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On-chip optical trapping of extracellular 
vesicles using box-shaped composite SiO2-
Si3N4 waveguides 
GYLLION BRIAN LOOZEN* AND JACOB CARO 
Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, CJ Delft 2628, The 
Netherlands 
*g.b.loozen@tudelft.nl 

Abstract: The application of on-chip optical trapping and Raman spectroscopy using a dual-
waveguide trap has so far been limited to relatively big synthetic and biological particles (e.g., 
polystyrene beads and blood cells). Here, from simulations, we present the capabilities of dual-
waveguide traps built from composite SiO2-Si3N4 waveguides for optical trapping of 
extracellular vesicles (EVs). EVs, tiny cell-derived particles of size in the range 30−1000 nm, 
strongly attract attention as potential biomarkers for cancer. EVs are hard to trap, because of 
their smallness and low index contract w.r.t. water. This poses a challenge for on-chip trapping. 
From finite-difference time-domain simulations we obtain the narrow beam emitted from the 
waveguide facet into water, for λ = 785 nm. For a pair of such beams, in a counter-propagating 
geometry and for facet separations of 5, 10 and 15 µm, we derive the inter-facet optical field, 
which has a characteristic interference pattern with hot spots for trapping, and calculate the 
optical force exerted on EVs of size in the range 50−1000 nm, as a function of EV position. We 
use two refractive index models for the EV optical properties. Integration of the force curves 
leads to the trapping potentials, which are well-shaped in the transverse and oscillatory in the 
longitudinal direction. By applying Ashkin’s criterion, the conditions for stable trapping are 
established, the central result of this work. Very small EVs can be stably trapped with the traps 
by applying a power also suitable for Raman spectroscopy, down to a smallest EV diameter of 
115 nm. We thus argue that this dual-waveguide trap is a promising lab-on-a-chip device with 
clinical relevance for diagnosis of cancer. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and 
DOI.  
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1. Introduction 
A class of lab-on-a-chip devices for optical analysis of particles is based on using integrated 
photonic waveguides for manipulating and spectroscopic fingerprinting the particles, with the 
goal of their identification. Possible application fields are various, and include point-of-care 
diagnostics and drinking water technology [1], with a focus on, for example, detection of human 
cells indicative of a disease and harmful bacteria. Examples in this field are labs-on-a-chip for 
optical trapping and Raman spectroscopy. These are on-chip versions of a laser-tweezers 
Raman spectroscopy (LTRS) setup [2]. LTRS unifies particle trapping with a focused laser 
beam and Raman spectroscopy of the trapped particle using the same concentrated light. This 
leads to Raman identification of the trapped particle. Prominent examples of on-chip versions 
are dual-fibre or dual-waveguide traps, often combined with microfluidics for particle supply. 
These traps are based on two opposing fibres or integrated photonics waveguides, from which 
counter-propagating beams emanate that define the concentrated optical field for trapping and 
Raman spectroscopy. 

The dual-fibre trap in [3] has been used to hold and manoeuvre human cells to record their 
Raman signals. The trap in [4], apart from fibres for trapping and Raman generation, has fibers 
for collecting Raman signals. A preference is arising towards dual-waveguide devices based on 
microfabricated waveguides, thus avoiding delicate mounting of fibres and aiming for mass 
production. An important step in this direction is reported in [5,6], where the waveguides are 
created by local modification of the index of glass using accurate writing with a femtosecond 
laser beam. The resulting devices can successfully trap and stretch red blood cells (RBCs). The 
laser-writing technique is inherently sequential, making it particularly suitable for fast 
prototyping. We further mention the traps reported in [7,8], based on microfabricated Ta2O5 
waveguides. In [7] trapping of synthetic particles and RBCs is demonstrated, with supply of 
particles to the trap by optical propulsion on the waveguides. In [8] Raman spectra of trapped 
synthetic spheres are reported, but the spectra are induced using a separate laser beam and not 
by the beams emitted by the waveguides. In our work [9], we have exploited the counter-
propagating beams in a dual-waveguide trap built from special waveguides microfabricated 
with semiconductor processing techniques to their full capability, using the beams both for 
trapping synthetic particles and for inducing Raman signals from the trapped particles. 

Recently, LTRS has been applied for studying human extracellular vesicles (EVs) [10–12]. 
These cell-derived particles are present in bodily fluids such as urine and have a diameter 
ranging from 30 to 1000 nm, the size-distribution’s maximum occurring below 200 nm. An EV 
comprises a lipid-bilayer membrane of the parental cell, enclosing mainly cell-derived 
cytoplasm with suspended DNA, RNA and proteins. Tumor-derived EVs strongly attract 
attention as potential biomarkers for cancer [13,14]. For cancer diagnosis such EVs may play 
a role similar to that of circulating tumor cells (CTCs [15],). The bio-chemical composition of 
a fraction of EVs may already deviate from regular in a very early stage of carcinogenesis of 
the organ from which the EVs derive [16], while presence of CTCs indicates full existence of 
organ cancer. Thus, determining EV composition using LTRS can lead to early cancer 
diagnosis [17]. However, only a small sub-population of EVs in bodily fluids shows a signature 
of carcinogenesis, if present. This circumstance asks for high throughput platforms, e.g. lab-
on-a-chip devices scaled to versions with multiple parallelism [18]. Further, EVs are very small 
and have a low index contrast w.r.t. the suspending medium, making on-chip optical trapping 
of EVs challenging. 

Here, from a simulation study, we present the capabilities for trapping of EVs of the dual-
waveguide trap we apply in [9]. The novelty compared to [9] is that we here simulate for this 
type of trap the full range of optical and trapping properties, leading to qualification for the 
characterization of EVs. Further, our simulation results provide guidance for design and 
development of dual-waveguide devices for optical trapping and Raman spectroscopy of a 
broad range of bio-particles relevant for health and medicine. 
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First, the device geometry and two index models for EVs are presented, followed by a 
description of the simulation approach. Then, we detail the photonic ingredients of the traps, 
viz. the waveguide mode, the emitted on-chip beam and the energy density in the trap. 
Subsequently, the force curves for three trap sizes and the index models yield the trapping 
potentials. These in turn, via Ashkin’s criterion [19], lead to the conditions for stable EV 
trapping, which constitute the central results of this work. It follows that very small EVs can 
be trapped with the dual-waveguide traps, highlighting the clinical relevance of this lab-on-a-
chip as a basic device for high throughput platforms. 

2. Device geometry and optical models for EVs 
The building block of the dual-waveguide trap is a waveguide with a box-shaped composite 
Si3N4−SiO2 structure. Its cross section of 1 × 1 µm2 is shown in Fig. 1(a). The walls of the 
square box are 50 nm thick Si3N4 layers. The material inside and outside the box is SiO2. With 
this structure we model the slightly trapezoidal TripleX [20,21] waveguides we apply for the 
dual-waveguide trap in [9]. 

The geometry of the dual-waveguide trap built from a pair of such waveguides is depicted 
in Fig. 1(b). The waveguides are opposed and guide light to a fluidic channel, used for supply 
of EVs. The waveguide facets, which emit a narrow light beam, are part of the walls of the 
fluidic channel. The counter-propagating beams created in this way define a strongly confined 
optical field and thus form an optical trap. The gap width w between the waveguide facets is 5, 
10 or 15 µm, equal to the widths in the devices leading to the results in [9]. The trap centre is 
the origin of the coordinate-system (see Fig. 1(b)). The x-direction is the longitudinal direction 
and the y- and z-directions are the transverse directions. 

EVs are spherical particles [22], with a diameter EVd . We represent their optical properties 
by two models for the refractive index n . The first model assumes a homogeneous EV index, 
for which we take hom 1.37n =  [23]. In the second model we apply the realistic core-shell 
structure of EVs, using core 1.37n = and shell 1.46n =  [24], and taking a shell thickness of 5 nm. 
The homogeneous index can be accurate enough for big vesicles since these have a small 
surface-to-volume ratio. The core-shell model will be more appropriate for small vesicles since 
for these the shell contribution to the total optical force is expected to be rather high. 

 
Fig. 1. (a) Cross section of the composite SiO2−Si3N4 waveguide, the building block of the dual-
waveguide trap. The material inside and outside the square box with Si3N4 walls is SiO2. (b) 
Three-dimensional impression of the dual-waveguide trap. The waveguide facets, with 
separation w, are part of the walls of the fluidic channel. The origin of the coordinate system is 
the trap centre, where in the figure an EV is located with a core-shell structure. 
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3. Simulation approach 
We derive the electromagnetic fields in the traps with the 3D finite-difference time-domain 
(FDTD) method, using Lumerical FDTD solutions [25]. The first goal is to obtain the optical 
forces acting on an EV, as a function of its position on the three axes defined in Fig. 1(a), and 
for the 10 or 15 µm traps on other axes parallel to the y-axis. This is done by simulating traps 
containing an EV and empty traps. The fields with the EV in the trap are needed for Lumerical’s 
force calculations. The fields for the empty trap are used to independently calculate the forces 
for comparison with Lumerical’s method, as discussed below. 

The TE mode obtained from Lumerical’s mode solver is excited in each waveguide, for 
wavelength 0 785 nmλ = . This is our preferential wavelength [9], in view of generating Raman 
signals from the trapped particle. We use planar sources, placed at 2 µm from the waveguide 
facet, that oscillate in phase and emit a short Gaussian pulse of carrier frequency 0f c λ= , the 
frequency corresponding to the mode’s wavelength. The time traces of the electromagnetic 
fields at each mesh point are Fourier transformed to obtain the spatial dependence of the 
complex amplitudes of the harmonic fields for 0λ . This procedure yields the beams emitted 

from the facets, which according to the TE polarization have E


// ẑ . 
The mesh size must be small enough to resolve the fields, on the scale of i) the wavelength 

in the highest index material, ii) the smallest structure of the device and iii) the details of the 
EV structure. The simulation time, however, is inversely proportional to the mesh size to the 
fourth power, implying a practical limit. To fulfill the mesh-size requirements, while keeping 
simulation time within reasonable bounds, we subdivide the total simulation domain into three 
subdomains of different mesh size. The total simulation domain is 17 and 11 µm in the y- and 
z-direction, respectively. The length in the y-direction exceeds that in the x-direction for the TE 
polarization used, in view of the side lobes emitted away from the beam axis (see Section 4). 
In the x-direction the simulation domain is 5.4w+  µm. At the domain’s boundaries we use 2 
µm thick perfectly matched absorbing layers. 

The first subdomain is a rectangular block of cross section 2 × 2 µm2, enclosing the 
waveguides. It has mesh size 1 10 nm∆ = , imposed by the Si3N4 waveguide walls. The block 
length equals the total domain’s length in the x-direction. The second subdomain is a cube of 
edge EV 210d + ∆  surrounding the EV. For the homogeneous index model, we choose 

2 EV / 20d∆ = , with an upper limit of 10 nm. For the core-shell model we take 2 2 nm∆ = , in 
view of the thin EV shell. The third subdomain is the remainder of the total domain, for which 
we take 3 0 SiO2/ (14 )nλ∆ = . In simulating the empty trap, we use 4 10 nm∆ =  in the first and 
second subdomain and 3 0 SiO2/ (14 )nλ∆ =  in the third subdomain. 

We obtain the time-averaged force F< >


 acting on an EV using Lumerical’s volumetric 
technique, by calculating the volume integral of the time-averaged Lorentz force density for a 
cube enclosing the EV. The edge of the integration cube is EV 27d + ∆ , some smaller than the 

cube’s edge that defines the sub-meshing. The Lorentz force density f< >


 is calculated at 
each mesh point inside the cube and on its faces using: 

 ( )0 0 EV( ) .b bf E E i E Bε ε ωε ε ε< >= ∇⋅ < > < > + − < > × < >


    

 (1) 

Here E< >


 and B< >


 are the position dependent time-averaged electric and magnetic field, 
respectively, with the EV in the trap. 0ε is the vacuum permittivity, while bε  and EVε  are the 
relative permittivity of the background medium (i.e. water) and the EV, respectively, the latter 
being a function of position for the core-shell model. We assume lossless materials, implying 
that the relative permittivities equal the square of the refractive indices. 2 / 785 nmcω π=  is 
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the angular frequency of the light. The force on the background medium in the integration cube 
does not contribute to the net force on the EV. Based on the symmetry of the device geometry, 
we limit the force calculations to the three half-axes of the first octant, which gives all relevant 
information on the force behavior in the complete three-dimensional system. For a simulation 
of a single force point, i.e. for a single EV position, we used five so-called thin nodes of a 
supercomputer, each having 24 cores operating at 2.4 or 2.6 GHz, and 64 GB of RAM. On 
average such a single point simulation takes 10 minutes. 

To calculate the forces for the smaller EVs with an independent approach, enabling 
comparison with Lumerical’s method applied to EVs with an assumed homogenous index, we 
use the expression for the so-called time-averaged gradient force acting on a homogeneous 
dielectric particle, here an EV [26]: 

 
3 2 20 EV

EV b2

1 , .
8 2

b d mF E m
m

π ε ε
ε ε

 −
< > = < ∇ > = + 

  

 (2) 

Here <⋅⋅⋅> again denotes time-averaging, while in this case E


 is the electric field in the empty 
trap. Equation (2) is valid for a dielectric particle small enough for the electric field to be 
virtually constant throughout its volume. For such particles the gradient force accurately 
represents the full optical force of a trap provided the scattering force is negligible or zero. This 
situation is known to occur in and close to the centre of free space traps with counter-
propagating beams of equal intensity [27,28]. 

The gradient force of Eq. (2) inherently is a conservative force. Consequently, in the 
approximation of negligible scattering force, a unique value of the trapping potential can be 
assigned at any point by integrating the force along a suitable path. We anticipate that the forces 
of the dual-waveguide trap obtained with the volumetric technique are rather close to the 
gradient force and thus can be considered as conservative. Therefore, we derive the position 
dependent optical potential by integrating the force obtained with the volumetric technique. For 
example, the transverse potential 0 0( , ,0)yU x y  in the point 0y  for an axis parallel to the y-
direction through the point 0( , z 0)x =  ( 0 0, 0x y ≥ , the negative branches follow from 
symmetry) is given by: 

 
0

00 0 , ,0( , ,0) ( ) d .
y

y x yU x y F y y
∞

= − < >∫  (3) 

In Eq. (3) 0x  0( 0)x ≥  is the position of the minimum of the global potential for the x direction 
(see Section 7). For the 5 µm trap a single minimum occurs at 0 0x = . For the 10 and 15 µm 
traps, 0x  is the position of one of the minima of the (symmetric) double-well potential, which 
is located near the facet (see Section 7). Loosely, the potential given by Eq. (3) will further be 
called yU . For zU  an equation similar to Eq. (3) holds. For the x-direction xF  is only defined 
between the waveguide facets. Therefore, to calculate the longitudinal potential 0( )xU x  we 
limit the integration interval such that the EV is not in contact with the facet. This leads to: 

 
0

1

0 0( ) ( ,0,0) ( ) d .
x

x x
x

U x U x F x x≡ = − < >∫  (4) 

Here, we choose 1 EV 2( ) / 2 3x w d= + − ∆ . We add a constant to the outcome of Eq. (4), such 
that (0) (0)x yU U= . 

Calculating the potential for three axes, yields the main information on the potential wells. 
For stable trapping of an EV the potential well should be deep enough. For this we use Ashkin’s 
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stability criterion, according to which trapping in a potential well of depth 0U  is stable for 

0 / 10U kT ≥  [19]. Since the well depth is proportional to the optical power supplied to the trap 
by the waveguides, the criterion leads to a condition for the optical power. 

4. Waveguide mode, emitted beam, and energy density in the trap 
We have calculated the TE mode of the waveguide of Fig. 1(a) using Lumerical’s mode solver 
for 785λ = nm. At this wavelength the waveguide supports a single mode per polarization. We 
use refractive indices of 2.00, 1.45 and 1.33 for Si3N4, SiO2 and water, respectively. The mode 
profile is shown in Fig. 2(a), where the colors represent the intensity of the light. As can be 
seen, for this polarization the electric field concentrates in the upper and lower Si3N4 walls of 
the box. Further, the field is relatively low in the interior of the box (SiO2), quite contrary to 
the case of usual homogeneous ridge waveguides. The electric field drops abruptly upon 
entering the vertical walls of the box from inside or outside, satisfying the boundary condition 
for the normal component for the dielectric displacement. 

 
Fig. 2. (a) Profile of the TE mode of the waveguide in Fig. 1(a), for a wavelength of 785 nm. 
The colors indicate intensity, red (blue) meaning high (low), and do not relate to the scale bar to 
the right. (b) Energy density of the optical field in the xy-plane, both in the waveguide and the 
water, obtained from a FDTD simulation. The horizontal dashed line is the beam axis. Vertical 
dashed lines indicate the facet position and are the transverse lines for which in (d) beam profiles 
are plotted. The color bar defines the energy-density values. (c) Longitudinal energy-density 
profile on the beam axis. (d) Transverse beam profiles on the axes in (b). 

FDTD simulation leads to the energy-density distribution in the xy-plane in Fig. 2(b), both 
in the waveguide and the water, using a source in the waveguide emitting 1 W of power towards 
the facet. At the facet the guided mode is converted into radiation modes that enter the water 
present for 0x ≥ . The oscillatory pattern inside the waveguide and its walls represents a 
standing wave resulting from interference of the forward propagating mode and its part 
reflected back from the facet. Near the facet, the radiation modes take the form of two coherent 
beamlets emitted by the upper and lower waveguide walls. These beamlets merge, yielding a 
main beam (further called beam) coaxial with the waveguide axis, which co-exists with two 
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side lobes directed away from the axis. The beam reaches its energy-density maximum on the 
axis at 1.2 µm from the facet, whereafter it decays smoothly and simultaneously broadens. The 
maximum and the decay of the beam are quantified by the longitudinal energy-density profile 
plotted in Fig. 2(c). The transverse beam profiles in Fig. 2(d) further quantify the beam, in 
particular its spreading with increasing distance to the facet. The transverse profiles show 
shoulders at distances of 1.2 and 2.5 µm that arise from the aforementioned side lobes. We have 
compared the beam in Fig. 2(c) with the one we report in [29] for a Si3N4 solid core waveguide 
of the same cross section. We find that the decay length of the present beam is about three times 
longer and the beam spreading correspondingly weaker, meaning that the composite 
Si3N4−SiO2 waveguide produces a tighter beam and thus is a better waveguide to build a strong 
optical trap. 

For three traps built from the waveguide of Fig. 1(a) with facet separations of 5, 10 and 15 
μm we have simulated the optical fields resulting from the coherent counter-propagating beams. 
In Fig. 3 we show time averaged energy-density distributions in xy-plane of the traps. A total 
power of 1W is supplied to the traps, each waveguides contributing 0.5 W. We omit the 
distribution in the xz-plane, since it portrays the same type of behavior. 

A common characteristic of the traps is the interference pattern between the facets, which 
has a period of 306 nm. The EV size distribution is such that a small EV can be locally trapped 
at a single maximum of the interference pattern, here further called hot spot. But also multiple 
small EVs may be trapped at one hot spot, similar to trapping of multiple EVs with a laser trap 
[10]. A hot spot is narrower in the longitudinal than in a transverse direction. Therefore, the 
confined Brownian motion of an EV has wider excursions in a transverse than in the 
longitudinal direction. 

The three traps, however, also show an important difference concerning the position of the 
regions where the interference maxima are strongest, i.e. the so-called global hot regions. For 
the 5 μm trap a single global hot region exists (see Fig. 3), symmetrically placed around 

 
Fig. 3. Time averaged energy density in the yx-plane for dual-waveguide traps with a facet 
separation of 5, 10 and 15 μm. The total power supplied to each trap is 1 W. The 5 μm trap has 
one global hot region centred between the facets. The 10 and 15 μm traps have two global hot 
regions, each near a facets. The color bar defines the energy-density values. 

the center. The 10 and 15 μm traps, on the contrary, have two global hot regions near the facets. 
This difference results from the longitudinal profile of the interfering beams shown in Fig. 2(c), 
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in particular their decay and the position of their maximum. These are such that the central 
global hot region of the 5 μm gap is split into two global hot regions for the wider gaps. We 
note that the trap built from Si3N4 solid core waveguides [29] already shows two global hot 
regions for facets 5 μm apart. This agrees with the weaker beam decay in the present traps. 

5. Force characteristics of the traps 

We have calculated the longitudinal force curve ( )xF x  and the transverse force curves ( )yF y  
and ( )zF z  in the traps. For up to about two dozen diameters of homogeneous EVs in the range 
50−1000 nm and for 6 diameters of core-shell EVs in the range 50−450 nm such curves have 
been obtained, of which a fraction is shown in Fig. 4. Forces acting on homogeneous EV have 
also been calculated using Eq. (2), giving the gradient force. Gradient-force data are included 
in Fig. 4(a), 4(b) and 4(c) for EVd  = 100 nm (black dots), but such data have been obtained for 
other diameters as well. We concentrate on the 5 and 15 μm traps, since qualitatively results 
for the 10 μm trap are very similar to those of the 15 μm trap. 

In Figs. 4(a), 4(b) and 4(c) curves ( )yF y , ( )zF z , and ( )xF x  for the 5 μm trap are shown, 
respectively, for diameters as indicated and in Fig. 4(a) and 4(b) for both index models. The 
unit of force is pN/W, i.e. the force is normalized to the power delivered to the trap. In Fig. 4(d) 

( )xF x  is shown for the 15 μm trap, restricted to homogeneous EVs of the same diameters as in 
the other sub-figures. In view of symmetry, the plots are limited to the positive half axes. 
Transverse force curves for the 15 μm trap are omitted, since qualitatively these are similar to 
those of the 5 μm trap in Fig. 4(a). In condensed form, the properties of the three traps are 
quantitatively reflected by trap stiffnesses in Table 1 below and by stability curves in Section 
7. 

( )yF y for the 5 µm trap is linear near the origin and has a negative slope. This reflects the 
restoring character of a Hookean force pulling back the EV to the hot spot at the origin, a 
behavior described by ( )y yF y yκ= − , with yκ  the normalized stiffness for the y-direction. 
Normalized stiffnesses for the other directions are defined accordingly. With increasing 
distance | ( ) |yF y  reaches an absolute maximum, followed by a local maximum. The absolute 
maximum relates to the maximum gradient of the beam in Fig. 2(b). The local maximum relates 
to the side lobes in that figure. For EVd  = 1000 nm, the local maximum is less pronounced, 
since the EV for this size overlaps with both the beam and the side lobe, making their individual 
contributions less distinct. This behavior of ( )yF y  applies to both index models, but for small 
diameters the force on core-shell EVs (curves shown for EVd  = 100, 150 nm) is considerably 
higher than that for homogeneous EVs. For EVd  = 50 nm, yF  on average is 110% higher for 
the core-shell EV than for the homogeneous EV, while for EVd  = 250 nm the percentage still 
is 25%. For EVd  = 500 nm the forces for the two models are virtually the same. Apparently, 
for the smaller diameters the shell, though only 5 nm thick, contributes significantly to the force 
and thus cannot be omitted in the EV model. 

As can be seen in Fig. 4(b), ( )zF z behaves very much the same as ( )yF y , the differences 
being that | (z) |zF  is some smaller than | ( ) |yF y , accompanied by a slightly less steep initial 
slope, that the maximum of | (z) |zF occurs at a slightly larger distance and that a local minimum 
of | (z) |zF  is absent. These differences can be traced back to a less tight beam in the xz-plane 
and absence of side lobes in that plane. ( )yF y  and ( )zF z  being so close, we will further refer 
to ( )yF y  as the transverse force. 
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Fig. 4. Force curves for the 5 and 15 µm traps, calculated using the volumetric technique. The 
black dots have been obtained using Eq. (2). The legends in (a) define EV size and EV index 
model (homogeneous vs. core-shell) and apply to each panel. (a) Transverse force ( )yF y  for the 
5 µm trap. (b) Transverse force ( )zF z  for the 5 µm trap. (c) Longitudinal force ( )xF x  for the 5 
µm trap. (d) Longitudinal force ( )xF x  for the 15 µm trap, with part of the x-axis omitted to 
obtain the same horizontal scale as in (a-c). The curves in (a-d) are piecewise cubic spline 
interpolations between the data points. ( )yF y  and ( )zF z  curves have 15 data points. ( )xF x  
curves have 33 data points per µm. 

( )xF x  is an oscillatory function, as exemplified in Figs. 4(b) and 4(c) for the 5 and 15 µm 
traps. The oscillation period equals the period of the fields in Fig. 3, implying that the origin is 
interference. As a function of EV size, a hot spot of the interference pattern attracts or repels 
the EV, depending on whether the local force-curve slope is negative or a positive. In Figs. 4(b) 
and 4(c) attraction occurs for 100, 150 and 950 nm, while repulsion occurs for 450 and 1000 
nm. This sign reversal of the force agrees with [30], which reports that the sign in a standing 
wave trap depends periodically on particle size and that the particle’s equilibrium position 
alternates between interference maxima and minima. Further [30], particle sizes exceeding the 
interference-pattern period exist for which the net optical force is zero as a result of complete 
cancellation of attractive forces of neighbouring hot spots. For the 1000 nm EV this cancellation 
almost occurs, giving weak oscillations in Figs. 4(b) and 4(c). EVs clearly smaller than the 
interference-pattern period are attracted by only a single hot spot, giving an amplitude of ( )xF x  
considerably higher than the maximum of | ( ) |yF y . This results from the spot’s stronger 
intensity gradient in the x-direction than in the y-direction. This difference in force strength for 
the two directions can clearly be seen from the curves for 100 and 150 nm EVs in Figs. 4(a) 
and 4(c). 

The global hot region of the 5 µm trap is centered at 0x = . Therefore, for the smaller EVs 
the force oscillations in Fig. 4(b) are weaker towards the facets. The hot spots near the origin 
thus are more preferential trapping sites, and one may expect the type of hopping motion we 
report in [9] towards the center of the global hot region. For the 1000 nm EV the situation is 
different, since for this size the less intense hot spots near the facet lead to increasingly weaker 
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cancellation near the facet. Preferential trapping is still at the origin, in view of the force 
direction imposed by the background, on which the oscillations are superimposed. 

For the 15 µm trap the global hot regions are located near the facets. For most of the 
diameters in Fig. 4(c) this leads to stronger oscillations with increasing distance from the center 
and thus to stronger local traps near the facets. For the 1000 nm EV the changed position of the 
global hot region leads to weaker oscillations towards the facet, followed by a few strong 
oscillations as a result of entering the relatively “cold” on-axis region very close to the facet 
(see Fig. 3). 

We now compare the forces obtained using the volumetric technique and the gradient 
formula Eq. (2). In Figs. 4(a) and 4(b) it is seen that the results for EVd  = 100 nm agree very 
well. The relative root-mean-square deviation between the forces according to the models 
amounts to 7% for ( )yF y  and 11% for ( )xF x . For EVd  = 50 nm (curve not shown) these 
differences are 2.9% and 2.5%, respectively. These differences indicate that the scattering force 
in this size range is only a small fraction of the total force. This results from the counter-
propagation of the beams of low divergence. For larger EVs the difference increases, indicating 
break down of the dipole approximation, on which the gradient formula is based. 

Table 1. Normalized trap stiffnesses xκ  and yκ  of the strongest trapping sites for the 
three traps for diameters of core-shell EVs as indicated. The quantities EVd , w, ( )x yκ  
denote EV diameter, facet separation of the trap, and stiffnesses for the x(y)-direction, 

respectively. 

EV (nm)d  (μm)w  fN/( nm/W)xκ  fN/( nm/W)yκ  

50 

5 5.12 0.13 
10 2.57 0.10 
15 1.81 0.09 

100 
5 28.63 0.80 
10 14.35 0.59 
15 10.11 0.59 

150 
5 72.07 2.21 
10 36.12 1.70 
15 25.41 1.71 

In Table 1 the values of the normalized trap stiffnesses xκ  and yκ  for the traps are compiled 
for 50, 100 and 150 nm core-shell EVs and for the strongest trapping sites, i.e. for the most 
intense hot spots of the respective global hot regions. The forces for the y- and z-direction being 
very comparable, yκ  is taken as representative for zκ . The Table shows that both xκ  and yκ  
decrease with increasing facet separation. This arises from the decreasing maximum 
constructive interference of the beams. Further, all xκ  strongly exceed the related yκ  owing 
to the much stronger gradients in the x-direction. Finally, the systematic increase of xκ  and yκ  
with EV size for each trap agrees with the diameter dependence of the power required to trap 
core-shell EVs (Section 7). 

We compare the stiffnesses in Table 1 to those in [31], which reports trapping experiments 
on synthetic core-shell EVs using a focussed laser beam. For EV diameters in the range 50-150 
nm lateral stifnesses in the range 1-7 fN/nm/W are reported [31]. Our xκ values in Table 1 
clearly exceed these laser-trap values, while our yκ  values are smaller. Since for a laser trap 
the axial stifness is several times smaller than its lateral stiffness, it follows that the important 
difference and advantage of the dual-waveguide trap for trapping of these nanometer-scale EVs 
is the up to ten times higher stiffness in the x-direction. This results from the interference of the 
beams. 
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6. Trapping potentials 
We have integrated the force curves to obtain the trapping potentials, as prescribed in Section 
3. From the forces in Fig. 4, a single potential well is expected for the transverse directions and 
a periodic potential for the longitudinal direction. Indeed, such behavior is seen in Fig. 5, which 
shows the potentials ( ) /yU y kT [at ( , ) (0,0)x z = ] and ( ) /xU x kT  [at ( , ) (0,0)y z = ] derived 
from the force curves in Figs. 4(a), 4(c), and 4(d) for a power of 100 mW supplied to the trap, 
again using half axes. The potentials are normalized to kT  (T = 293 K) to easily connect to the 
criterion for stable trapping 0 / 10U kT ≥  [19]. 

 

Fig. 5. Normalized trapping potentials for the 5 and 15 µm traps for 100 mW of optical power 
supplied to the traps, calculated from the force curves in Fig. 4. The legends in (a) define EV 
sizes and the EV index model (homogeneous versus core-shell) and apply to each panel. (a) 
transverse potential ( ) /yU y kT  for the 5 µm. (b). Longitudinal potential ( ) /xU x kT  for the 5 

µm trap. (c) Longitudinal potential ( ) /xU x kT  for the 15 µm trap, with part of the x-axis omitted 
to obtain the same horizontal scale as in (a) and (b). 

In the plot of ( ) /yU y kT  in Fig. 5(a) it is seen that the 5 µm trap cannot stably trap 100 and 
150 nm homogeneous EVs in the y-direction at 100 mW. The same holds for the 100 nm core-
shell EV. The 150 nm core-shell EV, however, is almost stably trapped, implying that above 
150 nm core-shell EVs are all stably trapped at this power level. The potentials for 
homogeneous EVs of EVd  = 450, 950 and 1000 nm each indicate stable trapping. 

( ) /xU x kT of the 5 and 15 µm traps shows periodic oscillations of a strength and phase 
depending on EV size, superimposed on a background potential that depends on EV size as 
well. Background potential with superimposed oscillations are called global potential. For the 
smaller EVs the individual wells of the periodic potential are not deep enough for stable 
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trapping at 100 mW. Thermally activated hopping between wells will occur. For EVd  = 450, 
950 nm the individual wells are deep enough for stable trapping, while for these diameters the 
background potential is more apparent. For EVd  = 1000 nm the oscillations are virtually absent, 
in agreement with the force-cancellation in Fig. 4. Considering the smoother global potentials 
in more detail and using symmetry w.r.t. x = 0, one recognises a single potential well centred 
at the origin for the 5 µm trap and a double-well potential for the 15 µm trap (from the potential 
levels at either side of the cut in Fig. 5(c), one easily sees that the single-sided curves indeed 
define a double-well potential). These different potential shapes agree with the respective 
global hot regions for the three traps. 

In calculating the potentials we have applied Eqs. (3) and (4), thus stretching the range 
where the optical force to a good approximation is found to be conservative (up to EVd  = 100 
nm, see Section 5) to EVd  = 1000 nm. To estimate the error we make in this, we have calculated 
for EVd  = 1000 nm and the 5 and 15 µm traps the line integral of the optical force along different 
escape paths from the trap, starting at the origin. The maximum difference we find for the paths 
amounts to 10%. We believe this is acceptable, also since this is a worst case scenario: with 
decreasing EV size the relative contribution of the scattering force becomes smaller, i.e. the 
approximation of conservativity becomes better. 

7. Trapping stability 

In line with Ashkin’s criterion, the minimum power minP  for stable trapping of an EV is defined 
by the demand that the depth of the normalized potential well in the three directions equals 10. 
We first make this demand explicit for the three potential wells obtained. 

The transverse potential well is the well /yU kT defined by curves as in Fig. 5(a). We take 
the transverse axis through the x-position of the most intense hot spot, which for the 5, 10 and 
15 µm traps is at x = 0, ± 3.6 and ± 6.3 µm, respectively. In Fig. 6(a) /yU kT  is plotted for 
stable trapping in the 5 µm trap. We define the maximum excursion during confined Brownian 
motion as the distance from y = 0 to either of the knee points of the curve (indicated by arrows 
in Fig. 6(a)), which is located closer to y = 0 than the classical turning points at /yU kT  = 10. 
So, we avoid the strong influence of the very flat wings of the well. We thus get a single-sided 
excursion of 1.0 µm. The overall picture for /zU kT  is similar. 

The deepest local well of the longitudinal potential is, depending on EV size, the deepest 
local well of /xU kT  at the most intense hot spot or in between the two most intense hot spots 
(see Fig. 5(b) for these situations). In Fig. 6(b) /xU kT  is plotted for stable trapping in the 
central local well of the 5 µm trap. Local well depths near the centre being close, this case also 
represents stable trapping near the center. The single-sided maximum excursion is about 150 
nm (i.e., half of the modulation period). Each of the local trapping wells near the center can be 
filled with one or more EVs. Access to each of these traps can be provided by translating the 
chip under the microscope objective for Raman spectroscopy or by shifting the interference 
pattern by applying a phase difference to the beams forming the trap using on-chip heaters. 

The global longitudinal potential well /xU kT  is defined as the background potential with 
superimposed oscillations. EV trapping in the global potential is only fundamentally different 
from trapping in an individual well if the potential’s oscillatory part is weak compared to the 
background. If not, the EV can still spend considerable time in a single local well or EV motion 
is dominated by hopping between such wells. With some arbitrariness, we translate this to the 
additional demand that the ratio of the deepest local well to the global well depth of 10 is smaller 
than 0.6. 
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For the 5 µm trap we find minP  by making the well depth equal to 10 for classical turning 
points at x =  ± 1.9 µm, where the largest EV does just not touch the facet. This also defines the 
maximum excursion of 1.9 µm. The demand of a weak enough oscillatory potential leads to the 
condition EVd ≥ 300 nm. In Fig. 6(c) /xU kT is plotted for stable trapping in the global well of 
the 5 µm trap. 

For the 10 and 15 µm traps minP  is chosen such that the barrier height between the global 
wells of the double-well potential amounts to 10. For these traps the minima of the individual 
wells coincide with aforementioned positions of the most intense hot spots. Taking half of the 
maximum double-sided excursion for these asymmetric wells, we get the maximum single- 
sided excursions 1.8 (3.1) µm for the 10 (15) µm trap. The demand of a weak enough oscillatory 
potential leads to the condition EVd ≥ 300 (400) nm for the 5 (10 and 15) µm trap, while for the 
10 µm traps the range 500−650 nm is excluded. 

Applying the demand of stable trapping to the three wells leads to the stability curves in 
Figs. 6(d)-6(f) for the traps. A stability curve is a plot of minP  versus EVd . Points on and above 
a stability curve define stable trapping, while for points below a curve an EV cannot be stably 
trapped. Figures 6(d) and 6(e) are for both index models. Figure 6(f) is for the homogeneous 
index. 

 

 

Fig. 6. (a)-(c) Potential wells for the 5 µm trap in case of stable trapping under conditions as 
indicated above the panels. (a) The transverse well /yU kT . The indicated knee points limit the 

confined Brownian motion, as discussed in the text. (b) The deepest local well of /xU kT . (c) 
The global well /xU kT . (d)-(f) Stability curves for the three wells as mentioned in the panels. 
The legends in (d) define the trap sizes and the EV index model (homogeneous versus core-
shell) and apply to each of the stability curves in (d), (e) and (f). 

Figure 6(d) for /yU kT  shows that minP  at fixed EVd  increases with increasing trap size, 
the curves for the 10 and 15 µm traps being close. This agrees with the decreasing energy 
density of the most intense hot spot with increasing trap size in Fig. 3. For small homogeneous 
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EVs with EV 150d ≤ nm the curves are straight lines of a slope very close to −3. Thus, we 
approximately have 3

min EV1/P d∝ , in agreement with Eq. (2) and therefore with a dominating 
gradient force. For core-shell EVs with EV 150d < nm, we find 2.56

min EVP d −∝ , while for each 
trap the core-shell curve lies below the curve for the homogeneous EVs. These properties of 
the core-shell curves agree with the stronger force acting on core-shell EVs than on 
homogeneous EVs. Beyond this range, the curves of core-shell EVs asymptotically approach 
those of homogenous EVs. For 450 nm the effect of the core can still be seen in Fig. 6(d). 

In Fig. 6(e), for small EVd , the curves for the deepest local well of /xU kT  show similar 
behavior as in Fig. 6(d). Different from Fig. 6(d), however, and very prominent are the strong 
and broad peaks at EVd ≈ 420, 700 and 1000 nm. For these diameters the oscillatory potential’s 
amplitude is close to zero due to the cancellation effect. As a result, high powers are needed to 
create deep enough wells for stable trapping. 

In Fig. 6(f) the main features are the residues of the peaks in Fig. 6(e). The weakness of 
these features results from the dominance of the background potential in its interplay with the 
oscillatory potential. Further comparison of Fig. 6(f) with Fig. 6(e) shows that for each trap the 

min EVP d−  curve for trapping in the global well lies below the curve for trapping in the local 
well. Thus, when increasing the power at fixed EVd , trapping is first is realized in a global well, 
followed by trapping in a local well when the power hits the stability curve for local trapping. 
Finally, by considering the various global potential wells in detail, it is seen that for the 5 µm 
trap the effect of the oscillations is smallest, as their amplitude is negligible at the classical 
turning points. For the 10 and 15 µm traps the features are stronger due to relatively strong 
oscillations present at the barrier of the double-well potential. The curve of the 5 µm trap is 
below those of the other traps. This relates to energy densities in Fig. (3). 

In Figs. 6(d)-6(f) minP  covers the range from 1 mW at 1000 nm to 10 W at 50 nm (neglecting 
the peak values around 700 and 1000 nm). For Raman spectroscopy limited EV excursions in 
the trap are prefered, suggesting trapping in a local well of /xU kT . 300 mW can be supported 
by the glued butt coupling of a fiber to the waveguide facet at the chip edge and by the 
waveguide itself [32]. The maximum coupling efficiency between fiber and waveguide is 89% 
[32] and the estimated loss of the Y-junction used [9] to split the entrance waveguide into two 
waveguides routed to the trapping region is −1.0 dB [32]. We thus arrive at a power of 210 mW 
available for trapping, which is in the range for Raman spectroscopy on single EVs [10,12]. 
Figures 6(d) and 6(e) indicate that with the 5 µm trap core-shell EVs of many diameters outside 
the peaks, down to the smallest diameter of 115 nm, can be trapped for min 210P =  mW. In 10 
and 15 µm traps this minP  enables stable trapping of a core-shell EV as small as 155 and 180 
nm, respectively. With these smallest EVs that can be trapped, the largest part of the EV size 
range is covered. We thus argue that the size range that is adressed with our integrated photonics 
lab-on-a-chip device is clinically relevant, also in view of the results in [33], where it is 
demonstrated that already big EVs of a diameter of 1 µm can be used to diagnose prostate 
cancer. 

8. Conclusion and outlook 
We have presented the capabilities of dual-waveguide traps based on box-shaped composite 
SiO2-Si3N4 waveguides for optical trapping of extracellular vesicles (EVs), using FDTD 
simulations and optical force calculations. EVs are very tiny spherical, cell-derived particles of 
diameter in the range 30-1000 nm and have a low index contrast w.r.t. water and therefore are 
hard to trap. EVs attract strong attention as potential markers for cancer. 

Owing to both the small size and special structure of the waveguides, the counter-
propagating beams are narrow and weakly divergent, properties favorable for a tight optical 
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trap. For facet spacings of 5, 10 and 15 μm the optical field between the facets shows clear 
interference maxima or hot spots, leading to an oscillatory force acting on an EV as a function 
of its position and thus to multiple trapping sites. For certain EV sizes the forces exerted by 
several hot spots cancel and only a global longitudinal force remains. 

By calculating forces using Lumerical’s volumetric technique for EV diameters in the range 
50−1000 nm using two refractive index distributions, viz. homogeneous and that of the realistic 
core-shell structure, we find that the shell, though only 5 nm thick, contributes considerably to 
the force up to a diameter of 450 nm. By comparing these forces with forces obtained using the 
gradient formula, we conclude that the gradient force clearly dominates the total force up to 
100 nm EV diameter. This results from counter-propagation of the beams. Longitudinal trap 
stiffnesses derived from the force curves are up to ten times higher than the lateral stiffness of 
a laser-beam trap, a quality resulting from the interference. 

The trapping potentials derived from the force curves lead to the so-called stability curves 
(i.e., curves of the minimum optical power required for stable EV trapping as a function of EV 
size). These curves indicate that EVs of a wide diameter range can be stably trapped with the 
attainable trapping power of 210 mW, down to a smallest size of 115 nm for the 5 μm trap. 
This capability in combination with the power level sufficient for Raman spectroscopy of the 
trapped EV, qualify this dual-waveguide trap as a promising lab-on-a-chip device with clinical 
relevance. Finally, we note that the drag force acting on an EV in a trap under fluidic flow can 
be incorporated in our procedure, leading to modified stability curves. Based on these, the 
smallest EV that can be stably trapped in the flow situation can again be chosen by setting the 
optical power, allowing all smaller EVs to be collected downstream. This defines the principle 
of a size filter for EVs and can be generalized to other bio-particles, such as proteins, cell 
fragments, and so forth. 

As a short outlook, we mention that a multiple-waveguide geometry is a logical extension 
of the geometry presented here. Multiple waveguides lead to stronger light concentration and 
thus a stronger trap, since an interference pattern is created with beams coming from many 
directions. We have a fabrication run underway for dual-, quad-, and octo-waveguide traps 
tailored for experimental trapping and Raman studies of EVs. 
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