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A B S T R A C T

Monitoring the microparticle transfer process in wastewater treatment systems is crucial for improving
treatment performance. Supervised deep learning methods show high performance to automatically detect
particles, but they rely on vast amounts of labeled data for training. To overcome this issue, we proposed
a semi-supervised learning (SSL) method based on the Simple framework for Contrastive Learning of visual
Representations (SimCLR), to detect microparticles free from sludge and attached to sludge. First, we pre-
trained a ResNet50 backbone by SimCLR, to extract features from much unlabeled data (1,000 images). Then,
we constructed a Mask R-CNN architecture based on the pre-trained ResNet50, and fine-tuned it on a small
quantity of labeled data (≈200 images with ≈600 annotated particles) in supervised learning fashion. We
showcased its performance and practical applicability for microscopy images obtained from the water lab of
TU Delft. The results demonstrate that the SSL methods obtain a significant improvement in mean average
precision of up to 5% compared to the conventional supervised learning method, when a limited amount of
labeled data is available (e.g., 91 labeled images). Furthermore, these methods improve the average precision
for detecting attached particles by over 12%. With the detection results from the SSL methods, we measured the
attachment efficiency of microparticles to sludge under varying mixed liquor suspended solids concentration
and aeration intensity. The precise measurements demonstrate the effectiveness and practical applicability of
the SSL method in facilitating long-term monitoring of particle transfer processes in biological wastewater
treatment systems.
1. Introduction

Microplastics, plastic particles under 5 mm in size, are an emerging
contaminant in water environment (Laskar and Kumar, 2019). They
seriously harm aquatic organisms by causing suffocation and digestive
issues, and may pose risks to human health through food chain transfer
(Benson et al., 2022; Blackburn and Green, 2022). In the social water
cycle, microplastics eventually enters the sewage treatment plant (STP)
along the pipe network, which influences the treatment performance
of STP (Hu and Chen, 2024; Li et al., 2023). Unlike the dissolved
substrate which can be used directly, the particulate substrate usu-
ally has to be adsorbed by the sludge (floc, film or granule) firstly,
then hydrolyzed into soluble substrate (Ortega et al., 2022), although
sometimes the microorganisms even use microplastics as carbon source
(Cydzik-Kwiatkowska et al., 2020). The adsorption of microplastics not

∗ Corresponding author at: Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Stevinweg 1,
2628 CN Delft, The Netherlands.

E-mail address: pzx@zzu.edu.cn (Z. Peng).

only affects the wastewater treatment performance, but also determines
the fate of microplastics in STPs. More than 90% of adsorbed microplas-
tic fibers are retained in the activated sludge during dewatering since
their size limits their transport (Keller et al., 2019), and the attached
microparticles can also be stably retained in the sludge over the long
term during anaerobic digestion (Feng et al., 2014). Thus, monitoring
and controlling microplastics deserves attention in STPs to improve
treatment performance (Alvim et al., 2020).

To monitor microparticles, researchers usually collected microscopy
images and processed images using softwares, such as ImageJ (Campbell
et al., 2019; Oliveira et al., 2018). However, employing processing
software is time-consuming and labor-intensive, and requires special-
ized expertise for fine-tuning parameters manually (e.g., threshold, and
output size). Recently, data-driven deep learning methods have recently
https://doi.org/10.1016/j.jenvman.2025.124268
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gained significant attention for image processing and computer vision
asks, with studies highlighting their potential in wastewater treatment

processes (Alvi et al., 2023). For example, Jia et al. (2024a) applied
 Cascade Mask R-CNN model to detect and quantify microparticles
ree from biomass and entrapped in biomass from microscope images in
iological wastewater treatment process. This model achieves a 13.8%
mprovement in micro-average precision, compared to the conventional
mageJ processing method. Additionally, the processing speed of the

model is significantly faster than the ImageJ method with manual
arameter tuning. Satoh et al. (2021) applied an Inception V3 model to
utomatically identify aggregated and dispersed flocs from microscopy
mages in full-scale STPs, achieving an accuracy of about 95%.

While the current results are encouraging, developing accurate
eep learning models needs a substantial amount of labeled data for

supervised learning. The expensive and labor-intensive manual labeling
process has become a bottleneck in deep learning applications (Jia
t al., 2023a). To address this issue, researchers are increasingly ex-
loring the potential of self- and semi-supervised learning approaches,

since they reduce dependency on the availability of a large amount
f labeled data to obtain feature representations from data (Jing and
ian, 2020). Self-supervised learning extracts feature representations

from images via well-designed pretext tasks without requiring manual
labels (Misra and Maaten, 2020). The mainstream self-supervised learn-
ng approaches include two categories: generative and discriminative.
he generative self-supervised approach learns feature representations
y performing pixel-level reconstruction, but requires extensive compu-
ational resources (Goodfellow et al., 2014; Kingma and Welling, 2013).

Discriminative self-supervised learning approaches learns feature rep-
resentations using objective functions which are similar to those used
n supervised learning method. This is achieved by employing pretext
asks, where both inputs and labels are derived from an unlabeled
ataset (Chen et al., 2020).

Typical pretext tasks include relative position prediction (Doersch
t al., 2015), Jigsaw puzzle (Noroozi and Favaro, 2016), and rota-

tion prediction (Gidaris et al., 2018). However, these heuristic tasks
might limit the generality of the learned representations (Chen et al.,
2020). Recently, discriminative approaches based on contrastive learn-
ing have received increasing research attention and achieved promi-
nent success in many computer vision tasks (Khosla et al., 2020).
Contrastive learning operates by pulling similar samples (also called
positive pairs) closer and pushing dissimilar samples (also called neg-
ative pairs) apart (Jaiswal et al., 2020). These methods have achieved
esults comparable to supervised learning methods on benchmark Im-

ageNet dataset (Deng et al., 2009), such as the Simple framework for
ontrastive Learning of visual Representations (SimCLR) (Chen et al.,

2020), Swapping Assignments between multiple views of the same im-
ge (SwAV) (Caron et al., 2020), and Momentum Contrast (MoCo) (He

et al., 2020). Regardless of the self-supervised approach used, semi-
supervised learning (SSL) effectively builds upon model architectures
pre-trained by a self-supervised approach method, that already learns
knowledge from a large amount of unlabeled data. The SSL meth-
ods perform downstream tasks (e.g., images classification) involving a
limited amount of labeled data (Lu et al., 2023). Recent studies demon-
strate that these approaches outperform supervised learning methods in
 variety of domain-specific computer vision tasks. For example, Muljo

et al. (2023) utilized an SSL approach based on the SwAV algorithm
o assist medical personnel in diagnosing COVID-19 infections, by
lassifying chest X-ray images into four categories: positive COVID-

19, normal, lung opacity and viral pneumonia. Their SSL method
demonstrated superior performance compared to supervised learning,
achieving a 0.23 improvement in macro-averaged F1-score. Güldenring
and Nalpantidis (2021) applied a similar SSL method to classify plants
rom agricultural images, obtaining a higher accuracy of up to 15%,
ompared to supervised learning approaches.

In this study, we proposed a two-stage semi-supervised learning
ethod based on SimCLR to detect and quantify microparticles free
 p

2 
from sludge and attached to sludge. We developed and evaluated the
SSL method using microscopy images collected from the water lab of
TU Delft. To the best of our knowledge, we are the first to propose
and evaluate the SSL methods for identifying attachment between
microparticles and sludge in biological wastewater treatment process.

2. The TUD-IPB dataset

We utilized the ‘‘TU Delft-Interaction between Particles and
Biomass’’ (TUD-IPB) dataset, introduced in our previous study (Jia
et al., 2024a). The data was collected from the experiments at the water
ab of Delft University of Technology (TUD), Delft, the Netherlands.

Fig. 1 shows the experimental procedure to build the TUD-IPB dataset.
irst, we collected the sludge mixture from a Nereda® sewage treatment
lant (Utrecht, the Netherlands) with a treatment capacity of 74 700
3 d−1. The sludge mixture was collected in a Nereda reactor after
0 min of aeration, then it was washed three times with mili-Q Water

and sieved sequentially through meshes of 3.1 mm, 2.0 mm, 1.0 mm,
and 0.2 mm (Fig. 1(a)). Second, we employed fluorescent microbeads to
simulate sewage particles (Cospheric, WTW D-82362 Weilheim, Model:
SEP 25, Order NO:209503, Diameter 250 μm, Density 1.02 g L−1). These
microbeads were ground into crushed particles (82.58 ± 47.95 μm)
and diluted with mili-Q Water to prepare particle solution (2000–2500
particles L−1) (Fig. 1 (b)). Third, we conducted the batch test with five
250 mL conical flasks. 200 mL particle solution was added in each
flask, then the biomass fractions of >3.1 mm, 2.0–3.1 mm, 1.0–2.0 mm,
0.2–1.0 mm and <0.2 mm were added to each flask, respectively. The
mixture was aerated for 60 min (Fig. 1(c)). Fourth, we collected 10 mL
samples at 10 min, 30 min and 60 min from each flask, and observed
these samples using a digital microscope (VHX-5000), and recorded
microscopy images with a resolution of 1600 × 1200 pixel (Fig. 1(d)).
Finally, we annotated microparticles free from biomass and entrapped
in biomass in images with mask labels (Fig. 1(e)). Examples of images
rom this dataset are shown in Fig. A.1.

3. Methodology

3.1. Overview of the semi-supervised learning method

In this work, we proposed a two-stage semi-supervised learning
method based on SimCLR for detecting and segmenting free particles
nd entrapped particles in microscopy images. It includes two stages:

(1) self-supervised pre-training stage, and (2) supervised fine-tuning
stage. Fig. 2 shows the outline of the SSL approach. In the first stage,
we employed SimCLR to pre-train a ResNet50 network (He et al., 2016)
on much unlabeled data. In the second stage, we constructed a Mask
Region-based Convolutional Neural Network (Mask R-CNN) (He et al.,
2017) for instance segmentation by adding additional deep learning
layers after the pre-trained ResNet50. Then, we fine-tuned the Mask R-

NN on a small quantity of labeled data, to conduct a specific particle
detection and segmentation downstream task in a supervised learning
mode. We present the details of SimCLR and Mask R-CNN architecture
in Sections 3.2 and 3.3, respectively. The details of the self-supervised
re-training stage and supervised fine-tuning stage are illustrated in

Sections 3.4 and 3.5, respectively.

3.2. Simple framework for Contrastive Learning of visual Representations
(SimCLR)

SimCLR is a simple self-supervised contrastive learning framework,
hat learns feature representations by pulling two augmented views
f the same input image closer on the embedding space (Chen et al.,

2020). Fig. 3 shows the schematic illustration of SimCLR. First, SimCLR
employs data augmentation techniques to create two views (𝑥i and 𝑥j)
rom the input image 𝑥. These two views are considered as a positive
air. In Fig. 3, we only show the cropping and resizing augmentation
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Fig. 1. Experimental procedure to build the TUD-IPB dataset.
technique. Second, a visual encoder network 𝑓 (⋅) (e.g., a ResNet50
architecture) extracts feature representations (ℎi and ℎj) from these two
augmented views. Third, SimCLR uses a projection head 𝑔(⋅) (e.g., 2-
layer multilayer perceptron) to obtain 𝑧i and 𝑧j by mapping the feature
representations (ℎi and ℎj) to the space. Finally, SimCLR learns data
representations by maximizing agreement between two augmented
views in the latent space via a contrastive loss. The contrastive loss
function for this positive pair of examples (𝑖, 𝑗) is given as follows:

𝓁𝑖,𝑗 = − log exp
(

sim
(

𝒛𝑖, 𝒛𝑗
)

∕𝜏
)

∑2𝑁
𝑘=1 1[𝑘≠𝑖] exp

(

sim
(

𝒛𝑖, 𝒛𝑘
)

∕𝜏
)

(1)

𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗 ) =
𝑧⊤𝑖 𝑧𝑗

‖𝑧𝑖‖‖𝑧𝑗‖
(2)

where 1[𝑘≠𝑖] ∈ {0, 1} represents an indicator function equal to 1 if 𝑘 ≠ 𝑖;
𝑁 is the number of input images in a mini-batch; 𝜏 is the temperature
parameter; 𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗 ) is the cosine similarity between 𝑧𝑖 and 𝑧𝑗 .

The careful selection of data augmentation techniques in SimCLR
significantly affect model performance (Chen et al., 2020). The data
augmentation techniques normally include geometric transformations
and color space augmentations (Jia et al., 2023b; Shorten and Khosh-
goftaar, 2019). In this study, we employed four commonly used data
augmentation techniques in SimCLR: (1) random cropping and resizing;
(2) horizontal flipping, (3) color distortion, and (4) Gaussian blur (Chen
3 
et al., 2020). Fig. 4 shows examples of each data augmentation tech-
nique. Cropping and resizing data augmentation technique involves
randomly cropping an input image into two patches with a smaller
resolution than the original input image and then resizing them into the
same size (e.g., 224 × 224 pixel). Horizontal flipping involves reversing
pixels of the image in the horizontal direction. The color distortion
operation adjusts the brightness, contrast, and saturation of images. The
Gaussian blur operation adjusts the blur strength.

3.3. Mask R-CNN for particle detection and segmentation

Fig. 5(a) illustrates the outline of the Mask R-CNN architecture with
a ResNet backbone. It is a two-stage network, that extends the Faster
R-CNN (Ren et al., 2015) for image segmentation by inserting a mask
segmentation branch in parallel with the existing branch for predicting
the bounding box of objects. It mainly includes two modules: (1) fea-
ture extraction, and (2) mask prediction and bounding-box prediction
(i.e., classification and location prediction). In the first stage of the
Mask R-CNN, the ResNet50 backbone (Fig. 5(b)) extracts feature maps
from the input images. Then, the region proposal network (i.e., a fully
convolutional network) creates a serious of region proposals from the
shared feature maps. These proposals are considered as the possible
Region of Interest (RoI). Together with the feature maps, these pro-
posals are fed into the RoIAlign layer, that properly aligns the feature
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Fig. 2. The outline of the proposed two-stage semi-supervised learning method. In the first stage (c), we employed SimCLR to pre-train a ResNet50 encoder network with a
projection head, using much unlabeled data (a). In the second stage (d), we created a Mask R-CNN architecture by adding extra deep learning layers to the ResNet50 backbone.
Then, we fine-tuned this Mask R-CNN on a small quantity of labeled data (b), to perform a specific particle detection and segmentation downstream task. Note that the images
shown in (b) are zoomed-in and cropped to improve visibility of particles, whereas the images used for model training and testing remain unaltered.
Fig. 3. The schematic illustration of SimCLR. First, SimCLR creates two correlated views (𝑥i and 𝑥j) from the input image 𝑥 using data augmentation techniques. Second, these
views are processed by the encoder 𝑓 (⋅) to extract feature representations (ℎi and ℎj). Third, SimCLR uses a projection head 𝑔(⋅) to obtain 𝑧i and 𝑧j by mapping the representations
(ℎi and ℎj) to the latent space. Finally, SimCLR learns representations by maximizing agreement between two augmented views.
maps from each RoI with the input image and maps them into fixed-size
feature maps. In the second stage, the mask head (i.e., convolutional
layers) and detection head (i.e., fully connected layers) simultaneously
predict the pixel-wise mask, and the bounding box with the class of the
detected object from these standard-sized feature maps, respectively.

In this study, we used the ResNet50 as the backbone of the Mask
R-CNN since it is the usually used model architecture in contrastive
learning studies, due to its balance between size and learning capability
(Jaiswal et al., 2020). The ResNet50 mainly includes two parts: (1)
convolutional blocks Conv1 to Conv4, and (2) Conv5 (He et al., 2016).
In the first stage of the SSL, both parts are pre-trained by SimCLR. In
4 
the second stage, we constructed the Mask R-CNN by employing Conv1
to Conv4 as the backbone and adding Conv5 after the RoIAlign layer.

3.4. Self-supervised pre-training with SimCLR

In the self-supervised pre-training stage (Fig. 2(c)), we initialized
the ResNet50 backbone with pre-trained weights from ImageNet, sub-
sequently fine-tuned the entire network using SimCLR on unlabeled
data. This is also known as transfer learning, that provides a better
initialization to the parameters of the network and prevents overfitting
during model training (Wu et al., 2024). Initializing deep learning
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Fig. 4. Examples of data augmentation techniques in SimCLR. Left: an original microscopy image; Right: images generated by performing (a) cropping and resizing, (b) horizontal
flipping, (c) color distortion, and (d) Gaussian blur. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The framework of the Mask R-CNN (a) with the ResNet backbone (b). The ResNet (yellow blocks) mainly include two modules: (1) convolutional blocks Conv1 to Conv4,
and (2) Conv5. In the first stage of Mask R-CNN, the ResNet backbone extracts feature maps from the input images. From these feature maps, the region proposal network extracts
region proposals as the possible Region of Interest (RoI). Then, these RoI and feature maps are fed into the RoIAlign layer to create standard-sized feature maps of each RoI.
Finally, the mask head and detection head predict pixel-wise masks and bounding box from these feature maps, respectively. Acronyms used: Convolutional layer (Conv.), Fully
connected layer (FC). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
models with ImageNet weights is a commonly employed method in
computer vision tasks (Jia et al., 2024b). ImageNet weights employed
in this work were obtained by training the ResNet50 on a subset (1.2
million images with 1000 categories) of the full ImageNet dataset.

3.5. Supervised fine-tuning: particle detection and segmentation

In the supervised fine-tuning stage (Fig. 2(d)), we first constructed
a Mask R-CNN architecture by adding additional deep learning layers
after the ResNet50 backbone obtained in the first stage. Then, we froze
the first two convolutional blocks of the backbone (i.e., Conv1 and
Conv2), and fine-tuned the Mask R-CNN on labeled data, to conduct the
particle detection and segmentation downstream task. During the fine-
tuning process, only the parameters of the unfrozen layers are updated,
while those of the frozen layers are kept unchanged.
5 
4. Experiment

To comprehensively evaluate the effectiveness and practical appli-
cability of the SSL method, we conducted two experiments. Fig. 6 shows
the flowchart of two experiments. In Experiment 1, we explored the
potential of the SSL method for detecting and segmenting particles in
microscopy images. For benchmarking, we compared the performance
of this method against a baseline supervised learning approach. Fur-
thermore, we analyzed how model performance varies with respect to
the availability of labeled data for fine-tuning. Such analysis is vital
for assessing the practical applicability of the SSL method in scenarios
where annotated data is limited. In Experiment 2, we evaluated the
practical applicability of the SSL method in monitoring the attachment
between microparticles and sludge. With the detection results from the
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Fig. 6. The flowcharts of two experiments.
SSL methods, we investigated the influence of mixed liquor suspended
solids (MLSS) concentration and aeration intensity on this attachment.

4.1. Experiment 1: SSL versus baseline methods

4.1.1. Dataset construction
Table 1 shows the subsets used in the first experiment to evaluate

the effectiveness of the SSL and baseline method. First, we randomly
selected 1284 images from the TUD-IPB dataset. Second, we created
the Trainself subset (1000 images) by randomly selecting approximately
80% of these images. These images are not annotated and are used
for self-supervised pre-training. Third, we randomly split the remaining
284 images from the TUD-IPB dataset into Train100%, Validation100%
and Test subset in a ratio of 80:10:10. In these three subsets, we used
mask labels to annotate the free particles and entrapped micro crushed
particles for indicating their location and shape (see Fig. 2(b)). The
Train100%, Validation100% and Test subset includes 635, 51 and 63
particle items, respectively. The Train100% subset is used for model fine-
tuning. The Validation100% subset is used to assess model performance
during training and to prevent overfitting. The Test subset is used to
evaluate the generalization capability of models on ‘‘unseen’’ data (Jia
et al., 2023a).

To further evaluate the performance of the SSL method with regard
to the availability of labeled data, we generated four smaller fine-tuning
subsets by reducing the number of images of the Train100% subset down
to 20% at 20% intervals (Train80% to Train20%), respectively. Similarly,
we further generated four smaller validation subsets (Validation80% to
Validation20%).

4.1.2. Model development
We used subsets in Table 1 to develop SSL models and baseline

supervised learning models. For developing SSL models, we first used
SimCLR method to pre-train the ResNet50 encoder with a projection
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head on the Trainself subset. Then, we fine-tuned the Mask R-CNN
constructed based on the pre-trained ResNet50 backbone on all five
fine-tuning subsets in a supervised learning manner (i.e., Train100% to
Train20%). To prevent overfitting, we validated the SSL models on the
corresponding validation subset (i.e., Validation100% to Validation20%).
Finally, we assessed the model performance on Test subset.

The development of the baseline model only includes supervised
fine-tuning procedure (see Fig. 2(d)), but does not include self-
supervised pre-training procedure (see Fig. 2(c)). For developing base-
line models, we employed the same Mask R-CNN with the ResNet50
backbone. For consistency, we also initialized the ResNet50 backbone
with pre-trained weights from ImageNet. During the fine-tuning pro-
cess, the first two blocks of the backbone (i.e., Conv1 and Conv2) are
frozen, and the Mask R-CNN is subsequently fine-tuned on labeled data
in a supervised manner. We employed the same datasets as the SSL
models for fine-tuning, validation and testing the baseline models.

4.1.3. Performance assessment
To measure the performance of the Mask R-CNN for particle de-

tection and segmentation, we used two common metrics: box-level
mAP50 (mAP50box) and mask-level mAP50 (mAP50mask) (Jia et al.,
2023a). The mAP50 denotes the mean average precision (mAP) of all
categories with an intersection over union (IoU) threshold of 50%,
which is defined as follows:

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃𝑖 (3)

where 𝐴𝑃𝑖 is the average precision (AP) of the 𝑖th category for a given
IoU threshold; 𝑛 is the number of categories.

The IoU is the proportion of the intersection area of prediction and
ground-truth to their union area, which is expressed as follows:

𝐼 𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝑃 𝑟𝑒𝑑 ∩ 𝐺 𝑇 ) (4)

𝐴𝑟𝑒𝑎(𝑃 𝑟𝑒𝑑 ∪ 𝐺 𝑇 )
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Table 1
Subsets in experiments.

Experiment Dataset Subset name No. annotated
entrapped particles

No. annotated
free particles

No. total annotated
particles

No. images

1

Training

Train-self 0 0 0 1000

Train100% 209 426 635 226
Train80% 165 353 518 180
Train60% 127 246 373 135
Train40% 82 180 262 91
Train20% 44 73 117 46

Validation

Validation100% 19 32 51 29
Validation80% 13 30 43 23
Validation60% 11 18 29 17
Validation40% 8 12 20 12
Validation20% 5 11 16 6

Test Test 24 39 63 29

2 TestExp2 0 0 0 322
i

i

w
b

u

where 𝑃 𝑟𝑒𝑑 and 𝐺 𝑇 are the predicted bounding box or mask and
round-truth bounding box or mask, respectively; A high IOU value

indicates that the detected bounding box or mask is well-aligned with
he ground-truth bounding box or mask.

The AP of one category is calculated as the area under the precision–
ecall curve, that is expressed as follows (Padilla et al., 2020):

𝐴𝑃 = ∫

1

0
𝑝(𝑟)𝑑 𝑟 (5)

where 𝑝(𝑟) is the precision (𝑝) at the recall of 𝑟.
The precision 𝑝 and recall 𝑟 are calculated using the number of true

positives (TP), false positives (FP) and false negatives (FN), which are
expressed as follows:

𝑝 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (6)

𝑟 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (7)

TP is the number of objects that are correctly classified and have
an IoU equal or above the IoU threshold. FP represents the number
of objects that are either misclassified or have an IoU below the IoU
threshold. FN donates the number of ground-truth objects that are not
detected by the model.

4.1.4. Implementation setup
For SimCLR pre-training, we pre-trained a ResNet50 with a pro-

ection head of 2-layer multilayer perceptron. We pre-trained it for
00 epochs with a batch size of 16 and a temperature of 0.1. We
sed an SGD optimizer with cosine annealing learning rate schedul-
ng (Loshchilov and Hutter, 2016), with the initial rate of 0.01875

and the minimum value of 0. When fine-tuning SSL models and su-
pervised learning models, we used a batch size of 4 and an SGD
optimizer with a weight decay of 0.0001, a momentum of 0.9, and a
fixed learning rate of 0.01. We fine-tuned the Mask R-CNN for 100
epochs and only saved the weights achieving the highest validation
accuracy (i.e., mAP50box) in validation subset. During testing, we adopt
Non-Maximum Suppression algorithm with an IoU threshold of 0.5 to
eliminate redundant (overlapping) bounding box and masks (Hosang
et al., 2017). All models were implemented using Python programming
language (version 3.8.16), Pytorch framework (version 1.8.1), as well
s VISSL (Goyal et al., 2021) and Detectron2 (Wu et al., 2019) library.

We developed models on a NVIDIA Tesla V100S GPU (32 GB) (Delft
High Performance Computing Centre (DHPC), 2022).

To minimize the impact of randomization, we conducted the fine-
tuning procedure three times for both SSL and supervised learning

odels, and only reported the mean values calculated from these three
uns in Section 5. However, we conducted the analysis on the best-

performing models out of the three runs, when discussing (1) the results
of visual inspection on images predicted by SSL or supervised learning
models in Experiment 1 (see Section 5.1), and (2) the post-processing
results from DL models in Experiment 2 (see Section 5.2).
 t
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4.2. Experiment 2: Monitoring the attachment between microparticles and
sludge

Various factors, such as MLSS concentration and aeration intensity,
nfluence the performance of biological wastewater treatment (Yang

et al., 2024). In this experiment, we applied the DL methods to detect
this interaction from microscopy images. Then, we investigated the
nfluence of these two factors on the attachment between microparticles

and sludge based on the model’s detection results.
We followed the preparation procedure of simulated wastewater

outlined in Section 2. The microparticle concentration and diameter
ere 2000–2500 particles⋅L−1 and 82.58 ±47.95 μm, respectively. The
iomass mixture was collected from the Utrecht wastewater treatment

plant, and the fraction of 2.0–2.4 mm (pore size of the sieves) were used
for this experiment. The experiment includes two groups: (1) MLSS
concentration, and (2) aeration intensity. In each group, we conducted
batch tests using three 500 mL conical flasks. In the first group, 20
mL, 40 mL, and 80 mL of granules were added to three separate flasks,
respectively, followed by the addition of 200 mL simulated wastewater.
The initial MLSS concentration of three flasks was 2062 mg L−1, 4424
mg L−1 and 8977 mg L−1, respectively. Each flask was then aerated for
60 min at an intensity of 2 L min−1. In the second group, we added
40 mL granules into each flask, followed by the addition of 200 mL
simulated wastewater. Three flasks were aerated for 60 min at different
intensities: 1 L min−1 (uneven mixing), 3 L min−1 (intense mixing), and
4 L min−1 (super intense mixing), respectively. For both groups, we
collected 10 mL samples from each flask at 10, 30, and 60 min. Each
sample was filtrated by a 0.20 mm sieve, and the biomass solid on the
sieve was rinsed slightly by miliQ Water. Then, we observed all the
filtrate using a digital microscope (VHX-5000), and captured a total of
322 microscopy images to generate the TestExp2 dataset, as shown in
Table 1. It is noted that these 322 images do not overlap with those
sed in Experiment 1 for model development. Finally, we used the best

model developed in Experiment 1 to detect and segment particles in
322 images. We post-processed the results of model (i.e., the number
and diameter of detected particles) to measure (1) the attachment
efficiency of microparticles to sludge, and (2) the average diameter
of free particles under different experiment conditions. Attachment
efficiency is calculated as the percentage of the number of the attached
microparticles respect to the total number of microparticles in raw
water. Particle diameter is defined as the diameter of a circle with an
area equal to that of the particle. Lengths were calculated using a scale
bar to convert pixels to μm.

5. Results and discussion

5.1. Experiment 1: SSL versus baseline methods

Fig. 7 compares the mean accuracy in mAP50box and mAP50mask of
he SSL and baseline methods on the Test subset. All results calculated
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Fig. 7. Model performance of the SSL and baseline methods on the Test subset with different proportion of labeled data for fine-tuning. Performance metrics include (a) mAP50box
and (b) mAP50mask.
from three runs are shown in Tables B.1 and B.2. The results show that
the SSL method outperforms the baseline method in both mAP50box
and mAP50mask in most cases. The SSL method achieves an mAP50box
varying between 51.8% to 76.8% and an mAP50mask ranging from
54.1% to 76.6%. The baseline method obtains an mAP50box varying
between 49.5% to 72.9% and an mAP50mask ranging from 50.1%
to 74.5%. Moreover, we observed that the proposed SSL approach
significantly outperforms the baseline method with an improvement
in both mAP50box and mAP50mask of over 5%, when few labeled
images are available for training in a supervised manner (i.e., Train40%
to Train80%). For example, when models are fine-tuned on 40% of
labeled images, the SSL method improves the mAP50box of 5.5% and
the mAP50mask of 6.9%, compared with the baseline method. The
SSL method achieves a slight improvement in mAP50box of 2.3% and
mAP50mask of 4.0% compared with the baseline method, even if mod-
els are fine-tuned on insufficient labeled images (Train20%). When a
relatively larger number of labeled images are available for fine-tuning
(i.e., Train100%), these two methods performs similarly in mAP50box,
while the SSL method slightly improves the mAP50mask of 2.1%, com-
pared to the baseline method.

We found that the SSL method could achieve competitive perfor-
mance with the availability of less labeled images, compared with the
baseline method. For instance, the SSL method with 40% of labeled
images for fine-tuning (91 images with 262 annotated particles) obtains
an mAP50mask of 67.3%, similar to that (mAP50mask = 68.5%) achieved
by the baseline method with 80% of labeled images for fine-tuning (180
images with 518 annotated particles). These results indicate that the
features representations learned by SimCLR on context-related images
is more effective than ImageNet representations for particle detection
and segmentation downstream task, while the ImageNet dataset used
in this study includes over 1000 times more images than the Trainself
subset with context-related images for self-supervised pre-training.

Fig. 7 also illustrates that both the SSL and supervised learning
method yield a sharp increase in both mAP50box and mAP50mask as the
number of labeled images for fine-tuning increases from 46 (Train20%)
to 91 (Train40%). For example, the SSL method yields an improvement
in mAP50box of 15.6%, when expanding fine-tuning dataset size from
46 images to 91 images. Compared to other fine-tuning subsets, the
Train20% subset do not include a sufficient amount of labeled data,
resulting in mAP50box and mAP50mask below 60% achieved by models.

Table 2 compares the detection and segmentation performance of
the SSL and baseline methods for each class. The results show that the
SSL significantly outperforms baseline method on entrapped particle
detection and segmentation in most cases. The SSL method achieves
an AP50box ranging from 29.5% to 65.3% and an AP50mask ranging
from 30.3% to 63.9%. The baseline method obtains an AP50 varying
box
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between 15.0% and 57.5% and an AP50mask varying between 15.1%
and 60.7%. When few labeled images are available for fine-tuning
(i.e., Train20% to Train80%), the SSL method yields an improvement
in AP50box ranging from 12.1% to 16.5% and AP50mask ranging from
12.7% to 19.2%, compared to the baseline method. For free particle
detection and segmentation, the SSL method performs worse than the
baseline method in most cases. The SSL method obtains an AP50box
ranging from 74.1% to 89.3% and an AP50mask ranging from 77.9% to
89.3%, while the baseline method achieves an AP50box ranging from
83.9% to 91.0% and an AP50mask ranging from 85.1% to 91.0%. When
little labeled data is available for model fine-tuning (i.e., Train20%
to Train80%), the baseline method yields an improvement in AP50box
ranging from 1.4% to 9.8% and AP50mask ranging from 2.5% to 7.3%,
compared to the SSL method.

Fig. 8 shows some examples of bounding boxes and masks predicted
by the Mask R-CNN on the Test subset using the SSL and baseline
method. More examples can be found in Fig. B.1. This figure shows the
prediction results of the models fine-tuned on the Train80% subset. As
shown in this figure, both the SSL and baseline method can correctly
detect some particles, such as free particles in Fig. 8(a) and (b), and
entrapped particles in Fig. 8(c). However, compared the SSL method,
the baseline method falsely identifies a free particle as an entrapped
particle in Fig. 8(b). Both methods yield few FPs. For example, the SSL
method falsely detects background pixels as free particles in Fig. 8(b),
and the baseline method falsely detects background pixels as free
particles in Fig. 8(a) and entrapped particles in Fig. 8(c).

5.2. Experiment 2: Monitoring the attachment between microparticles and
sludge

Fig. 9 shows the attachment efficiency of microparticles to sludge,
and the average diameter of free particles under varying MLSS con-
centration and aeration intensity. These results are measured by post-
processing the detection results of Mask R-CNN using the SSL method.
This Mask R-CNN model is fine-tuned on the Train80% subset in Ex-
periment 1. We found that the average attachment efficiency of mi-
croparticles decreases with the increase of MLSS concentration (see
Fig. 9(a)). When the initial MLSS concentration is 2062 mg L−1, 4424
mg L−1 and 8977 mg L−1, the average attachment efficiencies are
66.28 ±3.11% and 51.18 ±22.48% and 39.12 ±21.21%, respectively.
This indicates that the adsorption between microparticles and sludge
is not determined by the surface area. Although increasing MLSS con-
centration provides more surface area, it also enhances the collision
between sludge, resulting in detach of already attached microparticles
(Tijhuis et al., 1994). Since bigger micro particles are difficult to be
attached by sludge, better attachment efficiency is associated with
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Table 2
The performance of the SSL and baseline method for each class.
Fine-tuning subset Method Test accuracy

AP50box per class AP50mask per class

Entrapped particle Free particle Entrapped particle Free particle

Train20%
SSL 29.5% 74.1% 30.3% 77.9%
Baseline 15.0% 83.9% 15.1% 85.1%

Train40%
SSL 50.7% 84.2% 50.7% 84.0%
Baseline 34.2% 89.3% 31.5% 89.3%

Train60%
SSL 60.6% 86.7% 59.9% 86.7%
Baseline 48.6% 88.1% 47.2% 89.3%

Train80%
SSL 65.3% 88.3% 58.9% 88.3%
Baseline 51.3% 91.0% 46.0% 91.0%

Train100%
SSL 55.4% 89.3% 63.9% 89.3%
Baseline 57.5% 88.3% 60.7% 88.3%
Fig. 8. Examples of bounding boxes and masks predicted by the Mask R-CNN on the Test subset using SSL and baseline method. The models were fine-tuned on the Train80%
subset.
lower diameter of free particles (Ranzinger et al., 2020). The intensified
collision results in more bigger free microparticles in the mixture. When
the initial MLSS concentration is 2062 mg L−1, 4424 mg L−1 and
8977 mg L−1, the average diameter of free particles during aeration
is 76.08 ± 31.49 μm, 87.64 ± 39.41 μm and 101.69 ± 38.93 μm, respec-
tively. In contrast, increasing aeration intensity has a limited effect
on the attachment efficiency between microparticles and sludge (see
Fig. 9(b)). When the initial MLSS concentration is similar (2924–3102
mg L−1), the average attachment efficiency of microparticles under
aeration intensities of 1 L min−1, 3 L min−1, and 4 L min−1 is 17.74
±9.93%, 23.90 ±13.95% and 16.14 ±14.89%, respectively. Although
the hydraulic shear disturbance caused by different aeration intensity
is different (Remmas et al., 2017), its effect on attachment efficiency is
limited. Since the net attachment is determined by the balance between
9 
attachment and detachment. In this experiment, the aeration lasted
for 60 min, the attachment efficiency under low aeration intensity (1
L min−1) continuously increases, while the attachment efficiency under
high aeration intensity (4 L min−1) continuously decreases. Although
higher aeration intensity indeed increases attachment by enhancing
mass transfer initially, it also increases the collision probability to
detach the microparticles (Bruckner et al., 2011). The average diameter
of free microparticles is also similar (77.78 ± 19.38 μm,86.91 ± 27.90 μm
and 87.40 ± 42.09 μm, respectively), which verifies that the aeration
intensity has a limited effect on the attachment efficiency.

In the actual biological wastewater treatment process, to ensure that
more influent microparticles are utilized by microorganisms, enhancing
attachment by appropriately reducing the MLSS concentration has
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Fig. 9. The attachment efficiency of microparticles to sludge and the average diameter of free particles under varying (a) mixed liquor suspended solids (MLSS) concentration and
(b) aeration intensity.
proven to be effective. Furthermore, if the aeration duration is suffi-
ciently long, using a lower aeration intensity is suggested to achieve
both high attachment efficiency and energy savings.

5.3. Implications for biological wastewater treatment

The biomass mixture used in this study is consisted of both gran-
ular sludge and conventional activated sludge flocs, and it covers
the size of microbial aggregates commonly used in wastewater treat-
ment (De Kreuk et al., 2007). Given the minimal color variation among
the microbial aggregates of actual municipal wastewater treatment
plants (typically appearing as dark brown), and the widespread use
of fluorescent microbeads as a tracer (Sorasan et al., 2022), our de-
veloped model has the significant potential to be applied in biological
wastewater treatment system.

On the one hand, the model helps to assess the fate of microplastics
in wastewater treatment plants. It can investigate the attachment and
detachment between microplastics and sludge, thereby elucidating the
transfer behavior of microplastics within biological wastewater treat-
ment systems. The distribution of microplastics between effluent and
residual sludge depends on some factors, including particle size, shape,
and surface properties (Wang et al., 2023). If microplastics predomi-
nantly accumulate in the residual sludge, incineration would be a suit-
able sludge treatment method; otherwise, anaerobic digestion would be
more appropriate (Ottosen et al., 2016). On the other hand, the model
allows to evaluate the removal performance of particulate matter in
an affordable manner for the long-term monitoring. Many substances
in actual wastewater exist in particulate form. For biodegradable par-
ticulate matter, they need to undergo attachment, hydrolysis, and
other steps before being utilized by microorganisms. In contrast, the
nonbiodegradable particulate matter only exhibits attachment and de-
tachment with sludge. The model can help to investigate the removal
performance of particulate matter within biological wastewater treat-
ment systems by microscopy images, thereby improving its attachment
performance through optimizing operational parameters.

5.4. Limitation and future works

The SSL methods we proposed consistently outperform the con-
ventional supervised learning approaches in the detection and seg-
mentation of free and entrapped particles from microscopy images.
Additionally, the results indicate the practical applicability of the SSL
methods in identifying the attachment between microparticles and
sludge. However, this study only focused on the interactions between
particulate matter and the granular sludge within the size range of 2.0–
2.4 mm, whereas the biomass size distribution in the Nereda® system
is considerably broader (Pronk et al., 2015). Future research should
10 
explore the interactions between particulate matter and granules of
varying sizes. Furthermore, the activated sludge process is the most
widely used technology in wastewater treatment, typically involving
sludge flocs smaller than 200 μm. The SSL methods could be applied to
examine interactions between particulate matter and activated sludge,
focusing on effects of aeration rate, sludge concentration, reaction time,
and mechanical stirring intensity.

Meanwhile, we identify several limitations in our methodology
and dataset, and outline future works needed to facilitate real-world
applications. First, the dataset for self-supervised pre-training contains
much fewer images compared to large-scale comprehensive datasets,
such as ImageNet. Future work should focus on enhancing model per-
formance by expanding the scale of the pre-training dataset. Literature
demonstrates significant benefits for SSL from this implementation.
For example, Goyal et al. (2022) showed that the performance of the
SSL method continuously improves with an increase in the size of
the pre-training dataset, ranging from 1.2 million to 14 million to 1
billion. Second, the experiments in this study lacks hyper-parameter op-
timization and a systematic evaluation of the benefits derived from the
selection of data augmentation techniques in SimCLR, due to computa-
tional resource limitations. Lastly, we did not explore the effectiveness
of other contrastive learning methods due to computational resource
constraints, such as SwAV (Caron et al., 2020) and MoCo (He et al.,
2020). More focus on these aspects are needed to obtain a robust model.

6. Conclusions

Monitoring the particle transport process in biological wastewater
treatment system is essential for enhancing the treatment performance.
To detect and quantify microparticles free from sludge and entrapped
in sludge, supervised deep learning algorithms in the field of com-
puter vision are promising techniques. However, supervised learning
algorithms rely on a large number of carefully labeled samples for
training. Moreover, the labeling work is labor-intensive and costly, and
relies on domain-specific knowledge. This hinders obtaining notable
model generalization capability, underpinning the development of ro-
bust computer vision systems for structural monitoring of particle trans-
port process. To address this concern, we proposed a semi-supervised
learning (SSL) method for detecting microparticle transfer process in
biological wastewater treatment systems. First, we extracted feature
representations from unlabeled images by a self-supervised learning
method SimCLR. Then, we fine-tuned the model on a limited amount
of labeled data in a supervised learning manner.

To evaluate the performance of the proposed SSL methods, we
conducted an experiment using microscopy images collected from the
water lab of TU Delft. We compared the performance of the SSL meth-
ods to the conventional supervised learning methods with ImageNet
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Fig. A.1. Examples of microscopy images collected from the experiments at the water lab of TU Delft.
Fig. B.1. Detection and segmentation results of the SSL and baseline method on the Test subset. The models were fine-tuned on the Train80% subset.
pre-trained weights. The results show that the SSL methods achieve
a significant improvement in box-level and mask-level mean average
precision (mAPbox and mAPmask) of over 5% compared to the super-
vised learning approaches in scenarios with limited available labeled
data. Especially, it yields a significant improvement in mAPbox and
mAPmask of over 12% with regard to entrapped particle detection and
segmentation. Our findings indicate that the feature representations
obtained through self-supervised learning on domain-specific images
may prove superior to those derived from pre-training on much larger,
11 
but unrelated, datasets. Based on the detection results from the SSL
methods, we measured the attachment efficiency of microparticles
to sludge under varying mixed liquor suspended solids concentration
and aeration intensity. The accurate measurement results indicate the
practical applicability of the SSL methods in identifying the attachment
between microparticles and sludge.

Our proposed SSL methods reduces dependency on the availability
of labeled data, yet achieves competitive performance. These methods
are especially suitable for cases where collecting data is relatively
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Table B.1
The performance of the semi-supervised learning method across three runs.
Fine-tuning
subset

Fine-tuning
run

Fine-tuning
time (min)

Validation accuracy
(mAP50box)

Test accuracy

mAP50box mAP50mask AP50box per class AP50mask per class

Entrapped
particle

Free
particle

Entrapped
particle

Free
particle

Train20%

1 266 67.7% 49.8% 49.8% 30.2% 69.5% 30.2% 69.5%
2 365 74.8% 51.0% 54.9% 32.2% 69.7% 28.8% 80.9%
3 391 74.6% 54.6% 57.6% 26.0% 83.2% 32.0% 83.2%
Average 341 72.4% 51.8% 54.1% 29.5% 74.1% 30.3% 77.9%

Train40%

1 304 88.8% 68.1% 68.1% 49.3% 87.0% 49.3% 87.0%
2 431 88.8% 64.7% 66.9% 46.8% 82.7% 51.7% 82.2%
3 445 87.6% 69.3% 67.0% 55.9% 82.8% 51.1% 82.8%
Average 393 88.4% 67.4% 67.3% 50.7% 84.2% 50.7% 84.0%

Train60%

1 342 87.6% 76.2% 76.2% 63.4% 89.0% 63.4% 89.0%
2 487 87.4% 74.5% 74.5% 58.7% 90.2% 58.7% 90.2%
3 502 86.1% 70.4% 69.3% 59.8% 81.0% 57.5% 81.0%
Average 444 87.0% 73.7% 73.3% 60.6% 86.7% 59.9% 86.7%

Train80%

1 373 89.2% 79.9% 73.7% 69.8% 89.9% 57.4% 89.9%
2 540 89.7% 76.0% 72.4% 61.7% 90.4% 54.5% 90.4%
3 522 90.2% 74.5% 74.8% 64.3% 84.7% 64.9% 84.7%
Average 478 89.7% 76.8% 73.6% 65.3% 88.3% 58.9% 88.3%

Train100%

1 348 74.0% 77.1% 77.1% 67.0% 87.2% 67.0% 87.2%
2 514 75.2% 71.6% 75.8% 54.0% 89.2% 62.4% 89.2%
3 502 75.4% 68.4% 77.0% 45.3% 91.5% 62.4% 91.5%
Average 455 74.9% 72.4% 76.6% 55.4% 89.3% 63.9% 89.3%
Table B.2
The performance of the baseline method across three runs.
Fine-tuning
subset

Fine-tuning
run

Fine-tuning
time (min)

Validation accuracy
(mAP50box)

Test accuracy

mAP50box mAP50mask AP50box per class AP50mask per class

Entrapped
particle

Free
particle

Entrapped
particle

Free
particle

Train20%

1 261 79.2% 50.3% 52.2% 17.0% 83.5% 17.2% 87.2%
2 400 80.5% 50.1% 50.1% 14.1% 86.1% 14.1% 86.1%
3 425 74.7% 48.0% 48.0% 13.9% 82.1% 13.9% 82.1%
Average 362 78.1% 49.5% 50.1% 15.0% 83.9% 15.1% 85.1%

Train40%

1 300 89.1% 65.3% 60.4% 38.0% 92.6% 28.3% 92.6%
2 453 88.3% 59.6% 59.6% 30.5% 88.7% 30.5% 88.7%
3 440 87.8% 60.3% 61.2% 34.0% 86.6% 35.8% 86.6%
Average 398 88.4% 61.7% 60.4% 34.2% 89.3% 31.5% 89.3%

Train60%

1 338 90.5% 72.1% 73.1% 55.8% 88.4% 55.8% 90.4%
2 462 89.7% 62.7% 61.3% 38.5% 86.9% 34.3% 88.4%
3 441 91.5% 70.2% 70.2% 51.4% 89.0% 51.4% 89.0%
Average 414 90.6% 68.3% 68.2% 48.6% 88.1% 47.2% 89.3%

Train80%

1 369 91.6% 69.0% 66.2% 48.8% 89.2% 43.2% 89.2%
2 464 91.2% 69.2% 66.5% 46.1% 92.3% 40.7% 92.3%
3 450 91.1% 75.4% 72.8% 59.1% 91.6% 54.1% 91.6%
Average 428 91.3% 71.2% 68.5% 51.3% 91.0% 46.0% 91.0%

Train100%

1 344 81.3% 77.7% 76.6% 63.5% 91.9% 61.3% 91.9%
2 428 72.9% 72.4% 72.4% 54.6% 90.2% 54.6% 90.2%
3 445 74.9% 68.5% 74.5% 54.3% 82.8% 66.3% 82.8%
Average 406 76.4% 72.9% 74.5% 57.5% 88.3% 60.7% 88.3%
c

t
A
E
t
f

easy, while labeling data manually is costly and labor-intensive. We
uggest stakeholders using these methods to develop more robust deep

learning models for long-term monitoring of particle transfer process in
iological wastewater treatment systems.
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