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Abstract. In this paper, some five-point finite difference schemes for steady convection-
diffusion problems are presented. To begin with, we use the finite volume method (FVM)
to discretize the convection-diffusion equation. After that, we present two five-point differ-
ence schemes for the approximation of the first order derivatives on faces, one of which is
central difference type scheme, the other is upwind difference type scheme. In both of the
schemes, one node is always connected with its four neighbor nodes. As the central scheme
is of fourth order accuracy, it is very accurate to employ for small Peclet numbers. But
when Peclet number is large, the scheme can be unstable. In this case, the upwind scheme
of third order accuracy is stable. As the upwind scheme can reflect the flow transportation,
it can give stable numerical solution.

Taking use the advantages of the above two schemes, we construct a hybrid scheme,
which can be utilized not only for small Peclet numbers, but for large Peclet numbers.
The new higher order difference scheme and the hybrid strategy might be extended to solve
2D and 3D fluid dynamics equations including Navier-Stokes equation. Some numerical
examples are also presented to illustrate the discussion.

1 INTRODUCTION

In this paper, we consider the numerical solution for convection-diffusion problems.
These problems play important roles in computational fluid dynamics.It can be described
by following general partial equation(see[1, 2, 3]).

∂(ρφ)

∂t
+ div(ρuφ) = div(Γ · gradφ) + Sφ (1)
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where u, ρ, Γ and Sφ represent velocity vector, density, diffusion coefficient and source
term respectively. In this equation, property φ can be internal energy i, or temperature
T , or components of velocity vector u in x, y, z direction. In one dimensional steady flow
field without source term Sφ, we present following problem.

Problem I. Property φ of a flow satisfy the following equation and boundary condi-
tions.

d(ρuφ)

dx
=

d

dx
(Γ

dφ

dx
), 0 < x < L (2)

φ(0) = φA, φ(L) = φB (3)

where Γ is the diffusion coefficient, velocity u and density ρ of the flow are given in
advance, φA and φB are given values.

The analytic solution of Problem I is (see[1])

φ = φA +
φB − φA

eρuL/Γ − 1
(eρux/Γ − 1) (4)

A lot of finite difference schemes have already been produced to compute the numer-
ical solution of the convective-diffusion problems(see[1]) and similar problems(see[4]-[8]).
The central difference scheme of second order accuracy may result in unstable solution
because of its inability to identify flow direction. The upwind scheme takes into account
flow direction, but its accuracy is only first order. The hybrid difference scheme of Spald-
ing(1972) exploits the favorable properties of upwind and central difference schemes, but
it is only first order accuracy. The QUICK scheme of Leonard(1979) is of second order
accuracy, but it can be unstable. In this paper, we first present two five-point difference
schemes for Problem I, one of which is central difference scheme, the other is upwind dif-
ference scheme. In both of these schemes, one inner node is always connected with its four
neighbor nodes. As the central scheme is of fourth order accuracy, it is often employed for
small Peclet numbers (|Pe| < 2). But when Peclet number is large (|Pe| ≥ 2), the scheme
is probably unstable. Under such condition, the upwind scheme is employed. Though
the scheme is of third order accuracy, it can give stable numerical solution because it can
identify the flow direction. Taking use the advantages of the above two schemes, we also
construct a new hybrid scheme of third order accuracy, which can be utilized not only for
small Peclet numbers, but for large Peclet numbers.

2 DISCRETIZATION FOR PROBLEM I

2.1 Grid generation

Now we use the finite volume method to discretize equation (2). We divide the domain
[0,L] into some control volumes, as shown in Figure 1. The total number of the control
volumes is denoted by n. Let us place n nodes inside the domain, one node in each of
the control volumes and they are denoted by 1, 2, · · · , n respectively. The boundary faces
are A and B. A general nodal point is denoted by P . Its nearest pair of neighbor nodes
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in one-dimensional geometry, the nodes to the west and east of node P , are identified by
W and E respectively. Similarly, its next two pairs of neighbor nodes are identified by
W1, E2 and W2, E2. The west and east side faces of the control volume are denoted by w
and e. The distances between the nodes W and P , and between P and E are denoted by
δx

WP
and δx

PE
.

-r r r r r r r r r r

1 2 3 n − 2n − 1 n

A P ew BWW1W2 E E1 E2

control volume

���

Figure 1: Discretization of the given domain [0,L]. The control volume at inner node P and its neighbor
nodes.

2.2 discretization

Integration of equation (2) over a control volume containing node P yield a discretized
equation

(ρuAφ)e − (ρuAφ)w = (ΓA
dφ

dx
)e − (ΓA

dφ

dx
)w (5)

Here A is the cross-sectional area of the control volume. The flow must also satisfy
continuity so that

d(ρu)

dx
= 0 (6)

The integration of continuity equation (6) yields

(ρuA)e − (ρuA)w = 0 (7)

To obtain difference equations for convective-diffusion problem we must approximate
the derivative terms in equation(5). Now we define two variables F and D to represent
the convective mass flux and diffusion conductance at cell faces:

F = ρuA, D =
ΓA

δx
(8)

Then (7) can be written as
Fe − Fw = 0 (9)

We also define the non-dimensional cell Peclet number as a measure of the the relative
strengths of convection and diffusion:

Pe =
F

D
=

ρu

Γ/δx
(10)

When the Peclet number is small(|Pe| < 2), we say that the flow field is diffusive domi-
native. Otherwise, we say that the flow is convective dominative.
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3 CENTRAL DIFFERENCE SCHEME

Now we use central difference scheme to calculate the numerical solution for Problem I.
As Figure 1 shows, we have already discretized the domain in section 2. Here we presume
that the widths of all the control volumes are the same, so are the distances between each
of two neighbor nodes, and we denote them by δx.

Then we apply a cubic polynomial interpolation for cell face values in (5). We use a
cubic function fit through four nodes, two of which on the upstream side, the other two

on the downstream side, to evaluate the face values of φ and dφ
dx in (5). In other words, a

cubic function fit through W1, W, P and E is used to evaluate φw and (dφ
dx)w, and a further

cubic function fit through W, P, E and E1 to evaluate φe and (dφ
dx)e. For a uniform grid

with step of δx, the values of φ and dφ
dx at the cell faces can be obtained by using cubic

polynomial interpolation:

φw =
1

16
(9φW + 9φP − φW1

− φE) + O(δx4) (11)

φe =
1

16
(9φP + 9φE − φW − φE1

) + O(δx4) (12)

(
dφ

dx
)|w =

1

24δx
(27φP − 27φW − φE + φW1

) + O(δx4) (13)

(
dφ

dx
)|e =

1

24δx
(27φE − 27φP − φE1

+ φW ) + O(δx4) (14)

So (5) can be written as

1

16
Fe(9φP + 9φE − φW − φE1

) −
1

16
Fw(9φW + 9φP − φW1

− φE)

=
1

24
De(27φE − 27φP − φE1

+ φW ) −
1

24
Dw(27φP − 27φW − φE + φW1

) + O(δx4)
(15)

This can be re-arranged by deleting the truncation error term O(δx4) and utilizing (9) to
give

aP φP = aW1
φW1

+ aWφW + aEφE + aE1
φE1

+ Su (16)

where aW1
= −Dw/24 − Fw/16, aW = 9Dw/8 + 9Fw/16 + De/24 + Fe/16, aE = 9Dw/8 −

Fw/16 + De/24 − 9Fe/16, aE1
= −De/24 + Fe/16, aP = aW1

+ aW + aE + aE1
− SP with

SP = 0, Su = 0.

At node 1, as shown by Figure 2, it is obvious that φw = φA. In order to use (5)
evaluate φe, we make linear extrapolating at mirror node W , that is

φW = 2φA − φP (17)
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Figure 2: Discretization of the given domain [0,L]. The control volume at boundary node P and its
neighbor nodes

Replacing φW in (12) with (17), and (12) becomes

φe =
1

16
(10φP + 9φE − φE1

− 2φA) (18)

A cubic function fit through four nodes P, E, E1 and boundary node A is used to
evaluate (dφ

dx
)e and (dφ

dx
)A.

(
dφ

dx
)e =

1

60δx
(8φA − 75φP + 70φE − 3φE1

) + O(δx3) (19)

(
dφ

dx
)A =

1

60δx
(−184φA + 225φP − 50φE + 9φE1

) + O(δx3) (20)

According to (17)-(19) and (5), the discretization equation at node 1 can be written as

aP φP = aEφE + aE1
φE1

+ Su (21)

where aE = 5
6
DA + 7

6
De −

9
16

Fe; aE1
= − 3

20
DA − 1

20
De + 1

16
Fe; aP = aE + aE1

− SP ; SP =
−(46

15
DA + FA + 2

15
De + 1

8
Fe); Su = (46

15
DA + FA + 2

15
De + 1

8
Fe)φA.

Similarly, at node 2, the discretization equation becomes

aP φP = aW φW + aEφE + aE1
φE1

+ Su (22)

where aW = 5
4
Dw + 5

8
Fw + 1

24
De + 1

16
Fe; aE = 1

20
Dw − 1

16
Fw + 9

8
De −

9
16

Fe; aE1
= − 1

24
De +

1
16

Fe; aP = aW + aE + aE1
− SP ; SP = 2

15
Dw + 1

8
Fw; Su = −( 2

15
Dw + 1

8
Fw)φA.

At node n − 1, the discretization equation is

aP φP = aW φW + aEφE + aE1
φE1

+ Su (23)

where aW1
= − 1

24
De −

1
16

Fe; aW = 9
8
Dw + 9

16
Fw + 1

20
De + 1

16
Fe; aE = 1

24
Dw − 1

16
Fw + 5

4
De −

5
8
Fe; aP = aW1

+ aW + aE − SP ; SP = 2
15

De + 1
8
Fe; Su = −( 2

15
De + 1

8
Fe)φA.

At node n, we have
aPφP = aW1

φW1
+ aW φW + Su (24)

where aW1
= − 1

20
Dw− 1

16
Fw− 3

20
DB; aW = 7

6
Dw + 9

16
Fw + 5

6
DB; aP = aW1

+aW −SP ; SP =
− 2

15
Dw + 1

8
Fw − 46

15
DB + FB; Su = −(− 2

15
Dw + 1

8
Fw − 46

15
DB + FB)φA.
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Now we discuss the property of the above central difference scheme.It is easy to prove
that the scheme is of fourth order accuracy at inner nodes i(2 < i < n − 1), and is of
third order accuracy at node 2 and n− 1,and is first order at node 1 and n. So it is more
accurate than the central difference scheme of second order accuracy.When (−2 < Pe < 2),
by using above scheme we can obtain highly accurate numerical solution, which is shown
by Example 1. But when P ≥ 2 or P ≤ −2, the scheme might be unstable, which is
shown by Example 2. For this reason, we introduce another scheme, third order upwind
difference scheme in following section.

4 UPWIND DIFFERENCE SCHEME

When the flow is convective dominative, we also use four-points cubic interpolation

to evaluate cell face values.The face values of φ and dφ
dx in (5) is obtained from a cubic

function passing through four nodes too, but three of them on the upstream side, the other
one on the downstream side. When uw > 0 and ue > 0, a cubic fit through W2, W1, W

and P is used to evaluate φw and (dφ
dx)w, and a further cubic fit through W1, W, P and

E to evaluate φe and (dφ
dx)e. When uw < 0 and ue < 0, a cubic fit through W, P, E and

E1 is used to evaluate φw and (dφ
dx )w, and a further cubic fit through P, E, E1 and E2 to

evaluate φe and (dφ
dx)e. Here we only discuss the the condtions when ue > 0, uw > 0. The

condition when uw < 0 and ue < 0 can be dealt with similarly.

For a uniform grid with step of δx, the value of φ and dφ
dx

at the cell faces can be
obtained by using cubic interpolation:

φw =
1

16
(φW2

− 5φW1
+ 15φW + 5φP ) + O(δx3) (25)

φe =
1

16
(φW1

− 5φW + 15φP + 5φE) + O(δx3) (26)

(
dφ

dx
)w =

1

24δx
(φW2

− 3φW1
− 21φW + 23φP ) + O(δx3) (27)

(
dφ

dx
)e =

1

24δx
(φW1

− 3φW − 21φP + 23φE) + O(δx3) (28)

Replacing the terms φw, φe, (
dφ
dx )w and (

dφ
dx)e with (25)-(28), we can obtain the dis-

cretized equation at the general node i(3 < i < n) as following.

aPφP = aW2
φW2

+ aW1
φW1

+ aWφW + aEφE + Su (29)

where aW2
= − 1

24
Dw + 1

16
Fw, aW1

= 1
8
Dw− 5

16
Fw + 1

24
De−

1
16

Fe, aW = 7
8
Dw + 5

16
Fw− 1

8
De +

5
16

Fe, aE = 23
24

De −
5
16

Fe, aP = aW2
+ aW1

+ aW + aE − SP , SP = 0, Su = 0.
As same as the method showed in section 3, the discretization equations at nodes near

the boundary can also be obtained.
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At node 1, we use the first order upwind difference scheme to discretize the (2) and
give

aP φP = aEφE + Su (30)

where aE = De, aP = aE − SP , SP = −(2DA + FA), Su = (2DA + FA)φA.
At node 2, the discretization equation is

aP φP = aW φW + aEφE + aE1
φE1

+ Su (31)

where aW = 5
4
Dw + 5

4
Fw − 1

4
De + 3

8
Fe, aE = 1

20
Dw + 19

20
De −

5
16

Fe, aP = aW + aE + Fe −
Fw − SP , SP = 2

15
Dw − 1

2
Fw − 2

15
De + 1

8
Fe, Su = −( 2

15
Dw − 1

2
Fw − 2

15
De + 1

8
Fe)φA.

At node 3, the discretization equation becomes

aPφP = aW1
φW1

+ aW + aEφE + Su (32)

where aW1
= 1

4
Dw − 3

8
Fw + 1

24
De −

1
16

Fe, aW = 5
6
Dw + 15

16
Fw − 1

8
De + 5

16
Fe, aE = 23

24
De −

5
16

Fe, aP = aW1
+ aW + aE + Fe − Fw − SP , SP = 2

15
Dw − 1

8
Fw, Su = −( 2

15
Dw + 1

8
Fw)φA.

At node n, we use the first order upwind difference scheme to discretize the (2) and
the discretization equation takes the form

aP φP = aW φW + Su (33)

where aW = Dw + Fw, aP = aW − SP , SP = −2DB, Su = 2DBφB.

5 HYBRID DIFFERENCE SCHEME

For the fourth order central difference scheme is more accurate when |Pe| < 2, but the
third order upwind difference scheme is more stable when |Pe| ≥ 2, we now utilize their
advantages to construct a hybrid scheme. That is, when |Pe| < 2, we use central difference
scheme introduced in section 3 to discretize (2). Otherwise, we take use of upwind scheme
introduced in section 4 to discretize (2). As have already been deduced in section 3 and
section 4, the discretization equation for Problem I at inner node i(3 < i < n − 2) takes
the form

aPφP = aW2
φW2

+ aW1
φW1

+ aWφW + aEφE + aE1
φE1

+ aE2
φE2

+ Su (34)

where
aP = aW2

+ aW1
+ aW + aE + aE1

+ aE2
− SP (35)

and aW2
, aW1

, aW , aE, aE1
, aE2

, SP , Su are given in Table 1.

At the nodes near the boundary, the discretized equations also take the form of (34),
and the coefficients of these equations can also be obtained from section 3 and section 4.
For the restriction to the magnitude of this paper, we no longer present them here. At
the inner nodes, as the central scheme is of fourth order accuracy, and the upwind scheme
of third order accuracy, then the hybrid scheme is of third order accuracy at least. As in
this scheme we take account into the flow direction, it is more stable too.
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Pe > 2 −2 ≤ Pe ≤ 2 Pe < −2

aW2
− 1

24Dw + 1
16Fw 0 0

aW1

1
8Dw − 5

16Fw + 1
24De −

1
16Fe − 1

24Dw − 1
16Fw 0

aW
7
8Dw + 15

16Fw − 1
8De + 5

16Fe
1
24Dw + 9

16Fw + 9
8De + 1

16Fe
23
24Dw + 5

16Fw

aE
23
24De −

5
16Fe

9
8Dw − 1

16Fw + 1
24De −

9
16Fe −1

8Dw − 5
16Fw + 7

8De −
15
16Fe

aE1
0 − 1

24De + 1
16Fe

1
24Dw − 1

16Fw + 1
8De −

5
16Fe

aE2
0 0 − 1

24De −
1
16Fe

SP 0 0 0
Su 0 0 0

Table 1: Coefficients of the difference equations obtained from the hybrid scheme.

6 NUMERICAL EXAMPLES

Example 1 In Problem I, presuming that all of the cross-sectional area of control
volumes A are the same, A = 1.0, ρ = 1.0, Γ = 0.05, u = 0.2, n = 10, L = 1.0.

Here δx = 0.1, at all of the e and w faces,F = ρuA = 0.2, D = ΓA/δx = 0.5,

Pe = F
D = 0.4. By using above scheme we give its numerical solution. The numerical

and analytic solutions are compared in Figure 3. The maximum percentage error is only
0.10%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10
analytical solution
numerical solution

Figure 3: Numerical solution of the central difference scheme for problem I when Pe = 0.4.

Example 2 In Problem I, presuming that all of the cross-sectional area of control
volumes A are the same, A = 1.0, ρ = 1.0, Γ = 0.05, u = 2.5, n = 10, L = 1.0.

Here δx = 0.1,at e and w faces of all control volumes, D = 0.5, F = 2.5, Pe = F
D =

5. The numerical and analytic solutions are compared in Figure 4. As the maximum
percentage error arrives at 38.85%.

Example 3. Use the upwind scheme just introduced to solve the problem of Example
2 again, and compare the numerical solution of the upwind scheme with the QUICK
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x
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numerical solution

Figure 4: Numerical solution of the central difference scheme for problem I when Pe = 5

scheme.
We can obtain the numerical solution by using the upwind scheme, which is compared

with its analytic solution and numerical solution by using the QUICK scheme in Figure
5. The maximum percentage error of the upwind scheme and the QUICK scheme are
11.11% and 62.73% respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

x

analytic solution
solution of  the upwind scheme
solution of the QUICK scheme

Figure 5: Solution of the upwind difference scheme and the QUICK scheme for problem I when Pe = 5.
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7 CONCLUSIONS

- In this paper, five-point difference schemes and some hybrid strategy are presented
and discussed. The schemes are of higher order accuracy in theory.
- One dimensional steady convection-diffusion problem tests indicate that the new
scheme are suitable for convection dominant problems.
- The schemes might also be extended to solve 2D and 3D convection-diffusion prob-
lems.
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