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Nomenclature

General

V; gradient in the it" Cartesian coordinate (e.g., V, = 3/dy)

pry hy, Hy, ... partial derivatives with respect to fluid properties (e.g., pr =

dp/aT)
u, F, ... vector-values quantities (e.g., velocity, force,)

m, h, p, ... vectors in the discrete global linear system
M, D, C, ... matrices in the discrete global linear system

List of symbols

Independent variables and domain:
r=[xy,z] Cartesian spatial coordinate

t time

Q spatial domain

n outward normal vector

0Q, aT, ... boundaries of Q, T, ...

P, aaN parts of aQ with a Dirichlet (D) or Neumann (N) boundary con-
dition

Related to the spatial discretization:

T the set of elements (i.e., the computational mesh)

F the set of all faces in the mesh

Fi, FP, FN sets of all internal (i), Dirichlet (D), or Neumann (N) faces

Py polynomial order of a numerical solution space of quantity X

Variables in the transport equations:

+
=g

p thermodynamic pressure

p ‘incompressible’ (or *hydrodynamic’, or ‘mechanical’) pressure

m mass flux

u:=(1/p)m velocity

T viscous stress tensor

F volumetric external force

Q volumetric heat source

P Dirichlet value of a quantity ¢ at a boundary (i.e., the inhomo-
geneous part of a Dirichlet boundary condition)

N stress at the outflow boundary (i.e., the inhomogeneous part of

a Neumann boundary condition for the momentum)

vii



viii Nomenclature

qN heat flux out of the domain at the boundary (i.e., the inhomoge-
neous part of a Neumann boundary condition for the enthalpy)

Fluid properties:

T temperature

p density

h specific enthalpy

H = ph volumetric enthalpy
ho enthalpy offset

Cp = hr specific heat capacity at constant thermodynamic pressure
k thermal conductivity
a=k/(pc,) thermal diffusivity

u dynamic viscosity
vi=u/p kinematic viscosity

Dimensionless numbers:

Pr:=v/a Prandtl number

Re Reynolds number
Nu Nusselt number

Jis) Darcy friction factor

St Strouhal number



Summary

This thesis describes a numerical method for computational fluid dynamics. Special
attention is paid to low-Mach number flows.

The spatial discretization is a discontinuous Galerkin method, based on modal
basis functions. The convection is discretized with the local Lax-Friedrichs flux. The
diffusion in the enthalpy equation is discretized with the symmetric interior penalty
method, which is generalized in a straightforward manner for the viscous stress in
the momentum equation. The numerical method does not deviate fundamentally
from previous literature.

The temporal derivatives in the enthalpy and momentum equations are dis-
cretized with a second-order backward finite difference method. An algorithmic
pressure correction scheme is used decouple the momentum and the continuity
equations, giving rise to explicit artificial boundary conditions. If the pressure and
the momentum are discretized with an equal-order polynomial space, then the pres-
sure equation is stabilized with an extra penalty term to suppress the discontinuities
in the solution, as explained in chapter 2.

Using a time-splitting method is far more difficult when the flow is compressible,
due the variable density. Low-Mach number flows also do not lend themselves well
to solving the coupled transport equations, because the density is a function of the
enthalpy, not the pressure. This differs from high-Mach number flows, where one
can solve a transport equation for the density. Chapter 4 describes in great detail
how a non-constant density can be incorporated into a time-splitting scheme for
low-Mach number flows.

Chapter 4 also discusses the best form of the enthalpy transport equation to
solve (primitive or conservative), and for which variable (primitive or conserved).
This question arises in low-Mach number flows, because the density is a function of
the temperature. Here the conservative transport equation is solved for the specific
enthalpy.

The main difficulty with this approach is that the temporal enthalpy derivative
is nonlinear due to the variable density. This can be addressed with an easily
implemented adjustment of the finite difference scheme (‘method #2' in sections
4.3-4.4). The resulting discretization displays second-order temporal accuracy (as
measured in the spatial L? norm) for the enthalpy and the mass flux, without having
to iterate within a time step.

Furthermore, the enthalpy transport equation needs to be stabilized with a sim-
ple change of variables, in which the specific enthalpy is ‘offset’ by a constant.
Though it may be counter-intuitive, the enthalpy offset is critical to the stability and
the accuracy of the temporal discretization. This would also be true if one were to
solve for the volumetric enthalpy, because the enthalpy offset determines whether
there is a one-to-one mapping between the volumetric enthalpy and the density.

ix



X Summary

The spatial and temporal discretizations and their implementations are exten-
sively verified and validated with the test cases at the end of the chapters. In
particular, sections 3.3.1, 3.3.2, and 4.5.1 feature exhaustive tests with manufac-
tured solutions with nontrivial fluid properties. Sections 2.7, 3.4, and 4.5.2 contain
validations for laminar flows. Chapter 5 also shows simulations of turbulent flows.



Samenvatting

Deze scriptie beschrijft een numerieke methode voor vloeistofdynamica. Er gaat
extra aandacht uit naar stromingen met een laag Mach-getal.

De spatiéle discretisatie is een discontinue Galerkin-methode, gebaseerd op
modale basisfuncties. Voor de discretisatie van de convectie wordt gebruikt ge-
maakt van de Lax-Friedrichs-flux. Voor de discretisatie van de diffusieve term in de
enthalpievergelijking wordt gebruikt gemaakt van de ‘symmetric interior pentaly’-
methode, die in een algemenere vorm ook toepasbaar is op de viskeuze term in
the impulsvergelijking. De numerieke method wijkt niet fundamenteel af van voor-
gaande literatuur.

The tijdsafgeleide in de enthalpie- en impulsvergelijkingen worden discreet ge-
maakt met een impliciete eindigverschilmethode van tweede orde. Een algoritmisch
drukcorrectieschema ontkoppelt de drukvergelijking en de impulsvergelijking, wat
resulteert in expliciete artificiéle randvoorwaarden. Als voor de druk en de im-
puls een polynome oplossingsruimte van gelijke order wordt gebruikt, dan moet de
drukvergelijking gestabiliseerd worden met een extra ‘penalty’-term om de discon-
tinuiteiten in de oplossing in toom te houden, zoals wordt uitgelegd in hoofdstuk
2.

In een compressibele stroming wordt de tijdsplitsingsmethode aanzienlijk be-
moeilijkt door de variabele dichtheid. Voor stromingen met een laag Mach-getal
is het ook niet makkelijk om de gekoppelde transportvergelijkingen op te lossen,
omdat de dichtheid een functie is van de enthalpie, niet van de druk. Hoofdsuk 4
detailleert hoe een niet-constante dichtheid opgenomen kan worden in een tijds-
plitsingsschema voor stromingen met een laag Mach-getal.

Hoofdstuk 5 behandelt ook in welke vorm de enthalpievergelijking het best kan
worden opgelost (primitief of conservatief) en voor welke variabele (de specifieke
of de volumetrische enthalpie). Deze vraagstukken spelen een rol bij stromingen
met een laag Mach-getal, omdat de dichtheid een functie is van de temperatuur. In
dit werk wordt de conservatieve enthalpievergelijking opgelost voor de specifieke
enthalpie.

De grootste uitdaging bij deze aanpak is de niet-lineaire tijdsafgeleide van de
enthalpie, als gevolg van de variabele dichtheid. Dit probleem kan worden ge-
adresseerd met een eenvoudig te implementeren aanpassing van de eindigver-
schilmethode (‘methode #2' in sections 4.3—4.4). Dit resulteert in tweede-order
nauwkeurigheid in de tijd (gemeten in de spatiéle L?-norm) voor de enthalpie en
de massaflux, zonder te hoeven itereren binnen een tijdstap.

Daarnaast moet de enthalpievergelijking gestabiliseerd worden met een eenvou-
dige substitutie van variabelen, waarbij een constante bij de specifieke enthalpie
wordt opgeteld. Deze ‘enthalpieverspringing’ (‘enthalpy offset’) is essentieel voor
de stabiliteit en de nauwkeurigheid van de discretisatie. Dat zou ook het geval
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xii Samenvatting

geweest zijn als we de volumetrische enthalpie zouden hebben gekozen als onbe-
kende variabele, omdat de enthalpieverspringing bepaalt of er één-op-één-verband
bestaat tussen de volumetrische enthalpie en de dichtheid.

De discretisaties in ruimte en tijd worden uitvoerig geverifieerd en gevalideerd
met de tests aan het einde van de hoofdstukken. Hierbij zijn vooral de tests met
artificiéle oplossingen en niet-triviale vloeistofeigenschappen noemenswaardig, zie
secties 3.3.1, 3.3.2 and 4.5.1. Secties 2.7, 3.4 and 4.5.2 behandelen validaties met
laminaire stromingen. Hoofdstuk 5 toont ook simulaties met turbulente stromingen.



Introduction

This thesis is on computational fluid dynamics for incompressible flows and flows
in the low-Mach number limit. Various numerical issues are explored, related to the
spatial discretization, the time-splitting method, and turbulent flows. Special atten-
tion is paid to how the discretizations can be adjusted when the density depends
on the temperature.

These are fairly unrelated topics, and it would be infeasible to cover all the basics
in a single chapter. The following chapters therefore contain their own introduc-
tions, including extensive literature reviews. Here we merely state the mathematical
problem (i.e., the governing equations with boundary conditions).

It is assumed throughout the thesis that the reader is familiar with common
concepts in computational fluid dynamics.

This text is also not meant as an introduction to the discontinuous Galerkin (DG)
method, though section 1.2 discusses some reasons for its recent gain in popularity,
and can be read without prior knowledge. Chapter 2 (‘Spatial Discretization with a
Discontinuous Galerkin Method’ ) is technically self-contained, but focuses on what
differs from other literature, while skipping over some important basics. The reader
can instead consult one of several monographs, of which the one by Hesthaven and
Warburton [1] likely provides the gentlest introduction.

1.1. Mathematical Problem Setting

The low-mach number limit of the compressible flow equations can be obtained in a
conceptually straightforward manner by expanding each variable ¢ into a Maclaurin
series in the Mach number Ma, that is, ¢ = ¢© + ¢ Ma+¢p@Ma® +.... Since the
equations must hold for all Ma, this leads to a series of equations, corresponding to
the coefficients of Ma®, Ma', Ma?, .... The terms of order O (Ma3) are neglected.
A detailed derivation can be found in several places, including the seminal paper on
this approach by Paolucci [2].



2 1. Introduction

In the resulting transport equations, the pressure is split into two parts: the
thermodynamic pressure pt® (of order Ma®), which is used to evaluate the equation
of state, and a pressure p (of order Ma?) in the momentum equation that acts
as a Lagrange multiplier to enforce continuity, just like in the incompressible flow
equations [2]. We simply refer to p as the pressure; it has also been called the
‘hydrodynamic pressure’ (e.g, [3, 4]), the ‘mechanical pressure’ (e.g., [5]), and
the ‘incompressible pressure’ (e.g., [6]).

Assuming a constant thermodynamic pressure, the transport equations in the
low-Mach number limit are

dp

E+V-m=0, (113)
Jm
E'FV'(UIII):V'T—VP'FF, (1.1b)
dph
=V (mh) = —V-q+Q (1.1c)

on a domain Q. Here t is the time, p is the density, u is the velocity, m := pu is the
mass flux, h is the specific enthalpy, and F and Q are known external sources. The
pressure p has no effect on any of the fluid properties.

The general form of the low-Mach number equations has a non-constant ther-
modynamic pressure pt™® = pt™(t) and a density that is a function of both p™® and
h. The enthalpy equation then gets an extra term dpt/dt, which can be estimated
by integrating the enthalpy equation. Since all variable-density flows in this work
have an outlet, where pth is fixed, we simply have dptt/dt = 0.

Assuming a Newtonian fluid, the stress tensor is

2
Tij=M<Viuj+Vjui—§(V-u)5U> . (12)

The heat flux is

q=—kVT = —KVh , (1.3)
‘p
where T is the temperature. k is the thermal conductivity, and c, = dh/dT is the
specific heat capacity. The last equality is technically an approximation because
it neglects the dependence of the temperature on the pressure, but this is highly
accurate for low-Mach number flows, even for strongly variable fluid properties in
supercritical fluids [3]. The transport properties (i, k) and the specific heat capacity
(cp) are a function of T, but do not depend significantly on the pressure.
We consider two types of boundaries:

« Dirichlet boundaries, denoted by aQP, on which the mass flux and the tem-
perature (and, therefore, the enthalpy and the fluid properties) are given, that
is, m=mP and T = TP;

1This is perhaps slightly confusing because of the double meaning of the ‘dynamic pressure’ in the
Bernoulli equations.
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« outflow boundaries, denoted by 9QN, where
(t—pH)-n=fN and kVT -n=q" (1.4)
are prescribed.

Periodic boundary conditions do not require special attention, because correspond-
ing mesh elements at opposite periodic boundaries can simply be treated as internal
elements. Of course the mass flux and the temperature must also be equipped with
appropriate initial conditions, but these will not play a significant role.

1.2. Overview of the Numerical Method

The goal of a numerical method is to find an approximate solution to the system
1.1a—1.1c. Since computers work efficiently with blocks of data, it is natural to
represent the state of a fluid by a list of numbers, which form a vector ¢ € R".

This is known as a discretization, because it transforms the continuous problem into
a problem with a countable number (N) of degrees of freedom. In this thesis the
terms ‘numerical method’ and ‘discretization’ are used interchangeably.

The type of discretization is determined by the way in which ¢ represents an

unknown continuous state. For the spatial discretization we use a finite element
method, which is based on N predefined basis functions {Ei}?’:l. A generic exact
quantity ¢ is approximated by the linear combination ¢ ~ ¢ = Qk &,. In other

words, the coefficients of the solution vector ¢ are the weights of the basis func-

tions.
An effective way to use the computing power is to solve a linear system

Ap=h (1.5)

for P, which is therefore known as the solution vector. In practice such a large

linear system can only be solved approximately, and there is an enormous body of
research on how this can be done. This typically has a large impact on the overall
efficacy of the numerical method, but that is not the topic of this thesis. Section
2.6 outlines how we solve the linear equations, and we make occasional reference
to the linear solvers when they are relevant to the rest of the discretization (such
as in section 3.5.1), but the reader can assume that the above equation is solved
with a negligible error.

That leaves the question of how to construct the matrix A and right-hand side
b. In afinite element method this is done with discrete bilinear and linear operators
a(-,-) and b(-) that generate the entries in A and b with the basis functions, that is,

A;;=a($,¢) and b, =b(&) - (1.6)
The linear system is equivalent to the problem

Find ¢ € R", such that, for allv € RV,

VA - . (1.7)




4 1. Introduction

The test vector v has a corresponding test function v = v, k- Using the linearity
of a and b, we have v'A¢p = v,a(§,)P = a(gkfk, ¢ fq) = a(v,¢) and
- —q —q

v'bh= v, b)) =b (Ekfk) = b (v), so the linear system can also be written as

Find ¢ €V, such that, for all v € Vg,

1.8
a(¢,v) =b(v), (1.8)

where Vg = span ({fi}?':l) is the numerical solution space (i.e., the span of all basis
functions). Instead of deriving the linear system directly, we work with statements
like Eq. 1.8, which is known as the discrete weak form.

The precise type of finite element method we use is a discontinuous Galerkin
(DG) method, characterized by the fact that the basis functions are not continuous,
and neither is the numerical approximation. The term ‘Galerkin’ refers to the fact
that the test function in Eq. 1.8 lies in the same solution space as the numerical
solution. As a result of the discontinuities, the DG method shares many characteris-
tics with the finite volume method, especially when applied to hyperbolic problems,
as will become clear in Chapter 2.

In practice we have to decouple the spatial and temporal discretizations to make
the computations feasible. For the temporal discretization we use a finite difference

method, resulting in solution vectors {¢”, ", } to approximate the solution at

discrete times {t", t**1, ...}. We also split the full coupled state of the fluid into three
separate solution vectors for the mass flux, pressure, and enthalpy (m, p, and h),

as is common for incompressible flows.

1.2.1. Why Use a Discontinuous Galerkin Method?

The discontinuous Galerkin method initially received little attention outside of the
field of particle transport, where it was introduced in 1973 [7]. This has changed
over the last one or two decades, and the DG method is now a very active area of
research with applications in many fields, including computational fluid dynamics.
Each author seems to prefer the DG method for his or her own reasons; the liter-
ature does not agree on the most important advantage over other discretizations.
We list a few possible advantages here.

Early work by Collis [8] focused on the weak imposition of Dirichlet boundary
conditions in an attempt to explain their remarkably accurate results with few de-
grees of freedom. Ern and Guermond [9] provide a more theoretical analysis of
weak Dirichlet boundary conditions for Friedrich’s system. Weak boundary condi-
tions have long been known to be superior to strongly imposed boundary condi-
tions, where the numerical solution satisfies the boundary condition at every point
on the boundary, as had been common in classical finite element methods. A weak
boundary condition can be shown to act as an implicit filter in badly resolved flows
[10].

Weak Dirichlet boundary conditions with a user-defined penalty parameter also
provided the inspiration for the first penalty methods to discretize elliptic problems
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with a discontinuous solution space. The unified analysis of DG methods for elliptic
problems by Arnold et al. [11] was foundational for extending the DG method to
viscous flow. The required penalty parameter has been estimated by many authors,
including Shahbazi [12]. They later also established the DG method for convection-
diffusion problems for incompressible flow with a time-splitting method [13].

An interesting property of the DG solution space is that it supports a low-pass
filter in @ natural way, by separating the high-order and low-order polynomials in the
solution space, giving it great potential for a variational multi-scale method. Collis
[14] has discussed this as early as 2002. See Hughes et al. [15] for a comparison of
continuous and discontinuous solution spaces in this context. Variational multiscale
with DG is still an ongoing area of research (e.g., [16, 17]).

There are other applications for the natural support for scale separation. For ex-
ample, Atkins and Helenbrook [18] and Helenbrook and Atkins [19] have introduced
polynomial-based multigrid methods to DG discretizations in 2005. Separating the
polynomials can also be used for the coarse-grid projection in a dynamic Large Eddy
simulation [20].

Most authors recognize the arbitrarily high order of accuracy on unstructured
meshes as a major benefit of DG discretizations. Several papers have applied the
DG method to nontrivial geometries, such as airfoils. This geometric flexibility could
be valuable for some industrial applications (as discussed in, e.g., [21]). It also
provides support for adaptivity (e.g., [22]). Furthermore, the unstructured nature of
DG methods has been used for arbitrary space-time domains and moving boundary
problems (e.g., [23-26]).

The most important numerical characteristic of any discretization is perhaps how
well it handles unresolved flows. Turbulent flow simulations are rarely fully resolved,
and that is particularly true for large eddy simulations (LES), where it is standard
practice to rely on a moderate amount of numerical dissipation. This is likely to
increase in importance, as more practical flows are starting to fall within the range
of applications of LES.

There are indications that the DG method handles unresolved flows well. One
reason is that the weak form in a DG method can be written as a local conservation
law for each element in the mesh, much like in finite volume methods. This offers
stability for badly resolved flows, despite the high order of accuracy. Another reason
is the frequency spectrum of the numerical dissipation, which many authors have
studied recently (e.g., [27]). High-order DG discretizations acts as a low-pass filter.
Moura et al. [28] have argued that this makes them particularly suitable for implicit
large eddy simulations.

More recently, there has been much attention to how the computational struc-
ture of DG discretizations can be implemented efficiently on modern hardware archi-
tectures. The DG method results in a block matrix, wherein the blocks are coupled
with a compact stencil. Chapelier et al. [17] have claimed that this is beneficial for
MPI parallelization. The block structure also lends itself to acceleration with GPUs
(e.g., [29]). As mentioned by Kronbichler et al. [30], ‘the most common obstacle to
high-order methods is a lack of competitive implementations in generic numerical
software packages, which has limited their application mostly to specialized codes
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targeting’. This makes it difficult to compare the efficacy of DG methods to the
more traditional finite volume methods for industrial flow problems.

1.3. Thesis Overview
The rest of the thesis is structured as follows.

e Chapter 2 first defines the basis functions, and then derives discrete bilinear
and linear operators (a and b in Eq. 1.8) from the governing equations and
the boundary conditions.

e Chapter 3 treats the temporal discretization, which is based on a pressure
correction method.

o Chapter 4 discusses several issues with the temporal discretization of variable-
density flows.

o Chapter 5 contains simulations of turbulent plane channel flow, some of which
were performed with an LES model.

There is little relation between the chapters, and each can be read independently.
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Spatial Discretization with a

Discontinuous Galerkin
Method

2.1. Introduction

This chapter details the spatial discretization, which is based on the discontinuous
Galerkin (DG) finite element method. To simplify the discussion, we consider the
stationary transport equations

V-m=0, (2.1a)
V-um)=V-71—Vp+F, (2.1b)
V- (m h)=V-<£Vh)+Q , (2.1¢)

p

and postpone including the time variable to chapters 3 and 4. The temporal dis-
cretization that is discussed there does not depend on the spatial discretization, and
understanding this chapter is not essential to understanding the rest of the thesis.

2.1.1. Overview of DG discretizations

The discontinuous Galerkin method can be thought of as a high-order finite volume
method, replacing the constant solution within an element with an arbitrarily rich
solution space that is defined everywhere on the interior of the element. The result-
ing numerical solution is discontinuous at the element boundaries. Finite volume
and discontinuous Galerkin methods have in common that they discretize the weak
form, rather than the original partial differential equation. As a result, numerical

Parts of this chapter have been published in [1].
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fluxes that were developed for one-dimensional finite volume schemes carry over
naturally to the DG method, making it particularly suitable for hyperbolic systems
(see, e.g., the review [2], and a unified analysis of finite volume and DG discretiza-
tions in [3]).

DG methods for the diffusion operator have matured more recently. The dif-
fusion equation has an ‘instant smoothing’ property, meaning that it has a differ-
entiable solution everywhere in the domain, even when there are discontinuities
in the initial condition, the boundary conditions, the forcing term, or the diffusion
parameter. Unsurprisingly, a discontinuous solution space is not the most natural
choice for these problems. Nevertheless, several DG approaches have emerged.
We mention two of them here. See the standard reference [4] for a clear and
thorough analysis.

The first approach is to split the Laplace operator into two equations with first-
order derivatives, resulting in two discretizations, which can then be merged. This
so-called ‘local DG’ (LDG) method is straightforward, but it leads to a large stencil,
where each element is coupled to the neighbors of its neighbors.

We avoid this by using another approach, namely the symmetric interior penalty
(SIP) method. Interior penalty methods have a local stencil, where each element is
only coupled to it direct neighbors. One could take the following heuristic viewpoint
of this method. Think of each element as a separate domain in which a spectral
method is used to solve the temperature diffusion equation. The elements are
coupled by providing each other’s boundary conditions, of which we need two at
each interior face: one for each neighbor. One of these boundary conditions is
natural to a finite element framework: the heat flux must be the same at both
sides of the face. The other boundary condition is that the temperature must be
continuous, but enforcing this strongly would break the discontinuous nature of the
solution space. Therefore continuity is enforced weakly by penalizing the jumps of
the solution at the faces.

This gives rise to a user-defined penalty parameter that must be ‘large enough’
in order for the discrete bilinear form to be coercive, which is a sufficient condition
for stability. This has been seen as a disadvantage, but several authors (e.g., [5,
6]) have found useful estimates, and this has been extended to various types of
elements and unstructured meshes [7].

2.1.2. Construction of the Solution Space

To construct the finite element solution space, the domain Q with outward normal n
is meshed into a set of hon-overlapping elements 7. The boundaries of an element
are called faces. Internal faces each have two neighbors; boundary faces have only
one.

We adopt the following notation from di Pietro and Ern [8]. The set of internal
faces is denoted by Fi. The set of faces that lie on the Dirichlet (resp. Neumann)
boundary of the domain are denoted by FP (resp. FN). Sets of multiple types of
faces are sometimes abbreviated with the obvious notation F>1 = FP U Fi. The
set of faces of an element T € T is F.. Similarly, T is the set of neighbors of face
F. Each internal face F has a normal vector nf that points in an arbitrary but fixed
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direction. On boundary faces, nf coincides with the outward normal of Q.

The solution space is spanned by the basis functions, each of which has support
on one element, meaning that it is zero elsewhere. The numerical solution is piece-
wise continuous: it is continuous within each element, but discontinuous across
the faces. These discontinuities are described by the jump and average operators,
which are defined on internal faces as

[x] =xt—x~ and {x}:= % (x~+xt), (2.2)

where
xt(reF):= lim x(r Fenh) (2.3)
€

indicate the values at the two sides. On vectors they act element-wise. On boundary
elements, both the jump and the average are defined as the internal numerical value
(i.e., the ‘trace’). The reason for this convention at the boundary is that it allows
for a concise notation of the element-wise application of the divergence theorem:
for an arbitrary piecewise continuous vector v,
F
Z fF [vl-n", (2.4)

oo f v
rer T rer 70T FeFDN

where n7 is the outward normal of element T.

Modal vs. Nodal Basis Functions

Though arbitrary types of basis functions are theoretically possible, discontinuous
Galerkin methods almost always use polynomials. An exception is wall function
enrichment, in which the solution space of wall-bounded elements is enriched with
functions that contain some physically motivated, a priori information on the flow
near the wall flow (e.g., [9, 10]). The polynomials can be either modal or nodal.

Nodal functions are defined through nodes, which are coordinates such that the
ith basis function equals §; ; on the j™ node, that is, the function is nonzero on
exactly one of the nodes. This has a computational advantage when evaluating the
integrals in the discrete weak forms: the nodes can be placed on the quadrature
points, making the numerical quadrature a sparse sum. Many recent DG implemen-
tations use this approach to speed up the matrix assembly. The book by Hesthaven
and Warburton [11] is a good introduction to this topic, and to the DG method in
general.

Nodal functions are often defined such that they span a tensor product of one-
dimensional polynomial spaces. For example, a second-order polynomial approx-
imation on a two-dimensional element would contain all functions in {1,x,x2} X
{1, y,yz} = {1,y,y2, X, Xy, xy2, xz,xzy,xzyz}. In this case a polynomial order P
actually means that all polynomials of order less than or equal to P lie in the so-
lution space, but it also contains some higher-order functions. There are (P + 1)d
basis functions in each d-dimensional element. Note that the basis depends on the
orientation of the coordinate axes.
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We use a modal basis, in which the basis functions are constructed such that they
are hierarchical and orthogonal in the L2-norm. This is just an implementation issue;
all equations in this thesis are valid for non-orthogonal bases. The solution space
within each element is simply spanned by all polynomials up to an order . There
are (;;d = (P + d)!/(d! P!) linearly independent polynomials in a d-dimensional
element. In this chapter the polynomial order is the same on all elements, though
this is not a requirement of the numerical method. The order of the polynomials
for the unknown X is denoted by 7.

2.2. Discrete Continuity Equation

The DG bilinear form for the divergence operator can be found in many previous
works, including [12], [13, p. 92], and [8, pp. 250-252], and is given by

awp=-) [q@ve Y [@mn, 25)

TET FeFDi

so that a consistent discrete weak form of the continuity equation with dp/dt = 0
(Eq. 2.1a)is

Find p € V},, such that, for all q €V,

—a®(m,q) = —J gmP-n,
aqab

(2.6)

where V}, is the solution space of the pressure, and m is the numerical (discontinu-
ous) mass flux.

The weak form of the continuity equation can only be stable if the divergence
operator is surjective. This means that, for every g in the pressure space, there
exists a v in the velocity (or mass flux) space, such that g is the divergence of v
(and satisfying a constraint on the norm of v; see [8, pp. 246-252] for a precise
analysis). Surjectivity can be shown to be equivalent to an inf-sup condition on the
bilinear form of the divergence operator.

The continuous divergence operator is surjective, but the discrete divergence
operator adV is not for equal-order discretizations of the pressure and the mass
flux (i.e., P, = P,). This makes intuitive sense, since the divergence of the mass
flux would lie in a lower-order polynomial space than the pressure. A solution is
to set B, > P,, in which case inf-sup stability has been proven [14]. The lack
of inf-sup stability is a general aspect of equal-order finite element methods for
incompressible flows. See, for example, John [15] for an extensive discussion in
the context of continuous finite elements.

This is unfortunate, because equal-order methods have often been found more
efficient than mixed-order methods, and therefore methods have been devised to
stabilize the pressure for equal-order DG discretizations. Cockburn et al. [16] as-
sumed a homogeneous kinematic viscosity and added a pressure stabilization term,
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so that Eq. 2.6 becomes

Find p € V,, such that, for all q € V,,

) 2.7
_ ad1V(m’q) + astab(p’ q) [ LQD q mD ‘n, ( )

where
ast®h(p,q) = Z fF ¢F Ipl 4l (2.8)

FeFt

for equal-order discretizations, and a2 (p, q) = 0 for mixed-order discretizations.
The penalty parameter for the pressure discontinuities is ¢ = y; [|Fll,;, /v, where
II-Iley, is the Lebesgue measure (which is the length, area, or volume in 1, 2, or 3
dimensions). We adjust the above penalty term to a variable viscosity in the obvious
way: by taking the pointwise maximum value of {¥ on both sides of the face, that
is,

TeTR

1
¥ =¥ IFll;ep max [;] . (2.9)
T

We set y, = 1 without investigating other values. We offer no proof for the validity
of this handling of the variable viscosity, but extensive tests in this thesis (especially
those with manufactured solutions in sections 3.3.2 and 4.5.1) will show that the
discretization is stable.

Another approach to stabilizing equal-order DG methods was taken by Botti
and Di Pietro [17], who used continuous finite elements for the pressure, simply
disposing of the pressure discontinuities altogether. This seems logical, since the
transport equations for an incompressible flow imply a Poisson equation for the pres-
sure, and the continuous Galerkin (CG) method is the most effective discretization
for purely diffusive problems, whereas the DG method mostly thrives for hyperbolic
problems. (Though it has been shown that DG and CG methods are asymptotically
equally efficient in the limit of (very) high polynomial orders of approximation [18].)
A possible disadvantage would be the reduced mesh generality compared to a pure
DG discretization. We have not pursued this approach, partly because it would be
demanding to implement.

Krank et al. [19] have instead focused on the momentum equation to stabilize
equal-order DG discretizations. They suppressed the local violation of the continu-
ity equation by modifying the discrete Navier-Stokes equation with element-wise
penalty terms for V - u within an element, and for the jump of n - m across the
faces. This assumes a divergence-free velocity field, which is generally not valid for
low-Mach number flow. We will use this approach in chapter 5.

These ideas for pressure stabilization can be compared to the artificial compress-
ibility method, in which the continuity equation is perturbed with a compressibility
term (1/c?)dp/0t for some parameter ¢ > 0. The numerical fluxes in the DG weak
form are then obtained by solving a Riemann problem for the discontinuities at a
face. This also gives rise to penalty terms for the jump of the pressure (as in Eq.
2.8), and the jump of n - m across a face (ref., e.g, [20]).
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2.3. Discrete Momentum Equation
The discrete weak form of the stationary momentum equation (Eq. 2.1b) is

Find m € V,,,, such that, for all v € V,,,

a®™ (u, my, i) + @'5°(m, v) = 1% (u,mR, v) + 1V5°(v) — aV(v,p) + f F-v,
Q

(2.10)
where 1, is the solution space of the mass flux, and p is the numerical (discontinu-
ous) pressure. Note that the divergence operator a%"¥ doubles as a gradient oper-
ator. Integrating Eq. 2.5 by parts, and using the fact that [qv] = [q] {v} + {q} [V]
on an interior face, gives

adiv(v.q)=ZJ;V'Vq— Z fF[[q]]{V}'nF, (2.11)

TeT FeFNi

demonstrating consistency, since the last term is zero when the continuous pressure
is substituted for q.

The discretization of the convection a®°™" and [¢°®V will be given in section 2.5.
Solving for the mass flux m instead of the velocity u complicates the treatment of
the viscous term, which is linear in Vu, not Vm. Section 2.3.1 details how this can
be handled with a DG method.

2.3.1. Discretization of the Viscous Stress
To derive a discretization for the viscous term, rewrite the viscous stress in terms
of the mass flux as T = LV'*¢(m), where

. U 2
L (m) = ’ (Bij +Bj; — gBkk5ij> / (2.12)

is a linear operator, with B;; = pV,u; = V;m; — d;m;, and
1
d:= B Vp . (2.13)

We use a generalization of the symmetric interior penalty (SIP) method, given by
the discrete bilinear operator

@rwn = Y [ Ew e Y | Wl

TET FEFLUFD (2.14)
_ z J- (HV]] . {LViSC(w)} + [[W]] . {LViSC(v)}) . nF
FeFiuFP

and the linear operator

[vise(y) = Z f (T]F mP - v —mP - [Visc(y) . nF) + LQN N.v. (2.15)

F
FeFDb
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This reduces to the regular SIP method when substituting (u/p)V,;w; for L‘{}Sc(w).
Compared to other interior penalty methods and the local DG method, the advan-
tages of the SIP method are the optimal convergence rate for all polynomial orders,
its adjoint consistency, and its compact stencil [21].

If the viscosity is constant and the flow is incompressible (i.e., V-u = 0), then V-7
can be simplified to V- (uVu) on the continuous level. But note that using a regular
SIP method for V - (uVu) would always be different from the above discretization
of V- 7. As one would expect, our numerical tests (not shown in this thesis) show
a negligible numerical difference between these discretizations when u is constant
and V-u=0.

The above discretization of the viscous term can be compared to what is usually
done for compressible flows, where the system of equations 1.1 is solved for a full
state vector U := [p, m, ph]. In that case all elliptic terms in Egs. 1.1 can be written
as V- (G(U)VU)), where G(U) is a homogeneity tensor that does not contain any
gradients of the unknowns. (See, e.g., [21, 22].) This tensor is then kept fixed
during an iteration step, while VU can be treated in a time-implicit manner. If the
density is constant, then that approach is equivalent to the above discretization.

If the density is variable (as it will be in later chapters), then using a homogeneity
tensor is subtly different from the current method in terms of which variables get
treated implicitly. Three of the six terms in Eq. 2.12 contain d m, which is a product
of m, 1/p, and Vp. When using a homogeneity tensor, m and (1/p) are frozen
within an iteration step, and Vp is solved for implicitly. In the current discretization,
(1/p) and Vp are frozen, and m is treated implicitly.

Our approach also differs from that of Klein et al. [23], in that we treat all terms
in the viscous stress (Eq. 1.2) in a time-implicit manner, whereas they only do this
for the first term (uV;u;). In our treatment the velocity components are coupled.
We have no a priori estimate for the difference in magnitude between the effects of
the first term (uV;u;) and its transpose (uV;u;) on the viscous force V -z, especially
when the viscosity varies strongly in space. Note the gradients in the effective
viscosity will increase greatly when a large eddy simulation (LES) model is included
in chapter 5.

Following Hillewaert [7, p. 30], we set the penalty parameter to

1F lliep
1T Ml1en

nf = TTT}E%‘.i( (CT card(Fr) ) I%le%i( Klr) , (2.16)

where K = u/p is the diffusion parameter, and card(F;) is the number of faces
of element T. The factor C; depends on the type of elements in the mesh: for a
polynomial order P, C; = (P + 1)? for quadrilaterals and hexahedra, C; = (P +
1)(P + 2)/2 on triangles, and C; = (P + 1)(P + 3)/3 for tetrahedra.

We compute the penalty parameter in a pointwise manner, even though Hille-
waert took the maximum value of the above expression on the face in his stability
analysis. Our experience suggests no difference in the stability, and taking a local,
pointwise (as opposed to face-averaged) numerical flux seems more in the spirit of
the DG method, which can have an arbitrarily rich structure within an element. We
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will encounter a similar situation for the stabilization term for the local Lax-Friedrichs
flux in section 2.5.1.

Paradoxically Eq. 2.16 depends on the shape, size, and number of faces of the
neighbors, giving the impression that it is still not local to a particular point on a
face, even though we evaluate it in a pointwise manner. However, the norms of a
polynomial on a face and on an element are related by well-known trace inequalities,
which underlie the above expression for the penalty parameter.

2.4. Discrete Enthalpy Equation

We solve for the specific enthalpy h from the enthalpy transport equation in con-
servative form. Given a solution space V;, for the enthalpy, the discrete weak form
of the stationary enthalpy equation 2.1c is

Find h € V;,, such that, for all v € V,,

2.17
aconV(m’ h, 17) + aSIP(h, U) — lconV(m’ hD,U) + lSIP(V) +f Q v, ( )
Q

where a5 and [P are standard SIP bilinear and linear forms to discretize the
Fourier heat flux. The SIP penalty parameter is as in Eq. 2.16, with a diffusion
coefficient K = k/c,. Note that the convective discretization is the same as for the
mass flux, except that the convecting field is m, rather than u = (1/p)m. (That is,
b = m in Egs. 2.20-2.21.) This is convenient, because we also solve for m.

2.5. Discretization of the Convection

To derive an expression for the convective bilinear and linear forms (a°™¥ and [°°™Y
in Egs. 2.10 and 2.17), consider the time-independent, purely convective problem
with a numerical (discontinuous) advecting field b, and an unknown generic scalar
¢:

V-(bop)=0. (2.18)
Though this equation is linear (because b is given), its analysis is also relevant to
the nonlinear convection in the momentum equation, which must be linearized with
some estimate for the convecting velocity field.

At 90P we have the Dirichlet values bP - n and ¢P, whereas there may be
no numerical inflow (i.e., b - n < 0) at the Neumann boundary. Note that ¢P is
only defined where bP - n < 0. This is an important point to which we will return
later: the inflow region is defined by the known value bP - n, not by the sign of the
numerical value b - n.

The discrete weak form of Eq. 2.18 is

Find ¢ € Vy, such that, for all v € Vy,

aconV(b’ ¢’ U) — lconV(b‘ ¢D’ U) , (219)

where V, is the solution space of ¢. The linear term is

1™ (b, ¢P,v) = - -LQD v min (0,bP - n) ¢P . (2.20)
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The bilinear term has the general form

acon"(b,w,v)=—2f wb-Vv+ Z J- [v] HF (b,w)
T Jr

TET FeFi (2.21)
+J vwb-n+f v wmax (0,bP - n) .
oON aab

Here w is a scalar, v is the test function, b is the convective field, and HF is the
numerical flux function on a face F, which will be defined later.

It is well known that imposing a Dirichlet boundary condition for the velocity at
an outlet results in an ill-posed problem, and that it is numerically unstable for a
convection-dominated flow, and therefore we would normally have max(0,n-bP) =
0 on 9QP. Here we nevertheless include this term in a®°™v, because we will use it
in the Taylor-Green vortex in section 3.3.1, as is standard practice for that laminar
benchmark case (e.g., [12, 24]).

In practice one may know the value ¢P at a Dirichlet outlet (n-b® > 0), such as
for the Taylor-Green vortex manufactured solution in section 3.3.1, but we nonethe-
less use the internal value w in the last term in Eq. 2.21, so as not to overconstrain
the problem. This theoretical point has little practical value, because Dirichlet out-
lets are only viable for academic problems anyway.

If (the normal component of) b is continuous at each face, then ¢ can be up-
winded in an unambiguous manner, and there is only one correct discretization
(see, e.g., [21, p. 33]). In practice b is a velocity (or a mass flux) that was ob-
tained with a DG method, and therefore the flux is discontinuous at each face, and
there are multiple possible discretizations.

2.5.1. Choice of the Numerical Flux

The convective discretization is closed by defining a numerical flux function H
in Eq. 2.21 for an internal face F. It only depends on the basis function (w)
and the normal component of the flow (b - n) on both sides of the face; there
is no interpolation between the elements. The numerical flux can therefore be
borrowed from finite volume methods for one-dimensional hyperbolic conservation
laws. There are many monographs on this subject, including the standard works by
LeVeque [25, 26]. Toro [27] offers a particularly clear overview with an emphasis
on the Euler equations.

The most principled numerical flux can be obtained by solving the associated Rie-
mann problem at the discontinuity exactly, which is known as Godunov’s method.
See, for example, [8, p. 105] and especially [3] for notes in a DG context. Go-
dunov’s method is known to lead to the least amount of numerical dissipation
[2, 28]. Unfortunately the Riemann problem typically takes up a substantial part of
the total computation time. It is therefore more common to use an approximation
for the numerical flux.

We use the local Lax-Friedrichs flux, which is cheap, but also known to be fairly
dissipative. Among the many other numerical fluxes, we mention the following.
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¢ The Roe numerical flux, which has been compared favorably to the local Lax-
Friedrichs flux by Winters et al. [29]. They focused on the interplay between
the numerical flux and their under-integrated nodal DG method that required
anti-aliasing, and so it is hard to say how well their results would translate to
our modal DG method with exact integration in the weak forms.

¢ The Vijayasundaram numerical flux. See, for example, the seminal paper [30]
for a general analysis, and [31] for a DG application. In a DG method this
numerical flux can be shown to be consistent with the numerical flux in the
continuity equation.

The Vijayasundaram flux has also been implemented in DGFlows; our experience
suggests no significant difference with respect to the local Lax-Friedrichs flux.
The local Lax-Friedrichs flux is given by

HF (b,w) = % [w] af + {wb}-nF, (2.22)

where af is a function of the normal component of the convecting field (i.e., b - n).
For a general scalar hyperbolic system of the form V- f(¢) = 0 with a given vector-
valued function f, the parameter af is the maximum value of |f'(¢) - nf| on either
side of the face. If ¢ is an advected scalar, such as for the enthalpy in Eq. 2.17,
then f(w) = w b, and thus |f'(¢) - nf| = |b - nf]|.

The situation is different for the nonlinear convection in the momentum equation
2.10, where ¢ is itself equal to the convecting field b (up to a factor of the density).
Inthat case, = m, b = u = (1/p)m, and Eq. 2.18 becomes a vector equation
of the form V- F (m) = 0 with F;(w) = w;w;/p. Now af is the maximum of the
spectral radii of the Jacobi matrix 8/d¢; (Fix(¢)nk) = 9/0m; (m;(m-nF))/p =
(u-nF)&;; +nfu; on either side of the face. Its eigenvectors are either parallel to
n (with eigenvalue 2(u - nf)), or perpendicular to u (with eigenvalue (u-nf)). This
can be summarized as

af =» max|b-nf| (2.23)

TETR T
with » = 1 for advected scalars (such as the enthalpy in Eq. 2.17), and » = 2 for
the nonlinear convection in the momentum equation 2.10 (see, e.g., [2, 12]).

Note that we evaluate «f in a pointwise manner in the integral in Eq. 2.21,
which is the only right choice if ¢ is an advected scalar. Averaging af over the
face would be inconsistent, as can be shown by considering the special case of
a continuous convecting field b (i.e., [b] = 0 on internal faces, and b = bP on
20P). With a test function that is v = 1 on an element T and v = 0 elsewhere, the
discretization Eq. 2.19 can be written as

0= f W(i,-n)+j whP (b - )
aTnaaN aT N aaPb

2.24
+ Z f%((W+—w_)ap+(w++w_)i)'nT) , (2.24)
FEFr N Fi F
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where n” is the outward normal of element T, w™ is the value on T, w™ is the value
on its neighbor, and
P e ¢P, forn-bP <o,

2.2
w, forn-bP >0 (2:25)

is the upstream value at a Dirichlet boundary. Since b is continuous, this must
reduce to a pure upwind flux, so the last integrand must equal (b-n”)w* for
+b - n” > 0. This only holds if " = |b - n”| everywhere on F.}

The above argument breaks down for the nonlinear convection term in the mo-
mentum equation 2.10, because then ¢ and b are equivalent, and so a continuous b
would imply a continuous ¢. Nevertheless our experience suggests that evaluating
af in a pointwise manner sometimes results in noticeably lower errors, especially
for high-order numerical solutions, whereas the stability does not seem negatively
impacted. As mentioned in section 2.3.1, averaging a penalty parameter over a
face or an element runs counter to our intuitive understanding of a high-order DG
method.

This opinion does not appear universally shared in the literature. Cockburn and
Shu [2] have suggested using to the two element averages on the neighbors to
compute af for the nonlinear convection term. Shahbazi et al. [12] was perhaps
the first to put this into practice, and others have followed (e.g., [32]). More re-
cently, de la Llave Plata et al. [33] have evaluated af in a pointwise manner with
underresolved DG large eddy simulations, and Tavelli and Dumbser [34] have done
the same for a space-time DG method, where averaging over a space-time element
would presumably have been more involved. None of the above authors have given
explicit reasons for their choices, and we are not aware of a systematic study on
averaging af or not.

2.5.2. Solution Spaces for the Enthalpy and the Pressure
If a scalar quantity ¢ is advected with a velocity field that was obtained with a
discontinuous Galerkin method, then the solution space of the scalar must be a
subset of the solution space of the pressure, that is, 7, < P,. Discretizations with
Py > P, are inconsistent, and therefore often unstable, because the continuity
equation is weighed by the pressure basis functions, so that the numerical velocity
only satisfies the incompressibility constraint in a weak sense up to order 7,. This
means that the convective discretization can only be consistent up to an order 7,
[1, 35].

To make this more precise, consider the discrete continuity equation in Eq. 2.7
with the divergence operator in the form of Eq. 2.5:

_astab(p‘ QO+ Z J- m-Vq = Z f lq] {m}-nF+f q m'n+f q mP-n , (2.26)
TET, T FeFi F aaN oaP

for a test function g that lies in the pressure solution space. This can be compared
to the advection discretization in Eq. 2.19 by substituting the continuous solution

1This is also another way of showing that » = 1 for a scalar ¢.
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¢ < ¢, which satisfies [¢] = 0 on internal faces and ¢ = ¢ on 9QP. Every viable
numerical flux must reduce to the central flux for a continuous solution, that is,
HF (b,$) =  {b} - n* (see, e.g., [21]), so that Egs. 2.19-2.21 become

ZL&b-szFEZ?iJ;(ﬁ[[v]]{b}-nF+J;an3vb-n+LQD¢DvbD-n. (2.27)

TET

This can clearly only be consistent for a test function v that is part of the test
space of the continuity equation. In the special case of a constant solution ¢, the
convective term should vanish for all v, but a®™(m, $,v) = ¢ a¥V(m,v), which
only vanishes if the test function v lies in the pressure solution space, that is, if
Py < Pp.

The requirement 7, < P, was not satisfied in some previous literature on mixed-
order DG schemes. For example, Klein et al. [23] chose the same solution space
for the temperature as for the components of the velocity field. They probably
found good results because their tests were done at a low Prandtl number of 0.7,
whereas the problem with the solution spaces manifests itself when the convective
term dominates.

In theory the discretization of the convection of a scalar is consistent as long as
its solution space is a subset of the solution space of the pressure, but in practice the
enthalpy has the same solution space as the pressure, because a scalar transport
equation is much cheaper to solve than the momentum and pressure equations,
so there is little reason not to obtain the highest available spatial accuracy for the
enthalpy. In later chapters that address low-Mach number flow, the density will be
a function of the temperature (and thus, the enthalpy). Then the choice of the en-
thalpy solution space is no longer free: it must be the same as that of the pressure,
because the continuity equation and the enthalpy equation become coupled due to
the temperature-dependent density.

2.5.3. Proper Treatment of Dirichlet Boundary Conditions
Regardless of the numerical flux, setting v = 1 in the discretization in Egs. 2.19-
2.21 reveals the global conservation property

Ozf wb-n+f wUP bP . n (2.28)
QN aqb

with w? as in Eq. 2.25, as opposed to [,,w b -n = 0, which one may have
guessed from the governing equation 2.18. This shows the effect of our treatment
of the Dirichlet boundary condition: the total inflow is determined by the known
boundary conditions (i.e., (¢>b)D - n), rather than the internal value (i.e.,, ¢ b - n),
which generally contains a numerical error.

Another way of looking at this is to rewrite Eq. 2.27 for the continuous solution

¢ as
Z'Léb.Vv— z L(ﬁﬂvﬂ{b}.nF=LQD¢DU(bD_b)_n_ (2.29)

TET FEFIND



2.5. Discretization of the Convection 21

The right-hand side acts as a source to counterbalance the deviation of the numer-
ical inflow from the imposed inflow at the boundary. Note that the inflow term in
the discrete continuity equation 2.7 must be consistent with the treatment of the
Dirichlet boundary in the convection discretization. Otherwise Egs. 2.26 and 2.27
in the previous section would not have been consistent in the special case of a
constant continuous solution ¢.

Egs. 2.20-2.21 present the only correct treatment of the Dirichlet boundary,
though it is far from standard in recent literature. For example, Piatkowski et al.
[31] used a Vijayasundaram numerical flux H* (b,w) = w*max(0,{b}-nf) +
w~ min (0, {b} - n¥') on internal faces, and extended this in a seemingly logical way
to Dirichlet faces by replacing w~ with ¢”, so that the contribution of the Dirichlet
boundary became

f v(wmax (0,b-n) + $? min (0,b - n)) . (2.30)
aab

This is subtly wrong, because the numerical value b - n may have any sign, though
a value for ¢® should not be required at outlets and walls (where b® - n = 0).

A similar objection can be made to the boundary treatment in Shahbazi et al.
[12], who used a local Lax-Friedrichs flux as in Eq. 2.22, and substituted {w b} «—

(cpb + (¢ b)D) /2 and [w] <« w — ¢P on aQP, giving a Dirichlet boundary contri-
bution

f %v ((Wb + ((j)b)D) ‘n+(w—¢P) aF) . (2.31)
aqab

They based af on the average in the boundary element (b2"8) and the Dirichlet
value bP. For walls, defined by bP - n = 0, the above term becomes

f v(lw b-n+(w—oP) |bavg-n|> . (2.32)
aqP  \2

They used this discretization for the nonlinear convective term, so that b = u and
¢ = u; for some direction i. Clearly this requires a Dirichlet value for all directions
of the velocity, while the non-normal components of u are not physically relevant
to the convection at a wall.

Many other authors have extended their numerical fluxes to the Dirichlet bound-
ary in different but similar ways, with similar problems. Examples include [19,
33, 36] for the local Lax-Friedrichs flux, [37] for the Lesaint-Raviar numerical flux,
and [38, 39] for Riemann-solved artificial compressibility flux.” These papers have
treated Dirichlet faces like they are internal faces, except with the neighbor values
replaced by the Dirichlet values. This is motivated by an understandable desire to
impose the Dirichlet boundary condition weakly, but note that the present treat-
ment is also weak, because we only use the moments [,,» v min (0,n - bP) ¢P for
all test functions v, not the inflow value at every point on 9QP. The correct Egs.

Zthough in that last case it is possible that the boundary treatment is at least consistent between the
continuity and momentum equations
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2.20-2.21 can also be found in some previous works, such as [13, pp. 27-28] and
[401.

Perhaps the inaccuracies described above have little impact on the numerical
solution in practical calculations, because most convected quantities are also dif-
fused, which often weakly enforces the Dirichlet boundary condition for ¢ at 9QP.
Superfluous convective boundary terms, such as Eqgs. 2.30 and 2.31, would then
effectively change the penalty parameter in the SIP method at Dirichlet boundaries.

2.6. Implementation

All flow simulations are performed with an in-house solver DGFlows. Its distin-
guishing feature is that it can be coupled with another in-house solver for particle
transport, called Phantom-Sy. This has been used to solve the coupled flow and
neutron transport equations for modeling a theoretical nuclear reactor that is based
on a liquid fuel [41].

As mentioned in section 2.1.2, the basis functions are modal and hierarchical.
As is standard in finite element implementations, they are defined on a ‘local’ ref-
erence element, which is mapped to the ‘global’, physical elements in the mesh.
Sometimes this local-global mapping is affine, such as when the global elements
are triangles, tetrahedrons, rectangles, or rectangular parallelepipeds. In that case
the basis functions can be orthonormalized on the local element, which results in an
orthogonal basis on the global elements, so that the mass matrix is diagonal. This
can be a minor performance gain, especially if one were to use a numerical method
that requires frequent projections of the numerical solution onto lower-order poly-
nomial spaces, such as a p-multigrid solver, or a dynamic large eddy simulation.

All integrals are evaluated with a quadrature set that is sufficiently accurate to
negate the polynomial aliasing effect that has plagued other DG solvers. (See, e.g.,
[42].) This is feasible because there are only (P + d)!/(d! P!) degrees of freedom
in a d-dimensional element with a polynomial order 7. In the limit of large P in
three dimensions, this is d! = 6 times less than the (P + 1)d degrees of freedom in
some nodal bases. The abscissa and the weights are taken from Solin et al. [43].
We store the values and derivatives of the basis functions on the quadrature set
for a fast evaluation of integrals and numerical solutions. All results in this thesis
remained unchanged when the accuracy of the quadrature was increased.

All meshes were generated with the open-source software tool Gmsh [44].

The linear systems are solved with the MPI-based software library PETSc [45,
46]. We use a conjugate gradient (CG) method for the pressure equation, and a
GMRES method for the enthalpy and momentum equations, which are asymmetric.

The computations are parallelized by partitioning the mesh with the software
package METIS [47]. Each core is assigned one partition. The parallel matrix
preconditioner is a standard block Jacobi method. We use PETSc's implementa-
tions of the pipelined Krylov methods, which require fewer inner products (meaning
fewer global MPI reductions) at the cost of more serial computations (see [48] for
pipelined CG, and [49] for pipelined GMRES). This provided better performance on
multi-node computations.
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The preconditioner for the submatrix within a process depends on the specific
calculation. If the matrix remains constant for all time steps, then we use an incom-
plete LU (or Cholesky) decomposition with zero fill (i.e., ILU(0) or ICC(0)). These
can be reused every time that the system is solved. If the matrix is different for
each time step, then the incomplete decompositions are too expensive, and we
instead use a block Gauss-Seidel method, where the degrees of freedom within an
element are treated as one block.

The ordering of the elements within a core is random. It would likely be more
efficient to renumber them based on the flow direction, so that a block Gauss-Seidel
method for the transport equations would correspond to the upwind direction. Fid-
kowski et al. [50] and Diosady and Darmofal [51] have shown significantly increased
performance by forming lines of maximum coupling between elements, and solving
a block-tridiagonal system along each line.

Another obvious improvement is based on the hierarchical high-order solution
space, which strongly suggests a p-multigrid method, based on Galerkin projection
into lower-order polynomial spaces. Multigrid methods can greatly reduce the com-
putational time for the pressure Poisson equation, which is often the most expensive
part of an incompressible flow solver. This idea has been tested successfully for DG
discretizations as early as 2005 [52, 53], and has since been applied to convection-
advection problems by several other groups (e.g., [50, 54], [7, pp. 63—-73]).

More recently, the high algorithmic intensity and minimal coupling between el-
ements in a DG discretization have been exploited for efficient implementations on
graphical processing units (GPUs). Various groups have demonstrated huge poten-
tial gains (e.g., [55-57]).

Unfortunately these ideas have not made it into generic numerical software
packages, and we have made no attempt to implement them into DGFLows, which
is purely a research code. Linear solvers are not studied in this thesis.

2.7. Test Case: A Heated Backward-facing Step

Backward-facing steps have a long history as benchmark cases for CFD methods.
We simulate a two-dimensional case with an expansion ratio of 2, combined with
scalar transport. Fig. 2.1 shows the domain. The inlet velocity (at x = —L,) is
given by u, = 0 and u; = u(l'”) = —6u(y — S)(y — 25)/5?, so that the average
inlet velocity is fyzzss u&'”) /S = u. The temperature is T, at the inlet and T; along the
bottom wall; the other walls are isolated.

The Reynolds number can be defined in many ways; here

281
Re == T” . (2.33)

Some other literature uses the maximum velocity, or the height before the expan-
sion. Eq. 2.33 is used because 2S is the hydraulic diameter at the inlet, making
it consistent with the standard definition of the bulk Reynolds number for three-
dimensional channel flow and pipe flow, which we will also see in Chapter 5.
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Figure 2.1: Geometry of the backward-facing step (not to scale).

The quantities of interest are the dimensionless velocity and temperature gra-
dients along the bottom wall. Define the local Darcy friction factor

(bottom)
8 Tw 8v
o= P@2E - @)y n-Vu,, (2.34)

where t{°"™ = _, n . vy, is the wall shear stress along the bottom wall, and

(u/2) is the bulk velocity after the expansion. The local Nusselt number is

S

N =
b

n-vr. (2.35)

The domain should be long enough in order for the outlet not to influence the
flow near the expansion. The present results were obtained with L/S = 70. The
domain length before the expansion has little impact on the laminar solution; here
we let L, = S. The results did not change when we ran the same simulation with
L/S = 55.

Of course this does not mean that the flow is fully developed near the outlet. Far
from the expansion, the velocity and temperature approach the analytical solutions

i _saf (y=sY
x/lsr—rio =357 S ! (2.36)
111’1’1 T = T1 ’
x/S—00
giving
lim f = 24 v/S 96
im =24 — =—,

x/S—00 D 11/2 Re (237)
lim Nu=0,

x/S—
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Figure 2.2: Computational mesh for the backward-facing step near the expansion edge.

(For comparison, the Darcy friction factor for laminar flow in a circular channel [i.e.,
Hagen-Poiseuille flow] is f = 64/Re.) The results will show that f and Nu are
not close to these values near our outlet.

Fig. 2.2 shows the structured mesh. The mesh is refined near the expansion
edge. There are approximately 35k elements, with a second-order polynomial ap-
proximation for the mass flux, pressure, and enthalpy, resulting in approximately
210k degrees of freedom per unknown.

An accurate solution depends on a sufficiently fine mesh near the expansion
edge. The wall shear stress at the inlet is

(in) ui™ pu u?
mn

e S [ L L 2.38
Tw U ay S epSZ ’ ( )

y=s

which can be used to define a wall shear velocity of u, = /rgn)/p = (v/S)V3 Re,

and a dimensionless wall distance of y* := yu,/v = (y/S)V3 Re. The first element
at the wall is placed at y* = 1.0.

Fig. 2.3 shows the results for Re = 1400 and Pr = 0.7132. These conditions
were meant to reproduce one of the numerical test cases by Xie and Xi [58]°,
who performed an unsteady simulation with the initial condition u; = 0 for y < §,

3The fact that Pr = 0.7132 in their calculations was obtained from our private correspondence.
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Figure 2.3: Steady-state local Darcy friction factor fp (Eq. 2.34) and local Nusselt number Nu (Eq.
2.35) for the backward-facing step along the bottom wall. The cross (x) indicates the reattachment
length (where f = 0) that was reported by Barkley et al. [61].

u, = ul™ fory > S, u, = 0, and T = T,. They reported time-averaged results.
We performed the same time-dependent calculation (with the pressure correction
method that will be the topic of the next chapter), but we found that all transients
die out, and we reached a steady state. Furthermore, our results differ substantially
from Xie and Xi (not shown here). We nevertheless believe our results to be correct
for two reasons. First, several other previous studies have also found a steady
state in 2D at this Reynolds number (e.g., [59, 60]). Second, the location of our
reattachment length (i.e., the largest value of x for which f; = 0)isatx/S = 15.342,
which agrees with the value of x/S = 15.358 that can be inferred by interpolating
the data from Fig. 5 in Barkley et al. [61].

2.8. Discussion and Conclusion

The discrete convection in section 2.5 contains two corrections on previous litera-
ture that are essential to the consistency of the numerical method. First, the inflow
at a Dirichlet boundary does not depend on an internal numerical value (ref. section
2.5.3). This contradicts a majority of papers on the DG method that we have seen.
Second, the solution space of an advected quantity lies in the solution space of the
pressure (ref. section 2.5.2). These points guarantee that the advection discretiza-
tion is satisfied by the continuous advected quantity, even when the advecting field
contains a numerical error. Phrased differently, if the Dirichlet boundary is not
treated correctly, then the discretization of the full system of transport equations
may be consistent, but the transport equations in isolation are not.
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The numerical fluxes for the convection and diffusion discretizations are based
on the well-known local Lax-Friedrichs and interior penalty methods, but we differ
from the commonly accepted approach of averaging or maximizing the penalty pa-
rameters over a region, instead evaluating them in a pointwise manner. The merit
of this is somewhat subjective, though we have argued that pointwise flux defini-
tions are more in line with the local nature of the DG method. This is particularly
true for the penalty term in the local Lax-Friedrichs flux, which is inconsistent for
linear advection when af is averaged (ref. section 2.5.1, Eq. 2.24). Penalty terms
can have a significant impact on stability, the solution quality, and the stiffness of
the linear system. A numerical comparison between pointwise and averaged or
maximized penalty parameters could therefore be interesting.

The penalty parameter in Eq. 2.16 could be an overestimate of the minimum
value that achieves coercivity of the SIP method, because it was developed for a
nodal basis. For the same minimum polynomial order, our modal basis functions
have a substantially lower maximum polynomial order than the nodal basis functions
(see section 2.1.2). We did not investigate alternative expressions for the penalty
parameter.

The time-independent test case in section 2.7 shows good agreement with pre-
vious literature. It is also fairly simple. The following chapters will feature more
challenging transient simulations, which double as further verification and validation
of the spatial discretization that is described here.
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Pressure Correction

3.1. Introduction

This chapter treats the temporal discretization of the transport equations 1.1a-
1.1c with a constant density. The test cases at the end of this chapter use the
discontinuous Galerkin method that was described in chapter 2, which provides
additional confidence in the spatial discretization. This chapter can nevertheless be
read independently.

We assume that the boundary of O does not depend on t, so that the spatial
and temporal discretizations can be entirely uncoupled. The more general moving
boundary problem has previously been approached with a space-time discontinuous
Galerkin method [2—4]. Our independent variables lie in the space-time cylinder
(t,r) € (0,T) x Q, which suggests time stepping with a simple finite difference
method.

3.1.1. Fully Discrete Linear System

The temporal discretizations for the momentum and the enthalpy are based on stan-
dard backward-difference formulae (BDF). For the mass flux this is straightforward:
for a constant time step size 6t,

q

om vy, Yi  pei

i 6tm +Z&m , (3.1)
i=

where m" is the mass flux at time step n. The weights {y;}{, are listed in Table
3.1

If the density depends on the temperature, then the temporal discretization of
the enthalpy equation becomes more involved, as will be explained in great detail in

Parts of this chapter have been published in [1].
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Table 3.1: Coefficients for the backward difference formula of various orders.

Yo Vi Y2 Y3
BDF1 1 -1
BDF2 3/2 -2 172
BDF3 11/6 -3 3/2 -1/3

chapter 4. In this chapter p is simply constant, and so the finite difference scheme
for d(ph)/at is straightforward.
The fully discrete transport equations can be written as

—Dm" + Cp" = -r (3.2a)
%M m" =—-Nm" —D'p" +f (3.2b)
%T R'=—Fh" +q, (3.20)

where p, m, and h are the solution vectors, containing the coefficients of the basis
functions, and

e M is the mass matrix (i.e., the Gram matrix of the basis functions);

D corresponds to the divergence operator in Eq. 2.5;

C corresponds to the pressure stabilization in Eq. 2.8, which is zero for mixed-
order discretizations;

N contains the implicit terms of the convection and diffusion discretizations
of the momentum equation;

F contains the implicit terms of the convection and diffusion discretizations of
the enthalpy equation;

(vo/8t)T corresponds to the implicit part of the BDF scheme for the enthalpy,
that is, the coefficient of h™ in

qa
o(ph) _
at

Yi n-i
s PT (3.3)

i=0

For the constant-density flow in this chapter, T = pM. For the variable-density
flow in the next chapter, T depends on how (ph)™ is approximated (see section
4.3);

e r corresponds to the rhs of the discrete continuity equation (Eq. 2.7);

° f and q collect various explicit terms, including those from the temporal
discretization, and from the boundary conditions.
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The matrices M and D and the vector r do not depend on the unknowns (p, m, Q),

but the other terms depend on the fluid properties, and therefore on h. The most
important nonlinearity is due to N, which depends on the convective field (1/p)m.

The pressure-based linear system 3.2a—3.2b for the discrete continuity and mo-
mentum equations is very stiff, because the equations form a saddle point problem.
Therefore these equations are approximated with a time-splitting method, as ex-
plained in the following section.

We use a second-order BDF2 scheme (¢ = 2 in Egs. 3.1 and 3.3), thereby fol-
lowing previous DG literature (e.g., [5—7]). Discontinuous Galerkin methods for the
Navier-Stokes equations have traditionally been associated with high-order tempo-
ral accuracy, which can easily be achieved in density-based formulations that solve
a coupled system of transport equations. However, splitting methods have an in-
herent error of order 3/2 in the H'-norm [8], so that high-order BDF schemes have
no merit.

3.2. Pressure Correction Method

The pressure correction method is used to split the continuity and the momentum
equations, so that they can be solved in a segregated way, which is much cheaper
than a coupled solver. This technique has been thoroughly analyzed in the context of
many spatial discretizations. See, for example, Saleri and Veneziani [9] for analyses
based on LU-decompositions of system of transport equations, and the review by
Guermond et al. [8] for a comparison with the alternatives to pressure correction,
namely velocity correction and consistent splitting methods.

The pressure correction method for an equal-order discontinuous Galerkin dis-
cretization differs from the spatial discretizations in the above references, because
of the pressure stabilization term in the continuity equation 3.2a. This couples the
discrete continuity and momentum equations more tightly. This section summarizes
the time-splitting scheme with pressure stabilization.

The momentum equation is solved with a known vector p instead of the un-

known pressure p™ to obtain a predictor 1 for the mass flux:
Yo A Ta
EM-HV m=-Dp+f. (3.4)
These are then corrected to find the solutions at the new time step:
pt=p+6p, (3.5)
m"* =n+dém. (3.6)

Subtracting Eq. 3.4 from Eq. 3.2b gives ((y,/6t)M + N) §m = —D'6p. The idea

of the pressure correction method is that N §m is of a higher order in &t than the
other terms, and therefore it can be neglected, giving

ot
sm = —y—M‘lDTcSp . (3.7)
. e
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This approximation means that the momentum equation 3.2b is not exactly satis-
fied by the solution pair (p", m"), though it can be made to satisfy the continuity
equation 3.2a exactly. Left-multiply Eq. 3.7 by D and use Eq. 3.2a to eliminate
Dm", to find

ot
Cp™ +r—Din= —y—DM‘lDTSp , (3.8)
L o g
which can be rearranged to
LG Yo ) _Yo(_ A
(A + &C ép 5t ( r+ D1 CB) (3.9)
with
AYPG .= pM~1DT, (3.10)

In the seminal paper on this method, Chorin [10] simply had p = 0, but it was
shown later that the incremental approach with p = p™~1 is more accurate [11],and
that is what we use. It may be tempting to use a higher-order approximation of p™
for p, but this is only conditionally stable [8]. If the convection and the diffusion of
the momentum are treated in a time-explicit manner, then N = 0, and the pressure

correction method vyields an exact solution to Egs. 3.2a-3.2b, regardless of the
choice of p.

Splitting the momentum and continuity equations has created the need for ar-
tificial initial and boundary conditions for the pressure, which are not present in
the original system of equations (at least not on Dirichlet boundaries). The initial
condition is not a practical problem; the pressure can be inferred from the initial
condition for the mass flux, or the pressure correction method can be iterated within
the first time step. Often the initial transient behavior is not physically relevant, in
which case one can also just set p° = 0.

The pressure boundary condition would have been explicit if the pressure correc-
tion method had been derived at the differential level from the continuous equations
1.1a—1.1b. This would have resulted in a continuous Poisson equation (V?p = ...)
that needs to be supplemented with boundary conditions before it can be dis-
cretized. This could be seen as an argument in favor of ‘algebraic’ splitting methods,
which are derived from the coupled discrete linear system 3.2a—3.2b, as was done
above. Nevertheless, even the discrete Poisson-like pressure equation 3.9 contains
implicit artificial boundary conditions, which are inherent to the construction of the
discrete divergence operator D in Eq. 2.5.

In fact, Shahbazi et al. [5] have pointed out that AXPCG (Eq. 3.10) is effectively
a local discontinuous Galerkin (LDG) discretization for a diffusion operator with ho-
mogeneous Neumann boundary conditions at the walls and the inlet, so it can be
replaced by an SIP diffusion operator

APG ~ gSIP (3.11)

which has a smaller stencil (as was discussed in section 2.1.1). Note that ASP
is equipped with explicit boundary conditions, and the time-splitting scheme is no
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longer of the algebraic kind. A consequence of using this SIP pressure matrix is that
the continuity equation 3.2a does not hold exactly. In the test cases that follow, we
have not noticed a difference between using LDG and SIP pressure discretizations,
which is in line with previous findings (e.g., [12, pp. 33-45]).

It has long been known that the artificial boundary condition is one of the main
drawbacks of time-splitting methods [13]. It creates a numerical boundary layer
that prevents the pressure from converging with second-order temporal accuracy
in the L2-norm. The velocity is second-order accurate in time in the L2-norm, but
not in the H-norm [14].

This problem of a numerical boundary layer can be remedied with the so-called
rotational pressure correction method that was introduced by Timmermans et al.
[15], and popularized by a rigorous error analysis due to Guermond and Shen [14].
They showed that the rotational correction results in a consistent pressure bound-
ary condition, and that this improves the orders of convergence for the pressure in
the L?-norm, and the velocity in the H*-norm, with the exact orders depending on
the geometry and the type of boundary conditions. See also the extensive numer-
ical tests and heuristic explanation in [16]. Piatkowski et al. [17] have combined
rotational pressure correction with a discontinuous Galerkin method for the spatial
discretization.

While these works have demonstrated a substantial improvement of the tempo-
ral error, they are based on the assumption of a homogeneous density and viscosity.
Deteix and Yakoubi [18] have shown how to incorporate a variable viscosity, at the
expense of having to solve two poisson equations for every pressure correction
step. We have not extended the rotational pressure correction method to our DG
solver with a variable viscosity.

In summary, our algorithm to find the solution vectors p™, m", h™ at a new time

step n is as follows.

1. Obtain predictors for (k/c,)*, and m* with a second-order extrapolation from
previous time steps:

(O =2(""t =", (3.12)

2. Solve for the enthalpy h" at the new time step, using the above predictors
for the diffusion constant ((k/c,)*) and the advecting field (m*).

If the density depends on the temperature, as in chapter 4, then the implicit
time term is also approximated with a predictor p* = 2p™! — p™2, using
either of the methods that are explained in Section 4.3.

3. Solve Eq. 3.4 for . The matrix N depends on the fluid properties, which are
evaluated at the new time step as a function of h™. The convective field is
estimated as (1/p™)m".

4. Solve the pressure Poisson equation 3.9 for &p, possibly replacing the LDG

discretization by an SIP method (Eq. 3.11), and correct the pressure and the
mass flux with Eqgs. 3.5-3.7.
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The manufactured solutions in section 3.3 will show full second-order temporal
accuracy in the enthalpy and the mass flux, even if the fluid properties are non-
trivial functions of the enthalpy.

3.3. Verification with Manufactured Solutions

The numerical method and its implementation are verified with two manufactured
solutions: the well-known Taylor-Green vortex with constant fluid properties, and
a variable-property manufactured solution with a wall and an outflow boundary.
Our experience with DGF1lows has been that the convergence results depend
critically on a careful calculation of the error, which is defined in the L2-norm as

g —¢=Il, _ |Zrer r (9 — 929
161, [ @™

(3.13)

for a quantity ¢ with an exact solution ¢*. Each integral in the numerator is evalu-
ated with a numerical quadrature, resulting in a large sum over the squares of small
numbers. A naive implementation gives very large rounding errors. We therefore
perform the double summation over the elements and the quadrature points with
the Kahan summation algorithm [19] and a 128-bit floating point number.

All integrals in the weak forms are evaluated with a quadrature set with the
usual polynomial accuracy of (3%,, — 1), and we verified that this is sufficient to
integrate up to machine precision by comparing the results with a higher-order
quadrature set of polynomial accuracy (3%, + 10). This is not surprising, since the
Taylor-Green vortex solution in section 3.3.1 is smooth, whereas the exact solution
in section 3.3.2 is a polynomial, and so are the corresponding forcing terms.

3.3.1. Taylor-Green Vortex

The first manufactured solution is the Taylor-Green Vortex, which is incompressible

and has constant fluid properties. We include a passive scalar temperature field with

this well-known analytical solution. The enthalpy is h = ¢, T. The exact solution is

_ =~ |—cos (%) sin (¥)

u® = exp (=2f) [+ sin (&%) cos ()| *

pex = —g exp (—4) (cos (2%) + cos (27)) , (3.14)
T®* = exp (—2t/Pr) cos (%) cos (§) ,

on a domain x,y € [—L, L] with Dirichlet boundary conditions and 0 < t < 1, where

P vt L X .y
T Wy T e YT Ly

(3.15)

and n must be a positive integer in order for [, p = 0. This solves the transport
equations with F = [0,0] and Q = 0.
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Fig. 3.1 shows the temporal convergence for L = 1, n = 1, u = 0.01, p =
1, Pr = 100, and a fourth-order polynomial space for the mass flux (i.e., &, =
4). We performed the same numerical experiments by independently varying the
Prandtl number (to Pr = 1), and the polynomial order (to P, = 2), all of which
yielded similar results. All errors saturate at small time steps, where the spatial
discretization error dominates.

Table 3.2 shows the spatial convergence at the smallest time step that was
tested. It also includes equal-order and mixed-order results for a polynomial orders.
All quantities of polynomial order P appear to converge as 0 (¢**1), where ¢ «
1/N,, is the characteristic mesh length, except for the equal-order cases, where the
order of convergence for the pressure is in the range [P + 1/2,P + 1]. The spatial
convergence rates for the high-order polynomial cases is harder to make out from
the available data, because the temporal error is still significant, as could also be
seen in Fig 3.1.

The Taylor-Green vortex is of course a strange test case, in that it does not fea-
ture any scale separation: its Fourier transform is comprised of Dirac delta functions.
The solution is an eigenfunction of the diffusive terms, so there is no interaction
between the transport terms. Furthermore, it has Dirichlet boundary conditions
where there is outflow, so that the continuity equation is over-constrained. This
manifests itself in a stiff linear system for the pressure, though its ubiquity in the
literature suggests that the Taylor-Green vortex is very easy to simulate. The next
section features a more challenging manufactured solution.

3.3.2. Variable-property Manufactured Solution
This section features a manufactured solution with temperature-dependent trans-
port properties, so that the momentum and enthalpy transport equations are cou-
pled. It has walls and an outflow boundary condition; contrary to the Taylor-Green
vortex, it is well-posed. The domainis (0,L)x(—1,1); see Fig. 3.2. WeletL = 10in
all calculations, and use square elements, so that there are N, = (L/2)N, elements
in the x-direction. The inflow boundary at x = 0 has Dirichlet boundary conditions.
The goal of the manufactured solutions is obviously not to model a particular phys-
ical phenomenon, but our configuration is vaguely reminiscent of a pipe flow with
walls at y = +1 that is heated asymmetrically, resulting in skewed velocity profiles.

We use a Neumann boundary condition for the temperature at the outlet, be-
cause this is the most common choice in practical applications. The imposed heat
flux (gN) follows from the known exact solution. We also tried imposing a Dirich-
let boundary condition for the temperature, and found that it makes a negligible
difference in the numerical errors.

We choose the polynomial manufactured solution

1 2x3/3 — Lx? 2
m™ =1+ %ly(— 1)/(y + 1)x)(L _ x)] + [o] '
P =1+ (L-x)?,
T = (1+¢%) 2-y((x—-L)/L)*/6
with 0 < t < 1, which satisfies m, = 0 on y = 1, and V- m = 0. The addition

(3.16)
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Figure 3.1: Convergence toward the 2D Taylor vortex (Eq. 3.14) at time £ = 1 with temporal refinement
for meshes with N? square elements. The black dashed lines indicate ideal second-order convergence
in &t.
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Table 3.2: Convergence toward the Taylor-Green vortex in Eq. 3.14 with spatial refinement, keeping §t
fixed. The data in the last two blocks are taken from the highest temporal refinement in Fig. 3.1.

temperature velocity pressure
N, error conv error conv error conv
Equal order (P =P, =P, =1), &t=2712
22 2.93e-1 1.13e0 1.17e0
23 1.02e-1 1.53 5.25e-1 1.10 1.34e0 -0.19
24 2.73e-2 190 1.59e-1 1.73 5.84e-1 1.20
2° 6.72e-3 2.02 4.14e-2 194 1.80e-1 1.69
26 1.66e-3 2.02 1.04e-2 199 5.34e-2 1.76
27 4.11e-4 2.01 2.60e-3 2.00 1.69e-2 1.66
28 1.02e-4 2.01 6.50e-4 2.00 6.05e-3 1.48
Mixed order (P, =2, P, =P, =1), 6St=271%
22 2.70e-1 2.57e-1 2.20e0
23 7.25e-2 190 2.13e-2 3.59 4.0le-1 2.46
24 1.70e-2 2.09 1.62e-3 3.72 5.43e-2 2.88
25 4.14e-3 2.03 1.49e-4 3.44 8.67e-3 2.65
26 1.04e-3 2.00 1.64e-5 3.18 1.71e-3 2.34
27 2.6le-4 1.99 1.97e-6 3.06 3.86e-4 2.15
28 6.59e-5 1.99 3.25e-7 2.60 9.28e-5 2.06
Mixed order (P, =4, P, =P, =3), 6&t=2713
22 1.54e-2 3.79e-3 1.13e-1
23 1.09e-3 3.82 9.87e-5 5.26 3.82e-3 4.88
24 6.17e-5 4.15 2.83e-6 5.12 1.37e-4 4.80
25 3.75e-6 4.04 1.04e-7 4.77 6.40e-6 4.42
26 4.98e-7 291 5.80e-8 0.84 1.57e-6 2.02
Equal order (P, =P, =P, =4), bSt=2713:
2?2 2.73e-3 3.47e-3 8.27e-2
23 9.56e-5 4.84 9.46e-5 5.20 3.15e-3 4.71
24 5.24e-6 4.19 2.79e-6 5.08 1.25e-4 4.65
2° 6.55e-7 3.00 1.03e-7 4.76 1.19e-5 3.40
26 2.49e-7 140 5.79e-8 0.83 6.51e-6 0.86
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Figure 3.2: Domain of the manufactured solutions in Sections 3.3.2 and 4.5.1.

of the constant [2, 0] to m** ensures that m,; > 0 everywhere, so that there is no
backflow at the outlet, and no outflow at any of the Dirichlet boundary conditions.
The density is p = 1, but the transport properties are non-trivial: u = 0.1+T(1—-T)
and k = uc,/Pr, with Pr = 1. The solution is depicted in Fig. 3.3.

Fig. 3.4 displays the temporal convergence. We consider various meshes, vary-
ing the number of elements and the spatial polynomial orders. The equal-order
case does not appear to suffer from the inf-sup instability for small §t. The velocity
and the temperature converge with second-order accuracy in &t until the error sat-
urates when the spatial error starts to dominate the temporal error. The order of
convergence for the pressure is slightly lower, in the range [1.5,2.0]. These orders
of convergence for the velocity and pressure agree with what is found in previous
literature on constant-property incompressible flows (e.g., [5], [20]).

The spatial rates of convergence are in Table 3.3. As the mesh is refined, the
mixed-order discretization displays 0 (#7+*) convergence for all quantities of poly-
nomial order P, though the convergence rate of the velocity saturates at high spa-
tial refinement, as the temporal error starts to become significant. The equal-order
discretization has the same convergence rates, meaning that the velocity shows
hyperconvergence, with the error in u behaving as 0 (¢%:+2).

3.4. Validation with Flow Past a Circular Obstacle

We computed laminar flow past a circular cylinder to validate our numerical method.
This features a Von Karman vortex street in the wake of the obstacle. The results
of this well-known benchmark case can be compared to experiments and to other
direct numerical simulations.

Fig. 3.5 shows the computational domain. The velocity is fixed at [u., 0] on
the left, top, and bottom parts of the domain. A subscript « denotes a far-field
value. The right side (at x = L) is an outlet with homogeneous Neumann boundary
conditions (i.e., ¢N = 0 and fN = 0). The cylinder has a no-slip boundary condition.
We use the far-field values to define a Reynolds number Re := D (pu/p),,.

The initial condition requires special care. First, it is not easy to find an initial
velocity field that satisfies n-u = n-uP at the walls, inlet, and cylinder. We therefore
initialize the velocity to [u., 0], and leave out the convective term in the first 10
time steps, thus essentially simulating Stokes flow, which does not have the same
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Figure 3.3: Constant-density manufactured solution in Eq. 3.16 at ¢t = 1.
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Figure 3.4: Convergence of the numerical solution toward the constant-density manufactured solution
(Eq. 3.16) with temporal refinement. The characteristic element length is inversely proportional to N,,.
The black dashed lines indicate ideal second-order convergence in §t.
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Table 3.3: Convergence toward the constant-density manufactured solution in Eq. 3.16 (Fig. 3.3) with
spatial refinement and fixed 5t = 2712,

temperature velocity pressure
Ny, error conv  error conv  error conv
Equal order (P, =P, =P, =1):
2t 2.67e-2 1.82e-1 3.75e-3
22 3.26e-3 3.03 3.58e-2 2.35 8.66e-4 2.11
23 6.70e-4 2.29 5.8le-3 2.62 2.14e-4 2.02
24 1.66e-4 2.01 8.46e-4 2.78 5.34e-5 2.00
25 4.15e-5 2.00 1.16e-4 2.87 1.33e-5 2.00
26 1.04e-5 2.00 1.57e-5 2.89 3.34e-6 2.00
Mixed order (P, =2, P, =P, = 1):
21 1.08e-2 1.11e-1 3.62e-3
22 2.65e-3 2.03 1.83e-2 2.61 8.75e-4 2.05
23 6.63e-4 2.00 2.62e-3 2.80 2.15e-4 2.02
24 1.66e-4 2.00 3.52e-4 290 5.35e-5 2.01
25 4.15e-5 2.00 4.57e-5 294 1.34e-5 2.00
26 1.04e-5 2.00 6.43e-6 2.83 3.34e-6 2.00
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Figure 3.5: Geometry of flow past a circular cylinder (not to scale). The cylindrical obstacle is centered
at the origin.
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requirement for the initial condition at the boundaries. Due to the instant smooth-
ing property of the viscous operator, the velocity satisfies the Dirichlet boundary
conditions when the convective term is ‘activated’ after the first 10 time steps. This
causes an instantaneous change in the pressure, but that is neither unphysical in
the incompressible flow limit, nor is it a problem for the pressure correction method.
Second, we found that the combination of a symmetrical mesh and a symmetrical
initial condition does not induce vortex shedding. This is addressed by letting the
cylinder rotate counter-clockwise for the first 100 time steps.
We are interested in the force on the cylinder S, which is given by

FW=—] (z-pD-n, (3.17)
as

where n is the outward normal of the fluid, pointing into the cylinder. The drag and
the lift coefficients are

2 i 2 K

- _~-"1 =_-"2 3.18
D ouD) and (=7 RN (3.18)

(p

respectively. At our Reynolds number, the flow is laminar, and the force oscillates
in time in a smooth, deterministic manner. This makes it easy to determine the
frequency f of the lift coefficient, and the corresponding Strouhal number St :=
fD/uy .

Our numerical experiments indicate that a small domain results in an overesti-
mation of the Strouhal number. This likely explains the large discrepancy in the nu-
merical predictions of the Strouhal number in previous literature; see Niroobakhsh
et al. [21] for an overview. Collis [22] showed that a domain of (H,Ly L) =
(30D, 15D, 30D) was sufficient for isothermal flow at Re = 100 and a Mach num-
ber of 0.2. The results presented here were obtained on a domain of (H,L,, L) =
(40D, 20D, 40D). The domain could probably be substantially smaller if the upper
and lower part were connected with periodic boundary conditions, but DGFlows
did not support this yet when the calculations were done.

Fig. 3.6 shows the mesh. It has approximately 27k elements with B,, = 2 and
P, = P, = 1, resulting in approximately 160k degrees of freedom per direction of
the mass flux, and 64k degrees of freedom for p and h. There are 120 boundary
elements at the cylinder, each with a width of 0.005D. The time step is given by
D/(8t uy) = 82. We find St = 0.166. This nhumber remained unchanged when we
decreased the number of elements to 19k, or when we doubled &t. It compares
well with the experimental values of St = 0.165 in [23], St = 0.165 in [24], and
St =0.167 in [25, p. 71].

3.5. Discussion

The tests with the manufactured solutions in section 3.3 show second-order tempo-
ral accuracy in the L?-norm for the velocity and the temperature. This observation
is based on simulations on many levels of spatial discretization, and time step sizes
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(a) overview (bottom not shown)

(b) Detail near the cylinder.

Figure 3.6: Mesh for flow past an obstacle. It is structured near the cylinder and most of its wake. The

rest of the mesh is unstructured to allow for large differences in the element size. It is symmetrical
about the axis y = 0.
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that span many orders of magnitude (ref. Figs. 3.1 and 3.4). Even the pressure is
not far from second-order accurate in é6t.

An important and obvious improvement is the rotational formulation of the pres-
sure correction method, as explained in section 3.2. Even though this requires two
poisson solves per iteration in the case of a honhomogeneous viscosity, previous
works suggests that the improved accuracy would be worth the cost.

3.5.1. Pressure Correction with Equal-order Discretizations
The manufactured solutions show that the equal-order discretization is stable in the
limit of small time steps. To achieve this, the pressure Poisson equation 3.9 has
been modified with a penalty matrix C.

Unfortunately this stabilization makes the linear system more expensive. This
is in part because adding penalization raises the condition number, which can be
substantial in turbulent flow, given the §t~" scaling in Eq. 3.9, and the v~ scaling
of the penalty parameter in Eq. 2.9. Perhaps more importantly, € depends on the
viscosity, and so the pressure matrix is generally not constant, which has a large
impact on the total computation time in our implementation DGFlows.

A large penalty parameter may be less detrimental to the efficiency of other
solvers if they are suitably preconditioned. For example, Fehn et al. [26] have
investigated several p-multigrid methods for a DG-SIP discretization of the poisson
equation with a matrix-free implementation. They found that the most effective
approach is to project the finest DG grid onto a continuous Galerkin space, which
can in turn be coarsened with lower-order continuous solution spaces. The resulting
solver was robust with respect to the SIP penalty parameter.

It should also be noted that the pressure stabilization € was developed for steady
Stokes flow, and it is overly restrictive for time-dependent convecting flow. In
our transient calculations, there are already two effects that implicitly stabilize the
pressure. These could be used to reduce the penalty parameter in Eq. 2.9, or
possibly to leave it out entirely.

The first stabilizing effect is inherent to the pressure correction method. The
error due to time-splitting methods can be shown to be equivalent to perturbing the
continuity equation with a pressure diffusion term (V2p) that is proportional to 5t.
This means that the inf-sup instability does not manifest itself at large time steps,
as has been well documented for several spatial discretizations (e.g., [8, 27, 28]).
Ferrer et al. [20, 29] have provided estimates for the minimal time step size in a
DG discretization, and showed that this can still be higher than the maximum time
step that satisfies the CFL condition.

The other source of pressure stability is due to the SIP discretization for the
pressure matrix (Eq. 3.11), which contains a penalty term with a penalty parameter
as in Eq. 2.16 with a diffusion parameter K = 1. Shahbazi [30, pp. 48-65] has
successfully used the SIP pressure matrix with an equal-order discretization without
extra pressure stabilization (i.e., € = 0). Our tests (not shown here) also indicate
that, for equal-order discretizations without pressure stabilization, the LDG pressure
matrix is unstable for all reasonable time steps, whereas using the SIP matrix is
feasible for a wide range of practical time step sizes, though it always becomes
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unstable in the limit §t - 0.

This provides an extra incentive for replacing the pressure LDG matrix by an
SIP matrix (Eq. 3.11). It was originally motivated by its smaller stencil and lower
condition number [5], but is could well be that its greater stability is more important.
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Handling the Enthalpy
Equation for Low-Mach
Number Flow

4.1. Introduction

4.1.1. In Between Compressible and Incompressible
Several low-speed flows of practical importance are compressible, that is, the veloc-
ity is not divergence-free. This can occur due to mixing, or due to a temperature-
dependent density near a heat source. An example is heat transfer in low-Mach
number flows of supercritical fluids, where all fluid properties vary strongly with the
temperature, but do not depend significantly on the pressure. Most flow solvers
use either a pressure-based approach and assume a divergence-free velocity field,
or a fully compressible (density-based) formulation. Neither of these methods is
directly applicable to compressible flows in the low-Mach number limit.
Density-based solvers can be used to simulate zero-Mach flows by approximating
the flow with a low, non-zero Mach number (e.g., [2], [3]). This has often been
used for heat transfer in supercritical fluids at low speeds (e.g., [4], [5]). This is
expensive for several reasons. First, the temporal discretization needs to resolve
acoustic effects, and the resulting linear systems tend to be very stiff. Second, the
system of transport equations is solved in a coupled way, which is more expensive
than using a time-splitting method, though the performance may be improved with
suitable preconditioning [6]. Finally, the fluid properties are evaluated as a function
of two thermodynamic variables (usually the density and the volumetric enthalpy),
so that a spline interpolation costs far more memory, thus complicating massively
parallel calculations [4].

Parts of this chapter have been published in [1]
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There is also substantial experience with discontinuous Galerkin (DG) discretiza-
tions for incompressible flows. These are either based on the introduction of artifi-
cial compressibility (e.g. [7, 8]), or they solve for the pressure (e.g. [9-12]). The
artificial compressibility method can be more than second-order accurate in time,
though it requires the system of transport equations to be solved in a coupled man-
ner (e.g., [/, 13]). By choosing entropy variables as the unknowns, the DG method
can also be formulated in a general way for both compressible and incompressible
flows, at the cost of great complexity (e.g., [14]). There is, however, almost no
literature on solving the low-Mach number equations with a pressure-based discon-
tinuous Galerkin method, as is done in this thesis.

The only previous work of which we are aware is by Klein et al. [15, 16], who
used a SIMPLE scheme to march the transport equations forward in time, iterating
the equations within each time step. This required under-relaxation in order for
the iteration to converge. They solved for the velocity, so that a predictor for the
density is needed in the temporal derivative of the momentum equation.

We avoid this by solving for the mass flux rather than the velocity. Another
advantage of this approach is that the divergence term in the continuity equation
does not have to be weighed by the density, so that the divergence matrix does
not depend on the density. This makes the transport equations less tightly coupled,
and it simplifies the pressure correction method, because the pressure matrix is
constant for each time step.

4.1.2. Which Enthalpy Equation Should be Solved?
Another important question is which form of the enthalpy transport equation should
be solved (primitive or conservative), and for which variable (the primitive h or
conserved H = ph).

Solving for the specific enthalpy h from the primitive transport equation, that is,

Dh-—ah+ Vh—lv th +1 4.1)

D¢ ot " T p Cp pQ ! '
would pose two possible problems. First, the diffusive term is not in the standard
form V- (aVh) where a == k/ (pc,) is the thermal diffusivity. The difference is

1v. (£wl> —V-(aVh) = — (v%) K h—ad v , (4.2)

p p p
where N
Pn
d:=-Vp=—Vh 4.3)
p p

is the relative gradient of the density (as in Eq. 2.13). Perhaps the commutation
error in Eq. 4.2 can be neglected in many flows. It is also possible that the diffusion
term in Eq. 4.1 can be discretized by a standard interior penalty method with a
diffusion parameter of k/c,, except that the test function is weighed by 1/p.

A more fundamental problem with the primitive transport equation 4.1 is posed
by the advection term. It is not in conservative form, as in Eq. 2.18, and so we do
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not know how to discretize it with a DG method. Perhaps it could be split as
u-Vh=V-(uh)—hV-u. 4.4)

The first term on the right is in standard form, whereas the second term resem-
bles the divergence of the mass flux in the continuity equation, but we are not
sure how to proceed from there. We therefore solve the transport equation in the
conservative form 1.1c.

For high-Mach number compressible flows, the unknown is normally taken to
be a conserved variable, such as the volumetric enthalpy H := ph. When written in
that variable, the transport equation becomes

oH 1 3 k_(H 4.5
rv'(;‘“”)‘v'(av(z))”' (%)

The diffusion term is again not in the standard form (due to the factor of 1/p), in
direct analogy to when the viscous stress tensor is expressed in terms of a conserved
variable (m), as was discussed in section 2.3.1. The generalization of the symmetric
interior penalty method for the viscous stress could also be applied here. That is,
one starts from a standard discretization for V - (aVH), and wherever the stress
aVH would appear in the weak form, it is replaced by a (VH + Hd).

Incidentally, there is a curious alternative interpretation of the effect of the vari-
able density on the thermal diffusion, namely that it results in an extra advective
flux. Substituting Eq. 4.2 into Eq. 4.1 gives

dh 1
E + u;ff -Vh=V- ((ZVh) + [_)Q ’ (46)
where
ui;=uFad=u+pBavrl (4.7)
is the effective advecting velocity, and g := —(1/p)pr is the thermal expansibil-

ity. Similarly, the conservative transport equation 4.5 has a diffusion term with
commutation error

V- <£v(%>) —V-(aVH) = -V - (Had) = V- (HaBVT) , (4.8)

Cp

so that .
rraas (ugzH) =V (aVH) +Q . (4.9)
(Note the different signs of the advection correction +aBVT in Egs. 4.6 and 4.9.)
This observation is probably only of theoretical significance, though the equa-
tions with an adjusted advecting velocity could also be used for the discretization.
The extra term BaVT can treated explicitly (i.e., extrapolated from previous time
steps). Since (uegH — aVH)-n = (u H — (k/c,) Vh)-n, the boundary contributions
in the weak forms are the same as for the regular equation 1.1c. Our brief tests
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(not shown here) suggest that this is feasible, and second-order temporal accuracy
for the enthalpy is maintained in the L2-norm.

Coming back to the question of which equation to solve for which unknown,
the main problem with the volumetric enthalpy is that it is not unique to a par-
ticular thermodynamic state, which will be a recurring theme in this chapter. The
combination of the specific enthalpy h (or, equivalently, the temperature) and the
thermodynamic pressure p'™® fixes the thermodynamic state, but the pair (H,p™)
does not always do this, making H an inconvenient thermodynamic variable. This
problem is not encountered by compressible flow solvers at high Mach numbers,
because they solve a transport equation for both H and p, which implies a specific
enthalpy h from which the fluid properties can be derived.

For example, consider an ideal gas with a specific gas constant r:

p =rpT, (4.10)
for which pr = —p/T, and thus H, = p + hpr/c, = p (1-n/ (cpT)). If h = c,T,
as is sometimes assumed, then Hy = c,H, = 0, meaning that the value of H says
nothing about the temperature.

Another example can be found in fluids at a supercritical temperature. If the
temperature is increased from a point close to a liquid state, then the volumetric
enthalpy will rise initially, but then it will drop when the so-called Widom line is
crossed, where the thermal expansibility peaks [17]. In other words H; switches
sign, and thus H does not uniquely determine T.

Solving for the volumetric enthalpy would therefore require some special treat-
ment to determine the thermodynamic state in low-Mach number flows. One possi-
bility is to offset the specific enthalpy by a suitable constant, which would produce a
one-to-one relation between the temperature and the new volumetric enthalpy, as
will be explained in section 4.3 (see Fig. 4.1 in particular). Another idea would be
to obtain a separate predictor for the density, for example by solving the continuity
equation, so that the specific enthalpy can be estimated.

Peeters [18] has claimed to have taken this approach, though we note that
the nondimensionalization of the variables in that work also involved offsetting the
specific enthalpy by a constant. It is possible that this created a one-to-one rela-
tionship between the nondimensional h and the nondimensional H, in which case
they would have inadvertently solved the non-uniqueness of H even before the
density predictor was introduced.

We avoid these difficulties by solving for the specific enthalpy h from the con-
servative transport equation 1.1c, which poses another problem that needs to be
overcome. Solving a conservative transport equation for a primitive variable com-
plicates the temporal derivative: the term d(ph)/dt can be an important source of
error and instability when p is a function of h. A similar issue occurs in multispecies
transport, and Najm et al. [19] devised a widely used two-step iterative method
to stabilize the temporal scheme. This has subsequently been adapted to handle
the strong property variations in supercritical fluids [20]. One could also obtain a
density predictor by solving the continuity equation.

In sections 4.3 and 4.4 we present a new alternative method that does not use
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any predictor solves or iterations to handle the unknown density at a new time step.
We will show that the error in our approximation can be made negligible compared
to the error in the finite difference scheme, and that the method can be made
unconditionally stable by offsetting the specific enthalpy with a constant.

4.2. The Temporal Density Gradient

The pressure-correction method for incompressible flow in section 3.2 can be mod-
ified for low-Mach number flow in a straightforward manner. The semi-discrete
continuity equation 3.2a is adjusted to include the temporal derivative of the den-

sity:
= 7", (4.11)

n
-Dm"+Cp"*=-r—-G a_p
- = - ot

where G[-] denotes the Galerkin projection onto the solution space. The temporal
derivative of the density is estimated with a second-order backward finite difference

scheme:
ap " 1 3 n n-1 1 n-2
(m) - 5t<5p mpT g ' (4.12)

The time-splitting scheme is exactly the same as in section 3.2, except that r is
replaced by #".

This is a large advantage of solving for the mass flux. If we had instead solved
for the velocity (such as in [15]), then the density would have had to have been
incorporated into the divergence operator D in Eq. 3.9, and into the mass matrix
M in Eq. 3.4.

This extension of the pressure-correction method to compressible flows has
sometimes proved unstable in finite difference schemes that were applied to mixing
flows with large density ratios (of approximately more than a factor of 3), because
the continuity equation was not satisfied in the inviscid limit; see Nicoud [21]. Itis
not certain whether the same instability would occur for the discontinuous Galerkin
method presented here; our experience so far has not exposed instabilities with
large density ratios. Nicoud suggested a different generalization of the pressure
correction method to variable-density flows, where the density is incorporated into
the pressure matrix, rather than on the right-hand side of Eq. 3.9.

The large advantage of the approach presented here is that the pressure matrix
is the same at all time steps.! We can therefore assemble it once, and precom-
pute the incomplete Cholesky preconditioner for the linear solver. Furthermore, the
condition number of the diffusion matrix A worsens if it includes a variable coeffi-
cient that depends on the density. For these reasons, the pressure solves are much
cheaper with a constant pressure matrix.

Irrenfried [22, 23] also claimed (without reference or demonstration) that using
Eg. 4.12 may result in a considerable numerical error for small time steps, and

Lexcept for equal-order discretizations with a temperature-dependent kinematic viscosity, in which case
the pressure stabilization (Egs. 2.8-2.9) depends on h
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therefore used an interesting alternative, based on

dap aT

at  Prae e
The idea is to replace aT/at on the rhs by the spatial discretization of the tem-
perature. This was probably straightforward to implement in their work, which is
based on a finite volume scheme for the temperature equation in primitive form
(i.e.,, DT/Dt = ...). The idea is certainly attractive: given the one-to-one correspon-
dence between the density and the temperature (or the enthalpy), it seems natural
to use the same spatial discretization for their temporal derivatives.

It is less clear how the equivalent approach could be used here for at least
two reasons. First, (ph) o is not constant, and we use a finite element method, so
we cannot simply multiply the solution vector by the value of a fluid property in a
point-wise manner. This would probably have to be done with a Galerkin projection
instead. A more fundamental problem is that we solve for the enthalpy equation
in conservative form, so we have a spatial discretization for d(ph)/dt, not dh/dt.
Unfortunately (ph) does not uniquely determine p in many fluids, and therefore the

relation
dp 1 0d(ph)
ot (ph), ot

(4.13)

(4.14)

could be undefined, or very badly conditioned, since |(ph) p| can be arbitrarily small.

This problem of a non-unique volumetric enthalpy (ph) will return later in this chap-
ter. Perhaps Eq. 4.14 could be used if (ph) p is made non-zero by a suitable enthalpy
offset, as in section 4.3.2.

4.3. Linearizing d(ph)/dt

As mentioned in the introduction, solving for a primitive variable (h) with the en-
thalpy equation in conservative form complicates the temporal derivative of the
enthalpy, because it is weighed by the temperature-dependent density. This sec-
tion and the next study the stability and convergence of the time stepping scheme
in detail.

The analysis is simplified by considering a space-independent enthalpy equation:

d(ph)
—q = A+, (4.15)

where 1 is a constant, and Q = Q(t). Using an implicit finite difference scheme,
the enthalpy and the corresponding density can be estimated at a time step n by

q
g (oh)" + Z % (ph)" " = —ahm + Q" . (4.16)
i=1

Due to the variable density, this equation is not linear in the unknown hr". We
therefore consider two linearizations in h™, which we term method #1 and method
#2.
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Both of these methods use a predictor h* and a corresponding p* that are close to
h™ and p™. This predictor can be obtained in several ways, such as by extrapolating
from previous time steps. When solving the full system 1.1a-1.1c, a predictor for
p™ can also be obtained by solving the continuity equation. The analyses in this
section are for a general (h*, p*), though we will make the reasonable assumption
that (h* — h™) is at least first-order accurate in §t.

The two linearization methods are as follows.

Method #1 is perhaps the most obvious approach: let p™ = p*, resulting in an
approximation hll = h™ that is given by

q
%p*h[l] + Z 2 ()" = —2nl + qn. (4.17)
i=1

Method #2 is based on a Taylor expansion of (ph)" about the predictor:

(ph)" =~ (ph)" + (ph)y, (W™ = h*) = (ph), " — (h2py) . (4.18)
Substituting this into Eq. 4.16 yields an approximation h[?! ~ h™, given by

q
%(ph);hm + Z % (pW)"™" = % (h2p,) = Ah12 4 Qn (4.19)
i=1

Note that method #1 is effectively a single step in a fixed-point iteration, whereas
method #2 is a single step in a Newton iteration.

4.3.1. Error Estimates and Stability
The errors and the stability of methods #1 and #2 can be analyzed by using a
Taylor series for p™ about the predictor, that is,

(=] 1 akp * .
n _— — | — n__ p*
o _Zk!<6hk) (" — )~ (4.20)
Define the following deviations from the non-linear finite difference equation 4.16:
error in the predictor:  €*:=h*—h",
linearization error in method #1: elll := plll — g7 | (4.21)
linearization error in method #2: €2 := pl2l —p" |

The derivations are tedious, and deferred the appendix at the end of this chapter.
Here we summarize the main theoretical results.

The first result is an a priori error estimate. Appendix A shows that both Eg.
4.17 and Eq. 4.19 can be rewritten as

q
) Vi —i
2 om)" + ) 2 (ol =~ h" + Qi (4.22)
i=1
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where

Aﬂ=z+0@“wg and Qn, =Q"+0&”w0 for method #1, (4.23a)
and

Aegg=A1+0 (6*3/&) and QI =Q"+0 (6*3/6t) for method #2. (4.23b)

That is, the approximations in method #1 and #2 are equivalent to the original Eq.
4.16, except that 1 and Q™ are replaced by their effective values, which are related
to the error in the predictor.

A second important result regards the stability of the linearization methods.
Appendix A.1 shows that the error for method #1 is related to the error in the

predictor as
6[1] < phh )*
— =————] +0()
* + A (6t
€ p *( /o) (4.24)

= _<p:7h) + 0 (6t) + 0 ()

Note that elll/e* vanishes up to first order as h* — 0. Eq. 4.24 also suggests that
method #1 cannot always be made stable by iterating within a time step, that is,
by calculating a new predictor p* from the estimate hl!, and repeating Eq. 4.17.
Stability of the iteration is guaranteed if the error in the new approximation is always
smaller than the error in the predictor, that is, |e[!!| < |e*|. This condition is only

met if .
_(& 4.2
Pn ( B > ' (4.25)

where we have made the reasonable assumptions that €* = 0 (6t), and that p;, < 0.
If Eq. 4.25 is not met at every step in the iteration, then it may not converge.

Similarly, iterating method #2 within a time step is stable if |¢[?]| < |e*|. Ap-
pendix A.2 shows that

|h*| < p

. o6t \ el 1 L 2
(ph)h-i-%l o = ph+§phhh € +0(6 ) (4.26)

Since we can reasonably expect that the error in the predictor (¢*) is at least first-
order accurate in §t, we always have |e[?!| < |¢*| (and therefore a stable iteration)
in the limit §¢ — 0, provided that

(ph), # 0. (4.27)

In other words, the volumetric enthalpy (ph) must be a strictly monotonic function
of the specific enthalpy h.

This restriction for method #2 also follows more directly from Eq. 4.19 in the
limit of small time steps, because the coefficient of hl?! cannot vanish. In practice
one will want to satisfy the stronger relation

(ph), >0 (4.28)
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to ensure that the enthalpy discretization is positive definite.

We conjecture that the stability requirements (Eq. 4.25 for method #1; Eq.
4.27 for method #2) must always be satisfied in the limit of small time steps, even
when the linearization is not iterated within a time step. It seems reasonable to
expect that a stable numerical method can be iterated without diverging. This is
supported by the numerical tests in Section 4.4

4.3.2. Proper Scaling of the Enthalpy Equation
Curiously, the analyses in the previous subsection have led to stability requirements
(Egs. 4.25, 4.27) that depend on the fluid properties, and they are not satisfied
for all fluids. For example, the volumetric enthalpy in supercritical fluids can either
increase or decrease with the temperature due to the strong thermal expansion,
thereby violating Eq. 4.27.

This problem can be addressed by solving for a different variable

h:=h-—hg. (4.29)
Eg. 1.1c then becomes

hoR+%+v.(mﬁ)=v-(5vﬁ>+0, (4.30)
Cp

where R == dp/dt+V-m = 0 is the residual of the continuity equation 1.1a. Thus &
satisfies the same transport equation as h, and it can be discretized in the same way.
This does not affect the diffusion (since Vi = Vh), but it does change the convection
and the temporal derivative, which now has a different stability guarantee.

In particular, Eq. 4.25 for method #1 becomes

5| = |h* — hol < (%”) . (4.31)

We cannot know in advance whether this will be satisfied at all time steps. There
is therefore no a priori value for h, that guarantees stability, though it seems that
hy is best chosen such that h ~ h, at the average temperature.

Conversely, we can find an a priori lower bound for h, when using method #2.
The stability guarantee (Eq. 4.28) becomes

~ C
(PR); = (p(h = ho))y, = (P} —hopn >0 & ho > (ph), =h =, (432)
and so method #2 can be made unconditionally stable by choosing h, sufficiently
large. In particular, if the temperature is known to lie in a range [T™", T™2%], then
a theoretical lower bound for stable values for h is

B = max  (ph), =

TmingT<Tmax

Cp
_max -—=1, (4.33)
Tmin<T<Tmax B
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Figure 4.1: Top: rescaled volumetric enthalpy (p(h — hy)) of carbon dioxide at the supercritical pressure
of 7.5 MPa, as a function of the temperature for various choices of h,.  Bottom: same data, but with
each line scaled to [0, 1].

The function increases monotonically for h, = R, The thermodynamic reference point is placed at (1
bar, 0 °C). The data are based on [24], accessed through the CoolProp software library [25].

which can of course be negative. Fig. 4.1 shows an example of the rescaled
volumetric enthalpy (o(h — hy)) for various choices of h, for a real fluid in the
temperature range (302K,307K). There is a practical limit on the magnitude of
hy, because we are solving a transport equation for p(h — hy), which becomes
equivalent to the density p for very large values of |hy|.

On a heuristic level, the change of variables in Eq. 4.29 can be thought of
as a way to discretize something in between the conservative and the primitive
transport equations. The conservative transport equation is merely based on the
conservation of enthalpy, whereas deriving the primitive transport also requires the
conservation of mass. The primitive equation can be obtained by subtracting hR
from the conservative equation. Comparing Eq. 4.30, we are subtracting hyR from
the conservative equation, and h, determines how much of the continuity equation
is used for the enthalpy transport.

Of course a rescaling of the unknowns, such as in Eq. 4.29, is not unknown in
CFD literature, but it has usually been presented as a mere numerical convenience
(e.g., [18]). The above analyses show that the accuracy and stability of the numer-
ical scheme depend critically on a proper choice of h,. In practice this may require
some trial and error, though these analyses offer useful guidelines.

4.3.3. Special Case of an Ideal Gas
Since many fluids are accurately described by the ideal gas law (Eq. 4.10), it is
worth specializing the above analyses to this particular case. The specific heat



4.4. Test Case for the Space-independent Enthalpy Equation 63

capacity is usually approximately constant in an ideal gas, so that h = ¢, T — h, for
some constant h,. As already mentioned in section 4.1.2, solving the conservative
enthalpy transport equation does not make sense when h = ¢,T (i.e, hy = 0),
since the volumetric enthalpy would be constant. However, both method #1 and
method #2 can be stable for a proper choice of a nonzero constant h,.

First we consider the relationship between the linearization error (e!!!) and the
predictor error (¢*) for method #1, given by Eq. 4.24. From the equation of state
we have p, = —p/(c,T). Eq. 4.24 becomes

el1] .

e h +hy

+0(8t) +0(e") . (4.34)

Stability for method #1 is guaranteed if |e[!l/e*| < 1 for all time steps, which is
equivalent to h*/hy > 1/2.

For method #2, the volumetric enthalpy should be a strictly monotonically in-
creasing function of the temperature. For an ideal gas, Hr = p (¢, — h/T). In the
case h = ¢, T — h, this becomes Hr = (p/T)h,, meaning that we must set h, > 0.

4.4. Test Case for the Space-independent Enthalpy

Equation?
Before solving the full system of transport equations, we clarify the theoretical
results for the space-independent enthalpy equation 4.15 in Section 4.3 with a
numerical example that is based on a manufactured solution. Omitting the units of
measurement, the exact temperature is

T(t) = 0.5 + 0.1 sin(2xt) (4.35)
with 0 <t < 1. The equation of state is
p=pT+p(1-T), (4.36)
and the specific heat capacity is kept constant, so that
h=c,T —hyg . (4.37)

The required source term Q(t) follows from Eq. 4.15. For the numerical tests we
let pp = 0.5, p1 = 2, ¢, =1, and 2 = 0.1. The results presented here were all
obtained at 6t = 271 to investigate the limit of small time steps. We have checked
that lowering the time step size to 6t = 2~* does not affect whether the numerical
method is stable. To ensure that rounding errors did not play a significant role with
these tiny time steps, all calculations in this section were performed with 128-bit
floating point precision.

The numerical schemes were tested with various orders of the BDF time stepping
scheme. The predictor h* is obtained with an st"-order extrapolation from previous

2The code for the finite difference method for the space-independent enthalpy equation can be found
on GitHub [26]. It can be used to reproduce the results in this section.
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Table 4.1: Coefficients for extrapolation from previous time steps. (See Eq. 4.38).

a; a a3 Qa4

EX1 1
EX2 2 -1

EX3 3 -3 1
EX4 4 -6 4 -1

Table 4.2: Order of extrapolation for the enthalpy predictor (Eq. 4.38) for the linearization methods
described in Section 4.3. The minimum values satisfy Eq. 4.39; from the maximum value onward, Eq.
4.39 holds with strict inequality.

finite difference Method #1 Method #2
coefficients min max min max
BDF1 EX2 EX2 EX1 EX2
BDF2 EX2 EX3 EX2 EX2
BDF3 EX3 EX3 EX2 EX2

time steps (denoted by EXs), and the corresponding p* is determined from the
equation of state. Specifically,

S
h* = Z ah™i = k4 0 (5t5) . (4.38)

i=1

The weights are in Table 4.1.

There are two numerical errors in each time step: (i) the BDF error, which is
inherent in the finite difference scheme, and (ii) the linearization error in going from
Eq. 4.16 to either Eq. 4.17 or Eq. 4.19 when using method #1 or method #2. If
the EXs coefficients are used to obtain a predictor, then the error in the predictor
is €* := h* — h™ = 0 (6t%). For method #1, Eq. 4.23a then implies a linearization
error of 0 (e*z/dt) = 0 (8t*71). A BDFq scheme makes an 0O (5t7*1) error per
time step, so that the overall order of accuracy is min(2s — 1,q + 1). Similarly,
Eq. 4.23b implies that the overall error per time step for method #2 is of order
min(3s — 1,q + 1). The order of extrapolation should therefore satisfy

(g +2)/2 for method #1,

“ (g +2)/3 for method #2, (4.39)

or else the linearization error dominates, and the usual order of convergence of
the BDF scheme cannot be achieved. If strict inequality in Eq. 4.39 is satisfied,
then the linearization error is negligible, and increasing the order of extrapolation
is pointless. Table 4.2 lists the range of reasonable extrapolation orders.

Fig. 4.2 shows the error in the numerical temperature as a function of h,, by
using method #1 (Eq. 4.17). Note how the calculations diverge when h, is either
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too small or too large. The stability guarantee in Eq. 4.25 cannot be determined a
priori, because h* is not known before the calculation. For low extrapolation order,
method #1 sometimes converges even when Eq. 4.25 is not met at all time steps.
According to Table 4.2, the linearization error is negligible compared to the BFD
error for extrapolation orders of at least 2, 3, and 3 for the BDF1, BDF2, and BDF3
schemes. For these cases Eq. 4.25 becomes a strict requirement for stability. Note
that the range of stable values for h, decreases with higher-order extrapolations,
but all simulations converge with h, = 0.5, which is the value for which h is closest
to zero.

Fig. 4.3 shows the equivalent error plots for method #2 (Eq. 4.19). For the
current equation of state, we have an explicit, a priori expression for the stability
criterion in Eq. 4.27:

(ph)p #0 & ho/cy # 2T — p1/(p1 — Po) - (4.40)

The tests show that the numerical scheme is stable if and only if this criterion is
satisfied everywhere in the domain, regardless of the order of the time-stepping
scheme, or the order of extrapolation for the predictor. Furthermore, the results
show that the minimal extrapolation orders in Table 4.2 need to be reached in order
to achieve the lowest errors, but higher orders of extrapolation have no effect.

4.5. Test Cases with Low-Mach Number Flow

4.5.1. Variable-density Manufactured Solution

As in the previous chapter, a manufactured solution is used to verify the numerical
scheme and its implementation. The exact solution constructed by working back-
ward from the exact mass flux and pressure, which can be chosen arbitrarily. The
choice of the pressure is of little consequence, though we make sure that both m
and p vary non-linearly in time, and that they do not lie in the numerical solution
space. Integrating the continuity equation over time then gives the density, which
in turn determines the temperature and the enthalpy. The transport properties (u
and k) are arbitrary functions of the temperature. The external force and heat
source follow from Egs. 1.1b and 1.1c.

Itis surprising that we could not find previous work with a manufactured solution
that is (i) compressible, (ii) uses temperature-dependent transport properties, and
(iii) satisfies the unmodified continuity equation (without an artificial mass source).
Most previous work has focussed on finding clever analytical solutions to the sys-
tem 1.1 with a variable density (see, e.g., [27], and the references therein). Others
(e.g., [28]) have included a source term in the continuity equation, but this appears
less suitable for a time-splitting method, where the continuity plays a central role in
the discretization (as in Section 4.3.2), and we do not want to adapt the numerical
scheme to conform with the manufactured solution. Perhaps the current approach
was not taken before because it results in non-trivial source terms (F and Q). We
handle these calculations symbolically with the Python SymPy library. The man-
ufactured solution is made up of polynomials to keep these symbolic calculations
feasible.
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Figure 4.2: Error (|T — T¢¥| /T®X) at t = 1 for the test case in Section 4.4 as a function of the enthalpy
offset hy, using method #1. The red vertical dotted lines bound the values for which Eq. 4.25 held at
all time steps.
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Figure 4.3: Error (|T — T*X| /T¢X) at t = 1 for the test case in Section 4.4 as a function of the enthalpy
offset hy, using method #2. The red vertical dotted lines bound the values for which the stability criterion
in Eq. 4.40 is violated at some time t.
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The exact solution is

e 1 ; (x/L-1)°
m = 2 ) - D2 - D+ 1)
px = (1 + t3) (L—x)3

3/2
+[ 0 ] ’ (4.41)

with 0 < t < 1, and the domain is as in section 3.3.2, Fig. 3.2. The addition of
[3/2,0]" ensures that m$* > 0, so that there is no outflow at the Dirichlet boundary
condition, and no inflow at the outlet. The density is determined by integrating
(—=V - m) over t, to find

px = —% (%t‘* + t) (x/L-1?Qy+3/L) + 3, (4.42)
where the addition of the constant 3 ensures that p > 0 everywhere. The specific
heat capacity is constant, so that h = ¢,T — hy with ¢, = 1. We use a non-affine
equation of state: T = ((p; — p)/(p1 — po))?, Where p, = 2 and p, = 4 are lower
and upper bounds for p, so that the temperature is between 0 and 1. As in Section
3.3.2, the viscosity and conductivity are u = 0.1 + T(1 —T) and k = uc,/Pr with
Pr = 1. The solution is depicted in Fig. 4.4.

We base the enthalpy time-stepping scheme on a linearization of (ph)™ about
a predictor for h", that is, method #2 in Section 4.3. We let hy = 0.2, so that Eq.
4.28 is satisfied everywhere. Increasing hy, had no noticeable effect. The predictor
h* is obtained with a second-order extrapolation from previous time steps (using
the EX2 weights in Table 4.1). We found that increasing the extrapolation order for
h* had no noticeable effect on the stability or the errors, which is in line with the
tests for the BDF2 scheme in Fig. 4.3.

Fig. 4.5 shows the convergence with temporal refinement. The velocity and the
temperature converge with second order, just like for the constant-density results in
Fig 3.4, though in this case the pressure also shows 0 (§t?) behavior. Note that the
mixed-order cases remain fully stable, even for very small §¢t, despite the possible
small-6t instability for variable-density flows that was discussed in Section 4.3.

Fig. 4.6 shows two other examples of temporal convergence with a mixed-order
scheme, but with less effective enthalpy treatments. We found that method #1 was
stable for all hy = 0, and that the precise value of h, is of little consequence to the
L2 errors in the final answer. It is clear that the temperature does not converge with
second order when method #1 is used for the enthalpy treatment. The right column
in Fig. 4.6 shows that method #2 can also be unstable when the enthalpy offset is
not sufficiently large (here it is 0.0 instead of 0.2): all quantities still converge with
second-order accuracy, but the error diverges at small time steps. Some calculations
failed due to numerical backflow at the outlet, which our simple outlet boundary
condition cannot handle.

Table 4.3 collects the spatial convergence rates that were obtained with method
#2 and h, = 0.2 (i.e., the same conditions are for the temporal convergence in Fig.
4.5). As the mesh is refined, the mixed-order discretization displays 0 (¢**1) be-
havior for quantities with a polynomial order P, where ¢ o 1/N,, is the characteristic
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(c) Kinematic viscosity (v) and thermal diffusivity («). (Note that Pr =1, so a = v.)

Figure 4.4: Variable-density manufactured solution in Egs. 4.41-4.42 at t = 1.
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Figure 4.5: Convergence of the numerical solution toward the variable-density manufactured solution
(Eqg. 4.41) with temporal refinement, using method #2 with h, = 0.2. The characteristic element length
is inversely proportional to N,,. The black dashed lines indicate ideal second-order convergence in §t.
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Figure 4.6: Equivalent of the mixed-order case (P, = 2, P, = P, = 1) in Fig. 4.5, but with a different
value of h,, and comparing method #1 to method #2. The missing values in the figures in the right
column indicate failed calculations.
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Table 4.3: Convergence toward the variable-density manufactured solution in Egs. 4.41-4.42 (Fig. 4.4)
with spatial refinement and fixed 6t = 2712,

temperature velocity pressure
N, error conv  error conv error conv
Mixed order (P, =2, P, =P, = 1):
21 1.56e-2 6.11e-1 3.57e-3
22 3.92e-:3 2.00 1.11le-1 2.47 8.86e-4 2.01
23 9.80e-4 2.00 1.6%-2 2.71 2.18e-4 2.02
24 2.46e-4 2.00 2.32e-3 2.87 5.43e-5 2.01
25 6.17e-5 1.99 3.05e-4 2.92 1.36e-5 2.00
26 1.55e-5 1.99 4.03e-5 292 3.39e-6 2.00
Equal order (P, =P, =P, =1):
21 3.82e-2 8.96e-1 2.85e-3
22 4.54e-3 3.07 1.93e-1 2.21 4.17e-4 2.01
23 8.41e-4 2.43 3.54e-2 2.45 6.46e-5 2.02
24 2.07e-4 2.02 5.30e-3 2.74 1.08e-5 2.01
25 520e-5 199 7.26e-4 2.87 2.46e-6 2.00
26 1.31e-5 199 9.59-5 292 6.17e-7 2.00

mesh length. For the equal-order case, the velocity shows O (¢*+*2) hyperconver-
gence in u.

Paradoxically, the errors in the pressure are much lower for the equal-order
case, despite its a reduced solution space. This could perhaps be explained by
the error in the dp/dt term, which is extrapolated from previous time steps (Eq.
4.12). This might induce discontinuities in p, which would be suppressed by the
pressure stabilization, which is only present for the equal-order discretization. This
explanation is supported by the fact that this phenomenon did not occur for the
constant-density manufactured solution in section 3.3.2 (Table 3.3). Note that the
orders of convergence are the same for constant-density and the variable-density
test cases.

4.5.2. Validation with Flow Past a Heated Circular Obstacle
To validate the numerical method with a variable-density flow, we replicate a nu-
merical test case by Shi et al. [29], who used a specialized cylindrical finite volume
scheme to handle the circular geometry. The geometry is the same as in section 3.4,
see Figs. 3.5. The temperature is fixed at T, at the cylinder, and T,, at the inlet, top
and bottom parts of the domain. The outlet has a homogeneous Neumann bound-
ary condition. The temperatures are T,, = 20°C and T,, = 1.5T,, = 166.575°C,
resulting in Pr = 0.7146. Shi et al. solved for the temperature, approximating the
material properties as

P = Qg + al(T - TF) + az(T - TF)Z 7 (4.43)
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Table 4.4: Coefficients for the material properties in Eq. 4.43. Reproduced from [29].

p(kgm3) pkgmts™) k(Wm'K™?') ¢, (m?*s2K™?)

aq 1.268672727 1.7254e-05 2.4195e-2  1.00620979e3
a; (K1) -4.08741e-03  4.95611e-08 7.5234e-5  1.4522145e-2
a, (K2) 7.23864e-06  -2.7214e-11 -3.2588e-8 4.13753e-4

where ¢ is one of (p,u, k,c,), Tr = 0°C, and the coefficients a; are in Table 4.4.
Since ¢, := hr is a second-order polynomial in T, we need to find the root of the
third-order polynomial h = h(T) to map from h to a fluid property. This minor
inconvenience permits a better comparison with the results in Shi et al. .

We obtain our results on the same mesh as for the isothermal case (Fig. 3.6).
Fig. 4.7 shows an example of instantaneous flow fields. Fig. 4.8 shows the lift and
drag coefficients and the Nusselt number, which is defined as

D 1

Nu= ————
Tw - Too ”65”1613

j n-vrT, (4.44)
as

where [|0S||,,, = 7D is the circumference of the circular obstacle. Recall that the
dimensionless shedding frequency was approximately St = 0.166 for the isothermal
case in section 3.4. Here we find St = 0.1536 for the heated cylinder, which differs
by 1% from the value of St = 0.152 in Shi et al. [29] and the experimental value
of St =0.152 in [30].

This result was obtained by linearizing (ph)™ with method #2 for the temporal
derivative of the enthalpy. We subtracted an offset h, from the enthalpy (as ex-
plained in Section 4.3.2), such that the maximum value of h was zero. Interestingly,
there is no noticeable change in the results when we use an equal-order scheme,
even when &t is decreased by a factor of 10 or 100. For the mixed-order calcula-
tions, we found no difference between using an SIP or an LDG pressure matrix. We
repeated the calculation using method #1, setting the enthalpy offset to a value
h, suchthat h = 0 at T = (T, + T)/2. This resulted in almost exactly the same
shedding frequency (St = 0.1537).

For all test cases, we found that some values for the enthalpy offset result in
unstable schemes, yielding oscillatory pressure fields. For method #1 this happens
when hy is far from hj; for method #2 this happens when h, is too small. When op-
erating in the range of stable h, values, the exact enthalpy offset has no noticeable
impact on the shedding frequency.

4.6. Discussion and Conclusion

Since the density is a function of the specific enthalpy, the temporal finite difference
scheme requires that the volumetric enthalpy (ph) be linearized in h, and we have
analyzed two methods for doing this, both of which need a predictor for the enthalpy
at the new time step. This led to theoretical stability requirements in case the
enthalpy equation is iterated within a time step, or, equivalently, in the limit of
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Figure 4.7: Instantaneous fields for flow past a heated circular cylinder.

small time steps. The specific enthalpy is shifted with an offset h,, so that solving
for the new unknown h — h, satisfies these stability requirements. These results
were verified with simple space-independent tests in Section 4.4.

Method #1 is basically what has been done in all previous literature we have
seen (e.g., [20], [18], [15]), but for this approach we cannot determine the range of
stable h, values a priori. Another disadvantage is that full accuracy with a second-
order time-stepping scheme (BDF2) can only be achieved if the predictor is third-
order accurate. This necessitates storing three instead of two previous time steps
for the enthalpy, and the third-order extrapolation negatively affects the stability
(see Fig. 4.2).

The other linearization of (ph) (method #2) does provide full accuracy when the
predictor is extrapolated from two previous time steps, in which case the error in the
linearization is negligible in the limit of small time steps. Furthermore, the stability
requirement is simply that the volumetric enthalpy be a monotonic function of the
temperature (or, equivalently, the specific enthalpy), and this leads to a range of
stable h, values that can be determined a priori. This results in a stable scheme, in
which the error of the linearization of (ph) becomes negligible in the limit of small
time steps. The manufactured solutions demonstrate full second-order temporal
accuracy, without any predictor steps.

In a real flow simulation the exact range of stable values for h, cannot be de-
termined a priori due the coupling of the transport equations. Note that a discon-



4.6. Discussion and Conclusion 75

AR

0.1 4

—0.1 1

-
—

P ——

P
-~

—

-~

—

D

—0.2 1

-

1.3950 A

e
'” T,

A 1.3875 1

-
”~
-
”

1.3850 A

1.3825 A

1.3800 A

3.808

3.806 -

Nu

3.804 1

e AR A LA AR

3.802 A

T T T

T T T T
40 60 80 100 120 140 160
tuoo /D
Figure 4.8: Temporal behavior of the lift and drag coefficients (Egs. 3.18), and Nusselt humber (Eg.

4.44) for flow past a heated circular cylinder. The crosses and circles mark local minima and maxima.
The dashed horizontal lines indicate the averages over the last five periods.




76 4. Handling the Enthalpy Equation for Low-Mach Number Flow

tinuous Galerkin discretizations does not guarantee that the extreme values of the
numerical solution lie within physically acceptable bounds, so that the numerical
temperature range is not known beforehand. Nevertheless, there are useful guide-
lines: for method #1, h — hy should be close to zero; for method #2, h, should
be sufficiently large. Once a stable h, value is found, our numerical experiments
in Section 4.5 suggest that the exact value of h, has little bearing on the overall
accuracy.

Comparing the present manufactured solution to the one from the previous
chapter suggests that the temporal finite difference approximation for dp/adt (Eq.
4.12) is a significant source of error (as explained at the end of section 4.5.1),
which would be in line with previous literature. An elegant improvement could be
to approximate dp/dt by the spatial discretization of d(ph)/dt, as mentioned in
section 4.2.

We are now finally ready to look at the bigger picture, and reconsider which
combination of transport equation (primitive or conservative) and unknown (h or H)
is most suitable for discretization in low-Mach number flows. Table 4.5 summarizes
the findings in this chapter. Solving for the volumetric enthalpy would also have
been a reasonable option. Given how much depends on the enthalpy offset, it is
surprising that we have not seen this notion mentioned in previous literature.

A. Derivations of the Results in Section 4.3.1

The error estimates that were presented in Section 4.3.1 are derived here. To ease
the notation, let

1
K=p; and B := Ep;h ' (4.45)
so that the Taylor expansion in Eq. 4.20 becomes

p"=p* —Ke* +Be? 4+ 0 (6*3) . (4.46)

A.1l. Derivations for Method #1
To derive Eq. 4.24, subtract Eq. 4.16 from Eq. 4.17 to get

ot
p*hlt — pnpm = —%/1 elll, (4.47)
Substituting Eq. 4.46 gives
ot
el 4 (Ke* +0(e?))hn = ——2a €l 4.48
prell+ (ke +0 (%)) = - (4.48)

which can be rearranged to

*

ell] -K

Since h™ = h* — €*, this is indeed equivalent to Eq. 4.24.
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Table 4.5: Overview of problems that must be overcome in various areas, depending on the form of the
transport equation (primitive or conservative), and the choice of the unknown variable (primitive h or
conserved H := ph). A blank cell indicates that the treatment is straightforward.

temporal term
d/dt

advection term

diffusion term

mapping from
unknown to
fluid properties

replacing dp/adt
in continuity
equation by
enthalpy
discretization*

conservative equation

primitive equation

solve for H solve for h solve for h
- can be uncon- -
ditionally stable
with a negligible
error”
- - unclear, non-
trivial with FEM
needs - extra term™™*:

modification™*

requires special
care’

depends on en-
thalpy offset h,
(untested)

depends on en-
thalpy offset h,
(untested)

ad - Vh

* As shown in sections 4.3 and 4.4, using method #2, and depending on the
enthalpy offset h,.

** See the discussion in section 4.1.2.

T Can be done with a suitable enthalpy offset h, (ref. Fig. 4.1), or with a separate
density predictor, as discussed in section 4.1.2.
¥ As suggested by Irrenfried [22, 23], see section 4.2.
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This result can now be used to derive the error estimates in Eq. 4.23a. Using
the fact that hlll = h™ + €11, we can write

p*hlt = pmp™ — (p™ — p*) A" + prell] (4.50)

which, upon substitution into Eq. 4.17, gives

q
Yo n Z%‘ n—i
— (ph — (ph
&(p) +_15t(p)
i=

(4.51)
=—</1— %(p" —p*))h"+Q" - %(p* + %l)e[” .
Using the error estimate in Eq. 4.49,
Yo n X Vi n—i
= (oh)" + Z 2= o)
(4.52)

_ Yo « . % #2
_—</1—E(p"—p + pre€ ))h”+Q"+0(6 /6t)
= (A +0 (e*z/&)) R™ 4+ QM 40 (6*2/6t) ,
where the second equality follows from the Taylor expansion in Eq. 4.20.
A.2. Derivations for Method #2

In analogy with the previous subsection, Eq. 4.26 is derived by subtracting Eq.
4.16 from Eq. 4.19 to get

. « Ot
(ph), h2 — pmh™ = (h2py) — y—l el2l, (4.53)
0
Upon substituting Eq. 4.46, this becomes
. « Ot
(ph),h = hp* + Khe” = Bhe'® +0 () = (R?py) - A €2, (4.54)
0

Substituting (ph), = p + Kh on the left-hand side, and (thh)* = Kh* (h™ + €*) on
the right-hand side, gives

. St
(p + KR) 12 — h"p* + Kh"e* — BR"e** + 0 (5*3) = Kh* (h" + €*) — —1 €]

(4.55)
This can be rearranged to

S5t
p*(R2 — k™) + Kh*(h12) — i) — K(h* — hV)e* — BhMe* + y—l €2l =0 (6*3) .
0
(4.56)
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Using the definitions for €l?! and €, this becomes
st \ ) 5
p+Kh+ y—l el — (K +Bh)e*" =0 (6* ) . (4.57)
0

Recalling h™ = h* — €7, this is indeed equivalent to Eq. 4.26.
This result can now be used to derive the error estimates in Eq. 4.23b. Upon
substituting

(ph)*hh[Q] = p*h[Q] + Kh*h[Q] — pnhn _ (pn _p*) hn +p*€[2] +Kh*h[2] , (458)

Eq. 4.19 becomes

q
% (p™h™ — (p™ — p*) K" + p*el?l + Kh*h[2)) + Z 6_lt (ph)™™
i=1

=Z;—°Kh*2 — AR 4 @n (4.59)

6tKh* (h[Q (6[2] _ E*)) —A(hn + 6[2]) + Qn ,

which can be rearranged to

2 on" +Z—(h)

((p —p )" —p*el?l + Kh* (e —6[2)——/16[ ]>—/1h"+Qn.

(4.60)
_J
~5t

Eq. 4.57 can now be used to eliminate el2!:

2 on" +Z—(h)

_E S(r—pht+Khre = (K + BRM el +0(e°)) =t + Q" (461)
zg (o - - Be*z) W'+ Ke (b =€) +0 (7)) = A" + Qn

g‘; ((p -p” 2+Ke*)h"+0(e*3))—/1h”+Q" .

Finally, using the Taylor series in Eq. 4.46,
%3 %3
(h) +Z—(h) &(o(e ) im0 (e?))-anm+Qr,  (4.62)

which implies Eq. 4.22 with Eq. 4.23b.
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Channel Flow and
Large Eddy Simulation

5.1. Introduction and Governing Equations

The idea of a large eddy simulation (LES) is to take spatially filtered quantities as
the unknowns, in which the smallest scales of the flow have been removed. These
filtered quantities are denoted by an overline (e.g., p, m4, ...). On a conceptual
level, a filtered quantity ¢ can be thought of as a moving average of ¢, or a more
general convolution of ¢ with a low-pass filter, though this is not always explicitly
computed. The goal is to approximate the filtered quantities by solving some form
of the transport equations in less detail, not down to the smallest length scales.

We solve for the variables m, p, and & := ph/p, which are therefore known
as the resolved quantities. For the specific enthalpy we use a Favre average (i.e.,
weighed by the density before filtering), denoted by a tilde. This is more suitable for
primitive (non-conserved) variables. The fluid properties (p, @, @) are determined
from h. A hat denotes a computable variable, meaning that it is based on the
resolved quantities. The computable velocity is i = m/p, which forms the basis for
the resolved rate of strain

where the operator
1 2
L(4) = 3 (A + A" — §trace (4) I) (5.2)
takes the symmetric, deviat/oﬂc part of a matrix in three dimensions. The resolved
Fourier heat flux is § = —(k/c,)Vh = —pa Vh.

Filtering does not commute with multiplication, and the commutation errors
arise as extra terms in the transport equations. In particular, for the convective

83
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term in the momentum equation, the difference between what we can compute
and the filtered original term is

1

~— JR— —_—

— 1 1
um—um=/—7mm—puu=

mm — pi = (; - :>am—5 SFS | (5.3)

)| =

The term
7578 = ffa — Ul (5.4)

is known as the sub filter scale stress tensor. As the name suggests, it acts in
a similar manner to the viscous stress, and it is usually modeled in terms of the
resolved rate of strain. Similarly, for the advection term in the enthalpy equation,

him — hm = p (Rl — hu) = 57, (5.5)

which is called the sub filter scale heat flux', and it is usually modeled in terms of
the resolved Fourier heat flux. The sub-filter stress (z5F°) and heat flux (q5F®) play
a central role in large eddy simulations of both incompressible and compressible
flows.

Under the assumption that filtering commutes with spatial and temporal deriva-
tives, the filtered transport equations are

op _
2F 4+ V.m=RO
o, + V. m =R, (5.6a)
om . -
a—‘? +V-(am)-V-(2a5)+Vp—F=-V-(pr5F) + v- RO (5.6b)
+2V- (Rvisc + Avisc 4+ Bvisc) ,
aph ~ — =
%+V-(hﬁ)—V-(ﬁ&Vh)—Q =V - ¢S + R 4+ v . (AT 4 Bff) | (5.6c)

All non-computable (sub-filter) terms are gathered on the right-hand sides:

d
© .= (-2
R AN (5.7a)
1 1
R o (; _ :> i (5.7b)
p p
d ~
R .= 5 (p-phR) , (5.7¢)
RVsc=p(§-95), (5.7d)
AVs¢:=p (v§ - 9S5) , (5.7e)
B¢ :=(n-mS, (5.7f)
AN =5 (aVh — & Vh) , (5.79)
B = (pa — pa) VA . (5.7h)

IMost other literature refers to p (Tﬁ - fﬁ) as the sub-filter heat flux, or the sub-filter temperature flux.
That definition works well when working with the ideal gas law.
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The sub-filter terms due to the viscous stress sum to
RUsc y gvise p pvisc = p(§-8) + pvS—-pv§ + (E-WS (5.8)
= uS — @S '
to account for the difference between the filtered original V- (uS) and the com-
putable V - (aS). Similarly, the sub-filter terms due to the Fourier heat flux (‘fhf’)
sum to
APt 4 B = paVh — pavh . (5.9)

The terms in Egs. 5.4, 5.5, and 5.7a=5.7h differ strongly in magnitude, so some
can be neglected.

Most other authors have considered the right-hand side of Eq. 5.8 (resp. Eq.
5.9) as a single sub-filter term, rather than splitting it into several terms as is done
here. The present decomposition shows more explicitly that each term in Egs.
5.7a=5.7h falls into one of the following categories.

1. Avisc and A™ are commutation errors between the Favre filter, and multi-
plication by a transport property. These occur in LES with inhomogeneous
transport properties. It is standard practice to neglect them (see, e.g., the
discussions in [1, 2]).

2. B¥isc and B™f are due to the difference between the filtered and the com-
putable transport properties. It is standard practice to neglect them (e.g.,

[3D-

3. The terms R°, R', R?, and R¥¢ result from the difference between the com-
putable density and the filtered density. For RVs¢ this can be made clear by
rewriting it as

. N ISR 1 1\_
RVSC =g L[V (U u)]—uL[V((Z) ﬁ)m>]. (5.10)

These terms are particular to LES of low-Mach flows; they do not occur in
incompressible flows (where p is usually constant), or in high-Mach com-
pressible flows (where p is computable as one the resolved quantities).

We strongly suspect that these terms can be neglected, in analogy to those
in category 2.

4. The turbulent stress tensor 5FS and the sub-filter temperature flux qSS are
both commutation errors between the Favre filter, and multiplication by an
advecting field.

In other words, all terms are neglected in low-Mach flows, except those in the last
category, which also dominate in incompressible flows with constant fluid proper-
ties.
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5.2. Sub-filter Scale models

The oldest and most common form of LES is to model the effect of the sub-filter
stress tensor 75FS (Eq. 5.4) as a function of the resolved quantities, which Sagaut
[4] calls a *functional’ model. In particular, this is usually done in terms of the
resolved rate of strain, so that

-V (pt5FS) »~ v - (2u55F) . (5.11)

This has the same form as the viscous stress, and is therefore easy to implement:
the momentum equation is the same as for direct numerical simulation, except that
the kinematic viscosity becomes

v = ymolec 4 ysfs | (5.12)

where v™elec js the ‘molecular’ (i.e., actual, physical) viscosity, and vs's is the extra
viscous effect (‘eddy viscosity”) due to flow structures that are smaller than the LES
filter width.

The main challenge is to model vs in terms of computable quantities. Obvi-
ously it cannot be constant, because that would be come down to simulating the
equivalent flow at a lower Reynolds number. Instead vS is expressed in terms
of the velocity gradient. Since the fluid is assumed to have no memory, vS only
depends on the local value of Vu. As there is no clear best choice, we mention
several models below.

The sub-filter viscosity depends on the symmetric part of the computable veloc-
ity gradient, given by

1

This is not trace-free, but otherwise it is equivalent to the resolved rate of strain
S (Eq. 5.1). The anti-symmetric part of the velocity gradient corresponds to rigid
rotation, in which the relative position of the fluid particles does not change, and
which is assumed not to result in turbulent dissipation, and therefore not to affect
sts'

Since the sub-filter stress is supposed to model the physical phenomenon of
turbulent dissipation, it stands to reason that vss be a function of the invariants of
§. The main invariants of an arbitrary rank-2 tensor A in three dimensions with
eigenvalues 1; are trace (4) = A; + A, + A3, trace (42) = 23 + A3 + A3, and
trace (A%) = 23 + 23 + A3. The numerical velocity in an incompressible flow is
either exactly solenoidal, or very close to solenoidal (depending on the spatial dis-
cretization). Even in low-Mach number compressible flows, we can assume that
trace (S) = V - u has a much smaller impact on the turbulent dissipation than the
deviatoric part of §, and in any case most LES models for compressible flows are
straightforward extensions of incompressible models, so the first invariant does not
play a role.

The oldest and simplest model therefore expresses vsfs in terms of the second
main invariant of §:

Vssrfrsmg = Agmag V2 trace (§2) = Agmag 281k = Agmag V2 ”‘S”Frob . (5.14)



5.2. Sub-filter Scale models 87

Here ||-|lg,.1, is the Frobenius norm. This is known as the Smagorinsky model, and
it the most well known, the most researched, and probably still the most commonly
used.

The factor Agmag Still needs to be determined. It has the dimension of length,
and it is directly related to the filter width: larger values of Agp,,, damp more of the
small scales of the flow, lowering the maximum frequency in the Fourier transform
of the computed velocity. This is made explicit by writing

Asmag = Csmag A, (5.15)

where A is the LES filter width, and Cgm, is known as the Smagorinsky constant.
In practice A is usually coupled to the resolution of the spatial discretization. Given
a characteristic element length ¢, the universally accepted engineering practice is
to let A = 2¢. This typically results in both a modelling error (due to the sub-filter
flow structures, which are smaller than A), and a discretization error (because ¢ is
not much smaller than A).

A theoretical analysis of isotropic turbulence suggests that the Smagorinsky con-
stant is indeed the same for all flows [5]. Berselli et al. [6, pp. 71-77] estimate
it at Csmag ~ 0.17, whereas Sagaut [4, pp. 113-124] gives Cgpag ~ 0.148 Or
Csmag ~ 0.18. Extensive numerical experience has shown that these values are too
large for almost all flows and discretizations; it is too dissipative. Typically Cspag
is lowered to approximately 0.1 to achieve the right amount of total kinetic energy
removal, though this does not guarantee an optimal local structure of turbulent
dissipation.

Another shortcoming of the Smagorinsky model is that the dissipation does not
automatically vanish in the laminar layer near the wall. One possible solution is
to multiply Ag,.e by @ scaling factor. By far the most common is the Van Driest
damping function

fOH=1-e2"/25, (5.16)

where y* is the dimensionless wall distance, based on the wall shear stress (as
defined in Eq. 5.32 below). Another way of looking at this is that the LES method
implies a spatial filter through convolution with a filtering kernel, but a symmetric
kernel is not possible at the wall. The filter width is therefore gradually reduced to
zero near the wall.

It can be shown theoretically that vsf o (y+)3, though the above Van Driest
damping produces vss o (y+)2. Piomelli et al. [7] suggested a different damping
function that achieves the correct asymptotic behavior near the wall, but found
no significant improvement over Van Driest damping. See Inagaki [8] for a more
recent review.

Nicoud and Ducros [9] have argued that the Smagorinsky model is fundamen-
tally flawed because it does not include the effect of rotation, and proposed the
alternative WALE (wall-adaptive local eddy) viscosity model, which is based on the
square of the velocity gradient, that is,

(Bz)l.]. = (Vaug) (Veu;) . (5.17)
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Denoting
F=L[B?], (5.18)
we have
/2 3
(FerFi)’ IF s
V\?&SALE = AjyaLe 5/ WALE - 5/2 (5.19)

5/2 5 "
SSi)*? + (FFi) IS12s0s + 1222,

The idea is that [|F||,., and [|S]lg., Scale differently near the wall, so it is possible
to choose the exponents in Eq. 5.19 in such a way that we get the appropriate
visig = 0((y")3) behavior. The term IIFIIEQ,,O is only there to ensure that the
denominator is nonzero, giving the expression a somewhat artificial look, though
it has performed well in practice. (See [10] for an example with a discontinuous
Galerkin method.)

In analogy to Eqg. 5.15, the prefactor is related to the filter width:

AwaLe = CwaLg A . (5.20)

Nicoud and Ducros [9] chose the constant Gy g such that Egs. 5.14 and 5.19
predict the same amount of turbulent dissipation in homogeneous, isotropic tur-
bulence. This calibration gave Cyag =~ 0.5. Garnier et al. [3, p. 88] later

found (CWALE/Csmag)2 ~ 10.6, which comes down to Cyarg € (0.326,0.59) for
Csmag € (0.1,0.18). The widely used ANSYS-Fluent [11] software package sets
CWALE = 0.325 by default.

Finally, we consider the QR model, which has been introduced far more recently
than the Smagorinsky and the WALE models by Verstappen [12] in 2011. Rather
than focussing on physical reasoning, he assumed that the sub-filter scale flow
should not influence the larger structures, and then looked for the minimal value of
vSfs that meets this constraint. This involved an interesting analysis of the filtered
Navier-Stokes equations, resulting in’

trace (é‘ 3)
trace (§2)

s _ a2 |1SkiSmSmkl

vsfs = g2 1Pk1OmOmil , 5.21
Or = AorR g o QR (5.21)

making it the only model in this section that involves the third invariant of §. As
before, we can write

Verstappen [12] finds Cor = 1/m = 0.32. The sub-filter viscosity has proper
0((y*)*) behavior near the wall for constant Cor.

The prefactors (Asmags AwaLes Agr) in Egs. 5.14, 5.19, 5.21 can also be deter-
mined from the simulation itself, rather than depending on user-defined parame-
ters. This is done with the so-called ‘dynamic model’, originally introduced for the
Smagorinsky model by Germano et al. [13], who projected the numerical solution

2Note that the trace is the sum of the eigenvalues and S is symmetric, so trace (82) = 0. The denomi-
nator could theoretically vanish, but v(sgfl% is well behaved in the limit S;; — 0.
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onto a coarser solution space (e.g., a coarser grid). The LES model (in their case Eq.
5.14) is assumed to be valid on both the fine and coarse grids. Since the prefactor
A is assumed not to change between these two flow scales, it can be computed by
comparing the coarse and fine solutions. The dynamic Smagorinsky model displays

the correct 0 ((y+)3) asymptotic behavior, and has widely been found to yield far

better results than the ‘constant’ Smagorinsky model (i.e., with a user-defined con-
stant). (See, e.g., the comparisons and the very clear discussion in Vreman [14],
who also studied compressible flows.)

In the context of a high-order finite element discretization, the projection onto a
coarse grid could be replaced by a projection onto a lower-order polynomial space.
This has been done with a discontinuous Galerkin method by Abba et al. [15],
though it is not clear whether this is better than projecting onto larger elements.
It has also been implemented in DGFlows, but we do not use it in this chapter.
These different types of projections are reminiscent of p-multigrid and h-multigrid
solvers, which were mentioned in section 2.6.

A dynamic model also makes it easier to use a symmetric positive definite matrix
instead of a scalar for x5 in Eq. 5.11, which could in principal handle anisotropic
turbulence better. Abba et al. [15] found that an anisotropic p5 tensor indeed
gives superior results for in wall-bounded flow. Nevertheless using a scalar s is
far more common.

For the sub-filter heat flux we only consider the simplest model, which is based
on a turbulent Prandtl number Pr, that relates the effect of qSFS to t5FS. First we
assume that the sub-filter heat flux results in a net turbulent dissipation, analogous
to Eq. 5.11:

V-qSTS~ V- ((pa)SfS vﬁ) . (5.23)
Then we express (pa)*™ in terms of v with a turbulent Prandtl number:
sfs p vsfs
(pa)™" = Pr, (5.24)

where we have used the computable density p because that is the only directly
available value in a low-Mach number simulation. This is easy to implement: com-
pared to direct numerical simulation, only the fluid property k/c, = pa needs to be
adjusted to

pa = (pa)™ " + (pa)™ (5.25)

where (pa) is the ‘molecular’ (physical) fluid property.

The turbulent Prandtl number is usually chosen in the range (0.3,0.9) [3, p. 84].
Lesieur [16] derived a theoretical value of Pr; = 0.6. It can also be estimated with
a dynamic procedure.

molec

5.3. Numerical Simulation

5.3.1. Discretization
The spatial discretization is as described in the previous chapters, except for the
pressure stabilization for equal-order polynomial spaces for the pressure and the
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mass flux. The problem with the penalty term in the pressure equation (a2 in Eq.
2.7) is that it makes the linear system too stiff, and our implementation DGFLows
is not well-equipped to deal with this. See section 3.5.1 for a discussion of this
problem.

The calculations with equal-order discretizations in this chapter are therefore
stabilized by penalizing violations of the continuity equation, as has been suggested
by Krank et al. [17]. (See also the remarks in section 2.2.) We incorporate their
penalty terms into the momentum equation, so that we do not require a separate
projection step for the momentum, as they do. That is, the terms

a*(w,v)=ZfTe EWE VY fF{a}[[nF-w]] Inf-v]  (5.26)

TET FeFDi

and

rw =y Le(n-v) (n-mP) (5.27)

FeFD

are added to the bilinear and linear operators in the discrete momentum equation
(given by Eq. 2.10 for time-independent flows). Here 7 is a characteristic length
of the element; we use the value

1/d

for a d-dimensional element with polynomial order #,, for the mass flux, and do
not investigate other estimates.

Note that a* and [* couple the directions of the mass flux. Previously they
were only coupled implicitly in the pressure projection (and, less importantly, in the
viscous stress). We solve the momentum equation for all directions simultaneously.

The penalty parameter 6 has the same dimension as the velocity, and Krank
et al. [17] used the natural 8 = |u| := vu-u. This makes a* and [* nonlinear in
u, which could presumably be handled efficiently by basing 8 on an extrapolation
of u from previous time steps. More problematically, the term a* would need to be
reassembled at every time step. In our implementation this takes a significant part
of the total calculation time.

We therefore use the alternative form

6 =(lul) , (5.29)

where (-) denotes the average over time and over the homogenous directions. This
means that 6 is time-independent, so that a* and [* can be precomputed. In Eq.
5.26 the penalty parameter is an average of the neighbors of the faces, but taking
the maximum value would also have seemed reasonable to us. For the present
calculations it makes no difference, since the above form of 6 is virtually continuous
at the element boundaries.



5.3. Numerical Simulation 91

5.3.2. Including a Variable Density

This chapter will only present a simulation with a constant density. As explained in
section 5.1, LES of low-Mach number flow requires models for the same sub-filter
scale terms as for constant-density flows. The results for incompressible flows are
therefore directly relevant for variable-density flows.

It would nonetheless have been interesting to include a variable-density test
case. A low-Mach number flow would pose new challenges, such as a stronger
coupling between the sub-filter heat flux and the momentum equation, due to the
temperature-dependent density. Unfortunately our limited computational resources
do not allow for this.

The problem is that the transport equations in the form of Egs. 1.1a—1.1c with
a non-constant p are only well-posed when there is an outflow boundary condi-
tion. This would require an inlet with an expensive turbulent inflow generator.
The simulation must furthermore describe a developing flow, which requires a far
larger domain than when there are periodic boundary conditions. Nemati [18] has
nevertheless simulated developing low-Mach number flow. He used a specialized
implementation that depends on the specific geometry of pipe flows, which have
one main flow direction, and where solving the Poisson equation might have been
sped up with a fast Fourier transform.

Of course a variable-density flow can also be simulated with a compressible
solver at a low, nonzero Mach number, though this is probably far more expensive
than using the transport equations in the low-Mach number limit. Examples include
[19], [20], and [21], who all required generic massively parallel solvers with some
of the world’s largest supercomputers. These authors performed direct numerical
simulation of CO, at a supercritical pressure.

A computationally more efficient approach is to introduce a variable thermody-
namic pressure pt. The density then becomes a function of both the temperature
T and pt*, which makes the governing equations well posed with periodic boundary
conditions (i.e., a closed domain). The enthalpy equation in low-Mach number limit
gets an extra term dpth/dt, as explained in the seminal paper by Rehm and Baum
[22]. The thermodynamic pressure is updated after each time step. Nicoud [23]
was one of the first to present a direct numerical simulation of variable-density flow
in this manner. See also the review in Knikker [24]. Avila et al. [25] have also
included an LES model with the variable density.

These authors have all assumed an ideal gas. This is almost always done in the
literature, though a notable exception is the work by Accary et al. [26, 27], who
used a more general Van der Waals equation. We are not aware of similar papers
with an arbitrary equation of state.

A dubious alternative approach to cheap variable-density flow calculations was
taken by surprisingly many authors [28-30], who simulated supercritical fluids in
closed domains, but ignored the effect of the thermodynamic pressure on the den-
sity. That is, they left out the dpt™?/dt term in the enthalpy equation, and computed
the equation of state at a fixed p'", so that p was merely a function of h. This re-
sults in @ mathematically ill-posed problem, because the continuity equation implies
a constant the total fluid mass (due to the closed domain), whereas the enthalpy
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Lx=60

Figure 5.1: Geometry of the infinite plane channel.

equation implies a fluctuating total mass (due to the imposed heat flux and the fact
that p = p(h)). The results in these papers are therefore fundamentally irrepro-
ducible.

The authors have in common that they focused on physical interpretations of
the CFD results, rather than on the numerical method. Their computations were
probably helped by the fact that they used finite difference schemes, which do not
conserve the global mass. In one case [30], we know from a private conversation
with one of the authors that the simulations were kick-started with an artificial mass
sink in the continuity equation, to allow for the average temperature to rise after
the initial condition. It is possible that the conclusions in [30] hold despite the
mathematical inconsistency, because they are based on local fluctuations, which
are perhaps not strongly influenced by the global conservation of mass.

5.4. Test Case: Infinite Plane Channel Flow

This section describes a numerical simulation of flow between two planes. The
geometry is shown in Fig. 5.1. The origin is placed between the two planes, so that
—6 < y < 8. The boundaries are periodic in the x- and z-directions to approximate
flow between infinite planes.

The flow is driven by a homogeneous, constant volumetric force F = [F,, 0, 0]
and volumetric heat source Q. The top and bottom planes have Dirichlet boundary
conditions for the velocity (ul,_, s = 0) and the temperature (T|,_,5 = Twan)- The
setup and the time-averaged quantities are therefore symmetrical about y = 0, and
homogeneous in the x- and z-directions.
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5.4.1. Dimensionless Analysis
The following dimensionless quantities are defined in the usual way, based on the
average shear stress 7, at the wall. The characteristic friction velocity at the wall

is u; == /Twan/p, and from that follows

the friction Reynolds number: Re; :== u R, /v = u6/v ; (5.30)
the turn-over time: tt = tu, /s ; (5.31)
the wall distance: y*t=y*u,/v=(y*"/8)Re,, (5.32)
where a
Ry = ow area _s5 (5.33)

wetted perimeter

is the hydraulic radius, and y* = § — abs(y) is the dimensional distance from the
wall.

The desired Re; is chosen as a free parameter. Since the average wall friction
Twall Dalances the volumetric force, this fixes the volumetric force at F, = 1.1 /Ry =
Twan/6. The average velocity in the domain is therefore a result of the computation,
not an input parameter.

Many authors have taken the opposite approach by choosing a bulk Reynolds

number D AR
hUbulk hUbulk
Repu = — — = o —, (5.34)
which is based on the hydraulic diameter D;, := 4R, and the time-averaged bulk

velocity

1 1
u =— uy = — up . 5.35
bulk ”Qllleb fQ 1 26 |y|<5 1 ( )
The volumetric force is then adjusted dynamically during the simulation to get the
desired Rey, . The disadvantage of that approach is that the results are less
reproducible, because the actual imposed force E, is unknown.
The two Reynolds numbers Re, and Re, ;. are related by the Darcy-Weisbach
equation

p
Y=/ 2D, Uf e s (5.36)
where f; is the Darcy friction factor. Dimensionless analysis shows that f is only

a function of Rey 1 (e.g9., [31, pp. 177-184]). The friction Reynolds number can
be expressed in terms of the volumetric driving force as

Re. Rnp RhP Tyall RhP RhF
Cri= = =

(5.37)

Substituting the Darcy-Weisbach equation and the definition for the bulk Reynolds
number gives RCT = Rebulk (Rh/Dh) N (Rh/Dh) (fD/Z , Or

128 11.3

f_D € = E Re (538)

Repuik =
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We have surprisingly not seen this relation in previous literature, although it holds
for all channel geometries.

The friction factor can be estimated by using measurement data from turbulent
pipe flow. If the Reynolds number is sufficiently large, then the curvature of the wall
is negligible compared to the size of the flow structures near the wall, which jus-
tifies a comparison between channels of different geometries. The semi-empirical
Colebrook-White correlation for smooth circular pipes is®

(5.39)

1 A
— =-2log,, (—) = —2log,, (—
N ! Vo Repui Re

with A = 2.51. This is valid for Rey . > 4.0 - 103, or, equivalently, Re, > 71.

5.4.2. Initial Condition

We are interested in turbulent flow, which is not obtained with all initial conditions.
A turbulent channel flow can only be sustained above a certain critical Reynolds
number, whereas the laminar solution

laminar 3 y 2
u =Upulk E 1 _(E) , 0,0

, 52Q ¥\
Tlammar =Tar1 + W (1 — (5> )

is stable at all Reynolds numbers, making it unsuitable as an initial condition.

A standard approach is to perturb the laminar solution vector with a random
number generator. For the present discretization, such a perturbation is quickly
damped by the viscous stress, because many degrees of freedom correspond to
high-order basis functions. This phenomenon of laminarization after a high-frequency
perturbation has been well known in the CFD community for a long time (e.g., [33]),
and has more recently also been established experimentally [34].

The laminar velocity field is therefore perturbed by both a random solution vec-
tor, and the arbitrarily chosen large-scale solenoidal structure

(5.40)

sin(2rz) sin(y/§)
0.10 ubulkE (1 - (X)2> 0 ’ (541)
2 6 sin(2mx)

which induces a turbulent solution.

5.4.3. Domain Size and Mesh

The domain should be large enough to encompass the largest physical structures
of the flow between two infinite planes. This can be checked a posteriori by inves-
tigating the correlation between the turbulent fluctuations at various points in the

3There are many other commonly used correlations, but they have no independent value, as they are
designed to approximate the Colebrook-White correlation. See, e.g., the discussion in Zigrang and
Sylvester [32].
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domain. For any two points that are half a domain size apart in the x- or z-direction,
the correlation should be negligible.

Our domain size is based in part on the correlation coefficients that are reported
in [35] and [36]. Piomelli et al. [37] investigated various domain sizes more sys-
tematically, and concluded that (L,,L,,L,) = (68,26,36) is ‘marginally sufficient’
for second-order turbulent statistics at our Reynolds number, so this is what we
use.

Our setup is meant to reproduce one of the test cases in Patel et al. [30],
who performed direct numerical simulation (DNS) at Re, = 395. This is a popular
Reynolds number, presumably because it was used in the landmark paper by Moser
et al. [36]. Following Patel et al. , the fluid properties are kept constant, and Pr = 1.

The element sizes in the inhomogeneous y-direction are based on a tanh grid
spacing. More precisely, the element boundaries are located at y/é € {fi}?’:O with

n(y (2
& = an t(;n(}fy 1)) : (5.42)

Herey > 0 is a stretching parameter, with y — 0 corresponding to a uniform element ﬂ
size. The parameters y and N are fixed implicitly by choosing the minimum and
maximum element widths (Ay™" and Ay™2%) at the wall and in the center of the
channel.”

We place the first element boundary at y* = 2. Other authors have suggested
putting the first grid point at approximately y* = 1 or y* = 2 when using a high-
order finite-difference scheme, which normally cannot attain its full order of accu-
racy near the wall. It is unclear whether a discontinuous Galerkin method permits
a larger wall element width, though de Wiart et al. [38] have obtained accurate re-
sults with wall elements at y* = 2.5, using a third-order tensor-product polynomial
space. We set N = 46 and y = 2.2132, so that the first element boundary is at
y* = 2.00, and the maximum element width is 38.8 wall units.

The element widths in the homogeneous x- and z-directions are constant through-
out the domain. This is by far the most common in the literature, though Collis
[39] has argued that the geometric flexibility of the discontinuous Galerkin method
should be used to refine the elements at the wall in the x- and z-directions, so
that their aspect ratios do not become too large. Previous authors have used many

4This entails solving the nonlinear coupled equations &; — & = Ay™™ and &, — &m_q = Ay™2F with
m := [N /2] for (y, N). By assuming N >» 1 (which is normally the case), the index i can be treated as
a continuous variable, giving the estimates

. & 2y/N 1 0&; 2y/N
aymin » 2t _ 2/ — and aymxa 28 L (5.43)
di|,_, tanhy cosh’y ai i=N/2 tanh y
resulting in a ratio of the element widths of
ymax 1
i =cosh’y + 0 (N) . (5.44)

We found that y ~ cosh™!,/ymax/ymin s very close to the actual solution for all (y™i?, y™ax), and
that a fixed-point iteration always converges with this initial guess.
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different aspect ratios for the minimum elements in the bulk; we use Az/Ay = 1
and Ax/Az = 2, resulting in element widths in the x- and z-directions of 77.6 and
38.8, as measured in wall units.

5.4.4. Results

We are interested in the ensemble averages of various quantities over many re-
alizations of the flow, which are called the Reynolds averages, denoted by angle
brackets (e.g., (T), (my), ...). The turbulent fluctuation is defined as the instanta-
neous deviation from the Reynolds average, that is,

¢ =¢—(¢) . (5.45)

In practice the ensemble average is assumed equal to the time average, which can
be estimated from a single computation or experiment that runs for a sufficiently
long time.

Besides the first-order statistics (u;) and (T), we are also interested in the
Reynolds stress

<u§u}> = (uu;) — (w) (w) , (5.46)
and the turbulent heat flux
(") = ;T — (u)(T) . (5.47)

These second-order statistics are commutation errors between the Reynolds aver-
age and multiplication, so they come up when Reynolds-averaging the convective
terms in the incompressible Navier-Stokes equation.

The temperature can be made dimensionless in various ways; we use the ref-
erence value

2
77l := Re; ' —SkQ .

The group §2Q/k contains diffusion-related quantities, and can also be seen in the
laminar solution (Eq. 5.40). The factor Re;" takes convective heat transfer into
account, and is meant to let (T/77) depend less on the Reynolds number, since
(T) decreases with increasing Re;.

For our test case the quantities can also be averaged over the homogeneous
directions, making the averages converge far more quickly. The quantities of in-
terest are sampled every 20 time steps. They are projected onto the eighth-order
polynomial space in the y coordinate in each element, so that no information is lost.
The averages are based on approximately 10 turn-over times.

We also average the two values in the lower and upper halves of the domain
(i.e., where y < 0 or y > 0). This does not work for the stresses involving u, (i.e.,
(uiub) and (T'uj)), because they are antisymmetric about y = 0. Therefore we will
instead report values based on

(5.48)

Uy = Uy sign(y) = tu, for £y >0, (5.49)
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which is the component of the velocity toward the closest wall. This yields sym-
metric stresses (ujuj,) and (T"u),). These could also be interpreted as the usual
stresses (ujuj) and (ZT’u’Z) in the upper half of the domain.

Figure 5.2 shows the error in the average velocity profiles for a model-free high-
order simulation (UDNS3,), a coarser model-free lower-order simulation (uDNS,,),
and two LES simulations based on the coarser discretization (WALE and Smag.). The
time step size is given by (u,/8)6t = 1073, resulting in @ maximum CFL number of
approximately 0.7 in the flow direction on the coarse grid. The error is based on
the DNS data in Moser et al. [36]. The figure also shows that the difference with
the DNS data in Patel et al. [30] is negligible.

For comparison, the results of the LES by Singh, You, and Bose [40] are also
shown (indicated by SYB). They varied the spatial discretization independently from
the LES filter width, resulting in a grid-independent (i.e., fully resolved) LES. They
used a dynamic Smagorinsky model with LES filter widths in the x-, y-, and z-
directions of (78, 0.53-60, 39) (measured in wall units). Ours are comparable:
approximately (72, 1.9-36, 36). We find that their results are approximately as ac-
curate as our coarse-grid calculations, regardless of whether we use an LES model,
and despite the fact that we do have a discretization error.

Figure 5.3 shows the averaged sub-filter effective viscosities for the three LES
models that were discussed in section 5.2. These were obtained from a calculation
without an LES model. (Using, e.g., @ WALE model might dampen v§$; . more than
the other sub-filter scale viscosities, which would have distorted the figure.) The
sub-filter terms display clear discontinuities, showing that the eddy viscosity is not
just a physical model, but that it is closely linked to the discretization.

One of the most important quantities for engineering purposes is the bulk ve-
locity, given by Eq. 5.35. Table 5.1 lists the results. For comparison, the bulk
velocity can also be determined from the Darcy friction factor. From Eg. 5.38 and
the definitions of the Reynolds numbers (Egs. 5.30 and 5.34),

Ubulk _ Repun/4 _ [ 8
Ur Rer fD

(5.50)

The bulk velocity is overestimated in all calculations except the DNS.

For further validation, figures 5.4 and 5.5 compares the averaged stresses for
the model-free high-order simulation (uDNS;,) to the DNS data from [36] and [30],
which are practically exact solutions. Our first-order statistic ((u,)) is more accu-
rate than the LES data (SYB), whereas the second-order statistics (the Reynolds
stresses) are less accurate. Possible explanations include their dynamic LES model,
and our small domain. Overall the results are satisfactory.

5.5. Discussion

This chapter has presented a large eddy simulation of turbulent plane channel flow.
The results are comparable to previous literature.

Interestingly, the no-model approach (i.e., ‘unresolved DNS’, denoted by uDNS)
yields more accurate results than the WALE model. This could be because the locally
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Figure 5.2: Relative deviation of (u, ) from the DNS reference data (u, )y, in Moser, Kim, and Mansour
[36]. See Table 5.6 for the meaning of the labels.
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Figure 5.3: Average values of the suf-filter scale (SFS) viscosity for various LES models (vss,fﬁag in Eq. 5.14,

Vil in Eq. 5.19, and v&fs in Eq. 5.21), obtained from the uDNS;, calculation (see Table 5.6).
Scaled such that each element looks the same size; the vertical lines indicate the element boundaries.
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Figure 5.6: Abbreviations used in Figs. 5.4-5.3 and Table 5.1.

PBP DNS reference data from Patel, Boersma, and Pecnik [30], accessed
through [41]

MKM DNS reference data from Moser, Kim, and Mansour [36], accessed
through [42]

SYB LES reference data from Singh, You, and Bose [40].

Fully resolved; only contains LES model error

uDNS,, present simulation without an LES model (i.e., unresolved DNS) with
P =Py =Py = 2.

WALE same as uDNS,,, but with an WALE LES model

Smag. same as uDNS,,, but with a Smagorinsky LES model

uDNS;, same as uDNS,,, but with a higher order of approximation for m:
Pn=3and P, =P, =2




References 101

Table 5.1: Bulk velocity implied by various simulations. See Table 5.6 for the labels. The Colebrook-White
estimate is based on Egs. 5.39 and 5.50.

Upuk/U;  deviation from MKM

MKM 17.6

PBP 17.5 -0.10%
SYB 20.0 14%
uDNS,, 19.9 13%
uDNS;, 18.5 5.1%
WALE 21.0 20%
Smag. 20.7 18%
Colebrook-White 18.4 4.7%

conservative spatial discretization acts as an implicit LES ('iLES") model, analogous
to iLES models for finite volume discretizations (e.g., [43]). Recent research indeed
indicates that a DG discretization with a high-order polynomial space is an low-pass
filter (e.g., [44—46]). Furthermore, note that (u?), (u3?), and (u}?) are not equal in
the bulk of the fluid, at y = 0, that is, y* = Re, = 395, as can be seen in Fig. 5.4.
The anisotropic Reynolds stress means that the effect of the walls is present in the
whole fluid. It is therefore not surprising that a fixed-coefficient (i.e., non-dynamic)
isotropic LES model does not model the dissipation well.

We also found that lowering the time step size degrades the solution quality. This
could be explained by implicit temporal filtering due to the temporal discretization
error, which might damp spurious oscillations. This can be compared to the findings
by Meyers and Sagaut [47], who observed that coarser grids can sometimes result
in more accurate predictions of the mean flow.

Meyers and Sagaut [47] also emphasize that, while a turbulent channel flow
is easy to handle with some discretizations, it is not an easy LES test case. This
is because the turbulent flow structures are generated at the walls, whereas LES
models have traditionally been better at capturing the physics in isotropic flow in
the bulk.

We stress that the discontinuous Galerkin method is fundamentally an unstruc-
tured discretization. Itis'blind’ to any geometrical symmetries, and does not change
its approximation scheme depending on the direction, as is common for finite dif-
ference in channel geometries. Infinite plane channel flow is therefore a relatively
difficult test case with our discretization.
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Conclusion

The previous chapters have treated various discretizations in computational fluid
dynamics without an overarching theme. The conclusions and their relevance are
therefore best described by considering the chapters separately.

Chapter 2 has explained our discontinuous Galerkin method, which differs from
most other literature on two minor points. First, the penalty parameters (for the
interior penalty and Lax-Friedrichs numerical fluxes) are evaluated in a pointwise
manner, rather than being averaged over the face, or a neighboring element. Sec-
ond, the convection at Dirichlet boundaries is treated correctly, which is not the
case in most of the listed references. In practice these points might not make
much difference to the numerical outcomes.

The pressure correction method in chapter 3 is almost completely standard.
The one peculiarity is that the projection step (Eq. 3.10) contains a penalty ma-
trix, which is a consequence of using an equal-order finite element discretization.
As explained in section 3.5.1, this incurs a substantial computational cost at high
Reynolds numbers and small time steps, though this problem could be particular to
our implementation and solver.

Chapter 4 treats the variable density in great detail. We pay particular attention
to the most convenient form of the enthalpy equation (primitive or conservative) and
whether to solve for the specific enthalpy or the volumetric enthalpy. Each approach
has its own challenges; it is not completely clear which is best. We decided to solve
for the specific enthalpy from the conservative form of the transport equation.

The biggest potential problem with this choice is that it complicates the temporal
discretization of the enthalpy, which can destabilize the calculation, or degrade the
order of convergence. It was shown that these problems can be addressed by a
simple modification of the finite difference scheme (‘method #2"), and by ‘offsetting’
the specific enthalpy with a constant h,. The choice of this enthalpy offset was
central to stabilizing the coupled transport equations with a temperature-dependent
density.
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The value of h, would also have been important if we had solved for the vol-
umetric enthalpy (as explained in section 4.1.2), because it determines whether
there is a one-to-one relation between the volumetric enthalpy and the density. It
is therefore surprising that we have not seen this mentioned previous literature.
Hopefully the discussions in chapter 4 are useful to the development of other nu-
merical methods for low-Mach number flows.

Chapter 5 features turbulent flow simulations between two infinite planes. This
geometry was chosen for the abundance of high-quality reference data and its pe-
riodic boundary conditions, which reduce the computational cost, because there
are fewer walls that require grid refinement. The discontinuous Galerkin method
and our solver are fundamentally unstructured, and do not exploit the simplicity
of the geometry. The test case is therefore no less challenging than if the mesh
were ostensibly more complicated. Our LES models have also been used by others
with similar discretizations, so our results add little to the existing body of litera-
ture, though they can be considered further validation of the spatial and temporal
discretizations in chapters 2-3 and their implementation.
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