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AN-GCN: An Anonymous Graph Convolutional
Network Against Edge-Perturbing Attacks

Ao Liu , Student Member, IEEE, Beibei Li , Member, IEEE, Tao Li ,
Pan Zhou , Senior Member, IEEE, and Rui Wang

Abstract— Recent studies have revealed the vulnerability of
graph convolutional networks (GCNs) to edge-perturbing attacks,
such as maliciously inserting or deleting graph edges. However,
theoretical proof of such vulnerability remains a big challenge,
and effective defense schemes are still open issues. In this article,
we first generalize the formulation of edge-perturbing attacks
and strictly prove the vulnerability of GCNs to such attacks in
node classification tasks. Following this, an anonymous GCN,
named AN-GCN, is proposed to defend against edge-perturbing
attacks. In particular, we present a node localization theorem
to demonstrate how GCNs locate nodes during their training
phase. In addition, we design a staggered Gaussian noise-based
node position generator and a spectral graph convolution-based
discriminator (in detecting the generated node positions). Fur-
thermore, we provide an optimization method for the designed
generator and discriminator. It is demonstrated that the AN-GCN
is secure against edge-perturbing attacks in node classification
tasks, as AN-GCN is developed to classify nodes without the edge
information (making it impossible for attackers to perturb edges
anymore). Extensive evaluations verify the effectiveness of the
general edge-perturbing attack (G-EPA) model in manipulating
the classification results of the target nodes. More importantly,
the proposed AN-GCN can achieve 82.7% in node classification
accuracy without the edge-reading permission, which outper-
forms the state-of-the-art GCN.

Index Terms— Anonymous classification, general attack model,
graph adversarial attacks, graph convolutional network (GCN).

I. INTRODUCTION

GRAPH is the core for many high-impact applications
ranging from the analysis of social networks, over

gene interaction networks, to interlinked document collec-
tions. In many tasks related to the graph structure, node
classification, predicting labels of unknown nodes based on a
small number of labeled known nodes, is always a hot issue.
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However, vulnerabilities of node classification have been grad-
ually explored. Only slight deliberate perturbations of nodes’
features or graph structure can lead to completely wrong
predictions, which leads to a critical issue in many application
areas, including those where adversarial perturbations can
undermine public trust [1], interfere with human decision
making [2], and affect human health and livelihoods [3]. As a
representative example, in the fake news detection on a social
network [4], adversaries have a strong incentive to fool the
system by the concealed perturbation to avoid detection. In this
context, a perturbation could mean modification of the graph
structure (inserting/deleting edges in the social graph).

Perturbing feasible edges ergodically are widely exploited
in constructing edge-perturbing attacks. Through the message
passing [5] driven by end-to-end training, perturbations can
pass to the target along the edges. To obtain the optimal
perturbations sets, the attackers often design constraints to
restrict the perturbations while perturbing ergodically. The
most significant constraints are attack success rate [6] and
the concealment of the selected perturbations [7]. Due to
the discrete characteristic of the graph, the attacker can
always obtain an optimal set of perturbations, which satisfy
the abovementioned constraints, thus further manipulating the
classification result of the target node. In this way, the defender
always lags behind the attacker [8], so we should assume that
the attackers can always destroy them in the future [9].

Existing defense schemes against edge-perturbing attacks
fall into the following two categories.

1) Adversarial Training (AT)-Based Schemes: AT aims at
adapting the model to all possible potential perturba-
tions. Through optimizing two neural networks alterna-
tively through two-player game [10], AT can increase
the robustness of the model to perturbations [11].

2) Robust Aggregation-Based Schemes: Robust aggregation
aims to design a robust aggregation function [12] of
graph convolutional networks (GCNs), and it enables
GCNs to identify and filter the potential perturba-
tions [13].

However, with the underlying assumption that all edges are
perturbable, a malicious adversarial graph may introduce a big
challenge to the robustness of GCNs, which can compromise
the abovementioned two types of schemes (in Section VI-A,
we show that the state-of-the-art defense scheme [14] is
vulnerable to the edge-perturbing attacks, 72.8% nodes under
protection are misclassified to the target categories). In partic-
ular, these weaknesses include the following.
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1) Though AT is very effective in defending against adver-
sarial attacks in computer vision and natural language
processing, it is not suitable for graphs, because there is
no boundary for the malicious perturbations on graphs
that hold more complex structures than image or text
data. Although some studies [15], [16] quantified the
upper bound of the number of perturbations, it is still
nonintuitive. Compared with computer vision, the pertur-
bations on images are limited to cannot be observed by
naked eyes, which can significantly reduce the range of
feasible perturbation. This leads to a strong constraint to
the AT in computer vision. However, GCNs suffer from
the over-smoothing issues [17], which keeps the proper-
ties of adjacent nodes to be consistent. In other words,
it is difficult to adapt GCNs to all feasible perturbations
while not compromising the model’s utility, attributed to
the nonintuitive upper bound of perturbations.

2) Robust aggregation quantifies each step of message
passing. A robust aggregation function is a necessary
condition of the benign message passing. However, high-
epochs end-to-end training will bring huge data flow to
the model. As the perturbations are designed maliciously
and the robust aggregation function is built upon the
manual rules, well-designed perturbations can damage
the preset rules of the aggregation function with the
increase in the epoch.

In this article, by deconstructing the message passing driven
by GCNs, we first demonstrate the vulnerability of the precon-
ditions of GCNs, i.e., the edge-reading permission to GCNs
is prone to be abused by adversarial attackers. We further
withdraw the edge-reading permission of GCNs to defend
against such edge-perturbing attacks. The motivation of our
work comes from the inherent observations of the phenomenon
that attackers can always rewire the graph topology by utilizing
the edge-reading permission to the graph database in practical
scenarios, thus misleading the node classification results by
the GCNs. As an illustrational example, in financial social
networks, users and their social connections can be formed
as a graph, and the credit of users in the graph can be
predicted by GCNs [18]. For ensuring the prediction to be
accurate, the graph database must open its access permission
to the GCN model. This leaves a big chance for attackers to
modify the relationship between users and further significantly
improve the credit of the target user maliciously. For another
example, in anomaly detection for cloud components, rela-
tionships between system components are usually organized
by subjective metrics, which is also the necessary input for
GCNs. As organized modeling metrics are exposed [19],
[20], the attackers are able to calculate the cloud components’
topology themselves maliciously and further modify metrics
between components, thus successfully hiding the anomalous
components.

The aforementioned examples once again reveal the vulner-
ability of GCNs. To design an effective defense scheme against
adversarial attacks, in this article, we demonstrate the precon-
ditions that cause GCNs vulnerable. In particular, we unify
the existing manual perturbation-based edge-perturbing attacks
into an automatic general edge-perturbing attack (G-EPA)

model. G-EPA, built upon a surrogate GCN, can reduce a
complete graph to an optimal attack graph restricted by both
attack concealment and success rate. It may compromise many
state-of-the-art defense schemes [14]. As G-EPA is a unified
representation of edge-perturbing attacks, we demonstrate the
vulnerability of GCNs through the mathematical formula; i.e.,
GCNs are vulnerable if they directly take edges as inputs.

Following this, we propose an anonymous GCN (AN-
GCN) to withdraw the edge-reading permission of the GCNs.
AN-GCN eliminates the opportunity for attackers to contact
edge information, which is effective for defending against
edge-perturbing attacks in realistic scenarios. If the attacker
wants to modify the input data of a graph-learning system
protected by a well-trained AN-GCN, they will lose the ability
on locating the specific target node, because the only node
features are stored in the graph database. Corresponding to
the abovementioned illustrational examples, in financial social
networks, AN-GCN can handle relationships between all users
anonymously, so as to lose the possibility of constructing
edge-perturbing attacks. In the anomaly detection for cloud
components, even if the attacker calculates the metrics
between components according to the reported methods,
the anonymity of AN-GCN itself will refuse to accept any
edges as the inputs. This invalidates all potential malicious
perturbations. In particular, first, we state a node localization
theorem, which formulates how GCNs locate specific nodes
during its training phase. For the proof, by regarding the
feature change of each node in the training phase as the
independent signal vibration, we map the signals of all nodes
to the Fourier domain. Thus, we unify the nodes’ signals to
the same coordinate system. Finally, we build the node signal
model to figure out how GCNs deconstruct the initial inputs
to keep the node fixed in its position during message passing
driven by GCN, thus proving the stated node localization
theorem. Benefiting from the proposed theorem, we can
directly generate the nodes’ positions by a generator (a fully
connected network) to replace the corresponding part in GCN.
To ensure the effectiveness of the generation of the node
position, we improve the pioneering spectral GCN [21] to a
discriminator, which tries to detect nodes with the generated
positions. As the discriminator is a self-contained GCN,
it can classify nodes with generated positions accurately once
the abovementioned two-player game is well played.

In our proposed AN-GCN, the positions of nodes are
generated from the noise randomly, while ensuring the
high-accuracy classification; that is, nodes are classified
while keeping anonymous to their positions. As the edge
decides the node position, the anonymity of the position
eliminates the necessity of edge reading for AN-GCN, thus
minimizing the possibility of modifying edges. This effectively
addresses the vulnerability of GCNs. Our main contributions
include the following.

1) We propose an AN-GCN without the necessity of edge
reading while maintaining the utility of classification.
This ensures that neither role (including attackers) can
read the edge information, so as to essentially defend
against edge-perturbing attacks.
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2) We unify the existing edge-perturbing attack construc-
tion methods as a general attack model and further
demonstrate the preconditions for the vulnerability of
GCNs; i.e., the edge-reading permission to GCNs is
prone to be abused by adversarial attackers.

3) We state a node localization theorem to formulate how
GCNs locate nodes during the training phase, which
provides a theoretical basis for the proposed AN-GCN.

The rest of this article is organized as follows. Section II
reviews the state-of-the-art literature. In Section III, for
demonstrating the preconditions of the GCNs vulnerability,
we introduce the G-EPA model. In Section IV, we prove
the node localization theorem. In Section V, we elaborate on
the proposed AN-GCN, including the generator, discriminator,
and training method. In Section VI, we evaluate the correctness
of the stated theorem, the effectiveness of the introduced G-
EPA model, and the anonymity of the proposed AN-GCN.
Section VII concludes this article.

II. RELATED WORK

A. Graph Attacks Against GCNs

Dai et al. [15] and Zügner et al. [16] first proposed adver-
sarial attacks on graph structures, after which a large number
of graph attack methods were proposed. Specific to the task
of node prediction, in 2019, Aleksandar et al. [22] pro-
vided the first adversarial vulnerability analysis on the widely
used family of methods based on random walks and derived
efficient adversarial perturbations that poison the network
structure. Chang et al. [23] attacked various kinds of graph
embedding models with black-box-driven method. Wang and
Gong [24] proposed a threat model to characterize the attack
surface of a collective classification method, targeting on
adversarial collective classification. Basically, all attack types
are based on the perturbed graph structure targeted by this
article. Ma et al. [7] studied the black-box attacks on graph
neural networks (GNNs) under a novel and realistic constraint:
attackers have access to only a subset of nodes in the network.
In 2021, Xi et al. [25] proposed the first backdoor attack on
GNNs, which significantly increases the misclassification rate
of common GNNs on real-world data.

B. Defenses for GCNs

Jin et al. [26] used the new operator in replacement of the
classical Laplacian to construct an architecture with improved
spectral robustness, expressivity, and interpretability. Zügner
and Günnemann [27] proposed the first method for certifiable
(non-)robustness of GCNs with respect to perturbations of the
node attributes. Zhu et al. [28] proposed robust GCN (RGCN)
to automatically absorb the effects of adversarial changes in
the variances of the Gaussian distributions. Some defense
methods use the generation to enhance the robustness of the
model. Deng et al. [29] presented batch virtual AT (BVAT),
a novel regularization method for GCNs. By feeding the model
with perturbing embeddings, the robustness of the model is
enhanced. But, this method trains a full-stack robust model for
the encoder and decoder at the same time without discussing
the essence of the vulnerability of GCN. Feng et al. [30]

proposed the graph adversarial training (GraphAT), which
considers the impact from connected examples when learning
to construct and resist perturbations. They also introduce an
adversarial attack on the standard classification to the graph.
Tang et al. [31] investigated a novel problem of improving the
robustness of GNNs against poisoning attacks by exploring a
clean graph and created supervised knowledge to train the abil-
ity to detect adversarial edges, so that the robustness of GNNs
is elevated. In 2021, Liao et al. [32] proposed a framework
to locally filter out predetermined sensitive attributes via AT
with the total variation and the Wasserstein distance, further
provided a robust defense across various graph structures and
tasks. To cope with the scarcity of training data, they proposed
an adversarial contrastive learning method to train GCNs in a
conditional adversarial manner by leveraging high-level graph
representation. But, from a certain point of view, they still used
the method based on node perturbation for AT. This method
is essentially a kind of “perturbation” learning and uses AT to
adapt the model to various custom perturbations.

III. VULNERABILITY OF GCNs

In this section, we introduce a general attack model called
G-EPA and prove the preconditions of GCNs’ vulnerability.
In particular, in Section III-A, we reformulate the encoding
and decoding in the GCN. In Section III-B, we formulate the
general attack as G-EPA. In Section III-C, we demonstrate the
vulnerability of GCNs. In Section III-D, we give case studies
to elaborate on how to attack a specific model.

A. Graph Convolution Encoding, Decoding, and Training

Let G = ( f, E) be a graph, where f = ( f (1), . . . , f (N))�
is a set of features of N nodes, f (i) is the feature vector
of node i , and E is the set of edges that also decides the
positions of all nodes. The adjacent matrix A ∈ RN×N and
degree matrix D ∈ RN×N can be calculated according to E .
The laplacian matrix � of G can be obtained according to D
and A. The one-hot encoding of node categories on G is Y .
As A is calculated by E , the graph structure (simultaneously,
node positions) can be represented by A. We reformulate the
training phase of the model by the following steps.

Encoding: Encoding is a node feature aggregation [33]
according to the topology of E . The graph convolution model
maps f into the embedding space f e = ( f e(1), . . . , f e(N))�
through trainable parameter θ E , while f e(i) denotes the
embedding feature vector of node i . Let ENC(·) denote the
encoder, and the encoding process is denoted as

f e = ENC
�

f ; A, θ E
�
. (1)

Encoding can represent the discrete graph structure into a
continuous embedded space [34], which can learn to rep-
resent graph nodes, edges, or subgraphs in low-dimensional
vectors [35]. The encoded graph can be intuitively observed,
according to the existing visualization method [36].

Decoding: Then, the model decodes f e to the one-hot label
space L ∈ Rnc×1 through the decoder DEC(·) (in general, it is
GCN layers) with the trainable parameter θ D , where nc is the
number of categories. The output of the decoder provides a
gradient descent direction for GCN model training (usually,
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the distinction between encoder and decoder is flexible; e.g.,
in multilayer GCN, the first few layers can be regarded
as encoders, and the remaining layers can be regarded as
decoders). Almost all high-performance GNNs models (e.g.,
graph sample and aggregate framework (GraphSAGE) [12],
graph attention network (GAT) [37], and spectral-GCN [38])
set the encoder and decoder to the same-design layer; that is,
both encoding and decoding involve the aggregation of graph
structures E , so the decoder parameters still contain E . The
decoding process is denoted as

Y = DEC
�

f e; A, θ E
�
. (2)

The decoder calculates output according to A and f e.
Training: According to the labeled nodes, the parameters

of encoder and decoder are trained by end-to-end training,
thus realizing the accurate node prediction task. In the training
phase, the regularization Reg(·) (l1− norm [39]) prevents the
model from overfitting. So, the training phase is

arg min
θGCN

��
Loss[Y,

DEC
�
ENC

�
f ; A, θ E

�; A, θ D
��+Reg

�
θGCN��

(3)

where Loss(·) is the loss function, and θGCN is the total
parameter set, i.e., θ E and θ D . Equation (3) is the unified
form of the existing training method of GCNs, and it is
computationally universal (GNNs with sufficient parameters
are always computationally universal [40]). The encoding and
decoding processes DEC(ENC(·)) are denoted as GCN(·).

B. General Edge-Perturbing Attacks

Manual constraints are widely employed in constructing
exist edge-perturbing attacks. In this part, we propose G-EPA,
which integrates automatic constraints, thus realizing the con-
cealed attack by automatically traversing all perturbations
through end-to-end training. As the current edge-perturbing
attack is also targeted on obtaining the best perturbation
scheme, G-EPA can unify the existing edge-perturbing attacks;
thus, it can be a general attack model.

1) Aim of the Attacks: Given a target graph GT and the
target GCN, which is well trained on GT , we denote the para-
meter of it as θG

T . The attacker perturbs edges and misleads the
classification result of the target node changed by traversing
the perturbations on GT , to further obtain Gvictim = ( f, Evictim).
Therefore, the attack is to find a modified graph adjacency
matrix Â corresponding to Evictim; let

Ŷκ = GCN
�

f ; Â, θG
T
�

(4)

where κ denotes the node of modified category, and Ŷκ

denotes the distribution of the modified node category set in
L. That is, in Ŷκ , the category of κ is manipulated as the
target category; meanwhile, making other nodes keep original
categories (whether single target and multitarget). From the
perspective of model optimization, it could be either evasion
attacks [7] or poisoning attacks [41]. Once Â is found, Evictim

can be calculated by Â, to realize the effective attack.

The aforementioned edge-perturbing attack process can be
formulated as an Â-finding game

Â = ATTACK
�
θ E
T , θ D

T , E� (5)

where θ E
T and θ D

T are the parameters of the encoder and
decoder of the target GCN, respectively. In other words, the
attacker perturbs θ E

T , θ D
T , and E and, thus, finds Â to realize

the attack.
2) Â Obtaining Method: In this part, we give the method

of obtaining Â. Equation (4) can be expressed as follows:
Ŷκ = DEC

�
ENC

�
f ; Â, θ E

T
�; Â, θ D

T
�
. (6)

Once the attacker successfully obtains Â in (6), the attack
will be completed; furthermore, it takes advantage of the
vulnerability of GCN.

Next, we give the automatic scheme for obtaining pertur-
bations, i.e., Â. Before giving the specific steps, we first give
the preliminary.

1) Connecting target node κ to a complete graph Ḡ, where
each node has self-loops, the diagonal matrix and adja-
cency matrix of Ḡ are D̄ and Ā, respectively. The node
feature sets of G and Ḡ are the same, and the node
category set of Ḡ is the modified set, i.e., Ŷκ .

To obtain Â in (6), the attack can be constructed as the
following steps.

1) Introduce a surrogate GCN, which has the same layer
structure and parameters with the target GCN. In the
surrogate GCN, θ E

T and θ D
T are frozen.

2) Set a trainable parameter matrix H in surrogate GCN.
3) Take Ḡ as the input of surrogate GCN.
4) Forward Propagation: In training epochs, Â is dynam-

ically changed according to H. In particular, let H +
H� act on Ā by Hadamard Product. Other calculation
methods remain unchanged with target GCN.

5) Back Propagation: Calculate the loss of the output and
Ŷκ , and update H according to the loss (reminding that
θ E
T and θ D

T are frozen).

The schematic illustration of the attack is shown as in Fig. 1.
In the attack process, the Hadamard product ensures that

trainable matrix can modify Ā element by element; further-
more, let H plus H� ensure the symmetry of the modified
matrix. By letting H� = H + H�, the adjacency matrix Â
following the abovementioned attack steps becomes:

Â = H� � Ā (7)

where � represents the Hadamard Product. As Ā is a matrix
in which all elements are 1 (Ḡ is a full connection graph with
self-loop), so Â = H�. In other words, the abovementioned
attack steps dynamically perturb Â in (6) by a surrogate model.
Equation (6) can be expressed as

Ŷκ = DEC
surrogate

	
ENC

surrogate

�
f ;H�, θ E

T
�;H�, θ D

T



(8)

where ENCsurrogate and DECsurrogate are the encoder and
decoder of the surrogate GCN, respectively.

Next, considering that the attacker does not perturb the edge
directly connected to node κ for realized concealed attack, H�
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Fig. 1. Schematic illustration of G-EPA. G-EPA reduces a complete graph to a concealed and effective attacked graph. G-EPA iterates while training until
the best attack scheme is found.

does not directly perturb κ th line of Ā; that is, H� in (8) can
be replaced with H�κ = (H�1, . . . , Aκ, . . . ,H�N )�, where H�i
denotes the i th row of H�.

Furthermore, to ensure the global concealment, attackers
need to minimize the amount of perturbation. In particular,
it can be realized by adding a regularization, which can be
denoted as Reg(H�κ) = Sum(A−H�κ �Ā), where Sum is the
sum of all elements of matrix. The regularization can quantify
the perturbation degree of H�κ to Ā.

Hence, the attacker can obtain H�κ by

arg min
H�κ

��
Loss

	
Ŷκ , DEC

surrogate

×
�

ENC
surrogate



f ;H�

κ
, θ E

T

�
;H�

κ
, θ D

T

�

+Reg



H�
κ

��
. (9)

Finally, Â can be calculated by (7).
Equation (9) is the mathematical form of the G-EPA.

In Section VI, we evaluate the performance of (9) by imple-
menting the attack.

C. Statement of GCNs Vulnerability

As can be seen, (3) and (9) are essentially the same, because
(3) is the unified form of the training method of GCNs, and
(9) is computationally universal. That is, if the attacker wants
to modify the node category set, it can be realized by another
GCN training task. As (4) is the general mathematical formula
for attacks and (9) is derived from (4), so we conclude that
attackers can precisely control the GCN output by modifying
graph edges. In other words, no matter what the values of θ E

T
and θ D

T in the Â-finding game (5) are, the optimal Â can be
obtained only manipulating E . Thus, the output of the GCN
can be manipulated by a more essence Â-finding game

Â = ATTACK
essence

(E). (10)

Equation (10) shows that the attack target is the exposed
graph structure, that is, edges of the graph. As long as the
GCN model directly receives the graph edges as the input, the
feasible perturbation can be found through (9) to construct
edge-perturbing attacks. In other words, the vulnerability of
the GCN is caused by the edge-reading permission.

Fig. 2. Trainable parameter matrix H under single node attack.

D. Case Studies

In this part, we elaborate on how to attack a specific GCN.
We use the Semi-GCN [38] as the specific model to obtain
Gvictim, and the obtaining method can be expressed as

arg min
H�κ

��
Loss

�
Ŷκ , Softmax

×


H�
κ

Relu


H�
κ

f W1

�
W2

��
+Reg



H�
κ

��
(11)

where W1 and W2 are well-trained parameters of target GCN
in different layers. Next, we give the details of the attack,
including trainable parameter matrix, layer weight constraint,
layer weight initializer, and regularizer of the model. Con-
sidering that the existing attack scenarios include the single
target scenario and that of the multiple targets, we describe
them separately.

1) Single Target:

a) Trainable parameter matrix: To ensure H�κ =
(H�1, . . . , Aκ , . . . ,H�N )�, we set the trainable parameters H
to four submatrices: H1 ∈ R(κ−1)×(κ−1), H2 ∈ R(κ−1)×(N−κ),
H3 ∈ R

(N−κ)×(κ−1), and H4 ∈ R
(N−κ)×(N−κ), and they are

placed in H, as shown in Fig. 2.

b) Layer weight constraint: To restrict the modified Â
only have two elements: 0 and 1, we set up a layer weight
constraints term

Hi, j =
�

0, s.t. Ai, j ≥ Oi, j

1, s.t. Ai, j < Oi, j
(12)
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where Hi, j denotes the element in H with indices as i and j .
O denotes parameters before layer weight constraint.

c) Layer weight initializer: Each trainable submatrix in
H is initialized as elements, which is the same as the corre-
sponding indices of A

H(0)
i, j = A(0)

i, j . (13)

2) Multiple Targets: In the case of multiple targets, let K =
{κ1, . . . , κN } denote the target node set.

a) Trainable parameter matrix: The model flexibility of
multitarget attack is limited by setting too many submatrices,
so all the elements of H can be trained, and ensuring the
concealment of attacks in regularizer.

b) Regularizer: To minimize the number of direct pertur-
bations to the target node, we need to minimize the number
of modifications to the κ th row of Ā. The regularizer for the
multitarget attack is designed as

Sum



A −H�
κ
�Ā

�
+ ϑ

�
κ∈K

Sum(hκ) (14)

where hκ denotes the κ th row of H, and ϑ denotes the custom
coefficient.

IV. HOW GCNs LOCATE NODES

As AN-GCN is capable of generating node positions, in this
section, we will give the quantitative representation fα[t] of
the signal of node α with the specific training epoch t . By com-
prehensively checked the input of the GCN, we compare fα[t]
and the input of GCN, so as to explore how GCN constructs
the input to locate the node.

The messages are constantly passing while the training
phase of GCNs, which can also be regarded as a kind of
signal transmission. As a result, the features of the node are
constantly changing, and we regard it as an independent signal
vibration. In this part, we build a mathematical model of the
node signal vibration to figure out how GCNs analyze the
given graph structure to locate nodes.

The node localization theorem is stated in Section IV-A and
proved in Sections IV-B and IV-C. In Section IV-B, the basic
mathematical model for node signal is given. In Section IV-C,
the signal vibration driven by GCNs is described, whose
processes include two parts: 1) the initial position of the
node signal in the Fourier domain is given by blocking the
transmission of graph signal, and 2) the model of node signal
vibration in the training phase is given, by introducing the
trainable parameters, which quantify the signal transmission
on graphs. In particular, we first regard the change of each
node features as the signal vibration with time t (in training,
it is the form of epoch) and then map all the node signals to the
same orthogonal basis through Fourier transform. Furthermore,
we give the node signal model in the training phase of GCNs,
which intuitively formulate how GCNs locating specific nodes.
The method of building the node signal model is shown in
Fig. 3.

Notation: Let G = ( f, E) be a graph, where f is set of
features of N nodes, while f (i) is the feature of node i , and
E denotes the set of edges. An essential operator in spectral
graph analysis is the graph Laplacian, whose combinatorial

definition is � = D − A where D ∈ R
N×N is the degree

matrix, and A ∈ RN×N is the adjacent matrix (both D and A
can be calculated from E). Let the Laplacian matrix of G is
� where eigenvalues are λ1, . . . , λN , and the corresponding
Eigen matrix of � is

U =
⎛
⎜⎝

u1(1) · · · uN (1)
...

. . .
...

u1(N) · · · uN (N)

⎞
⎟⎠

ul = (ul(1), . . . , ul(N))� is the lth eigenvector, and u(l) =
{u1(l), . . . , uN (l)} is the row vector consisting of the values
of all eigenvectors at position l. For convenience, “node with
the index n” is denoted by “node n.” j is the imaginary unit.

A. Node Localization Theorem

Before making a mathematical proof, we first claim that the
following hold.

Theorem 1: Giving a graph G to be learned by a GCN, the
GCN locates the node α according to u(α).

The proof of Theorem 1 is provided in Sections IV-B
and IV-C, respectively.

B. Node Signal Model

First, we give the Fourier domain coordinates of the signal
of a single node at a specific frequency.

Proposition 1: Giving a frequency ν, the signal coordinates
in the Fourier domain of node α are

f̂α[ν] =
E−1�
t=0

θ̄t

�
N�

i=1

ci e
λi t ui(α)

�
e− j 2π

E tν (15)

where θ̄t and ci are constants, and E is the number of training
epoch.

Proof: The signal variation of a single node with E epochs
is presented as f [0], f [1], . . . , f [E − 1]. According to the
discrete Fourier transform (DFT) theory, given a frequency
ν, the Fourier transform for the signal f of node α (before
introducing trainable parameters) is

f̂α[ν] =
E−1�
t=0

fα[t]e−
2π
E νt j . (16)

In the Fourier domain, according to the aggregation theory on
graph [12], the signal in Fourier domain is dynamically vibrat-
ing caused by trainable parameters, so, here, we introduce a
constant matrix representing vibration frequencies θ̄ ∈ RE ,
where θ̄i is the value of θ̄ at the i th node, by act θ̄ on all
frequency f̂ [ν], ν = 0 :E−1 at every epoch. The signal fit by
θ̄ is obtained, as shown in Fig. 4, specifically.

Hence, the Fourier domain graph signal (after introducing
trainable parameters) is

f̂α[ν] =
E−1�
t=0

θ̄t fα[t]e−
2π
E νt j . (17)

Furthermore, according to the model of signal transmission
on the graph [42], the transmission of signal f on G is
proportional to � acting on f with time t . As the end-to-end
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Fig. 3. Method of building node signal model. We regard the node feature change with the training epoch as the independent signal vibration and transform
all the signals to a unified orthogonal basis by Fourier transform.

Fig. 4. Using θ̄ to fit graph quantify aggregation.

training drives the signal transmission on the graph

d f

dt
= −k� f (18)

where k is a constant. The first-order matrix ordinary differ-
ential equation [43] is

χ̇(ι) = L (ι)χ(ι) (19)

where ι is the independent variable in a transition system, χ̇ is
the vector of the first derivatives of these functions, and L (ι)
is an N × N matrix of coefficients. In the case where L (·)
is constant and has N linearly independent eigenvectors, the
general solution of (19) is

χ(ι) =
N�

i=1

c1eλ̇i ιρi (20)

where λ̇1, . . . , λ̇N are the eigenvalues of L , and ρ1, . . . , ρN

is the respective eigenvectors. In machine learning, t in (18)
can be regarded as the iterative steps; i.e., discrete signal
upgrading is the sampling of a signal function in continuous
space. Giving the layer 
 and the trainable matrix W , as � ∈
R

N×N has N linearly independent eigenvectors similar to the
L (·), as well as spatial GCNs model the message passing
by (d f/d
) ≈ � f · W , (18) is homogeneous to (19) that has
the general solution, which is given by f [t] =�N

i=1 ci eλi t ui .
As f [t] and ui are column vectors, for node α

fα[t] =
N�

i=1

ci e
λi t ui (α). (21)

Equation (21) can be regard as the graph signal transmission
from a global perspective. Hence, (15) can be derived by
substituting (21) into (17). �

Then, for node α, we integrate the signals of all frequencies
in the Fourier domain to obtain the original signal in the
orthogonal basis representation, which is stated in the follow-
ing proposition.

Proposition 2: The signal of node α in epoch t is

fα[t]=
E−1�
ν=0

2

E
| f̂α[ν]| cos

�
(2πν/E�)t� + arg

�
f̂α[ν]

��
e j 2π

E tν

(22)

where arg(·) is the argument of a complex number, and �
denotes the epoch interval; here, we take it as a minimal value,
that is, �→ 0.

Proof: According to the DFT theory, the inverse transform
of f̂α[ν] is

fα[t] = 1

E

E−1�
ν=0

f̂α[ν]e j 2π
E νt . (23)

That is, the inverse matrix is (1/N) times the complex
conjugate of the original (symmetric) matrix. Note that the
f̂α[ν] coefficients are complex. We can assume that the graph
signal f [t] values are real (this is the simplest case, and there
are situations in which two inputs, at each t , are treated as a
complex pair, because they are outputs from 0◦ to 90◦ demod-
ulators). In the process of taking the inverse transform for the
terms f̂α[ν] and f̂θ [E−ν] (the spectrum is symmetrical about
(E/2) [44]), combine to produce two frequency components,
only one of which is considered to be valid. Hence, from (23),
the contribution to fα[t] of f̂α[ν] and f̂α[E − ν] is

Cν
α[t] = 1

E



f̂α[ν]e j 2π

E νt + f̂α[E − ν]e j 2π
E (E−ν)t

�
. (24)

Considering that all graph signals f [t] are real, so

f̂α[E − ν] =
E−1�
t=0

f [t]e− j 2π
E (E−ν)t (25)

and according to Euler’s formula [45]

e− j2π t = 1

cos (2π t)+ j sin (2π t)
= 1, s.t. t ∈ N+ (26)

where N+ is the set of all positive integers. We have

e− j 2π
E (E−ν)t = e− j 2π t� � !

1 for all t

e+ j 2πν
E t = e+ j 2π

E νt (27)
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i.e., f̂α[E−ν] = f̂ ∗α [ν], where f̂ ∗θ [ν] is the complex conjugate.
Substituting (27) into (24), we obtain e j2π t = 1 with reference
to (26). Then, we have

Cν
α =

1

E



f̂α[ν]e j 2π

E νt + f̂ ∗α [ν]e− j 2π
E νt

�
= 2

E

�
Re

�
f̂α[ν]

�
cos(2πνt/E)− Im

�
f̂α[ν]

�
sin(2πνt/E)

�
= 2

E
|F[ν]| cos

�
(2πν/E�)t� + arg(F[ν])

�
(28)

where Re(·) and Im(·) denote taking the real part and the
imaginary part of an imaginary number, respectively. Hence,
by integrating the signals of all frequencies ν = 0 : E − 1

fα[t] =
E−1�
ν=0

Cν
α[t]e j 2π

E tν . (29)

Equation (22) is derived by substituting (28) into (29). �

C. Node Signal in the Initial and the Training Phase

In Section IV-B, we build the mathematical model for the
training phase of GCNs. In this part, we first give the initial
state of the node signal by blocking the signal transmission,
which is stated in the following proposition.

Proposition 3: The initial signal of node α is

fα[0] = 2θ̄0Sum[u(α)]. (30)

Proof: According to the general GCN forward propaga-
tion [46], the embedding feature of G is

f e[·] = σ
�
Ugθ(�)U� f

�
(31)

where gθ (�) = Diag(θ1, . . . , θN ) is the trainable diagonal
matrix, and σ(·) is the an activation function; hence, the output
of GCN for node α is

f e
α [·] = σ

�
u(α)gθ (�)U� f

�
. (32)

Now, we simplify (32). We denote gθ (�)U� f as a constant
matrix (note that so far, message passing is not activated yet;
i.e., the trainable parameters can be regarded as constants)
� ∈ RN×d , where d is the dimension of the feature, φi is the
i th row of �, and φi (k) is the kth element of φi . Furthermore,
we replace the nonlinearity σ(·) with a simple linear activation
function, leading to

f e
α [·]=

N�
i=1

φ1(i)ui(α), s.t., d = 1

f e
α [·]=

"
N�

i=1

φ1(i)ui (α), . . . ,

N�
i=1

φd(i)ui (α)

#
, s.t., d > 1.

(33)

As our aim is to solve the qualitative problem of node local-
ization, we discuss only the case of d = 1. As the discovery
making from observation: (33) is homogeneous with (21);
moreover, φi and ci both denote the changeable parameters,
and we conclude that Propositions 2 and 3 are applied to the
training phase of GCN.

We consider the initial state as the non-transmission state;
that is, for node α, fα[0] = · · · = fα[E − 1]; hence, the
transmission of graph signal can be blocked by letting ci =
e−λi t . By regarding the initial status of GCN as E = 1 and
t = 0, (30) can be obtained by substituting (15) into (22), s.t.,
E = 1 and t = 0. �

Next, we active the message passing on G. As θ̄ denotes
constants, (15) can be concluded by

f̂α[ν] =
E−1�
t=0

�
N�

i=1

c̄i e
λi t ui(α)

�
e− j 2π

E tν (34)

where c̄i = θ̄t ci . By substituting (34) into (22), the final
expression of node signal is

fα[t] = lim
�→0

⎧⎨
⎩

E−1�
ν=0

2

E

''''''
E−1�
t=0

⎛
⎝ N�

i=1

c̄i e
λi t ui (α)� � !

from E

⎞
⎠e− j 2π

E tν

''''''
× cos

�
(2πν/E�)t� + arg

�
f̂α[ν]

��
e j 2π

E tν

⎫⎬
⎭.

(35)

Equation (35) gives the signal model of all nodes in the
unified reference frame, by observing, for node α; among
all the initial conditions related to G, only u(α) appears in
the process of node signal change. In other words, in the
elastic system brought by end-to-end training, only u(α) is
a controllable factor, so we simplify the abovementioned
equation to

fα[t] = F [u(α)] (36)

and the feature vibrate of node α under the end-to-end training
is

Initial: 2θ̄0Sum[u(α)]

Training: F [u(α)]. (37)

Thus, the feature vibrates of node α driven by GCNs can be
quantified, and it can always contain a fixed factor u(α) while
message passing. As GCNs quantifying the message passing
in training phase is part according to the input �, GCNs
deconstruct � to Laplacian matrix U and further quantify the
feature vibrates of node α by u(α); i.e., GCNs locate node α
according to u(α).

V. PROPOSED AN-GCN

In Section III, the vulnerability of GCNs is demonstrated
due to their edge-reading permission. Following this, we then
propose an AN-GCN that can withdraw the edge-reading per-
mission of GCNs. We integrate a generator and self-contained
GCNs to ensure that all node positions are generated from the
noise. The AN-GCN classifies nodes only according to their
node indices and features, and no longer relies on the edge
information.

A. Basic Model for AN-GCN

According to Theorem 1, we denote each row of the
Laplacian matrix as an independent generating target. We use
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Fig. 5. Generator with staggered Gaussian distribution as an input.

the spectral graph convolution (without any constraints and
simplification rules) [21] as the basic model and take it as
an encoder. We use an extra fully connected neural network
decoder. That is, the basic forward propagation is

f e = σ
�
Ugθ(�)U� f

�
(38a)

yout = f eW D . (38b)

In (38), U contains the information of the edges in the
graph, and we replace it with a matrix generated from
Gaussian noise. Equation (38) is the basic signal forward
propagation. Next, we elaborate on how to improve (38),
thus letting the basic model accommodate the generated node
position.

B. Generating Node Positions From the Noise

If u(n) is completely generated by noise, the specific points
will keep anonymous. Thus, we take u(n) as the generation
target. The output of the generator is denoted as uG(n),
which tries to approximate the underlying true node position
distribution u(n).

Next, we define the probability density function (pdf) for
the input noise. To enable the generator to locate a specific
point, the input noise of the generator is constrained by the
position of the target point. So, we define the input noise as
having a pdf equal to that of staggered Gaussian distribution,
and the purpose is to ensure the noise not only satisfies the
Gaussian distribution but also does not coincide with each
other, thus letting the generated noises orderly distributed on
the number axis.

Proposition 4 (Staggered Gaussian Distribution): Giving a
minimum probability ε, N Gaussian distributions centered
on x = 0 satisfy P(x, n) ∼ Norm(2∂(2 n−N −
1)(log((2π)1/2∂ε))1/2, ∂2), so that the pdf of each distribution
is greater than ε, where Norm is the Gaussian distribution, n
is the node number, ∂ is the standard deviation, and ε is the
set minimum probability.

Proof: Given a pdf h(x p) of the Gaussian distribution
Norm(μp, ∂

2), when h(x p) = ε

x p = μp ± 2∂

+
log


,
(2π)∂ε

�
. (39)

Let 2∂(log (((2π))1/2∂ε))1/2 = r as the distance from the
average value μp to the maximum and minimum values of
x p. Specify that each x p represents the noise distribution

Algorithm 1 AN-GCN

Require: Weights of D: θ D,include gD,enc
θ (�) is used for

encoding, θ D,dec is used for decoding. Weights of G: θG .
Training epoch of D and G.

1: Initialize U D = U
2: for epoch in Train epochs for D do
3: Random sample a node v
4: Obtain noise Zv from P(z, v)
5: uG(v)← G(Z D

v ) // Generate
6: U D·v = U D·v + q(uG(v) −U D·v ) // Linear approximation
7: Calculate fake label of v by Eq. (43a)
8: Calculate real label of v by Eq. (43b)
9: Calculate ∇D

update by Eq. (45)
10: θ D ← θ D − ∇D

update
11: for epoch in Train epochs for G do
12: Obtain noise Zv from P(z, v)
13: Calculate y f ool

v by Eq. (46)
14: Calculate ∇G

update by Eq. (48)
15: θG ← θG − ∇G

update
16: end for
17: end for
Ensure: Trained generator weights θG .

of each node. To ensure that all the distributions staggered
and densely arranged, stipulate max(x p) = min(x p+1), and
keep all distributions symmetrical about x = 0. So, when
the total number of nodes is N , μ1 = (1 − N)r , μ2 =
(3− N)r, . . . , μN = (N − 1)r ; that is, μn = (2n− N − 1)r =
2∂(2 n−N − 1)(log((2π)1/2∂ε))1/2. �

The process of generating sample uG(v) from staggered
Gaussian noise Zv ∼ P(x, v) is denoted as uG(v) = G(Zv),
and U generated by G is denoted as U G . The generating
process is shown in Fig. 5.

C. Detecting the Generated Node Positions

1) Discriminator of AN-GCN: After proposing the gener-
ation of uG(n), we set a discriminator D to evaluate the
quality of uG(n), and design a two-player game for G and
D. This ensures that the AN-GCN can accurately classify
nodes by uG(n). We use classification quality as an evaluation
indicator to drive the entire AT. This ensures that D cannot
only distinguish the adversarial samples generated by G (non-
malicious, used for anonymize nodes), but also can provide
accurate classification. In particular, D is divided into two
parts: a diagonal matrix with trainable parameters Denc used
for encoding, and a parameter matrix Ddec used for decoding.
Thus, the forward propagation becomes

Y = σ
�
U DencU

� f Ddec
�
. (40)

Consider there are U and U� in the encoder (38a), and we
mark them as different matrices

Y = σ
�
U G DencU

D f Ddec
�
. (41)

To eliminate the information of nodes’ positions in the
AN-GCN, the corresponding u(·) to U G is generated by
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Fig. 6. In the training phase, U D gradually approximates U linearly, so as
to realize anonymity.

Fig. 7. Forward propagation of AN-GCN.

independent generation of different rows, and U D on the right
is approximate linearly according to the numerical change of
U G . Consider that U G and U D changed dynamically while
training, we use U G,e and U D,e to denote U G and U D in
epoch e, respectively. While generating the lth row of U G ,
the corresponding column of U D , denoted as uD

l , linearly
approximates toward uG(l). In particular, the general term
formula for its value in training epoch e is

uD,e
l =

⎧⎨
⎩

ul, s.t. e = 1

uD,e−1
l + q



uG,e(l)− uD,e−1

l

�
, s.t. e > 1

where uG,e(l) is the generated uG,e(l) in epoch e, and q
is the custom linear approximation coefficient. Thus, U D,e

is gradually approaching the generator matrix U G,e during
the training phase. With the increase in training epochs, the
collaboration among U and U� in (40) and G is shown in
Fig. 6. The forward propagation of the proposed AN-GCN is
described in Fig. 7.

We have eliminated the edge information stored in
AN-GCN. Next, we elaborate on the training phase, which
allows nodes to participate anonymously. For ensuring that
both sides of the AT have the clear objectives, we further give
the optimization of generator and discriminator.

2) Forward Propagation of AN-GCN: We have anonymized
nodes through the generator, which is proposed in
Section V-B. In this part, we elaborate on the forward prop-
agation of AN-GCN. Let f e,G(v) and f e,D(v) denote the
embedding of the node v when using uG(v) and u(v) locate
nodes at epoch e, respectively. In each training epoch e,
first, we obtain uG(v) and U D,e corresponding to the target
node v, that is, generate uG(v) from the staggered Gaussian
noise (Proposition 4) corresponding to node v, and update the
corresponding column of U D,e−1 to U D,e. Second, we use Denc

and Ddec to evaluate the quality of this epoch of generators.
By getting the node embedding f e,G(v) of v through Denc,
we decode f e,G(v) through Ddec to get the soft label, which
denoted as yv . Based on (38a), the soft label of node v is

yv = σ
�
u(v)Denc(�)U� f Ddec

�
. (42)

3) Discriminator Optimization: Discriminator optimization
aims at reducing the classification accuracy of the generator,
while improving the classification accuracy of the discrimina-
tor. The classification accuracy is quantified by the soft label.
For node v with the generated position, its soft label is denoted
as yfake

v . yfake
v can be calculated according to uG(v), the linear

approximation matrix U D and the discriminator in the current
epoch. Aiming at training the discriminator to detect node v
with generate position, the real soft label yreal

v is calculated by
the nondefense GCN (31). Thus, yfake

v and yreal
v are given as

yfake
v = σ

�
uG(v)DencU D f (v)Ddec

�
(43a)

yreal
v = σ [u(v)DencU f (v)Ddec]. (43b)

To detect nodes with generated positions, the discriminator
aims at not only classifying real nodes into the correct cate-
gories but also classifying fake nodes into the other random
categories. This reduces the performance of the generator
during the training phase of the discriminator. Therefore, the
performances of the generator and discriminator are quantified
by the loss functions, which are designed as

LossD(y)=
�

C[S(y), labelv ], s.t. y = yreal
v

C
�
S(y), RD

��
labelγ

''γ �= v
���

, s.t. y = yfake
v

(44)

where labeli represents the real label of node i (one hot), C(·)
denotes the cross entropy function, S(·) denotes the sigmoid
function, and RD(·) denotes the random sampling function.
Then, according to LossD(y), we calculate the gradient for D
by

∇D
update = ∇gD,dec

θ (�),θ D,enc

�
LossD

�
yreal
v

�+ LossD
�
yfake
v

��
(45)

where gD,dec
θ (�) and θ D,enc are the trainable parameters of

Denc and Ddec, respectively. Finally, we update the weight of
D according to ∇D

update.

4) Generator Optimization: Next, the generator is trained
to fool the well-trained discriminator. This ensures that uG(v)
generated by G can provide accurate classification. For node
v, after resampling the noise Zv , the label used to fooled D
is calculated by

yfool
v = σ

�
G(Zv )DencU

D f Ddec
�
. (46)

In the generation phase, the generator attempts to classify the
node v as the correct label; thus, the loss function of D is
designed by

LossD(y) = C[S(y), labelv ], s.t. y = yfool
v . (47)

Then, to ensure that the outputs of G can be classified into
the real categories, we calculate the gradient for D by

∇G
update = ∇θG

�
LossD

�
yfool
v

��
(48)
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Fig. 8. Schematic illustration of AN-GCN.

Fig. 9. Evaluation results of G-EPA. 1) Evaluation—the horizontal axis is the number of attack nodes, and the vertical axis is the scaling index according
to the loss function. The more similar the distribution of nontarget nodes and clean graph, the less misclassified the nontarget nodes will be. It can be seen
that with the increase in the number of attacks, almost all the target nodes are misclassified, while the nontarget nodes almost keep the original classification
results. 2) Evaluation—after Gvictim was transferred to different models and retrained, the performance of each model was evaluated. It can be seen that all
models are successfully attacked, which shows that the attack method represented by Eq. (9) can transfer to other models. 3) Evaluation—it can be seen that
a large number of target nodes are misclassified, thus proving the defense ability of the model decreases. 4) Evaluation—the red dot is the target node, and
the red line is the modified connection. As can be seen that we have not directly modified the node, and the total number of perturbations is insignificant,
so the attack has well performance on concealment. 5) Evaluation—with the increase in training epoch, the degree distribution is more and more like the
degree distribution of clean A, that is to say, Gvictim eventually tends to be stable.

and update the weight of G according to ∇G
update. Note

that D is frozen in the training phase of the generator.
The schematic illustration of AN-GCN is represented by
Fig. 8, and the algorithm process of AN-GCN is given in
Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed AN-GCN in node classification based on five widely
used [47]–[49] benchmark datasets, including Cora, Citeseer,
Pubmed, Polblogs, and Reddit. In practice, we first carry
out numerical experiments to verify the correctness of the
proposed node localization theorem. We then attack multiple
GCNs by G-EPA to verify the effectiveness of the stated
precondition, which causes the GCNs vulnerability. We finally
observe the classification results of AN-GCN to verify the
utility of AN-GCN.

A. Evaluation for the G-EPAs
Equation (9) formulates the existing edge-perturbing attack.

By observing the effectiveness of (9), we demonstrate that the
exposure of node position caused the vulnerability of GCNs.
The evaluation of (9) includes five items.

1) The effectiveness of the attack that is represented by box
plot. We act (9) on the Semi-GCN [38], which is trained
on the clean dataset to obtain Gvictim.

2) Transferability of attack. We then transfer Gvictim to
the training set of GraphSAGE, GAT, and GCN Cheb-
Net [21] and evaluate the classification performance of
multiple models.

3) Attack effect on the existing mainstream defense scheme
(Deep Robust [14]).

4) Concealment of the single node attack. The evaluation
effect is given as to whether there is an obvious pertur-
bation in the fifth-top order neighborhood of the target
node.
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TABLE I

RESULTS OF EVALUATION ITEMS 1)–3) (SUCCESS RATE %)

Fig. 10. Deviation of the 16-top degree neighbors of v after interfered.

5) The stability of a graph structure after the attack.
The stability is usually represented by degree distrib-
ution [16].

The results of the abovementioned items are shown in Fig. 9.
In particular, the results of evaluation items 1)–3) mentioned
earlier are presented in Table I, and the success rate is the
probability that the target node is successfully misclassified.

B. Numerical Experiment for Node Localization Theorem

As Theorem 1 is the theoretical basis of AN-GCN, in this
part, we verify the correctness of Theorem 1 by numerical
experiment. We design two experiments to verify the correct-
ness of Theorem 1: 1) observing the embedding deviation of
nodes v after interfering the corresponding u(v) by a manual
factor, and 2) observing the changes of u(neighbor(v)) after
deleting a node v, where neighbor(v) is the neighbor of v.
In the first experiment, if the embedding deviation of node
v is significantly greater than that of the other nodes while
interfering a manual factor to u(v), it supports that u(v) is
highly sensitive to the position of node v. In the second
experiment, if the change of corresponding u(·) dwindles
while increasing the order of neighbor (i.e., the distance from
the deleted node), it further proves that the specific position of
v is closely related to the value of u(v). The abovementioned
two experiments jointly demonstrate the theoretical correctness
of Theorem 1 collectively.

1) Influence of u(·) on the Node Embedding: By selecting
a target node v, its deviation of embedding is observed
after interfering insignificantly to u(·) related to v. Let
Nbor1th(v, cv ) = {v1(1), . . . , v1(cv )} denote the cv-top degree
first-order neighbors of v, where cv is given subjectively to
screen out the low-degree neighbors. Given a interfering factor
δ, the embedding deviation of v is calculated by interfering δ

Fig. 11. After deleting a node τ , u(τ ) of its first-order neighbor changes
most significantly, and u(τ ) of its further neighbor changes gradually subtle.

on Nbor1th(v, cv ) successively. Thus, in each interfering turn,
given a target vclose

i , the non-interfered U becomes a interfered
matrix Û δ,cv , where all rows in Û δ,cv satisfy

ûδ,cv (i) =
�

u(i), s.t. i = v1(i)

δu(i), s.t. i �= v1(i).
(49)

Furthermore, we calculate the Euclidean distance [50]
between f e,δ and f e [refering to (38a)]; i.e., dδ

v =
� f e,δ − f e�2. While changing δ, we use Chebyshev poly-
nomial [21] as the convolution kernel and test on the Cora
dataset. Let cv = 16, and δ = 1−(k/100), k ∈ {1, . . . , 50}; the
result is shown as in Fig. 10. It can be seen that, the embedding
accuracy, measured by the Euclidean distance between f e(v)
and f e,δ(v), will drop suddenly once δ interferes on the vth
row of U and keep stable while δ interferes on the other
positions. That is, u(v) has a greater impact on the embedding
of node v.

2) Influence on u(·) While the Nodes’ Positions Changed:
By deleting a node τ in the graph G to obtain the deleted graph
G(d)

τ , we calculate the Laplacian matrix L(d)
τ ∈ R(N−1)×(N−1)

and matrix eigenvalues U (d)
τ = {u(d)(1), . . . , u(d)(N − 1)} ∈

R(N−1)×(N−1). To keep G(d)
τ well connected, all edges con-

nected to τ are reconnected traversally. In particular, we stip-
ulate that ωi j and ω

(d)
i j are the weights of edges between i and

j in G and G(d)
τ , respectively. The calculation method of all

edge weights in G(d)
τ is

ω
(d)
i j =

⎧⎨
⎩

ωi j , ωτ i = 0 or ωτ j = 0

ωi j+
ωτ i + ωτ j

2
, ωτ i �= 0, ωτ j �= 0.

(50)

After obtaining the fully connected G(d)
τ , we recalculate cor-

responding U (d)
τ and query all βth-order neighbors of τ :

Nborβth(τ, ·) = {τβ(1), τβ(2), . . .}. Thus, we obtain a u(·)
set u(d)(τβ(·)) = {u(τβ(1)), . . . , u(τβ(N − 1))}, which rep-
resents u(·) corresponding to Nborβth(τ, ·) in G(d)

τ . Similarly,
u(τβ(·)) is denoted as u(·) set from G, and the quantitative
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Fig. 12. Classification accuracy and the visualization of nodes’ embedding during the training phase. It can be seen that accD and accG are rising at the
same time. When epoch > 1400, accG remains at a high and stable state. We select G at epoch = 1475 as the final model. The node embedding accuracy is
0.8227. The highest value of accGCN is 0.7934. The experimental results show that under the same convolution kernel design, AN-GCN not only effectively
maintains the anonymity of the node but is also 0.0293% higher than the state-of-the-art nondefense GCN in classification accuracy.

representation of the change between the two is as follows:
C
�
u
�
τβ(·)�, u(d)

�
τβ(·)��

=
N−1�
i=1

	
log

''ui
�
τβ(·)�''2 − log

'''u(d)
i

�
τβ(·)�'''2
. (51)

By examining different β values and calculating C(·), the
result is as shown in Fig. 11. We select the first 500 nodes
according to the number of connections from large to small.
Fig. 11 shows intuitively the change of u(·) in different
positions after deleting nodes. After deleting τ , the change
of neighbor u(d)(τβ(·)) of different orders β of τ (right). After
deleting node τ , u(·) of the first-order neighbor u(d)(τβ(·))
has the largest change (the vertical axis is −C); i.e., after
the node τ is deleted, u(·) corresponding to its first-order
neighbor u(τ1(·)) has changed significantly, while u(τ2(·)) and
u(τ3(·)) have changed subtle and showed a decreasing trend.
As deleting node τ significantly affects the position of its
first-order neighbors, with the order increases, the degree of
influence gradually decreases, so the change of its u(τβ(·))
also gradually decreases. Fig. 11 proves that the position of
node τ is inseparable from u(τ ).

C. Evaluation for the Effectiveness of AN-GCN

Next, we evaluate AN-GCN. As AN-GCN eliminates the
possibility of potential perturbations, we mainly evaluate the
accuracy of AN-GCN, and its robustness to the perturbation
of training set is as the secondary evaluation item. As the
application scenario of AN-GCN is that the user can ensure
that AN-GCN is trained on the clean graph, the scenario
of poisoning attack is not the main problem of this article.
But, we still prove that AN-GCN shows its robustness to the
perturbations in the training set.

First, we evaluate the accuracy of AN-GCN on the Cora
dataset. We hope that AN-GCN can classify nodes accurately
while generating the positions from the noise; thus, the clas-
sification accuracy is used to evaluate the effectiveness of

TABLE II

CLASSIFICATION ACCURACY FOR VARIOUS MODELS AFTER

META-LEARNING ATTACK

AN-GCN. As the generator does not directly generate the node
embedding but predict nodes by cooperating with the discrim-
inator, we denote accG (orange line) to be the classification
accuracy through the position generated by G and denote accD

(blue point) as the classification accuracy of the discriminator.
Furthermore, we use accGCN (pink line) to denote the accuracy
of single-layer GCN (the convolution kernel adopts symmetric
normalized Laplacian matrix [38]) with the same kernel of
D as a comparison. In addition, to present the advantages of
AN-GCN more intuitively, we visualize the (embedded graph
date orange box) X E during the training phase. The results
are shown in Fig. 12.

Second, we evaluate the robustness of AN-GCN by taking
a comparative experimental model as Semi-GCN, GAT, and
RGCN [28] (the state-of-the-art defense model). The results
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are presented in Table II, and P_rate is the perturbation
rate. The meta-learning attack [51] is the state-of-the-art
attack model. The result shows that when the perturbation
increases, the accuracy gap between AN-GCN and other meth-
ods widens, clearly demonstrating the advantage of AN-GCN.

In our previous work [52], we have proved that using
samples with other categories as the supervised samples of
the generated samples can accelerate the convergence of AT;
similarly, AT in AN-GCN does not cause an excessive burden.

VII. CONCLUSION

In this article, we first generalized the formulation of
edge-perturbing attacks and strictly proved the vulnerability
of GCNs. Following this, we proposed the AN-GCN to
defend against edge-perturbing attacks. In particular, a node
localization theorem was presented to demonstrate how
GCNs locate nodes during their training phase. Further-
more, a staggered Gaussian-based node position generator
is designed to anonymize nodes’ positions and a spectral
graph convolution-based discriminator to ensure high-accuracy
classification. Finally, we provided an optimization method
for the designed generator and the discriminator. Extensive
evaluations verified the effectiveness of the G-EPA model
and demonstrated the high accuracy of the AN-GCN in node
classification tasks. Future research includes extending our
proposed AN-GCN to node classification tasks on dynamic
graphs.
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