
Trajectory Optimization Based on Interval Analysis

E. de Weerdt ∗ , E. van Kampen † , Q.P. Chu ‡ , J.A. Mulder §

Delft University of Technology, Control and Simulation Division

P.O. Box 5058, 3600 GB Delft, The Netherlands

Trajectory optimization has been a large field of research for many years. The drawback

is that for non-convex, constrained problems practically all available solvers cannot guar-

antee that the globally optimal trajectory is found. Interval analysis based solvers however

can provide this guarantee. Interval analysis has been applied to trajectory optimization

before, but the previously presented methods suffered from major drawbacks which limited

their application to small scale problems. In this paper a new interval based method is

introduced which incorporates state parameterization to prevent explicit integration. The

performance of the proposed method is demonstrated by applying it to a spacecraft forma-

tion flying optimization problem. The results are compared with a gradient based solver

and it is shown that the interval method is guaranteed to find the global optimal solution.

Finally the first steps for another new trajectory optimization method based on interval

analysis and direct collocation are presented.

I. Introduction

The problem of trajectory optimization is encountered in many applications such as formation flying
and rendezvous and docking in the aerospace industry, path planning in robotics, sailing/shipping route
optimization in the maritime industry, and ideal trajectory construction in the racing industry. In most
applications the optimization is non-linear with possibly multiple local-minimums and the desire for methods
which guarantee that the global optimal solution is found grows. A general problem description within which
trajectory optimization fits is given in Pinter:1

min f (x)

x ∈ D := {x : l ≤ x ≤ u, g (x) ≤ 0}
(1)

where the optimal trajectory of the state x has to be found which minimizes the (cost) function f while
satisfying all constraints g. The state is constrained by a lower bound l and a upper bound u which together
define the domain D within which the solution must be sought. Throughout the years, many researchers
have developed method for solving the trajectory optimization problems. Betts2 classified two methods
translating the initial problem of trajectory optimization into a finite dimensional problem: non-linear pro-
gramming and optimal control. He showed that the two methods can be considered equal so in this paper
the non-linear programming approach is considered. Betts also made a review of (many of) the available
numeric analysis based solvers. The key aspect for a solver to be able to find the optimal solution within
finite time is the definition of the parameter adaptation. For instance, when applying direct shooting, one
can apply a gradient based adaptation scheme for the parameters which determine the trajectory. As is well
known, gradient based methods, e.g. the Levenberg-Marquardt method, can end up in a local minimum.
Genetic algorithms, and Monte-Carlo optimization schemes can also not provide a guarantee of finding the
optimal solution within finite time. Methods which do have this guarantee are Lipschitz based algorithms
and interval analysis.3–5

∗PhD student, student AIAA member
†Assistant professor, AIAA member
‡Associate professor, AIAA member
§Professor, AIAA member

1 of 18

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation, and Control Conference
08 - 11 August 2011, Portland, Oregon

AIAA 2011-6657

Copyright © 2011 by Delft University of Technology. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

Lipschitz optimization algorithms are applied to cases where the cost function J : D → R, D ⊆ R
n is a

Lipschitz function such that:
|J (x)− J (y)| ≤ L ‖x− y‖ , ∀x,y ∈ D (2)

for a specific Lipschitz constant L ∈ R. The previous relation can be used to discard regions of the domain
D. When (in)equality constraints are present, a method must be available to guarantee that they are not
violated over the entire trajectory. It may be difficult to derive Lipschitz functions for the entire trajectory,
e.g. consider the process of guaranteed integration. Interval analysis uses interval arithmetic3,6 instead of
standard, crisp valued, arithmetic to perform the optimization. Interval arithmetic can be used to derive Lip-
schitz constants. The principles of optimization are similar as both methods converge to the global optimum
by discarding infeasible regions of the search space. However, interval analysis can handle a much larger
class of optimization problems containing discontinuities, numeric integrations and sub-routines. Finding
bounds on the cost function and propagation of (in)equality constraints comes naturally from the use of
interval arithmetic which makes interval analysis preferable. Examples of applications of interval analysis
to aerospace related problems are: finding trim-points for nonlinear aircraft models,7 pilot model identifica-
tion,8 integer ambiguity resolution for aircraft attitude determination,9,10 spacecraft re-entry optimization11

and fuel optimization for constrained spacecraft formation rotations.12

Interval analysis has been applied to trajectory optimization by several researchers: Chu et al.,13 Filipe
et al.11 The approach taken in the previous applications was to parameterize the control and perform sub-
sequent guaranteed integration in a direct shooting context. Although successful for small scale problems,
the inherent problems of interval analysis limit the applicability to larger scale problems. Specifically the
dependency effect encountered in the integration process, called the temporal de-correlation effect, causes a
blowup of the trajectories.11 The key to successfully applying interval analysis is to use a problem frame-
work which does not include explicit integration. State parameterization and direct collocation14,15 are two
methods of transforming the original problem into a framework having implicit integration which is classified
by Betts2 as a direct transcription method.

State parameterization methods represent the trajectory by a parameterized function approximation,
such as a polynomial or spline. Next, the corresponding control action that is required to follow the trajec-
tory is derived from the equations of motion. By varying the coefficients of the function approximator, the
cost function, that usually depends on both state and control, can be minimized.

Direct collocation transforms the trajectory optimization problem into a non-linear programming (NLP)
problem, which does not include any explicit integration steps, by replacing the ODEs with a set of defect
constraints. The constructed NLP problem is typically solved by available solver based on gradient meth-
ods16 and genetic algorithms. Direct transcription methods has been successfully applied in many fields
such as spacecraft trajectory optimization,17,18 aircraft trajectory optimization19,20 etc. As stated, in most
cases the applied methods cannot provide guarantees on finding the global optimal solution (region of con-
vergence may be very small) and moreover can have severe problems of finding any valid trajectories given
the (in)equality constraints imposed on the problem. Interval analysis is a covering method thus having the
guarantee of finding the optimal solution. Moreover, any constraint can be easily applied and typically de-
creases the computational load since they can be used to reject parts of the solution space. When combining
interval analysis with direct collocation the aspect of polynomial representation becomes very important. In
this paper Bezier polynomials are selected to reduce the dependency effects to a minimum. The final solution
is found using a branch and bound algorithm such as the Moore-Skelboe algorithm or Hansens’ algorithm.5

This paper is organized as follows. Section II gives a brief introduction and description of interval
arithmetic. Thereafter, previous attempts of using interval analysis for trajectory optimization are analyzed
(section III). Specifically the aspects which limit the application to small scale problems are discussed. In
section IV the state parameterization method is discussed, followed by an application of this method to a
formation flying optimization problem in section V. The method of direct collocation is presented briefly
in section VI and the optimal form of direct collocation is given such that it is most suited to be applied
in combination with interval analysis. Finally, in Section VII conclusions are drawn and future research
directions are indicated.

2 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

II. Interval analysis

Interval analysis is the theory dealing with interval numbers and the arithmetic operations on them[21, 22].
The collection of all arithmetic operations on interval numbers is called interval arithmetic. An interval
number is defined as an ordered pair of real numbers [a, b] with a ≤ b. An interval parameter is written
with brackets within which either the infimum and supremum are given [a, b] or a single variable [x] = [a, b].
Interval arithmetic contains the same operands as ordinary arithmetic such as the basic computational
operations of addition, subtraction, multiplication and division:

[a, b] + [c, d] = [a+ c, b+ d] (3)

[a, b]− [c, d] = [a− d, b− c] (4)

[a, b] · [c, d] = [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)] (5)

[a, b]

[c, d]
= [a, b] · [1/d, 1/c] if0 /∈ [c, d] (6)

The core of interval analysis is to use interval arithmetic to form an inclusion function [f ([x])] of any
function f (x). This property of interval arithmetic follows from the inclusion function theorem given by
R.E. Moore[21, 23]:

Theorem II.1.

If [f ([x1] , [x2] , ..., [xn])] is a rational expression in the interval variables [x1] , [x2] , ..., [xn], i.e. a finite

combination of [x1] , [x2] , ..., [xn] and a finite set of constant intervals with interval arithmetic operations,

then

[x1]
′

⊂ [x1] , [x2]
′

⊂ [x2] , ..., [xn]
′

⊂ [xn] (7)

implies
[

f
(

[x]
′

1 , [x]
′

2 , ..., [x]
′

n

)]

⊂ [f ([x1] , [x2] , ..., [xn])] (8)

for every set of interval numbers [x1] , [x2] , ..., [xn] for which the interval arithmetic operations in [f] are
defined.

Proof. For the proof of this theorem the reader is directed to [23].

If we take [x]
′

1 , [x]
′

2 , ..., [x]
′

n to be the crisp numbers x1, x2, ..., xn and apply the theorem, then we obtain:

f (x1, x2, ..., xn) ⊂ [f ([x1] , [x2] , ..., [xn])] (9)

for x1 ⊂ [x1] , x2 ⊂ [x2] , ..., xn ⊂ [xn]. It states that if the input variables lie within the correspond-
ing intervals, interval arithmetic can be used to produce guaranteed bounds on the crisp function output
f (x) ∀x ∈ [x].
An important aspect is the following: if f(x) is a real rational expression in which each variable xi occurs

only once and only to the first power, then the function evaluations with interval variables bounds the func-
tion f(x) tightly over the set of intervals [xi], i.e. sup [f([x])] = max

x∈[x]
f(x) and inf [f([x])] = min

x∈[x]
f(x). This

is a direct consequence of the properties of interval arithmetic. However, when an interval parameter occurs
more than once the bounds on the function output can become non-tight, i.e. sup [f ([x])] > max

x

f(x) and

inf [f ([x])] < min
x

f(x) ∀x ∈ [x].

The inclusion theorem is the key to using interval arithmetic as a global non-linear solver. For any given
non-linear optimization problem one can use the inclusion function of the cost function to search for the
global optimum. The process of converging to the global optimum is a process of elimination: via application
of a branch and bound algorithm. The process is graphically represented in Figure 1. Given a search domain
[x] one can split it into n parts ([xi], i = 1, 2, ..., n - green surfaces). For each part, the inclusion function of
the cost function [J] is computed using interval arithmetic. A guaranteed estimate of the lowest cost function
value ρ can now be made: ρ = min

i
sup([J([xi])]). Since the value of ρ is guaranteed one can automatically

3 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

discard all domains [xi] for which the infimum (the lower interval bound) of the cost function is higher than
ρ. These are the hatched areas in figure 1 and it is guaranteed that the global minimum does not lie in those
domains. The solution space is formed by the remaining domains and the process starts again by splitting
the remaining boxes. To limit the computational load one must limit the number of boxes or reduce the
search domain as fast as possible. This can be done by lowering the value of ρ as fast as possible such
that more and more boxes can be discarded. Many box selection methods and advanced inclusion function
theorem are available in literature3,5, 24–26 and will not be discussed here.

[x]

[xi]

[Ji]
J

x

ρ

min (sup [Ji])

inf ([Ji]) > ρ

Figure 1. Principles of the interval branch and bound algorithm (hatched boxes can be eliminated based on
the minimum cost function value estimate ρ)

The very basic description of the branch and bound principle given here is used to highlight one very
important aspect: satisfying the constraints. If constraints are imposed on the problem, then the estimate
of the minimum cost function value, ρ, may only be lowered if all constraints are valid for at least one (crisp)
point within the box:

ρ = min (ρ, sup [Ji ([xi])]) ⇐⇒ g (x) ≤ 0, x ∈ [xi] (10)

Next to trying to find a single point within [xi] which satisfies the constraints one can also prove the existence
of such a point by applying theorem 10.12.1 in Hansen.24 Despite the availability of an existence theorem
it can be very difficult to proof that there is a point which satisfies the constraints. Not being able to lower
ρ means that less boxes can be discarded and that the computational load increases, often dramatically.
Constraint handling in case of direct collocation will be further discussed in section VI.

III. Control parameterization

To redefine the infinite dimensional problem into a finite dimensional, both Chu13 and Filipe11 applied
control parameterization. Besides forming a finite dimensional problem control parameterization ensures
that the found trajectory is in accordance with the Equations Of Motion (EOM), i.e. the found trajectory
can actually be followed. Moreover, any constraints on the control variables are easy to apply and can
often be eliminated by choosing the correct parameterization. Another advantages of applying control
parameterization is that if a set of trajectories is found to satisfy the constraints, then the entire set of
trajectories can be marked as feasible. This allows one to solve problem in which one does not require one
optimal trajectory but one want to determine the entire set of feasible trajectories, such as the problem given
in Filipe,11 where the goal is to find the set of initial states from which a final point can be reached, given

4 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

an interval of control actions. In later sections, direct collocation is applied which introduces approximate
solutions to the EOM for a given control trajectory. This makes the problem solvable but will limit the
application to problems for which a crisp set of trajectories needs to be found, i.e. trajectories leading to the
minimal cost function value. One should therefore keep in mind that the control parameterization method
based on interval analysis does have unique and useful properties.

However, the major drawback of control parameterization is the integration of the equations of motion
that is required to compute the trajectory. It is this problem that makes the large dimensional problems
unsolvable. Besides the wrapping effect, the integration inherently causes another effect called the temporal
decorrelation effect. The temporal decorrelation effect causes the integration blow-up as is observed in pre-
vious works11 and will be demonstrated using the following simple example.

Example temporal decorrelation: Integration blow-up

The task at hand is to find all feasible trajectories for the system

ẋ = u, u (a, t) = at− a (11)

with the constraints given by:

x (t0) = 0

x (tf) = [0.5, 0.55]

|u (t)| ≤ 1

t0 = 0

tf = 1

(12)

The solution to this problem is given by

ẋ = −a+ at

→ x (t) = x (0)− a (t− t0) +
1
2a (t− t0)

2

→ a = x(t)−x(0)

−(t−t0)+0.5(t−t0)
2

= [−0.55,−0.5] ∗ 2

(13)

Suppose at a given moment of time in the optimization process the box a = [−0.545,−0.530]∗2 is processed.
Since this box lies within the true solution (a = [−0.55,−0.5] ∗ 2), this box is a valid solution to the
problem. However, nothing can be concluded when looking at the computed interval of the final state:
x(tf) = [0.5095, 0.5654] /∈ [0.5, 0.55] (see Figure 2(a)). The integration is performed using ∆t = 0.01s for
which the wrapping effect is present although limited (see Figure 2(b)).

t

x

Integration bounds
Final path constraint

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Example blow-up magnitude
dt

x
(t

f
)

Integration bounds

Final path constraint

10−5 10−4 10−3 10−2 10−1
0.46

0.48

0.5

0.52

0.56

0.58

0.6

0.62

(b) Blow-up versus timestep

Figure 2. Integration blow-up example - demonstration of blow-up and wrapping effect

5 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

The reason for the integration blow-up is the temporal decorrelation effect: for a given control parame-
terization there are infinite realizations of the control trajectory within the given bounds. From interval
analysis (using standard integration) point of view, all control trajectories given in Figure 3 for parameter-
ization u = a ∀ t, a = [−1, 1] are valid. Stated mathematically, the control parameterization with interval
coefficients defines the set U within which infinite realizations of trajectories are possible:

U = [u (a, t) , ū (a, t)] ∀t (14)

Given this class which defines bounds for each time instant t a valid trajectory realization is any trajectory
which fulfills:

ũ (t) ⊆ U ∀t (15)

The interval analysis inclusion theorem states that the computed output of the integration must include the
output of all possible control trajectory realizations within U :

tf
∫

t0

[f (x (t) , ũ (t))] dt ⊆
tf
∫

t0

[f (x (t) , U)] dt = [x (tf)] (16)

Therefore, when performing numerical integration, there is no enforcement of the parameterization (no corre-
lation between time steps, hence the name temporal decorrelation) which leads to integration blow-up if the
final state is a non-monotonic function of the control parameterization coefficients. In other words, at each
time step in the integration the worst case control action can be selected (within U) without any constraints
between the control actions of different time steps. It is the temporal decorrelation effect combined with the
dependency and wrapping effect which makes larger problems unsolvable as is observed in the work of Chu
and Filipe.11,13

t

u

Parameterization bounds
Valid control trajectories

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3. Integration blow-up example: valid control trajectories within a given
parameterization (u = [−1, 1]∀t)

Avoiding the temporal decorrelation effect can be realized using techniques which prevent the numerical
integration with interval parameters. The most obvious method is that of algebraic integration which however
is not possible for most realistic trajectory optimization problems. In Riehl et al.19 a overview of possible
implicit integration methods are given (including Pseudo-Spectral integration). The methods transform the
problem of numerical integration by replacing the ODEs with a set of defect constraints. The distinction
between the methods is the manner in which the states are represented (polynomial type, polynomial order,
number of nodes) and the manner in which the defects are computed (collocation defect, quadrature defect,
defect through explicit integration). The next section will discuss a state parameterization method that can
also be used to avoid the temporal decorrelation effect.

6 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

IV. State parameterization

This section discusses the approach of state parameterization in the field of trajectory optimization. State
parameterization is one method to transform the infinite dimensional, dynamic optimization problem into a
finite dimensional optimization problem. The transformed problem is solved using an interval based solver,
which is guaranteed to find the globally optimal solution within the initial search space.

In its general form, the trajectory optimization problem can be written as:

J (x (t) ,u (t) , t) = Φ (x (t0) , t0,x (tf) , tf)+
tf
∫

t0

L (x (t) ,u (t) , t) dt

p (x (t) ,u (t)) ≤ 0

q (x (t) ,u (t)) = 0
∂x(t)
∂t

= f (x (t) ,u (t) , t)

(17)

where x is the state vector and u is the control vector. Equality constraints (q) and inequality constraints (p)
can be imposed on the problem. This includes (control and states) path constraints and endpoint constraints
(Φ = 0). Dynamic constraints in the form of f are assumed to always be present. Finally, J is the cost
functional (or cost function), which is defined by the endpoint cost Φ and the integral of the Lagrangian L
over time domain t ∈ [t0, tf]. Both time values t0, tf may be unknown, but in most problems the begin time
is known or only the length of the time interval τ = tf − t0 is of importance.

When implementing state parameterization, one substitutes all (independent) states with a parameterized
model describing the path of each state with respect to time (x(t) → x(c, t), where c is the vector containing
the adaptable parameters):

J (x (c, t) ,u (t) , t) = Φ (x (c, t0) , t0,x (c, tf) , tf)+
tf
∫

t0

L (x (c, t) ,u (t) , t) dt

p (x (c, t) ,u (t)) ≤ 0

q (x (c, t) ,u (t)) = 0
∂x(c,t)

∂t
= f (x (c, t) ,u (t) , t)

(18)

The control paths are deduced from the dynamic constraints:

u (t) = h

(

∂x (c, t)

∂t
, f (x (c, t) ,u (t) , t)

)

(19)

For all EOM that can be rewritten into an expression for the control as a function of state and state
derivatives:

u (t) = h

(

∂x (c, t)

∂t
,x (c, t) , t

)

(20)

one can derive an analytic expression in terms of the optimization parameters. When the separation is not
possible and the relation must be written as

u (t) = h1

(

∂x (c, t)

∂t
,x (c, t) , t

)

+ h2 (x (c, t) ,u (t) , t) (21)

one must apply a numeric solver to determine the control values. Interval based solvers specifically designed
for inverse problems can be found in the book of Jaulin et al.,27 e.g. the SIVIA optimization algorithm.
When the control cannot be written as an analytic expression, the complexity of the problem is greatly
enhanced. In this paper only problems for which the inverse problem can be analytically solved are treated.

When considering systems that are fully controllable, the use of state parameterization prevents explicit
integration of the dynamic constraints (the EOM), significantly reducing the computational load. Moreover,
the end-point constraints can be implicitly satisfied when the right parameterization type is selected. To
demonstrate this, a simple example is given.

7 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

Consider the following optimization problem:

min
u

J =
tf
∫

t0

u (t)
2
dt

ẍ (t) = u (t)− 0.1ẋ (t)

xt0 = 0 ẋt0 = 0

xtf = 10 ẋtf = 0

(22)

Suppose that x(t) is parameterized by a polynomial. To satisfy all end-point constraints, one must at
least have a third order polynomial. If a third order polynomial is used all coefficients are fixed and the
optimization problem is finished (no free variables left to optimize). As an example, for a single 3rd order
simplex spline the coefficients are:

x (c, t0) = c0
ẋ (c, t0) = 3 (c1 − c0)

x (c, tf) = c3

ẋ (c, tf) = 3 (c3 − c2)



















c0 = xt0

c1 = xt0 +
ẋt0

3

c2 = xtf −
ẋtf

3

c3 = xtf

(23)

The simple derivative expressions of the simplex spline and the property that the polynomial value at
t0 and tf is fully defined by the first and last coefficient respectively, make the simplex spline the ideal
representation for state parameterization. With the simplex spline definition one can directly set the end-
point constraints independently of the polynomial order (for d > 3 the first two and the last two coefficients
are directly set and fixed, leaving the other (d-3) coefficients free).

In general, considering a single domain [t0, tf] and a dth order polynomial, the simplex spline can be
written as:28

pd (c, t) =

d
∑

i=0

ci
d!

(d− i)!i!

(

1− t̃
)d−i

t̃i (24)

where t̃ is the normalized time:

t̃ =
t− t0
tf − t0

(25)

and ci denote the polynomial coefficients. The advantages of using simplex splines for the state parameteri-
zation are:

• Direct relation between end-point constraints and coefficient values.

• Simple operator definitions (multiplication, addition, subtraction, derivative).

• Coefficient domains are equal in magnitude, unlike ordinary polynomials.

An important property is that the end-point conditions are implicitly satisfied and that each end-point
condition is related to a single coefficient. This means that the optimization problem dimension is reduced
by the number of end-point constraints.

In order to derive an analytic expression for the control trajectories in terms of the optimization param-
eters, one needs to be able to take the nth order derivative of the state with respect to time. In case of the
simplex splines the nth order derivative can be computed by applying the following expression n times:

∂pd (c, t)

∂t
=

d̂
∑

i=0

ĉi
d̂!

(d̂− i)!i!

(

1− t̃
)d̂−i

t̃i = p
d̂
(ĉ, t) (26)

where d̂ = d− 1 and ĉi is given by ĉi =
d

tf−t0
(ci+1 − ci). One can see that the derivative of a spline is again

a spline (of one order lower), making the evaluation of derivatives very easy.

8 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

V. Simulation results

The main aspects of state parameterization have been discussed in the previous section. When applying
state parameterization using simplex splines to the problem of satellite formation flying, the following can
be concluded:

• The control paths can be analytically derived using the EOM.

• The end-point constraints are implicitly satisfied thus do not need to be considered during the opti-
mization.

• The application of the simplex splines makes the cost function convex with respect to the free coefficients
in the simplex splines. However, the addition of nonlinear constraints will necessitate the use of a global
solver.

A. Formation flying optimization problem

The motion of a satellite (follower i) relative to another satellite (leader) which is in a circular orbit about
the body can, under the assumption of close proximity, be expressed by the following equations of motion:29

ẍ− 2ωż= Qx

m

ÿ + ω2y=
Qy

m

z̈ + 2ωẋ− 3ω2z= Qz

m

(27)

commonly called the Hill-Clohessy-Wiltshire (HCW) equations, where x, y, z are the position coordinates
of the follower relative to the leader, ω is the orbital angular rate of the leader, m is the mass of the follower,
and Q is the specific force acting on the follower. The specific force is the summation of all acting forces on
the spacecraft, such as thruster forces, third body forces, gravity field gradient forces, and other disturbance
forces. For this example it is assumed that there are only thruster forces and that the follower has three
thrusters along its axes (assumed to be parallel to the coordinate frame in which the equation of motion are
expressed) T = [Tx, Ty, Tz].

The goal is to transport the follower from a begin state x(0), consisting of 3 positions and 3 velocities,
to a final state x(tf) where the final time tf is given (see Table 1).

Table 1. Formation flying optimization problem settings.

parameter value unit

m 1 kg

t0 0 s

tf 10,000 s

Nt 101 -

ω0 0.0011 rad/s

x0 [10, 400, 10, 0, 0, 0] [m,m/s]

xtf [0,−100, 0, 0, 0, 0] [m,m/s]

The cost function is designed to minimize the fuel consumption:

J =

tf
∫

t0

TTTdt (28)

Under the assumption that the control is smooth and its derivative with respect to time is small, the cost
function can be written as:

J =

Nt
∑

j=1

T(tj)
T
T (tj)∆t (29)

9 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

where Nt is the number of time instances and tj is the j
th time instance. The time instances are uniformly

distributed over the time domain [t0, tf]. The approximation of the integral simplifies the computation of
the cost function considerably, while having a negligible influence on the solutions set.

The end state x(tf) represents a position in a configuration of satellites (and zero velocity) of which an
example is given in figure 4. The constraints imposed on the problem are the mentioned end-point con-
straints, the dynamic constraints imposed by the EOM, and possibly dynamic constraints representing the
minimum inter-satellite distance (to avoid collisions):

pij (xi,xj) = r2 −
(

(xi − xj)
2
+ (yi − yj)

2
+ (zi − zj)

2
)

≤ 0 (30)

where i and j denote the two satellites under consideration and r is the minimum inter-satellite distance. As
for the cost function, the constraints (if needed) are evaluated at specified instances in the time domain. The
consequence of this approach is that the constraints, e.g. the inter-satellite distance, may be momentarily
violated between two time instances. The minimal inter-satellite distance during that time will not be
significantly lower than r, provided that the dynamics are slow varying and/or the time instances are close
to each other.

Figure 4. Example of formation flying satellites. The goal is to transport the fifth satellite to the open spot
in the formation (Goal) without crossing any space defined by the spheres.

B. Optimization results

The formation flying optimization problem above is solved by using the interval trajectory optimization
algorithm with state paramterization. The states x, y, z are parameterized by 5th order interval splines (see
eq.24), resulting in 6 interval coefficients per state. The parameterized states are differentiated twice and
entered into equation 27 to compute the control forces T = [Tx, Ty, Tz]. Next the cost function is computed
and it is checked of the constraints have been met. In an interval branch-and-bound loop(see Section II),
the cost function is minimized, resulting in the optimal set of coefficients.

Table 2 gives the minimum cost function value that is found by the interval optimization algorithm,
together with the corresponding spline coefficients. Also in the table are the three best results J1, J2, J3
from 100 gradient based optimization attempts. The corresponding trajectories are visualized in figure 5. It
can be observed that the interval solution has a lower cost function value and is therefore a better solution.

10 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

Another important observation is that the gradient based optimization leads to different solutions, depending
on the initial value of the spline coefficients. This does not happen with the interval method, since the initial
values for the spline coefficients cover the whole search area and thus do not have to be changed between
trials.

Table 2. Resulting cost function value and spline coefficients for the formation flying optimization problem
with states parameterized by 5th order splines. The interval result JIA is compared with the three best results
J1, J2, J3 from 100 gradient based optimization attempts. The corresponding trajectories are visualized in figure
5.

Method J c

Interval analysis (JIA) 1.358E-6 {535.156, 492.032,−1622.656,

1142.253, 293.573,−329.365}

Gradient based (J1) 1.731E-6 {−600.669,−355.159,−1389.200,

933.505,−289.394, 305.299}

Gradient based (J2) 2.148E-6 {547.592, 361.230,−983.228,

434.092, 214.610,−239.320}

Gradient based (J3) 2.197E-6 {556.146, 508.422,−945.581,

489.875, 279.622,−301.878}

VI. Direct collocation and interval analysis

Apart from state parameterization, direct collocation can also be used to prevent the explicit interval
integration that is the main drawback of control parameterization methods. Some initial findings into the
combination of interval analysis and direct collocation will presented in this section.

Direct collocation is a method for transforming the original dynamic optimization problem (which includes
explicit integration) into a NLP problem. The basic principle is that the time domain is split into several
phases [ti, ti+1] and that the state x and control values u are set for the begin and end of each phase. Using
the state and control values and the EOM (f) one can determine the state derivative values ẋ(ti), ẋ(ti+1).
The state value and the state derivative values at two time instances provide enough conditions to define a
cubic polynomial xi(c, t) per time phase i. Once the polynomial is determined it can be used to compute
the ‘defect’ ∆i:

∆i =
dx (c, t)

dt

∣

∣

∣

∣

t=t∆,i

− f (x (c, t∆,i) , u (t∆,i)) (31)

where t∆,i denotes the time where the defect is computed. The key aspect of direct collocation is the
assumption that the polynomial represents the solution to the EOM (for the given control) accurately if
the defects are (close to) zero. It must be stressed that direct collocation yields an approximate trajectory
which may not fully comply with the solution found via explicit integration using the same control profile.
This is the main difference between using the control parameterization method given in section III (explicit
integration) and direct collocation. It also means that the found trajectory is not guaranteed to be the optimal
solution of the original problem. However, as explained in section III, implicit integration is required to make
the problem solvable. The original problem, equation 1, is transformed into the new problem definition using
direct collocation:

min
c

J (x (c, t))

x ∈ D := {x : l ≤ x ≤ u, g (x) ≤ 0}
(32)

where the state trajectories are determine by the adaptable coefficients c.

In this paper only the basic form of direct collocation is considered: state and control values are set at
the nodes (also known as control points), third order polynomials represent the trajectories in between, and
there is a linear relation for the control in each phase. The control is assumed to be continuous up to order
zero, meaning that the state is continuous up to order 1 (i.e. state derivatives for neighboring phases match
at the nodes). Examples of possible trajectory representations as a function of the number of time phases,

11 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

replacemen

x

y

z

J1

J2

J3

JIA

-200 0 200

0

200

400

-50

0

50

(a) 3D view

x

y

J1

J2

J3

JIA

-200 0 200

0

200

400

(b) x-y plane

Figure 5. State parameterization, constrained problem, spline order 5 - Three most optimal trajectories
(J1, J2, J3) found out of a 100 runs when applying the gradient based solver to the constrained problem and
the solution found using interval analysis JIA. For each run of the gradient based solver the free coefficients
have been randomly initialized in the domain [−1500, 1500]

12 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

using the setting given above, are given in Figures 6 to 8. As one can see, the absolute magnitude of the
defects (generally speaking) decreases with increasing number of phases. The goal of this section is to show
that the proposed interval based solver always leads to the optimal solution within the given framework

(problem, type of direct collocation, number of phases etc). The solver given in this paper is easily extended
to other forms of direct collocation, such as those in the work of Hu et al.30 In order to apply the interval
analysis based solver to the NLP problem generated via direct collocation, a brief discussion on the param-
eterization type used in the scheme is required. From the interval analysis point of view, specific forms are
more suited than others, and this is explained in the next section. Thereafter a discussion on handling the
defects and defining the cost function is presented.

x
(t
)

u
(t
)

ẋ
(t
)

t

True x(t)

Node values

Approx x̂(c, t)

Defects ∆

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-2

0

2

-1

0

1

-2

0

2

Figure 6. Priciples of direct collocation - 2 time phases

A. Parameterization type

When dealing with crisp numbers, the manner in which the polynomial per phase is represented is not crucial
(they all represent the same line). However, when dealing with interval arithmetic, the representation does
become very important as is illustrated with the following example.

Example polynomial representation

Without loss of generality, consider a single phase of the trajectory (time domain t = [0, 1]) for which the
state and state derivative values (computed using the EOM and the state/control values) at the nodes are
given as intervals (blue lines Figure 9):











[x (0)]

[x (1)]

[ẋ (0)]

[ẋ (1)]











=











[−0.1, 0.1]

[0.5, 0.65]

[0.1, 0.15]

[0, 0.05]











(33)

By applying interval analysis an inclusion function of the state derivative is determined and the result is
again an interval: [ẋ] = [f([x], [u])]. Following the procedure of direct collocation for a 3rd order polynomial

13 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

x
(t
)

u
(t
)

ẋ
(t
)

t

True x(t)

Node values

Approx x̂(c, t)

Defects ∆

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-2

0

2

-1

0

1

-2

0

2

Figure 7. Priciples of direct collocation - 4 time phases

x
(t
)

u
(t
)

ẋ
(t
)

t

True x(t)

Node values

Approx x̂(c, t)

Defects ∆

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-2

0

2

-1

0

1

-2

0

2

Figure 8. Priciples of direct collocation - 12 time phases

14 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

in power form one would obtain the following coefficient values:

yp =
d
∑

i=0

cit
i











[c0]

[c1]

[c2]

[c3]











=











1 0 0 0

1 1 1 1

0 1 0 0

0 1 2 3











−1









[x (0)]

[x (1)]

[ẋ (0)]

[ẋ (1)]











=











[−0.1, 0.1]

[0.1, 0.15]

[0.85, 2.05]

[−1.4,−0.6]











(34)

Evaluation of the polynomial with interval coefficients will result in the set of trajectories represented in
Figure 9. One can see that the polynomial output for t = 1 is not equal to the given state value. Moreover,
when performing taking the time derivative of the polynomial (Figure 9, bottom plot) one can see that the ẋ
for t = 0 is exactly equal to the given value ([c1] = [ẋ(0)]) but for t = 1 a huge difference is present. Should
one have used the Bezier representation of the same polynomial:

yb =

d
∑

i=0

ci

(

d

i

)

ti (1− t)
d−i

, t ∈ [0, 1] (35)

then the coefficient values are given by:











[c0]

[c1]

[c2]

[c3]











=











1 0 0 0

0 0 0 1

−3 3 0 0

0 0 −3 3











−1









[x (0)]

[x (1)]

[ẋ (0)]

[ẋ (1)]











=











[−0.1, 0.1]

[−0.067, 0.15]

[0.483, 0.65]

[0.5, 0.65]











(36)

In Figure 9, the set of trajectories is given for the second representation. It can be observed that the obtained
set of polynomials lies within the set corresponding to the power form polynomial. Moreover, the begin and
end conditions [x(0)], [x(1)] are exactly matched. Evaluating the differentiated polynomial however shows
that both end points for ẋ are over-estimated. The latter can be improved by noting that the derivative of
a Bezier polynomial is again a Bezier polynomial for which the begin and end conditions are equal to the
first and last coefficients. By setting the first and last coefficients for x to the intervals [ẋ(0)], [ẋ(1)] after
algebraic differentiation of the Bezier polynomial, one can obtain a sharp inclusion. Note that the second
coefficient is determined using the Bezier polynomial for x, thus by all begin and end conditions. The result
is given in Figure 10 together with the trajectories formed by all combinations of sup, inf of the begin and
end conditions (denoted as ‘possible trajectory’). The trajectories are correctly bounded which follows from
application of the inclusion function theorem II.1.

When applying interval analysis to direct collocation the polynomial representation which has the sharpest
bound for both x and ẋ is desired. As shown in the previous example the (adapted) Bezier polynomial rep-
resentation generates very sharp bounds. Moreover, the domain of the coefficients within which the optimal
values lie needs to be known to solve the NLP problem. For Bezier polynomials the coefficient are in the
same order of magnitude while those of the power form are (generally) not. Therefore, the search domain
for the Bezier polynomial coefficients is easier to define. In this paper the Bezier polynomial is selected for
the reasons given above. Note that the polynomial order can easily be increased if more constraints are
available.
In the following section the location and type of defects used in this paper is explained. Moreover, the
definition of the cost function is discussed which in turn defines the output.

B. Handling defects and defining the cost function

In the example of the principle of direct collocation (Figure 6 to 8), there is one defect per phase (between
nodes) and the defect was located in the middle of the phase (t∆, i = (ti + ti+1)/2). This definition of the
defect is but one of many (see Riehl19). Since it is the most commonly used defect definition in literature,
it will also be used in this paper. Besides the definition of the defect is it important for which time stamps

15 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

t

x
(t
)

t

ẋ
(t
)

Power form

Bezier form

Node values

0 0.5 1

0 0.2 0.4 0.6 0.8 1

-4

-2

0

2

4

-1

0

1

2

Figure 9. Example polynomial representation: power form versus Bezier form

t

x
(t
)

t

ẋ
(t
)

Bezier form

Node values

Adapted Bezier form

Possible trajectory

0 0.2 0.4 0.6 0.8 1

0 0.5 1

-1

0

1

-0.2

0

0.2

0.4

0.6

Figure 10. Example polynomial representation: adapted Bezier form

16 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

the defect is computed and how it is incorporated in the NLP problem.

The solution to the direct collocation problem should be a trajectory for which the defects are close to
zero while the objective, e.g. minimal fuel expenditure, is met. To determine the solution one can use the
defects either as inequality constraints, i.e. ‖∆i‖ < ǫ, or one can add a weighted term based on the defects
in the cost function:

J = J0 + γ‖∆i‖
2 (37)

where J0 denotes the part of cost function representing the objective of the (original) trajectory optimization
problem. Using the defect as inequality constraint will guarantee that the defect will be small and therefore
that the found trajectory is a valid one (from direct collocation point of view). Moreover, if no valid trajec-
tory is found, one automatically knows that the number of phases is too low. The latter is a desirable effect
since the solution which is sought should be a feasible trajectory. However, looking from the interval analysis
perspective, specifically considering the branch and bound algorithm, using the defects as constraints poses
a problem. As discussed in section II, the estimate of the cost function value ρ can only be lowered if all
constraints are satisfied for at least one point which, if ǫ is small, may be very difficult to proof.

To prevent the use of the defect as constraints, one can add a penalty term to the cost function as de-
scribed earlier. When doing so any combination of crisp values in the parameter intervals will yield a valid
trajectory in the sense that no (defect based) constraints are violated. This eases the implementation of the
interval based solver considerably since the computational load is reduced.

VII. Conclusions and recommendations

A new interval based trajectory optimization method has been introduced that is based on state param-
eterization. Like previous interval trajectory optimization algorithms, this method provides the guarantee
that the globally optimal solution is found, but it avoids the problems related to explicit interval integration
that occur when a control parameterization approach is taken. The states are parameterized by splines,
because with splines the end point constraints are easily translated into coefficient values.

Application of the new algorithm to a formation flying trajectory optimization problem with nonlinear
constraints shows that the interval method can find better trajectories than conventional gradient based
solvers, which get stuck in local minimums.

Finally, some initial steps into another type of interval trajectory optimization algorithm, that is based
on the principle of direct collocation, have been presented. By using direct collocation the problem is
transformed into a static optimization problem which is solved using interval analysis. Although not yet
implemented, it is expected that numerical results will show that the new approach will also find the global
optimal solution. Compared to existing interval based solvers applying the concept of control parameter-
ization, it is believed that the new solver has lower computational load and is able to solve larger scale
trajectory optimization problems.

References

1Pinter, J., Global Optimization in Practice: State of the Arts and Perspectives, chap. 11, Springer Science - Business
Media, LCC 2009, 2009, pp. 377 – 404.

2Betts, J., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics,
Vol. 21, 1998, pp. 193 – 207.

3R.E.Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ., 1966.
4Hansen, E. and Walster, G., Global Optimization Using Interval Analysis, Marcel Dekker, Inc. and Sun Microsystems,

Inc., 2004, ISBN 0-8247-4059-9.
5Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., Applied Interval Analysis, Springer-Verlag London Berlin Heidelberg,

2001, ISBN 1-85233-219-0.
6Hansen, E., A Generalized Interval Arithmetic, Vol. 29, Springer Berlin/Heidelberg, 1975.

17 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

7van Kampen, E., Chu, Q., Mulder, J., and van Emden, M., “Nonlinear Aircraft Trim Using Interval Analysis,” Proceeding
of the AIAA Guidance, Navigation, and Control Conference andExhibit , August 2007.

8van Kampen, E., Zaal, P., de Weerdt, E., Chu, Q., and Mulder, J., “Optimization of Human Perception Modeling Using
Interval Analysis,” Jounal of Guidance, Control, and Dynamics, Vol. 33, 2010, pp. 42–52.

9van Kampen, E., de Weerdt, E., Chu, Q., and Mulder, J., “Aircraft Attitude Determination Using GPS and an Interval
Integer Ambiguity Resolution Algorithm,” AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, Aug. 10-13,
2009 , 2009.

10de Weerdt, E., van Kampen, E., Chu, Q., and Mulder, J., “Integer Ambiguity Resoluition Using Interval Analysis,”
accepted for publication in the winter 2008 edition, ION Journal of Navigation.

11Filipe, N., de Weerdt, E., van Kampen, E., Chu, Q., and Mulder, J., “Terminal Area Energy Management Trajectory
Optimization Using Interval Analysis,” Proceedings of the AIAA Guidance, Navigation, and Control Conference 2009 , , No.
AIAA-2008-6212, Aug. 2009.

12de Weerdt, E., Chu, Q., and Mulder, J., “Neural Network Output Optimization Using Interval Analysis,” IEEE Trans-
actions on Neural Networks, Vol. 20, No. 4, 2009, pp. 638–653.

13Chu, W., Mooij, E., van Kampen, E., and Chu, Q., “A Feasibility Study to the Application of Interval Analysis to
Re-entry Trajectory Optimization,” Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit , 2008,
pp. 40–48.

14Dickmanns, E. and Wells, K., “Approximate Solutions of Optimal Control Problems Using Third Order Hermite Poly-
nomial Functions,” Springer Lecture Notes, Com. Sci., Vol. 27, 1975, pp. 158 – 166.

15Hargraves, C. and Paris, S., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal
of Guidance, Control, and Dynamics, Vol. 10, 1987, pp. 338 – 342.

16staff, S. R., “SIGEST,” SIAM Rev., Vol. 47, No. 1, 2005, pp. 97–97.
17Huntington, G. and Rao, A., “Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseudospectral

Method,” Jounal of Guidance, Control, and Dynamics, Vol. 31, 2008, pp. 689 – 698.
18Enright, P. and Conway, B., “Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Program-

ming,” Journal of Guidance, Control, and Dynamics, Vol. 14, 1991, pp. 981 – 985.
19Riehl, J., Paris, S., and W.K.Sjauw, “Comparison of Implicit Integration Methods for Solving Aerospace Trajectory

Optimization Problems,” AIAA/AAS Astrodynamics Specialist conference and Exhibit , August 2006, pp. AIAAA 2006–6033.
20B.R.Geiger, Horn, J., Sinsleu, G., Ross, J., Long, L., and Niessner, A., “Flight Testing a Real-Time Direct Collocation

Path Planner,” Journal of Guidance, Control, and Dynamics, Vol. 6, 2008, pp. 1575 – 1586.
21Moore, R., Interval Analysis, Prentice-Hall, Inc., 1966.
22Hickey, T., Ju, Q., and van Emden, M., “Interval Arithmetic: from Principles to Implementation,” Journal of the ACM ,

Vol. 48, No. 5, 2001, pp. 1038–1068.
23Moore, R., Methods and Applications of Interval Analysis, SIAM, Philadelphia, PA, 1979.
24Hansen, E. and Walster, G., Global Optimization Using Interval Analysis, Marcel Dekker, Inc. and Sun Microsystems,

Inc., 2nd ed., 2004.
25Makino, K. and Berz, M., “Taylor Models and Other Validated Functional Inclusion Functions,” International Journal

of Pure and Applied Mathematics, Vol. 4, No. 4, 2003, pp. 379–456.
26Corliss, G., editor, Taylor Series Models in Deterministic Global Optimization. Springer-Verlag, 2000.
27Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., Applied Interval Analysis, Springer, 2001.
28Lai, M. J. and Schumaker, L. L., Spline Functions on Triangulations, Cambridge University Press, 2007.
29sković, J. B. and Mehra, R., “A multiple model-based reconfigurable flight control system design,” Proceedings of the

37th IEEE Conference on Decision and Control , Vol. 4, December 1998, pp. 4503 – 4508.
30Hu, G., Ong, C., and Teo, C., “Direct Collocation and Nonlinear Programming for Optimal Control Problem Using an

Enhanced Transcribing Scheme,” Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System
Design, 1999.

18 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n
Fe

br
ua

ry
 2

8,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

57

