
 
 

Delft University of Technology

Sound Type-Dependent Syntactic Language Extension

Lorenzen, Florian; Erdweg, Sebastian

DOI
10.1145/2837614.2837644
Publication date
2016
Document Version
Accepted author manuscript
Published in
ACM SIGPLAN Notices

Citation (APA)
Lorenzen, F., & Erdweg, S. (2016). Sound Type-Dependent Syntactic Language Extension. ACM SIGPLAN
Notices, 51(1), 204-216. https://doi.org/10.1145/2837614.2837644

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2837614.2837644
https://doi.org/10.1145/2837614.2837644


Sound Type-Dependent Syntactic Language Extension

Florian Lorenzen
TU Berlin, Germany

Sebastian Erdweg
TU Darmstadt, Germany

Abstract
Syntactic language extensions can introduce new facilities into
a programming language while requiring little implementation
effort and modest changes to the compiler. It is typical to desugar
language extensions in a distinguished compiler phase after parsing
or type checking, not affecting any of the later compiler phases. If
desugaring happens before type checking, the desugaring cannot
depend on typing information and type errors are reported in terms
of the generated code. If desugaring happens after type checking,
the code generated by the desugaring is not type checked and may
introduce vulnerabilities. Both options are undesirable.

We propose a system for syntactic extensibility where desugaring
happens after type checking and desugarings are guaranteed to
only generate well-typed code. A major novelty of our work is that
desugarings operate on typing derivations instead of plain syntax
trees. This provides desugarings access to typing information and
forms the basis for the soundness guarantee we provide, namely
that a desugaring generates a valid typing derivation. We have
implemented our system for syntactic extensibility in a language-
independent fashion and instantiated it for a substantial subset of
Java, including generics and inheritance. We provide a sound Java
extension for Scala-like for-comprehensions.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; I.2.2 [Automatic Programming]: Program transfor-
mation; D.3.2 [Language Classifications]: Extensible languages

Keywords Language extensibility, type soundness, type-dependent
desugaring, automatic verification, metaprogramming, macros

1. Introduction
Syntactic language extensions provide essential abstractions for
managing the complexity of software. Numerous examples of
embedded domain-specific languages like Hydra [12], XML in
Scala [22], or PLT Redex [8], and well-known syntactic sugar like
do-notation in Haskell [21], enhanced for-statements in Java [13],
or list-comprehension syntax in many languages demonstrate the
necessity and the usefulness of syntactic extensions. Therefore,
it is little surprise that numerous programming systems provide
facilities that enable programmers to define and integrate their own
custom syntactic extensions. Extensible systems include Racket [10],

SugarJ [6], TemplateHaskell with quasiquoting [19, 26], and Scala
macros [1].

Each syntactic extension defines a desugaring transformation
that translates code of the extended language to code of the base
language at compile time. This paper is concerned with interactions
between the desugaring of extensions and the type checking of
the base language. Consider the following simplified compilation
pipeline:

ext. parse desugar type check
compile
type error

First, an extended parser reads the code that uses an extension.
Second, the desugaring eliminates the extension by translation to the
base language. Third, the type checker of the base languages checks
the desugared code for type errors. Finally, if no type error occurred,
the compiler does the rest of the processing. The advantage of this
approach is its simplicity, only requiring an extensible parser and
leaving the type checker and backend compiler unaffected. However,
this comes at a high price.
1. Type errors are reported relative to the generated code. This

exposes implementation details of the extension and violates the
abstraction barrier that the extension tried to establish. To fix
a type error, manual inspection of the generated code is often
necessary, which is tedious and time consuming.

2. Type errors in generated code either result from a defective
desugaring transformation or from a defective user program.
To clarify the situation, it may be necessary to inspect the
implementation of a desugaring transformation in order to
identify the implicit contract that the user program must adhere
to.

3. No type information is available to the desugaring transforma-
tion, which effectively prevents type-directed desugarings and
extensions with inferred types.

To eliminate these problems, we propose the following compilation
pipeline instead:

ext. parse ext. type check
desugar
type error

compile

Instead of applying desugarings directly after parsing and before
type checking, we propose to type check the extended program
first and only desugar it afterwards. This design has three important
implications: First, the type checker has to be extensible. Second,
each syntactic extension has to extend the type checker, making
the contract for user programs explicit. Third, since no further type
checking occurs after desugaring, the desugaring transformation
of each extension must ensure type soundness so that the well-
typedness of the extended program carries over to the desugared
program and the overall compilation pipeline is sound.

We present a language-independent system for type-sound syn-
tactic extensibility called SoundX that implements the second
pipeline from above. Given the grammar and typing rules of a base



// base-language syntax
lexical syntax
[a-zA-Z][a-zA-Z0-9]* -> ID
[0-9][0-9]* -> NUM

context-free syntax
ID -> Term
"λ" ID ":" Type "." Term -> Term
Term Term -> Term
NUM -> Term
Term "+" Term -> Term

"Nat" -> Type
Type "→" Type -> Type

// metalanguage syntax
context-free syntax
∅ -> Env
Env "," ID ":" Type -> Env

judgement forms
{ Env "`" Term ":" Type }
{ ID ":" Type "∈" Env }

variables
"t" [a-zA-Z0-9]* -> Term
"x" [a-zA-Z0-9]* -> ID
"T" [a-zA-Z0-9]* -> Type
"Γ" [a-zA-Z0-9]* -> Env
"n" [a-zA-Z0-9]* -> Num

// typing rules

Lookup:
-----------
x:T ∈ Γ,x:T

LookupSkip:
(x,y) (x:T ∈ Γ)
---------------
x:T ∈ Γ,y:S

Var:
x:T ∈ Γ
---------
Γ ` x : T

Nat:
-----------
Γ ` n : Nat

Abs:
Γ,x:T1 ` t2 : T2

-----------------------
Γ ` λx:T1. t2 : T1 → T2

App:
Γ ` t1 : T11 → T12
Γ ` t2 : T11
-------------------------

Γ ` t1 t2 : T12

Add:
(Γ ` t1 : Nat) (Γ ` t2 : Nat)
-----------------------------

Γ ` t1 + t2 : Nat

Figure 1. The SoundX base-language definition for the simply-typed lambda calculus with natural numbers λ→.

language, SoundX provides syntactic extensibility where a syntactic
extension can affect any syntactic category of the base language
(e. g., terms, types, statements, or class declarations). To provide
access to type information, SoundX desugarings operate on typing
derivations. That is, a desugaring receives a typing derivation of the
extended program as input and yields a derivation of the desugared
program as output. The resulting derivation is not checked for sound-
ness later on. Instead, SoundX features a verification procedure that
modularly and automatically verifies for each extension that the
desugaring only produces valid derivations. This way, SoundX sat-
isfies the following important proposition for any base language B,
extension X, and program p:

If p is well-typed in B ∪ X and p desugars to p′,
then p′ is well-typed in B.

Other systems for syntactic extensibility often follow a hybrid ap-
proach that interleaves desugaring and type checking. For example,
Scala first type checks the arguments of a macro invocation, then
expands the macro definition, and finally type checks the expanded
macro body, which may find errors in the generated code [1]. In
contrast, we propose to perform all type checking before any desug-
aring takes place and to verify the type-soundness of desugarings to
prevent type errors in generated code altogether. Existing systems
with sound desugaring after type checking [11, 17, 18] do not pro-
vide access to type information in the transformation and act upon
terms instead of derivations.
In the remainder of this paper, we make the following contributions:

• We present SoundX, a language-independent system for type-
sound syntactic extensibility supporting type-dependent desug-
arings (Section 2).
• We develop a novel derivation-centered desugaring procedure

that transforms valid typing derivations of the extended language
into valid typing derivations of the base language (Section 3).
• We present a procedure for automatically verifying the sound-

ness of extensions. We show that the derivation desugaring and
the verification procedure form a sound system, which we prove
through preservation and progress theorems (Section 4).
• To demonstrate the expressiveness and applicability of our

approach, we have instantiated SoundX with a subset of Java as
base language, including generics and inheritance. We extend
this base language with syntax for polymorphic pairs and Scala-
like for-comprehensions (Section 5).

2. Exemplary Base Language and Extensions
SoundX is language-independent and supports the extension of arbi-
trary base languages defined with SoundX. A SoundX base-language
definition consists of a context-free grammar and inductively defined
typing rules over user-defined judgements.

2.1 λ→ Base Language
Figure 1 displays the SoundX base-language definition for the
simply-typed lambda calculus with natural numbers λ→. The first
column defines the context-free syntax of λ→, where we have omit-
ted precedence and associativity annotations. For syntax, SoundX
employs the syntax formalism SDF2 [29], which looks similar to
EBNF but the defined nonterminal occurs on the right-hand side
of a production. Internally, SDF2 uses a generalised LR parser that
supports grammar extensions.

The second column of Figure 1 defines λ→-specific metalanguage
syntax used for defining the typing rules of λ→. Besides typing en-
vironments Env, we define the syntax of judgements needed in the
typing rules of λ→, namely the usual ternary typing judgement (
` : ) and a lookup judgement to retrieve the type of a variable
from the typing environment. Because typing environments and
judgement forms are user-defined, SoundX can easily accommodate
languages with other typing environments (e. g., subtyping, linear
typing) and other judgement forms (e. g., type normalisation, class
checking). The only built-in judgements of SoundX are equality and
inequality. Finally, as common in the type-system literature, we de-
fine naming conventions to unambiguously associate metavariables
with the syntactic sorts they range over.

The third column of Figure 1 lists the typing rules of λ→ using
the judgements, typing environments, and metavariables declared in
second column and the syntax defined in the first column. SoundX
typing rules take the form of inductively defined inference rules
with a sequence of newline-separated or parenthesised premises
and a single consequence. The typing rules of λ→ are standard [15,
24]. Generally, SoundX assumes that the typing rules of the base
language form a sound type system; the soundness of extensions
is always relative to the base language. However, proving type
soundness for the base language is not in scope of SoundX at the
moment, which is why we do not model the dynamic semantics of
base languages.

2.2 λ→ Extension: Let-Expressions With Inferred Types
To illustrate the expressive power of SoundX extensions, we use an
example from Pierce’s textbook [24, Chapter 11.5]. Pierce adds let-
expressions to the simply-typed lambda-calculus with the following
typing rule:

(Γ ` t1 : T1) (Γ,x:T1 ` t2 : T2)
--------------------------------Let

Γ ` let x=t1 in t2 : T2

He continues with the observation that it is not possible to imple-
ment let-expressions by the usual desugaring let x=t1 in t2
˜˜˜> (λx:T1.t2) t1 at the term level since the typing annota-
tion T1 for the bound variable x does not occur in the left-hand side.
Pierce concludes “that this information comes from the typechecker”
and that “we should regard it [the let desugaring] as a transforma-
tion on typing derivations [. . . ].” In his book, Pierce calls syntactic
extensions that incorporate type information in their desugaring “a



context-free syntax
"let" Bindings "in" Term -> Term

ID "=" Term -> Binding
Binding -> Bindings
Binding ";" Bindings -> Bindings

variables
"bs" [a-zA-Z0-9]* -> Bindings

inductive definitions and desugarings
Let1:
(Γ ` t1 : T1) (Γ,x:T1 ` t2 : T2)
--------------------------------
Γ ` [ let x = t1 in t2 ] : T2

˜˜˜> (λx:T1. t2) t1
Let2:
(Γ ` t1 : T1) (Γ,x:T1 ` let bs in t2 : T2)
------------------------------------------

Γ ` [ let x = t1; bs in t2 ] : T2

˜˜˜> (λx:T1. let bs in t2) t1

Figure 2. λ→ extension: Let-expressions with inferred types.

little less derived” because their semantics is derived but their typing
must be built into the base language.

While SoundX also supports fully-derived syntactic extensions
whose desugarings do not require type information, the novel feature
of SoundX is its support for syntactic extensions with desugaring
transformations on typing derivations. To exemplify desugarings
on typing derivations, we provide an extension of λ→ with let-
expressions that allow multiple bindings scoped from left to right.
This extension is a generalisation of the example by Pierce, where
we require a recursive desugaring in addition to type information.

The full extension for let-expressions appears in Figure 2. First,
we extend the syntax of terms to allow let-expressions with a list of
one or more bindings. Second, we introduce a new naming scheme
bs for metavariables ranging over bindings. Finally, we define the
typing rules and the desugaring of let-expressions.

We define the typing rules and desugarings in a combined form,
where the typing rules act as a guard for the desugarings. That is,
a guarded desugaring applies to instances of the typing rule in the
typing derivation. Importantly, all metavariables occurring in the
typing rule can be used in the right-hand side of the desugaring. For
example, this allows us to fill in the necessary type annotation on
x in rule Let1, which handles let-expression with a single binding.
Besides the insertion of the inferred type, the desugaring of rule
Let1 is standard. The brackets [ ] in the conclusion of the typing
rule mark which part of a typing derivation a desugaring replaces.
The brackets must fully enclose exactly one child of the used
judgement (e. g., Γ, t, or T in the typing judgement of λ→). Roughly,
the result of the desugaring is a derivation where the constructs
inside the brackets are replaced by the desugared form on the right-
hand side of the arrow in the desugaring rule.

The second rule Let2 is responsible for let-expressions with
more than one binding. Its second premise recursively brings the
bound variables into the scope of the bound expressions and the
body of the let-expression. The desugaring is equivalent to Let1
except for recursion: The body of the abstraction on the right-hand
side of the desugaring contains a residual let-expression. SoundX
applies desugarings iteratively and the residual let-expression leads
to a recursive desugaring based on derivation of the second premise
of Let2.

When desugaring a typing derivation, it is important to ensure
that the desugared derivation is valid with respect to the base lan-
guage. SoundX verifies for each guarded desugaring that the desug-
aring yields a judgement for which a derivation can be automatically
reconstructed. Roughly, this is the case if the desugared conclusion
follows from the premises. For example, for Let2 we have to prove
that the following rule is derivable:

(Γ ` t1 : T1) (Γ,x:T1 ` let bs in t2 : T2)
------------------------------------------

Γ ` (λx:T1. let bs in t2) t1 : T2

context-free syntax
"Pair" Type -> Type

"(" Term "," Term ")" -> Term
Term "." "1" -> Term
Term "." "2" -> Term

desugarings
{ Pair T ˜˜˜> (T → T → T) → T }

inductive definitions and desugarings
Fst: Snd:

Γ ` t : Pair T
--------------
Γ `[ t.1 ] : T

Γ ` t : Pair T
--------------
Γ `[ t.2 ] : T

˜˜˜> t (λa:T.λb:T.a) ˜˜˜> t (λa:T.λb:T.b)
Pair:
(Γ ` t1 : T) (Γ ` t2 : T)
-------------------------
Γ ` [ (t1,t2) ] : Pair T

˜˜˜> (λa:T.λb:T.λs:T→T→T. s a b) t1 t2

Figure 3. λ→ extension: Pairs at the type and term level.

This rule is derivable through applications of Abs and App from the
base language. SoundX rejects desugarings that cannot be shown to
yield reconstructable derivations.

2.3 λ→ Extension: Pairs at the Type and Term Level
Our second example extends λ→ with pairs at the level of types
and terms. Similar to a Church encoding, we encode pairs using
functions. However, due to the limited expressiveness of λ→, both
components of a pair have to be of the same type.

Figure 3 shows the code that implements pairs. We add syntax for
the pair type constructor Pair T, for pair construction (t1,t2),
and for the selection of pair components t.1 and t.2. We desugar
a pair type Pair T to a function type (T→T→T) → T that expects
a selector function. Since parametric polymorphism is not available
in λ→, we cannot use the usual Church encoding and instead require
the components of a pair to have the same type. Our desugaring
of Pair types is purely syntactic and does not require any context
information. We call such desugarings universal since they are
applicable whenever their left-hand pattern matches syntactically.

The typing rules and desugaring of pair expressions are now
mostly straightforward. The selection of pair components t.1 and
t.2 requires t to be of type Pair T for some T. A component
selection desugars to a function application where we pass an
appropriate selector function to t. Note that the bound variables a
and b in the selector function are concrete base-language names; they
are not metavariables because they do not match the naming scheme
declared in Figure 1. On the other hand, the type annotation T is a
metavariable whose value we extract from the typing derivation.

For pair construction, we require t1 and t2 to have the same
type T. Basically, we desugar a pair construction into λs:T→T→T.
s t1 t2, that is, a function that takes a selector and applies it
to the components. However, such desugaring captures free oc-
currences of variable name s in t1 or t2. Accordingly, t1 in the
desugared program would have to be well-typed in the extended
context Γ,s:T→T→T ` t1 : T, which we cannot guarantee given
the premises of typing rule. Therefore, the verification procedure of
SoundX rejects this desugaring as unsound. To avoid variable cap-
ture, we desugar a pair construction into an eta-expanded variant of
λs:T→T→T. s t1 t2, which is a sound desugaring. Alternatively,
we could have generated a fresh name as discussed in Section 5.2.

We introduced the extension for pairs because it illustrates a
different class of guarded desugarings. While we can verify the
soundness of Let1, Let2, and Pair by checking if the desugared
conclusion follows from the non-desugared premises, this check
fails for Fst and Snd because they rely on the desugared form of
their premise: We cannot conclude (Γ ` t (λa:T.λb:T.a) : T)
from (Γ ` t : Pair T), unless t is known to be a function. In
contrast to the other rules, Fst and Snd require that their premises



are desugared first, so that (Γ ` t : (T→T→T)→T). To support
all extensions, SoundX features two desugaring strategies that we
describe in the next section.

3. Desugaring Typing Derivations
A novelty of SoundX is that desugarings transform the typing
derivation of the extended program. This imposes three challenges:

Propagation. Syntactic constructs such as terms and types occur
duplicate in a typing derivation. When desugaring a construct,
the desugared form must be propagated through the derivation
toward the root.

Validity. When desugaring replaces a syntactic construct in a typing
derivation, the derivation is likely to become corrupted and must
be reconstructed to a valid derivation.

Traversal order. Desugarings on plain terms are typically applied
in either bottom-up (leaves to root) or top-down (root to leaves)
order. Desugarings on typing derivations require both top-down
and bottom-up application depending on the occurrence of
extended constructs in the premises of typing rules.

In the following, we present our solution for each challenge.

3.1 Propagation of Desugared Forms
Consider the following typing derivation of the judgement ∅ `
(let a=1 in a) + 2 : Nat.

---------Nat
` 1 : Nat

---------------Var
a:Nat ` a : Nat

------------------------------Let1
` let a=1 in a : Nat

---------Nat
` 2 : Nat

-----------------------------------------Add
` (let a=1 in a) + 2 : Nat

The derivation contains the subexpression (let a=1 in a) twice:
Once in the root node and once in the boxed subderivation starting
at rule Let1. The desugarings for let-expressions apply to instances
of the typing rules Let1 and Let2, which serve as guards. Accord-
ingly, the desugaring of Let1 matches the boxed subderivation and
rewrites the conclusion to (λa:Nat. a) 1, yielding an intermedi-
ate derivation of the following form:

---------Nat
` 1 : Nat

---------------Var
a:Nat ` a : Nat

------------------------------Let1’
` (λa:Nat. a) 1 : Nat

---------Nat
` 2 : Nat

------------------------------------------Add
` (let a=1 in a) + 2 : Nat

We have successfully rewritten one occurrence of the let-expression
(for now ignoring the validity of the desugared boxed subderivation),
but we have yet to propagate this desugaring to the rest of the
derivation. In particular, as indicated by the arrow, we need to
propagate the desugared form to the root of the tree, so that we
get the fully desugared term (λa:Nat. a) 1 + 2. Generally, we
propagate desugared forms toward the root of the derivation in a
stepwise fashion. We call this propagation step forwarding.

To propagate the desugared form of our example, forwarding
tries to find an alternative instantiation of the typing rule Add at
the root of the derivation. The new instantiation of Add must be
such that the premises match the desugared conclusions of the
subderivations. That is, we assert the following equations on the
syntax of judgements:

Γ ` t1 : Nat = ∅ ` (λa:Nat. a) 1 : Nat

Γ ` t2 : Nat = ∅ ` 2 : Nat

Matching the premises yields the following substitution:
σ = {Γ 7→ ∅, t1 7→ (λa:Nat. a) 1, t2 7→ 2}

With this we can create a new instance of typing rule Add by apply-
ing the substitution to the premises and conclusion (metavariables
that do not occur in any premise are instantiated in a later step, see
Section 4.5). By construction, the new premises now correspond to
the conclusions of the subderivations. And, importantly, any desug-
ared forms mentioned by the subderivations have been forwarded to

the new conclusion. For our example, forwarding yields the follow-
ing derivation with the fully desugared conclusion as desired:

---------Nat
` 1 : Nat

---------------Var
a:Nat ` a : Nat

------------------------------Let1’
` (λa:Nat. a) 1 : Nat

---------Nat
` 2 : Nat

------------------------------------------Add
` (λa:Nat. a) 1 + 2 : Nat

In general, forwarding can fail, namely if there is no matcher for
the system of equations, that is, if the subderivations do not simulta-
neously match the premises of the typing rule. However, this only
happens if multiple premises share a metavariable that represents an
extended construct, which is desugared inconsistently into different
base-language constructs by the respective subderivations. As we
later show, this is the only way a desugaring can fail.

3.2 Reestablishing Validity for Desugared Conclusions
In our example in the previous subsection, we applied the desugaring
of Let1 to the subderivation starting at rule Let1, yielding the
following intermediate derivation:

---------Nat
` 1 : Nat

---------------Var
a:Nat ` a : Nat

------------------------------Let1’
` (λa:Nat. a) 1 : Nat

We annotated the last step in the derivation with rule name Let1’,
but actually no such rule exists; the above derivation is not valid in
the base language. This is no surprise as we just changed the term
in the conclusion without accommodating for this change in any
way. Only if we can reconstruct a valid derivation for the desugared
conclusion, we know that the desugared program is well-typed in
the base language.

In general, such reconstruction is not always possible. For
example, let us consider what happens if the desugaring for Let1
generated the conclusion ` (λa:Nat. 1) a : Nat, accidentally
swapping 1 and a. There is no chance of reconstructing a valid
derivation for this conclusion because the reference to a is illegal
in the empty environment. If we want to guarantee that desugarings
only produce well-typed code, we must reject definitions like this
one.

SoundX statically verifies the type soundness of a desugaring
and rejects those desugarings that do not yield a provably derivable
desugared conclusion. That is, for any guarded desugaring, SoundX
automatically proves that the desugared conclusion is derivable from
the premises of the typing rule. If the proof succeeds, it is guaran-
teed that the reconstruction of a valid derivation after desugaring
succeeds for any instance of the typing rule. We present the de-
tails of the verification procedure in Section 4.4; for now it suffices
that SoundX rejects the bogus desugaring for Let1 (because the
desugared conclusion is not derivable) but accepts both extensions
presented in the previous section. Thus, for our example derivation
from above, we can indeed reconstruct a valid derivation for the
desugared conclusion as follows. Note that the reconstruction is
always local to the last rule that appears in the derivation. Techni-
cally, we use backward chaining with backtracking to reconstruct
the derivation.

---------------Var
a:Nat ` a : Nat

-----------------------Abs
` λa:Nat. a : Nat → Nat

---------Nat
` 1 : Nat

--------------------------------------App
` (λa:Nat. a) 1 : Nat

3.3 A Desugaring Traversal for Derivations
A guarded desugaring rewrites the conclusion of corresponding type-
rule instances in the derivation. After each rewrite, we reestablish the
validity of the derivation as discussed in Section 3.2 and we forward
the desugared forms toward the root as discussed in Section 3.1.
However, it turns out there is an intricate interaction between
revalidation, forwarding, and the order in which desugarings are
applied.

Traditionally, when desugaring a plain syntax tree, it is common
to apply desugarings either bottom-up (leaves to root) or top-down
(root to leaves). Because our forwarding also works bottom-up, it



seems intuitive to desugar derivations bottom-up as well. Indeed, a
bottom-up traversal is a valid strategy for many guarded desugarings.
In fact, it is valid for all of our example desugarings except for Let2,
because forwarding would fail.

Consider an extended version of the let-expression from before,
where we bind an additional variable b:

---------Nat
` 0 : Nat

...
--------------------------Let1
b:Nat ` let a=1 in a : Nat

----------------------------------------Let2
` let b=0; a=1 in a : Nat

If we desugar this derivation bottom-up (leaves to root), the desug-
aring of Let1 and subsequent revalidation yields the following
intermediate derivation:

---------Nat
` 0 : Nat

...
---------------------------App
b:Nat ` (λa:Nat. a) 1 : Nat

------------------------------------------Let2
` let b=0; a=1 in a : Nat

Next, forwarding tries to match the desugared conclusion of the
inner let against the second premise of typing rule Let2:
Γ,x:T1 ` let bs in t2 : T2 = b:Nat ` (λa:Nat.a) 1 : Nat

This match cannot succeed because the desugared conclusion cannot
contain a let-expression. For this reason, guarded desugarings that
use extended syntax in their premises cannot be applied bottom-up.
That is, unless it is possible to desugar the premise using a universal
desugaring first, as in the case of Fst and Snd, where it is possible
to perform forwarding after desugaring the Pair type constructor.

If a bottom-up traversal sometimes is not possible, let us consider
a top-down traversal instead. In a top-down traversal, we first rewrite
the root conclusion, then reestablish validity for the desugared
conclusion, and finally continue desugaring the subderivations.
To propagate desugared forms from subderivations, the top-down
traversal still requires a subsequent bottom-up forwarding. For our
example let-expression, desugaring and revalidating the root yields
the following:

...
----------------------------Let1
b:Nat ` let a = 1 in a : Nat

------------------------------------Abs
` (λb:Nat. let a = 1 in a) : Nat→Nat

---------Nat
` 0 : Nat

---------------------------------------------------App
` (λb:Nat. let a = 1 in a) 0 : Nat

The recursive desugaring rewrites the conclusion of Let1 into
(b:Nat ` (λa:Nat. a) 1 : Nat) as before. Does forwarding
succeed now? It does because we have already eliminated the
surrounding let-expression. Instead of forwarding the desugared
term into rule Let2 with its premise in extended syntax, we forward
the desugared term through the already-desugared derivation via
base-language rules Abs and App. This forwarding succeeds and
provides us the fully desugared derivation:

...
-----------------------App
b:Nat ` (λa. a) 1 : Nat

-------------------------------Abs
` (λb:Nat. (λa. a) 1) : Nat→Nat

---------Nat
` 0 : Nat

----------------------------------------------App
` (λb:Nat. (λa. a) 1) 0 : Nat

Unfortunately, sometimes a top-down traversal is not possible.
Consider the following derivation of ` (3,7).1 : Nat.

---------Nat
` 3 : Nat

---------Nat
` 7 : Nat

------------------------Pair
` (3,7) : Pair Nat
-------------------Fst
` (3,7).1 : Nat

If we desugar this derivation top-down, we receive the desug-
ared root conclusion (` (3,7) (λa:T.λb:T.a) : Nat). Next
we need to reestablish a valid derivation for this conclusion, but
such a derivation does not exist: We have no means to show that
(3,7) has a function type, which is necessary for the application
term to be typeable. The reason why the Fst desugaring cannot be
applied top-down is that it relies on the desugared form of (3,7);
Fst and Snd require a bottom-up desugaring traversal.

SoundX Desugaring Traversal. In summary, the desugaring
traversal of SoundX combines a top-down with a bottom-up traver-
sal into a down-up traversal. On the way down (to the leaves),
we apply top-down desugarings as shown above. On the way up
(to the root), we apply forwarding and bottom-up desugarings as

N Names
E F N | N ~E S-expressions
J F `N ~E Judgements, named N
I F ~J _N J Inference rules, named N
U F E { E Universal desugarings
G F I[E]{ E Guarded desugarings
B F (~N, ~I) Base language definitions
X F (~N, ~I, ~G, ~U) Extensions
∇ F !J | ~∇ éN J Derivations

Figure 4. Abstract syntax of SoundX.

shown above. Whenever a desugaring rewrites a conclusion, we
immediately reestablish validity.

The fact that different desugarings require different traversal
directions also materialises in the verification procedure, which
decides a desugaring’s traversal direction and enforces a correspond-
ing soundness criterium. We formalize the desugaring process of
SoundX and its verification procedure in the following section and
prove that the desugaring of verified extensions is sound.

4. Metatheory
In this section, we define SoundX as a formal system, describe its
verification procedure and the precise details of the derivation desug-
aring. Finally, we establish soundness by showing that derivation
desugaring satisfies preservation and progress theorems.

4.1 Notation and Abstract Syntax
We use the following notational conventions for lists. We write
~a = 〈a1, . . . , an〉 = 〈a1..n〉 for a list of a elements. We liberally write
〈a, ~a〉, 〈~a, a〉, and 〈~a1, ~a2〉 for prepending, appending, and list literals,
respectively. We write a ∈ ~a to check membership, ~a1 ⊆ ~a2 to check
if all elements in ~a1 are in ~a2 independent of order, and ~a1

/∩ ~a2 to
check if the elements of the two lists are disjoint.

For the formalisation of SoundX, we use an abstract syntax for
judgements, inference rules, desugarings, derivations, etc. as shown
in Figure 4. We assume a countably-infinite set of atomic names N.
We capture all elements of the base-language and extensions by the
single syntactic sort of s-expressions E. We use expressions E to
model terms, types, statements, typing environments, and all other
programming constructs. We write vars(a) to recursively retrieve
all names N that occur as atoms within s-expressions inside of a,
and we write cons(a) to retrieve all names N that occur as function
symbols within s-expressions inside of a.

Each judgement J has a name and judges over a list of argument
expressions ~E. We denote inference rules I as ( ~J _N J) where ~J
are the premises, J is the conclusion, and N is the name of the rule.
For example, we can represent typing rule Var of λ→ from Figure 1
using the following abstract syntax:

〈`lookup 〈x, T,Γ〉〉_Var (`typed 〈Γ, x, T〉)
A universal desugaring U is a simple rewrite rule (E { E′) that

matches E and produces E′. A guarded desugaring (I[E]{ E′) is
similar but uses an inference rule for matching. As explained in the
previous section, a guarded desugaring has to mark which part of
a judgement the desugaring replaces with brackets. In our abstract
syntax, we use the abbreviation I[E] := ( ~J _N (`Nc

~E1[E]~E2)), such
that the guarded desugaring (I[E] { E′) replaces E by E′ where
I[E] occurs in a derivation.

We represent an abstract base-language definition B by the con-
structors and inference rules it provides. A base-language definition
B = (~N, ~I) is well-formed (B ok) if all inference rules ~I have unique
names and their constructors are listed in ~N, cons(~I) ⊆ ~N.



〈∇a1, . . . ,∇ak, . . . ,∇an〉 `~I ∇ak
V-Assumption

∀i ∈ 1..n : ~∇a `~I ∇i

(〈J1..n〉_N J0) ∈ ~I
[σ]〈J1..n, J0〉 = 〈concl〈∇1..n〉, J〉

~∇a `~I 〈∇1..n〉 éN J
V-Rule

Figure 5. Valid derivations ~∇a `~I ∇.

An extension X is a 4-tuple that introduces new constructor
names ~N, inference rules ~I, guarded desugarings ~G, and universal
desugarings ~U. We explicitly distinguish an extension’s inference
rules ~I, which will be used by the inference engine, from the patterns
of guarded desugarings, which will be used for desugaring but
not for inferring derivations. An extension X = (~N, ~I, ~G, ~U) is
well-formed ((B, X) ok) with respect to a base-language definition
B = (~NB, ~IB) if ~NB

/∩ ~N, the inference rules 〈~IB, ~I〉 have unique
names, and cons(〈~I, ~G, ~U〉) ⊆ 〈~NB, ~N〉.

We write ∇ to denote derivations. Instead of the space consuming
two-dimensional display of derivations we write 〈∇1, . . . ,∇n〉 éN J
for the derivation

∇1 · · · ∇n---------N.
J

Later, in Section 4.4, we also need assumptions !J, which are
judgements that we take for granted without any further evidence.
We use the function concl to select the conclusion of a derivation
concl(~∇ éN J) = J and concl(!J) = J, and function rule to select
the rule name N from a derivation (~∇ éN J).

A substitution σ is a finite partial function from variables to
expressions {N1 7→ E1, . . . ,Nn 7→ En}. We write [σ]a for the
application of σ to some abstract syntax a. Since our abstract syntax
has no binding structure, [σ]a is direct replacement of variables
(names that occur as atoms in s-expressions) by expressions.

4.2 Valid Derivations
The notion of a valid derivation is central to SoundX. The abstract
syntax of Figure 4 permits the formation of arbitrary derivation trees
∇. Of course, only a subset of these derivations is actually valid with
respect to some given inference rules ~I. We formalise the validity of
derivations in Figure 5 through judgement ~∇a `~I ∇.

Judgement ~∇a `~I ∇ expresses that the derivation ∇ is valid with
respect to the inference rules ~I and assumptions ~∇a. The derivations
~∇a are assumed to be valid and, in particular, they may contain
assumption judgements !J. The first rule V-Assumption states that ∇
is valid if it is an assumption. The second rule V-Rule specifies the
conditions under which an instantiation of an inference rule is valid.
Namely, it is valid if all subderivations are valid, there is an inference
rule named N with n premises, and there exists a substitution σ that
instantiates the inference rule such that it matches the conclusion J
and premises concl〈∇1..n〉 in the derivation.
Lemma 1. Judgement ~∇a `~I ∇ satisfies the following structural
properties:
1. Substitution: If ~∇a `~I ∇, then [σ]~∇a `~I [σ]∇.
2. Assumption exchange: If ~∇a `~I ∇ and concl(~∇a) = concl(~∇′a),

then there exists ∇′ such that ~∇′a `~I ∇
′ and concl(∇) = concl(∇′).

3. Transitivity: If 〈∇1..n〉 `~I ∇ and ∀i ∈ 1..n : 〈〉 `~I ∇i, then 〈〉 `~I ∇.

Proof. By induction on a derivation of ~∇a `~I ∇ and a case analysis
on the last rule applied in the derivation. The full proof is included
in the supplement of this paper. �

CE F • | N〈~E,CE , ~E〉
CJ F `N 〈~E,CE , ~E〉
CI F 〈 ~J,CJ , ~J〉_N J | ~J _N CJ

(E0 { E′0) ∈ ~U E = [σ]E0 E′ = [σ]E′0
Ca[E] 7−→ ~G; ~U Ca[E′]

a ∈ {E, J, I}

R-Universal

(I0[E]{ E′) ∈ ~G I = [σ](I0[E]) I′ = [σ](I0[E′])
I 7−→ ~G; ~U I′

R-Guarded

Figure 6. Definition of the small-step rewriting a 7−→ ~G; ~U a′.

~∇ `
〈~I,~Ix〉
∇ concl(∇) = J rule(∇) ∈ ~I

reconstruct~I;~Ix
(~∇, J) B ∇

Reconstruct

Figure 7. Derivation reconstruction.

rewrite ~Gx ; ~Ux
(〈J1..n〉_N J) = 〈J′1..n〉_

N J′

cons〈J′1..n〉 ⊆ ~N
reconstruct~I;〈〉(〈!J′1..n〉, J

′) B ∇

(~N, ~I); (~Nx, ~Ix, ~Gx, ~Ux) n (〈J1..n〉_N J) : B
S-Base

rewrite ~Gx ; ~Ux
(〈J1..n〉_N J) = 〈J′1..n〉_

N J′

reconstruct~I;~Ix
(〈!J1..n〉, J′) B ∇

(~N, ~I); (~Nx, ~Ix, ~Gx, ~Ux) n (〈J1..n〉_N J) : X
S-Ext

Figure 8. Extension verification and classification B; X n I : {B,X}.

4.3 Rewriting
In Figure 6, we define the small-step rewriting a 7−→ ~G; ~U a′ that
applies universal and guarded desugarings to some abstract syntax a.
A universal desugaring applies to the expressions within expressions,
judgements, and inference rules. We use reduction contexts Ca[E]
to navigate to an expression E in the abstract syntax. A universal
desugaring U = E0 { E′0 rewrites an expression E if there is a
substitution σ such that σ instantiates the pattern E0 of U to E. If
the pattern matches, the desugaring replaces E by the right-hand
side E′0 instantiated through σ.

The small-step rewriting for guarded desugarings only applies to
inference rules I (we describe the desugaring of typing derivations
∇ in Section 4.5). A guarded desugaring I0[E] { E′ rewrites an
inference rule I if there is a substitution σ such that σ instantiates
the rule to I. The result then is the same inference rule I where E is
replaced by [σ]E′.

SoundX does not depend on the details of the rewrite engine. We
assume there is a function rewrite ~G; ~U(a) that exhaustively applies
the small-step rewriting a 7−→ ~G; ~U a′ to a ∈ {E, J, I}. That is, we
make the following assumption about rewrite:
Assumption 2.
If rewrite ~G; ~U (a) = a′, then a 7−→∗

~G; ~U
a′ and @a′′. a′ 7−→ ~G; ~U a′′.

Definition 3. Terminating rewrite system
A list of universal desugarings ~U forms a terminating rewrite system
if for all a ∈ {E, J, I} there exists a′ such that rewrite

〈〉; ~U (a) = a′.

4.4 Extension Verification
With function rewrite in place, we can develop the SoundX verifi-
cation procedure for extensions. The purpose of this procedure is



to verify that an extension is sound, which means that the code gen-
erated by its desugaring is well-typed in the base language. To this
end, extension verification has to guarantee that it is always possible
to reconstruct a valid derivation for the desugared conclusion. We
do so by symbolically desugaring the conclusion of inference rules
and verifying that the premises entail the desugared conclusion. As
a consequence, desugaring yields a valid derivation for any instance
of such inference rule.

In our overview in Section 3, we illustrated that different exten-
sions require different desugaring strategies. The decisive factor is
whether a guarded desugaring relies on its premises in desugared
form or in non-desugared form. For example, we saw that pair pro-
jection Fst and Snd rely on its premise in desugared form so that
the generated function application is valid. Conversely, we saw that
let binding Let2 relies on its second premise in non-desugared form
because it generates partially non-desugared code. We classify the
inference rules of an extension according to what kind of guarded
desugarings apply to them. We call an inference rule a B-rule if the
guarded desugarings rely on their premises to be in desugared form,
that is, if the premises are part of the base language B. We call an
inference rule an X-rule if the guarded desugarings rely on their
premises to be in non-desugared form, that is, unchanged.

Our verification procedure needs to ensure that it is possible to
reconstruct a derivation for the desugared conclusion of an inference
rule. To this end, we define relation reconstruct~I;~Ix

(~∇, J) B ∇ in
Figure 7. Given the assumptions ~∇ and desugared conclusion
J, a reconstructed derivation ∇ exists if ∇ is a valid derivation
under the assumptions, ∇ shows J, and the last rule applied in
∇ is part of the base-language inference rules ~I. The fact that
reconstruction requires the final rule instantiated in ∇ to be from the
base language ensures that the application of guarded desugarings
always terminates. However, an efficient proof-search algorithm
for finding the derivation ∇ is not in scope of this paper; in our
implementation we use backward chaining with backtracking.

We describe our verification procedure in Figure 8. Given a base
language definition B = (~N, ~I) and an extension X = (~Nx, ~Ix, ~Gx, ~Ux),
an inference rule I ∈ ~Ix is a sound B-rule if statement B; X n I : B
can be derived by rule S-Base. We first symbolically desugar the
inference rule using the universal and guarded desugarings of X. An
inference rule can only be a B-rule if all constructors occurring in
the desugared premises are from the base language. An inference
rule is a B-rule we can reconstruct a derivation for the symbolically
desugared conclusion J′ given the symbolically desugared premises
〈J′1..n〉 as assumptions, using only the inference rules of the base
language ~I. This allows the desugared conclusion to rely on the
desugared premises.

The soundness criterion for X-rules is similar. An inference rule
I is a sound X-rule if statement B; X n I : X can be derived by
rule S-Ext. This rule differs from S-Base in two ways. First, S-
Ext does not require the desugared premises to be from the base
language; they may refer to constructors from the base language and
from the extension. Second, S-Ext reconstructs a derivation of the
symbolically desugared conclusion J′ based on the non-desugared
premises 〈J1..n〉, using the inference rules of the base language ~I and
extension ~Ix. This allows the desugared conclusion to rely on the
original, non-desugared premises.

Finally, an extension (~Nx, ~Ix, ~Gx, ~Ux) is sound Bn X with respect
to a base language B if B; X n I : B or B; X n I : X holds
for each inference rule I ∈ ~Ix. Note that some inference rules
simultaneously satisfy the conditions for B-rules and X-rules. For
example, rules Let1 and Pair from Section 3 satisfy both criteria.
Our implementation chooses to use the inference rule as an X-rule,
which does not require forwarding. An extension with an inference
rule that simultaneously relies on desugared and original premises is

concl(~∇) = [σ] ~J

forward(~∇, ~J _N J) B [σ]J
FWD-Ok

@σ. concl(~∇) = [σ] ~J

forward(~∇, ~J _N J) B  
FWD-Fail

Figure 9. Forwarding.

not supported by SoundX. However, in our experience, extensions
like that can be represented as the composition (cf. Section 4.8)
of two separately verified SoundX extensions, one that desugars
top-down and one that desugars bottom-up.

4.5 Derivation Desugaring
We formalise the process of desugaring a typing derivation as out-
lined in Section 3. We first introduce forwarding and derivation
reconstruction before combining them into a full desugaring traver-
sal over derivations.

Forwarding. Forwarding propagates desugared forms from a sub-
derivation toward the root of the derivation. We define forwarding
as a relation forward(~∇, I) B J in Figure 9. Forwarding tries to find
a refinement of inference rule I such that the premises of I match
the conclusions of the (desugared) subderivations ~∇. If such a refine-
ment exists, rule FWD-Ok yields the refined conclusion of I.

If no matching substitution for the conclusions of the subderiva-
tions and the premises of the current rule exists, forwarding fails
as indicated by  in rule FWD-Fail. We have not yet precisely
formalised the conditions under which forwarding can fail but Sec-
tion 4.7 provides a characterisation and an example of such a situa-
tion. As we later show, forwarding is the only part of our derivation
desugaring that can fail.

Derivation Reconstruction. Our desugarings rewrite conclusions
in a derivation into a desugared form. Therefore, the result of a
rewriting is typically not a valid derivation. To reconstruct a valid
derivation after a rewriting, we use reconstruct that we already used
for extension verification in the previous subsection. In fact, deriva-
tion reconstruction after a rewriting always succeeds in SoundX,
because the extension verification only admits extensions for which
this property can be guaranteed. To verify that all usages of an ex-
tension permit derivation reconstruction, our verification procedure
uses reconstruct to construct a derivation that generically verifies
that the desugared conclusion is always derivable. In a practical
implementation, it is sufficient to reuse this generic derivation and to
instantiate it for usages of the extension; no further proof search is
necessary for user programs. In our formalisation, we separately in-
voke reconstruct for every desugaring step to keep the presentation
straight.

Down-up Desugaring Traversal. We desugar typing derivations
through a down-up traversal [30]. Conceptually, a down-up traversal
consists of a top-down traversal followed by bottom-up traversal.
Technically, the two traversals are interleaved into a single pass
over the derivation. The down-up traversal invokes a small-step
downward desugaring while going down to the leaves and a small-
step upward desugaring while back going up to the root. Specifically,
we apply X-rule desugarings downward (because they require
the original premises) and we apply B-rule desugarings upward
(because they require the desugared premises).

We define the small-step downward desugaring of the root of
a derivation by relation ∇

7→

B;X ∇
′ in Figure 10(a). If the last

rule used in a derivation is from the base language, no downward
desugaring occurs and the derivation remains unchanged (rule TD-
Base). Similarly, if the last rule is an B-rule from the extension, we



( ~J0 _N J0) ∈ ~I

(~∇ éN J)

7→

(~N,~I);X (~∇ éN J)
TD-Base

( ~J0 _N J0) ∈ ~Ix

B; (~Nx, ~Ix, ~Gx, ~Ux) n ( ~J0 _N J0) : B

(~∇ éN J)

7→

B;(~Nx ,~Ix , ~Gx , ~Ux) (~∇ éN J)
TD-ExtB

( ~J0 _N J0) ∈ ~Ix

(~N, ~I); (~Nx, ~Ix, ~Gx, ~Ux) n ( ~J0 _N J0) : X
rewrite ~Gx ; ~Ux

( ~J0 _N J0) = ~J′0 _N J′0
[σ]〈 ~J0, J0〉 = 〈concl(~∇), J〉

reconstruct~I;~Ix
(~∇, [σ]J′0) B ∇′

(~∇ éN J)

7→

(~N,~I);(~Nx ,~Ix , ~Gx , ~Ux) ∇
′

TD-ExtX

(a) Small-step downward desugaring ∇

7→

B;X ∇
′.

( ~J0 _N J0) ∈ ~I
forward(~∇, ~J0 _N J0) B J′

[σ]J0 = J
σ′ = {N 7→ rewrite

〈〉; ~Ux
(σ(N)) | N ∈ dom(σ) \ vars( ~J0)}

(~∇ éN J) 7→(~N,~I);(~Nx ,~Ix , ~Gx , ~Ux) (~∇ éN [σ′]J′)
BU-Base

( ~J0 _N J0) ∈ ~Ix

rewrite ~Gx ; ~Ux
( ~J0 _N J0) = ~J′0 _N J′0

forward(~∇, ~J′0 _N J′0) B J′

[σ]J0 = J
σ′ = {N 7→ rewrite

〈〉; ~Ux
(σ(N)) | N ∈ dom(σ) \ vars( ~J′0)}

reconstruct~I;〈〉(~∇, [σ
′]J′) B ∇′

(~∇ éN J) 7→(~N,~I);(~Nx ,~Ix , ~Gx , ~Ux) ∇
′

BU-Ext

(b) Small-step upward desugaring ∇ 7→B;X ∇
′.

Figure 10. Small-step derivation desugarings.

∇

7→

B;X (〈∇′1..n〉 éN′ J′)
∀i ∈ 1..n : ∇′i mB;X ∇

′′
i

(〈∇′′1..n〉 éN′ J′) 7→B;X ∇
′′′

∇ mB;X ∇
′′′

DU-Desugar

Figure 11. Down-up derivation desugaring.

can leave derivation unchanged and perform a upward desugaring
later on (rule TD-ExtB). Finally, rule TD-ExtX performs the
downward desugaring given that the last rule of the derivation is an
X-rule from the extension. We obtain the desugared conclusion
of the derivation by instantiating the desugared conclusion of
the inference rule J′0 using the original substitution σ from the
derivation. We obtain a valid derivation ∇′ for the desugared
conclusion [σ]J′0 through reconstruction based on the original
subderivations ~∇.

We define the small-step upward desugaring of the root of a
derivation by relation ∇ 7→B;X ∇

′ in Figure 10(b). If the last rule
used in a derivation is from the base language, no guarded upward
desugaring occurs. However, there may have been desugarings in
subderivations, which need to propagate toward the root. To this end,
rule BU-Base applies forwarding from the subderivations to the last
rule of the derivation, yielding the new conclusion J′. Moreover, the
small-step upward desugaring is also responsible for applying uni-
versal desugarings to the concrete terms occurring in the conclusion.
To this end, we construct substitution σ′ that binds and universally
desugars the values of those metavariables N of the conclusion that
do not occur in any premise. For metavariables that occur in some
premise, the universal desugaring was already conducted in the cor-
responding subderivation. Rule BU-Ext handles instantiations of
B-rules of the extension. It desugars the instantiated rule, forwards
the rewrites from the subderivations into the new conclusion, univer-
sally desugars the concrete terms of the conclusion, and reconstructs
a valid derivation for the new conclusion.

The relations ∇

7→

B;X ∇
′ and ∇ 7→B;X ∇

′ only desugar the root of
the derivation. The desugaring of an entire derivation is a down-up
traversal that applies these rules. We define the down-up desugaring
traversal ∇ mB;X ∇

′ in Figure 11. The traversal first applies a
downward desugaring on derivation ∇, followed by a recursive
down-up desugaring of the resulting subderivations ∇′i . Finally, the

traversal applies an upward desugaring that performs the necessary
forwarding and yields the final derivation ∇′′′.

As mentioned earlier, forwarding can fail. With the definitions of
derivation desugaring presented above, a failure of the forward step
entails that the desugaring becomes stuck, that is, there exists no ∇′
such that we can derive ∇ mB;X ∇

′. In order to prove that desugaring
can only get stuck due to a failure in the forward step, we make
this failure explicit and write ∇ mB;X  whenever forwarding yields
 . We augment the small-step downward and upward desugarings
with additional rules to propagate a forwarding failure. The rules are
straightforward and appear as part of the supplementary material.

4.6 Soundness
We present our key metatheoretical result, namely that the down-
up desugaring of sound extensions satisfies preservation and weak
progress. This soundness result is fundamental for SoundX and
ensures that desugaring after type checking yields a valid base-
language derivation. All proofs are included in the supplementary
material of this paper.

Preservation. Given a well-formed base language B, a well-
formed extension X relative to B, and a valid derivation ∇ in the
extended language, down-up desugaring preserves the validity of
the typing derivations and yields a desugared derivation ∇′ that is
valid in the base language:
Theorem 4. (Preservation)
Let B = (~N, ~I) and X = (~Nx, ~Ix, ~Gx, ~Ux).
If B ok, (B, X) ok, 〈〉 `

〈~I,~Ix〉
∇, and ∇ mB;X ∇

′, then 〈〉 `~I ∇
′.

It may come as a surprise that preservation does not require a sound
extension but only a well-formed one. Extension soundness is not
needed in the preservation theorem because the desugaring only
succeeds if the derivation reconstruction in BU-Ext and TD-ExtX
are successful. Thus, the progress theorem has to demonstrate that
derivation reconstruction does not get stuck.

To prove the preservation theorem, we need the following
preservation properties for the small-step downward and upward
desugaring statements:
Lemma 5.
Let B = (~N, ~I) and X = (~Nx, ~Ix, ~Gx, ~Ux) with B ok and (B, X) ok.
1. If 〈〉 `

〈~I,~Ix〉
∇ and ∇

7→

B;X ∇
′, then 〈〉 `

〈~I,~Ix〉
∇′.

2. If 〈〉 `~I ∇i for all ∇i ∈ ~∇ and (~∇ éN J) 7→B;X ∇
′, then 〈〉 `~I ∇

′.



Proof. By a case analysis on the last rule applied in the derivations
of 〈〉 `

〈~I,~Ix〉
∇ (part 1) and (~∇ éN J) 7→B;X ∇

′ (part 2). �

Using these properties we can prove the preservation theorem:

Proof of Theorem 4 (Preservation). By induction on derivation
∇ mB;X ∇

′ using Lemma 5. �

Progress. Given a well-formed base language B, a well-formed
and sound extension X relative to B with terminating universal
desugarings, and a valid typing derivation ∇, down-up desugaring
either fails at a forwarding step or yields a desugared derivation ∇′.
Theorem 6. (Progress)
Let B = (~N, ~I) and X = (~Nx, ~Ix, ~Gx, ~Ux).
If B ok, (B, X) ok, B n X, ~Ux forms a terminating rewrite system,
and 〈〉 `

〈~I,~Ix〉
∇, then either ∇ mB;X  or ∇ mB;X ∇

′ for some ∇′.
In some sense, the progress theorem is more substantial than the
preservation theorem for SoundX, because we have to show that the
soundness of an extension indeed implies that the reconstruction
of derivations always succeeds. Moreover, the statement ∇ mB;X  
is only derivable via the FWD-Fail rule which means that failed
forwarding is the only possible cause of a stuck down-up desugaring.
In particular, it is impossible that the desugaring of an ill-specified
extension leads to this statement since this extension would be
rejected upfront during verification.

The assumption of the progress theorem that ~Ux forms a termi-
nating rewrite system is, of course, not decidable. A particular ~Ux
which does not terminate for some input may cause the verification
of the desugaring or the execution of the desugaring to diverge. How-
ever, this does not compromise soundness since no desugared code
is produced. If the desugaring terminates, our theorems guarantee
the result is well-typed.

To prove the progress theorem, we need the following progress
properties for the small-step downward and upward desugaring
statements:
Lemma 7.
Let B = (~N, ~I) and X = (~Nx, ~Ix, ~Gx, ~Ux) with B ok, (B, X) ok, B n X,
and ~Ux forms a terminating rewrite system.
1. If 〈〉 `

〈~I,~Ix〉
∇ then ∇

7→
B;X ∇

′ for some ∇′.

2. If ∇

7→

B;X ( ~∇′ éN′ J′) then either ( ~J0 _N′ J0) ∈ ~I or
( ~J0 _N′ J0) ∈ ~Ix with B; X n ( ~J0 _N′ J0) : B.

Proof. By a case analysis on the last rule applied in the derivations
of 〈〉 `

〈~I,~Ix〉
∇ (part 1) and ∇

7→

B;X ( ~∇′ éN′ J′) (part 2) using the
extension soundness of X in the TD-ExtX case. �

Using these properties we can prove the progress theorem.

Proof of Theorem 6 (Progress). By induction on derivation 〈〉 `
〈~I,~Ix〉

∇ and a case analysis on the last rule applied in the derivation using
Lemmas 5 and 7 and Theorem 4. �

4.7 Failure of Forwarding
As we describe at the beginning of Section 4.5 forwarding can fail if
there exists no matching substitution for the conclusions of the sub-
derivations and the current premises. Intuitively, forwarding can only
fail if a metavariable occurs multiple times in the current premises
and the respective instantiations are inconsistently desugared in the
subderivations. Despite the fact that metavariables regularly occur
multiple times in the premises of a rule, we are not aware of any
meaningful example where forwarding failed.

We can construct an artificial example where forwarding fails.
Consider base language λ → that contains the following typing rule:

Bogus: (Γ,a:Nat ` t : T) (Γ,a:Bool ` t : T)
-------------------------------------

Γ ` t : Nat

Here a and b are concrete object-level identifiers and t is a
metavariable that appears in both premises. Using the let-expression
extension of Figure 2, we can construct a derivation for term
bogus (let c=a in 1), abbreviating Nat as N and Bool as B:
-----------
a:N ` a : N

---------------
a:N,c:N ` 1 : N

-----------------------------Let1
a:N ` let c=a in 1 : N

-----------
a:B ` a : B

---------------
a:B,c:B ` 1 : N

----------------------------Let1
a:B ` let c=a in 1 : N

------------------------------------------------------------Bogus
` bogus (let c=a in 1) : N

The desugaring of Let1 transforms the conclusion of the left
subderivation into a:N ` (λc:N.1) a : N and the conclusion of
the right subderivation into a:B ` (λc:B.1) a : N. Forwarding
into the Bogus-rule now tries to solve the following two equations
with a single substitution:

Γ,a:N ` t : T = a:N ` (λc:N.1) a : N
Γ,a:B ` t : T = a:B ` (λc:B.1) a : N

Since the type annotations in the lambda-abstractions differ, no
substitution exists for metavariable t and forwarding fails.

The failure is related to the double occurence of the metavariable
t in different contexts in Bogus and the dependence of the let-
desugaring on the type of t1 which is copied into the generated
code. Neither of the two is problematic as such but only their
combination leads to the failure. In the example, Bogus is a base-
language rule. All our attempts to construct an extension, even an
artificial one, containing a similar typing rule were either rejected
during verification or classified as X-rule, which is not subject to
the forwarding step. None of our case studies shows problems with
failed forwarding, thus providing practical evidence that SoundX
can be successfully applied.

4.8 Extension Composition
SoundX extensions can be composed in two manners. First, SoundX
supports incremental extension [7] where one extension desugars
into an already extended base language, thus stacking extensions on
top of each other. Second, SoundX supports extension unification [7]
where two extensions are combined into a new extension. In both
cases, a modular verification of each extension provides a sound
system and it is not necessary to reverify the composition of
extensions. It suffices to check that the names of constructors and
inference rules of different extensions do not overlap.

For incremental extensions, let us consider an extension X1 that
is sound relative to base language B and another extension X2 that is
sound relative to B ∪ X1. SoundX sequentially desugars extensions
X1 and X2. Specifically, SoundX desugars a valid derivation ∇ in
B∪X1∪X2 into a valid derivation ∇′ in B∪X1, which it subsequently
desugars into a valid derivation ∇′′ in B. Preservation ensures that
∇′′ is valid and progress ensures that the desugaring indeed yields a
derivation ∇′′ (or forwarding fails).

For extension unification, let us consider extensions X1 and
X2 that are sound relative to base language B and that do not
have overlapping constructors or inference-rule names. SoundX
can desugar X1 and X2 in any order. For example, we can first
desugar X1 considering B∪X2 the base language. This is sound since
desugarings defined in X1 are never applied to rule instantiations of
X2 because inference rule names do not overlap and reconstruction
is stable under the addition of the inference rules from X2 to
B’s inference rules. Thus, SoundX supports the composition of
extensions that have been independently verified sound.

5. Case Study: Extensible Java
To demonstrate the applicability of SoundX in a more realistic lan-
guage than λ→, we implemented a subset of Java as a SoundX base
language. We call this subset JavaLight, which comprises inheri-
tance, generic classes, primitive types boolean and int, packages
and imports, public methods and constructors, private fields, state-
ments like assignment, while, if, and method invocation, and



package javalight.lang;

import javalight.util.Iterator;

public class Iterable<A> {
// must be overridden by subclasses
public Iterator<A> iterator() { return null; }

}

Figure 12. The Iterable<A> class.

lexical syntax
[a-zA-Z] ALPHANUMS -> ID // metavariables for ID: x, y, z
{ ID "." }+ -> PID // metavariable for PID: pkg
PID "." ID -> QID // metavariable for QID: q

context-free syntax

"int" -> AType // metavariables for AType: t, s
"boolean" -> AType
QID ATypes -> AType
ID -> AType
"Object" -> AType

"[]" -> ATypes // metavariable for ATypes: t*, s*
AType "::" ATypes -> ATypes

Figure 13. Abstract syntax of JavaLight types.

expressions. Compared to Java, the most notable omissions are in-
terfaces, anonymous, local, and nested classes, and modifiers like
private, protected, or static.

Based on JavaLight we define Scala-like for-comprehensions
with inferred types for the bound variables as a syntactic extension.
For-comprehensions can be used to iterate over elements of a
collection class that extends class Iterable<A> shown in Figure 12.
Our classes Iterable<A> and Iterator<A> take the role of
the corresponding Java interfaces, where Iterator<A> declares
methods hasNext and next. For-comprehensions are an interesting
case study for SoundX because (i) the desugaring is type-dependent,
(ii) the desugaring spans multiple syntactic sorts, (iii) and the
desugaring builds on another extension for enhanced for-loops of
the form for(T x : e) stm .1

In the remainder of this section, we abbreviate package
javalight.lang with jl.l and javalight.util with jl.u.

5.1 The Base Language JavaLight
Due to its volume, we cannot describe all details of the JavaLight
base-language definition. Thus, we only sketch those parts that are
relevant for the extension with for-comprehensions.

Abstract Syntax for Types and Class Tables. In the definition of
the JavaLight type system, we use the abstract syntax of Figure 13
for the representation of types. We provide judgements that translate
the concrete syntax for types that appears as part of the user program
into the abstract syntax for types. An abstract syntax is necessary
since the concrete syntax of types does not distinguish between
type variables and class names. For example, in the field declaration
private Foo x;, Foo could be a type variable or a class name.
They can only be distinguished by looking at the enclosing class
declaration. If the field is declared in a generic class with the type
parameter Foo, the declaration refers to that parameter, otherwise
it is a class reference. In the abstract syntax, we represent type
variables as identifiers x and class types as fully qualified identifiers
q followed by a list of type arguments ts. The type of a non-generic
class is written q [] with an empty list of type arguments. We
provide judgements norm(CT, X*, T) = t and normPrim(CT,
X*, T) = t to translate user-written types T into their abstract
representation t where X* are the type parameters of the enclosing
class and CT is the class table. norm only succeeds for class types
whereas normPrim also succeeds for primitive types.

1 Source code available at http://github.com/florenzen/soundx.

A class table CT associates class names with class signatures. A
class signature ct contains the types of the constructor’s arguments,
the types of the public methods, the superclass, and the type param-
eters of the class. For example, the signature of class Iterable<A>
is {[], // constructor args
iterator:([]->jl.u.Iterator A::[]) :: [], // method types
Object, // superclass
A::[]} // type parameters

Note that list syntax a :: as and [] is overloaded and used at mul-
tiple places. Similar to the abstract syntax of types, class signatures
are internal to the type system; they are not part of the surface syntax
of JavaLight.

Judgements. The main judgements of JavaLight are the typing
judgements for statements and expressions as well as the subtyping
relation. The typing judgement for statements

CT; Ef; El ` stm* ˜ rt

assigns a return type rt to a sequence of statement stm*. A return
type is either void or an AType from Figure 13. Statements are
typed under a class table CT and two local environments Ef and El.
The environment Ef contains the names and types of the fields of
the enclosing class whereas El contains the names and types of the
parameters of the current method and the locally defined variables.
According to Java’s scoping rules, a local variable can shadow a
field but not another local variable. The lookup judgement x:t ∈
Ef;El reflects this by searching for x in El prior to Ef.

The typing judgement for expressions
CT; Ef; El ` e : t

assigns a type t to expression e using the class table CT and the
two typing environments Ef and El. The type of an expression is an
AType that excludes void.

The subtyping judgement CT ` s <: t asserts that type s is a
subtype of type t. A class type (q s*) is a subtype of another type
t if t corresponds to the declared superclass of the class named q .
Our definition of the subtyping judgement is reflexive and transitive.

In addition to the regular type rules of JavaLight, our formulation
includes structural type rules for weakening and permutation of the
typing context as well as subsumption. These type rules are not
needed for type checking, but our verification procedure requires
them as lemmas to proof the soundness of certain extensions. Since
weakening, permutation, and subsumption are properties of the
JavaLight type system, it is safe to add them explicitly.

Apart from the main judgement forms, JavaLight requires several
other judgements to support substitution, well-formedness checking,
class-table handling, class-name qualification, method lookup, and
type normalisation to name a few. Many of these judgements are
defined over multiple syntactic sorts, such as expressions, statements,
methods, types, and classes, and many judgements are lifted to
operate on lists of elements. In total, our definition of JavaLight
uses 48 judgement forms that are implemented by 150 inference
rules. A significant portion of these inference rules only implement
congruence rules and could be considered boilerplate.

5.2 Enhanced For-Statement
We base the implementation of for-comprehensions on Java’s en-
hanced for-loop for(T x : e) stm. Since this statement is not
part of JavaLight, we define it as an extension which is desugared
into a while-loop over an iterator:

{ Iterator<T> it = e.iterator();
while(it.hasNext()) {
T x = it.next();
stm } }

Note that the result of the desugaring is wrapped into a code block
to limit the scope of the generated variable it. Moreover, the
variable it may not shadow any variable from the enclosing local
environment. SoundX features a simple facility to generate fresh



S-EnhancedFor:
CT; Ef; El ` e : s À
CT ` s <: jl.l.Iterable t::[] Á
x < dom(El) Â
CT; Ef; El,x:t ` stm ˜ void Ã

CT; Ef; El ` stm* ˜ rt Ä

typevars(CT) = X* Å
norm(CT, X*, T) = t Æ
CT.jl.l.Iterable =
{[],iterator:[]->jl.u.Iterator A::[]::[],Object,A::[]} Ç
CT.jl.u.Iterator =
{[],hasNext:[]->boolean::next:[]->A::[],Object,A::[]} È
norm(CT, X*, Iterator<T>) = jl.u.Iterator t::[] É
---------------------------------------------------------------

CT; Ef; El ` [ for(T x : e) stm stm* ] ˜ rt

˜˜˜> { Iterator<T> y = e.iterator();
while(y.hasNext()) {
T x = y.next();
stm

} }
stm*

where y = fresh(Ef; El,x:t)

Figure 14. Guarded desugaring for enhanced for-loops.

names based on information from the typing derivation. Specifically,
we can generate fresh names that are not bound in the environments
Ef and El. This way, our desugaring for enhanced for-statements
obtains a fresh variable name for the iterator. SoundX rejects any
definition of enhanced for-loops that fails to ensure proper scoping.

Figure 14 shows the guarded desugaring of an enhanced for-
statement with typing rule S-EnhancedFor that captures all neces-
sary prerequisites. An enhanced for statement is well-typed if the
right-hand side e is a subtype of class Iterable<T> and the state-
ment stm has type void in the environment extended by the bound
variable x of type T. The premises À, Á, and Ã implement these con-
ditions. Since in Java, and hence in JavaLight, local variables may
only shadow fields but not other local variables, we need premise Â,
which prevents that variable x shadows a variable from the surround-
ing scope. Without this premise SoundX rejects the desugaring rule
because the variable declaration of x in the desugared code is illegal
given the context El. Since the statement typing judgement acts on a
sequence of statements, premise Ä requires that the statements stm*
following the enhanced for-statement are well-typed. The scope of
the bound variable x is limited to the for-statement and does not
extend to the subsequent statements.

The next two premises Å and Æ check that the declared type T
is a valid type in the current class table and can be translated into its
abstract representation. Premise Å typevars(CT) = X* simply
extracts the type paramaters X* of the enclosing class to normalise
the type T. The last three premises Ç to É are concerned with the
fact that an enhanced for-statement can only be desugared if the
classes jl.l.Iterable and jl.u.Iterator are defined in the
class table. Premises Ç and È do a class-table lookup and assert
the classes have the right signature, as the desugared code would
otherwise be illegal. Due to these premises, the type checker rejects
any enhanced for-statement in user code where jl.l.Iterable or
jl.u.Iterator are unavailable or provide the wrong methods.

Fresh Name Generation. To desugar an enhanced for-statement,
we have to generate a fresh name y for binding the iterator as shown
at the bottom of Figure 14. This name must be fresh with respect to
x and the current local and field environments El and Ef such that
SoundX can deduce for the desugared code

CT; Ef; El,y:(jl.u.Iterator t::[]),x:t ` stm ˜ void

from the original premise
CT; Ef; El,x:t ` stm ˜ void

using the weakening and permutation rules. The application of these
rules requires x,y, y < dom(Ef), and y < dom(El). The call
to the built-in function fresh with argument (Ef;El,x:t) yields

"for" "(" Enumerators ")" Statement -> Statement

Enumerator -> Enumerators
Enumerator ";" Enumerators -> Enumerators

ID "<-" Expr -> Enumerator
"if" Expr -> Enumerator

Figure 15. Syntax of for-comprehensions.

a name that satisfies these conditions. Function fresh is a small
extension to the desugaring procedure of Section 4 provided by the
SoundX implementation. During desugaring, a call fresh(Ef;El)
is replaced by an identifier y which satisfies y < dom(Ef) and y <
dom(El). The syntax and freshness condition of fresh are declared
as part of the base-language definition; the fresh-name generation is
generically handled by SoundX.

In our verification procedure from Section 4, instead of gener-
ating a fresh name, we use the call fresh(Ef;El) to represent the
fresh name symbolically. Since fresh(Ef;El) < dom(Ef;El)
by definition, our symbolic representation indeed mimics a fresh
name. This way, the SoundX verification procedure succeeds to ap-
ply weakening and permutation and manages to verify the extension
for enhanced for-loops sound with respect to JavaLight.

An alternative solution for obtaining a fresh name y is to include
the freshness condition y < dom(Ef;El,x:t) as an additional
premise of S-EnhancedFor. For the verification procedure, this
condition is exactly what is needed to apply weakening and permuta-
tion and to prove the extension sound. When using S-EnhancedFor
to construct a typing derivation, the type checker instantiates y with
a fresh name, because y does neither occur in any other premise
nor in the non-desugared conclusion. In contrast, function fresh
only constructs a fresh name during desugaring, not during type
checking. More importantly, in SoundX, a typing rule also acts as
the interface of its extension. Therefore, the typing rule should not
expose implementation details of fresh-name generation to clients.
We added function fresh to hide name generation from clients.

SoundX uses a first-order approach for name binding and more
sophisticated approaches for handling names exist in the literature
[2, 3, 27, 28]. However, as SoundX verifies extensions against the
type system of the base language, which necessarily also codifies
variable scoping, extensions with unintended variable captures are
rightfully rejected by SoundX. For example, suppose we used a fixed
name it instead of y on the right-hand side of S-EnhancedFor.
Under these circumstances, CT;Ef;El,x:t ` stm ˜ void does
not imply CT;Ef;El,it:(jl.u.Iterator t:[]),x:t ` stm
˜ void, because it might shadow a field in Ef or a local variable
in El. SoundX rejects such ill-scoped extensions.

5.3 Scala-like For-Comprehensions
With all the hard work with respect to fresh names and while-loops
already handled in the extension for enhanced for-loops, the defini-
tion of Scala-like for-comprehensions with inferred types, genera-
tors, and guards is relatively simple. We desugar for-comprehension
into JavaLight extended by enhanced for-loops.

Figure 15 shows the syntax of for-comprehensions, which intro-
duces the new sort Enumerator. An enumerator is either a generator
x <- e iterating over elements provided by e or a guard if e to
skip an iteration if e is false. The variables bound by generators are
visible from left to right in the enumerators.

We desugar enumerators of a for-comprehension in a stepwise
fashion similar to the bindings of let-expressions in Section 3.
Figure 16 shows the two recursive cases of the guarded desugarings
that implement for-comprehensions. As defined by the desugaring
of the rule S-ForCompGenEnums, a generator is directly translated
into an enhanced for-loop with a residual for-comprehension in the
body. The type annotation T that is required by the enhanced for-



S-ForCompGenEnums:
CT; Ef; El ` e : s
CT ` s <: jl.l.Iterable t::[]
typevars(CT) = X*
norm(CT, X*, T) = t
x < dom(El)
CT; Ef; El,x:t ` for(enums) stm ˜ void

CT; Ef; El ` stm* ˜ rt

// plus premises Ç to É from S-EnhancedFor (Figure 14)
---------------------------------------------------------
CT; Ef; El ` [ for(x <- e; enums) stm stm* ] ˜ rt

˜˜˜> (for(T x : e) for(enums) stm) stm*

S-ForCompIfEnums:
CT; Ef; El ` e : boolean
CT; Ef; El ` for(enums) stm ˜ void

CT; Ef; El ` stm* ˜ rt-----------------------------------------------
CT; Ef; El ` [ for(if e; enums) stm stm* ] ˜ rt

˜˜˜> (if(e) for(enums) stm) stm*

Figure 16. Excerpt of the typing rules and desugarings of for-
comprehensions (recursive cases).

loop is copied from the typing derivation (fourth premise). Similarly,
a guard if e directly desugars into an if-statement. The rules
for desugaring the non-recursive cases of for-comprehensions with
only one generator or guard are similar, except they have no residual
for-comprehension.

SoundX automatically verifies the soundness of the implemen-
tation of for-comprehensions relative to base language JavaLight
extended with enhanced for-loops. As explained in Section 4.8, dur-
ing the desugaring of a program that uses for-comprehensions, the
SoundX desugaring procedure performs two passes of down-up
desugaring to first eliminate for-comprehensions and then eliminate
enhanced for-loops.

6. Related Work
We provide an overview of related work in Figure 17. First, we
distinguish systems that provide context information to a desugaring
from systems that do not provide context information. Second, we
distinguish systems that check the correctness of generated code
dynamically after the desugaring has run from systems that statically
guarantee that a desugaring only generates well-typed code. We
discuss the four resulting categories of systems in turn.

First, we have systems that check the soundness of generated
code dynamically and do not provide any context information
to a desugaring transformation. Systems of this category include
syntactic preprocessors such as TemplateHaskell or Camlp4 that
only run the type checker after desugaring, but also include systems
like MetaHaskell or Ziggurat that perform type checking before
desugaring but do not expose this information to the desugaring.

Second, there are a number of systems that provide context
information to the desugaring transformation but only check the
well-typedness of generated code after the desugaring has run. To
provide context information to the desugaring, systems of this
category type check part of the non-desugared program prior to
desugaring. The desugaring then operates on a syntax object that is
enriched with typing information. For example, Scala type checks
the arguments of a macro before expanding the macro and the
macro can inspect the type of its arguments during expansion.
Since the systems of this category do not statically verify that a
desugaring only generates well-typed code, an explicit type check
after desugaring is necessary. If this type check fails, users of an
extension will see error messages in terms of the desugared code.

Third, a few systems guarantee static soundness, that is, they
verify that a desugaring can only generate well-typed code. However,
these systems do not provide context information to the desugaring,
which simplifies the verification but also limits the expressiveness of
desugarings. MacroML extends ML with type-safe macros based on

no context info. context info.

dynamic
soundness

TemplateHaskell [26],
Camlp4 [5],
MetaHaskell [20],
Ziggurat [9]

Xoc [4],
Scala macros [1],
TSLs in Wyvern [23]

static
soundness

MacroML[11], λm [17],
SoundExt [18]

CPS for DML [31],
SoundX

Figure 17. Overview of related work.

a multi-stage type-system. Its expressiveness is limited to generative
macros and the binding structure of macros is limited to predefined
patterns like lambda-abstraction or let-expressions. Herman’s λm-
calculus adds a signature system to a Scheme-like macro system to
declare the binding structure of macros. In this system, signature-
correct macros generate well-scoped code but there is no further
guarantee with respect to static typing. The approach to type-sound
language extension of SoundExt is similar to ours with respect to
extension verification, but solely relies on context-free term-level
desugarings.

Finally, we have the category of systems that guarantee static
soundness of desugarings while allowing desugarings to reflect on
typing information of the program. Besides our own work, we are
only aware of one other work in this category. Namely, Xi and
Schürmann present a type-preserving CPS transformation for a
core of dependent ML that is type-dependent and verified to be
sound [31]. Like in our system, the transformation operates on
typing derivations. However, while SoundX is a framework for
type-preserving transformations, a generalisation of the technique
used by Xi and Schürmann to develop the CPS transformation has
not been explored; the work presented by Xi and Schürmann is
language-specific and transformation-specific.

The reasoning techniques employed by SoundX for verifying ex-
tension is limited to backward chaining of type rules. Other systems
such as Twelf [16, 25] or Veritas [14] employ more sophisticated
reasoning techniques that, for example, support inductive proofs.
While we did not require such reasoning techniques in our experi-
ments so far, they would increase the expressiveness of SoundX and
enable, for example, modularly specified typing rules that govern a
class of desugarings.

7. Conclusion
We have presented SoundX, a system for sound syntactic language
extensibility where desugarings can depend on typing information
from the original program. To this end, we developed a new desug-
aring technique that transforms typing derivations rather than ab-
stract syntax. By verifying that desugarings can only produce valid
typing derivations, SoundX guarantees that the desugared code is
well-typed. SoundX rejects any extension that fails this soundness
criterion. We have formalised our techniques for derivation desugar-
ing and extension verification and proved that the desugaring of a
sound extension indeed yields well-typed code. In future work, we
will integrate more features of Java into JavaLight and try to encode
richer extensions in order to better understand the expressiveness
and limitations of SoundX.

Acknowledgments
We thank Sylvia Grewe and the reviewers for their helpful feedback.

References
[1] E. Burmako. Scala macros: Let our powers combine!: On how rich

syntax and static types work with metaprogramming. In Proceedings of



the 4th Workshop on Scala, SCALA ’13, pages 3:1–3:10. ACM, 2013.
[2] A. Charguéraud. The locally nameless representation. Journal of

Automated Reasoning, 49(3):363–408, 2012.
[3] J. Cheney and C. Urban. Nominal logic programming. ACM Trans-

actions on Programming Languages and Systems, 30(5):26:1–26:47,
Sept. 2008.

[4] R. Cox, T. Bergan, A. T. Clements, F. Kaashoek, and E. Kohler. Xoc, an
extension-oriented compiler for systems programming. In Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, pages
244–254. ACM, 2008.

[5] D. de Rauglaudre. Camlp4 reference manual, 2003.
[6] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: library-

based syntactic language extensibility. In Proceedings of the 2011 ACM
International Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’11, pages 391–406. ACM,
2011.

[7] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition
untangled. In Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications, LDTA ’12, pages 7:1–7:8. ACM,
2012.

[8] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[9] D. Fisher and O. Shivers. Building language towers with Ziggurat.
Journal of Functional Programming, 18(5–6):707–780, Sept. 2008.

[10] M. Flatt. Creating languages in Racket. Communications of the ACM,
55(1):48–56, Jan. 2012.

[11] S. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In Proceedings
of the 6th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’01, pages 74–85. ACM, 2001.

[12] G. Giorgidze and H. Nilsson. Embedding a functional hybrid modelling
language in Haskell. In Proceedings of the 20th International Confer-
ence on Implementation and Application of Functional Languages, IFL
’08, pages 138–155. Springer, 2008.

[13] J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, and A. Buckley. The
Java R© Language Specification – Java SE 8 Edition. Oracle America,
Inc., 2014.

[14] S. Grewe, S. Erdweg, P. Wittmann, and M. Mezini. Type systems
for the masses: Deriving soundness proofs and efficient checkers.
In Proceedings of Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2015. ACM, 2015.
to appear.

[15] R. Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, 2013.

[16] R. Harper and D. R. Licata. Mechanizing metatheory in a logical
framework. Journal of Functional Programming, 17(4-5):613–673,

July 2007.

[17] D. Herman. A Theory of Typed Hygienic Macros. PhD thesis,
Northeastern University, Boston, Massachusetts, 2010.

[18] F. Lorenzen and S. Erdweg. Modular and automated type-soundness
verification for language extensions. In Proceedings of 18th Inter-
national Conference on Functional Programming, ICFP ’13, pages
331–342. ACM, 2013.

[19] G. Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell ’07,
pages 73–82. ACM, 2007.

[20] G. Mainland. Explicitly heterogeneous metaprogramming with meta-
haskell. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 311–322.
ACM, 2012.

[21] Marlow, Simon. Haskell 2010 – language report, June 2010.

[22] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima Incorporation, 2008.

[23] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich.
Safely composable type-specific languages. In R. Jones, editor, ECOOP
2014 – Object-Oriented Programming, volume 8586 of Lecture Notes
in Computer Science, pages 105–130. Springer, 2014.

[24] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[25] C. Schürmann and F. Pfenning. Automated theorem proving in a simple
meta-logic for LF. In Proceedings of International Conference on
Automated Deduction, volume 1421 of LNCS, pages 286–300. Springer,
1998.

[26] T. Sheard and S. L. Peyton Jones. Template metaprogramming for
Haskell. In Proceedings of the ACM Workshop on Haskell, Haskell ’02,
pages 1–16. ACM, 2002.

[27] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming
with binders made simple. In Proceedings of the 8th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’03, pages
263–274. ACM, Aug. 2003.

[28] P. Stansifer and M. Wand. Romeo: A system for more flexible
binding-safe programming. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages
53–65. ACM, 2014.

[29] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

[30] E. Visser, Z.-E.-A. Benaissa, and A. Tolmach. Building program
optimizers with rewriting strategies. In Proceedings of the 3rd ACM
SIGPLAN International Conference on Functional Programming, ICFP
’98, pages 13–26. ACM, 1998.

[31] H. Xi and C. Schürmann. CPS transform for Dependent ML (abstract).
Logic Journal of IGPL, 9(5):739–754, Sept. 2001.


