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ABSTRACT

Reel-lay operations in deep water with Heerema Marine Contractors (HMC) DCV Aegir showed the onset of axial twist
during pipeline lowering and lay operations. For both phases of the pipelay, models have been made to approximate
the twist observed during operations. The suspected instigators of pipeline twist that have been researched are: resid-
ual curvature in the pipeline after straightening operations, the plastic bending history of reeled pipelines, variable wall
thickness along the pipeline due to fabrication and the effect of current. The main focus of this research however con-
cerns the effect of residual curvature in the pipeline on pipeline twist.

The twist development during pipeline lowering has been modeled using analytically derived equations and by means
of Finite Element (FE) analysis. Linear and non-linear analytical approximations for a vertical suspended beam with
residual curvature and loads representing the end terminal and current have been compared. Given the pipeline’s
straightness during lowering, the linear equations were sufficient and were used for further analysis. In the analyti-
cal models, the residual curvature in the pipeline is made dependent on the twist. Via the principle of total potential
energy minimization, an energetically advantageous twist angle is calculated. The results of the analytical models are
compared with the FE models via a sensitivity study. Here, the amount of residual curvature, the current direction and
its magnitude are varied. The results of the analytical models showed significant pipeline twist, whereas the FE models
showed almost no twist. Upon inspection, it is concluded that the lack of the out-of-plane contribution for the analyti-
cal models results in inaccurate twist approximation. Therefore, the potential energy minimization method as used by
Endal ([1]) is deemed unfit for the twist approximation during pipeline lowering.

Nevertheless, the correctly modeled FE models also gave twist results incomparable with the actual observed data:
They gave much lower twist values than what was observed in reality, which led to further research. The effect of a
spiral wise wall thickness variation along the pipeline, which is known to occur in seamless pipes, is investigated. Using
a small scale FE model, axial strain during lowering of a pipeline with the aforementioned imperfection is modeled.
The results showed that the imperfection gives a negligible twist contribution during lowering. Furthermore, the effect
of current on the Pipeline End Terminal (PLET) is investigated. Qualitative static analyses show that a relatively low
current speed on large pipeline lengths could give significant twist due to torsion: the lengthy pipelines offer less re-
sistance to torsion. Also in house fluid body interaction research done on an Inline Structure (ILT) modeled by a flat
plate subjected to an oscillating flow ([2]) shows that current can potentially give a large amount of torsion resulting in
a significant twist.

For the investigation of the twist development during lay operations again an analytical approach and a FE approach
are used for modeling. The results of the models are compared with one another in a sensitivity analysis. Here, the
residual curvature, the pipeline diameter, buoyancy, axial tension and wall thickness are varied. The results show that
residual curvature is the primary reason for twist during laying and that the direction of the residual curvature with
respect to the lay direction is very important. Given Aegir’s reel configuration, under-straightened pipelines can give
significant twist, whereas over-straightening leads to negligible twist.
The other parameters tested seem to have little influence. From model result comparison, it is concluded that the ana-
lytical approach gives a decreasing accuracy of twist approximation when increasing the amount of residual curvature.
Research showed that the out-of-plane bending which is disregarded in the analytical models, becomes more dominant
with increasing residual curvature and hence gives a larger discrepancy with the FE models. Still, the twist results are in
the range of observed twist data from a previous pipelay project.

Additionally, the effect of plastic deformation to obtain residual curvature in the FE models is investigated. Here, a
simplified beam model is made where plastic residual curvature is induced prior to either pipeline lowering or laying. It
should be noted however that the induced plastic strain in the pipeline model is relatively low compared to the strains
induced during the actual reeling process of the Aegir. Also, in the model the beam is only bent plastically once in-
stead of four times. The results were compared with the elastically pre-curved FE models and during lowering as well as
laying no significant difference in twist was identified. Given the model simplifications and the indifference in results
between plastically and elastically pre-curved beams, the tests were deemed inconclusive. More representative (and
computer intensive) FE models will have to be made to accurately model the effect of plastic deformations that occur
during reeling.

Although twist development during lowering is still unclear, the cause of twist during laying is understood and can
be preventively decreased. This can be done by either reducing the amount of residual curvature in the pipeline after
straightening as much as possible or by keeping the residual curvature in the over straightening domain.
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COMPANY PROFILE

Heerema Marine Contractors is an internationally active marine contractor with more than 50 years of specialized ex-
perience in the offshore and gas industry. Together with the other division Heerema Fabrication Group, which focuses
more on the engineering and fabrication of structures for the offshore industry, they form the Heerema Group. The
Heerema Group has an international workforce of approximately 2000 persons of which the majority is employed at
HMC.

Ever since the start of operations in Venezuela in 1948, HMC has been committed to solving complex offshore related
challenges. HMC’s scope of work is the transportation, installation and removal of offshore facilities. These facilities
comprise of fixed structures, floating structures, subsea pipelines and subsea infrastructures in shallow, deep or ultra-
deep waters. To achieve this, the fleet of Heerema’s vessels are able to facilitate heavy lift operations, float-overs and
pipelay operations. In total HMC owns four large specialized vessels, and a series of barges and smaller support vessels.
The deep water construction vessel Balder (Figure 3) is a combination of a semi-submersible crane vessel and a pipelay
vessel, capable of J-lay and multiple subsea installation operations. HMC’s two semi-submersible crane vessels the
Hermod (Figure 2) and the Thialf (Figure 1) are capable of heavy lift operations, where the Thialf is at present the largest
crane vessel in the world. The latest specialized vessel is the Aegir (Figure 4), a deep-water construction vessel which
is capable of executing complex subsea and pipeline projects in ultra-deep water and with a sufficient lifting capacity
for fixed platform installation in relatively shallow water. The reel/J-lay process of this vessel will be the focal point of
further research in this thesis, for it is the onset of pipe rotation during the reel-lay of the Aegir that is to be investigated.

Figure 1: The SSCV Thialf, the largest crane vessel in the world,
executing a tandem heavy lift operation.

Figure 2: The SSCV Hermod in stormy weather.

Figure 3: The DCV Balder with J-lay tower. Figure 4: The DCV Aegir during transit.
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NOMENCLATURE

GREEK SYMBOLS

Symbol Property [Unit]
α Tower or top angle [r ad ]
αs Non-dimensional quantity which measures the effect of the bending

stiffness compared to the non-dimensional tension contribution h
[-]

β Angle of attack of the current [r ad ]
γ Load factor relating the bending stiffness with the axial tension [m]
δa Axial displacement of Abaqus shell model [m]
δr Axial displacement in ’real life’ pipeline as used during Lucius Project [m]
∆ε Change in strain [-]
ε Strain [-]
εA Strain in Abaqus shell model [-]
εi Strain at a certain step number [-]
εnom Nominal strain [%]
εp Plastic strain [-]
εr Stain in ’real life’ pipeline as used during Lucius Project [-]
εTb Strain in pipeline caused by the bottom tension [-]
εWs Strain in pipeline caused by submerged weight [-]
θ Bending angle of pipeline [r ad ]
θ(1) Bending angle of pipeline [r ad ]
θ(2) First derivative of the bending angle with respect to distance along

the pipeline s
[ r ad

s ]

θ(3) Second derivative of the bending angle with respect to distance along
the pipeline s

[ r ad
s2 ]

θa Bending angle of pipeline at clamping point [r ad ]
θb Bending angle of pipeline at end point [r ad ]
θs Rotation of reel’s center point during spooling on [r ad ]
θu Rotation of reel’s center point during un spooling [r ad ]
dθ Change in the bending angle [r ad ]
κ Cross-sectional average of the curvature in the pipeline [ 1

m ]
κc Curvature development along the pipeline as described by natural

catenary theory
[ 1

m ]

κesc Curvature development along the pipeline as described by with en-
hanced stiffened catenary theory

[ 1
m ]

κi Curvature at a certain step number [ 1
m ]

κnl Curvature development along the pipeline as given by non-linear
equations

[ 1
m ]

κsc Curvature development along the pipeline as described by stiffened
catenary theory

[ 1
m ]

κr Residual curvature in the pipeline after straightening operations [ 1
m ]

λ Load factor relating the bending stiffness with the horizontal tension [m]
Π Total potential energy of the system [J ]

ρ Density [ kg
m3 ]

ρc Density of coating [ kg
m3 ]

ρex Density external medium pipeline [ kg
m3 ]

ρi Density internal medium pipeline [ kg
m3 ]

ρst Density of X-65 steel [ kg
m3 ]

ρw Density of seawater [ kg
m3 ]

σ1,2 Principle stresses [Pa]
σ Stress [Pa]
σi Stress at a certain step number [Pa]
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Σ Summation [-]
∆σ Change in stress [Pa]
σy Yield strength [Pa]
ω1 First frequency of excitation force [ r ad

s ]
ω2 Second frequency of excitation force [ r ad

s ]
φ0 Pipeline twist, torsion or roll angle at the seabed [r ad ]
φ Pipeline twist, torsion or roll angle [r ad ]
φA Twist in Abaqus shell model [r ad ]
φL Pipeline twist during lowering operations [r ad ]
φmax Maximum occurring pipeline twist [r ad ]
φmax,e Maximum occurring pipeline twist for elastic model [r ad ]
φmax,p Maximum occurring pipeline twist for plastic model [r ad ]
φPF−01 Pipeline twist of the PF-01 pipeline that is analyzed [r ad ]
φr Twist in ’real life’ pipeline as used during Lucius Project [-]
φS Pipeline twist of suspended pipeline during lay operations [r ad ]

LATIN SYMBOLS

Symbol Property [Unit]
∠sp Angle of the spiral wise wall thickness variation [°]
a Constant equal to TH

Ws
[m]

ai Strain at the axis of symmetry for a given step number i [%]
A Cross-sectional area pipeline [m2]
Aex External cross-sectional area pipeline [m2]
AH ,PLET Surface are PLET upon horizontal loading [m2]
Ai Internal cross-sectional area pipeline [m2]
Ar Pipeline cross-sectional area of ’real life’ pipeline as used during Lu-

cius Project
[m2]

Ast cross-sectional area of steel pipeline [m2]
bx Displacement of bottom point in x-direction [m]
by Displacement of bottom point in y-direction [m]
d A Segment of cross-sectional area pipeline [m2]
Cd Drag coefficient [-]
Cd ,PLET Drag coefficient for PLET [-]
Cm Inertia coefficient [-]
CD Drag coefficient for flat plate [-]
CL Lift coefficient for flat plate [-]
CN Normal coefficient [-]
COG Center of Gravity [m]
COP Center of Pressure [m]
di Location of the neutral axis d for a given step number i [m]
d s Beam segment [m]
D Diameter of the pipeline [m]
Di Inner diameter of the pipeline [m]
Do Outer diameter of the pipeline [m]
E Young’s Modulus [Pa]
EP Potential energy [J ]
Er Young’s Modulus of ’real life’ pipeline as used during Lucius Project [Pa]
Est Young’s Modulus X-65 steel [Pa]
f Exiting force [N ]
fD Drag force as described in Morison’s equation [N ]
f I Inertia force as described in Morison’s equation [N ]
Fb Buoyancy force per m of length [ N

m ]
Fc Current load on pipeline [N ]
Fe Current load and weight of end terminal [N ]
FH ,PLET Horizontal force acting on PLET [N ]
Fi Instigating force [N ]
FN Normal force [N ]
Fx Forces in the x-direction [N ]
Fz Forces in the z-direction [N ]
g Gravitational acceleration [ m

s2 ]
geq Equivalent gravitational acceleration [ m

s2 ]
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gs Small gravitational acceleration [ m
s2 ]

G Shear modulus [Pa]
G A Shear modulus of material shell Abaqus model [Pa]
h Non dimensional tension contribution [-]
H Out-of-straightness [m]
HF LET Height of the FLET [m]
I Second moment of Area [m4]
Ist Second moment of Area of steel pipeline [m4]
J Torsional constant [m4]
J A Torsional constant of material in Abaqus shell model [m4]
Jr Torsional constant of ’real life’ pipeline as used during Lucius Project [m4]
L Length of the pipeline [m]
Lappr ox Approximate pipeline length [m]
L A Length of Abaqus shell model [m]
Lc Bundled residual curvature length [m]
LF LET Length of the FLET [m]
Lκr Length of pipeline with residual curvature [m]
LPF−01 Length of PF-01 pipeline that is analyzed [m]
Lr Length of ’real life’ pipeline as used during Lucius Project [m]

ma added mass of the pipeline per m of length [ kg
m ]

mc mass of coating pipeline per m of length [ kg
m ]

mct mass of pipeline content per m of length [ kg
m ]

mp mass of pipeline per m of length [ kg
m ]

mst mass of steel pipeline per m of length [ kg
m ]

mT Total mass pipeline per m of length [ kg
m ]

M Moment [N m]
Me Overturning moment due to offset COG of PLET from pipeline [N m]
Mp Plastic moment [N m]
MT Total model [-]
My aw Yaw moment [N m]
Mz,i Bending moment around the z-axis for step number i [N m]
Nz,i Axial force in z-direction for step number i [N ]
p Pressure [MPa]
P Axial tension [N ]
Pb Bottom point of pipeline [-]
Pb∗ New bottom point of pipeline [-]
Pcl Clamping point on the pipeline [-]
Pe End terminal COG point [-]
Ps Surface point of pipeline [-]
rCOP Moment arm from COP to COG [m]
Rκ Radius of curvature [ 1

m ]
Rr Radius of residual curvature [m]
Rsp Radius of the rigid spool in Abaqus model [m]
s Distance along the pipeline [m]
Sel Element size [m]
t time [s]
tc Thickness coating [m]
tst Wall thickness steel [m]
T Axial tension in the pipeline [N ]
T0 Top tension in the pipeline [N ]
TA Torsion in shell model Abaqus [N m]
Tb Bottom tension in the pipeline [N ]
Te Effective tension in the pipeline [N ]
TH Horizontal tension in the pipeline [N ]
Tmax,r Maximum torsion as seen in Rodermans research [N m]
TP Torsion in the pipeline [N m]
Tr Torsion in ’real life’ pipeline as used during Lucius Project [N m]
TV Vertical tension in the pipeline [N ]
u Velocity exciting force Rodermans’ research [ m

s ]
Ua Axial strain energy [J ]
Ubi p In-plane bending strain energy [J ]
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Ubop Out-of-plane bending strain energy [J ]
UB Bending strain energy [J ]
Ut1 Second order strain energy regarding tension and twist [J ]
Ut2 Second order strain energy regarding tension and large bending an-

gles
[J ]

UT Total potential strain energy [J ]
UR Torsional strain energy [J ]
v Velocity [ m

s ]
vc Current velocity [ m

s ]
vH Horizontal current velocity [ m

s ]
V Shear force [N ]
wd Water depth [m]
W Half of the arcs’ horizontal length [m]
Ws submerged weight of the pipeline [ N

m ]
Ws,F LET submerged weight of the FLET [N ]
WPLET Submerged weight of PLET [mT ]
Wwi ng s,down Width of FLET with wings down [m]
Wwi ng s,up Width of FLET with wings up [m]
x(1) Horizontal displacement of vertical suspended beam [m]
x(2) Linearized bending angle along the vertical suspended beam [r ad ]
x(3) Curvature along the vertical suspended beam [ r ad

s ]
x(4) Third derivative of the horizontal displacement of the vertical sus-

pended beam along the beam
[ r ad

s2 ]

xi x-coordinate of incremental length i [m]
yi y-coordinate of incremental length i [m]
zi Distance from symmetry axis to location on cross-section pipe for

step number i
[m]

ACRONYMS
3mE Mechanical, Maritime and Materials Engineering

AR Abandonment and Recovery

AUT Automatic Ultrasonic Testing

AWL Auxiliary Welding Level

COG Center of Gravity

COP Center of Pressure

DCV Deep water Construction Vessel

DNV Det Norske Veritas

E.o.M Equation of Motion

EXGR Gas Export Riser

EXOR Gas Export Riser

FBE Fusion-bonded Epoxy

FE Finite Element

FEA Finite Element Analysis

FLET Flowline End Termination

GSPU Glass Syntactic Polyurethane

HMC Heerema Marine Contractors

ILT Inline Structure

mT Metric Tonnes

PF Production Flowline

V.J.Taams Thesis



LIST OF SYMBOLS xxiii

PI Production Infield Flowline

PLEM Pipeline End Manifold

PLET Pipeline End Terminal

PR Production Riser

RAO Response Amplitude Operator

RB3D2 2-node-3D rigid beam element

ROV Remotely Operated Vehicle
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1
INTRODUCTION TO PIPELINE TWIST DURING

REEL-LAY OPERATIONS

At the end of 2013, HMC’s DCV vessel Aegir commenced with its first series of reel-lay operations[3]. The reel-lay oper-
ations entailed the installation of flowlines, export- and infield steel catenary risers for the Lucius SPAR of the Anadarko
Petroleum corporation. The operations also entailed the lowering of the pipelines with end modules, such as pipeline
end terminals (PLETs) or pipeline end manifolds (PLEMs).The reel-lay activities took place 390 km offshore at a water
depth of approx. 2100 m. The subsea infrastructure that was laid by HMC, with the exception of the export risers, is vis-
ible in Figure 1.1. In the course of the lay operations it became apparent that the pipes were subject to rotation around
their own axis. During lowering of the first part of a pipe section, the PLET had to be adjusted upon arrival at the target
box on the sea floor. Using the remotely operated vehicles, changing the heading of the ship or by adding tension during
the lay startup, the end module was rotated to the initial and anticipated angle at the sea bottom before the touchdown.
This lead to the build-up of torque, which was relieved by freely rotating the pipeline at its end. In the final stage of
the lay, a pipe head would be fastened to the end of the pipe. This head contained a rotational swivel attached to the
Abandonment and Recovery (A & R) system, which upon easing the grip of the tensioner on the pipe, relieved the torque
by free rotation. Depending on the length and the type of pipeline, different amounts of rotation were measured, with
a maximum of 200 degrees[4]. The twisting of the pipe creates a threat to the levelness of the inline- and pipeline end
structures, for the structures may land in an angle or topple over entirely, possibly damaging the integrity of the module
and decreasing its functionality. Furthermore, for tie-in operations, any unexpected large angles will result in increased
duration of subsea operations and will require modifications to be made to tie-in equipment. Structural damage to the
pipeline or its modules, or lengthy mitigation procedures can dramatically increase the offshore lay expenditures and
the project time. It is therefore of vital importance for future deep water reel-lay operations to understand the pipeline
twist phenomena better.

Figure 1.1: Subsea infrastructure of laid pipelines at the Lucius SPAR project. Note: EXOR-01 and EXGR-01 were not laid by HMC [3].
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2 1. INTRODUCTION TO PIPELINE TWIST DURING REEL-LAY OPERATIONS

The twisting of pipelines has been known to occur during S-lay, J-lay and Reel-lay operations (Appendix H). Therefore
HMC had accounted for torsional mitigation procedures to be implemented during the Lucius Project. In an effort to
isolate the instigation of pipeline twist, several tests were done and the observed twist during the project was carefully
documented. The results of the tests are discussed in Appendix A. The Lucius project along with its tests during the
whole process has given some insight as to what could contribute to the onset of twist, and more importantly, what isn’t
of influence. In Appendix B, the complete Aegir reel lay process is discussed, giving us insight in the stresses and strains
that the pipeline endures. Lastly, an extensive literature study has been done, which provides information concerning
previous research on offshore pipeline twist related topics. The literary review can be read in Appendix C. Based on all
this information, together with the eagerness of Heerema Marine Contractors to better understand the twist phenom-
ena that occurred during the Lucius Project, I have formulated my thesis scope of work.

1.1. RESEARCH QUESTION
The build-up of torque during the reel-lay process of long pipe sections in deep water leads to the involuntary rota-
tion of the pipe. The pipeline twist can lead to increased difficulty of tie-in operations and can cause inline- or pipe
end structures to land in an angle or even topple over. As of yet no definitive cause has been found for the onset op
pipe rotation during reel- lay operations. One has not been able to estimate the amount of pipeline twist, resulting in
time-consuming and therefore costly mitigation measures or project uncertainties. The research question is therefore
formulated as follows:

What causes twist in reeled pipelines during lowering and lay operations?

1.2. RESEARCH AIM
The aim of the research is to find the most likely physical source or combination of sources which leads to torque build-
up and the subsequent pipe twisting during Reel/J-lay operations of HMC’s vessel Aegir. The strive is to be able to
accurately predict the pipe twisting using analytically derived equations and/or numerical modeling by means of Finite
Element (FE) methods.

1.3. NARROWING DOWN THE RESEARCH SCOPE
In order to isolate possible causes for pipe twist efficiently, it is necessary to look at the different stages of the Reel-lay
process independently for issues that could contribute to the undesired phenomena. Together with the results of the
tests that have already been done concerning the topic, it will be possible to formulate a plan of attack to get a better
insight into the twist phenomena within the time frame of the Thesis Research. A schematic overview has been made
to identify the key areas that may be subject to further investigation and to help formulate the thesis scope of work.
The overview can be seen in Figure 1.2.The schematic overview implies that in the different stages of the reel-lay pro-
cess there are multiple factors that can possibly contribute to pipeline twist, either dependent or independently of one
another. Some of the factors have already been subject to research, such as the material and geometric properties of
fabricated seamless pipes or the spooling on and -off of pipelines. This helps with the narrowing down of the possible
source of the twist, and how the research time can be most efficiently utilized.
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1.3. NARROWING DOWN THE RESEARCH SCOPE 3

Figure 1.2: Schematic overview identifying key research topics

1.3.1. SEAMLESS PIPE FABRICATION

As mentioned in the appendix concerning pipeline fabrication (Appendix D), seamless pipes are known to have rela-
tively high variations in wall thickness, out-of-straightness and out-of-roundness in comparison. However, it is statis-
tically likely that the individual effects of for example the out-of-straightness of a pipe, are evened out due to the large
amount of pipes that are welded together to form the pipe stalks. The one property that sticks out is the spiral wise
distribution of the wall thickness, and possible a difference in yield strength along this distribution. Connecting two
pipelines made in the same factory during the same continuous process will always lead to the longitudinal alignment
of the spiral distribution, independent on which ends are connected with each other. It is therefore the spiral wise
distribution of the wall thickness that is most appealing for possible research for the fabrication stage.

1.3.2. ONSHORE WELDING

It is likely that individual faults, such as in this case improper pipefitting, will be evened out over the whole stalk of
the pipeline during welding procedures. Eye witnesses have stated that the mere lifting or adjusting of the stalks was
enough to introduce twist to the pipelines. This arbitrary twist does not explain the increasing values of twist found
during lowering and laying of the pipeline and thus it is unlikely that onshore welding and transportation is the root
cause of the phenomena. Therefore, this stage is considered of less importance for further research.

1.3.3. SPOOLING ON AND -OFF

The effect that the double bend cycle has on the pipeline is of interest during the study of the twist phenomena. In
the cycle, the pipeline is plastically deformed four times, before leaving the vessel via the moonpool. This leads to an
asymmetric stress distribution along the cross-sectional area, which might contribute to twist. Furthermore, residual
curvature after the pipeline leaves the straightener is of possible concern. For this thesis research, ovality is not taken
into account and is assumed zero throughout the whole research.

1.3.4. REEL/J-LAY

There are multiple factors in the final stage of reel-lay that are of interest for further research. The effect of residual
curvature, axial tension, current on the pipeline and end terminals are some of the parameters that are most promising
concerning the research of pipeline twist. Additionally, this part of the pipelay process is highly suitable for further
research via modeling.
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4 1. INTRODUCTION TO PIPELINE TWIST DURING REEL-LAY OPERATIONS

1.4. OVERVIEW OF THESIS RESEARCH
A compact schematic overview of my Thesis research can be seen in Figure 1.3. After internal research and a thorough
literary review, it was decided that four possible instigators of pipeline twist were subject to further investigation. Here
residual curvature is expected to be the main culprit. During the pipeline operations, one must separate two distinct
stages of the operation: The vertical lowering of the pipeline in a free suspended state, and the pipeline during lay
operations where it is constrained at the seabed and the pipeline has a catenary-like shape. These stages have been
modeled separately in order to investigate their individual contribution to the final amount of pipeline twist in the
system. For both stages an array of models have been made, which can roughly be divided into the following: a set
of 4DOF/element models with analytical derivations for finding solutions and a set of 6DOF/element models that use
finite element analysis. These models have been compared with each other and provide an expected approximation of
the twist development. The obtained twist values are validated to the twist data from the Lucius Project, and have given
a better understanding of the root causes of pipeline twist and equally important, which suspected instigators are not
of influence. The findings will be discussed throughout the rest of the report.

Figure 1.3: Schematic overview of plan of attack

εP = Plastic deformations
κr = Residual curvature
tsp = Spiral-wise wall thickness distribution along pipeline

ML = Modeling of pipeline twist during vertical lowering
ML,A = Vertical lowering models using FEA in Abaqus
ML,M = Vertical lowering models using Matlab

MS = Modeling of pipeline twist of suspended pipeline in lay configuration
MS,A = Suspended pipeline during laying models using FEA in Abaqus
MS,M = Suspended pipeline during laying models using Matlab

φL = Pipeline twist during vertical lowering operations
φS = Pipeline twist of suspended pipeline during lay operations
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2
ANALYSIS TWIST DEVELOPMENT OF SUSPENDED

PIPELINE DURING LAYING

During pipeline lay operations the pipeline leaves the moonpool vertically and is gradually bent to a horizontal config-
uration at the seabed, see Figure 2.1. The shape of a pipeline can be approximated via several methods, both analytical,
numerical or a combination of the two. The simplest method is the natural catenary approximation, where the bend-
ing stiffness of the pipeline is not taken into account[5][6][7]. Lacking sufficient advanced mathematical theory in the
past, the pipelines were approximated using this theory. Although the bending stiffness was neglected, it was believed
that by making the upper end conditions of the pipeline equal to those required for natural catenary calculations, a
conservative approximation is met for the pipeline during laying. One aspect of the natural catenary which makes it
very appealing in the approximation of the pipeline during laying is that the horizontal components of the force at the
lay barge TH is independent of the water depth, as given in the catenary equation [5]. This signifies that the capacity
required by the barge in terms of propulsion or mooring will not increase with increasing water depth. At increasing
water depth, the tension T will increase, but the remaining horizontal force TH will remain constant. According to
Dixon et al. [5] the pipe stiffness is of significant importance in the analysis of short and stiff pipeline sections, whereas
long sections of unsupported pipeline are analogous to a string or cable where the shear is negligible and the curvature
exists without any noticeable moment. When looking at the shape of the pipeline when using the stiffened catenary
equations, it is seen that the pipeline approximates the shape of a natural catenary over most of its length. Near either
end the shape diverts from the natural one due to the effect of the bending stiffness of the pipeline and the boundary
conditions which are not compatible with those of the natural catenary. If the pipeline is assumed to take the shape of a
natural catenary, the maximum curvature will be reached at the point of contact with the seabed (with the assumption
that the seabed is horizontal). It should be noted that the natural catenary method as well as the stiffened catenary
method both neglect the dynamic stresses in the pipeline due to motions of the lay barge and due to current and wave
forces acting on the pipeline.

Figure 2.1: Suspended pipeline during lay operations with the DCV Aegir

5



6 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

The goal is to approximate the shape of the pipeline during lay operations in shallow water (comparable to the Ichthys
Project) and in deep water (comparable to the Lucius Project). Once the correct parameters have been obtained, the
development of pipeline twist can be researched. This is done by total potential energy minimization and by finite
element analysis. The goal here is to obtain results which are comparable to the pipeline twist data as measured during
the Lucius Project (see Figure 2.2). Please note that the analysis in this chapter only concerns the pipelay operations
and not the lowering of the pipeline. Ergo, an analysis is done to approximate the twist data right from the red dotted
line in Figure 2.2.

Figure 2.2: Twist data of pipeline installation operations with the DCV Aegir. Left from dotted line: twist data during pipeline lowering (not to be
considered in this chapter), Right from dotted line: twist data during laying.

2.1. APPROXIMATION PIPELINE GEOMETRY USING NATURAL CATENARY
A simple sketch is given of the geometry of a pipeline during lay operations in Figure 2.3. When solving the system, one
obtains the classical natural catenary equation as given in Equation 2.1. Another useful equation is the one given in
Equation 2.2, which upon differentiation gives us the curvature along the pipeline (Equation 2.3)[4].

Figure 2.3: Geometry of the pipeline during laying

z(x) = TH

Ws
·
[

cosh

(
x ·Ws

TH

)
−1

]
(2.1)

θ(s) = ar ct an

(
sWs

TH

)
(2.2)

dθ

d s
= κn(s) = a

a2 + s2 (2.3)

TH = Horizontal tension in pipeline [N ]
Ws = Submerged weight per m

[ N
m

]
κn = Curvature along the pipeline

[ 1
m

]
a = constant equal to TH

Ws
[m]
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2.2. APPROXIMATION PIPELINE GEOMETRY USING STIFFENED CATENARY 7

As can be derived from the curvature equation kn(s), the maximum curvature is achieved at the seabed. This is in con-
flict with the boundary condition that the curvature at the seabed is equal to zero, making the natural catenary equation
a conservative approach. Also, as mentioned before, the bending stiffness of the body is not taken into account, making
it unsuitable for shallow pipelay and stiff pipelines and more appropriate for deep water operations.

2.2. APPROXIMATION PIPELINE GEOMETRY USING STIFFENED CATENARY
To improve the accuracy of the pipeline end points, an analytical approximation of the pipeline configuration was sug-
gested by Plunkett [8], who introduced asymptotic expansion to the natural catenary equation. In this stiffened catenary
equation, the bending stiffness is taken into account[8][5]. Here, a non-dimensional quantity which will be expressed
as αs will measure the effect of the bending stiffness, in comparison to the non-dimensional tension contribution h.

The ratio
α2

s
h3 gives us the relative influence of the bending stiffness on deflection in comparison to the influence of axial

tension. The value of this ratio must be between 0 and 1, thus h3 is equal or greater than α2
s .

α2
s = E I

Ws L3

h = TH

Ws L

0 ≤ α2
s

h3 ≤ 1

The boundary conditions at the lay-barge are considerably more complicated than those for the natural catenary. The
equations for the minimum tension and top angle (the angle the tower makes with respect to the horizontal) are given
as follows:

T = Ws L
√

h2 +1 (2.4)

θ = π

2
−ar ct an(h)− αs h(

h2 +1
) 1

4

(2.5)

The water depth corresponding to the valus of α,h and L is given in Equation 2.6

wd = L

√
h2 +1−

√
h2 + α2

s

h
+α2

s

 1

p
h

(
h2 + α2

s
h

) 3
4

− h2(
h2 +1

)2


 (2.6)

In order to solve the catenary equations, one must simultaneously solve a set of equations. This is done using a numer-
ical, iterative process in Mathcad [9], where Equation 2.6 and Equation 2.5 are set to zero and for the range of αs and h
specified previously. The values for αs and h are then found that best approximate the solution of the equations given
in 2.7 for the ranges as mentioned in 2.8.

0 = θ− π
2 +ar ct an(h)+ αs h

(h2+1)
1
4

0 =
p

h2 +1−
√

h2 + α2
s

h +α2
s

 1

p
h

(
h2+ α2

s
h

) 3
4
− h2

(h2+1)2

− wd(
E I

Wsα2
s

) 1
3

(2.7)

For

0 ≤ α2
s ≤ 1

h3 > α2
s (2.8)

The curvature κn(s) of the stiffened catenary is given by the following in Equation 2.9, in which one can see that asymp-
totic expansion of the natural catenary equation has taken place. The expansion is dependent on the load factor γ,
which is given in Equation 2.10.

κn(s) = a

a2 + s2 − a

(a +wd)2 e

(
s
γ− L

γ

)
(2.9)

γ =
√

E I

T
(2.10)
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8 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

As mentioned before, curvature based on natural catenary theory gets its maximum at the seabed. This is not correct
however, for the curvature at the seabed and at the surface should be equal to zero if one assumes a simply supported
pipe at the surface. In the stiffened catenary curvature Equation 2.9, the extra term allows the boundary conditions
at the surface to be met. For the seabed boundary conditions, another term has to be added, which was done by Geir
Endal in Endal et al. [10].

2.3. APPROXIMATION PIPELINE GEOMETRY USING ENHANCED STIFFENED CATENARY
The next step is to implement improvements to the curvature equation, so that also the approximation of the boundary
conditions at the seabed is accurate. Additional terms are added to the stiffened catenary equation, making it more
compliant. This is done by Endal et al. [10], and gives the following estimation of the curvature for the suspended
pipeline during laying.

κn(s) = a

a2 + s2 − a

(a +wd)2 e

(
s
γ− L

γ

)
− a

(a + s)2

e
( L
λ
− s
λ

)
e

( L
λ

) (2.11)

λ =
√

E I

TH
(2.12)

Where λ is another load factor, given by the ratio between the flexural rigidity and the horizontal tension. For the sake
of further reference, Equation 2.11 is named the enhanced stiffened catenary equation.

2.4. APPROXIMATION PIPELINE GEOMETRY USING NON-LINEAR BEAM THEORY
In this section a non-linear mathematical model will be used to obtain the differential equations for a suspended
pipeline during lay operations[11]. Using this method, it will be possible to compute the internal moment, shear and
normal forces. The pipeline is assumed to be uniform along its arc length s and has isotropic material properties.

Beam segment under vertical loading
A beam segment d s is taken to obtain the force equilibriums and to deduce the differential equations that analytically
describe the suspended pipeline shape during laying. See Figure 2.4.

Figure 2.4: Force analysis for a small pipeline segment

The pipeline is regarded as a tensioned beam with self weight. In the model no linearization will take place: the partial
derivatives are taken along the arc length s of the beam segment, and not along the projected length of the arc. A
subtle distinction, but an important difference with linearized models. The equilibrium in the vertical direction of this
non-linear approximated beam segment is given in the following:

ΣFz = 0

Summing the force in the vertical direction gives,

(T +dT ) · si n(θ+dθ)−Tsi nθ− (V +dV ) · cos (θ+dθ)+V · cosθ−Ws ·d s = 0 (2.13)

The same equilibrium of forces is sought after in the horizontal plane,

V.J.Taams Thesis



2.4. APPROXIMATION PIPELINE GEOMETRY USING NON-LINEAR BEAM THEORY 9

ΣFx = 0

(T +dT )cos(θ+dθ)−T cosθ+ (V +dV ) · si n (θ+dθ)−V si nθ+ f (s) ·d s = 0 (2.14)

Solving these two equilibrium equations will give the governing differential equations for the system. Since a small
segment of the pipeline in sagbend formation is being analyzed, small angle approximations (dθ << 1) are used to
rewrite the sine and cosine terms of the equation. The derivatives of the sine and cosine terms over a small angle
change of dθ are given by:

si n(θ+dθ)− si nθ

dθ
∼= cosθ

cosθ− cos(θ+dθ)

dθ
∼= si nθ

Therefore the terms si n(θ+dθ) and cos(θ+dθ) in Equation 2.13 and Equation 2.14 are approximated by:

si n(θ+dθ) = cosθ ·dθ+ si nθ

cos(θ+dθ) = cosθ− si nθ ·dθ

With the new found approximated terms the equilibrium equations Equation 2.13 and Equation 2.14 are used to come
up with the governing differential equations for the beam segment. A series of algebraic operations gives us the follow-
ing:

T
dθ

d s
− dV

d s
−Ws cosθ− f (s)si nθ = 0 (2.15)

Governing equations
The shear force V is the partial derivative of the moment M to s (see Equation 2.17). Furthermore, the moment M
is the partial derivative of the angular displacement against s (Equation 2.16). By rewriting the shear component to a
derivative of the angular displacement θ, the equation of motion is restructured to a 3r d order differential equation.

M = E Iκ= E I
dθ

d s
(2.16)

V = d M

d s
(2.17)

V = E I
d 2θ

d s2 (2.18)

Therefore the first governing differential equation of the system (G1)is deduced to be equal to Equation 2.19.

G1: E I
d 3θ

d s3 −T
dθ

d s
+Ws cosθ+ f (s)si nθ = 0 (2.19)

To obtain the second governing differential equation a closer look it taken on the equilibrium along the centerline of
the pipe segment. Balancing the normal forces along the centerline one obtains the following equilibrium:

ΣFN = 0

0 = (T +dT ) · cos(dθ)−T −Ws d s · si nθ+ f (s)d s · cosθ (2.20)

According to the small angles approximation, dθ << 1. Therefore one assumes that cos(dθ) ∼= 1. This approximation
gives us the simple second governing differential equation (G2) for the system after minor algebraic operations:

G2:
dT

d s
=Ws si nθ− f (s)cosθ (2.21)
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10 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

The tension T can be decomposed into a horizontal and a vertical contribution, which is customary in offshore re-
lated pipelay projects, for the horizontal tension can be controlled by the forward motion of the vessel. Therefore the
governing differential Equation 2.19 is also written in terms of horizontal lay tension TH and vertical tension V .

TH = T cosθ+V si nθ (2.22)

By rewriting Equation 2.22 to terms expressed in tension T and filling in the tension component in Equation 2.19 one
obtains a formulation for the 3r d order differential equation dependent on horizontal lay tension TH :

T = TH

cosθ
−V t anθ

E I
d 3θ

d s3 −
(

TH

cosθ
−V t anθ

)
· dθ

d s
+Ws cosθ+ f (s)si nθ = 0

E I
d 3θ

d s3 −
(

TH

cosθ
−E I

d 2θ

d s2 t anθ

)
· dθ

d s
+Ws cosθ+ f (s)si nθ = 0

E I
d 3θ

d s3 − TH

cos2θ

dθ

d s
+E I

d 2θ

d s2

t anθ

cosθ
· dθ

d s
+Ws + f (s)t anθ = 0

E I
d 3θ

d s3 −TH sec2θ
dθ

d s
+E I

d 2θ

d s2 t anθsecθ
dθ

d s
+Ws + f (s)t anθ = 0 (2.23)

Given a trigonometric identity for differentation,

t anθsecθ = d

dθ
secθ

The differential equation becomes:

E I
d 3θ

d s3 +E I
d

d s

(
secθ

d 2θ

d s2

)
−TH sec2θ

dθ

d s
+Ws + f (s)t anθ = 0 (2.24)

Note that Equation 2.24 is merely the first governing differential equation 2.19, but written in terms of the horizontal
tension. The obtained governing differential equations 2.19 and 2.21 form the non-linear bending equations for the
suspended pipeline in the sagbend configuration. These equations can be used for all offshore related pipelay opera-
tions: S-lay, J-lay, abandonment and recovery operations. The main difference between the variety of offshore pipelay
operations shall be in the definition of the boundary conditions. Furthermore, they are applicable from shallow to ul-
tradeep water and for different initial angles θ0. When looking at the Aegir, the initial angle is dependent on the top
angle of the Reel-J-lay tower.

Boundary conditions
For the reference system, one assumes that s=0 is located at the touchdown point of the pipeline with the sea bottom,
and that s = L is located at the surface where the connection of the pipeline with the vessel starts. A schematic sketch
of the pipeline during laying is given in Figure 2.5. The seabed is considered to be completely rigid, and therefore the
change in bending angle, which is equal to the moment M will be equal to zero. Also the angle at the touchdown point
is considered to be equal to zero. When looking at the tension components of the pipeline, it is clear that at the bottom
the tension T of the pipeline is equal to the horizontal tension TH . The given conditions give the boundary conditions
at s = 0:

V.J.Taams Thesis



2.4. APPROXIMATION PIPELINE GEOMETRY USING NON-LINEAR BEAM THEORY 11

Figure 2.5: Mechanical parameters of suspended pipeline during laying

dθ

d s

∣∣∣∣
s=0

= M |s=0 = 0 (2.25)

θ(0) = 0 (2.26)

T (0) = TH = T0cosθ0 (2.27)

At the surface, the angle of departure of the pipeline is equal to the top angle of the Reel-J-lay tower. Furthermore, due
to the rigidity of the tensioner, it is assumed that the change of the rotation angle, and therefore the moment, is equal
to zero. These relations give the boundary conditions for the pipeline at the surface (s = L):

dθ

d s

∣∣∣∣
s=L

= M |s=L = 0 (2.28)

θ(L) = θ0 (2.29)

Solving the system
It is challenging to get analytical solutions for the system defined by the governing equations and the mentioned bound-
ary conditions. Therefore to solve the equations, a solution is sought after using a fourth order numerical solver. But
before one attempts to solve the system, a closer look must be taken at the boundary conditions. An important fact,
which is not instantly obvious, is that the boundary conditions of the model are moving: the total length of the pipeline
is undetermined before numerical computation, making the differential equation difficult to solve. The parameter L
is needed as input for a possible numerical model to obtain solutions. In order to provide input for the parameter,
the method of variable substitution is used. Here the variable s is taken to be equal to εL, leading to a rewriting of the
governing differential equations 2.19 and 2.21:

E I

L3

d 3θ

dε3 − T

L

dθ

dε
+Ws cosθ+ f (εL)si nθ = 0 (2.30)

dT

dε
−Ws L · si nθ+ f (εL) ·Lcosθ = 0 (2.31)

The boundary conditions also change and are now given at 0 and 1:

dθ

dε

∣∣∣∣
0

= 0 (2.32)

θ(0) = 0 (2.33)

T (0) = TH = T0cosθ0 (2.34)

dθ

dε

∣∣∣∣
1

= 0 (2.35)

θ(1) = θ0 (2.36)
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12 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

However, since the unknown parameter L still goes into the differential equations, the system can still not be solved.To
seek a solution of a boundary value problem involving an unknown parameter (in this case L), there are additional
arguments that have to be specified. By investigating the equilibrium of forces in the direction of the centerline of the
pipeline, an additional boundary condition is added:

T (L) = T0cos(θ0 −θ(L)) (2.37)

The next step is to give an initial guess for the parameter L. The boundary conditions at the starting point of the pipeline
on the bottom have no dependency regarding the actual value of L. The newest boundary condition at the surface how-
ever is only met for a certain pre-defined tension T and a total pipeline length L which is still undetermined. Here is
were the beauty of the BVP4C solver comes in. The solver will vary the parameter until a value for it is found for which
the latest boundary condition, which is dependent on the total length L, is qualitatively satisfied. Thus, the system is

solved for a predefined tension T and top angle θ0, giving as output the angle θ, dθ
dε , d 2θ

dε2 and the total line length L.

Geometric properties and physical quantities
With the obtained output, the geometric properties of the pipeline along with physical quantities such as moment and
shear can be computed. Here accuracy of the results is dependent of the incremental length i that is used in the system.
To obtain the pipeline’s configuration, the coordinates along the pipeline are calculated as follows:

xi = xi−1 +L (εi −εi−1)cosθi−1 (2.38)

yi = yi−1 +L (εi −εi−1) si nθi−1 (2.39)

The coordinates of the pipeline can also be approximated using empirical equations as described in Appendix F. This
can be very useful, for a rough idea is obtained about the pipeline length that is obtained for a certain axial tension T ,
bending stiffness E I , selfweight Ws and top angle θ0. The curvature κi , bending moment Mi and shear force Vi can be
calculated by the following:

κi = 1

L

θi −θi−1

εi −εi−1
(2.40)

Mi = E I

L

θi −θi−1

εi −εi−1
(2.41)

Vi = E I

L

dθi −dθi−1

εi −εi−1
(2.42)

Backwards substitution of s into εL gives us the curvature as function of the pipeline length s. So finally one has obtained
the sought after curvature equation κ(s) of the vertical suspended pipeline during laying by using non-linear beam
theory.

2.5. APPROXIMATION PIPELINE GEOMETRY USING FINITE ELEMENT ANALYSIS
For the comparison of the accuracy of the different approaches to approximate the curvature of a pipeline during lay
operations, a 6DOF/element Finite Element model is made using the software program Abaqus[12]. A brief overview of
the properties is given below.

Elements
The pipeline is modeled using Abaqus PIPE31 beam elements [12]. These are linear, 2-node elements that model beams
with pipe cross-sections that are subject to internal stress due to internal and/or external pressure loading. Having the
choice of different pipe elements, the elements with the thin-walled formulation is chosen. Here the hoop stress is as-
sumed to be constant and the radial stress is neglected for the material constitutive calculations.

Mesh
The pipeline is meshed along its length, with a mesh density of 1 element per m.

Material properties
The Elastic Modulus E , and material density ρst , are given the same values as used in previous models. Material is
modeled as an elastic perfectly plastic material for the yield strength of X-65 steel.

Interactions
In the Abaqus model, the pipeline will interact with the seabed. Here the seabed is modeled as an 3D analytical rigid
plate. This element is completely rigid and therefore not subject to deformations during interactions. The interac-
tion during contact with the pipeline is modeled as frictionless: the interaction has solely the purpose of bringing the
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2.6. DISCUSSION OF CURVATURE APPROXIMATIONS DURING LAY OPERATIONS 13

pipeline in the characteristic "sagbend" shape. Furthermore, the interaction is modeled as hard contact using penalty
constraint enforcement [12].

Boundary conditions
At the surface, the pipe end is constrained in all translational and rotational degrees of freedom. Before simulation, the
pipe end is rotated to a fixed angle, representative to the top angle. For the pipe end at the sea bottom, the pipeline is
constrained in z-direction (see Figure 2.6).

Loads
The model is subjected to a gravitational field. Here, the buoyancy of the pipeline is taken into account, leading to an
equivalent gravitational constant:

Figure 2.6: Global coordinate system that is used for the modeling of the
pipeline in Abaqus using FE analysis.

mst = π

4

(
D2

o −D2
i

)
ρst (2.43)

mc = π

4

[
(Do +2tc )2 −D2

o

]
ρc (2.44)

mT = mst +mc (2.45)

Fb = π

4
(Do +2tc )2ρw g (2.46)

Ws = mT g −Fb (2.47)

geq = Ws

mst
(2.48)

. mst = mass of steel pipeline per m of length
[

kg
m

]
mc = mass of pipeline coating per m of length

[
kg
m

]
mT = total mass pipeline per m of length

[
kg
m

]
Fb = buoyancy force per m of length

[ N
m

]
Ws = submerged weight per m of length

[ N
m

]
geq = equivalent gravitational constant

[
N
kg

]
The pipe end is subjected to a load in x-direction (see Figure 2.6), signifying the horizontal tension in the pipeline at
seabed. The magnitude of this concentrated load is derived from the enhanced stiffened catenary theory [10]: for a cer-
tain pipeline configuration, along with all the material and geometric properties, the horizontal tension is calculated
and implemented in the Finite Element model.

Steps
In a series of steps, the pipeline is brought into its final configuration of a pipeline during lay operations. In the 1st step,
solely gravity is applied to the pipeline. In the next step, the horizontal load at the pipe end near the seabed is applied
via a ramp function. In the last step, the seabed is brought up from underneath and interacts with the pipeline to create
the characteristic shape.

2.6. DISCUSSION OF CURVATURE APPROXIMATIONS DURING LAY OPERATIONS
For the pipeline during lay operations (chapter 2), several models for the approximation of its curvature have been in-
troduced. Here, the models can roughly be divided into two groups: models based on analytical equations modeled
with MATLAB[13], and models based on finite element analysis executed in Abaqus. It is expected that the Finite Ele-
ment model will approximate the shape of the pipeline most accurately. Finite element analysis however can be prone
to large computational times, and elaborate sensitivity studies are usually more challenging to execute. The analyti-
cal models described earlier are of a more rudimentary nature, describing the pipeline behavior with 4DOF/element
models using differential equations. These models are highly versatile and can solve the system in a matter of seconds.
Therefore, one is looking for a model which has its origins in analytical equations, but is still able to accurately approx-
imate the curvature during laying. The most accurate analytical models will then be verified against the corresponding
finite element models. In this section, the different approximations for the curvature during lay operations will be com-
pared with one another via a small sensitivity analysis. The sensitivity analysis is based on the project specifications
of two pipe lay projects that have been executed with the Aegir in the past. During the Lucius project in the Gulf of
Mexico, pipeline was laid at a water depth of 2100m with a high top angle necessary for deep water operations. High
curvatures occurred in the sagbend, and due to its submerged weight, a high axial tension was present. The second
analysis represents the conditions at the Ichthys pipe lay project off the west coast of Australia. Relatively shallow water
up to 275 m lead to the installation of pipeline with a relatively low top angle and with relatively low axial tension. These
to pipe lay scenarios will be used to identify the best approximations of the pipe lay shape.
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14 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

Ichthys project
Below in Figure 2.7 the curvature graphs of the different approximations are plotted for an environment similar to the
one at Ichthys. Here, the pipeline contains a thick GSPU coating, which significantly increases the buoyancy, but due
to its low flexural rigidity, it bending stiffness is neglected for the calculations. The pipeline with coating is similar to
pipelines that have been laid at the Lucius project. The same pipe is used for the analysis for Ichthys conditions to limit
the amount of variables between the comparison of the two projects.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 60 [°]
wd 200 [m]
κr 0 [ 1

m ]

Figure 2.7: Left: table with properties of pipeline during Ichthys Project.
Right: curvature graphs for different approximations

The following observations can be made from Figure 2.7. As predicted, the natural catenary κc does not take into
account the boundary conditions at the clamping point at the surface and the point of interaction with the seabed.
Therefore, along with the stiffened catenary κsc its maximum is found at the seabed, which in reality is not case. In-
troducing an additional term to the stiffened catenary equation gives us the enhanced stiffened catenary κesc , which
is complaint with the curvature boundary condition at the seabed. Lastly one sees the graph of the curvature of the
non-linear equations. Looking at the defined boundary conditions Equation 2.32 till Equation 2.36 of the non-linear
solver in section 2.4, one sees that for the curvature at the surface end no boundary condition is specified. The curva-
ture therefore is nonzero at the surface end, when using the non-linear solver.

Lucius project
A similar analysis is done for the pipelay operations during the Lucius project where the waterdepth was significantly
deeper. This leads to an increase in the tension of the pipeline, along with a steeper top angle. The graphs for the
different curvatures are given in Figure 2.8.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 85 [°]
wd 2100 [m]
κr 0 [ 1

m ]

Figure 2.8: Left: table with properties of pipeline during Lucius Project.
Right: curvature graphs for different approximations
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From Figure 2.8 the following can be mentioned. Due to the high top angle, the boundary condition for the curvature
at the surface point gives less difference in results for the different models. All models more or less have the same
curvature progression along the pipeline until the last 50m. Here one sees slight deviations in the curvature between
the models, until the seabed interaction point is approached. Once again the natural catenary κc and the stiffened
catenary κsc obtain their maximum curvature at the seabed interaction point. The non-linear curvature model κnl and
the enhanced stiffened catenary equation κesc both achieve their maximum curvature at the same level at the same
distance along the pipeline, and go to zero at the seabed interaction point.

2.7. CONCLUSION APPROXIMATION COMPARISONS
From the small sensitivity analysis the following can be concluded. At shallow water depths, the curvature has a more
gradual development, compared to laying at deep water depths, where a profound peak in the curvature is present
close to the seabed interaction point. For the shallow Ichthys comparison study, one sees that the the natural catenary
approximation is inaccurate near the clamped surface point and the end point near the seabed. The stiffened catenary
is able to approximate the curvature at the surface point more accurate, but still falls short in the region near the seabed.
When comparing the non-linear model and the enhanced stiffened catenary equation, besides from the curvature at
the surface point, their development is quite similar. For the deep water pipelay, the curvature remains close to zero for
a significant part of the pipeline, for all approximations. The biggest difference is seen in the first 500m. Since for this
Thesis one will be predominantly looking at the behaviour of pipelay in deep water, the best approximations would be
the enhanced stiffened catenary and the non-linear set of equations. Due to the greater flexibility of sensitivity analyses
and the shorter computation time when using the enhanced stiffened catenary, it is chosen to continue with this solver
for the approximation of the curvature during lay operations. This approximation which finds its origins in analytical
calculations, will be used to make a 4DOF/element model in MATLAB for the estimation of the pipe twist during lay
operations.

2.8. ESTIMATION OF THE TWIST DEVELOPMENT ALONG A PIPELINE DURING LAY OP-
ERATIONS

During the pipelay operations at the Lucius project torsion was build up in the pipeline and relieved by letting the
pipeline twist freely during torque relieval. Here, the twist ranged from 70 ° to 200 ° during the pipelay operations,
depending on the type of pipeline and its total length. Under the assumption that residual curvature in the pipeline
leads to pipeline twist, MATLAB models using analytical equations together with total potential energy minimization
are used to estimate pipeline twist. For results comparison, finite element models in Abaqus are made with the same
pipeline properties as used in the models using analytical equations. Both methods, analytical and FE, will be further
elaborated in this chapter.

2.8.1. POTENTIAL ENERGY MINIMIZATION OF A PIPELINE DURING LAY OPERATIONS
In the literature study given in Appendix C, methods of approximating the pipeline twist during S-lay operations or dur-
ing intermittent application of residual curvature during Reel-lay are discussed. The reoccurring theory to the twist ap-
proximations during laying, is an approach towards the minimization of the system’s energy with respect to its amount
of twist. The same approach will be applied for the analysis of the amount of twist found during the lay operations with
the Aegir. Here the aim is to obtain the coupled differential equations between bending, torsion and axial tension. The
first steps is to define the different terms that should be taken into account in the energy balance. The total potential
enegy of an elastic body is defined as the sum of all strain and potential energies.

Π=U +EP (2.49)

Strain energy is stored in a body due to deformation. A pipeline during reeling is subjected to axial, bending, shear and
torsional strain[14][15][16][17]. It is assumed that the contribution of the shear strain is negligible and therefore is not
taken into account. Two second order terms also contribute to the energy of the system: these terms are linked to the
effect of tension on rotation angles and large deflections[18]. Furthermore, the potential energy of the pipeline in the
form of its own weight is taken to account during the formulation of the energy balance. Adding all these terms together
in one obtains the following potential energy equation (see Equation 2.51).

Π = Ub +Ur +Ua +Ut1 +Ut2 +EP (2.50)

Π = 1

2

E I

L∫
0

(
dθ

d s

)2

d s +G J

L∫
0

(
dφ

d s

)2

d s +E A

L∫
0

(
d 2u

d s2

)2

d s + T I

A

L∫
0

(
dφ

d s

)2

d s +T (θ(s))2

+ρAg zd s (2.51)

The bending angle derivative dθ
d s is equal to the curvature along the suspended pipeline during lay operations:

dθ

d s
= κ(s) (2.52)
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16 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

In the next step, the residual curvature can be added to the total curvature of the pipeline. This is done similarly as in
Equation C.2 in the literature study:

κ(s,φ0,κr ) = κn(s)+κr ·cos
(
φ (s)

)
(2.53)

The main assumption here is that the amount of residual curvature κr is constant and applied over the total length of
pipeline installed. This assumption is based on the following: as mentioned previously, during Aegir reel-lay operations
a segment of 12m of the pipeline is cut for inspection before the whole pipeline is lowered. This segment is laid on deck
and checked if its amount of residual curvature is within standards. If not, the process is repeated until by iteration
the adequate straightener settings have been established. In the end, a completely straight pipeline is a ’pipe dream’,
and so one must always take into account a certain amount of residual curvature caused by the straightener settings
and which is constantly applied over the whole pipeline length. It is also assumed that the rigidity of the straightener is
maintained during the complete lay process. Substituting the bending angle derivative term for the curvature term and
expanding the equation gives us the following total potential energy equation:

Π=1

2

E I

L∫
0

(
κn(s)+κr ·cos

(
φ (s)

))2 d s +G J

L∫
0

(
dφ

d s

)2

d s

+E A

L∫
0

(
d 2u

d s2

)2

d s + T I

A

L∫
0

(
dφ

d s

)2

d s +T (θ(s))2

+ρAg zd s (2.54)

One way to find the ultimate values of the potential energy of the elastic body is by taking the derivative with respect to
the twist angle φ, and afterwards set the equation to zero ( Equation 2.55).

dΠ

dφ
= 0 (2.55)

Terms that are not coupled with the torsion angle will disappear in the differentiation, and therefore will not contribute
in finding the twist angle corresponding to the minimal potential energy. This is the case for the axial strain and the
potential energy. The second order terms are also disregarded, for their contribution is considered negligible. Therefore
the potential energy equation with terms that are coupled to the twist of the pipeline is given as follows:

Π(φ) = 1

2

E I

L∫
0

(
κn(s)+κr ·cos

(
φ (s)

))2 d s +G J

L∫
0

(
dφ

d s

)2

d s

 (2.56)

Another way of finding the minima of the total energy of the system, is by calculating the total potential energy over the
pipeline as a function of the torsion angle, and seek its minima without differentiation. This second method is used to
solve the system. For the curvature of the vertical suspended pipeline prior to residual curvature addition κn , one has
seen that there are several methods to obtain its approximation. These methods have been discussed in section 2.6. It
is chosen to use the enhanced stiffened catenary equations for further analysis. For the Enhanced Stiffened Catenary,
the final derived curvature equation can be analytically implemented into obtaining the minimal twist angle. For the
energy minimization of a suspended pipeline during lay operations as approximated by enhanced stiffened catenary,
the bending strain contribution can be written as follows:

Ub = 1

2
E I

L∫
0

(
κn(s)+κr cos

(
φ (s)

))2 d s (2.57)

Ub = 1

2
E I

L∫
0

(
a

a2 + s2 − a

(a +wd)2 e

(
s
γ− L

γ

)
− a

(a + s)2

e
( L
λ
− s
λ

)
e

( L
λ

) +κr cos
(
φ (s)

))2

d s (2.58)

Here, the function φ(s) represents the development of the torsional angle along the pipeline from the seabed until
the clamping of the pipeline at the tensioner. The function is based on the previously discussed literature study (Ap-
pendix C). Here is it assumed that the maximum torsional angle φ0 occurs at the seabed, and decreased towards the
surface. The torsional twist therefore has its maximum at the seabed, and the torque is assumed to be zero at the sea
surface where the pipeline is constrained by the tensioner. The boundary conditions used are as follows:

φ(0) =φ0

dφ

d s
(0) = 0

φ(L) = 0
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2.8. ESTIMATION OF THE TWIST DEVELOPMENT ALONG A PIPELINE DURING LAY OPERATIONS 17

Here, s is the distance along the pipeline, where s = 0 is located at the seabed, and s = L is located at the sea surface. The
torsional angle is given by the a second order polynomial (Equation 2.59) and is plotted in Figure 2.12 for a torsional
angle of 123 [°]:

φ(s) = −φ0

L2 s2 +φ0 (2.59)

The torsional strain energy is equal to:

Ur =
L∫

0

G J

[
d

d s

(
φ (s)

)]2

d s = 4G J
φ2

0

L4

L∫
0

s2d s (2.60)

The total energy equation for the torsional related energies is given by Figure 2.9. Here the total energy UT is dependent
on the amount of residual curvature κr , the torsional angle at seabed φ0, material properties of the pipeline and its
geometric configuration. By iteratively varying the torsional angle φ0 while keeping the other parameters constant,
an angle is found for which a given system has its minimum of energy. One can see in Figure 2.9 that the calculated
torsional angle is equal to 123 °. The corresponding curvature along the pipeline in comparison to a system without
residual curvature, can be seen in Figure 2.10. The geometric shape of the pipeline is plotted in Figure 2.11 and in
Table 2.1 the properties of the example are given.

Figure 2.9: The total, bending and torsional strain energies for the pipeline.
The minimum point is marked with a cross, and indicates the expected
torsional angle φ0.

Figure 2.10: The curvature along the pipeline before residual curvature addition
(red) and after residual curvature addition in its final state (blue). Here the final
state is achieved after a certain amount of torsion.

Figure 2.11: Geometric configuration of pipeline during laying Figure 2.12: Development of torsion angle along pipeline
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18 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

Table 2.1: Geometric, material and situational properties of exemplary pipeline during lay operations

Parameter Value Unit

Do 8 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 85 [°]
wd 2100 [m]
κr 10−3 [ 1

m ]

2.8.2. FINITE ELEMENT ANALYSIS OP A PIPELINE DURING LAYING, USING ELASTIC BEAM ELEMENTS

WITH RESIDUAL CURVATURE

As a comparative study, a pipeline with residual curvature after the straightening procedure is modeled in the finite
element program Abaqus. It is investigated if the energy minimization through torsion during lay operations also oc-
curs in this type of analysis, and how it may differ from the previously executed analyses in subsection 2.8.1, where the
studies have their fundamentals in analytically derived equations. The actual results of the finite element models will
be discussed elaborately in chapter 4. In this subsection, only the details of the models will be discussed.

Similarly as in section 2.5, a 6DOF/element FE model was created using beam elements to approximate the pipeline.
Here the same type of beam elements, material properties, mesh density and pipeline-seabed interaction properties are
used as in section 2.5. The model comprises several steps, each with their own boundary- and load conditions. These
steps along with the aforementioned values will be discussed in the following. Furthermore, the boundary conditions
and loads are given in Table 2.2 and the steps can be seen in Figure 2.13 till Figure 2.18.

1. Initial Conditions
In the primary step of the model, an initially curved beam is loaded into the 3D space (see Figure 2.13). This curved
beam is formed by defining an arc with a certain curvature radius, representing the residual curvature that is present in
the pipeline after exiting the straightener. The arc length is equal to the total suspended pipeline length for a certain lay
configuration: the curvature is distributed evenly along the entire length of the pipeline.

2. Application of gravity
Instability issues during the simulations have lead to the gradual build-up of certain loads and boundary conditions
during modeling. Therefore a step is introduced in which gravity is applied to the whole system MT with a ramp func-
tion (see Figure 2.14). Here, the same equivalent gravity constant after buoyancy compensation is used as in section 2.5.
The pipe end at the surface Ps is clamped in at a given top angleα, and the lower pipe end Pb is constrained in all trans-
lational directions. In this step the whole pipeline MT is constrained in the translational z-direction (see Figure 2.19)
for stability purposes. For the higher curvature models during the sensitivity analysis, the final gravity applied to the
system was built up in two steps.

3. Lowering of pipeline
In the third step, the boundary condition on the whole model MT and the lower pipe end Pb boundary conditions
are removed, with exception of the translational constraint in z-direction (see Figure 2.19) at the lower pipe end. The
pipeline is lowered and ends up in a vertical suspended state (see Figure 2.16). During the lowering, a small, evenly
distributed load perpendicular to the in-plane movement is applied along the pipeline (Fi ). This load is applied to in-
stigate the pipeline to twist in an energetically unstable configuration, while the magnitude of it remains of negligible
influence to the final results.

4. Application of horizontal tension
In the fourth step, the horizontal load is applied in x-direction (see Figure 2.19) to the lower pipe end Pb . Depending
on the analysis, the pipeline is either bent against or in the same direction as the curvature of the initial configuration.
The horizontal load TH represents the horizontal tension in the pipeline during laying in a certain configuration, and is
calculated using the enhanced stiffened catenary theory. See Figure 2.17.

5. Interaction with seabed
In the concluding step, the interaction with the seabed occurs (see Figure 2.18). The seabed is raised, and has interac-
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2.8. ESTIMATION OF THE TWIST DEVELOPMENT ALONG A PIPELINE DURING LAY OPERATIONS 19

tion with the last few meters of the pipeline, giving it the characteristic catenary shape. Please note that the interaction
of the beam elements with the rigid seabed is modeled as frictionless. The same interaction conditions apply as for the
model in section 2.5. After completion, the total amount of twist is deduced in the system, and its build up along the
system.

Figure 2.13: Initial conditions Figure 2.14: Application of
gravity

Figure 2.15: Lowering of pipeline

Figure 2.16: End of lowering step
Figure 2.17: Application of hori-
zontal tension

Figure 2.18: Interaction with seabed
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20 2. ANALYSIS TWIST DEVELOPMENT OF SUSPENDED PIPELINE DURING LAYING

In Table 2.2 and overview is made of the boundary conditions and loads applied on the different instances of the model
for the model steps. The table must be read as follows:

• Boundary conditions can be applied in the 6 DOF directions. When an instance is constrained in a certain direc-
tion, the constraint is marked with a dot (•). If the instance is free in a given direction, a horizontal dash is given
(-). The instances of the model can be seen in Figure 2.13.

• Load conditions can also be activated in the 6 DOF directions. Here the same applies: a dot (•) indicates a load
is engaged and a dash (-) signifies no load is present. Once a load is engaged, also the type of load is given in the
table

Figure 2.19: Global coordinate system that is used for the modeling of the
pipeline in Abaqus using FE analysis.

Ps = Surface point of pipeline
Pb = Bottom point of pipeline
MT = Total model

geq = Equivalent gravitational constant
[

m
s2

]
Fi = Instigating load [N ]
TH = Horizontal tension [N ]

Table 2.2: The boundary conditions and loads als defined per step on the different instances

Model step Instance Boundary conditions Loads

x y z θ ψ φ x y z θ ψ φ Type Unit
1 Ps • • • • • • - - - - - - - -

Pb • • • • • • - - - - - - - -

MT • • • • • • - - - - - - - -
2 Ps • • • • • • - -

Pb • • • - - - - - - - - - - -

MT - - • - - - - • - - - - geq [ m
s2 ]

3 Ps • • • • • • - - - - - - - -

Pb - - • - - - • - - - - - TH [N ]

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
4 Ps • • • • • • - - - - - - - -

Pb - - • - - - • - - - - - TH [N ]

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
5 Ps • • • • • • - - - - - - - -

Pb - - • - - - • - - - - - TH [N ]

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
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3
ANALYSIS TWIST DEVELOPMENT OF A VERTICAL

FREELY SUSPENDED PIPELINE DURING

LOWERING OPERATIONS

In the first stage of pipe lay during reel-lay operations with the Aegir, the pipeline is lowered vertically and remains freely
suspended until touchdown as is schematically depicted in Figure 3.1. Usually the first end of the pipeline is fitted with
an end terminal in the Reel-J-lay tower before lowering. This end terminal can have both a large mass, increasing the
overall tension in the system significantly, and a high surface area, making the system sensitive to current loading. In
order to approximate the geometric properties of the pipeline under different loadings and with residual curvature
present in the pipeline, methods with linear and non-linear equations are used. These are discussed in the following
chapter and compared with one another.

Figure 3.1: Pipeline lowering with the DCV Aegir

21



22 3. ANALYSIS TWIST DEVELOPMENT OF A VERTICAL FREELY SUSPENDED PIPELINE DURING LOWERING OPERATIONS

Once the geometric configuration of the pipeline is approximated, the twist development during lowering can be ana-
lyzed. Using total potential energy minimization and finite element analysis an attempt is made to obtain similar twist
data as observed during the Lucius pipeline installation operations (see Figure 3.2).

Figure 3.2: Twist data of pipeline installation operations with the DCV Aegir. Left from dotted line: twist data during pipeline lowering, Right from
dotted line: twist data during laying (not to be considered in this chapter).

3.1. APPROXIMATION PIPELINE LOWERING USING LINEAR EQUATIONS OF MOTION
A pipeline during lowering under current loading can be analyzed comparatively with an axially tensioned beam sub-
jected to a uniform lateral load[19].

3.1.1. COMPARISON VERTICAL SUSPENDED PIPELINE TO AXIALLY TENSIONED BEAM
The self weight of the pipeline and its end terminal causes an axial force which is dependent on the location x. To
understand the effect of an axial force P (x, t ) on a laterally loaded beam, let us consider the configuration as given by
3.3(a): a clamped horizontal beam under a uniform lateral load and tension P (x, t ). Using the beam element 3.3(b) the
equations of motion are computed.

(a) Clamped beam under axial tensile load

(b) Beam element under axial tensile load

Figure 3.3: Bending of beam under uniform lateral load and axial tension[19].
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The equation of motion in the lateral direction z are given by the following:

V −
(
V + ∂V

∂x
d x

)
+ f d x +

(
P + ∂P

∂x
d x

)
· si n

(
θ+ ∂θ

∂x
d x

)
−Psi nθ = ρAd x

∂2w

∂t 2

(3.1)

Which is equivalent to,

V − (V +dV )+ f d x + (P +dP ) · si n (θ+dθ)−Psi nθ = ρAd x
∂2w

∂t 2 (3.2)

For small deflections the following applies:

si n (θ+dθ) ∼= θ+dθ = θ+ ∂θ

∂x
d x

θ+ ∂θ

∂x
d x = ∂w

∂x
+ ∂2w

∂x2 d x (3.3)

By filling in si nθ and si n (θ+dθ) of Equation 3.2 one obtains the following:

−dV + f d x + (P +dP ) ·
(
∂2w

∂x2 d x

)
+dP

∂w

∂x
= ρAd x

∂2w

∂t 2 (3.4)

For the rotational motion around the point O, the equation is motion is:

(
M + ∂M

∂x
d x

)
−M −

(
V + ∂V

∂x
d x

)
·d x + f d x · d x

2
= 0

d M − (V −dV ) ·d x + f
d x2

2
= 0 (3.5)

From elementary beam theory for the bending of beams (better known as Euler-Bernoulli or thin beam theory), the
relation between bending moment and deflection can be expressed as Equation 3.6

M(x, t ) = E I (x)
∂2w

∂x2 (x, t ) (3.6)

By writing dV and d M as partial derivatives once more and disregarding terms involving second powers in d x, Equa-
tion 3.5, Equation 3.6 and 3.4 are combined to obtain a single differential equation of motion:

∂2

∂x2

(
E I

∂2w

∂x2

)
+ρA

∂2w

∂t 2 −P
∂2w

∂x2 = f (x, t ) (3.7)

The load and mass terms of the differential Equation 3.7 are now fitted for the given system of a pipeline with an end
terminal. The mass of the beam is now dependent on three contributions: the mass of the pipeline itself mp , the
hydrodynamic added mass ma and the mass of the pipeline content mct . Axial force is equal to the effective tension
term of the pipeline Te (z), with is dependent on it position along the pipeline. The beam model which represents the
vertical pipeline is given in Figure 3.4.
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24 3. ANALYSIS TWIST DEVELOPMENT OF A VERTICAL FREELY SUSPENDED PIPELINE DURING LOWERING OPERATIONS

Figure 3.4: Tension development in the pipeline over the waterdepth

Now that the axial tension in the system is dependent on its position along the z axis, a small alteration has to be
made to one of the assumptions for small deflections. Equation 3.3 will now be written as the following for the vertical
suspended pipeline as depicted in Figure 3.4:

θ+ ∂θ

∂z
d z = ∂x

∂z
+ ∂

∂z

(
∂x

∂z

)
d z (3.8)

Finally, this alteration leads to the system’s equation of motion as given by Equation 3.9

E I
∂2

∂z2

(
∂2x

∂z2 (z, t )

)
− ∂

∂z

(
Te (z)

∂x

∂z
(z, t )

)
+ (mp +ma +mct )

∂2x

∂t 2 (z, t ) = f (z, t ). (3.9)

As has been done during the analysis of the suspended pipeline during laying, only the static configuration will be
discussed. Therefore the time dependent mass terms will further not be taken into account and will be discarded from
Equation 3.9. The effective tension in the pipeline is dependent on its submerged weight Ws and its bottom tension Tb ,
caused by the weight of the end terminal. See Equation 3.10.

Te (z) = Tb +
(

Astρst − Aexρex + Aiρi
)

g (L− z)

Te (z) = Tb +Ws (L− z) (3.10)

Where
Ast = Cross-sectional area pipeline

[
m2

]
Aex = External cross-sectional area pipeline

[
m2

]
Ai = Internal cross-sectional area pipeline

[
m2

]
ρst = Density steel

[
kg
m3

]
ρex = Density external medium pipeline

[
kg
m3

]
ρi = Density internal medium pipeline

[
kg
m3

]
L = Submerged pipeline length [m]
Ws = Submerged weight of pipeline

[ N
m

]
During lowering, the pipeline is hermetically sealed, therefore unlike similar analysis of functioning risers where a fluid
is present in the pipeline, the only medium present in the pipeline during lowering is air. Its weight contribution is
negligible and therefore the buoyancy of the system will effectively be determined by the displaced water volume. A
flooded condition of the pipeline is not considered. Next the lateral load is computed. Using the Morison’s equation for
slender beams [20] the horizontal load on the beam representing the pipeline can be given as:

f (z, t ) = f I (z, t )+ fD (z, t )

f (z, t ) = Cm ·ρw
π

4
D2 · d v

d t
(z, t )+ 1

2
Cd ·ρw D · v(z, t )|v(z, t )| (3.11)
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Since the problem is described by a static system, the inertia component of the Morison Equation is neglected. Further-
more, the current is assumed constant over the water depth. This is proven to be a valid assumption given the metocean
data at the Lucius project site (Appendix G). The drag force coefficient for pipelines as given by DNV in [21] is equal to
0.7. The lateral current loading is simplified to the following:

f = 1

2
Cd ·ρw D · v |v | (3.12)

Filling the static drag forces of the Morison Equation along with the effective tension terms into the equation of motion
3.9, and disregarding the time dependent mass terms, one obtains the following:

E I
∂4x

∂z4 (z)− (Tb +Ws (L− z))
∂2x

∂z2 (z)+Ws
∂x

∂z
(z) = 1

2
Cd ·ρw D · v |v | (3.13)

For the given problem, four boundary conditions can be computed. At the clamped start point at x = 0 the displacement
is zero and the angle is equal to π

2 rad minus the top angle α in [rad] of the system. For the end at x = L a shear force
is created by the horizontal displacement of the end terminal as a results of external loading. The bottom tension Tb

can be decomposed into a vertical contribution and a horizontal contribution, where its absolute values are dependent
on the displacement angle at the end of the pipeline. The displacement angle at the end of the pipeline is assumed
small, and therefore has been linearized, as can be seen in Equation 3.18. Usually the COG of the end terminal is not
exactly in line with the COG of the pipeline. However, for the pipeline end terminals used at Lucius, the PLET’s COG
offset from the pipeline’s centerline is relatively small. Therefore, no resulting moment from an end terminal COG offset
will be defined in the boundary conditions. The current loading on the large surface area of the PLET however, must
be taken into account. The surface area of the mudmat of the PLET for the PF-01 is used for current load calculations
(Appendix E). The drag force coefficient Cd is higher for the PLET than for the pipeline itself. A drag force coefficient of
1.7 is used by Heerema for PLETs [22]. The horizontal force induced by the current on the PLET is added to the shear
boundary conditions. The force is given by Equation 3.14.

FH ,PLET = 1

2
·ρw ·Cd ,PLET · AH ,PLET · v2

c (3.14)

The boundary conditions for the pipeline with pipeline end terminal under current loading are equal to:

x|z=0 = 0 (3.15)
∂x

∂z

∣∣∣∣
z=0

= π

2
−α (3.16)

∂2x

∂z2

∣∣∣∣
z=L

= 0 (3.17)

∂3x

∂z3

∣∣∣∣
z=L

= −Tb
∂x

∂z
(L)+FH ,PLET (3.18)

3.1.2. APPROXIMATION PIPELINE LOWERING WITH RESIDUAL CURVATURE USING LINEAR EQUATIONS

OF MOTION

Now that the linearized equation of motion for a beam under tensile force and lateral loading has been obtained, resid-
ual curvature will be added to the system. Identically to the analysis done for the suspended pipeline during laying,
the residual curvature simulates the effect of a straightener which doesn’t bend the pipeline back completely straight
after reeling. One must note that the residual curvature added will be linearized, and therefore simplified in compar-
ison to a non-linear system with large deflections. In a linear system, the length of the pipeline remains equal to the
projected length of the pipeline, permitting the linearization of the curvature as done in Equation 3.19. This gives a fun-
damental difference between non-linear beam theory and linearized beam theory such as Euler Bernoulli [17], where
the rotations are considered small and the actual length of the beam and the projected length are considered equal.

κ(z) =


d 2x
d z2 if dθ

d s
∼= dθ

d z

(
Linearized system

)
d2 x
d z2(

1+
(

d x
d z

)2
) 3

2

(
Non-linear system

) (3.19)

To approximated the shape of a pipeline which is curved due to plastic deformation, a system is modeled where a beam
is pre-curved before it is subjected to loads. To achieve this pre-shape, a moment is added to the system which gives
the beam a specific residual curvature κr (z). It is assumed that the residual curvature after the pipeline has passed
the straightener is constant, and therefore the applied moment M(z) to the system to approximate the curved shape
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will also be constant. The relations between a moment applied on a beam and the corresponding curvature is seen in
Equation 3.20.

∂2x

∂z2 = M(z)

E I
= κ(z) (3.20)

The added residual curvature will once again be made dependent on the torsion of the pipeline, similar to the analysis
of the suspended pipeline during laying. The total curvature of the pipeline now consists out of the curvature of a
tensioned beam under lateral loading, and the added residual curvature.

κ(z) = ∂2x

∂z2 +κr (z)

The derivative terms of the residual curvature are obtained, and are added to the equation of motion of the system.

κr (z) = κr cos
(
φ(z)

)
(3.21)

∂κr (z)

∂z
= −κr

∂φ(z)

∂z
sin

(
φ(z)

)
(3.22)

∂2κr (z)

∂z2 = −κr
∂2φ(z)

∂z2 sin
(
φ(z)

)−κr

(
∂φ(z)

∂z

)2

cos
(
φ(z)

)
(3.23)

Where the development of the torsion angle has its origins in the linearization of Equation 2.59 in subsection 2.8.1.
The function itself however has undergone a transformation, complying with the new starting point for this analysis.
Contrary to the sagbend analysis in subsection 2.8.1, the starting point is now at the surface, where the pipeline is
clamped by the tensioners. This has also been done to comply with convergence issues with the numerical solver, for
starting the analysis at a free end point leads to instability. The linearized, transformed torsional angle function can be
seen in Equation 3.24.

φ(z) =φ0

(
1− (z −L)2

L2

)
(3.24)

The equation of motion of a linearized beam under axial tension, lateral loading and with residual curvature is equated
by the the following:

E I

(
∂2

∂z2

(
∂2x

∂z2 +κr (z)

))
− (Tb +Ws (L− z))

(
∂2x

∂z2 +κr (z)

)
+Ws

∂x

∂z
(z) = f (3.25)

E I

(
∂4x

∂z4 −κr
∂2φ(z)

∂z2 sin
(
φ(z)

)−κr

(
∂φ(z)

∂z

)2

cos
(
φ(z)

))
− (Tb +Ws (L− z))

(
∂2x

∂z2 +κr cos
(
φ(z)

))+Ws
∂x

∂z
(z) = f (3.26)

For φ0 = 0....2π

3.1.3. SOLVING THE LINEAR EQUATION OF MOTION FOR A VERTICAL PIPELINE WITH RESIDUAL CURVA-
TURE USING NUMERICAL OPERATIONS

To solve the boundary value problem of the ordinary differential equation, a built-in numerical solver was used of MAT-
LAB. The so called BVP4C solver implements a collocation method for the solution of boundary value problems[23][24].
To use the solver, one must define three components of the function:

• The boundary conditions of the system;

• The vector of ordinary differential equations which make up the system;

• Estimated initial values for the ordinary differential equations
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The solver has been verified by comparing the analytically derived results for a tensioned vertical pipeline under current
loading without residual curvature. The output of the solver was compared with the solutions found from the analytical
derivation and were almost identical. To solve the 4th order differential equation given in Equation 3.26, the system
has to be written as a vector of 1st order differential equations. Here the index of the vector is linked to the order of the
derivative of the displacement equation. So the 1st order differential equation vector becomes:

−→
d x =



∂x
∂z

∂2x
∂z2

∂3x
∂z3

∂4x
∂z4


=



x(2)

x(3)+κr cos
(
φ(z)

)
x(4)

κr
∂2φ(z)
∂z2 sin

(
φ(z)

)+κr

(
∂φ(z)
∂z

)2
cos

(
φ(z)

)
...

...+ 1
E I (Tb +Ws (L− z))

(
x(3)+κr cos

(
φ(z)

))− Ws
E I x(2)+ f

2E I


(3.27)

The boundary conditions are also added as a vector. Here the boundary conditions at the clamped begin point of the
beam are assembled as a vector y a, and the boundary conditions at the end point of the beam are noted as yb. Here
once again the index of the vector denotes the order of the derivative. For the estimated initial values of the derivatives,
the values are filled in as expected given the boundary conditions. The initial estimation has been found to influence
the final results of the ordinary differential equations, bot can mostly improve or worsen the computation time of the
solver.

−−→vBC =


xa(1)

xa(2)+α− π
2

xb(3)
xb(4)+Tb xb(2)−FH ,PLET

 −→vi =


0

π
2 −α
κr

1

 (3.28)

Using the solver, the displacement x, the rotation in the in-plane bending plane ∂x
∂z , the moment E I ∂

2x
∂z2 and the shear

force E I ∂
3x
∂z3 along the beam can be computed. In Figure 3.5 until Figure 3.8 the deflection, angular rotation, moment

and shear are plotted for a 2100 m long beam with the specifications as given in Table 3.1.3. The modeled beam in
the example is similar to a vertical, freely suspended pipeline as used during installation with the Aegir at the Lucius
project. Important note: the graphs plotted are for a twist angle φ equal to zero.

Figure 3.5: Horizontal displacement along the beam Figure 3.6: Displacement angle along the beam

Figure 3.7: Internal moment along the beam Figure 3.8: Shear force along the beam
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Parameter Value Unit

κr 0.002 [ 1
m ]

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 90 [°]
L 2100 [m]
vc 0.1 [ m

s ]
WPLET 28631 [mT ]

AH ,PLET 87.15 [m2]
Cd 0.7 [−]

Cd ,PLET 1.7 [−]

Table 3.1: Properties of pipeline during lowering operation.

3.2. APPROXIMATION PIPELINE LOWERING USING NON-LINEAR EQUATIONS OF MO-
TION

The vertical suspended pipeline during lowering can also be approximated by a non-linear model, similar to the one
used in section 2.4. In this case, one assumes that the pipeline can be modeled as a beam, subject to possible large
horizontal deflections due to forcing. For the modeling of a vertically tensioned beam under large deflections, similar
governing equations like 2.19 and 2.21 from section 2.4 for a beam segment can be used. Given the different axes
definition in comparison with section 2.4, the equilibrium equations along with the corresponding governing equations
are derived once more for this system. The beam segment with the new axis definition can be seen in Figure 3.9, and the
governing equations are given by Equation 3.31 and Equation 3.32. The boundary conditions will evidently be different
for a vertical suspended pipeline in comparison to a pipeline during laying. At the pipe end at the surface, the pipeline
will be clamped by the tensioners in the top angle α at which the lowering takes place. At the end of the pipeline, the
pipeline will experience a shear force contribution due to the end terminal and the current loading on the PLETs surface
area. Given the axes and angle definition, the PLET’s weight shear force contribution will be equal to the cosine of the
angle that the end terminal’s bottom tension makes with the pipeline. The current loading on the PLET is again given as
the shear force contribution FH ,PLET . Similarly to the linearized pipeline, the resulting moment caused by the offset of
the PLET’s COG is regarded as negligible and is not included into the boundary conditions. The system for the vertical
suspended pipeline is schematically drawn in Figure 3.10 and its boundary conditions can be seen from Equation 3.33
to Equation 3.36.

Figure 3.9: Beam segment with axis definition for pipeline dur-
ing lowering.

Figure 3.10: Schematic representation of vertical pipeline dur-
ing lowering

V.J.Taams Thesis



3.2. APPROXIMATION PIPELINE LOWERING USING NON-LINEAR EQUATIONS OF MOTION 29

ΣFz = 0

Tsi nθ− (T +dT ) · si n(θ+dθ)+ (V +dV ) · cos (θ+dθ)−V · cosθ+Ws ·d s = 0 (3.29)

The same equilibrium of forces is sought after in the horizontal plane,

ΣFx = 0

T cosθ− (T +dT )cos(θ+dθ)+V si nθ− (V +dV ) · si n (θ+dθ)+ f (s) ·d s = 0 (3.30)

G1: E I
d 3θ

d s3 −T
dθ

d s
+Ws cosθ− f (s)si nθ = 0 (3.31)

G2:
dT

d s
=Ws si nθ+ f (s)cosθ (3.32)

θ|s=0 = α (3.33)

∂θ

∂s

∣∣∣∣
s=0

= 0 (3.34)

∂θ

∂s

∣∣∣∣
s=L

= 0 (3.35)

∂2θ

∂s2

∣∣∣∣
s=L

= −Tbcos(θ(L))+FH ,PLET (3.36)

3.2.1. APPROXIMATION PIPELINE LOWERING WITH RESIDUAL CURVATURE USING NON-LINEAR EQUA-
TIONS OF MOTION AND SOLVING THE SYSTEM NUMERICALLY

In the next step, residual curvature will be added to the non-linear governing equations of motion, just as has been
done in subsection 3.1.2. Given our non-linear system, the curvature of the beam with residual curvature is equal to:

κ(s) = dθ

d s
+κr (s) (3.37)

Where κ(s) is the non-linearized version of the torsion angle Equation 3.24 times the absolute value of the residual
curvature present in the pipeline after straightening:

κr (s) = κr cos
(
φ(s)

)
(3.38)

φ(s) = φ0 −φ0
(s −L)2

L2 (3.39)

Using the 1st and 2nd derivative of the residual curvature function, the governing equation Equation 3.31 is transformed
into the governing equation of a system with residual curvature:

E I
d 2

d s2

(
dθ

d s
+κr (s)

)
−Te (s)

(
dθ

d s
+κr (s)

)
+Ws cosθ =− f (s)si nθ

E I

(
d 3θ

d s3 −κr

(
dφ

d s

)2

cos
(
φ(s)

)−κr
d 2φ

d s2 si n
(
φ(s)

))
− (Tb +Ws (L− s))

(
dθ

d s
+κr cos

(
φ(s)

))+Ws cosθ =− f (s)si nθ (3.40)

The second governing equation for a vertical suspended system with residual curvature remains unchanged to a system
with residual curvature. Given the fact that during lowering the length of the submerged pipeline is known beforehand,
in contrary to the length of a submerged pipeline during laying, the second governing equation is not needed to solve
the system. The system can be solved numerically once again using the MATLAB solver BVP4C[23]. The derivative
vector that is used as input is given in Equation 3.41.
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−→
dθ =


dθ
d s

d 2θ
d s2

d 3θ
d s3

=


θ(2)+κr cos

(
φ(s)

)
θ(3)

κr

(
dφ
d s

)2
cos

(
φ(s)

)+κr
d 2φ

d s2 si n
(
φ(s)

)+ (Tb+Ws (L−s))
E I

(
θ(2)+κr cos

(
φ(s)

))− Ws
E I cosθ(1)− f (s)

E I si nθ(1)


(3.41)

The boundary conditions as described earlier in Equation 3.33 to Equation 3.36 will change slightly once adding resid-
ual curvature to the system: the moment at the clamping point is now equal to κr , the rest of the boundary conditions
remain the same. The boundary conditions for the system are given as input to the BVP4C solver. The boundary con-
dition vector and the initial values vector can be seen in 3.42. Here, the clamped pipe end is seen as the begin point a,
and the other pipe end as point b. Again the same important note: the graphs plotted are for a twist angle φ equal to
zero.

−−→vBC =


θa(1)−α
θb(2)

θb(3)+Tbcos(θb(1))−FH ,PLET

 −→vi =


α

κr

1

 (3.42)

Figure 3.11: Horizontal displacement along the beam Figure 3.12: Displacement angle along the beam

Figure 3.13: Internal moment along the beam Figure 3.14: Shear force along the beam

Similar to subsection 3.1.3, the displacement x, the rotation in the in-plane bending plane ∂x
∂z , the moment E I ∂

2x
∂z2 and

the shear force E I ∂
3x
∂z3 along the beam are computed. The results can be seen in Figure 3.11 until Figure 3.14. The same

pipeline properties (Table 3.1.3) are used as in the linear approximation in subsection 3.1.3. A comparison of the results
between the linear and non-linear approximation of the vertically suspended pipeline is made in the following section.
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3.3. DISCUSSION RESULTS LINEAR AND NON-LINEAR APPROXIMATION VERTICAL BEAM

WITH RESIDUAL CURVATURE AND CURRENT LOADING
Comparing the non-linear Equation 3.40 with the similar linear Equation 3.26 for the vertically tensioned pipeline with
residual curvature and current loading, one can see the similarity. Besides the fact that the non-linear equation is 3r d

order and the linearized equation is 4th order, one can find upon inspection the similar contributing terms: both con-
tain a term concerning the bending stiffness, axial tension, self weight and external load. It is therefore not surprising
that model comparison shows quite similar results.

3.3.1. MODEL COMPARISON CONCERNING SHEAR DEVELOPMENT ALONG THE PIPELINE
When comparing the shear development along the pipeline from the linear model (Figure 3.8) with the one of the non-
linear model (Figure 3.14), one sees that the are almost identical. Both the absolute shear values as the development of
more or less the same. The steep increase of the shear at the end of the graph is in both models caused by horizontal
current loading on the PLET.

3.3.2. MODEL COMPARISON CONCERNING MOMENT DEVELOPMENT ALONG THE PIPELINE
Also the moment development along the pipeline is almost identical for both models (Figure 3.7 and Figure 3.13). It can
be seen that the moment in the pipeline is predominantly determined by the residual curvature in the pipeline, giving
the moment development a constant character. From this it can also be concluded that the current loading has little
effect on the moment, at least for the current value used for the analysis.

3.3.3. MODEL COMPARISON CONCERNING DISPLACEMENT ANGLE DEVELOPMENT ALONG THE PIPELINE
Upon comparison of the models regarding the displacement angle, one sees a difference. The development along the
pipeline shows as similar trend, only the displacement angle graph of the non-linear model (Figure 3.12) gives higher
absolute values throughout in comparison with the similar linear graph (Figure 3.6). Although there is a difference in
absolute values, one must note that the maximum angle in both models is still very small. Converted to degrees, the
maximum angle for both models does not exceed the 1°. This must be taken into consideration during contemplation
of the significance of the different absolute displacement angle values.

3.3.4. MODEL COMPARISON CONCERNING HORIZONTAL DISPLACEMENT ALONG THE PIPELINE
Lastly, the horizontal displacement along the pipeline is compared (Figure 3.5 and Figure 3.11). The development for
both the models is quite similar, only the non-linear model gives greater absolute values due to greater values for the
displacement angle as described earlier. As could be expected, the small displacement angles lead to a small horizontal
displacement along the pipeline. Over a length of more than 2km, the pipeline has a maximum offset of only a few
meters for both models.

3.3.5. OVERALL MODEL COMPARISON CONCLUSION
Comparing the results of the shear, moment, displacement angle and horizontal displacement of the linear and non-
linear models, one can state that there are quite similar. Due to the small displacement angles, the linearization of
the system does not lead to large discrepancies in the results. The most important value for further calculations is the
development of the curvature along the pipeline. The curvature (which has an identical development compared to the
moment) is almost identical for the linear and non-linear model, and will therefore give the same amount of bending
strain energy. It is therefore concluded that there will be no difference in results when using the linear or the non-linear
MATLAB model for the calculation of the twist during pipeline lowering operations. Given this indifference, the linear
model will be used for further calculations due to easier computations.
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3.3.6. ESTIMATION OF THE TWIST DEVELOPMENT DURING PIPELINE LOWERING

The twisting of the pipeline already occurred during lowering operations from the vessel to the seabed. The twist in
the pipeline is then mitigated by rotating the PLET back to its desired angle or by temporarily changing the heading
of the vessel. Depending on the type of pipeline and how far it was during the lowering process, twist angles occurred
between approximately 10 ° until 90 °. Similar to the twist estimation done in section 2.8, models are made to research
the effect that residual curvature in the pipeline has on the development of twist. MATLAB models using the linearized
beam equations with residual curvature as described in chapter 3 together with total potential energy minimization are
used to estimate the twist. And once again, finite element models in Abaqus with the same pipeline properties as used
in the equivalent MATLAB models are used for results comparison.

3.3.7. POTENTIAL ENERGY MINIMIZATION FOR A PIPELINE DURING LOWERING

With the equations of motion for a vertical suspended pipeline with residual curvature and current loading having been
derived, a closer look is taken to the energy balance of the system. Similar to the potential energy minimization done
in subsection 2.8.1, the aim is to obtain the coupled differential equations between the different strain contributions
of the system. The total potential energy equation for a pipeline during lowering operations is given in Equation 3.44.
Note that the second order contributions as described in subsection 2.8.1 have once again been disregarded for the
total potential energy minimization of the pipeline.

Π = Ub +Ur +Ua +EP (3.43)

Π = 1

2

E I

L∫
0

(
dθ

d s

)2

d s +G J

L∫
0

(
dφ

d s

)2

d s +E A

L∫
0

(
d 2u

d s2

)2

d s

+ρAg zd s (3.44)

The bending angle derivative dθ
d s is equal to the curvature along the vertical suspended pipeline during lowering. In

chapter 3 MATLAB models are made using analytical beam equations which can take into account residual curvature
present in the pipeline after the pipeline has passed the straightener. This residual curvature is made dependent on
the twist angle, making it possible to calculate the bending strain contribution of a system with residual curvature for
different twist angles. Both the axial strain and the potential energy of the vertical suspended pipeline remain constant
during pipeline twist. Ergo, since these terms are not coupled to the twist of the pipeline, they are disregarded in further
analysis. The potential energy equation with terms that are coupled to the twist of the pipeline are therefore given as
follows:

Π(φ) = 1

2

E I

L∫
0

(
κ(s,φ(s))

)2 d s +G J

L∫
0

(
dφ

d s

)2

d s

 (3.45)

Where κ(s,φ(s)) is the curvature along the pipeline for a given twist angle as calculated using the linear MATLAB models
for a vertical suspended pipeline with residual curvature. The estimated development of the twist angle is given in
Equation 3.24. Identical to chapter 3, the twist angle is iteratively varied and the corresponding bending and torsional
strain contributions are calculated. The combined minimum energy obtained of both contributions for a certain twist
angle, gives the expected twist angle. In Figure 3.15 the torsional strain related energies are plotted against the twist
angle, along with the expected twist angle. In Figure 3.16 the curvature in the pipeline is plotted for zero twist and for
the twist angle related to the minima of the total potential energy of the model. The same is done for the horizontal
displacement along the beam in Figure 3.17. Furthermore, the twist angle development is shown in Figure 3.18.
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Figure 3.15: The total, bending and torsional strain energies for the pipeline.
The minimum point is marked with a cross, and indicates the expected
torsional angle φ0.

Figure 3.16: The curvature along the pipeline before residual curvature addition
(blue) and after residual curvature addition in its final state (red). Here the final
state is achieved after a certain amount of torsion.

Figure 3.17: Geometric configuration of pipeline during lowering Figure 3.18: Development of torsion angle along pipeline

3.3.8. FINITE ELEMENT ANALYSIS USING ELASTIC BEAM ELEMENTS WITH RESIDUAL CURVATURE

Similar to subsection 2.8.2, the vertical suspended pipeline with residual curvature is modeled in the finite element pro-
gram Abaqus for results comparison with the MATLAB models. The same type of beam elements, material properties
and mesh density are used as in subsection 2.8.2. The model comprises several steps, each with their own boundary-
and load conditions (see Table 3.2). These steps along with the aforementioned values will be discussed in the follow-
ing. The actual results of the finite element analyses will be discussed thoroughly in chapter 5.

1. Initial conditions
In the primary step of the model, an initially curved beam is loaded into the 3D space, just as in subsection 2.8.2. At
the end of the pipeline, an L - shaped rigid element is coupled to the pipeline. The element is a 2-node-3D rigid beam
(RB3D2) of the linear geometric order[12]. The outer point of the L-shaped rigid, represents the center of gravity (COG)
of an end terminal. The PLET PF-01-1A of the installed production flowline PF-01 is chosen to represent the end termi-
nal. Specification of the end terminal can be viewed in Appendix E. PF-01 was the longest installed pipeline, and during
the twist was measured several times. At the End terminal COG point Pe , loads will be activated in later steps. As for the
coupling between the pipeline and the rigid element, this is a kinematic coupling which constrains all degrees of free-
dom of the rigid element in comparison to the movement of its reciprocal, the end point of the pipeline. Furthermore,
the pipeline is constrained at both its ends (Pb and Ps ), in all DOF. See Figure 3.19.

2. Application of gravity
The same instability issues during simulations in subsection 2.8.2 are present in this model, leading once more to the
gradual build-up of certain loads and boundary conditions. In this step, gravity is applied to the whole pipeline MT

with a ramp function Figure 3.20. Here the same equivalent gravity constant after buoyancy compensation is used as in
subsection 2.8.2. The pipe end at the surface Ps is clamped in at a given top angle α, and the lower pipe end Pb is con-
strained in al translational directions. In this step the whole pipeline MT is constrained in the translational z-direction
for stability purposes. For the higher curvature models during the sensitivity analysis, the final gravity applied to the
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system was built up in two steps.

3. Lowering of pipeline
In the third step, the boundary condition on the whole modeled pipeline MT and the lower pipe end Pb boundary con-
ditions are removed completely. The pipeline is therefore solely constrained at the surface point Ps . The pipeline is
lowered and ends up in a vertical suspended state (see Figure 3.21). During the lowering, a small, evenly distributed
load perpendicular to the in-plane movement is applied along the pipeline (Fi ). This load is applied to instigate the
pipeline to twist in an energetically unstable configuration, while the magnitude of it remains of negligible influence to
the final results. The same was done in subsection 2.8.2. There is also another load applied to the pipeline in the form of
a line-load (Fc ). The magnitude of the line load, along with its direction (either in head of beam direction) is dependent
on the analysis being done. The line load represent possible current loading on the pipeline.

4. Current loading of end terminal
In the fourth step, the pipeline together with its end terminal, is in its suspended configuration (see Figure 3.22). As a
last step, the end terminal is loaded with a point load acting on the center of gravity of the pipeline. This point load Fe

represents the current loading and the weight of the end terminal. The direction and magnitude of the current compo-
nent is again dependent on whether the analysis represents head or sideways current loading. The current contribution
of the load is the summation of the total pressure over the projected surface area of the end terminal to the current.

Figure 3.19: Initial conditions
Figure 3.20: Application of gravity

Figure 3.21: Lowering of pipeline Figure 3.22: Application of current loading

V.J.Taams Thesis



3.3. DISCUSSION RESULTS LINEAR AND NON-LINEAR APPROXIMATION VERTICAL BEAM WITH RESIDUAL CURVATURE AND

CURRENT LOADING 35

In Table 3.2 and overview is made of the boundary conditions and loads applied on the different instances of the model
for the model steps. The table must be read similarly as Table 2.2 in subsection 2.8.2.

Figure 3.23: Global coordinate system that is used for the modeling of the
pipeline in Abaqus using FE analysis.

Ps = Surface point of pipeline
Pb = Bottom point of pipeline
MT = Total model
Pe = End terminal COG point

geq = Equivalent gravitational constant
[

m
s2

]
Fi = Instigating load [N ]
Fc = Current load on pipeline [N ]
Fe = Current load and weight of end terminal [N ]

Table 3.2: The boundary conditions and loads als defined per step on the different instances

Model step Instance Boundary conditions Loads

x y z θ ψ φ x y z θ ψ φ Type Unit
1 Ps • • • • • • - - - - - - - -

Pb • • • • • • - - - - - - - -

MT • • • • • • - - - - - - - -

Pe - - - - - - - - - - - - - -
2 Ps • • • • • • - -

Pb • • • - - - - - - - - - - -

MT - - • - - - - • - - - - geq [ m
s2 ]

Pe - - - - - - - - - - - - - -
3 Ps • • • • • • - - - - - - - -

Pb - - - - - - - - - - - - - -

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
- - - - - - • - - - - - Fc [N ]

Pe - - - - - - - - - - - - - -
4 Ps • • • • • • - - - - - - - -

Pb - - - - - - - - - - - - - -

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
- - - - - - • - - - - - Fc [N ]

Pe - - - - - - • • - - - - Fe [N ]
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4
RESULTS OF ANALYSES OF TWIST DEVELOPMENT

DURING LAY OPERATIONS

In chapter 2 different analytical approaches were discussed to approximate the curvature of a pipeline during lay op-
erations. The enhanced stiffened catenary method was chosen to use in further estimations of pipeline twist in a
4DOF/element environment. As a comparison, also a 6DOF/element finite element model was built to estimate the
pipeline twist that would occur in a similar system. In this chapter, parameters that may influence the amount of
pipeline twist will be varied in a sensitivity study and the results of both models will be compared with one another.

The parameters to vary in the sensitivity study were chosen based on the conducted literary review (Appendix C), the
research into the lay operations with the Aegir (Appendix B) and on the analysis of the different contributions to the
final twist in the analytical equations.

4.1. RESIDUAL CURVATURE DUE TO UNDER STRAIGHTENING
In this section, the amount of residual curvature that is assumed to be present in the pipeline is varied. According to
the residual curvature criteria for reeled pipes set by HMC, a minimum residual curvature radius of 500m is accepted
(see section B.5). The sensitivity analysis will therefore start at a residual curvature radius of 500m. In steps of 100m, the
curvature radius is increased until the 1000m is reached: the DNV minimum straightness standard for factory pipes [25].
Also three relatively high residual curvature radii are examined, respectively one and a half, twice and thrice the allowed
DNV standard for factory pipes. During the straightening step of the pipeline, the pipeline is either under straightened
or over straightened to a certain extent. The direction in which the residual curvature in the pipeline is present, will
be influential for the bending process that occurs in the sagbend part of the lay configuration. Under straightening of
the pipeline will lead to a residual curvature that will increase bending strain in the sagbend, for the pipeline is bent
against the strains induced by the residual curvature during laying with the Aegir (see Figure 4.1). Upon inspection
of the on board reel-lay configuration and professional reports, it is less strenuous for the system to obtain an under
straightened pipe within the tolerances than the other way around: over straightening leads to much higher loads on the
straightener tracks, the pipeline and the aligner. Out of this efficiency standpoint, the pipelines are therefore usually
under straightened. Ergo, lay operations with the Aegir are mostly executed with the direction of residual curvature
which theoretically gives the highest amount of bending strains.

Figure 4.1: Schematic representation of under straightening after straightening operations. Also note that the lay direction of the DCV Aegir causes
the under straightened pipeline to be bent against the residual curvature.
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Figure 4.2: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.3: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus

Rr [m] φmax [°] M AT L AB φmax [°] Abaqus

500 128.4 163.8
600 128.4 159.8
700 127.9 155.7
800 126.4 151.7
900 124.8 147.7

1000 122.8 143.8
1500 110.3 124.2
2000 95.30 104.9
3000 59.70 59.66

Table 4.1: Radii of residual curvature applied due to under straightening,
along with the obtained maximum torsion angles in both MATLAB and
Abaqus.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 85 [°]
wd 2100 [m]

Table 4.2: Properties of pipeline and lay operation.

Looking at the results of the simulations, the following can be said. A lower residual curvature radius (higher κr ) gives
a higher maximum torsion angle, for both models. For the calculated angles with the 4DOF/element MATLAB model,
the maximum torsion angle seems to converge to a certain value when decreasing the residual curvature radius. For
the Abaqus model a more linear trend throughout is displayed. When comparing the absolute values of twist of the two
models, one sees that a decreasing residual radius leads to a greater deviation in the maximum twist values between
the two models. Where at Rr = 3000m the calculated twist is practically the same, at Rr = 500m the deviation of twist
is 35°, or 21% difference from the Abaqus model. When looking at the shapes of the graphs, keep in mind that shape
of the MATLAB torsion angle development graphs are estimated by a predetermined function. Upon comparison of
the shapes between the two models, one sees that the Abaqus graphs have a more linear slope initially and appear to
converge quicker at the end of the pipeline.
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4.2. RESIDUAL CURVATURE DUE TO OVER STRAIGHTENING
The opposite to under straightening is over straightening. Here the residual strains will be in the same direction as those
induced by the bending in the sagbend given the lay direction with the Aegir (see Figure 4.4). This will lead to reduced
bending strains in the sagbend, along with a reduction of the overall bending energy of the lay operation. The results
can be seen in Figure 4.5 and Figure 4.6.

Figure 4.4: Schematic representation of over straightening after straightening operations. Also note that the lay direction of the DCV Aegir causes the
over straightened pipeline to be bent with the residual curvature.

Figure 4.5: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.6: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus
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Rr [m] φmax [°] M AT L AB φmax [°] Abaqus

500 60.20 0.3208
600 46.14 0.3136
700 26.12 0.3066
800 0.000 0.2994
900 0.000 0.2928

1000 0.000 0.2864
1500 0.000 0.2584
2000 0.000 0.2353
3000 0.000 0.2001

Table 4.3: Radii of residual curvature applied due to over straight-
ening, along with the obtained maximum torsion angles in both
MATLAB and Abaqus.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 85 [°]
wd 2100 [m]

Table 4.4: Properties of pipeline and lay operation.

The bending of the pipeline in the same direction as the induced residual curvature gives some interesting results when
comparing them to the previously obtained data in section 4.1. A significant reduction of the final rotation angle has
taken place, to the extent that the twist in the Abaqus model can be assumed negligible. For the MATLAB simulations,
one sees a comparatively large torsion angle for the three smallest residual curvature radii. Of the remaining radii, the
results all converge to zero, which in comparison is very close to the Abaqus results. The deviating twist values for the
smallest residual curvature radii can be explained by the way twist is calculated in the models. When the development
of the system’s total potential energy against the twist angle does not show a clear trough and is relatively constant for
a range of twist angles, it has trouble finding a twist angle with minimal potential energyΠ. This can lead to a relatively
large estimated angle, even though the energy difference between the calculated value and zero twist can be very small.
Ergo, even for the maximum occurring twist angle in the MATLAB models (60 °), the energetic advantage compared to
no twist is very low.

4.3. WATER DEPTH
Varying the water depth will impact the system in multiple ways. Deeper water will lead to a higher axial tension in
the system for there is a larger amount of pipeline suspended from the clamping point. It also changes the curvature
profile along the pipeline, as has been shown in section 2.6. The steeper departure angle leads to a more concentrated
curvature peak close to the interaction with the seabed. The macro term of the torsional rigidity Qtr as given in Equa-
tion 4.1 decreases with increasing water depth, for it is dependent on the pipeline length L, making a longer suspended
pipeline more prone to twist. Therefore, the amount of torsion needed to achieve a certain twist angle will be higher for
a pipeline in shallow water. As in section 2.6, water depths comparable to project site of Ichthys and Lucius will be used
in the sensitivity study. The Aegir lay configuration for a top angle of 70 ° is schematically represented in Figure 4.7. The
results can be seen in Figure 4.8 and Figure 4.9.

Qtr = G J

L
(4.1)

Figure 4.7: Schematic representation of the lay configuration of the DCV Aegir in shallow water. Note that the tests are done once more with under
straightened pipelines.
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Figure 4.8: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.9: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus

Rr [m] φmax [°] M AT L AB φmax [°] Abaqus

500 0.000 0.1730
600 0.000 0.1207
700 0.000 0.0927
800 0.000 0.0764
900 0.000 0.0644

1000 0.000 0.0554

Table 4.5: Radii of residual curvature applied due to under straight-
ening, along with the obtained maximum torsion angles in both
MATLAB and Abaqus.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 70 [°]
wd 200 [m]

Table 4.6: Properties of pipeline and lay operation.
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The MATLAB models find no twist at all for the tested residual curvature radii and the Abaqus models give negligible
amount of twist. Please note that in Abaqus an instigating load of 1N/m pipeline is exerted laterally. Although little,
this disturbance in the system can give the small twist angles as observed in Figure 4.9. The obtained Abaqus twist
values are therefore considered to be due to a model disturbance caused by the instigating load and not due to the
residual curvature. Ergo, the twist angles with the Abaqus models are considered to be negligible and thus the same
results are obtained with the MATLAB and Abaqus models upon model comparison. The reason why no twist is found
at the shallow water depth, is explained with Figure 4.10 and Figure 4.11 below. Figure 4.10 represents the strain energy
development for twist angles in deep water with the pipeline properties and configuration as given in Table 4.2 and
Figure 4.11 represents the laying of a pipeline in shallow water with the exact same pipeline properties and the configu-
ration as described by Table 4.6. Note that the given graphs are calculated by using total potential energy minimization
with the analytical equations in MATLAB. Comparing the two graphs, a few things are noticed. In accordance with the
macro term of torsional rigidity (Equation 4.1), it is seen that for shallow water the torsional strain energies are higher
for a certain twist angle in comparison with the equivalent graph in deep water. Ergo, there is a higher resistance to
twist for shallower water depth, and therefore for the given tests no twist occurs. The second thing that can be noted, is
that the reduction in the overall bending energy strain through twisting is much more profound for deep water. Deep
water results in long freely suspended pipeline lengths that contain residual curvature. This in turn give a large reduc-
tion of the bending strains if twist occurs. Both the lower resistance to torsion and the higher reduction gradient of the
bending strain energy with respect to the twist angle result in twist occurring only in the deep water scenario and not
in the shallow water. This signifies that for the residual curvature radii that are tested, pipeline twist is a deep water
problem.

Figure 4.10: The development of the strain energy contributions with respect to the twist angle for a pipeline in deep water (wd=2100m).

Figure 4.11: The development of the strain energy contributions with respect to the twist angle for a pipeline in shallow water (wd=200m).
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4.4. AXIAL TENSION
As discussed in the literary review in Appendix C, there are two important, opposing relations regarding pipeline tension
dependency on rotation. The first being that increased tension results in a decreased curvature in the sagbend and
therefore decreases the bending strains. In turn, this could lead to the reduction of twist because torsion will give a
greater decrease in the bending strain energy. The second states that increased tension results in a lower torsional
resistance for more pipeline is suspended, making the pipeline more prone to twist. During the sensitivity study, one
hopes to obtain which of the discussed relations is more dominant during pipe lay operations. The tension in the
pipeline is varied by changing the top angle of the tower: increasing the top angle leads to a decrease in the axial
tension. For four different top angles, the twist development is investigated. The results can be seen in Figure 4.12 and
Figure 4.12.

Figure 4.12: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.13: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus

α[°] T [kN ] φmax [°] M AT L AB φmax [°] Abaqus

70 1771 118.8 140.4
75 1572 120.8 141.6
80 1410 122.3 142.6
85 1276 122.8 143.8

Table 4.7: Top angles of lay tower during laying, along with the ob-
tained maximum torsion angles in both MATLAB and Abaqus. The
residual curvature is introduced due to under straightening.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

Rr 1000 [m]
wd 2100 [m]

Table 4.8: Properties of pipeline and lay operation.
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Looking at the results, it can be concluded that the axial tension in the pipeline does not have a significant effect on
the development of pipeline twist. Both the MATLAB and Abaqus models show limited increase in the amount of twist
while decreasing the tension in the system. The decrease in tension is achieved via increasing the top angle of the tower,
which lead to a shorter suspended pipeline length. Upon model comparison, it can be concluded that both models
show the same trend, only the twist value around which the graphs for different tension values hover, is different for the
models.

4.5. BUOYANCY

The pipelines used for the Lucius project have a relatively thick coating of 2.5" GSPU, making the pipeline significantly
more buoyant while the increase of the bending stiffness is negligible. Also having the pipeline non-flooded, increases
the buoyancy. An increase of the buoyancy of the pipeline leads to a decrease of the submerged weight of the pipeline,
which in turn decreases the axial tension and increases the suspended length of the pipeline. The two opposing re-
lations as described in the previous section 4.4 also apply for buoyancy and once again it will be investigated which
relation is more dominant. For the sensitivity study, analysis will be done with or without the GSPU coating to investi-
gate the influence of buoyancy. The results can be seen in Figure 4.14 and Figure 4.15.

Figure 4.14: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.15: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus
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Coati ng ["] Ws [kg /s2] φmax [°] M AT L AB φmax [°] Abaqus

2.5 555.0 122.8 143.8
0 679.4 122.8 143.9

Table 4.9: Top angles of lay tower during laying, along with the ob-
tained maximum torsion angles in both MATLAB and Abaqus. The
residual curvature is introduced due to under straightening.

Parameter Value Unit

OD 8.625 ["]
tst 0.875 ["]
Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

Rr 1000 [m]
wd 2100 [m]
α 85 [°]

Table 4.10: Properties of pipeline and lay operation.

It appears that buoyancy has no effect on the development of pipeline twist during laying. Again upon model compar-
ison, it can be seen that both show the exact same indifference in twist development between a coated pipeline and a
non-coated pipeline.

4.6. WALL THICKNESS
Increasing the wall thickness while maintaining the same outer diameter, increases the second moment of area and
therefore the bending stiffness of the pipeline. Furthermore, increasing the wall thickness leads to an increase of the
self weight and axial tension. In the sensitivity study, the outer diameter is kept constant while the thickness of the
pipeline is increased. The results can be seen in Figure 4.16 and Figure 4.17.

Figure 4.16: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.17: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus
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w t ["] φmax [°] M AT L AB φmax [°] Abaqus

0.6 122.3 143.4
0.8 122.8 143.8
1 122.8 143.9

1.2 122.8 143.9

Table 4.11: The variation of the wall thickness, along with the ob-
tained maximum torsion angles in both MATLAB and Abaqus. The
residual curvature is introduced due to under straightening.

Parameter Value Unit

OD 8.625 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

Rr 1000 [m]
wd 2100 [m]
α 85 [°]

Table 4.12: Properties of pipeline and lay operation.

Once more it seems that tested parameter does not effect the development of pipeline twist: for the wall thicknesses
tested both the Abaqus and MATLAB twist developments along the pipeline show almost no change. Again, the mean
value of the twist estimated with Abaqus is higher in comparison with the MATLAB model results. The trend of twist
development for the different wall thicknesses however is identical for the models.

4.7. OUTER DIAMETER
As mentioned in section B.3 in Appendix C, the range of pipe diameter that can be reeled onto the drums is 6" to
16". Increasing the diameter of the pipeline will result in an increase of the second moment of area and consequently
the bending stiffness. When dealing with a pipeline with a relatively thick buoyant coating, it is not directly clear if
increasing the diameter will also increase the submerged weight of the pipeline, along with the tension. The 2.5" GSPU
coating is maintained while varying the outer diameter of the pipeline. The wall thickness of the pipeline is also kept
constant. The results can be seen in Figure 4.18 and Figure 4.19.

Figure 4.18: Array of graphs concerning the twist development along the pipeline as calculated with MATLAB

Figure 4.19: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus
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OD["] Ws [kg /s2] φmax [°] M AT L AB φmax [°] Abaqus

6 421.4 123.3 143.7
8.625 555.0 122.8 143.8

10 597.0 122.3 143.7
12 623.5 122.3 143.7
14 609.3 121.8 143.6
16 554.4 121.3 143.5

Table 4.13: Top angles of lay tower during laying, along with the
obtained maximum torsion angles in both MATLAB and Abaqus.
The residual curvature is introduced due to under straightening.

Parameter Value Unit

tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

Rr 1000 [m]
wd 2100 [m]
α 85 [°]

Table 4.14: Properties of pipeline and lay operation.

The outer diameter seems to be of negligible effect on the development of twist: it is difficult to spot the change in twist
when varying the outer diameter in the result graphs. Again, the MATLAB and Abaqus models show the exact same
trend regarding twist development.

4.8. CLARIFICATION DIFFERENCE IN TWIST DEVELOPMENT DURING LAYING BETWEEN

MATLAB AND ABAQUS MODELS
Upon result comparison of the sensitivity analysis between the models, the following can be concluded. For certain
parameter studies, such as those done for the outer pipeline diameter, the wall thickness, the axial tension and the
buoyancy, the results show the exact same trend in both models. However, the maximum values of the torsion an-
gle are different. This difference is best seen in the tests done for the different radii of residual curvature formed by
under-straightening. Decreasing the curvature radius from 3000m to 500m, lead to an increase in the difference of the
torsion angle approximation between the two models. An explanation for the discrepancy was sought after by looking
at the difference between the two models. A quintessential difference between the models is that the MATLAB models
contain 4DOF elements and those in Abaqus contain 6DOF. The abaqus model therefore has an additional bending
plane in which the pipeline can have a curvature development. This out-of-plane bending is schematically illustrated
in Figure 4.20. It was investigated what the influence is of out-of-plane bending of the pipeline during lay operations, a
contribution that cannot be taken into account in the 4DOF/element MATLAB models but may well play a role in the
development of twist.

Figure 4.20: The in-plane and out-of-plane bending of the pipeline in a 3D space

4.8.1. CONTRIBUTION OF OUT-OF-PLANE BENDING TO THE PIPELINE CURVATURE

Out-of-plane bending is only possible in the 6DOF/element Abaqus models, and therefore a closer look will be taken
to the Abaqus models for an explanation of the offset in results between MATLAB and Abaqus. To obtain a better un-
derstanding of the out-of-plane bending contribution, the in- and out-of-plane curvatures are examined of the Abaqus
tests with residual curvature due to under straightening. The same pipe properties are used as given in Table 4.2. The
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curvatures are plotted for Rr = 500m, the radius which shows the biggest difference in twist angle approximation be-
tween the models, and Rr = 2000m, which shows far less difference.

Figure 4.21: The in-plane and out-of-plane curvature development of the pipeline in Abaqus for Rr = 500m. The pipeline is formed due to under
straightening and the water depth is 2100m.

When comparing the in-plane and out-of-plane curvatures with one another, one sees that the amount of out-of-plane
bending curvature is quite significant. Along approximately the first 700m it is apparent that a reduction of the in-plane
curvature simultaneously occurs with the negative increase of the out-of-plane curvature. Afterwards the out-of plane
curvature goes from negative to positive values and takes on a similar shape to the in-plane curvature upon approach
of the seabed interaction. The peak of the out-of-plane curvature is around two-thirds (≈ 67%) of the absolute value of
the in-plane curvature peak.

Figure 4.22: The in-plane and out-of-plane curvature development of the pipeline in Abaqus for Rr = 2000m. The pipeline is formed due to under
straightening and the water depth is 2100m.

For the curvature graphs with a higher residual curvature radius, the development is less wavy. Before the curvature
peaks near the seabed, the in-plane curvature slightly decreases as the out-of-plane curvature negatively increases. The
ratio between the peaks is lower than in the previous Figure 4.21: the out-of-plane peak is around 40% of the in-plane
peak. Reduction of the residual curvature in the system appears to lead to a reduction of the out-of-plane curvature. In
the next subsection its effect on the total bending work will be discussed.

4.8.2. CONTRIBUTION OF OUT-OF-PLANE BENDING TO TOTAL BENDING WORK

The strain energies of the curvatures can be computed by using the bending strain equation as given by Equation 2.51.
The work of the in-plane, out-of-plane and the summation of the two are plotted for the residual curvature radii Rr =
500m and Rr = 2000m. Again the same pipe properties as described by Table 4.2 are used.
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Figure 4.23: The work due to in-plane and out-of-plane bending for Rr = 500m in Abaqus. The pipeline is formed due to under straightening and the
water depth is 2100m.

The work of the out-of-plane bending proves to be significant for Rr = 500m. If the work of the plastic deformations,
occurring in the first meters of the pipeline due to the model constraints, is subtracted from the in-plane bending work,
the out-of-plane work along the pipeline is actually higher. This indicates that in the total energy balance of the pipeline,
the contribution of the out-of-plane bending strain energies should be taken into account when estimating the twist
angle via potential energy minimization of the system.

Figure 4.24: The work due to in-plane and out-of-plane bending for Rr = 2000m in Abaqus. The pipeline is formed due to under straightening and
the water depth is 2100m.

The same graphs were made for the higher residual curvature radius of 2000m. Here we see a totally different devel-
opment of the out-of-plane work along the pipeline (Figure 4.24). Ignoring the sharp increase of the total work in the
beginning due to plastic deformations caused by the model boundary constraints, the in-plane bending work increases
less in total than the in-plane bending work at the lower residual curvature radius. The out-of plane work is in com-
parison a lot less than the in-plane contribution, and therefore the overall bending work is not so different than the
work done by in-plane bending only. It appears that for higher residual curvature radii, the contribution of the out-of-
plane bending to the overall bending energy becomes less dominating. The approximation of the bending work in a
4DOF/element system which only takes in-plane bending into account, therefore becomes more accurate at higher Rr .

4.8.3. CONTRIBUTION OF OUT-OF-PLANE BENDING TO PIPELINE TWIST
One has seen that the increase of the amount of residual curvature in the system (by decreasing the residual curvature
radius) leads to an increase of the out-of-plane bending work. For the 4DOF/element MATLAB models, the out-of-plane
motion of the pipeline is not taken into account, an essential difference with the 6DOF/element Abaqus Models. The
potential energy balance therefore has an extra energy contribution in the 6DOF/element model: the bending strain
energy due to out-of-plane bending. Lacking this term in 4DOF/element, upon minimization of the total energy of the
system the torsion angle is underestimated. The significance of this term increases with a decreasing residual curvature
radius, giving more and more offset between the obtained twist angles of the models. The derivation of the twist angle
using energy minimization of the Rr = 500m under straightening MATLAB model with the pipe properties of Table 4.2
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is given in Figure 4.25. The value of the twist angle obtained in the corresponding Abaqus model is also plotted.

Figure 4.25: The total contributions of the in plane bending, torsion and the sum against the torsion angle.

At the moment one can only speculate on the development of the out-of-plane bending energy graph against the twist
angle. If one looks at the development of the in-plane bending strain energy versus the twist angle, one can see that a
quadratic cosine term is present (see Equation 2.57). This quadratic cosine term leads to the reduction of the residual
curvature along the pipeline through twisting. The development of the bending strain due to this quadratic term de-
pendent on the twist angle is clearly visible in Figure 4.25. If one assumes that the reduction of the in-plane bending
energy leads to the increase of the out-of-plane energy in a complementary way, the out-of-plane bending energy would
then be represented by a function which also has a quadratic cosine term. A phase difference of π/2 in the quadratic
cosine term of the out-of-plane bending strain in comparison to the one of the in-plane can be expected: the given
phase difference results in a shift of the quadratic cosine term so that the out-of-plane strain energy starts increasing
at φ= 0. An estimation of the out-of-plane strain energy development against the twist angle is given in Figure 4.26 by
the green colored graph. Adding the contribution of the out-of-plane bending gives a shift of the total energy minima
as calculated by MATLAB to the right: the minimum total potential energy would then be reached at a higher rotation
angle. The 6DOF/element Abaqus models do take the out-of-plane bending strain energy into account, and therefore
its development of the total potential energy is different than for the 4DOF/element MATLAB models. Ergo, subtracting
the values of Ubop (green) from the ΠA (blue dotted) will give us the values of ΠM (blue solid). A schematic represen-
tation of the total potential energy development versus the pipeline twist in Abaqus is given by the blue dotted line in
Figure 4.26.

Figure 4.26: The total contributions of the in plane bending, torsion and the sum against the torsion angle.
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5
RESULTS OF ANALYSES OF TWIST DEVELOPMENT

DURING PIPELINE LOWERING

Similar to the sensitivity analysis done for pipeline twist during lay operations, the amount of twist during pipeline
lowering is estimated for different amounts of residual curvature in the pipeline. Again the 4DOF/element MATLAB
models for the vertical pipeline will be compared with equivalent Finite Element 6DOF/element Abaqus models. The
properties of an installed pipeline at the Lucius project with corresponding end terminal are given as input for both
the models. A restriction which must be taken into account when comparing the different models, is that the MATLAB
model can only be subjected to currents in the in-plane direction. A current with a out-of-plane component can only
be modeled with the Abaqus models, for in MATLAB the pipeline can only be subjected to loads in 2D space. Therefore,
certain current related sensitivity studies will be performed solely with the Abaqus models. All the tests have been
performed for a pipeline length of 2100m, which is approximately the maximum length that the pipeline in vertical
suspended state can achieve before seabed interaction given the conditions encountered at the Lucius project. The
maximum pipeline length has been chosen because the vertical pipeline’s torsional resistance decreases with increasing
length. Ergo, twist development as well as the effect of sensitivity studies will be most visible at the maximum vertical
pipeline length.

5.1. RESIDUAL CURVATURE

In Figure 5.2 and Figure 5.3 the amount of twist is estimated for different residual curvature radii. The residual curvature
is applied as under straightened curvature, and the current acts in the positive in-plane direction (current to bow),
against the residual curvature introduced in the pipeline as is depicted in Figure 5.1.

Figure 5.1: Schematic representation of pipeline lowering with the DCV Aegir. Note that the tests are done once more with under straightened
pipelines and a constant current acting in positive x-direction.
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Figure 5.2: The twist development along the pipeline for different residual curvature radii as calculated with MATLAB for a vertical suspended pipeline
with end terminal and positive in plane current loading. The pipeline is formed due to under straightening and the water depth is 2100m. loading.

Figure 5.3: The twist development along the pipeline for different residual curvature radii as calculated with Abaqus for a vertical suspended pipeline
with end terminal and positive in plane current loading. The pipeline is formed due to under straightening and the water depth is 2100m.

Rr [m] φmax [°] M AT L AB φmax [°] Abaqus

500 95.80 0.4078
750 82.73 0.2776

1000 66.69 0.2089

Table 5.1: Radii of residual curvature applied due to under straight-
ening, along with the obtained maximum torsion angles in both
MATLAB and Abaqus.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 90 [°]
L 2100 [m]

vH -0.1 [ m
s ]

WPLET 28631 [mT ]

Table 5.2: Properties of pipeline during lowering operation.

Looking at the results, one can see that there is a large difference in results between the models. Where almost no twist
occurs with Abaqus, the MATLAB gives significant twist for all residual curvature radii. The large discrepancy in the
results lead to the abridgement of the sensitivity analysis: only three residual curvature radii were compared. While the
absolute values differ greatly, one does see the same trend with decreasing residual curvature radius: the amount of
pipeline twist increases, similarly as for the pipeline during lay operations.
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5.2. CURRENT TO BOW LOADING
In this section the effect of current on the torsion angle development along the vertical suspended pipeline is investi-
gated. As mentioned before in the introduction of chapter 5, for model comparison only in plane current loading can
be used. In the following Figure 5.4 till Figure 5.8 the models are compared for different current speeds in the positive
direction (current to bow) against the under-straightened curvature of the pipeline as well in negative direction (current
to stern). Besides from the current loading, all pipeline and model properties are equal to the ones given in Table 5.1
in the previous section. The results of different current magnitudes acting in positive direction similar as depicted in
Figure 5.1, are given in Figure 5.4 and Figure 5.5.

Figure 5.4: The twist development along the pipeline as calculated with MATLAB for a vertical suspended pipeline with end terminal for different
positive in-plane current speeds. Here, the current loading is against the direction of the residual curvature in the pipeline.

Figure 5.5: The twist development along the pipeline as calculated with Abaqus for a vertical suspended pipeline with end terminal for different
positive in-plane current speeds. Here, the current loading is against the direction of the residual curvature in the pipeline.

Rr [m] vc [ m
s ] φmax [°] M AT L AB φmax [°] Abaqus

1000 0 95.77 0.4029
1000 0.1 95.62 0.4078
1000 0.2 94.76 0.4183

Table 5.3: The obtained maximum torsion angles in both MATLAB and Abaqus for different positive in-plane current speeds. Here, the current loading
is against the direction of the residual curvature in the pipeline.
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The results of the negative current (current to stern) sensitivity study are given in Figure 5.7 and Figure 5.8. A schematic
representation of the current direction with respect to the pipeline lowering is given in Figure 5.6.

Figure 5.6: Schematic representation of pipeline lowering with the DCV Aegir. Note that the tests are done once more with under straightened
pipelines and a constant current acting in negative x-direction.

Figure 5.7: The twist development along the pipeline as calculated with MATLAB for a vertical suspended pipeline with end terminal for different
negative in-plane current speeds acting in same direction of residual curvature in the pipeline.

Figure 5.8: The twist development along the pipeline as calculated with Abaqus for a vertical suspended pipeline with end terminal for different
negative in-plane current speeds acting in same direction of residual curvature in the pipeline.
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Rr [m] vc [ m
s ] φmax [°] M AT L AB φmax [°] Abaqus

1000 0 95.80 0.4029
1000 -0.1 82.73 0.2776
1000 -0.2 66.69 0.2089

Table 5.4: The obtained maximum torsion angles in both MATLAB and Abaqus for different in-plane current speeds. Here, the current loading is in
the same direction as the residual curvature in the pipeline.

For both the current loading against as in the same direction as the residual curvature in the pipeline, one sees a large
discrepancy between the models. While the Abaqus model predicts almost no pipeline twist in all the load cases, the
MATLAB models predict a large twist angle. The effect of the current speed or its direction in-plane seem to be of little
influence for both models: only minor difference at the current loadings are found. Again the sensitivity analysis is
abridged due to the large discrepancy in the results and the minor influence of the current in the models.

5.3. TRANSVERSE CURRENT LOADING
The effect of out-of-plane current loading can only be taken into account in the 3D Abaqus model. For different cur-
rent velocities, the pipeline and end terminal are subjected to a positive sideways current loading (transverse current),
perpendicular to the previous in-plane loading. Whether the out-of-plane current loading is positive or negative does
not make a difference in the tests, due to the models symmetry. The results can be seen in Figure 5.9.

Figure 5.9: Array of graphs concerning the twist development along the pipeline as calculated with Abaqus

Rr [m] vc [ m
s ] φmax [°] Abaqus

1000 0 0.4029
1000 0.1 0.5080
1000 0.2 0.8340

Table 5.5: The obtained maximum torsion angles in Abaqus for different out-of-plane current speeds. Here, the current loading is positive and
perpendicular to the in-plane

Once more it can be seen that the amount of twist in the pipeline is quite small. With still less than a degree of twist
for all current speeds tested, a more elaborate out-of-plane current analysis was canceled. It was chosen to further
investigate the reason of the offset in results between the models, which will be discussed in the next chapter.

5.4. CLARIFICATION DIFFERENCE IN TWIST DEVELOPMENT DURING LOWERING BE-
TWEEN MATLAB & ABAQUS MODELS

During the sensitivity analysis of the twist development during lowering (see chapter 5), it became apparent that there
is a large discrepancy in results between the MATLAB models and the Abaqus models. The MATLAB models show sig-
nificant twist development in the order 60 to 100°[4], while the maximum twist for the Abaqus models did not exceed
the 1°. An explanation was sought after to explain this large difference between the models, and to determine which
gave the most accurate result in comparison to real lowering operations.

Thesis V.J.Taams



56 5. RESULTS OF ANALYSES OF TWIST DEVELOPMENT DURING PIPELINE LOWERING

5.4.1. IN-PLANE CURVATURE COMPARISON BETWEEN THE VERTICAL LOWERING ABAQUS AND MAT-
LAB MODELS

A closer look is taken to the development of the curvature along the pipeline for both models. One compares the models
for the pipeline and loading properties as described in Table 3.1.3. For the Abaqus models, there was virtually no torsion
along the pipeline. Therefore the residual curvature in the pipeline remained almost completely in the in-plane bending
plane as can be seen in Figure 5.10. For the MATLAB models, the residual curvature in the in-plane bending plane is
made dependent on the twist angle. Iteratively the bending and torsional strain energy in the system are calculated for
different twist angles, and by minimizing the total energy of the system an expected twist angle is obtained. Twist leads
to the reduction of the residual curvature in the in-plane bending plane, as can be seen in Figure 5.11. For a twist angle
of 90° the residual curvature is decreased to zero along the pipeline, and for a twist angle of 180 ° the residual curvature
contribution goes from +κr to −κr . When comparing Figure 5.10 with Figure 5.11, one can see that for zero twist the
curvature development along the pipeline is virtually constant. Ergo, the analytical equations used in the MATLAB do
accurately represent a vertical suspended beam with residual curvature when no pipeline twisting occurs.

Figure 5.10: The curvature along the pipeline for a twist angle which is almost equal to zero.

Figure 5.11: The curvature along the pipeline for different twist angles as obtained in the MATLAB models.

5.4.2. EFFECT OUT-OF-PLANE BENDING CONTRIBUTION ON DISCREPANCY RESULTS ABAQUS AND MAT-
LAB MODELS

The culprit is found in the lack of out-of-plane bending contribution in the MATLAB 4DOF/element models. By twist-
ing, the residual curvature in the pipeline is reduced in the MATLAB models. In reality the decrease of the in-plane
bending curvature by twisting would lead to the increase of the curvature in the out-of plane direction. However, the
latter increase is not taken into account in the MATLAB models. Therefore twist is energetically perceived as more
beneficial than it would be in reality. When disregarding the residual curvature in the pipeline, the in- and out-of-
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plane curvature along the pipeline is very similar, even with head or sideways current loading: due to the long pipeline
length, the submerged weight of the pipeline and that of the PLET, the pipeline stays incredibly straight. This means
that pipeline twist would energetically give no benefit. Ergo, twist would lead to the transfer of residual curvature from
the in-plane to the out-of-plane of the system, while the torsional strain increases. Upon inspection of the Abaqus
model, it is seen that the small instigating load Fi of 1N mostly leads to the bending of the beam in the out-of-plane
direction and only a small amount of twist. A schematic overview of the difference between the models can be seen in
Figure 5.12.

Figure 5.12: Schematic overview of difference between 3D Abaqus vertical pipeline models and 2.5D MATLAB models.
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6
PIPELINE TWIST MODELS WITH PRE-CURVED

BEAMS FORMED BY PLASTIC DEFORMATION

From the sensitivity analyses performed on the beam models during lay operations in chapter 4, it was seen that residual
curvature causes pipeline twist in amounts representative to the values found during operations at the Lucius project.
It is apparent that bending an under straight pipeline in the opposite direction in the sagbend (as is the case with laying
with the Aegir) has the most profound influence on the twist. In the subsequent chapter 5, the onset of twist during
lowering was investigated. Here the amount of twist calculated differed greatly between the models, and after further
research it was concluded that the MATLAB models were insufficient given its dimensional simplification. Since the
MATLAB models contain 4DOF elements, the increase of out-of-plane curvature was not taken into account when de-
creasing the in-plane residual curvature due to torsion. It was decided to continue further research with the Abaqus
models. The amount of twist that occurred with pre-curved beams representing pipelines with residual curvature dur-
ing lowering operations was negligible however. Even with static loading onto the pipeline with end terminal due to
current form different directions and velocities, the amount of twist never surmounted the 1°. During lowering oper-
ations with the Aegir, the maximum twist that occurred was in the order of 90 degrees, far more than what was found
during the models tests. It was therefore decided to pursue the investigation of other possible factors that may influence
the onset of pipeline twist, particularly during lowering operations. In this chapter the influence of plastic deformation
will be investigated. For the Abaqus models, all of them contained pre-curved beams shaped directly into the residual
curvature radius that is to be tested. The beams in the initial phase, before the application of loads or gravity, contained
no stresses or strains whatsoever to keep them in their shape. During the tests, all strains were kept elastic (with the
exception of the first few meters at the clamping point which caused local plastic deformation by the boundary condi-
tions itself). These models do not take into account the stress-strain history of the pipeline during reel-lay operations.
As was seen in the literature study, the double bend cycle during reel-lay operations causes significant plastic defor-
mations before the pipeline enters the moonpool. To investigate the effect of prior plastic deformation, the onset of
twist for a model with an plastically pre-curved beam and one with an elastically pre-curved beam with the same ini-
tial residual curvature radius are compared. The method of obtaining the pre-curved beams with plastic deformation
is however not the same as the double bend cycle occurring during reel-lay operations with the Aegir. It is therefore
deemed as a qualitative study, where one seeks to see if plastic deformation increases the maximum twist angle.
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60 6. PIPELINE TWIST MODELS WITH PRE-CURVED BEAMS FORMED BY PLASTIC DEFORMATION

6.1. FINITE ELEMENT ANALYSIS USING PLASTICALLY DEFORMED BEAM ELEMENTS WITH

RESIDUAL CURVATURE

To obtain a beam with residual strains that retains a curved shape in no load conditions, the beam must be plastically
deformed. Given the large computational time associated with large plastic deformation for long beam models, it was
chosen to only bend the pipeline plastically once. Also the amount of residual strain introduced to the system is not
equivalent to those induced during the actual reeling on process. In the Abaqus model, a reel of 39m is used to bend the
pipeline plastically, in comparison to 8m of the reel-drum used during spooling on for the Aegir. The reasons for this
increased reel radius are twofold. First of all, in order to only model one time plastic bending, the reel radius cannot
be too large in order to avoid excessive residual curvature after un spooling: one does not want to bend the beam for
a second time to obtain a residual curvature radius which is in the limits of acceptability for HMC: this would lead to
more model complexity, convergence issues and last but not least a higher computational time. A reel radius of 8m
will give a residual curvature radius without straightening that is far lower that the 500m standard of HMC. The second
reason is computation time: larger plastic deformations along the pipeline length will lead to more iterative steps for
Abaqus to converge to an answer and thus gives a higher computational time. The steps undertaken, along with the
model properties will be given in the following subsections.

6.1.1. ELEMENTS

The pipeline is modeled using Abaqus PIPE31 beam elements[12], similarly to all the previous Abaqus models.

6.1.2. MESH

For a mesh density of 1 element per m, as is used in all the other models, the pastic deformation model is unstable. A
mesh convergence study lead to a finer mesh of 5 elements per m over the entire length of the pipeline.

6.1.3. MATERIAL PROPERTIES

For the material of the beam, a bilinear plastic deformation model representing X-65 steel is used. Here the yield stress
is set to be 450 MPa, and at 535 MPa a plastic strain of 0.1 occurs. A piecewise linear representation or other more
advanced material models would give a more accurate representation of plastically deforming X-65 steel, but since
we are dealing with a qualitative analysis a material model with linear strain hardening will suffice. Furthermore, the
material is assigned a density, Young’s Modulus and Poisson’s ration equivalent to the prior models.

6.1.4. INTERACTIONS

In the model two different interactions take place: one between the beam and a circular 3D analytically rigid element
representing a spool, and one between the beam and a 3D analytically rigid flat surface representing the seabed. Both
rigid elements cannot deform during interaction with the pipeline and the interactions are frictionless. Also, all the
interactions are defined as hard contacts [12].

6.1.5. MODEL STEPS

In a series of steps one obtains the desired beam shaped to a certain residual curvature due to residual strains in the
beam. Once obtained, further steps of bringing the pipeline into its configuration during lay operations will be exactly
the same. Therefore, only the steps up to the initial phase will be discussed, the phase where in comparison with the
elastic models the pre-curved beam was loaded into the model. The steps will be discussed briefly in the following,
along with the loads and boundary conditions.

1. Load in parts in assembly
The pipeline, rigid spool and rigid seabed are loaded into the model. The bottom point of the pipeline Pb is constrained
in all directions, and the rest of the pipeline until the top point is only constrained in z-direction (see Figure 3.23). The
reel is constrained in all directions via a rigid coupling to the center point of the reel Pr , which is fully constrained.
The seabed is also constrained completely. The top point of the pipeline contains a kinematic coupling with the center
point of the reel. Here, the top point is constrained in all directions except rotation around the z axis in comparison to
the movement of its coupled center point.

2. Reeling on
During reeling on, the pipeline is spooled onto the spool. The center point of the reel Pr rotates around the z-axis
and winds up the pipeline by plastically deforming it over the reel. The y-constraint of the bottom point Pb is released
to facilitate the movement of the pipeline. A point load Tb in negative z direction is active at the bottom point of the
pipeline. This load represents the back tension. The back tension was calculated as given in Equation 6.1. Here, 1.3 is
the safety factor used by HMC for back tension calculation. The back tension is kept constant during spooling on.
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6.1. FINITE ELEMENT ANALYSIS USING PLASTICALLY DEFORMED BEAM ELEMENTS WITH RESIDUAL CURVATURE 61

Mp = σy · tst · (Do − tst )2

Tb = 1.3 · Mp

Rsp
(6.1)

3. Reeling off
At the end of spooling on, most of the pipeline is wound up plastically on the spool. Small end sections of the pipeline
close to the ends have not been plastically deformed, but will be removed in a later step to achieve a pipeline with a
uniformly distributed residual curvature over its entire length. In the reel off phase, the center point of the reel Pr starts
to rotate in the counter-clockwise z-axis, leading to the unspooling of the pipeline. The rotation around the z-axis con-
straint is removed from the bottom point Pb . This is done to avoid plastic back bending of the pipeline once unspooling
begins. Once again, the back tension Tb is maintained.

4. Pipeline clamping and tension relieve
In the next couple of steps, loads and boundary conditions are gradually removed to obtain a pipeline shaped in its
residual curvature radius. To avoid convergence issues, this cannot be done in solely one step. As mentioned before,
small segments close to the pipe ends where not plastically deformed. In this step, a clamping point Pcl is defined on
the pipeline, the point where the pipeline would be clamped in by the tensioner. This clamping point is constrained in
all directions and is situated below the area which was not plastically deformed. Also the tension is removed from the
pipeline in this step.

5. Introduction of a small gravitational field
At the end of the previous step, the y-constraint of the bottom point Pb is released, while the constraints in x and z
still remain active. A gravitational field is introduced to the model. This gravitational field has a low equivalent gravity
constant and is solely introduced to maintain stability to the pipeline when removing the y-constraint of the bottom
point.

6. Release of x-constraint bottom point
In this step the sole change that is implemented is the removal of the x-constraint at the bottom point Pb of the pipeline.
The bottom point is now only constrained in z-direction.

7. Removal gravitational field
The small gravitational field is removed and the pipeline gently moves to its final curved position.

8. Trimming of beam and obtaining final curved shape
As mentioned before, the ends of the pipeline close to the boundary conditions were not properly deformed plastically.
At the top of the pipeline, a new clamping point Pcl below the elastic zone was formed in the pipeline clamping and
pipeline displacement step. For the end of the pipeline, a different method is used to get rid of the elastic region: the
elements in the region are removed from the beam by trimming. At the end of the trim, a point P∗

b is defined and is con-
strained fully. Once the step has been completed, one has a uniform plastically deformed beam in the shape defined by
its residual curvature radius. This end state is equal to the initial shape in the elastic pipeline models, where an elastic
beam is loaded into the model. Only now, residual stresses are present.
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Figure 6.1: The parts are loaded into
the assembly.

Figure 6.2: The pipeline has been reeled
on. Plastically deformed segments are
given in red.

Figure 6.3: The pipeline is reeled
off. Plastically deformed segments
are given in red.

Figure 6.4: Pipeline clamping and tension
removal.

Figure 6.5: Introduction of small gravita-
tional field.

Figure 6.6: Release of x-constraint bottom
point.

Figure 6.7: Removal of gravitational field. Figure 6.8: Trimming of beam and
obtaining the final curved shape.
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In Table 6.1 and overview is made of the boundary conditions and loads applied on the different instances of the model
for the model steps. The table must be read similarly as Table 2.2 in subsection 2.8.2.

Figure 6.9: Global coordinate system that is used for the
modeling of the pipeline in Abaqus using FE analysis.

Pb = Bottom point of pipeline
Pr = The reel’s center point
Pcl = Clamping point on the pipeline
P∗

b = New bottom point of pipeline after trimming
MT = Total model

gs = Small gravitational constant
[

m
s2

]
Fi = Instigating load [N ]
Tb = Back tension [N ]
θs = Rotation of center point spool during spooling on [r ad ]
θu = Rotation of center point spool during unspooling [r ad ]
bx = Displacement of bottom point in x-direction [m]
by = Displacement of bottom point in y-direction [m]

Table 6.1: The boundary conditions and loads als defined per step on the different instances

Model step Instance Boundary conditions Loads

x y z θ ψ φ x y z θ ψ φ Type Unit
1 Pb • • • • • • - - - - - - - -

MT • • • • • • - - - - - - - -

Pr • • • • • • - - - - - - - -

Pcl - - - - - - - - - - - - - -
2 Pb • - • • • • - • - - - - Tb [N ]

MT - - • - - - - - - - - - - -

Pr • • • • • θs - - - - - - - -

Pcl - - - - - - - - - - - - - -
3 Pb • - • • • - - • - - - - Tb [N ]

MT - - • - - - - - - - - - - -

Pr • • • • • θu - - - - - - - -

Pcl - - - - - - - - - - - - - -
4 Pb bx by • - - - - - - - - - - -

MT - - • - - - - - - - - - - -

Pr • • • • • • - - - - - - - -

Pcl • • • • • • - - - - - - - -
5 Pb • - • - - - - - - - - - - -

MT - - • - - - - • - - - - gs [ m
s2 ]

Pr • • • • • • - - - - - - - -

Pcl • • • • • • - - - - - - - -
6 Pb - - • - - - - - - - - - - -

MT - - • - - - - • - - - - gs [ m
s2 ]

Pr • • • • • • - - - - - - - -

Pcl • • • • • • - - - - - - - -
7 Pb - - • - - - - - - - - - - -

MT - - • - - - - - - - - - - -

Pr • • • • • • - - - - - - - -

Pcl • • • • • • - - - - - - - -
8 Pb∗ • • • • • • - - - - - - - -

MT • • • • • • - - - - - - - -

Pr • • • • • • - - - - - - - -

Pcl • • • • • • - - - - - - - -
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6.2. RESTART FOR PIPELINE DURING LAYING MODEL
The data from the final step of the plastic deformation model as described in section 6.1 is used as starting point for a
model similar to the previously used elastic models for simulating the pipelay process as described in subsection 2.8.2.
This process is known as a restart in Abaqus. A restart is done to obtain the final curved shape obtained with the plastic
deformation model. From here on out the steps to obtain the pipeline in its lay configuration are identical to those used
in the elastic pipeline during laying model. These steps will not be discussed, and can be read in subsection 3.3.8.

6.3. COMPARISON PIPELINE DURING LAYING MODEL CONTAINING PLASTICALLY PRE-
CURVED BEAM VERSUS ELASTIC PRE-CURVED BEAM

A pre-curved beam with residual plastic strains is formed as described in section 6.1. A similar model is made for an
elastically pre-curved pipeline containing the same residual curvature radius. The sole difference between the two is
the history before the initial phase: for the plastic model, reeling the pipeline over a spool has lead to the residual
stress introduction of permanent plastic strains which keep the pipeline in the desired radius. For the elastic model,
the beam has been loaded into Abaqus into the desired radius directly and therefore does not contain any strains and
stresses initially. From the initial phase onwards the model steps, loads and boundary conditions are identical for the
two models. The results of the final amount of twist can be seen in Figure 6.10.

Figure 6.10: The twist development along the pipeline for a 721.3m residual curvature radius as calculated with Abaqus elastically pre-curved beams
and plastically deformed pre-curved beams.

Rr [m] φmax,e [°] φmax,p [°] ∆[%]

721.3 154.9 155.2 0.1937

Table 6.2: The maximum twist angles of an elastic pre-curved
Abaqus beam model versus a plasticly deformed pre-curved
Abaqus beam model.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 90 [°]
L 2302 [m]

Table 6.3: Properties of pipeline during lay operations.

Looking at the maximum twist angles, it is apparent that they differ only slightly. The maximum angle has increased
marginally by around 0.2%. As mentioned before, a different mesh density was used in order to obtain a convergent sys-
tem during plastic deformation. With an element size of 0.2m used in the plastic model compared to the 1m element
size used in all the elastic models, the mesh was a lot more fine. To test the effect of the mesh density on the final twist
results, a small mesh density test was done.The element size of the elastic model was decreased and compared with the
results of the equivalent elastic 1m element size model. An element size of 0.2m made the elastic system instable, so
after a mesh convergence study it seemed that 0.5m elements and larger gave converging results for the elastic model.
The 0.5m and 1m element models were run and compared and the results can be seen in Table 6.4. The higher mesh
density decreased the maximum roll angle insignificantly. It is therefore concluded that the difference in mesh density
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6.4. RESTART FOR PIPELINE LOWERING MODEL 65

is not the reason for the offset between the plastic and elastic model. Possibly the residual strains in the plastic model
have lead to the slight increase of twist in the pipeline. However, one must remember that the amount of residual strain
in the pipeline is quite small and is present at the outer areas of the pipes cross-sectional area. During actual reel-lay
operations, the pipeline is plastically deformed over a reel with a much smaller radius and therefore obtains plastic
deformations to almost the hart of its cross-sectional area. Furthermore, during reel-lay, the pipeline undergoes two
bend cycles with a total of four times plastic bending instead of the modeled singular plastic deformation bending in
Abaqus. It is therefore hard to translate the result obtained with the plastic model to what can be expected in reality,
especially since only a minor difference between results is obtained.

Rr [m] φmax,e [°] Sel = 1m φmax,p [°] Sel = 0.5m ∆[%]

721.3 154.9 154.9 7.396 ·10−3

Table 6.4: Outcome effect mesh density on maximum twist angle for elastic Abaqus model

6.4. RESTART FOR PIPELINE LOWERING MODEL
In the restart model for the pipeline during lowering there are some lessons learned incorporated, giving a slightly dif-
ferent lowering model. The rigid element representing the end terminal of the pipeline is removed, and replaced by a
point load an a moment in the last step of the model. The point load on the new bottom point of the pipeline (the trim
point as formed in the plastic deformation model) acts in negative y-direction and represents the submerged weight of
the end terminal. The moment is also activated on the same bottom point, and represents the moment contribution
due to the offset of the end terminal’s COG in comparison to the pipeline. Although the model improvement only has
minor differences in comparison with the elastic lowering models, the loads and boundary conditions of the improved
model are given in Table 6.5 for the sake of completeness. The stages of the lowering model look identical to the screen-
shots given in subsection 3.3.8.

. Ps = Surface point of pipeline
Pb = Bottom point of pipeline
MT = Total model

geq = Equivalent gravitational constant
[

m
s2

]
Fi = Instigating load [N ]
Fc = Current load on pipeline [N ]
Fe = Current load and weight of end terminal [N ]
Me = Overturning moment induced by offset COG of end terminal from pipeline [N m]

Table 6.5: The boundary conditions and loads als defined per step on the different instances

Model step Instance Boundary conditions Loads

x y z θ ψ φ x y z θ ψ φ Type Unit
1 Ps • • • • • • - - - - - - - -

Pb • • • • • • - - - - - - - -

MT • • • • • • - - - - - - - -
2 Ps • • • • • • - -

Pb • • • - - - - - - - - - - -

MT - - • - - - - • - - - - geq [ m
s2 ]

3 Ps • • • • • • - - - - - - - -

Pb - - - - - - - - - - - - - -

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
- - - - - - • - - - - - Fc [N ]

4 Ps • • • • • • - - - - - - - -

Pb - - - - - - • • - - - - Fe [N ]
- - - - - - - - - - - • Me [N m]

MT - - - - - - - • - - - - geq [ m
s2 ]

- - - - - - - - • - - - Fi [N ]
- - - - - - • - - - - - Fc [N ]
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6.5. COMPARISON PIPELINE DURING LOWERING CONTAINING PLASTICALLY PRE-CURVED

BEAM VERSUS ELASTIC PRE-CURVED BEAM
As described in section 6.4, a restart is done from the plastic deformation model to obtain a model of a pipeline during
lowering with prior plastic deformation. Since there are lessons learned incorporated in the model, an identical model
for an elastic pre-curved pipeline was made. This model contains the same pipeline length, the same amount of resid-
ual curvature and the same boundary and load conditions. Once again, the sole difference with the plastic model is that
the pre-curved shape is loaded in Abaqus without any strains or stresses in the pre-curved shape. Since the same prior
plastic deformation model is used for the restart of the pipeline lowering plastic deformation model, it is chosen to use
a longer pipeline length for the model comparison. The length that is chosen is 2302m, which is equal to the length of
the pipeline used for the restart of the pipeline during laying with plastic deformation model.

For the model comparison, the elastic and plastic lowering model are subjected to the same end terminal contribu-
tion as used in the prior elastic lowering models. The pipeline and end terminal are subjected to a head current, acting
against the residual curvature in the pipeline. The results of the models can be seen in Figure 6.11 .

Figure 6.11: The twist development along the pipeline for a 721.3m residual curvature radius as calculated with Abaqus elastically pre-curved beams
and plastically deformed pre-curved beams.

Rr [m] φmax,e [°] φmax,p [°] ∆[%]

721.3 0.2735 0.2002 -72.93

Table 6.6: The maximum twist angles of an elastic pre-curved
Abaqus beam model versus a plasticly deformed pre-curved
Abaqus beam model during lowering operations.

Parameter Value Unit

Do 8.625 ["]
tst 0.875 ["]
tc 2.5 ["]

Est 200 [GPa]
Ist 6.74e−5 [m4]

ρst 7850 [ kg
m3 ]

ρc 800 [ kg
m3 ]

ρw 1025 [ kg
m3 ]

α 90 [°]
L 2302 [m]
vc 0.1 [m/s]
Tb 28.631 [Tonnes]

Table 6.7: Properties of pipeline during lowering.

The elastic model gives higher maximum torsion angles than the plastic model. The difference is around minus 73 %,
but the absolute values of twist remain insignificant: the energetic difference in torsion of a 0.07° twist variance is very
small. Therefore the influence of plastic deformation on the final twist contribution remains inconclusive. The amount
of twist is negligible and still nowhere near the twist angles as obtained during the lowering of pipelines during the
Lucius project. Once again there is a difference in mesh distribution between the elastic and the plastic model. Similar
as in section 6.3 as mesh convergence study was done for the results of the elastic vertical suspended pipeline. Again it
was concluded that the mesh density did not give a significant difference in results and is not the reason for the variance
in results of the maximum twist angle.
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7
THE INFLUENCE OF THE SPIRAL WISE WALL

THICKNESS DISTRIBUTION IN SEAMLESS PIPES

Since the amount of twist obtained via the Abaqus models for the pipeline lowering operation was negligible compared
to the amount of twist observed during actual operations at the Lucius Project, it was decided to investigate other pos-
sible instigators more thoroughly. One of the possible instigators as mentioned in section A.1, is the influence of the
spiral wise wall thickness and yield strength distribution along seamless manufactured pipes[26]. The distribution is
caused by the roller motion during manufacturing, which is continuous and therefore the imperfection is introduced
in the same direction in all the pipes. A batch of pipes will therefore have the spiral rotating in the same direction along
the pipeline. Upon connection of pipes from the same batch, the pipeline will have one long spiral in the same rotation
direction as the individual pipes. Ergo, two pipes with the spiral in the same rotating direction, will form one spiral in
the same direction independently of the way they are joined. For long pipelines such are the ones used at Lucius, a
variable wall thickness could lead to a twist upon being loaded with increasing tension during lowering. It is therefore
decided to investigate what the influence of tension is on the twist development of a pipeline with a spiral wise variable
wall thickness distribution.

The idea that the spiral wise wall thickness distribution along the pipeline could lead to twist originates from the study-
ing of the behavior of composites under axial loading [27]. Consider parallel fibers in a certain direction in a laminate
plate as schematically depicted in Figure 7.1. When the plate is loaded by a tensile force at an angle φσ compared to the
fibers in the laminate, a shear force is created (see Figure 7.2). The shear is due to a difference in the material properties
of the laminate and the fibers, which leads to a shear force when the composite is loaded in anything but the principle
stress directions. The wall thickness variation can be seen as a somewhat similar system, only the variations are not in
the material but in the geometry along the pipeline.

Figure 7.1: Schematic representation of a composite plate, consisting out
of a laminate, and fibers of a different material [27].

Figure 7.2: Schematic depiction of the material in the plate that is axially
loaded at an angle φσ compared to the principle stress directions [27].
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68 7. THE INFLUENCE OF THE SPIRAL WISE WALL THICKNESS DISTRIBUTION IN SEAMLESS PIPES

7.1. SMALL SCALE ABAQUS PIPE MODEL WITH SPIRALWISE DISTRIBUTION OF WALL

THICKNESS USING MEASURED DATA
Currently HMC is actively investigating the influence of imperfections on the behavior of pipes under certain loading
conditions. One of those imperfections is the spiral wise wall thickness variation that could be present in seamless
pipe. It is therefore decided not to disclose all the specifics of the model and the data obtained to represent the spiral
imperfection. Only the essential information needed to understand the workings of the model are shared.

Figure 7.3: Schematic representation wall thickness variation in small scale Abaqus shell model. The difference in colors indicate a difference in wall
thickness. Due to confidentiality no legend of the thickness values is provided.

A 12" outer pipe with a wall thickness of 15.9mm and a length of 0.8m is used for the small scale Abaqus model. The
model contains standard quad node shell elements which use reduced integration (S4R [12]). Over the pipe, the spiral
wise wall thickness distribution is added as an imperfection to the shell elements. The absolute value of the wall thick-
ness variation and the sequence of the imperfections along the pipeline are based on prior research done by HMC on
seamless pipes and will not be disclosed. The spiral is represented by a wall thickness increase along the pipe. Here, the
thickness increase is defined using a sine function. A schematic representation is given in Figure 7.3. At one pipe end,
the boundary conditions allow the pipe end to be displaced solely in the radial direction, but not in axial or rotational
directions. For the other pipe end, the boundary conditions are defined such that the pipe is allowed to displace radi-
ally, longitudinally and twist around its own axis. No load conditions are present on the pipe. Furthermore, the material
characteristics of X-65 steel are used to represent the material of the outer pipe. For a control model, the exact same
properties and conditions are used, only without the spiral imperfections along the shell elements of the pipe. Both
models are subject to the same axial displacement δA and the amount of angular twist is measured for both models and
compared. Due to confidentiality, the actual Abaqus shell models cannot be depicted, but a schematic representation
of the two can be seen in Figure 7.5 and Figure 7.6.

Figure 7.4: Segment of pipe cross-
section (blue) with wall thickness in-
crease due to the spiral (red)

Figure 7.5: Small scale Abaqus pipe
model with spiralwise wall thickness
variation

Figure 7.6: Small scale Abaqus pipe
model without imperfections

7.2. TRANSLATING THE MAXIMUM AXIAL STRAIN IN THE PIPELINE DURING LOWERING

TO EQUIVALENT AXIAL STRAIN IN ABAQUS MODEL
It is assumed that the highest amount of twist will occur when the pipeline reaches its longest freely suspended length
during lowering. Here, the torsional resistance is at its lowest and the axial strain along the pipeline is at its highest.
The amount of axial strain is not constant of the pipeline, but decreases from the tensioner downwards due to the sub-
merged weight contribution. As a simplification, the total elongation of the pipeline is calculated and used to obtain an
average strain in the pipeline. The elongation of a pipeline with similar characteristics as one to use with end terminal
is given by the following:

δr =
L∫

0

T (z)d z

Ar Er
(7.1)

Where the tension T (z) along the pipeline is given by:

V.J.Taams Thesis



7.3. RESULTS MODEL TEST WITH MEASURED IMPERFECTION DATA 69

T (z) = Tb +Ws (L− z)

Integrating gives us the following elongation and average strain of the pipeline:

δr = TbLr

Ar Er
+ Ws L2

r

2Ar Er
(7.2)

εr = δr

Lr
= Tb

Ar Er
+ Ws Lr

2Ar Er

The average axial strain in the pipeline is set equal to the axial strain to be induced on the Abaqus model. Given this
strain, the total elongation of the Abaqus pipe can be calculated.

εr = εA (7.3)

δA = εAL A

Elongation of the pipe modeled in Abaqus by δA gives an axial strain which is equivalent to the average strain in the real
life pipeline. The pipe elongation is performed by adding a pure axial displacement step in both models (the one with
and the one without the imperfection) and the amount of twist occurring is compared with one another.

Figure 7.7: Schematic representation of the Abaqus small scale models with spiral imperfections (left) and the real life pipeline with axial strains as
encountered during lowering (right).

7.3. RESULTS MODEL TEST WITH MEASURED IMPERFECTION DATA
As is mentioned in the previous section, both small scale Abaqus models are subjected to a pure axial displacement rep-
resenting the strain that occurs during pipeline lowering operations. The angular displacement, or twist, is measured
and the results are as follows:

• No twist for the model without imperfections (as expected).

• Twist for the model with spiral imperfections.

The amount of twist occurring for the model with spiral imperfections is measured by looking at the amount of angular
displacement that occured for a row of elements along the pipeline after the axial displacement step. The results can
be seen in Figure 7.8. Note that the twist development near the boundaries at the pipe ends have been disregarded due
to influence of the boundary conditions. A few observations are made. First of all, it can be seen that the effect of the
Poisson ratio is more significant than the wall thickness variation: the average twist angle caused by the Poisson ratio
varies relatively little over the length of the pipeline. Furthermore, the angular displacement along the pipeline due to
the wall thickness variation appears to be linearly increasing, but is highly oscillatory. Looking at the frequency of the
thicker bands along the pipeline and the oscillatory motion in the twist development, it corresponds quite well. Along a
thickening on the pipeline in longitudinal direction, the resistance to torsion increases and therefore the twist reduces
locally. After the thickening, the torsional resistance is lowered again and the amount of twist locally increases again.
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The thickening on the pipeline is added using a sine function where only its peaks have been added. One can clear see
the result of this in the graph: the peaks have a sinusoidal shape, and the troughs are sharp due to the cut-off of the sine
function.

Figure 7.8: Schematic representation abaqus wall thickness variation. The difference in colors indicate a difference in wall thickness. Due to confi-
dentiality no legend of the values is provided.

To calculate the twist development due to the wall thickness variation, the average slope over the pipe is taken (φA).
Using the total twist angle along with the pipe properties, the torsion in the model is calculated. This amount of torsion
is set equal to the amount of torsion that would be encountered at the real life pipeline. With the properties of the
pipeline, the expected torsion angle is calculated for derived torsion.

TA = G A J A

L A
φA

TA = Tr

Tr = Gr Jr

Lr
φr

φr = Tr Lr

Gr Jr
(7.4)

The calculated twist angle of the real life pipeline is equal to 0.017°, which is a negligible amount of twist. So it turns out
that wall thickness variation along the pipeline could not be the reason for the large twist angles as measured during
the Lucius operations.

7.4. SMALL SCALE ABAQUS PIPE MODEL WITH INCREASED SPIRALWISE DISTRIBUTION

OF WALL THICKNESS

In additional research, the spiral wise wall thickness variation is exaggerated in comparison to the data that HMC mea-
sured. This is done to approximate the wall thickness distribution as presented in the paper [26]. The wall thickness
distribution that is given in the paper can be seen in Figure A.1 in Appendix A. In Appendix A, it is mentioned that the
wall thickness variation of a seamless pipe can be between +15% to −12.5%. Unfortunately no data is disclosed about
the absolute wall thickness along the pipeline for Figure A.1. It is therefore chosen to take the extreme wall thickness
tolerance that is allowed of 15% and to approximate the spiral as depicted in Figure A.1. The function that defines the
wall thickness variation in the previous model (section 7.1) is therefore changed so that a maximum wall thickness in-
crease of 15% is realized. Furthermore, the period of the sinusoidal wall thickness wave is lengthened, creating a higher
spiral angle ∠sp with respect to the longitudinal pipe edge (see Figure 7.9 and Figure 7.10). Three different spiral angles
∠sp are modeled of 30°, 45° and 60°. The length of the shell model is increased to 12 meters to get rid of the end effects
caused by the boundary conditions. Afterwards, again an axial displacement is executed as done in the previous models
described in section 7.1. The same axial strain is achieved as in section 7.1.
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Figure 7.9: A zoomed in side view of the left pipe end of the Abaqus shell model with the exaggerated spiralwise distribution of wall thickness. The
spiral angle ∠sp is equivalent to 45 °.

Figure 7.10: The wall thickness variation along the pipeline for the different spiral angles ∠sp . Please note that the variations are only plotted over
4m of the Abaqus shell model.

The twist for the different spiral angles are given below in Figure 7.11. Here one can see that the amount of twist that oc-
curs is significantly higher than as seen from the results of the shell model with the actual HMC measured wall thickness
imperfection data (Figure 7.8). The highest twist φA in the small scale model is at a spiral angle of 30° and is equivalent
to 0.08° over the 12 meter shell model length.

Figure 7.11: Schematic representation abaqus wall thickness variation. The difference in colors indicate a difference in wall thickness. Due to confi-
dentiality no legend of the values is provided.

The highest twistφA that occurred during the model tests is translated to the expected twist for the ’real life’ pipelineφr

that was used earlier in section 7.3. Using Equation 7.4, the maximum pipeline twist φr is calculated to be 17.3°.
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7.5. DISCUSSION SPIRAL WISE WALL THICKNESS DISTRIBUTION
The model tests using the imperfection data as measured by HMC turn out to give very small twist along the modeled
pipe segment. When translated to a realistic pipeline during lowering operations in deep water, the contribution of the
imperfection to twist is deemed negligible. An important note however is that the pipeline measuring tests executed
by HMC were done by a geometric scan of the internal pipe surface area. Although the internal variation of the spiral
imperfection was identified using this method, no information was obtained about the eccentricity along the pipeline.
This eccentricity can give large wall thickness variations along the pipeline, as mentioned in Appendix A. Figure A.1
is obtained via Automatic Ultrasonic Testing (AUT), where the wall thickness is measured circumferentially along the
pipeline. Comparing the data from the HMC scans with the AUT scan, it appears that the development of the spiral wall
thickness variation is different. It could be that during the fabrication process, a second, more dominating spiral wise
wall thickness variation with a longer period is present. This was modeled with the increased spiral wise wall thickness
models, and showed that for large wall thickness variations more significant twist angles can occur. Since no actual
data about the eccentricity of the seamless pipes used at the Lucius project is available (which would give information
about a possible second spiral), the latter models remain a qualitative study. The model does indicate that if extreme
wall thickness variations are present, twist angles during lowering of tens of degrees can occur. Whether the increased
variations are realistic, is subject for further research: in a long pipeline, not every joint will have the maximum wall
thickness variation due to the eccentricity change along the pipeline.
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8
THE POSSIBLE INFLUENCE OF CURRENT ON

PIPELINE END TERMINALS

Research conducted on the onset of pipeline twist during pipeline lowering has not yet lead to twist results comparative
to that observed during operations with the Aegir. The effect of residual curvature and the wall thickness variation along
the pipeline do not seem to be the primary causes of pipeline twist during lowering. In the MATLAB and Abaqus models,
the end terminal was simplified to force and moment contributions based on its weight, the offset of the end terminal
’s COG in comparison to the pipeline and the drag force contributions due to current. All these analyses do not take
into account the fluid dynamics to which the end terminal is subjected to during lowering. Thoroughly studying the
effect of fluid motions around a porous structure such as an end terminal is regarded as a separate research, and due to
its complexity along with a finite amount of research time available, will not be investigated in depth. However, using
fluid behavior relations, the DNV code and recent in house research one is able to estimate the possible influence that
current on the pipeline and its end terminal has on the development of pipeline twist.

8.1. POSSIBLE EFFECT OF PIPELINE END TERMINAL ’S CENTRE OF PRESSURE ON PIPELINE

TWIST

During pipeline lowering the pipeline as well as the end terminal are subjected to wave drift forces and current loading.
Upon investigation of the twist data during lowering, it is seen that significant twist of several tens of degrees occurs at
a water depth of 700m and lower. The metocean data (Appendix G) shows that around 700m water depth, the effect of
wave drift forces can be disregarded and that current is the most dominant and can be assumed constant during further
lowering. The pipeline end terminal used for investigation of pipeline twist (see Appendix E) roughly consists out of the
mudmat, central hub and the padeye. As a whole, the end terminal is a porous structure but will be simplified to a flat
plate with a surface area similar to that of the mudmat. The current loading on the end terminal results in a drag and
lift force, giving a resultant normal force which works perpendicular to the loaded surface. According to DNV-RP-H103
[21] , the normal force, lift and drag coefficients for flat plates can be described by the following relations:

Figure 8.1: Thin flat plate inclined to flow as given in DNV-RP-H103[21]

CN =
{

2πt anθ, for θ < 8°
1

0.222+ 0.238
si nθ

, for 90° ≥ θ > 12°
(8.1)

CL = CN · cosθ (8.2)

CD = CN · si nθ (8.3)
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Figure 8.2: The normal force coefficient as a function of the angle of attack θ as defined by DNV.

Please note that DNV [21] does not give any information about the normal force coefficient between the angles 8 ≥ θ ≤
12. No reason is given for this absence in information and in further calculations the data for the undefined angles
is estimated by interpolation between the two normal coefficient relations as given in Equation 8.1. Using the angle
dependent normal force coefficient, the normal force for flow from a certain angle of attack can be calculated. Assuming
that the PLET is only subject to current forces, the normal force of the pipeline is equal to:

FN (θ) = 1

2
·ρw ·CN (θ) · APLET · v2

c (8.4)

The surface area of the PLET is simplified by taking the surface area of its mudmat, which forms the most dominant
surface of the end terminal. The normal force acts on the center of pressure, which is the point where the total sum of
a pressure field acts on a body. From aerodynamics it is known that the center of pressure of an airplane wing changes
with respect to its angle of attack[28][29][30], see Figure 8.3 and Figure 8.4. The deviation of the center of pressure (COP)
from the center of gravity (COG) in an airplane wing gives a pitch moment.

Figure 8.3: The center of pressure (CP) and center of gravity (CG) of an
airplane wing for small angle of attack [31].

Figure 8.4: The center of pressure (CP) and center of gravity (CG) of an
airplane wing for large angle of attack [31].

A similar mechanism could take place for current-PLET interaction during lowering, as is schematically shown in Fig-
ure 8.5. Current flow at a certain angle of attack will result in an offset of the COP from the COG located on the symmetric
axis in the middle of the PLET. The offset times the normal force for the given angle of attack will give a yaw moment,
which is transmitted as a torsion moment to the pipeline. In order to obtain the yaw moment with respect to the angle of
attack, an estimation has to be made for the center of pressure along the PLET for different angles of attack. No research
has been found concerning the COP of offshore structures subjected to flow from a certain angle of attack. Research
done on thin flat plates in an air flow at different angles of attack [29] concludes that assuming the center of pressure to
be equal to the center of gravity is quite accurate. However, one must take into account that the testing conditions of
the plate along with the flow medium (air) are quite different from what can be expected during lowering. Furthermore,
as has been mentioned before the shifting of the COP from the COG is a known phenomena in aerodynamics. Missing
comparative research for a PLET in a current and not being able to use the data from the flat plate analysis from Ortiz
et al. [29], an attempt is made to estimate the COP graph with respect to the angle of attack. It must be noted that this
estimation is roughly based on the shift of the COP for airplane wings and general speculation. The results will not be
used for quantitative analysis of pipeline twist, but solely to obtain an idea of the possible contribution a shift of the
COP might have on the twist development. The hypothetical development of the COP against the angle of attack is
given in Figure 8.6 and is schematically represented in Figure 8.5.
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Figure 8.5: Top View. Schematic overview of the hypothetical change of the center of pressure (COP) with respect to the angle of attack of the current
flow. The offset of the COP with respect to the center of gravity (COG) gives a moment arm defined as rCOP .

Figure 8.6: The center of pressure (COP) as a percentage of half the width of the mudmat (the maximum horizontal distance between COG and the
end of the structure). By multiplying the percentage with half of the width of the mudmat, the absolute value of the moment arm is obtained.

Now that the COP graph has been estimated, the yaw moment for different angles of attack can be estimated. The yaw
moment My aw , which is a function of the angle of attack, is given by the following:

My aw (φ) = 1

2
·ρw ·CN (φ) · APLET · v2

c · rCOP (φ) (8.5)

During lowering, the torsional resistance of the pipeline decreases due to its increasing length. The deeper the pipeline
goes, the larger the torsional angle will become for the same amount of torsion on the pipeline. Ergo, a constant yaw
moment induced by current loading on the PLET will lead to an increasing twist during lowering. This progressive trend
is also visible in the observed twist data from the Lucius project. The equilibrium between the yaw moment induced
by current loading at a certain angle and the pipeline torsion induced by twisting to the given equilibrium angle can be
used to estimate the amount of twist occurring for different directions of current loading (see Equation 8.6).

ΣM = 0

My aw (φ) = Tp (φ,L) (8.6)

Tp (φ,L) = G J

L
φ
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Given the pipeline properties of the 8" pipeline used at Lucius project (Table 5.1 in chapter 5), the pipeline torsion with
respect to its twist angle and pipeline length is plotted together with the development of the yaw moment for different
flow angles. The result can be seen in Figure 8.7. A relatively high current velocity (given the metocean data) of 0.2 m/s
is used, and the PLET is initially loaded in sideways direction. The twisting of the PLET leads to linear increase of the
pipeline torsion TP and the development of the PLETs yaw moment as defined by Equation 8.5. Taken into account
all the assumptions made, it is seen that for increasing water depth potentially large twist angles could occur (≈ 60° at
2100m).

Figure 8.7: The pipeline torsion development for different waterdepths wd together with the development of the yaw moment My aw with respect to
the angle of attack of the flow. The intersection points give the torsion angle (which is equal to the angle of attack) that is obtained during equilibrium.
The current flow is initiated sideways on the PLET.

8.2. IN HOUSE RESEARCH CONCERNING PLET TWIST
An inhouse study done by M. Rodermans on the hydrodynamic behavior of inline structures has shown that significant
pipeline torsion can occur in an oscillating flow [2]. Given the pipeline parameters (Table 8.1), the end terminal param-
eters (Table 8.2) and the test conditions as given in (Table 8.3), torsion magnitudes of 15kNm per m of FLET length (so
225 kNm in total) were measured.

Parameter Value Unit

OD 18 ["]
tst 0.0219 [m]

Ws 73.6 [ kg
m ]

E 2.0 ·1011 [ N
m2 ]

E I 1.583 ·108 [N m2]
v 0.3 [−]

G J 1.218 ·108 [N m2]
E A 6.760 ·109 [N ]
L 200 [m]

Table 8.1: Pipeline properties for the
pipeline used in inhouse research done by
M. Rodermans [2].

Parameter Value Unit

LF LET 17.8 [m]
Wwi ng s,down 9.5 [m]

Wwi ng s,up 6.025 [m]
HF LET 8.4 [m]

Ws,F LET 117.39 [mT ]

Table 8.2: FLET parameters as defined in Ro-
dermans’ research [2].

Parameter Value Unit

u 1 [ m
s ]

ω1 0.3141 [ r ad
s ]

ω2 0.6283 [ r ad
s ]

β 30 [°]
Tmax,r 15 [ kN m

m ]

Table 8.3: Input parameters for oscil-
lating flow, along with maximum tor-
sion as given in Rodermans research
[2].

The flate plate used in the analysis was constrained against twist. If this would not be the case, the maximum torsion
magnitude would result in a twist of around 25 degrees for the 17.8m FLET length and a pipeline length of 200m, which
is significant. For the sake of argument, the torsion obtained in Rodermans’ research is translated to a scenario with a
PLET as used at the Lucius project together with the corresponding smaller OD pipeline.

Tmax,r = TPF−01

TPF−01 = G JφPF−01

LPF−01

φPF−01 = TPF−01LPLET

G J
LPF−01 (8.7)
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Parameter Value Unit

G 7.576 ·1010 [ N
m2 ]

J 1.3485 ·10−4 [m4]
LPF−01 200 [m]
LPLET 16.76 [m]
WPLET 5.2 [m]
φPF−01 282 [°]

Table 8.4: Input parameters for oscillating flow, along with maximum torsion as given in Rodermans research [2].

Calculations give that a static torsion of 15kNm per meter of PLET length would give a twist of 282° to 200m of PF-01
pipeline together with its first end PLET as installed at Lucius. Of course, 282 ° of pipeline twist is unrealistic given a
constant current direction, but it does give an indication on the severity of torsion due to current loading on an end
terminal. Note that the pipeline parameters are different, but the width and length of the PLET (or FLET in the case of
Rodermans research [2]) are comparative (Table 8.4). Of course, there are many variables from Rodermans’ research [2]
which are different from the deep water conditions seen at Lucius. Dynamic loading is used in Rodermans’ research,
whereas at the deep water Lucius site the loading is mostly due to constant current. It should be noted that the PLET
is simplified in Rodermans’ research [2] to a flat plate, and that only one angle of attack (30°) at one current speed for
two different oscillation frequencies. The research was done for relatively harsh conditions, and therefore the torsional
values obtained are more at the extreme side at what could be expected. Nonetheless, it is evident that the influence of
an oscillating flow on the torsion development can be significant. Whether a constant flow can also lead to significant
torsion cannot be concluded from Rodermans’ research [2] and additional research will have to be done.
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9
DISCUSSION

The research has led to a better understanding of the development of twist during reel-lay operations. In this chapter,
the validity of the research will be discussed, along with its limitations.

9.1. DIFFERENCE BETWEEN THE ANALYTICAL AND FINITE ELEMENT MODELS
Results comparison between the analytical and the finite element models show that the DOF/element simplification in
the analytical approach has an impact on the validity of the results. For a pipeline during laying, the out-of-plane bend-
ing contribution becomes more prominent with increasing residual curvature in the pipeline. The analytical models
have a significantly smaller computational time in comparison to the finite element models, and its input parameters
can quickly be adjusted to specification. Another advantage is that the energetic benefit of twisting to a certain rotation
angle can be seen, for one is able to plot the development of the strain energies against the twist angle. For the finite
element models, only the end result of the twist is given. So although the analytical approach for pipelay operations
gives less accurate results for high residual curvature, one must not forget the practical advantages the method has. The
impact of underestimating the twist by a maximum of ≈ 35% is something that can be questioned. The validity of the
analytical approach for the lowering of the pipeline however is proven to be dissimilar to the expected twist behavior in
reality during the the same stage of pipeline installation. The lack of out-of-plane bending contribution overestimates
the amount of twist significantly, which leads to unrealistic results for the analytical lowering models.

9.2. CHOICE OF ELEMENTS FOR FINITE ELEMENT ANALYSIS (FEA)
For the finite element analysis, beam elements with pipe properties are used to approximate the geometry of the
pipeline. In comparison with reality, the discretization of the amount of integration points along the cross-section
of the pipeline leads to less information about the stress and strain development over the cross-section. However the
overall curvature of the individual elements seem to be in accordance with the curvature profile of a pipeline in similar
configuration as estimated with analytical equations. So for curvature calculations without stress concentrations or
asymmetric stress patterns over the cross-section of the pipeline due to plastic deformation history, the assumption is
proven to be valid.

9.3. THE FEA MODEL WITH PLASTICALLY PRE-CURVED BEAMS
To incorporate the effect of plastic strains, models with residual curvature as a result of plastic bending were created.
The amount of plastic strain in the pipeline is relatively low, compared to the strains induced during the actual reeling
process. Also, the pipeline was bent plastically only once, instead of the four times which is the case during the actual
reeling procedure. The simplifications are made with good reasons. To induce higher strains in the pipeline than used
in the model, it is necessary to increase the mesh density along the beam model to ensure solution convergence. To-
gether with the increase in iterative calculations for higher bending strains, this will lead to higher computational times.
Further incorporating the other three bend steps as present in Aegir’s reel cycle will increase the computational time
even more. Given that the twist phenomena occurs at high water depths, bending only a small segment of pipeline will
not give relevant twist data. For the simplified model, the computational time is around seven days. After speaking to
the creator of the reeling model for the Aegir, it is estimated that modeling a pipeline during deep water pipelay with the
entire history of the reel-lay process, would take a lot more computational time. Also the stability of the system is ques-
tioned. The plastic strain induced over the beam elements gives an average curvature along each element, but gives
no information about the stress and strain development over its cross-section. Whether the asymmetric stress pattern
along the cross-section which is present after reeling is influential on the twist development is unknown. The mini-
mization of the potential energy of the system states that the work of the curvature along the pipeline is quintessential
for determining the pipeline twist, regardless to the history of the residual curvature. This would mean that the twist de-
velopment for the models with plastically induced residual curvature would be equal to those with elastically induced
curvature. Also the literature review and prior research does not mention a possible influence, but given the discrep-
ancy between the model results for pipeline lowering and the actual twist data, it is something that could be subject for
future research.
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9.4. THE ASSUMPTION OF A STATIC ENVIRONMENT
All analyses done consider a static environment. At the beginning it was believed that the twist development is the result
of static equilibrium of either strain energies, load or moments. The actual data during lowering was collected at depths
where only (non-dynamic) current is present, and the twist accumulation during laying was measured by relieving
the static torque in the system. These are all valid arguments that a static environment is sufficient for analyzing the
twist development. Now that all research is completed, all static assumptions made for the pipeline during laying
are still considered accurate. For the lowering however, there appears to be a possibility that the simplification leads
to inaccurate modeling. The current loading is simplified to constant loads, not taking into account possible fluid
dynamics. Current research shows that potentially large twist angles can occur. Given the discrepancy between the
actual twist data and the results of the static FE models, it could very well be that the current interaction with the end
terminal plays a vital role in the development of pipeline twist. But one must not forget that the energetic value of the
twist is relatively low, and that the twist would be elastic: Removal of the current would lead to the twisting back of the
pipeline to its initial configuration. To definitively conclude that the static assumptions for the pipeline during lowering
is valid, the influence of current-structure interaction would have to be researched with computational fluid dynamics
or another fluid structure interaction based approach.

9.5. COMPARING MODEL RESULTS WITH ACTUAL DATA
One must be careful when comparing the modeled data with the actual twist data. Eye witness accounts explain that
the accuracy of the twist measurements during pipeline lowering is limited to +/- 10 ° due to parallax from viewing
the end terminal at a distance with an ROV. Also, for the pipeline during laying models it is decided to only model
the pipeline from the vessel to the interaction with the seabed. In none of the models also a piece of pipeline is laid
additionally to suspended pipeline during laying configuration. The results of the models already showed twist amounts
comparative to the actual data, and it was therefore seen as unnecessary to further develop the laying models. Moreover,
the discrepancy between actual data during lowering and the results of the equivalent models lead to a shift in research
focus. One must also take into account that laying a segment of pipeline on the seabed means that pipeline-seabed
interaction properties must be considered. This is decided to be outside the research scope.

9.6. DATA REGARDING SPIRAL WISE WALL THICKNESS DISTRIBUTION
The spiral wise wall thickness distribution was measured by HMC via a geometric scan of the internal pipe surface area.
The wall thickness increase due to the spiral is relatively small in comparison to the tolerances set for the wall thickness
variations in seamless pipes. Comparing the data from the HMC scans with the AUT scan done by Technip as given in
Figure A.1, it appears that the development of the spiral wall thickness variation is different. It could be that during the
fabrication process, a second, more dominating spiral wise wall thickness variation with a longer period is present in
the pipeline . Further research has to be done using AUT on seamless pipelines to verify this possibility.

9.7. ASSUMPTION OF CONSTANT RESIDUAL CURVATURE
All residual curvature added to the system is assumed to be constant over the length of the pipeline. In reality, every
pipe segment welded together to form a pipeline will have slightly different material and geometric properties. Residual
curvature introduced to the pipeline after straightening will therefore vary around an average value along its length.
How much the residual curvature deviates from its average is unknown, but it is considered to be of far lesser influence
to the twist development.
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10
CONCLUSIONS AND RECOMMENDATIONS

The aim set in this thesis was to find an answer to the question: "What causes twist in reeled pipelines during lowering
and lay operations?". It was decided to investigate the two consecutive operations separately due to the difference in
pipeline configuration and load cases. The conclusions that can be drawn from the research of the two systems are
given in section 10.1 and section 10.2. For the twist occurring during lay operations, the primary reason has been found
and has lead to a clear understanding on the preventive measures that can be taken to decrease the amount of twist.
For the twist occurring during lowering, several suspected instigators have been ruled out, limiting significantly the
amount of possible causes. The recommendations for practice regarding reel-lay operations with the DCV Aegir will be
given in section 10.3. Lastly, recommendations for further research are discussed in section 10.4.

10.1. CONCLUSIONS - TWIST DEVELOPMENT DURING PIPELINE LAY OPERATIONS
It was chosen to use analytical equations in MATLAB to approximate pipeline twist during lay operations and to use sim-
ilar finite element analysis models in Abaqus for result comparison. For the estimation of the twist development during
lay operations using analytical equations, the method of total potential energy minimization together with enhanced
stiffened catenary theory is proven to give comparative results to actual observed twist data during Lucius project. The
same is concluded for the FE models. Upon model comparison however, a difference is observed in absolute twist val-
ues for the sensitivity studies (max 35%). Further research indicated that the out-of-plane bending contribution, which
is not taken into account in the 4DOF/element MATLAB models (see subsection 2.8.1), plays a role in determining the
amount of pipeline twist. It is concluded that an increase in the residual curvature in the pipeline leads to an increase
in the out-of-plane bending contribution and therefore decreasing the accuracy of the 4DOF/element MATLAB models
in comparison to the 6DOF/element Abaqus models (see subsection 2.8.2). Ergo, the theory of energy minimization
using solely the in-plane bending strain contribution gives twist results comparable to actual measured data, but has
its limitations regarding accuracy for high residual curvature in the pipeline.

The primary instigator of pipeline twist during laying is found to be residual curvature in the pipeline after straight-
ening. The higher it is, the more torque is built up during laying and ultimately more twist is developed in the pipeline.
Besides the magnitude, also the direction of the residual curvature with respect to the lay direction appears to be
quintessential: under-straightening leads to high twist angles due to bending against the residual curvature in the sag-
bend, whereas over-straightening gives minimal twist because the residual curvature is in the same direction as the
bend in the sagbend. Besides the residual curvature, also the water depth is of importance as no twist occurred in the
shallow water depth models, even when the maximum amount of residual curvature allowed by HMC was tested. This
explains why HMC has encountered no twist at the shallow water Ichthys project, while there was significant twist at
the deep water Lucius project. Other pipeline parameters concerning twist development that were studied appear to
be of lesser influence. The variation of the pipeline tension, buoyancy, wall thickness and outer diameter for a constant
residual curvature have little effect on the twist development and on its magnitude.

Subsequently, the effect of plastic deformation in obtaining pipelines with the residual curvature was investigated us-
ing finite element analysis. The results of the research show almost no difference in twist in comparison with a similar
model with residual curvature in the pipeline that was added elastically. It must be noted however that the plastic model
was designed for a qualitative study. The process of inducing residual curvature in the pipeline is simplified to only one
half bend cycle and the amount of plastic strain induced in reality is far higher. Given that the qualitative study gives
no difference in results and the dissemblance of the plastic model in comparison to Aegir’s reel-lay process, the test is
deemed inconclusive.
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10.2. CONCLUSIONS - TWIST DEVELOPMENT DURING PIPELINE LOWERING
For the approximation of the pipeline twist during lowering, again analytical equations together with total potential
energy minimization theory were used to create MATLAB models and for comparative research the pipeline was also
modeled in Abaqus using finite element analysis. For the analytical analyses, a pipeline with residual curvature subject
to current loading was modeled using both linear and non-linear beam equations. It is concluded that linearizing the
system does not have any adverse effects on the structural analysis, for the pipeline in deep water is subject to small
displacements and bending angles. Upon comparison with the finite element models however, a large discrepancy
in the results is observed. The finite element models show negligible pipeline twist during lowering under all tested
static loadings and residual curvature conditions, while the analytical models show significant twist for the same tested
conditions. Further investigation proves that once again the out-of-plane bending contribution, which is taken into
account in the 6DOF/element finite element models (see subsection 3.3.8) but not the 4DOF/element MATLAB models
(see section 3.1), plays a vital role for the pipeline twist estimation during lowering procedures. For the MATLAB models,
a reduction of the in-plane residual curvature due to twisting together with the build-up of torsion does not take into
account the increase of the out-of-plane curvature. Ergo, due to the 4DOF/element simplification twist is perceived as
energetically more beneficial than is actually the case. The derived analytical approximations for pipeline lowering are
therefore deemed as unfit for the estimation of pipeline twist during lowering.

The finite element models with residual curvature in the pipeline and static loading conditions show virtually no
pipeline twist, which does not match the twist data obtained at Lucius Project. Unlike the twist during laying, it is
concluded that residual curvature is not the primary instigator for twist during pipeline lowering. As a result other pos-
sible twist instigators were investigated. Given the wall thickness variations induced during manufacturing of seamless
pipes, a finite element shell model was created. The model represents a piece of pipe with a spiral wise wall thickness
variation along its length as measured with geometric internal pipeline surface tests by HMC. The model was subjected
to tension and showed the development of twist. The properties and findings of the shell model were translated to con-
ditions similar to pipeline lowering, and the calculations show that the amount of twist possibly occurring due to the
measured spiral wall thickness variation along the pipeline is negligible. Additionally, the imperfection was exagger-
ated, but still within the limits of pipeline tolerances. For the same model conditions, a higher twist angle is obtained
for a realistic pipeline during deep water lowering. Whether the exaggerated variations are realistic, is subject for fur-
ther research. Given the HMC data for the imperfection, it is concluded that the measured wall thickness variation is
not the primary reason for pipeline twist.

Similar to the additional research done for the pipeline during laying, the effect of plastically induced residual curvature
is compared to elastic residual curvature. No significant additional twist is calculated for the plastic model under differ-
ent loading conditions in comparison to a similar elastic model. However, again the amount of plastic deformation is
small and the entire plastic deformation process of Aegir’s reel-cycle is simplified. Given these factors and the fact that
qualitatively no real difference in results is obtained compared to the elastic model, the effect of plastic deformations
during the reeling process on the development of pipeline twist remains inconclusive.

Also a closer look was taken into the effect of current on the system. In prior models the effect of current was mod-
eled using static loads, therefore not taking into account possible effect of fluid motions. The effect of an end terminal
induced yaw moment due to an estimated traveling center of pressure shows potentially large pipeline twists can occur
as seen in the actual data of the Lucius project. Since no actual computational fluid dynamics were done, the center
of pressure development with respect to the angle of attack of the current remains a qualitative approximation. Com-
parable in house research with fluid dynamics taken into account ([2]) gives results which are in accordance with the
aforementioned approximation, which is promising. It is noted that given the low torsional rigidity for the relatively
small diameter pipelines in deep water, a relatively low instigating moment is needed for the lowering phase to give the
twist angles recorded during Lucius Project. This would mean that relatively low energy instigators can give large twist
angles during lowering, but that on the other hand mitigation procedures will not require large forces or moments for
twist correction.
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10.3. RECOMMENDATIONS FOR PRACTICE
The research has shown that residual curvature is the key instigator for pipeline twist during lay operations. The amount
of twist can be mitigated by the following:

• Reduce the amount of residual curvature in the pipeline as much as possible. It is concluded that lowering the
amount of residual curvature in the pipeline decreases twist in the pipeline during laying. Therefore it is recom-
mended to increase the HMC minimum residual curvature radius criteria, which is currently equal to Rr = 500m.

• Keep the residual curvature in the over straightening domain if twist reduction is of primary concern. The re-
search shows that having a residual curvature in the pipeline due to over straightening reduces the amount of
twist during laying to a negligible amount, for the pipeline is bent in the same direction as the residual curva-
ture. It must be noted however, that over straightening the pipeline brings higher strains to both the pipeline as
well as the straightener itself. It would have to be investigated if they can cope with the over straightening, and
whether the benefits of less pipeline twist outweighs higher strain related challenges. To keep track whether the
pipelines are over- or under straightened, it is recommended to change the straightening trail procedures. By
marking the pipeline on one side, one can keep track in which direction the pipeline is curved once laid on deck
for straightness measurements.

10.4. RECOMMENDATIONS FOR FURTHER RESEARCH
The thesis research has also lead to recommendations regarding future research. Especially the investigation of the
pipeline lowering has spiked enthusiasm in investigating alternative twist instigators. My principle recommendations
for subsequent research are given below.

• Further investigate the effect of current on the development of twist during pipeline lowering. In my research
the current-structure interactions have all been modeled statically and do not take into account fluid motions.
It is therefore recommended to do a computational fluid dynamics study of an end terminal loaded by current
of different magnitudes and directions. This would give valuable information on the amount of torsion, and
subsequently pipeline twist, that can be induced due to current.

• Research the influence of the plastic bending history on the development of pipeline twist. In this research, sim-
plified models give inconclusive results regarding the effect of plasticly bending pipelines to a certain residual
curvature. It is therefore recommended to form pipeline models with residual curvature created via the complete
reeling cycle of the Aegir. Modeling pipelines with the full reeling history will be a challenge from a computational
point of view. It will require a more innovative approach of modeling. It is recommended to look into the possi-
bility of transferring and multiplying the essential data (like the stress and strain profile) from a small segment of
pipeline reeled with the in house reeling model to my pipeline laying models that have a longer pipeline length.
Given the FEA complexity, further research would be more suitable for an experienced FEA engineer instead of a
graduate student.

• Study the possibility of adding the out-of-plane bending contribution to the models that use analytical equations.
This will lead to increased accuracy of the models and will also make it possible to approximate twist for pipelay
operations where the pipeline is laid in a curve, an operation which is quite common in the offshore.

• Investigate the possibility of a second, more dominant wall thickness variation spiral along the pipeline due to
eccentricity changes along the pipeline. Accurate wall thickness data will have to be acquired using AUT on
seamless pipes, preferably comparative to those used during the Lucius project. A subsequent step would be to
transfer data to an Abaqus shell model once more, an quantitatively identify its contribution to pipeline twist.
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A
PROBLEM DESCRIPTION PIPELINE TWIST

DURING REEL-LAY OPERATIONS

An overview of executed tests done to better understand the twist development during pipeline lowering and laying is
given below.

A.1. PIPELINE PROPERTY TESTS
All the pipelines for the Lucius project have been made out of seamless pipes. The main advantages of using these
type of pipes is the good track record in service and the absence of welds in the longitudinal direction[36][37]. The
disadvantages however, are that they can have a fairly wide variation of the local wall thickness, typically +15% to
−12.5% and out-of-roundness and -straightness [37]. Also, the outer surface of the pipe may be highly distorted such
that when it is grit-blasted prior to coating, tiny slivers of steel rise up. These slivers can create an issue for coating
bonding, especially when dealing with a thin anti-corrosion coating such as fusion-bonded epoxy (FBE). One of the
concerns is the influence of variations in material- and geometric properties of the pipeline in both its circumference
as in longitudinal direction regarding the onset of pipeline twist. Tests done on seamless pipes in 2009 by Technip
[26] show that wall thickness variations due to pipe eccentricity can be quite severe. Also, it can be seen in Figure A.1
that there can be a significant variations both along and around the pipe joint regarding the wall thickness and the
yield strength. What can also be seen in Figure A.1, is that the wall thickness appears to be spread in helix or spiral
like bands in longitudinal direction. Internally, HMC has also done numerous tests concerning the distribution of the
wall thickness over the circumference and longitudinal direction of the seamless pipes, and have also found the helix
shaped variation of the wall thickness. These tests were done by 360 deg scans of the internal surface area of seamless
pipes used for HMC projects. Due to confidentiality, no specifics can be given about the exact thickness differences
and the spiral frequency. Given the fabrication steps of the seamless pipes where the pipe is rotationally driven through
the pinch zone of two rollers which are also rotating, the peculiar spread of the longitudinal wall thickness is linked to
the pipe’s manufacturing method. The difference of geometric- and/or material properties in the circumference and
longitudinal direction of the pipeline, may play a role in the onset of pipeline twist.

Figure A.1: left: Qualitative variations of the wall thickness over the circumference of the pipeline versus the pipeline length. right: Example of
extreme yield strength variation through a pipeline cross section. every 10 degrees a sample was taken, given a total of 36 sample locations over the
circumference. Source: [26]
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A.2. SPOOLBASE TESTS
At the spoolbase in Carlyss, USA, the twist of the pipeline was measured during counter-clockwise spooling on of the
pipe stalks onto the reel-drum [4]. Red stripes were painted at the 6 o’clock and blue stripes were painted at the 3
o’clock orientation, which repeated in constant intervals along the stalks. See Figure A.2 and Figure A.3. This was done
for a test pipe of 16", and for the pipe stalks for the Production Risers PR-04 and PR-05 later used for installation at
the Lucius Project. Results from the tests were obtained by visual inspection of the shift in position of the stripes over
the reel in comparison with its initial position. The results are not given in the repository version. A few observations
can be made. First of all, the amount of twist seems to be random. The production riser stalks all have the same
properties and initial length, but only some of the stalks had pipeline twist and for the pipelines that did twist, the
amount was non-equivalent to one-another. Another observation is that the twist always occurred counter clockwise,
possibly indicating that the pipeline has a rotation preference. The test pipe used had a larger diameter and a different
length than the production riser stalks, making it difficult to correlate the difference in occurred twist between the two
types of pipeline with the change in geometric and/or material properties. But looking at the data, the length of the
pipeline and the geometric properties (pipeline’s outer diameter) could be of influence on the final amount of pipeline
twist. Internal observations note that the pipe twist could possibly have been caused by the way of loading the pipeline
onto the track towards the reel: Loaders were used to lift the pipeline and skid them onto the track for reeling-on. Due
to the relatively low torsional rigidity of the long stalk lengths in combination with the small diameter of the pipeline,
twist could have been introduced during transportation of the stalks onto the track.

Figure A.2: Markings made on pipe stalks before spooling
on

Figure A.3: Visible rotation of markings on pipeline during
spooling on
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A.3. REELING TESTS

Another investigation into the twist phenomena took place during the spooling off of one of the Flowlines (PI-04) and
the pipeline passing through the Reel/J-lay tower [38]. Again, red stripes were painted at the 6 o’clock orientation, on the
pipelines that were accessible from scaffolding beneath the reel. In total, 8 markings were made, all on the same layer
of pipeline on the reel (unequivocally the last layer). All pipelines contained an added 2.5" GSPU coating in comparison
to the tests done at the spoolbase. The markings were monitored on top and bottom of the upper tensioner, and on the
auxiliary welding station. At none of the monitored positions and for none of the 8 markings respectively, was twist of
the pipeline monitored. The test was once more done by visual inspection.

Figure A.4: Markings made on PI-04 Figure A.5: Marking entering the upper tensioner

Figure A.6: Marking coming out of upper tensioner
Figure A.7: Marking entering lower tensioner

A.4. TWIST OBSERVATION DURING LOWERING

During the lowering of the pipeline to the target box at the seabed, the amount of pipeline twist was measured[4]. Via
ROVs the rotation of the end terminals attached to the end of the pipelines was monitored during lowering. The ROV
maintained a constant distance from the end terminal without rotating with the twist in the pipeline. Parallax, the
phenomena of an object’s apparent displacement due to a change in the observer’s point of view, was mentioned as a
possible influential factor regarding the accuracy of the measurements made. Along with the fact that the observations
were done via visual inspection through the eyes of an ROV, the accuracy of the measurements was estimated at -/+ 10
deg. Depending on the type of pipeline, the twist was measured only once or numerous times during the descent to the
seabed. Upon arrival, the rotation of the end terminal is rotated back using either the ROVs or by temporarily changing
the heading of the vessel. Given the water depth at the site location (2100m), all measurements done for pipelenghts
longer than the waterdepth have been derived using a different method. As part of a twist mitigation procedure, the
second end of the pipeline was attached to a rotational swivel connected to the Abandonment and Recovery Winch of
the Aegir before installation of the second end terminal. Upon release of the clamping constraint given by the tensioner
tracks, the build up torsional energy was relieved in the form of rotation around its own axis (twist). The measured twist
after torque relieve is given in Figure A.8 by the points after a waterdepth of 2100m.
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Figure A.8: Measured twist during lowering of pipelines at Lucius project. Note: All data point before a length of approximately 2100m were derived
via ROV visual inspection, and all data after via measuring the twist angle after torque relieval.[4]

V.J.Taams Thesis



B
DECOMPOSITION OF AEGIR’S REEL-LAY

PROCESS

Heerema’s newest addition to the fleet, the deepwater construction vessel Aegir is capable of executing complex infras-
tructure and pipeline projects in ultra-deep water and has sufficient lifting capacity to install fixed platforms in relatively
shallow water. The vessel is equipped with a pipelay tower which is able to install pipelines via J-lay or Reel-lay. Only
the reel-lay process will be of importance for the thesis assignment. In this chapter the different steps of the process,
from fabrication of the pipe to the laying of the pipeline on the seabed will be briefly dicussed.

Figure B.1: HMC reel-lay vessel DCV Aegir

B.1. FABRICATION OF SEAMLESS PIPES

For the Lucius project, seamless pipes were used to create the pipe stalks. Seamless pipes are created by hot working
a solid rod to form a pipe without any longitudinal welds. The two main methods, which are commonly used are the
Mandrel Mill and the Mannesman Plug Mill process[35]. In both seamless pipe processes the pipes start out as a solid
round rod called a billet, which is heated in a furnace. Afterwards the heated billets are rotationally driven through the
pinch zone of two rollers which are also rotating. The rotary motions of the billet and rollers leads to a reduction of the
stress needed for the piercer between the rollers to penetrate the rod and to shape it into a pipe. The first piercing step
produces the primary pipe shape. Afterwards the pipe is brought to a finish in a number of steps, dependent on which
process is used. See Appendix D for further fabrication information.

B.2. PIPE STALK FORMATION AND SPOOLBASE HANDLING

At the spoolbase, pipe segments are welded together to obtain pipe stalks of up to 2km[39]. The individual pipe seg-
ments before welding are 12m. The choice of pipe is predominantly dependent on the required diameter, thickness,
and D/t ratio, but mostly seamless pipes are used for Aegir’s reel lay operations. After each pipe stalk formation step,
the stalks are shifted from one line to the next for further welding, testing or coating (see Figure B.2). The shifting is
done using roller boxes suspended in excavators riding along the stalk length. Eye witness accounts suggest that the
process of shifting with the excavators can incorporate twist in the stalk.
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Figure B.2: Schematic overview of the Spool Base Layout (Top View)

B.3. AEGIR’S SPOOLING PROCESS

The spooling process comprises a few sequential steps from spooling on the pipeline until overboarding it. The steps
will briefly be discussed in the following segment.

B.3.1. SPOOLING ON OF PIPELINE

The spooling process begins onshore [39][40]. The formed pipe stalks are rolled up, starting from underneath the reel
drum. Separate stalks can be welded together to fill the reel drum with a few km of pipeline. The minimum radius of
the reel drum is 8m and the pipeline stalks can be loaded to the reel up to the radius of 12m. The range of pipe diameter
that can be reeled onto the drums is from 6" to 16". The reel drum is positioned on a barge moored at the spool yard, for
the ease of subsequent transportation. During the spooling on process onshore, the pipe is first bent elastically, leading
to the increase of the internal moment of the pipe. By further bending, the pipe is deformed plastically. This leads to
the increase of the curvature of the pipe, but not in the significant increase of the internal moment. The first step of the
spooling process is given by the blue line in Figure B.4, ending in point A.

B.3.2. TRANSPORTATION PIPE STALKS AND REELS

Once the pipe stalks have been spooled onto a reel drums a barge brings the reel to the Aegir’s location where it can be
transferred to the deck of the vessel by the 4000mT crane on board. Subsequently an empty reel can be loaded onto
the barge for refilling. At a given time the Aegir has the capacity for three spools on the vessel, two fulls reels and one
empty one. Once a reel is empty, it can be shifted onboard and the following reel can be loaded into the pipelay tower.
It is therefore unnecessary to terminate the lay procedure for pipe logistical reasons such as sailing back on forth to the
yard to refill the spool with stalks. When keeping a structure in a strained condition for a finite amount of time, like
a pipeline on a reel drum, it is known that the internal stress response can decrease for the same amount of constant
strain. This phenomena, called stress relaxation, could also occur during the transportation phase of the reel drums
from the spoolyard to the Aegir vessel. This phenomena however is not taken into account during further analysis, and
therefore is not of influence on the moment-curvature relation as plotted in Figure B.4.

B.3.3. PIPELINE UNSPOOLING

Once the reel drum is in place, the unspooling of the pipeline can commence or continue. The pipeline is pulled off the
reel drum towards the aligner, see Figure B.3. As the pipeline leaves the reel-drum, the internal moment is reversed and
the curvature of the pipe is decreased via the orange line segment in Figure B.4 to point B . Again, during the unspooling
the pipeline deforms plastically, completing the first bend cycle.

B.3.4. BENDING OVER THE ALIGNER

The second bend cycle starts off with the plastic bending of the pipeline over the aligner wheel, which has a fixed radius
of 9m. Once again, the curvature of the pipeline is increased up to point C inFigure B.4

B.3.5. PIPELINE STRAIGHTENING

The pipeline is plastically deformed for the last time at the straightener. Using three point bending, the pipeline is
given an excess curvature, which upon relieve of the moment enables it to elastically spring to a configuration of zero
residual curvature (in theory at least). As the pipeline leaves the aligner wheel, it comes in contact with the outer
straightener. The internal moment is reversed and the curvature is reduced. At the second part of the straightener, the
inner straightener, the pipe is bent to the point where a negative curvature is applied in order to compensate for the
elastic deformations of the pipe at point D in Figure B.4. In the last step of the straightening procedure, all residual
internal moment is relieved by the elastic rebound of the pipeline (point E). Theoretically, also all curvature in the
pipeline will be removed.
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B.3.6. THE TENSIONERS

The tensioners have two functions: they maintain the back tension in the pipeline so that no unwanted buckling oc-
curs in the pipeline during reeling and they hold the weight of the pipeline catenary from the moonpool downwards
(top tension). The tensioners have a maximum capacity of 800mT top tension and are capable of executing pipelay
installation projects in ultra-deep water for infield flow lines and risers.

Figure B.3: Reel-lay tower Aegir
Figure B.4: Moment-curvature graph of reel cycle

B.4. STRESSES AND STRAINS DURING SPOOLING PROCESS
[41][42][43][44] When a symmetric cross-section like a pipeline is solely loaded by a bending moment, the neutral axis
is equal to the axis of symmetry. However, if that is also an axial force present, such as a back tension during reeling, the
neutral axis will not be on the axis of symmetry. For a symmetric cross section loaded by a bending moment only the
neutral axis is on the axis of symmetry. However, if the cross section is also loaded by an axial force the neutral axis is
not on the axis of symmetry. During the double bend cycle of the reeling process, the pipeline is plastically deformed
4 times. The relationship between the bending moment and the curvature are given in Figure B.4. When denoting the
step number with the subscript i and letting z = 0 be the location of the symmetry axis, then the bending moment and
axial force with respect to the symmetry axis can be expressed by:

Mz,i =
∫
A

σi (z)zd A (B.1)

Nz,i =
∫
A

σi (z)d A (B.2)

The stress at a certain step i can therefore be expressed as,

σi (z) =σi−1(z)+∆σ(z) (B.3)

Given that the strain at the axis of symmetry is denoted as a, the strain at each step and the strain difference is given as
follows:

εi (z) = ai +κz (B.4)

∆εi (z) = ai −ai−1 +κi zi −κi−1zi−1 (B.5)

The location of the neutral axis d with respect to the symmetry axis at a certain step i is given by:

di =
{

ai
κi

, for κ 6= 0

0, κi = 0
(B.6)

Figure B.5 gives a schematic representation of the aformentioned relations between, strain, neutral axis and curvature.
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92 B. DECOMPOSITION OF AEGIR’S REEL-LAY PROCESS

Figure B.5: Schematic representation of strain developement in steps i

During spooling on, the pipeline will first deform elastically; the stress will increase linearly with the strain increase.

σ= Eε (B.7)

However, upon further bending, plastic deformation will occur and the relation between strain and stress changes.
The stress increase is then dependent on strain hardening relations[45][44]. There are different ways of modeling the
inelastic response of metals. The most commonly used in finite element analysis will be discussed: isotropic hardening,
kinematic hardening, or a combination of the two (real metals exhibit both types of hardening).

B.4.1. ISOTROPIC HARDENING
When modeling with isotropic hardening, it means that plastic deformation will lead to an equal increase of the yield
strength for the member tension or compression, irrespective of the type of plastic loading that occurred. The yield
surface remains the same shape, but expands with the increasing stress. Isotropic hardening does not change the shape
of the yield function. See Figure B.6. Therefore, an initial asymmetric yield function will stay asymmetric, but will
only radially increase in size. Also the history of the material should be taken into account: every plastic bending
step will lead to the increase of the yield surface. When modeling the reeling process with isotropic hardening, the
first plastic bending cycle is modeled with a so called Lüders Plateau. This Plateau is caused by localized bands of
plastic deformation in metals experiencing tensile stresses (Lüders bands) that require an amount strain before strain
hardening occurs. A qualitative representation of the effect of isotropic loading on the double bend cycle of the reel-lay
process is given in Figure B.8. It is seen that the Lüders plateau disappears after the first half bend cycle.

Figure B.6: Isotropic strain hardening Figure B.7: Kinematic strain hardening

B.4.2. KINEMATIC HARDENING
For an isotropic model, if initially the yield strength in tension and compression are the same, the yield surface is sym-
metric about the stress axes, and will remain symmetric as the yield surface increases due to plastic strain. In order to
take into account the Bauschinger effect or similar responses which are present during cyclic loading such as during
spooling, kinematic hardening is used. The Bauschinger effect describes the following: When materials are loaded uni-
axially in one direction into the plastic regime, unloaded to zero stress level, then reloaded in reverse direction, they
may yield during reloading, at a stress level lower than if the reloading were carried out in the original direction [46].
Ergo, when a pipe is bent in one direction, it will yield at a lower stress during subsequent bending in the opposite
direction. Hardening in tension will lead to a ’softening’ in a subsequent compression: the yield surface remains the
same shape and size but merely translates in the stress space. See Figure B.7.
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B.4.3. STRESS - STRAIN CURVE DURING REELING

The strain hardening effects can been seen in the stress strain curve of the double bend cycle. In the first step, the afore-
mentionned Lüders plateau is visible, followed by strain hardening. In the second step one sees a difference between
Figure B.8 and Figure B.9. In the former, one sees the typical behavior for isotropic hardening during the bending back
of the the pipeline: the elastic region ends at a stress equal to −σ1 and afterwards the Bauschinger effect comes into
play during plastic deformation. For the kinematic model, it can be seen that the strain hardening during the first step
translates to an earlier onset of plastic derformation. In step 3 and 4 the bend cycle is repeated for both models and in
step 5 one can see the decrease of the strain to zero, but a residual stress remains in the pipeline!

Figure B.8: Isotropic strain hardening in reeling cycle
Figure B.9: Kinematic strain hardening in reeling cycle

B.4.4. CROSS-SECTIONAL ASYMMETRIC STRESS DISTRIBUTION OP PLASTICALLY DEFORMED PIPE

During the reeling cycle, the pipeline is deformed plastically four times under a back tension. The consecutive bending
under tension leads to the build-up of a cross-sectional asymmetric stress distribution. One must note that for zero
curvature at the pipeline segment at a given pipe cross section is, asymmetric stress distribution will not result into an
internal moment. The summation of the products of the cross-sectional stress increments with the corresponding arm
lengths will give zero. A simple example is given below. Assuming a tensioned pipeline made out of an elastic-perfectly
plastic material, the pipeline is bent into plastic deformation. In the second step, the pipeline is bent plastically the
opposite direction, as such that when the bending moment is relieved, the pipeline elastically deforms to a state with
zero residual curvature. Although the asymmetric stress distribution remains present over the circumference of the
pipe due to the persistent tension, the summation of the moments over the area gives zero and so the overall strain is
zero.

B.5. RESIDUAL CURVATURE IN THE PIPELINE

Once the first pipeline segments has been pulled through the entire reel system on board, iterative minimization of
the pipelines residual curvature via testing commences. After the pipeline has passed the tensioner, a segment of 12
m pipe is cut from the pipe stalk. This segment is then laid on the deck, and measured for its out-of-straightness. The
out of straightness of a pipeline can be converted to curvature either using Pythagorean theorem or intersecting chord
theorem[47][48]. It is assumed that the curvature radius is constant over the measured piece of pipeline. It can therefore
be seen as an arc on a circle with a radius equal to the radius of curvature Rκ. Here the horizontal length of the pipeline
is considered to be equal to the sum of L AB and LBC , which are both equal to half of the arcs’ horizontal length W . The
out-of-straightness H is then measured in the middle of the arc. See Figure B.10
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94 B. DECOMPOSITION OF AEGIR’S REEL-LAY PROCESS

Figure B.10: Pipeline arc for curvature calculation using Pythagorean theorem

Finding the radius of curvature of the pipeline using Pythagorean theorem is given below. Using the arc height, which
is equal to the out of straightness H , and the base length, which is equal to half of the arcs’ horizontal length W , the
radius of curvature Rκ is found.

R2
κ =

(
W

2

)2

+ (Rκ−H)2

R2
κ = W 2

4
+R2

κ−2HRκ+H 2

2HRκ = W 2

4
+H 2

Rκ = W 2 +4H 2

8H
(B.8)

For pipelines coming out of the factory, certain standards for out-of-straightness are set by DNV [25]. These standards
are given in Table B.1. For reeling however, no such standard was found concerning the maximum out-of-straightness.
This is something that must be discussed with the client, to see what is acceptable. For the Lucius project, the maximum
out-of-straightness for a 12m long pipe segment is 9mm, which gives a minimum residual curvature radius of Rκ =
500m is used. The 12 m pipe segments are measured for its out-of-straightness iteratively: a segment is measured and
when the minimum radius is exceeded, the straightener is adjusted, and another segments is reeled, cut and measured.
This process is repeated until the accepted curvature is met, upon which continuous reeling will occur. Simply put,
a reeled pipe can either be completely straight (Rκ = ∞), over straightened (Rκ > 0) or under straightened in the in-
plane bending plane of the pipeline over the straightener. An under straightened pipe is caused when the straightener
tracks have not induced enough plastic bending, leading to a remainder of curvature in the pipe. For over straightening,
the bending of the tracks of the straightener have been too effective, giving the pipeline a surplus of curvature in the
opposite direction. See Figure B.11. Usually the pipeline is under straightened, for it will cause less strain to the system.
In practice, a straight pipe is an ambitious goal, which is seldom met.

Table B.1: Out-of-Straightness tolerances for factory pipes set by DNV [25]. These standards do not apply for the out-of-straightness of a pipe segment
during reeling

Characteristic Tolerances

Staightness, max. for full length of pipe ≤ 0.0015 L
Staightness, max. deviation for pipe end region 3 mm

Length L min. 11.70m and max 12.70m

Figure B.11: Left: Under-straightening. Right: Over-straightening
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B.6. THE LOWERING OF A FREELY SUSPENDED PIPELINE
The lowering of the pipeline with the attached 1st end PLET is done in four phases during the Lucius Project. The phases
will briefly be discussed here and have been illustrated in Figure B.12.

Phase I
In Phase one, the 1st end PLET (Appendix E) has been welded to the reeled pipe. The PLET is hanging via the upper ten-
sioner, and a steering winch is connected to the mudmat of the PLET (Appendix E). Afterwards, the PLET and pipe stem
are lowered by 17m by paying out the reeled pipe. The so called Pipe and Wire Centralizer is engaged, and the steering
winch is pre-tensioned. At a water depth of 150 m the steering winch is finally slack, leading to the disconnecting of the
winch.

Phase II
In order to cope with the increasing axial tension in the pipe during lowering, the lower tensioner is engaged. The
Pipeline is lowered towards 20m above the seabed, ready for the hook up sling connection.

Phase III
The hook up sling is connected to the start up suction pile using the yoke hook on the PLET (Appendix E). The PLET is
gently lowered to the seabed and the mudmat is opened. During this process, the tower angle is change to 85deg.

Phase IV
In the last phase, the PLET stem is lowered onto the mudmat and the normal lay configuration is built up.

Figure B.12: Different phase during pipeline lowering

B.7. PIPELINE CONFIGURATION DURING LAY OPERATIONS
After the pipeline passes the straighteners it is lowered in the sea through the moonpool. During the lowering of the
pipeline the tensioner comes into play. It has the essential role of supporting the increasing top tension in the pipeline
at the end of the tensioner, whilst maintaining a relatively constant back tension in the system prior to the tensioner.
At a certain depth the pipeline will begin to gradually bend from vertical to its final horizontal position on the seabed.
The gradual bend is called the underbend, or sagbend. Besides the material and geometric properties of the pipeline,
the shape of the sagbend is dependent on the amount of applied horizontal tension. By increasing the horizontal
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96 B. DECOMPOSITION OF AEGIR’S REEL-LAY PROCESS

tension, the curvature along the pipeline will decrease and therefore the steepness of the sagbend slope. In the sagbend
the internal moment and curvature increases again, causing strains in the pipeline. During lowering, the hydrostatic
pressure on the pipeline increases and can be an important factor for the pipeline design in ultra deep water projects.
Typical values for the external water pressure and sagbend strain ε are given in Figure B.13. The pipelay tower can be
set to an angle as low as 50 degrees from horizontal, which makes installation of larger diameter pipelines in relatively
shallow water possible.

Figure B.13: Schematic overview of the pipeline in the sagbend
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C
LITERATURE STUDY OF PRIOR PIPELINE TWIST

RESEARCH

The occurrence of pipe rotation is not a new phenomena. During S-lay and Reel-lay operations in deep water it is
a known fact that the build up of torque can occur. For J-lay however, no reports have been found concerning twist
during operations. Although there are theories for its occurrence, it is still difficult to estimate if and how much pipe
rotation will occur. S-lay differs from Reel-lay in the way that the pipe is bent plastically at the overbend during S-lay,
which does not occur with reel-lay. Although the lay operations share similarities and it is therefore possible to extrap-
olate relevant information from previously done research, it is important to keep in mind that the lay operations do
have distinct differences. In the following chapter previous theoretical research will be discussed concerning the onset
of twist during S-lay and Reel-lay operations.

Over the years the maximum lay depth has constantly been increasing. In shallow water, the pipeline wall thickness
selection is usually determined by hoop stress due to the internal pressure. For deep water however, other factors play a
governing role. Fractures in welds or local buckling with or without resulting collapse of the pipe can be governing fail-
ure modes due to combined bending, tension and external pressure during laying. An important consequence of deep
water pipelay is that the need of a greater pipe strength capacity has lead to the use of strain criteria beyond the elastic
limit of the pipe. And the reason for this change in criteria when looking at S-lay operations is obvious: since the overall
size of the pipelay vessel’s stinger and it’s maximum tension capacity are costly to modify, the curvature of the stinger
is the least expensive parameter that can be altered to adapt to deepwater requirements where the pipe must in some
cases leave the firing line with almost 90 degrees from the horizontal plane. Small stinger curvatures for S-lay in deep
water or the reeling of pipes with reel-lay can lead to plastic strains in the pipeline. Even when the lay configuration
is set up to load the pipe within the elastic limit, the effect of inline structures such as valves, tees or buckle arrestors
can create local strain concentrations. The residual plastic strain of the pipe can be high, but in most cases will not be
noticeable when the pipe is resting on the seabed.

From pipelay experience it appears that the pipeline has a tendency to rotate with S-lay when the permanent curvature
induced in the overbend becomes suspended in the sagbend section of the pipe. If a small lateral load is applied to the
pipeline (in the form of a current for example), the pipe will experience a torsional moment due to the out-of-plane
displacement and the gravitational force. In Damsleth et al. [34] it is mentioned that the rotation of a suspended pipe
with S-lay is proportional to the plastic strain, the suspended length and the ratio D/t of the pipeline. Even a small value
of permanent curvature in the pipeline (0.02% plastic strain) can cause enough rotation during installation to make it
difficult to access inline components or can lead to the necessity of torque removal measures. Although the rotation
can be severe, Endal et al. [33] concludes that the pipeline roll does not give any on-bottom instabilities of the as-laid
pipe. Also, no reports have been found stating that the pipeline twist led to the deterioration of the structural integrity
of the pipeline itself.

C.1. PIPELINE TWIST RESEARCH DONE BY GEIR ENDAL
Geir Endal, advisor pipeline technology at Statoil, has written about the twist phenomena during laying in several pa-
pers spanning from 1995 tot 2015 [33][10][1][49][50]. Several observations can be made from them, and his findings will
briefly be discussed in this chapter.

C.1.1. TWIST ANALYSIS OF A GLOBAL BUCKLING MITIGATION DURING REEL-LAY
An important design concern for designing offshore oil & gas pipelines is the mitigation against thermal buckling.
Pipelines under high pressure and temperatures will be exposed to axial compressive forces, which can lead to excessive
lateral movement at a single location. The pipeline may form a localized kink with high curvature, also known as the
phenomena global pipeline buckling. At the pipeline buckles, the stress & strain criteria may be exceeded, leading to
possible undesired consequences such as pipeline collapse or rupture. The mitigation method of intermittently adding
residual curvature during the reel-lay process was introduced by Endal and was patented by Statoil in 2002. With the
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mitigation method came an investigation into the twist behavior of the pipeline.

By adjusting the reel ship’s upper track of the straightener system during installation of the pipeline, local, in-plane
residual curvature can be created. The result can be seen in bottom-right in Figure C.2. According to the patent of
Statoil[50], the typical configuration would be to impose 0.20%-0.25% residual strain over a 40 m length every kilometer
during reel-lay installation. As with the Aegir, the straightener system on the reel ship works via 3-point bending and
by intermittently adjusting the straightener during laying the residual curvature can be applied. The residual curvature
gives the pipeline locally less stiffness so that extension in axial direction due to temperature may occur in a distributed
and controlled manner, causing pipe deflections without producing large compressive forces. If the straightener equip-
ment of the ’Seven Oceans’ is taken as an example, residual curvature can be added to the pipeline by adjusting the ori-
entation and position of the upper track. By increasing the upper deflection of the upper track while keeping the lower
deflection constant, an additional curvature is added to the pipeline. By subsequently decreasing the upper deflection
and increasing the lower deflection of the track, the additional curvature is topped off and the pipeline continues to be
laid in its normal curvature without residual curvature. See Figure C.3 and Figure C.1.

Figure C.1: Variation of the upper track to obtain residual curvature[32] Figure C.2: Pipe segment with residual curvature

Figure C.3: Straightener components of the Seven Oceans[32] Figure C.4: Schematic depiction of residual curvature in pipeline

The tendency to pipeline twist due to (intermittent) residual curvature can be estimated by a simplified analytical en-
ergy approach. The minimum total potential energy principle is a fundamental concept which briefly entails that a
structure or body shall deform or displace to a position that minimizes the total potential energy of the system. For ex-
ample, a horizontal beam loaded by additional weight will bend to a lower position, a position where the total potential
energy is at it’s minimum, and therefore the configuration is stable. The same principle is applied to the bending of the
pipeline in the sagbend. Here, the overall strain energy UT (φ0) of the pipeline is used to estimate the pipeline twist. The
total strain energy UT (φ0,κr ), which can also be seen as the total amount of work WT (φ0) as the pipeline goes through
the sagbend, is assumed to consist of a bending and a roll contribution. Both strain energies are dependent on the final
torsion angle of the pipeline: see Equation C.1

UT (φ0,κr ) =UB (φ0,κr )+UR (φ0,κr ) (C.1)

The bending strain contribution UB (φ0,κr ) is dependent on the curvature that the pipeline has in the sagbend. This
curvature can be approximated by for example the natural catenary, giving us the curvature κn(s) along the length of
the pipeline. Furthermore, the residual curvature as described earlier, can be added to the pipeline curvature equation:

κT (s,φ0,κr ) = κn(s)+κr ·cos
(
φ

(
s,φ0

))
(C.2)

The effect of a segment of pipeline with residual curvature on the total curvature of the pipeline in the sagbend is
schematically illustrated below in Figure C.5. Here it is evident that at different torsional angles the curvature of the
pipeline changes. The bending strain of the pipeline in the sagbend will therefore be higher for certain torsional angles,
and lower for others.
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Figure C.5: Schematic effect of κr on κT at different angles of rotation

Here φ(s,φ0) is the roll angle along the suspended section of the pipe, which is dependent on the roll angle at the
touchdown point at the seabedφ0 and the distance along the pipeline s. The roll angle increases from the vessel towards
the seabed, assuming that the pipeline is constrained against twist at the surface and completely free at the bottom.
Evidently, the maximum roll angle φ0 occurs at the bottom. The torque therefore has its maximum at the sea surface
where the pipeline is constrained by the tensioner, and the torque is assumed to be zero at the seabed. The development
of the roll angle of the pipeline has three boundary conditions:

φ(0) =φ0

dφ

d s
(0) = 0

φ(L) = 0

Here, s is the distance along the pipeline, where s = 0 is located at the seabed, and s = L is located at the sea surface.
The twist angle, which begins at its maximum angle at the seabed and decreases to zero at the sea surface, is given by
the following second order polynomial:

φ(s,φ0) = −φ0

L2 · s2 +φ0 (C.3)

The bending strain contribution of the total work is given as:

UB (φ0,κr ) =


Lc∫
0

E · I · [κn(s)+κr ·cos
(
φ

(
s,φ0

))]2 d s +
L∫

Lc

E · I ·κn(s)d s, if Lc ≤ L

Lc∫
0

E · I · [κn(s)+κr ·cos
(
φ

(
s,φ0

))]2 d s otherwise

(C.4)

In practice, the residual curvature is added intermittently over sections of pipeline. For simplification, the residual
curvature applied over the intermittent sections are bundled into an equivalent length of pipeline containing the same
amount of curvature. This bundled Lc with residual curvature is used in the calculation of the bending strain energy
UB .

Lc =
M∑

n=1
Lκr (n) (C.5)

(C.6)

It is assumed that the intermittent residual curvature sections are of equal length, and all have the same amount of
residual curvature:
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Lκr (n) = Lκr (n +1) for n = 1...M (C.7)

For the torsional moment, the contribution to the total energy is as follows:

UR (φ0) =
L∫

0

Mφ(s,φ0) · d

d s

(
φ

(
s,φ0

))
d s (C.8)

Which is equivalent to,

UR (φ0) =
L∫

0

G · IT ·
[

d

d s

(
φ

(
s,φ0

))]2

d s (C.9)

By finding the minimum potential of the combined contributions, the amount of pipe twist rotation can be estimated.

d

dφ0
·UT (φ0,κr ) = 0 (C.10)

The methodology can be viewed in detail in Endal et al. [1]. A schematic overview of the analytical approach has been
made and can be seen in Figure C.7. In the same paper the total work of a 16" inch pipeline during lay operations is
analytically approximated with varying values of residual curvature lengths. Curvature lengths LC of 0m, 50m, 70m and
100m are used with a residual strain of 0.2% in the curvatures. The results can be seen in Figure C.6. A few conclusions
were made about the total works graphs:

• When there is no residual curvature in the pipeline, the total work increases monotonically against the roll angle:
no trough is visible in the graph. Consequently, the pipeline has a resistance towards roll, for there is no energetic
benefit of twisting.

• For short residual curvature lengths the graph is relatively flat. The point of minimal total work against the roll
angle is not too defined, which can make the pipeline relatively unstable: it may easily rotate to a roll angle with
a higher total work.

• For higher residual curvature lengths, the graph has a clear minimum point of total work at a specific roll angle.
The steep trough in the curve indicates that pipe twist will easily be initiated.

Figure C.6: The total work for a 16" pipeline for different residual curvature lengths (0.2% local strain) against the roll angle at touchdown (360m
waterdepth) (add source)
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Figure C.7: Schematic overview of shape functions for the simplified analytical approach estimating pipeline roll (add source)

C.1.2. TWIST ANALYSIS DURING S-LAY OPERATIONS

As mentioned before, twist has been known to occur during S-lay in deep water. Back in 1995, Endal did research on
the relation between plastic pipeline deformation in the overbend and the occurrence of twist (Endal et al 1995)[33].
For the prediction of the pipeline twist, Endal used both the analytical approach of energy minimization as mentioned
in the previous section and a numerical approach using the FE computer program Abaqus. The findings of his research
will be briefly discussed.

The analytical approximation of the pipeline twist using energy minimization is similar to the method mentioned in the
previous section. Only during the S-lay operations, the residual curvature is not added purposefully nor intermittent: it
is dependent on the residual strain of the pipeline induced by the radius of curvature that the stinger has during oper-
ations. The nominal curvature κn and roll angle φ along the pipeline have been approximated with different functions
in comparison to the previous section. The functions can be found in Endal et al 1995. For the further calculations, the
same equations have been used as in the previous section: from Equation C.4 until Equation C.10.

For the numerical modeling approach the general non-linear FE-program ABAQUS in Endal et al (1995) is used. Differ-
ent models along with a thorough sensitivity study to investigate the effect of plastic strain, waterdepth, tension etc.

Effect of plastic strains induced by stinger
A model is made to approximate the S-lay operation via static 3D simulation to investigate the influence of plastic
strain and pipe tension on the roll angle. When looking at the results from Endal et al. (1995) [33]it can be seen that
the decrease of the stinger radius (and therefore an increase of the pipe curvature at the overbend) lead to an increase
in the total amount of pipe twist. In the paper two different diameter pipes are subjected to varying stinger radii and
are analyzed at different depths. The results for the 20" pipe can be seen in the Table C.1. It is clear that the amount
of pipe twist increases rapidly for early increasing increments of the stinger radius, and thus an increase of the amount
of residual curvature, and that the increase slows down in the later increments. This would indicate that the twist
phenomena is a typical instability problem, where once the roll is initiated it will increase rapidly, up to the point where
it comes close to equilibrium, in which case it will start to converge.
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Table C.1: Results numerical model test of 16" pipe

Analysis Input Output

Depth R [m] r/R [%] Tb,tr ue [kN] Tb,e f f [kN] Tbar g e [kN] θ [deg]
1 300m 69.0 0.306 -333 103 294 116
2 72.0 0.293 -333 103 295 95.0
3 75.0 0.281 -333 103 295 48.0
4 76.0 0.278 -333 103 296 11.5
5 78.1 0.270 -333 103 296 2.2
6 400m 70.3 0.300 -483 98 346 137
7 74.0 0.285 -460 121 372 110
8 78.1 0.270 -437 144 396 52.0
9 82.0 0.257 -425 156 410 1.2

In the paper Endal et al. (1995) [33] the development of the roll angle over the amount of installed pipes is given for anal-
ysis number 6 of Table C.1. The development can be seen in Figure C.8. A length of pipeline is installed of approximately
1300m at a waterdepth of 400m. After installation of 470m of pipeline, the cross-section which was initially placed on
the stinger has passed the inflection point and is now in the sagbend of the lay (about 80 m from touchdown). Here
it appears that the pipe twist is initiated: the plastic strains developed at the overbend are causing a combination of
bending and rotation of the pipeline in the sagbend. It can be seen that once the onset of pipe twist occurs, it increases
rapidly in the beginning, followed by a asymptotic decrease of the increase of the roll angles. When looking at the graph,
it appears that there might be a maximum roll angle that can occur, but this cannot be concluded with certainty.

Figure C.8: The development of the maximum roll angle during installation simulation of 16" pipe [33].

Effect of tension
Another parameter that was investigated in the paper Endal et al. (1995) [33]was the effect of pipe tension on the pipe
rotation. Two pipes with the values as given in Table C.2 were studied on the development of the roll angle against the
effective bottom tension. The results can be seen in Figure C.9. The roll angle increases fast for both pipes from almost
zero at a tension of 0.02 MN to maximum roll angles at 0.04 MN (pipe 1) and at 0.08 MN (pipe 2) bottom tension. Both
pipes share the same dependency concerning the bottom tension. The difference between them is in the decrease of
the roll angle after the maximum roll angle is reached: for pipe 1 the roll angle decreased to approximately zero with
increasing bottom tension, but for pipe 2 the decrease was far less. This can be explained by the larger amount of
submerged weight and the larger strains over the stinger for pipe 2.

Table C.2: Add caption

Pipe D ["] D/t Steel R [m] εnom [%] Depth [m] Ws [N/m]

1 16 20.6 X65 78.1 0.27 400 584
2 25 35 X60 105.8 0.3 400 800
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Figure C.9: The roll angle as function of the Tensile Force

Two important, opposing relations regarding pipe tension dependency on rotation are discussed:

• Increased pipe tension results in a decreased sagbend curvature. The amount of bending strain in the sagbend
would therefore reduce, possibly causing the pipeline to have less energetic advantage by twist. Ergo, the amount
of twist would reduce as the amount of tension is increased.

• Increased tension results in a lower torsional resistance due to a longer suspended spanlength: the touchdown
point is horizontally displaced and the amount of torsional unconstrained pipeline is increase. This would mean
that the pipe twist will as the tension is increased.

The contradictory relations between tension and twist can possibly be used to explain the progression of the graphs in
Figure C.9. At very low pipe tension, there will be a very short suspended length and the pipeline will very suddenly
go from vertical to horizontal. It is stated that the possible deformation controlled restrained forces that correspond to
instability conditions will not arise at this geometric configuration, and so reversed bending takes places without the
onset of roll. When the tension is increased, a proper sagbend in the pipeline is formed, with high bend strains in the
sagbend. This along with the effect of lower torsional resistance when the tension is increased give the fast increase of
the roll angle in the beginning. After the maximum roll angle is achieved, the decrease in the sagbend curvature with
increasing tension becomes predominant, and the pipe twist decreases again.

Tension also has an effect on on-bottom instabilities. Particularly for lower tensile forces, the lateral resistance of the
seabed will become more prominent, for the normal force of the pipeline at the touchdown area will increase. Also
the effect of bottom topography in combination with tension should be taken into account. High (residual) horizontal
tension develops both larger and more frequent freespans, making the pipeline more prone to twist.

Effect of geometric properties
In the same paper Endal et al. (1995) [33] another model is made of the pipeline. The pipe is divided into 2D beam
elements where each beam element has two nodes with the vertical displacement and the rotation as nodal degrees of
freedom. The more exact details of the model are not of importance. In one of the tests, the diameter of the pipeline
was varied to see its effect on the variation of the total amount of roll in the pipeline. In the graph of Figure C.10 it can
be seen that the pipeline roll decreases in a linear fashion when the diameter is decreased. During the tests, the D/t
ratio is kept constant.

Figure C.10: Roll angle as Function of the Pipe Dimension [33].

A decrease of the pipe diameter with a factor of 2 leads to an increase of the bending stiffness with a factor of 16. This
increase in stiffness has, similar to the increase of tension, two opposing effects on the pipeline twist.
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• Increasing the stiffness of the pipe leads to a decrease of the curvature along the suspended pipe. The decrease
of curvature along the pipeline will result in a reduction of the strain in the sagbend, and possibly therefore the
amount of twist occurring.

• On the contrary, increased stiffness will lead to a longer suspended pipeline length. This length increase will result
in a decrease in the torsional rigidity and resulting in a pipeline more prone to twist.

When looking at the results of Figure C.10 it seems that the governing relation is the former: the decreased curve has an
inhibiting effect on pipeline rotation.

C.2. PIPELINE TWIST RESEARCH DONE BY DAMSLETH ET AL.
In the paper Damsleth et al [34], the emphasis is laid on the contribution of potential energy on the pipeline twist.
When a pipeline is plastically deformed over the stinger at the overbend, the section will hang vertically higher upon
arrival at the sagbend than in comparison with a pipeline section that has deformed elastically. The naturally upward
convex shape of a plastically deformed pipe segment during S-lay would lead to the seeking of an energetic equilibrium
via twist at the reverse bending in the sagbend. Ergo, the pipeline would ’fall’ to a lower energy potential through twist,
until a balance is found between the torsional, potential en bending strain energies. For the elastically deformed pipe
the lowest energy potential is already met and therefore no onset of twist would occur for there is simply nothing to
gain energetically. It is therefore according to Damsleth et al. [34] reasonable to conclude that the potential energy
reduction mechanism underlies pipeline rotation during laying. To validate the assumption that plastic strain in the
pipeline causes the onset of pipe rotation, 3D models have been made in Damsleth et al.[34]. Three simple models
all representing a pipe with a certain length and D/t ratio are used, fixed at one end, and pinned at the other where a
horizontal sliding condition is specified. The models span horizontally, where both ends are at equal height vertically.
In two steps, forces are applied to the model: firstly a horizontal force corresponding to a sea current of 0.5 m/s is
applied perpendicular to the in-plane bending plane. Secondly, the submerged weight of the pipeline is applied, along
with an axial horizontal tension representative to a situational comparative lay tension.
The three different models are:

• A Straight pipe

• Pre-curved ’overbend’ pipe , R = 571m

• Pre-curved ’sabend’ pipe, R = 571m

The displacement and the rotation at the middle of the pipe are studied and compared for the different models. For
the overbend pipe model, the pipe has been pre-curved and represents a pipe that has been plastically bend over the
overbend of a stinger to obtain a 0.1% residual strain. The final equilibrium configurations represent the pipeline in
the underbend section during pipelay, where the pipe is subjected to its submerged weight and axial tension. For the
underbend model, the pipe represents a naturally stable case where gravity has caused the underbend configuration.
Also in the second model, submerged weight and axial tension is applied to obtain the final equilibrium configuration.
See Figure C.11.

(a) The pre-curved overbend model in its free and loaded
conditions [34].

(b) The pre-curved underbend model in its free and loaded
conditions [34].

Figure C.11

The graph of the twist in the midpoint is given in Figure C.12, in which the rotation is plotted against the lateral hori-
zontal force. It can be seen that the underbend pipe is subjected to negligible rotation, in the order of 1 percent for the
maximum applied lateral force. The straight pipe shows no rotation, as expected. Lastly, for the overbend pipe we see a
clear onset of rotation, up to 17 degrees. The following explanation is given in the paper: the rotation tries to ’tip over’
the residual curvature from the overbend shape into the underbend shape in the effort to minimize its potential energy.
Eventually an equilibrium will be met between the increase in potential energy due to rotation and the corresponding
decrease of potential energy of the residual curvature. The increase of the rotation angle is linear to the increase of the
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lateral force, indicating that the pipe twist phenomena is a stable process, and not an instable process as indicated in
Endal et al. [33]. As a reader of the article, I would like to comment on the conclusions made: the bending strain for a
pipeline bending from a pre-curved underbend model to a configuration with tension and submerged weight, is less in
comparison to an pre-curved overbend model. In the overbend model, not only the magnitude, but also the direction
of the curvature along the pipeline changes upon loading with self weight and equivalent lay tension. This difference in
bending strains during the analysis and possibly thereafter could be of influence on the results found.

Figure C.12: Rotation at mid-span subject to a lateral force [34].

The development of the maximum roll angle during installation simulated in Endal et al. [33], is repeated in Damsleth
et al. [34] for a stiffer pipe (D/t ratio of 39). Here, the onset of pipe rotation is slower and eventually after a few kilometers
of pipelay, the amount of twist in the pipeline as observed at the rotationally free pipeline end seems to have converged
(see C.13(c)). The figures below illustrate the twist phenomenon during laying of 2.4 km section of deep water pipeline
with a lateral current of 0.5 m/s. Sadly, the depth at which the lay operations take place is not mentioned, but given the
subject of the article it can be assumed that deep water is used in the simulation. The pipeline end is free to rotate and
rotational friction is ignored. C.13(a) shows the total strain over the pipeline and permanent residual strain after the
pipe has been subjected to elasto-plastic bending at the overbend. The torsional moments for the elasto-plastic and
elastic bended pipelines are given in C.13(b). C.13(c) shows the rotation of the pipeline (max of 60 degrees) subjected
to plastic residual strain and of a pipeline subjected solely to elastic bending (no rotation).

(a) Total axial strain and plastic strain in an elasto-plastic
pipe from the free end on the seabed to the tensioner on the
lay vessel [34].

(b) Torsional moment in the pipeline from the free end on
the seabed to the tensioner on the laybarge [34].

(c) Axial rotation of the pipeline from the free end [34].

Figure C.13: Development of axial strain, moment and rotation during a s-lay installation simulation
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D
PIPELINE FABRICATION

For the oil and gas industry, there are four types of fabrication routes that can be used to produce pipe.

• Seamless welding

• Longitudinal welding using a submerged arc

• Longitudinal welding by electrical resistance

• Helical welding

Seamless welding
For the Lucius project, seamless pipes were used to create the pipe stalks. Seamless pipes are created by hot working
a solid rod to form a pipe without any longitudinal welds. The two main methods which are commonly used are the
Mandrel Mill and the Mannesman Plug Mill process. In both seamless pipe processes the pipes start out as a solid
round rod called a billet, which is heated in a furnace. Afterwards the heated billets are rotationally driven through the
pinch zone of two rollers which are also rotating. The rotary motions of the billet and rollers leads to a reduction of the
stress needed for the piercer between the rollers to penetrate the rod and to shape it into a pipe. The first piercing step
produces the primary pipe shape. Afterwards the pipe is brought to a finish in a number of steps, dependent on which
process is used. The exact steps of the Mandrell Mill process can be seen in Figure D.1 and the Mannesman Plug Mill
process is given in Figure D.2.

Figure D.1: The seamless Mandrill Mill pipe fabrication process[35]
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108 D. PIPELINE FABRICATION

Figure D.2: The seamless Mannesman Plug Mill pipe fabrication process[35]

Longitudinal welding using a submerged arc
A Longitudinally welded pipe using a submerged arc is also known as a U-O-E pipe, after its manufacturing steps. In-
dividual steel plates are first bent into a U shape, then pressed into a tubular shape (O) and finally after longitudinal
welding, the pipe is expanded (E) to ensure its circular shape. The longitudinal weld is produced using submerged arc
welding (SAW).

Longitudinal welding by electrical resistance
Welding by electrical resistance is a continuous process where a pipe is formed from a coiled steel plate. The plate is
uncoiled, sheared to the appropriate length, flattened and then processed to a tubular shape by a sequence of rollers.
The longitudinal seam is then welded by electrical resistance welding.

Helical welding
A coil of hot coiled plate is uncoiled, straightened, flattened and then wound up helical to form a pipe. The internal
helical seam is then welded using inert gas welding or SAW at first, and as the seam rotates to the top position, the
external weld is made. The process is continuous.
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F
PIPELINE LENGTH APPROXIMATION

As seen before from the numerical computations on the pipeline in sagbend formation, the length of the suspended
pipeline is the key unknown parameter in the calculations beforehand. It is therefore useful to approximate the ex-
pected pipeline length (and the corresponding pipeline configuration) before the actual calculations. It is known that
the length of the suspended pipeline is related to the top tension T0, the flexural rigidity E I , the self weight Ws and the
top angle θ0. According to Buckingham’s Pi-Theorem [11], a dimensionless function can be derived that is defined as
follows:

Ws L

T0
= f

(
E IW 2

s

T 3
0

,θ0

)
(F.1)

Equation F.1 has been determined by solving the boundary value problem for the governing equations Equation 2.19
and Equation 2.21 and the previously mentioned boundary conditions. The system has been solved extensively within
the range of:

0 < π1 ≤ 500
76

180
π< π2 ≤ 90

180
π

Where π1 is assumed to be equal to
E IW 2

s

T 3
0

and π2 = θ0. Using these results the approximate formula for πL , which is

equal to T
Ws L , is obtained via mathematical fitting. This is shown in Equation F.2 and Equation F.3.

πL =−0.4085π0.4
1 +5,16π0.5

1 −3.895π0.6
1 −0.773π−0.9793

2 +1.5435 (F.2)

For, (
0 <π1 ≤ 1,

76

180
π<π2 ≤ 90

180
π

)
,

And,

πL =−0.124π−1.011
1 −0.773π0.9793

2 +2.526 (F.3)

For, (
1 <π1 ≤ 500,

76

180
π<π2 ≤ 90

180
π

)
,

Once the value for πL is known, the length of the pipeline can be approximated by computing:

Lappr ox = πLT0

Ws

By varying the top tension T0 within a range expected for laying at certain waterdepths, a range of pipeline lengths
Lappr ox together with the corresponding coordinates of the pipeline can be computed. Hereby one must realize that the
z-coordinate at s = L is equal to the waterdepth during the lay operations. By cross referencing the desired Top tension
and waterdepth for a pipelay operation, the value of the pipeline length L can be faster estimated via the approximation
equation.

113





G
METOCEAN DATA KEATHLEY CANYON BLOCK

875 & 874

[51]

115



116 G. METOCEAN DATA KEATHLEY CANYON BLOCK 875 & 874

ANADARKO PETROLEUM CORPORATION 
METOCEAN CRITERIA FOR KEATHLEY CANYON BLOCK 875 & 874   

Fugro GEOS/C56309/6067/R10  Page 57 

2.7 Current Profile Characterization 

 

Figure 2-41 Characteristic Current Profiles 1 to 36 
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Figure 2-42 Characteristic Current Profiles 37 to 72 
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Figure 2-43 Characteristic Current Profiles 73 to 108 
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Figure 2-44 Characteristic Current Profiles 109 to 144 
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Figure 2-45 Characteristic Current Profiles 145 to 180 

 

V.J.Taams Thesis



121

ANADARKO PETROLEUM CORPORATION 
METOCEAN CRITERIA FOR KEATHLEY CANYON BLOCK 875 & 874   

Fugro GEOS/C56309/6067/R10  Page 62 

 

Figure 2-46 Characteristic Current Profiles 181 to 216 
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Figure 2-47 Characteristic Current Profiles 217 to 252 
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Figure 2-48 Characteristic Current Profiles 253 to 288 
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Figure 2-49 Characteristic Current Profiles 289 to 324 
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Figure 2-50 Characteristic Current Profiles 325 to 360 
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Figure 2-51 Characteristic Current Profiles 361 to 396 
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Figure 2-52 Characteristic Current Profiles 397 to 432 

 

Thesis V.J.Taams



128 G. METOCEAN DATA KEATHLEY CANYON BLOCK 875 & 874

ANADARKO PETROLEUM CORPORATION 
METOCEAN CRITERIA FOR KEATHLEY CANYON BLOCK 875 & 874   

Fugro GEOS/C56309/6067/R10  Page 69 

 

Figure 2-53 Characteristic Current Profiles 433 to 468 
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Figure 2-54 Characteristic Current Profiles 469 to 504 
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Figure 2-55 Characteristic Current Profiles 505 to 540 
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Figure 2-56 Characteristic Current Profiles 541 to 549 
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H
INSTALLATION METHODS

For the installation of pipelines there are several methods that can be used. The principal ones used in the offshore
industry are given below:

• S-lay

• J-lay

• Reel-lay

• Towing of pipeline bundles

H.1. S-LAY
Individual pipe sections are stored inside the pipelay vessel and are transported with an intricate system of pipe transfer
cranes and conveyors to the line-up carriages. Once a pipe section has come to the line-up carriage, it will pass through
a number of stations before entering the water. The first process is the beveling of the pipe ends: this is a process where
an angle is formed between the edge of the end of a pipe and a plane perpendicular to the surface. After the beveling
process, the individual pipe is lined up with the rest of the pipeline. The welding process can now commence. Typically,
there are five welding stations through which the pipeline will pass. Once the welding stations have been passed, it is
time for the pipe to undergo Non Destructive Testing (NDT). Typically this is one station and here the pipe welds are
screened for any possible flaws. In the final station(s), field joint coating is applied to the section between the the
welded pipes, also know as the pipe joint. After the pipeline has passed all these stations, it is lowered into the water via
the so called stinger of the vessel. The stinger supports the bend of the pipe, also known as the overbend. Depending
on the pipe diameter and the water depth, the stinger can be adjusted in radius (which influences the curvature of the
pipe) as well as in departure angle. It contains a set of rollers which supports the pipe while it is being guided to the
seabed. The pipeline situated in the stinger is known to be in the overbend. Following the pipeline downwards, there
comes a point where the curvature of the pipe is switched from one direction to another. This point is known as the
inflection point. After the inflection point, the pipeline has reached the underbend or also called, sagbend. Here, the
pipeline has opposing curvature when compared to the overbend. At the end of the sagbend the pipe is situated on the
seabed, where it can be connected to subsea modules.

Figure H.1: S-lay vessel layout
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There are two extreme stinger configurations, and everything between these two. The first one is for shallow water,
where the stinger is relatively flat (has a small departure angle). The stinger will have a large radius, typically 200-300
meters, and the tension in the pipe is determined by the sagbend. For the second configuration the stinger is set up for
deep water operations. It is highly curved and the departure angle is large. Ergo, the curvature radius must be small, in
the order of 70-100 meters. The tension in the pipe is in this case determined by a combination of the sag bend and the
vertical load.
An important part of the S-lay principle is the tensioner. Depending on the size of the vessel, there can be one or more
present in the line-up carriage. The principle function of the tensioner is to maintain tension in the pipeline in order to
avoid buckling. It incrementally lets through pipe sections (typically 12-24 m) and it compensates for ship motions.

H.2. J-LAY
The difference between J-lay and S-lay can already be deduced by its name: Where during the S-lay the pipeline goes
through an overbend at the stinger and an underbend near the bottom giving the pipeline an S-shape, for the J-lay
procedure the pipeline leaves the firing line vertically and finally reaches the bottom after a sagbend (the pipeline is
laid in a J-shape). The J-lay process is more concentrated in its overall procedure when compared to S-lay. The pipes
are beveled at the beveling station usually located on deck. Afterwards the pipe transfer cranes transports an individual
pipe to the welding tower. Here the pipes are lined-up, welded together and afterwards lowered further downwards in
the welding tower. In the tower, NDT is done and field joint coating is applied. Once the coating is applied, the pipeline
is lowered either at an angle or vertically downwards, where it will eventually come into the sagbend and afterwards
lie horizontally on the seabed. The tensioner(s) for this lay procedure have the same functions as for the S-lay, but are
know in a vertical configuration in the J-lay welding tower. This type of procedure does not have a stinger with which
it can change the curvature of the pipe or the departure angle. It is only possible to change the departure angle for the
J-lay operation, by tilting the entire tower.

Figure H.2: J-lay vessel layout

H.3. TOWING OF PIPELINE BUNDLES
For this installation method, the pipelines are built on land in long pipe stalk sections. These stalks are launched in the
water and remain buoyant via buoyancy modules or via a carrier pipe sheathed around the bundle. These stalks are
then towed to the designated site using one of the following towing methods:

Surface tow: For this type of tow, a tug tows the pipe on top of the water. Here either buoyancy modules or the carrier
pipes ensures that the pipeline is kept on the water’s surface.

Mid-depth tow: Here less buoyant modules are used compared to the surface tow. The forward speed of the tug boat is
used to keep te pipeline at a submerged level. Once the forward motion of the tug ceases, the pipeline will settle on the
sea floor.

Off-bottom tow: Here a combination of buoyancy modules and chains for added weight are used, working against each
other to keep the pipe stalks just off the seabed. When the destination is reached, the buoyancy modules are removed
and the pipe settles to the sea floor.

Bottom tow: For the last method, no buoyancy modules are used. The pipe stalks are simply being dragged along the
sea bed and the tug pull operation ceases when the pipe has arrived at the desired location. This type of tow is reserved
solely for shallow-water installation where the sea floor is soft and flat.
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H.4. REEL-LAY
With reel-lay, the pipelay is decomposed into the manufacturing of long pipeline stalks onshore and the actual pipelay
offshore. Onshore, pipeline stalks are made in the fabrication yard. These stalks can then be either spooled on a reel
aboard the vessel directly, or they can be spooled onto a detachable spool onshore and afterwards transported to the
lay vessel. On the reel-lay vessel, the pipeline is guided through the so called aligner wheel, located in the pipelay
tower. The pipeline with residual curvature from being spooled onto the reel drum, is now bent over the aligner wheel,
obtaining the curvature radius of the aligner wheel. In theory, all curvature is subsequently removed at the straightener
section of the pipelay tower. Here the pipeline is reverse bent to remove any residual curvature in the pipeline. The
straightened pipeline is then guided through the tensioner section, where tension is applied to the pipeline. Finally
the pipe is lowered into the water through the firing line. The reel construction can either be followed by S-lay (see
Figure H.4) or by J-lay (see Figure H.3) and usually the angle of the lay tower relative to horizontal can be changed.

Figure H.3: Reel-lay/J-lay vessel layout

Figure H.4: Reel-lay/S-lay vessel layout
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