06 11 2014

P5 Presentation

Bio-based FRP structures:
A pedestrian bridge in Schiphol Logistics Park

Rafail Gkaidatzis

1st mentor: ir.J. Smits

2nd mentor: ir. A.C. Bergsma

Problem Definition

- plastic materials are part of our everyday life
- plastic industry ranks third in the world amongst all other industry
- majority of polymers are petroleum-based

source of heavy environmental pollution

Problem Definition

- plastic materials are part of our everyday life
- plastic industry ranks third in the world amongst all other industry
- majority of polymers are petroleum-based

source of heavy environmental pollution

Problem definition

- eco-friendly plastics are emerging globally
- ♣ based on renewable raw materials, such as plant fibres or plant polymeric substances
- → increased application in automotive industry, telecommunications, industrial design, packaging, medical science

Problem definition

- eco-friendly plastics are emerging globally
- ♣ based on renewable raw materials, such as plant fibres or plant polymeric substances
- → increased application in automotive industry, telecommunications, industrial design, packaging, medical science

But in the building industry...

- bioplastics are in an early stage of development
- applications include: cladding components, insulation products, flooring, connections
- extremely limited use in structural applications

Global production capacities of bioplastics 2012 (by market segment)

Source: European Bioplastics | Institute for Bioplastics and Biocomposites (December 2013)

non-biodegradable)

- ♣ prove that biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

- ♣ prove that biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

- + prove that biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

Rafail Gkaidatzis | 06-11-2014

- prove that biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

Bio-based composite pedestrian bridge

Rafail Gkaidatzis | 06-11-2014

- + research whether biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

Composites

- + research whether biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

Composites

- + research whether biocomposites have comparable properties with conventional composites
- ♣ contribute towards the establishment of biocomposites in construction

Composites

temperate climate zone

Z-FLAX

- temperate climate zone
- bast fibre category (long fibres)

- temperate climate zone
- bast fibre category (long fibres)
- fibre extracted from outer skin of dry stalks

- tropical climate zone (humid-warm conditions)
- bast fibre category (long fibres)
- fibre extracted from outer skin of dry stalks

type of volcanic rock

- type of volcanic rock
- most common rock on earths crust

- type of volcanic rock
- most common rock on earths crust
- extracted by typical mining activity

- consists of sand and other particles (Kaolin, Limestone, Colemanite)
- easy and abundant availability of raw materials
- highly used in composites

Life Cycle Assessment

Environmental assessment method

Life Cycle Assessment

Environmental assessment method

Life Cycle Assessment

Environmental assessment method

CLASSIFICATION

FACTORS

Environmental assessment method

ACIDIFICATION

Environmental assessment method

ENERGYCONSUMPTION

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

Environmental assessment method

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

Environmental assessment method

EUTROPHICATION

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

Environmental assessment method

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

Environmental assessment method

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

Environmental assessment method

ENERGYCONSUMPTION

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

Environmental assessment method

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

PHOTOCHEMICAL OXIDANTS CREATION

Environmental assessment method

Sources: Existing research and LCAs Databases

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

PHOTOCHEMICAL OXIDANTS CREATION

ACIDIFICATION

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

ENERGY CONSUMPTION

agricultural

AQUATIC TOXICITY ECOTOXICITY

DEPLETION

OF RESOURCES

HUMAN TOXICITY

PHOTOCHEMICAL OXIDANTS

ENERGY EUTROPHICATION CONSUMPTION

CREATION

GLOBAL WARMING

Rafail Gkaidatzis | 06-11-2014

agricultural -

fibre processing

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

PHOTOCHEMICAL OXIDANTS CREATION

ENERGY CONSUMPTION

cation

agricultural

fibre processing

AQUATIC TOXICITY ECOTOXICITY

EUTROPHICATION

DEPLETION OF RESOURCES

OZONE DEPLETION

cation

ENERGY

CONSUMPTION

Rafail Gkaidatzis | 06-11-2014

agricultural

fibre processing

fabric processing

ENERGY

CONSUMPTION

spinning

AQUATIC TOXICITY ECOTOXICITY

HUMAN TOXICITY

EUTROPHICATION

GLOBAL WARMING

DEPLETION OF RESOURCES

OZONE DEPLETION

PHOTOCHEMICAL OXIDANTS CREATION

TUDelft Delft University of Technology

Rafail Gkaidatzis | 06-11-2014

extraction

AQUATIC TOXICITY

HUMAN TOXICITY

ENERGY

CONSUMPTION

GLOBAL WARMING

DEPLETION

transportation

extraction

fibre processing

extrusion

AQUATIC TOXICITY

ECOTOXICITY

HUMAN TOXICITY

DEPLETION

ENERGY

CONSUMPTION

extraction

fibre processing

Trabric processing

ENERGY

CONSUMPTION

AQUATIC TOXICITY ECOTOXICITY

DEPLETION

HUMAN TOXICITY

EUTROPHICATION

OXIDANTS

PHOTOCHEMICAL

extraction

fibre processing

Trabric processing

AQUATIC TOXICITY

ECOTOXICITY

ENERGY

CONSUMPTION

OXIDANTS

VOC

GLOBAL WARMING

DEPLETION OF RESOURCES

Rafail Gkaidatzis | 06-11-2014

extraction

fibre processing

Trabric processing

AQUATIC TOXICITY

ENERGY

CONSUMPTION

HUMAN TOXICITY

PHOTOCHEMICAL OXIDANTS

DEPLETION

Bio-polymers are generally classified into:

BIODEGRADABLE DURABLE

Bio-polymers are generally classified into:

BIODEGRADABLE DURABLE

100% bio-based polymers produced exclusively by natural substances such as starch or cellulose (PLA, PHB):

- characterized by high moisture absorption
- brittle behaviour
- sensitivity to high temperatures
- under developement

Properties	Tensile strength (MPa)	E-modulus (GPa)	Elongation at failure (%)	Moisture absorption (%) per 24h
PLA PHB CA TPS	48-60 40 21-31 16-22	3.45-3.85 1.8 1.66-1.74 0.24-1.5	2-6 4 32.5-35.4 10-80	0.5-1 3-5 1.7-3.7 5-10
PP	19.7-80	1.5-2	52-232	0.01-0.09
PET PC	55-60 43-66	2-2.7 1.5-2.6	28-320 92-200	0.1-0.2 0.13-0.15
PS	20-56	3-3.5	1,2-50	0.13-0.13

Bio-polymers are generally classified into:

BIODEGRADABLE

DURABLE

suitable for temporary applications

and **not for loadbearing** structural applications

Properties	Tensile strength (MPa)	E-modulus (GPa)	Elongation at failure (%)	Moisture absorption (%) per 24h
PLA PHB CA TPS	48-60 40 21-31 16-22	3.45-3.85 1.8 1.66-1.74 0.24-1.5	2-6 4 32.5-35.4 10-80	0.5-1 3-5 1.7-3.7 5-10
PP	19.7-80	1.5-2	52-232	0.01-0.09
PET	55-60	2-2.7	28-320	0.1-0.2
PC	43-66	1.5-2.6	92-200	0.13-0.15
PS	20-56	3-3.5	1,2-50	0.005-0.01

Bio-polymers are generally classified into:

BIODEGRADABLE DURABLE

Durable bio-polymers is a next generations after biodegradable polymers:

- maximizing the content of renewable raw materials
- achieve a long-lasting functionality (fillers and additives to inhibit degradability and reduce brittleness)
- based on vegetable oil (biodiesel)

Bio-polymers are generally classified into:

BIODEGRADABLE

DURABLE

Durable bio-polymers is a next generations after biodegradable polymers:

- maximizing the content of renewable raw materials
- achieve a long-lasting functionality (fillers and additives to inhibit degradability and reduce brittleness)
- based on vegetable oil (biodiesel)

FURAN

- 100% bio-based thermoset resin derived from renewable resources
- Produced from pentose sugars and furfuryl alcohol which is created from agricultural wastes (corn cobs, sugar canes)
- Compatible with natural fibres and basalt

IMPACT

FOAM BLOWING AGENTS (CFCs, HCFCs)

OZONE DEPLETION
GLOBAL WARMING
TOXICITY
PHOTOCHEMICAL OXIDANTS

OZONE DEPLETION
GLOBAL WARMING
TOXICITY
PHOTOCHEMICAL OXIDANTS
DEPLETION OF RESOURCES

DEPLETION OF RESOURCES
GLOBAL WARMING
OZONE DEPLETION
PHOTOCHEMICAL OXIDANTS
ACIDIFICATION

LOW IMPACT

RENEWABLE RESOURCE = FAST GROWTH

NON-TOXIC

NO AGRICULTURAL ACTIVITY = NOT A "CROP" WOOD

NO FERTILIZING

Manual lay-up processes

Hand lay-up

Vacuum/pressure bag

Autoclave molding

Manual lay-up processes

Hand lay-up

Automatic lay-up processes

Automated tape placement (ATP)

Filament winding

Manual lay-up processes

Automatic lay-up processes

Hand lay-up

Vacuum/pressure bag

Autoclave molding

Automated tape placement (ATP)

Filament winding

Resin transfer processes

Vacuum assisted RTM

Resin film infusion (RFI)

Manual lay-up processes

Automatic lay-up processes

Hand lay-up

Vacuum/pressure bag

Autoclave molding

Automated tape placement (ATP)

Filament winding

Resin transfer processes

Vacuum assisted RTM

Resin film infusion (RFI)

Continuous processes

Pultrusion

Continuous laminating

Manual lay-up processes

Automatic lay-up processes

Hand lay-up

Vacuum/pressure bag

Autoclave molding

Automated tape placement (ATP)

Filament winding

Resin transfer processes

Vacuum assisted RTM

Resin film infusion (RFI)

Compression molding processes

Continuous processes

Pultrusion

Continuous laminating

Spraying processes

Spray-up

Centrifugal molding

BMC molding

SMC molding

Cold press molding

Thermoforming

Rafail Gkaidatzis | 06-11-2014

Process steps

- 1. lamination of dry reinforcement and additional layers on mold
- 2. the laminate is sealed airtight on the mold by a flexible bag
- 3. injection of resin from a tube inside the laminate
- 3. extraction of air from the laminate by a vacuum pump

Advantages

- economic process
- small butch sizes and not mass productions
- good component quality
- mold costs can be lower (low-cost, disposable materials)
- low chemical emissions (closed mold process) / clean process

Disadvantages

• only one "good" surface with smooth finish is obtained

DESIGN

Site analysis

Design guidelines of bio-based bridge

Design guidelines of bio-based bridge

1

Cost efficiency

- economic production method for a single unit
- low cost and simple moldmaking

1

Cost efficiency

- economic production method for a single unit
- low cost and simple moldmaking

2

Structural efficiency

- optimized geometry
- optimized composite structure (laminate, fibre orientations)

Design guidelines of bio-based bridge

1

Cost efficiency

- economic production method for a single unit
- low cost and simple moldmaking

2

Structural efficiency

- optimized geometry
- optimized composite structure (laminate, fibre orientations)

3

Design aesthetics

reflection of the plasticity of molded plastic

Design concept

flat or slightly curved surfaces
use of existing molds
use of low-cost material

vacuum table

Design concept

flat or slightly curved surfaces
use of existing molds
use of low-cost material

U shaped beam

structurally used parapets continuity of fibres

curved corners

Design concept

flat or slightly curved surfaces
use of existing molds
use of low-cost material

U shaped beam

structurally used parapets continuity of fibres

curved corners

vacuum table

flat side boards (balsa wood,mdf)

Design research

Structural testing (stiffness)

Boundary Conditions

- Supports
- Loads
- Cross section
- Material mechanical prop.

Structural testing (stiffness)

Design

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

CALCULATION PROCESS

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

CALCULATION PROCESS

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

SIMPLIFIED APPROACH

straight U-beam no curved corners

vertical parapets

1m continuous parapet height

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

SIMPLIFIED APPROACH

straight U-beam

no curved corners

vertical parapets

1m continuous parapet height

PROCESS PROCESS

SIMPLIFIED APPROACH

PROCESS PROCESS

SIMPLIFIED APPROACH

PROCESS PROCESS

Conclusion

DURABILITY COST EFFICIENCY LESS MATERIAL USE

Sustainability can be approached through different ways

We should not consider only sustainable materials but sustainable use of materials

Conclusion

DURABILITY COST EFFICIENCY LESS MATERIAL USE

Sustainability can be approached through different ways

We should not consider only sustainable materials but sustainable use of materials

The bridge is still bio-based at a significant percentage due to furan resin and core from balsa wood

Although basalt is not based on a renewable resource it is the most sustainable solution

