

d𝑥 𝜗2(𝑥)

∣∣∣∣
(𝜅2

1 − 𝜅2
2) 𝜗1(𝑥) 𝜗2(𝑥)⎤⎥

⎦
𝒇 (0)
C (𝑥, 𝜁)

∣∣∣∣

𝜗1(𝑥) d
d𝑥 𝜗1(𝑥)

𝜗2(𝑥) d
d𝑥 𝜗2(𝑥)

∣∣∣∣

= (j𝜁)2[ 1 0 ] 𝒇 (0)
C (𝑥, 𝜁) +

[−∣ 𝜅2
1 𝝑1C1(𝑥) 𝝑1C2(𝑥)

𝜅2
2 𝝑2C1(𝑥) 𝝑2C2(𝑥) ∣ (𝜅2

1−𝜅2
2) 𝝑1C1(𝑥) 𝝑2C1(𝑥)] 𝒇 (0)

C (𝑥, 𝜁)

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣
,

(W[𝜗1(𝑥); 𝜗2(𝑥)])2 𝜕
𝜕𝑥 𝑓 (2)(𝑥, 𝜁) = ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2 𝜕

𝜕𝑥 𝑓 (2)(𝑥, 𝜁) (5.116)

= ∣∣∣∣
W[𝜗1(𝑥); 𝜗2(𝑥)] W[𝜗1(𝑥); 𝜗2(𝑥); 𝑓 (0)(𝑥, 𝜁)]

d
d𝑥 W[𝜗1(𝑥); 𝜗2(𝑥)] 𝜕

𝜕𝑥 W[𝜗1(𝑥); 𝜗2(𝑥); 𝑓 (0)(𝑥, 𝜁)]
∣∣∣∣

=
∣∣∣∣

𝜗1(𝑥)
d 𝜗1(𝑥)

d𝑥
𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣
⎡⎢
⎣

(𝜅2
2−𝜅2

1)
d 𝜗1(𝑥)

d𝑥
d 𝜗2(𝑥)

d𝑥

∣∣∣∣∣∣

𝜗1(𝑥) ((j𝜁)2−𝜅2
1)

d 𝜗1(𝑥)
d𝑥

𝜗2(𝑥) ((j𝜁)2−𝜅2
2)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣∣∣

⎤⎥
⎦

𝒇 (0)
C (𝑥, 𝜁) + ⋯

(𝜅2
1 − 𝜅2

2) 𝜗1(𝑥) 𝜗2(𝑥)⎡⎢
⎣

∣∣∣∣∣∣

((j𝜁)2−𝜅2
1) 𝜗1(𝑥)

d 𝜗1(𝑥)
d𝑥

((j𝜁)2−𝜅2
2) 𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣∣∣
(𝜅2

1−𝜅2
2) 𝜗1(𝑥) 𝜗2(𝑥)⎤⎥

⎦
𝒇 (0)
C (𝑥, 𝜁)

= (j𝜁)2
∣∣∣∣

𝜗1(𝑥)
d 𝜗1(𝑥)

d𝑥
𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣

2
⎡⎢⎢
⎣
(𝜅2

1 − 𝜅2
2) 𝜗1(𝑥) 𝜗2(𝑥)

∣∣∣∣

𝜗1(𝑥)
d 𝜗1(𝑥)

d𝑥
𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣

−1

1
⎤⎥⎥
⎦

𝒇 (0)
C (𝑥, 𝜁) + ⋯

∣∣∣∣

𝜗1(𝑥)
d 𝜗1(𝑥)

d𝑥
𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣
⎡⎢
⎣

(𝜅2
2−𝜅2

1)
d 𝜗1(𝑥)

d𝑥
d 𝜗2(𝑥)

d𝑥 −
∣∣∣∣∣∣

𝜗1(𝑥) 𝜅2
1

d 𝜗1(𝑥)
d𝑥

𝜗2(𝑥) 𝜅2
2

d 𝜗2(𝑥)
d𝑥

∣∣∣∣∣∣

⎤⎥
⎦

𝒇 (0)
C (𝑥, 𝜁) + ⋯

(𝜅2
1 − 𝜅2

2) 𝜗1(𝑥) 𝜗2(𝑥)⎡⎢
⎣

−
∣∣∣∣∣∣

𝜅2
1 𝜗1(𝑥)

d 𝜗1(𝑥)
d𝑥

𝜅2
2 𝜗2(𝑥)

d 𝜗2(𝑥)
d𝑥

∣∣∣∣∣∣
(𝜅2

1−𝜅2
2) 𝜗1(𝑥) 𝜗2(𝑥)⎤⎥

⎦
𝒇 (0)
C (𝑥, 𝜁)

= (j𝜁)2 ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2 ⎡⎢
⎣

(𝜅2
1 − 𝜅2

2) 𝝑1C1(𝑥) 𝝑2C1(𝑥)
∣𝝑1C(𝑥) 𝝑2C(𝑥)∣

1⎤⎥
⎦

𝒇 (0)
C (𝑥, 𝜁) + ⋯

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣ [(𝜅2
2−𝜅2

1) 𝝑1C2(𝑥) 𝝑2C2(𝑥) −∣ 𝝑1C1(𝑥) 𝜅2
1 𝝑1C2(𝑥)

𝝑2C1(𝑥) 𝜅2
2 𝝑2C2(𝑥) ∣] 𝒇 (0)

C (𝑥, 𝜁) + ⋯

[(𝜅2
2−𝜅2

1) 𝝑1C1(𝑥) 𝝑2C1(𝑥)∣ 𝜅
2
1 𝝑1C1(𝑥) 𝝑1C2(𝑥)

𝜅2
2 𝝑2C1(𝑥) 𝝑2C2(𝑥) ∣ (𝜅2

1−𝜅2
2) 𝝑1C1(𝑥) 𝝑2C1(𝑥)] 𝒇 (0)

C (𝑥, 𝜁)

= (j𝜁)2 ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2 ⎡⎢
⎣

(𝜅2
1 − 𝜅2

2) 𝝑1C1(𝑥) 𝝑2C1(𝑥)
∣𝝑1C(𝑥) 𝝑2C(𝑥)∣

1⎤⎥
⎦

𝒇 (0)
C (𝑥, 𝜁) + ⋯

[(𝜅2
2 − 𝜅2

1) ∣𝝑1C1(𝑥) 𝝑1C2(𝑥) 𝝑2
1C2(𝑥) − 𝜅2

1 𝝑2
1C1(𝑥)

𝝑2C1(𝑥) 𝝑2C2(𝑥) 𝝑2
2C2(𝑥) − 𝜅2

2 𝝑2
2C1(𝑥)∣ ⋯

(𝜅2
1 − 𝜅2

2)2 𝝑2
1C1(𝑥) 𝝑2

2C1(𝑥) − ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣ ∣ 𝝑1C1(𝑥) 𝜅2
1 𝝑1C2(𝑥)

𝝑2C1(𝑥) 𝜅2
2 𝝑2C2(𝑥) ∣] 𝒇 (0)

C (𝑥, 𝜁).
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Hence, from (5.115) and (5.116):

𝑪(2)
C(0)(𝑥, 𝜁) = (j𝜁)2 ⎡⎢

⎣

1 0
(𝜅2

1−𝜅2
2) 𝝑1C1(𝑥) 𝝑2C1(𝑥)

𝑤(𝑥) 1
⎤⎥
⎦

+ ⋯ (5.117)

1
𝑤2(𝑥)

⎡⎢⎢
⎣

− 𝑤(𝑥)∣ 𝜅2
1 𝝑1C1(𝑥) 𝝑1C2(𝑥)

𝜅2
2 𝝑2C1(𝑥) 𝝑2C2(𝑥) ∣

(𝜅2
2 − 𝜅2

1)∣ 𝝑1C1(𝑥) 𝝑1C2(𝑥) 𝝑2
1C1(𝑥)−𝜅2

1 𝝑2
1C2(𝑥)

𝝑2C1(𝑥) 𝝑2C2(𝑥) 𝝑2
2C1(𝑥)−𝜅2

2 𝝑2
2C2(𝑥) ∣

⋯

− 𝑤(𝑥)(𝜅2
2 − 𝜅2

1) 𝝑1C1(𝑥) 𝝑2C1(𝑥)
(𝜅2

2 − 𝜅2
1)2 𝝑2

1C1(𝑥) 𝝑2
2C1(𝑥) − 𝑤(𝑥)∣ 𝝑1C1(𝑥) 𝜅2

1 𝝑1C2(𝑥)
𝝑2C1(𝑥) 𝜅2

2 𝝑2C2(𝑥) ∣
⎤⎥
⎦
,

where 𝑤(𝑥) ≔ W[𝜗1(𝑥); 𝜗2(𝑥)] = ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣ . (5.118)

The potential update is

Δ𝑞(2)
(0)(𝑥) = 𝑞(2)(𝑥)−𝑞(0)(𝑥) = 2 d2

d𝑥2 ln(W[𝜗1(𝑥); 𝜗2(𝑥)]) = 2 d
d𝑥

d
d𝑥 W[𝜗1(𝑥); 𝜗2(𝑥)]
W[𝜗1(𝑥); 𝜗2(𝑥)]

= 2
d2

d𝑥2 W[𝜗1(𝑥); 𝜗2(𝑥)]
W[𝜗1(𝑥); 𝜗2(𝑥)] − 2 ⎛⎜⎜

⎝

d
d𝑥 W[𝜗1(𝑥); 𝜗2(𝑥)]
W[𝜗1(𝑥); 𝜗2(𝑥)]

⎞⎟⎟
⎠

2

=
2(𝜅2

2 − 𝜅2
1)( 𝜗1(𝑥)d 𝜗2(𝑥)

d𝑥 + d 𝜗1(𝑥)
d𝑥 𝜗2(𝑥))

𝑤(𝑥) − 2 ⎛⎜
⎝

(𝜅2
2 − 𝜅2

1) 𝜗1(𝑥) 𝜗2(𝑥)
𝑤(𝑥)

⎞⎟
⎠

2

=
2(𝜅2

2 − 𝜅2
1)( 𝝑1C1(𝑥) 𝝑2C2(𝑥) + 𝝑1C2(𝑥) 𝝑2C1(𝑥))

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣
+ ⋯

− 2 ⎛⎜
⎝

(𝜅2
2 − 𝜅2

1) 𝝑1C1(𝑥) 𝝑2C1(𝑥)
∣𝝑1C(𝑥) 𝝑2C(𝑥)∣

⎞⎟
⎠

2

.

= 2(𝜅2
2 − 𝜅2

1)
∣𝝑

2
1C1(𝑥) 𝝑2

1C2(𝑥)
𝝑2

2C1(𝑥) 𝝑2
2C2(𝑥)∣ − (𝜅2

2 − 𝜅2
1) 𝝑2

1C1(𝑥) 𝝑2
2C1(𝑥)

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2

= 2(𝜅2
2 − 𝜅2

1)
∣𝝑

2
1C1(𝑥) 𝝑2

1C2(𝑥) − 𝜅2
1 𝝑2

1C1(𝑥)
𝝑2

2C1(𝑥) 𝝑2
2C2(𝑥) − 𝜅2

2 𝝑2
2C1(𝑥)∣

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2
. (5.119)

5.B.4. Dressing method in E basis
in this section we make use of the results of Appendix 5.B.3 to derive the dressing method
in E basis for the 1- and 2-fold Crum transform. These results are used in Section 5.4.

Dressing method in E basis for 𝑁 = 1 (Darboux transform)
Starting from (5.27), (5.29) and (5.30), we can derive the dressing method for the Darboux
transform in E basis, the case 𝑁 = 1 of (5.41) and (5.42) in Section 5.4.1, as follows. For
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convenience, rewrite (5.30) using (5.97) and 𝜎1(𝑥) ≔ d 𝜗1(𝑥)
d𝑥 / 𝜗1(𝑥) as

𝑪(1)
C(0)(𝑥, 𝜁) = [ − 𝜎1(𝑥) 1

(𝜎1(𝑥) − 𝜅1) (𝜎1(𝑥) + 𝜅1) + (j𝜁)2 − 𝜎1(𝑥)]

≡ 𝑨C(𝑥, 𝜁)∣
𝑞(𝑥)=𝜅2

1−𝜎2
1 (𝑥)

− 𝜎1(𝑥)[ 1 0
0 1 ]. (5.120)

Then use (5.89), (5.92), (5.94) and (5.96) to find

𝑪(1)
E(0)(𝑥, 𝜁) = 𝑻E

C(𝑥, 𝜁) 𝑪(1)
C(0)(𝑥, 𝜁) 𝑻C

E (𝑥, 𝜁) (5.121)

= 𝑻E
C(𝑥, 𝜁) 𝑨C(𝑥, 𝜁)∣

𝑞(𝑥)=𝜅2
1−𝜎2

1 (𝑥)
𝑻C

E (𝑥, 𝜁) − 𝜎1(𝑥) 𝑻E
C(𝑥, 𝜁)[ 1 0

0 1 ]𝑻C
E (𝑥, 𝜁)

= 𝑨E(𝑥, 𝜁)∣
𝑞(𝑥)=𝜅2

1−𝜎2
1 (𝑥)

− ( 𝜕
𝜕𝑥 𝑻E

C(𝑥, 𝜁)) 𝑻C
E (𝑥, 𝜁) − 𝜎1(𝑥)[ 1 0

0 1 ]

=
𝜅2

1 − 𝜎2
1 (𝑥)

2j𝜁 [ 1 exp(2j𝜁𝑥)
− exp(−2j𝜁𝑥) −1 ] + j𝜁 [−1 0

0 1] − 𝜎1(𝑥) [1 0
0 1] .

Subsequently, we need to express 𝜎1(𝑥) as a function of 𝝑1E(𝑥).

𝝑𝑛C(𝑥) = 𝑻C
E (𝑥, j𝜅𝑛) 𝝑𝑛E(𝑥) = [ e𝜅𝑛𝑥 e−𝜅𝑛𝑥

𝜅𝑛e𝜅𝑛𝑥 −𝜅𝑛e−𝜅𝑛𝑥] [𝝑𝑛E1(𝑥)
𝝑𝑛E2(𝑥)]

= [ 𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝜅𝑛 𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 − 𝜅𝑛 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥] , so (5.122)

𝜎𝑛(𝑥) = 𝝑𝑛C2(𝑥)
𝝑𝑛C1(𝑥) = 𝜅𝑛

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 − 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥 ; (5.123)

𝜅𝑛 + 𝜎𝑛(𝑥) = 𝜅𝑛
𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥 + 𝜅𝑛
𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 − 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

= 2𝜅𝑛 𝝑𝑛E1(𝑥)e𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥 ; (5.124)

𝜅𝑛 − 𝜎𝑛(𝑥) = 𝜅𝑛
𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥 − 𝜅𝑛
𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 − 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

= 2𝜅𝑛 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥

𝝑𝑛E1(𝑥)e𝜅𝑛𝑥 + 𝝑𝑛E2(𝑥)e−𝜅𝑛𝑥 . (5.125)

Substitution in (5.114) and (5.121) results in

𝑪(1)
E(0)(𝑥, 𝜁) = (j𝜁)−1

=𝑴(1)
−1 (𝑥,𝜁)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞2𝜅2
1 𝝑1E1(𝑥) 𝝑1E2(𝑥)

( 𝝑1E1(𝑥)e𝜅𝑛𝑥 + 𝝑1E2(𝑥)e−𝜅𝑛𝑥)2 [ 1 e2j𝜁𝑥

−e−2j𝜁𝑥 −1 ] + ⋯

j𝜁 [−1 0
0 1]

⏟⏟⏟⏟⏟
=𝑴(1)

1 (𝑥,𝜁)

+ 𝜅1
𝝑1E2(𝑥)e−𝜅1𝑥 − 𝝑1E1(𝑥)e𝜅1𝑥

𝝑1E1(𝑥)e𝜅1𝑥 + 𝝑1E2(𝑥)e−𝜅1𝑥 [1 0
0 1]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑴(1)

0 (𝑥,𝜁)

,

(5.126)

Δ𝑞(1)
(0)(𝑥) = 2(𝜅1 − 𝜎1(𝑥))(𝜅1 + 𝜎1(𝑥)) − 2 𝑞(0)(𝑥) (5.127)
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=
8𝜅2

1 𝝑1E1(𝑥) 𝝑1E2(𝑥)
( 𝝑1E1(𝑥)e𝜅𝑛𝑥 + 𝝑1E2(𝑥)e−𝜅𝑛𝑥)2 − 2 𝑞(0)(𝑥).

This is equivalent to the equations in Section 5.4.1 for the case 𝑁 = 1.

Dressing method in E basis for 𝑁 = 2
For the dressing method in E basis for 𝑁 = 2, we find the trajectory mapping by applying
(5.92) with (5.94) to (5.117). Let us first express (5.117) as

𝑪(2)
C(0)(𝑥, 𝜁) = (j𝜁)2 [ 1 0

𝑎
𝑤(𝑥) 1] + 1

𝑤2(𝑥)
[2𝑏 𝑤(𝑥) 𝑎 𝑤(𝑥)

2𝑐 2𝑑 ] , where (5.128)

𝑎 ≔ (𝜅2
1 − 𝜅2

2) 𝝑1C1(𝑥) 𝝑2C1(𝑥), (5.129)

𝑏 ≔ −1
2 ∣𝜅

2
1 𝝑1C1(𝑥) 𝝑1C2(𝑥)

𝜅2
2 𝝑2C1(𝑥) 𝝑2C2(𝑥)∣ , (5.130)

𝑐 ≔ 1
2(𝜅2

2 − 𝜅2
1) ∣𝝑1C1(𝑥) 𝝑1C2(𝑥) 𝝑2

1C2(𝑥) − 𝜅2
1 𝝑2

1C1(𝑥)
𝝑2C1(𝑥) 𝝑2C2(𝑥) 𝝑2

2C2(𝑥) − 𝜅2
2 𝝑2

2C1(𝑥)∣ , (5.131)

𝑑 ≔ 1
2(𝜅2

2 − 𝜅2
1)2 𝝑2

1C1(𝑥) 𝝑2
2C1(𝑥) − 1

2 𝑤(𝑥) ∣𝝑1C1(𝑥) 𝜅2
1 𝝑1C2(𝑥)

𝝑2C1(𝑥) 𝜅2
2 𝝑2C2(𝑥)∣ , (5.132)

𝑤(𝑥) ≔ W[𝜗1(𝑥); 𝜗2(𝑥)] = ∣𝝑1C(𝑥) 𝝑2C(𝑥)∣ . (5.133)

Applying (5.92) with (5.94) then gives

𝑪(2)
E(0)(𝑥, 𝜁) = (j𝜁)

=𝑴(2)
1 (𝑥,𝜁)

⏞⏞⏞⏞⏞⏞⏞𝑎
𝑤(𝑥) [−1 0

0 1] +(j𝜁)−1

=𝑴(2)
−1 (𝑥,𝜁)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
𝑤2(𝑥)

[ −𝑐 −𝑐 e2j𝜁𝑥

𝑐 e−2j𝜁𝑥 𝑐 ] + ⋯ (5.134)

1
𝑤2(𝑥)

[ 𝑏 𝑤(𝑥) + 𝑑 (𝑏 𝑤(𝑥) − 𝑑)e2j𝜁𝑥

(𝑏 𝑤(𝑥) − 𝑑)e−2j𝜁𝑥 𝑏 𝑤(𝑥) + 𝑑 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑴(2)
0 (𝑥,𝜁)

+(j𝜁)2 [1 0
0 1]

⏟
=𝑴(2)

2 (𝑥,𝜁)

.

Substitution of (5.122) results in

𝑎 = (𝜅2
1 − 𝜅2

2)(𝝑1E1e𝜅1𝑥 + 𝝑1E2e−𝜅1𝑥)(𝝑2E1e𝜅2𝑥 + 𝝑2E2e−𝜅2𝑥), (5.135)

𝑐 = 2(𝜅2
2 − 𝜅2

1)𝜅1𝜅2 ∣𝝑
2
1E1(𝑥)e2𝜅1𝑥 − 𝝑2

1E2(𝑥)e−2𝜅1𝑥 𝜅1 𝝑1E1(𝑥) 𝝑1E2(𝑥)
𝝑2

2E1(𝑥)e2𝜅2𝑥 − 𝝑2
2E2(𝑥)e−2𝜅2𝑥 𝜅2 𝝑2E1(𝑥) 𝝑2E2(𝑥)∣ , (5.136)

𝑤(𝑥) = ∣𝝑1E1e𝜅1𝑥 + 𝝑1E2e−𝜅1𝑥 𝜅1 (𝝑1E1e𝜅1𝑥 − 𝝑1E2e−𝜅1𝑥)
𝝑2E1e𝜅2𝑥 + 𝝑2E2e−𝜅2𝑥 𝜅2 (𝝑2E1e𝜅2𝑥 − 𝝑2E2e−𝜅2𝑥)∣ , (5.137)

𝑏 𝑤(𝑥) − 𝑑 = 2(𝜅2
1 − 𝜅2

2) ∣(𝝑1E1e𝜅1𝑥 + 𝝑1E2e−𝜅1𝑥)2 𝜅2
1 𝝑1E1(𝑥) 𝝑1E2(𝑥)

(𝝑2E1e𝜅2𝑥 + 𝝑2E2e−𝜅2𝑥)2 𝜅2
2 𝝑2E1(𝑥) 𝝑2E2(𝑥)∣ , (5.138)

𝑏 𝑤(𝑥) + 𝑑 = 1
2 (𝑎2 − (𝜅2

1 + 𝜅2
2) 𝑤2(𝑥)) . (5.139)

The equations for the trajectory mapping in Section 5.4.1 for the case 𝑁 = 2 then follow
by substitution in (5.134). Finally, we find the potential update for that case by substituting
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(5.122) in (5.119):

Δ𝑞(2)
(0)(𝑥) = 2(𝜅2

2 − 𝜅2
1)

∣𝝑
2
1C1(𝑥) 𝝑2

1C2(𝑥) − 𝜅2
1 𝝑2

1C1(𝑥)
𝝑2

2C1(𝑥) 𝝑2
2C2(𝑥) − 𝜅2

2 𝝑2
2C1(𝑥)∣

∣𝝑1C(𝑥) 𝝑2C(𝑥)∣2

= 8(𝜅2
1 − 𝜅2

2)
∣(𝝑1E1e𝜅1𝑥 + 𝝑1E2e−𝜅1𝑥)2 𝜅2

1 𝝑1E1(𝑥) 𝝑1E2(𝑥)
(𝝑2E1e𝜅2𝑥 + 𝝑2E2e−𝜅2𝑥)2 𝜅2

2 𝝑2E1(𝑥) 𝝑2E2(𝑥)∣

∣𝝑1E1e𝜅1𝑥 + 𝝑1E2e−𝜅1𝑥 𝜅1 (𝝑1E1e𝜅1𝑥 − 𝝑1E2e−𝜅1𝑥)
𝝑2E1e𝜅2𝑥 + 𝝑2E2e−𝜅2𝑥 𝜅2 (𝝑2E1e𝜅2𝑥 − 𝝑2E2e−𝜅2𝑥)∣

2 . (5.140)



6
Conclusions and recommendations

6.1. Conclusions
Thegoal of the project that is documented in this dissertationwas to design better algorithms
for the numerical computation of the forward and inverse Non-linear Fourier Transform
(NFT) for the Korteweg–de Vries equation (KdV), for sampled signals that decay sufficiently
fast on both sides. For most parts of the numerical NFT the existing algorithms were not ac-
curate enough to process realistic data in ordinary double precision floating point arithmetic.
In this dissertation more accurate algorithms have been developed for these parts. That is,
algorithms that achieve a sufficient level of accuracy without resorting to higher precision
arithmetic and without increasing the order of the computational complexity compared to
the fastest existing algorithms. For the computation of the continuous spectrum numeri-
cal algorithms were available that were accurate enough, but these had an undesirably high
computational cost. In this dissertation a faster yet barely less accurate algorithm has been
developed for this computation. Naturally the algorithms that are developed in this disser-
tation build on the work of other authors. The remainder of this section is divided between
different parts of the numerical KdV-NFT. For each part the state of the art before this project
is summarized, followed by a description of the algorithm that is presented in this disserta-
tion and the results that are achieved with this new algorithm.

6.1.1. Computation of the continuous KdV-NFT spectrum
State of the art before this project
Prior to this project the only numerical NFT algorithms for sampled data that were specif-
ically aimed at the KdV were due to Alfred R Osborne and his co-workers [17, 101, 114].
The principle was to use a piecewise constant interpolation of the input samples. In each
piecewise constant interval the Schrödinger equation was solved exactly. This solution was
represented as a set of 2×2 matrices, one for each sample. Finally the spectrum of the full in-
put signal was obtained from the product of all these matrices. It was also known that some
computation time could be saved by, essentially, multiplying the matrix product by suitable
vector. Performed in the right order, this reduced the computation from 𝐷 matrix matrix
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multiplications to 𝐷 + 1 matrix vector multiplications, where 𝐷 is the number of input sam-
ples. (This however does not save half of the computation time, since the calculation of the
matrix entries takes more computation time than the matrix multiplication thereafter.) In
any case, the whole procedure had to be repeated for every desired sample of the spectrum. If
the number of output samples was chosen equal to the number of input samples, the overall
computational complexity was 𝑂(𝐷2).

Many numerical NFT developments, both before and during this project, were primar-
ily aimed at the NFT with respect to the Non-linear Schrödinger Equation (NSE). There are
many similarities between the NSE-NFT and the KdV-NFT, but also a few differences that
make porting NSE-NFT developments to the KdV-NFT harder than it seems at first sight.
A particularly important development was the Fast Non-linear Fourier Transform (FNFT)
[150]. This algorithm also represented the solution of (the NSE equivalent of) the Schrö-
dinger equation as a 2 × 2 matrix for each sample, but instead of filling out the value of the
‘non-linear frequencies’ sample, it was left as the variable in a polynomial that approximated
the true function. After multiplying all the matrices a 2 × 2 matrix of polynomials resulted.
These were then evaluated for each desired spectral sample. By using fast algorithms for
both the matrix multiplications and the evaluation of the polynomials, the overall computa-
tional complexity was only 𝑂(𝐷 (log(𝐷))2). At the start of this project the NSE-FNFT was
already available as part of the FNFT software library [152]. The FNFT had not been demon-
strated yet for the KdV, but it was expected to require only minor changes, since the KdV
fits into the Ablowitz–Kaup–Newell–Segur (AKNS) framework [4] on which the NSE-FNFT
was based.

Algorithm presented in this dissertation
The initial attempts to adapt the FNFT algorithm to the KdV resulted in unexpectedly large
errors. Only for very low ‘non-linear frequencies’ did the result reasonably match with the
theoretic spectrum. At greater ‘non-linear frequencies’ the result was dominated by an error
floor with a high pass spectrum. To achieve an acceptable accuracy, a set of higher order
polynomial approximation schemes for the FNFT is developed in this dissertation. This is a
set of exponential splitting schemes with rational real coefficients, as required for use in the
FNFT. The best known example of a splitting scheme is Strang splitting, which is of order
two. In the literature suitable splitting schemes were only found up till an order of four. In
this dissertation four more schemes are added, of orders five, six, seven and eight respec-
tively. Every increase of the order of the splitting scheme by one results in a reduction of the
error floor by roughly one order of magnitude and thus increases the domain of ‘non-linear
frequencies’ for which the KdV-FNFT is usable. The new splitting schemes are now also used
for the NSE-FNFT. Because the NSE-FNFT already showed a lower error floor and because
that error floor had a low-pass characteristic, the improvements are less dramatic than in
the KdV case. Nevertheless an example is shown in which the new splitting scheme of order
eight reduces the noise floor by a factor between 100 and 1000, to become almost indistin-
guishable from the error floor of the slow NSE-NFT, which is solely due to the numerical
integrator.

Later in this project it is discovered that the numerical error in the KdV-FNFT is related
to the asymmetric way in which the KdV is encapsulated in the AKNS framework on which
the FNFT is based. As a result, the KdV-FNFT shows a similar error behaviour as the NSE-
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FNFT for negative ‘non-linear frequencies’. Hence the high errors are avoided by essentially
computing the spectrum first for negative ‘non-linear frequencies’, and then exploit symme-
tries to compute from that the spectrum for positive ‘non-linear frequencies’. This procedure
is equivalent to a different encapsulation of the KdV in the AKNS framework.

Both the new higher order exponential splitting schemes and the favourable encapsula-
tion have been implemented in the FNFT software library, which is freely available on the
internet for commercial and non-commercial use under the terms of the GNU’s not Unix
(GNU) General Public Licence (GPL) version 2 [152]. Hence as a result of the work in this
dissertation the continuous KdV-NFT spectrum can now be computed with a ready to use
piece of software at a computational complexity of only 𝑂(𝐷 (log(𝐷))2).

6.1.2. Computation of the eigenvalues of the discrete KdV-NFT
spectrum

State of the art before this project
The eigenvalues of the KdV are actually eigenvalues of the Schrödinger equation. The numer-
ical computation of these eigenvalues had been researched in different fields. Unfortunately
there had been seemingly little cross fertilisation between these different fields. Scientific
publications in one field mostly cited other publications within the same field and often dif-
ferent terminology and notation were used. Also the assumptions on the input signal often
differed. From a mathematical perspective the input signal was typically considered to be
a function whereas for the applications of the NFT typically only sampled data is available.
Also, for the KdV-NFT for input signals with vanishing boundaries, the Schrödinger equa-
tion must be solved on the line (with boundary conditions at infinity), whereas other fields
are more interested in solutions on an interval (with boundary conditions at the finite inter-
val’s boundaries).

There were two main approaches to compute eigenvalues of the KdV and Schrödinger
equation: Finite dimensional approximations and shooting methods. The first worked by
approximating the continuous eigenvalue problem by a matrix eigenvalue problem. The
computational cost of these algorithms scaled at best quadratically in the number of degrees
of freedom and their accuracy typically deteriorated quickly for faster oscillating eigenfunc-
tions [82, Chap. 2]. Furthermore some of these algorithms required samples on a specific
grid that did not necessarily coincide with the available data samples. The second approach
worked by integrating the Schrödinger equation for a sequence candidate eigenvalues that
were selected with an iterative root finder, such as Newton–Raphson (NR). In the NFT liter-
ature it was known how to evaluate samples of the objective function of which the roots are
the KdV eigenvalues, and its gradient [17]. The main difficulty of the shooting approach was
the selection of suitable initial guesses for the algorithm such that every eigenvalue would be
found. There are a few applications for which initial guesses are available: If the NFT is used
for communication over a non-linear fibre optical transmission line modelled by the NSE
or over a non-linear electrical transmission line modelled by the KdV, the possible eigenval-
ues may be fixed in a modulation scheme. However, for the majority of applications such
knowledge is not available. The NSE-FNFT mitigated this problem by using a finite dimen-
sional approximation to obtain initial guesses followed by a shooting method for refinement.
From amathematical perspective, the Schrödinger equation was regarded as an example of a
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Sturm–Liouville (SL) equation. In this field many algorithms had been developed that were
based on SL oscillation theory. This theory relates the ordinal number (index) of each eigen-
value to the number of zero-crossings of the corresponding eigenfunction. This knowledge
was exploited in an iterative root finder. See e.g. [82] and the references therein. Also in the
NFT literature an algorithm had been proposed that essentially made use of SL oscillation
theory [102], seemingly unaware of the prior existence of similar methods in other fields of
research.

Algorithm presented in this dissertation
In this dissertation an SL type algorithm is proposed that is fine tuned for the requirements of
the KdV-NFT.The algorithm thusmakes use of sampled input data and boundary conditions
at infinity (for which the input is approximated as zero outside the sampled interval). In
contrast to existing SL type algorithms, the proposed algorithm simultaneously makes use
of the gradient of the objective function and the discrete information based on SL oscillation
theory. It is shown that the use of SL information because of its discrete nature requires
special attention to the behaviour of the algorithm at discontinuities, such as increments of
the oscillation counter. It is demonstrated that the proposed algorithm is, for sampled input
data with vanishing boundary conditions, more reliable than the considered state of the art
benchmark algorithm. Furthermore it typically saves computation time by requiring fewer
iterations than existing algorithms that rely more heavily on bisection.

6.1.3. Computation of the norming constants of the discrete KdV-
NFT spectrum

State of the art before this project
It was known that the direct computation of the norming constants of the discrete (NSE-)
NFT spectrum was numerically highly unstable. Hari and Kschischang [63] and Aref [12]
had independently developed amore stablemethod, which they named the the bi-directional
algorithm or the forward-backward method respectively. They had proposed for the NSE-
NFT to numerically solve the NSE equivalent of the Schrödinger equation in the AKNS
framework (respectively a slight modification thereof) from two sides. That is, they had
formulated certain boundary conditions at plus and minus infinity respectively. From there
the trajectory was computed up to a central matching point. At the matching point they had
each found an equation that expressed the norming constant 𝑏(𝜁𝑛) as an affine function in
the scattering parameter 𝑎(𝜁𝑛). The coefficients of this affine function depended on the val-
ues of both trajectories at the matching point. Since 𝑎(𝜁𝑛) should be zero at an eigenvalue,
they could cancel this term from the equation. They had found that the remaining term was
a numerically reliable estimator of the norming constant, if the matching point was chosen
well. They had both proposed a criterion to select this matching point.

Algorithm presented in this dissertation
The direct computation of the norming constants of the discrete KdV-NFT spectrum shows
the same numerical instability as the similar computation for the NSE-NFT. However, from
the exposition in [12, 63] it is not immediately clear how the bi-directional algorithm can be
generalised for the KdV. In the AKNS framework, the scattering parameters 𝑎(𝜁𝑛) and 𝑏(𝜁)
of the KdV-NFT are not as directly related to the value of trajectories at a matching point as
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in the case of the NSE-NFT. Namely, the scattering parameters are in [4, Eqs. (A3.2)–(A3.3)]
found as the coefficients in a particular parametrization of the trajectory at plus infinity, that
results from a particular boundary condition at minus infinity. It is not explained therein
why the parametrization and boundary condition should look like this. Therefore it is not
obvious what the boundary condition at plus infinity should be for the purpose of the bi-
directional algorithm. Furthermore it is a tedious task to find for the KdV-NFT an equation
that expresses the norming constant as a function of the scattering parameter 𝑎(𝜁𝑛) and the
values of certain trajectories of the AKNS representation of the Schrödinger equation at the
matching point. The solution is not even unique, since in theory 𝑎(𝜁𝑛) should be exactly
equal to zero. In this dissertation the problem is solved by expressing the Schrödinger equa-
tion not in the ubiquitous AKNS basis, but in another system of first order Ordinary Differ-
ential Equations (ODEs) which is called S-basis in this dissertation. These representations
can be transformed into one another, in most cases by left and right multiplication by suit-
able transformation matrices. (It is however not always a similarity transformation, because
the transformation matrices can depend on 𝑥.) The S-basis has for the KdV-NFT the prop-
erty that the scattering parameters are related to its trajectories in a simple way. Hence once
the Schrödinger equation is transformed into the S-basis, application of the bi-directional
algorithm becomes simple. One obtains an equation that expresses the norming constants
as an affine function in the scattering parameter 𝑎(𝜁𝑛), of which the coefficients depend on
the values of both trajectories in S-basis at the matching point. If desired, this expression
can be transformed back into the AKNS basis after cancelling the term that contains the fac-
tor 𝑎(𝜁𝑛). Hence this dissertation has contributed to the generalisation of the bi-directional
algorithm for different NFTs.

Moreover, the bidirectional algorithm itself is improved in this dissertation by develop-
ing a better criterion for the selection of the matching point. At the midpoint between every
𝑥 sample two different estimates of the norming constant are computed. The point where
the difference between these estimates is the smallest is selected as the matching point. The
new criterion works even in cases where the previously proposed criteria break down. In
these cases the new criterion improves the accuracy by several orders of magnitude. This
improvement mostly shows for signals of which the energy is not concentrated around one
location. Up till today no example is known in which the new criterion does not completely
cancel the numerical instability and leaves only the ordinary discretization error of the inte-
grator. Until such an example is found, the accuracy of the numerical computation of the
norming constants should be considered as a solved problem.

The bi-directional algorithm with the matching point criterion as proposed in this dis-
sertation is implemented in the FNFT software library [152].

6.1.4. Computation of the inverse NFT from the discrete KdV-NFT
spectrum

State of the art before this project
Before this project there existed several numerical algorithms for the computation of the
inverse KdV–NFT that consider both the continuous and the discrete spectrum. Among
these were algorithms that are based on solving the Gel’fand–Levitan–Marchenko (GLM)
equation, e.g. [122] or on solving an equivalent Riemann–Hilbert problem, e.g. [142, 143].
Several authors had discussed a two-stage approach in which the (suitably pre-compensated)
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continuous spectrum is transformed first and the discrete spectrum is accounted for there-
after by means of Darboux or Crum transforms, e.g. [122, §4.2], [40, Sect. 3], [28, Chap.
xvii.3.2]. This approach was considered attractive for numerical computations [122, §4.2].

The Darboux transform adds (or removes) one eigenvalue to (or from) a known sig-
nal spectrum pair [40, 59]. Starting from the trivial signal spectrum pair 𝑞(𝑥) = 0 ⇔
(𝑅(𝜁), 𝒟) = (0, ∅), the signal corresponding to any discrete spectrum can be computed by
adding the eigenvalues one by one with the Darboux transform. The Crum transform is a
generalisation of the Darboux transform that adds (or removes) any number of eigenvalues
to (or from) a known signal spectrum pair [38]. It was known how to exploit the Schrö-
dinger equation to compute the Darboux or Crum transform without computing higher
order derivatives [40, pp. 177–178]. An implementation of the Crum transform for Partial
Differential Equations (PDEs) that fit in the AKNS framework had been presented in [99].
Numerical implementations of these algorithms had not been discussed in the literature.

Algorithm presented in this dissertation
When Darboux or Crum transform algorithms are straightforwardly implemented in ordi-
nary double precision floating point arithmetic, the numerical properties are poor. Typically
the error in the computed signal becomes unacceptably high already for only a few eigen-
values. Therefore these algorithms are not reliable enough for numerical computations in
practice. In this dissertation the numerical properties of these algorithms are carefully ex-
amined. A new algorithm is developed that mitigates these errors and is thus optimized for
computations in ordinary floating point arithmetic. Examples indicate that the new algo-
rithm can process discrete spectra with three to seven times as many eigenvalues at the same
error tolerance in comparison to the earlier existing algorithms. Hence the Crum transform
can now be computed numerically in ordinary double precision floating point arithmetic for
a larger range of spectra than before.

6.2. Recommendations
6.2.1. Inverse KdV-NFT for arbitrary spectra
In this dissertation a numerical algorithm is proposed for the inverse KdV-NFT for the dis-
crete spectrum, which is optimized for floating point arithmetic. If this algorithm is com-
plemented with a likewise optimized algorithm to compute the inverse KdV-NFT for an
arbitrary continuous spectrum (but empty discrete spectrum) the inverse KdV-NFT could
be computed accurately for arbitrary spectra in floating point arithmetic. It should be inves-
tigated if such a complementary algorithm can be based on an existing optimized algorithm
to compute the inverse NSE-NFT for an arbitrary continuous spectrum, and if the result is
sufficiently accurate. Alternatively such a complementary algorithm could be obtained by
optimizing an existing algorithm for the inverse KdV-NFT for arbitrary spectra such as [122,
141, 142]. The trade-off between accuracy and computational cost of the resulting two-stage
algorithm should be compared quantitatively to the original versions of these algorithms.

6.2.2. NFT for the Kaup–Broer equation
One of the physical processes that can be modelled by the KdV are free surface waves in
shallow water. However, the KdV applies only if the waves all travel in the same direction.
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Often reflected waves are of practical interest, for example to study the effectiveness of struc-
tures that are made to reflect waves. For waves in the linear regime methods exist to sepa-
rate the incoming and reflected wave. This boils down to identifying parameters in a linear
wave model and relies on superposition. In shallow water conditions axiomatically no linear
model applies and hence any separation by means of fitting parameters in a linear model is
meaningless. Waves that travel in two directions in shallow water conditions can be mod-
elled by a Boussinesq-like equation known as the Kaup–Broer equation (KB) [20, 75]. This
was experimentally verified in a wave flume for a head-on collision of two solitons and for an
overtaking interaction of two solitons [118]. As one would expect, by assuming that waves
travel in one direction only, the KB can be simplified to the KdV [42, §5.1]. Like the KdV the
KB is integrable in the sense of the NFT [75, 77, 121]. It is of interest for reflection analysis of
shallow water waves to have a numerical KB-NFT. The KB fits in the AKNS framework [121,
Eq. (94)]. However, it shows the same entry −1 in the dynamics matrix as the KdV coun-
terpart. In the KdV case the entry −1 was the cause of many of the numerical difficulties
of the KdV-NFT in comparison to the NSE-NFT. Hence it is worth investigating numerical
algorithms for the KB-NFT and develop numerically reliable ready to use algorithms.
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