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Abstract 

The gold standard for the assessment of cardiac mass is 

cardiac magnetic resonance imaging (CMR). However, it 

is costly and requires specific expertise. 

Electrocardiographic (ECG) criteria could provide a low-

cost solution, but have shown to be poorly correlated with 

LVM in athletes. We hypothesize that this poor correlation 

could be overcome by taking into account body 

measurements (length, weight) and composition (fat mass, 

lean mass and bone mass). The objective was to assess 

whether adding demographic (Demo) and/or Dual-energy 

X-ray absorptiometry (DXA) features could improve an 

ECG-based regression model for the estimation of LVM in 

athletes. 107 young competitive endurance athletes (19±2 

years; 35 female) underwent a 12-lead ECG, a DXA scan 

and CMRI. We constructed four feature subsets: ECG, 

ECG+Demo, ECG+DXA and All. The best combination of 

features from each set, was used to build a Support Vector 

Machines regression model with 5 features. The ECG 

model performed significantly worse than all other models 

(R2 = 0.28 (0.17), RMSE = 34.33 (5.63) g). The best 

performing model was constructed with the entire feature 

set ((R2 = 0.67 (0.14), RMSE = 23.08 (4.42) g). These 

results suggest that an ECG based regression model for 

LVM prediction can be improved by adding demographic 

and/or body composition features.  

 

1. Introduction 

The term “athlete’s heart” describes the adaptation of 

the left ventricle (LV) to long-term, intensive training. 

Increased wall thickness, LV mass (LVM) and chamber 

dilation are the primary features of exercise induced 

cardiac remodeling [1]. Distinguishing this physiological 

adaptation from concentric hypertrophic cardiomyopathy 

(HCM) can be challenging [2]. The stakes of resolving 

such diagnostic ambiguity are high since, on the one hand, 

false reassurance may lead to an increased risk of sudden 

cardiac death. On the other hand, a diagnosis of HCM may 

imply a life-long ban from competitive sports, regular 

medical follow-up, screening of family members and 

psychological stress [2]. Hence, accurate phenotyping, 

including quantification of cardiac dimensions, is crucial 

to help distinguish normal training adaptation from 

pathological changes.  

The gold standard for the assessment of cardiac volumes 

and mass is cardiac magnetic resonance imaging (CMR). 

Structural measures by CMR are both accurate and 

reproducible [3]. However, cost and operational 

considerations tend to limit its utility in large-scale 

population studies and clinical trials [4]. 

ECG criteria for left ventricle hypertrophy (LVH) 

provide a low-cost solution, but have low sensitivity in the 

general population. In an attempt to resolve this issue, the 

combination of multiple criteria was suggested. This 

approach increased the sensitivity for detection of LVH, 

but came at the expense of a lowered specificity [5]. A 

more sophisticated solution was the use of multivariate 

statistical models for the estimation of LVM. This way, the 

LVM could be estimated on a continuous scale, instead of 

a binary classification. Good results have been obtained in 

an older population, but this has not been done in a young 

athlete population [4].   

The ECG is measured at the body surface. The 

conduction of the electrical signal of the heart to the skin 

is influenced by the composition of the different organ 

tissues separating the electrodes from the heart. Including 

body composition to an ECG-based estimation of LVM 

might therefore improve its accuracy. In this study, we first 

combined ECG features in a regression model to predict 

LVM. Hereafter, we added demographic and body 

composition features. The latter are measured with Dual-

energy X-ray absorptiometry (DXA). We hypothesize that 

adding these features will improve the estimation. 

The first objective of this study is to identify features 

from the different modalities that are highly correlated with 

LVM. The second objective is to assess whether adding 

demographic and/or DXA features could improve an ECG-

based regression model for the estimation of LVM in 

athletes. 
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2. Materials & Methods 

2.1.  Study population  

This study was conducted using data of the Pro@heart 

study. This is a longitudinal cohort study in elite endurance 

athletes aiming to phenotype the structural and functional 

cardiovascular adaptations associated with high volume 

exercise. 107 young competitive endurance athletes (19±2 

years; 35 female), were included in  the university of 

Leuven (Belgium) and the Baker Heart and Diabetes 

Institute (Australia). The full demographics are shown in 

Table 1.  

 

2.2.  Feature collection 

Every athlete underwent a 12-lead ECG, DXA scan and 

CMR. A subset of features, which have shown potential as 

single features or as combinations in earlier studies, was 

selected from each modality for further analysis.  

The data from all 12-lead ECGs were automatically 

processed and measurements of each lead were averaged 

over the ECG to obtain representative metrics. We 

selected: SV1, SV3, RV5, RV6, RI, RaVL, SaVL and QRS 

duration; where S is the absolute value of the S-wave 

amplitude and R is the R-wave amplitude in the 

respectively indicated leads. Additionally, we included 4 

ECG criteria for LVH: Cornell voltage (CV) and product 

(CP), Sokolow-Lyon voltage (SLV) and product (SLP). 

CV is considered the most accurate criterion for LVH. It is 

computed as the amplitude of R in aVL plus the amplitude 

of S in V3 (RaVL+SV3). The SLV is computed by the 

amplitude of S in V1 and the amplitude of R in V5 or V6, 

whichever is the larger (SV1+RV5/6). Both products are 

obtained by multiplying the voltages with the QRS 

duration.    

Five demographic variables were used: age, sex, weight 

(kg), height (m) and body surface area (BSA, m2). BSA 

was computed with the Dubois and Dubois equation [2] 

and was included since its frequent use as a scaling 

parameter for LVM.  

From the DXA scan, we selected: bone mineral content 

of the trunk (BMCTrunk), fat mass of the trunk 

(FMTrunk), lean mass of the trunk (LMTrunk), total fat 

mass (FMTotal) and total lean mass (LMTotal). 

For calculation of LVM, the volume of the myocardium 

measured by CMR was multiplied by the specific gravity 

of the myocardium (1.05g/mL). The  volume of the 

myocardium was obtained by subtracting the LV end-

diastolic volume from the epicardial volume, both drawn 

from apex to basal short axis views. 

 

2.3. Correlation and regression analysis 

We quantified the linear correlation between each of the 

features and the LVM on the entire dataset using the 

Pearson correlation coefficient, 𝜌. 

To identify the predictive power of each feature we 

performed a univariate linear regression analysis. The 

dataset was randomly split into a training and test set with 

a 70/30 ratio. The training set was used to build the model, 

while the performance was assessed on the test set. For 

statistical robustness, the whole process was repeated 100 

times.  

 

Table 1: Demographics. Values are shown as median and 

interquartile range. 

 All Men Women 

Number 107 72 35 

Age (y) 19.00 

(2.00) 

19.00  

(2.00) 

18.00  

(2.75) 

Height (m) 1.78  

(0.13) 

1.82  

(0.10) 

1.70  

(0.09) 

Weight (kg) 66.50 

(12.20) 

69.33 

(10.43) 

58.36 

(10.01) 

LVM (g) 142.80 

(54.54) 

159.50 

(45.80) 

106.05 

(32.35) 

 

2.4.  Feature selection  

Features with a non-significant (p > 0.05) correlation 

with the LVM were removed for further analysis.  

Hereafter, we created four feature subsets. The first 

subset consists solely of ECG features (ECG). The second 

subset is comprised of both ECG and demographic features 

(ECG+Demo). The third subset consists of both ECG and 

DXA features (ECG+DXA) and the last subset contains all 

available features (All). 

The selection of the most relevant features from the 

different subsets was carried out using the least absolute 

shrinkage and selection operator (LASSO) algorithm [6]. 

This is a particular case of the penalized least squares 

regression with L1-penalty function. It has one major 

drawback however: if there is a group of highly correlated 

variables, LASSO tends to randomly select only one 

variable from that group [7]. Therefore, we performed the 

LASSO algorithm 100 times and sorted each feature based 

on majority voting.  

2.5. Development of LVM estimation model 

Since we have only 107 subjects, we opted to keep the 

model complexity low. Therefore, we constructed a linear 

support vector machine (SVM) regression model and used 

only the five highest ranked features from every subset. 

The latter to avoid overfitting.  

To be able to statistically compare the 4 models, we 

used the same approach as for the univariate regression 

analysis. We randomly split the dataset 100 times into a 
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training and test set with a 70/30 ratio. These sets were then 

used to train and test the model. The hyperparameters were 

automatically tuned using 5-fold cross-validation and 

Bayesian optimization. 

The coefficient of determination, R2, and the root-mean-

squared-error (RMSE) were used as statistics to measure 

the goodness of fit of the models. The median and 

interquartile range of the performance metrics are always 

reported. Depending on the normality, we tested the 

difference between models with a one-way ANOVA or 

with a Kruskal-Wallis test. Normality was tested with the 

Lilliefors test and a p-value <0.05 was considered 

significant. All analysis were performed using MATLAB© 

(MathWorks).  

 

3. Results 

The highest correlated variables are SLP, age, sex, 

height, weight and LMTrunk, LMTotal. In contrast, RaVL, 

SaVL, SIII, FMTrunk and FMTotal are not significantly 

correlated to the LVM. Hence, these features were 

removed before the feature selection (Table 2). 

The univariate regression analysis showed that ECG 

derived features predict LVM rather poorly, compared to 

features derived from other modalities. The best 

performing ECG features are SLV and SLP.  

The five highest ranked features by the LASSO 

algorithm are SLP, Age, Sex, Weight and LMTrunk. All of 

these features were selected at least 83 out of 100 times. 

The resulting RMSE of the regression models of each of 

these features separately ranged between 26.66-35.46 g.  

The performance of all four models are shown in Figure 

1. The best performing model was constructed with the 5 

highest ranked features from all modalities (R2 = 0.67 

(0.14), RMSE = 23.08 (4.42) g). The model outperformed 

the ECG and ECG+DXA based models, but did not differ 

from the ECG+Demo model.  

The ECG based model performed significantly worse 

compared to all other models (R2 = 0.28 (0.17), RMSE = 

34.33 (5.63) g). 

The ECG+Demo (R2 = 0.65 (0.10), RMSE = 23.56 

(3.65) g) and the ECG+DXA model (R2 = 0.61 (0.14), 

RMSE = 25.21 (4.10) g) performed  similarly. 

 

4. Discussion 

The first objective was to identify features which correlate 

well with LVM. LMTrunk and LMTotal correlate best (𝜌 

> 0.7) and have the best goodness of fit (R2 > 0.5, RMSE 

< 28 g). This was expected, since the cardiovascular 

system has to efficiently distribute oxygen to metabolic 

active tissue such as lean muscle mass, especially during 

exercise [2]. 

 

 

Table 2: Correlation and regression analysis for each 

feature. 𝜌 = correlation coefficient; R² = coefficient of 

determination; RMSE =  root mean squared error;  

# LASSO = amount of times each feature was selected by 

LASSO when taking all features into account.  
 

 𝜌 R2 (IQR)  RMSE (g) 

(IQR) 

# 

LASSO 

SV1 0.26 0.09 (0.12) 37.30 (4.92) 1 
SV3 0.32 0.12 (0.09) 35.96 (5.65) 1 

RV5 0.43 0.20 (0.17) 34.96 (5.87) 73 

RV6 0.24 0.08 (0.13) 37.55 (5.44) 1 

RI 0.20 0.05 (0.08) 37.67 (5.25) 1 

RaVL 0.04 0.01 (0.03) 38.33 (5.21)  

SaVL -0.01 0.01 (0.04) 38.45 (4.11)  

SIII 0.09 0.02 (0.04) 38.02 (5.32)  

QRS 0.44 0.21 (0.19) 35.32 (4.74) 32 

CV 0.32 0.11 (0.08) 35.94 (5.62) 0 

CP 0.37 0.15 (0.10) 35.28 (5.65) 10 

SLV 0.47 0.23 (0.14) 34.07 (4.37) 0 

SLP 0.54 0.30 (0.19) 32.49 (4.15) 83 

Age 0.43 0.19 (0.13) 35.46 (5.78) 95 
Sex -0.61 0.30 (0.15) 30.56 (4.55) 93 

Height 0.58 0.33 (0.15) 31.65 (3.88) 2 

Weight 0.68 0.46 (0.17) 28.74 (4.26) 86 

BSA 0.69 0.48 (0.14) 28.54 (4.16) 7 

BMCTrunk 0.60 0.32 (0.18) 31.70 (5.34) 73 
FMTrunk 0.09 0.01 (0.04) 38.12 (5.10)  

LMTrunk 0.73 0.55 (0.16) 26.66 (4.66) 99 

FMTotal -0.04 0.01 (0.03) 38.15 (5.33)  

LMTotal 0.72 0.53 (0.17) 27.30 (4.84) 23 

 

 

 

 
Figure 1: (A) R2 and (B) RMSE of all 4 models.  

* = p < 0.05, ** = p < 0.01, *** = p < 0.001 
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Additionally, this high correlation has also been 

observed in other studies [2, 8]. Since the metabolic 

demand of FM is rather low, this could also explain the 

poor correlation between FM and LVM. 

ECG criteria correlate poorly with LVM (R2 < 0.3). The 

SLV and SLP are the best predicting ECG features with a 

median R2 of respectively 0.23 and 0.30.  

The best performing model used all possible features. 

The five highest ranked features which were used for the 

construction of the model are LMTrunk, Age, Sex, Weight 

and SLP. The presence of features from all modalities 

indicates that all modalities contribute for an accurate 

prediction of LVM. The added value of Sex with LMTrunk 

has previously been observed where a higher LVM is 

measured in boys compared to girls [8]. However, sex-

specific predictive equations were used for the 

quantification of lean body mass. We performed a more 

accurate assessment of LVM using a DXA-scan.  

One limitation of this study is the limited number of data 

points. This prevented the creation of an independent test 

set. In this study we used all data points for feature 

selection and again for the learning algorithm design. 

Ideally, those steps should be performed separately to 

prevent overfitting. Future research is needed to validate 

this model in a larger cohort of athletes, as well as to see 

whether such a model could help differentiate mild 

concentric left ventricular hypertrophy from physiological 

adaptions in athletes.  

Furthermore the added value of other modalities should 

be assessed. Maximal oxygen consumption (VO2max) as 

measure by cardiac pulmonary exercise testing has shown 

strong correlation with LVM with an R2 of 0.71  [3], hence 

could serve as a potential add-on in predictive models for 

LVM. 

 

5. Conclusion 

An ECG-based regression model poorly predicts LVM 

in endurance athletes. Adding demographic and body 

composition features significantly improves the model 

enabling accurate estimation of LVM. Further research is 

needed to firstly validate the model and secondly assess its 

discriminative performance between healthy athletes and 

those with LVH.  
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