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1
Introduction

Metamaterials have attracted much attention in the last two decades due to their ability to possess
unusual properties[7]. Their extraordinary properties are derived not from the materials they are made
of but from their precisely designed geometric structures[14][17]. This gives metamaterials the ability
to possess properties that are unusual and extreme compared to constituent materials.

Mechanical metamaterials are a subgroup ofmetamaterials that focus onmotion, displacements, stresses,
and mechanical energy[1]. For example, they can display negative stiffness behaviors[8][11], where
the material compresses under tensile stress and expands under compressive stress, defying conven-
tional material responses. Additionally, they can exhibit negative thermal expansion[19], contracting
when heated rather than expanding as traditional materials do. Furthermore, the Poisson’s ratio in
these materials can be tailored to be positive, zero, or negative[19][2][9], allowing for expansion, neu-
tral response, or contraction perpendicular to an applied force, respectively.

Mechanical metamaterials with nonlinear stiffness properties are captivating for their stiffness pro-
grammability[20], their potential in energy absorption applications [15], and their shape-morphing ca-
pabilities [18]. These nonlinear stiffness metamaterials can be classified into three types of stability,
namely monostability, multistability, and neutral stability.

Monostable nonlinear stiffness metamaterials include metamaterials with constant force properties,
also called Quasi-zero stiffness properties. This refers to metamaterials with a single minimum in their
potential energy landscape. The corresponding stiffness characteristic is high stiffness transitioning to
almost zero stiffness as the displacement increases to a certain level. A possible application for these
metamaterials is vibration isolation[22][10].

Conversely, metamaterials with multistability introduce a framework where multiple equilibrium states
are feasible, caused by the presence of multiple local minima within their potential energy landscape.
This is typically achieved through the tessellation of bistable unit cells. The unit cells often consist of
some variation of a beam with two equilibrium positions. These types of metamaterials could be used
for energy absorption[4][6] and shape morphing[13].

On the other hand, neutral stability in metamaterials is also an intriguing feature. In theory, these struc-
tures maintain a constant potential energy across the energy landscape, indicating that they do not
require a force to deform or remain deformed. Their ability to change and sustain different shapes
without requiring energy makes them an important innovation in developing more energy-efficient tech-
nology. For example, in linear guidance systems, mechanisms with zero stiffness in one direction
(the guiding direction) but high stiffness in others are required. Neutrally stable metamaterials could
meet this requirement. Despite the intriguing nature of neutrally stable metamaterials, research in this
area is noticeably scarce. Research by Mukhopadhyay et al.[12] showcases an origami-based tubular-
shaped metamaterial. This metamaterial is based on a waterbomb crease pattern and can exhibit
negative stiffness properties and near-neutral stability by changing the tesselation sequence and fold-
ing angle. Additionally, research by Cai et al.[3] designed a novel one-dimensional quasi-zero stiffness
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metamaterial. The unit cell of this metamaterial is made of an elastic positive stiffness element and
two buckling beams with negative stiffness elements. The positive stiffness can be neutralized by the
negative stiffness, leading to the quasi-zero stiffness behavior. Near-neutral stability can be achieved
in the unit cell by applying a pre-load. However, the neutral stable behavior is within the boundaries of
the unit cell, thus the displacement region of neutral stability will not increase for the metamaterial. All
in all, in the current research, no general method was found for creating neutrally stable metamaterials.

This paper presents a novel method for achieving neutral stability in metamaterials. It proposes a novel
unit cell design with constant force properties. This unit cell consists of an upper half and a lower half.
The upper half is the mirrored version of the lower half, both made up of four spline-shaped beams
that are designed to experience lateral torsional buckling (LTB), inducing a constant force behavior. By
introducing pre-tension in both the upper and lower halves of the unit cell, the areas exhibiting constant
force characteristics are aligned with one another. This alignment shifts the behavior from a constant
force response to a zero-force state, thereby achieving a neutrally stable behavior.

The primary goal of this paper is to assess the feasibility of this approach for achieving neutral stability.
To accomplish this, the unit cell is geometrically optimized and then subjected to tests that mimic the
expected behavior of the metamaterial. The subsequent analysis of the force-displacement results
from these tests serves as the foundation for determining the method’s viability.
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Literature review: Mechanical metamaterials with
nonlinear stiffness and their stable states

Jeffrey Zhu, Giuseppe Radaelli

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering and Marine Technology,
Delft University of Technology, The Netherlands

Abstract—Mechanical metamaterials is a branch of metamate-
rials that focuses on motion displacements, stresses, and mechan-
ical energy. Although these materials can achieve displacements
by external stimuli, not all can maintain a deformed shape
after removing the external stimuli. This review provides a novel
categorization for metamaterials with stable states and nonlinear
stiffness characteristics. This categorization serves as a guide for
understanding and applying stability strategies based on informa-
tion from the literature. The main strategy used for multistability
is compression-induced snap-through mechanisms. For neutral
stable metamaterials, negative and positive stiffness elements,
and origami-inspired structures are used. In addition, this review
rates and compares the various strategies based on factors such
as scalability, manufacturability, and support stiffness. Finally, it
was identified that neutral stable metamaterials show potential
for future research.

I. INTRODUCTION

Metamaterials are materials structured from periodically
arranged building blocks that are also known as unit cells
[1]. The properties of metamaterials originate from the mi-
crostructure rather than the chemical composition, such as
constituent materials [2]. This gives metamaterials the ability
to possess properties that are unusual and extreme with respect
to constituent materials.

Mechanical metamaterials is a branch of metamaterials that
mainly focuses on motion, displacements, stresses, and me-
chanical energy [1]. In the field of mechanical metamaterials,
there are designs for negative stiffness [3], negative Poisson’s
ratio [4], negative thermal expansion [5], and a combination
of these indices [6]. Negative stiffness in this context refers to
the decrease in force as the displacement increases when the
structure is under a load. Although all of these materials can
achieve displacements by external stimuli, such as mechanical
force and heat [7], not all mechanical metamaterials can
maintain a deformed shape after removing external stimuli.
By introducing multi-stability and neutral stability it will be
able to maintain the deformed shapes without external stimuli.
This is desirable because it allows for shape retention, and
since these materials do not require continuous energy input
to maintain their deformed shape, they prove to be energy-
efficient. Multi-stable structures possess multiple local minima
on the potential energy landscape and thus can rest in multiple
stable states. Neutrally stable structures possess a constant
potential energy on the energy landscape. This means that no
force is required to deform the structure or to keep the structure

in the deformed position, hence they are often referred to as
zero stiffness structures [8].

Various reviews on mechanical metamaterials can be found
prior to this literature review. For instance, a review of flexible
metamaterials was conducted by Bertoldi et al. [1] This review
identifies the principles leading to properties like pattern and
shape transformation in response to mechanical forces, unidi-
rectional guiding of motion and waves, and reprogrammable
stiffness. Furthermore, a review from Wu et al. [9] summarizes
the current shape-morphing programming strategies for me-
chanical metamaterials, this includes heterogeneous material
composition and structural instabilities. Another review by
Kelkar et al. [10] made a classification of auxetic metamate-
rials and their configurations. Finally, other reviews on more
specific metamaterial properties have been made by i.e. Wu
et al. [11] which reviews the dynamic properties of mainly
elastic and acoustic metamaterials, Al Rifaie et al. [12] that
reviewed the use of mechanical metamaterials for vibration
isolation and damping, and Zhai et al. [13] reviewed the use of
origami and kirigami principles in the design and fabrication
of mechanical metamaterials. Despite these valuable contri-
butions in the literature, a comprehensive review focusing
on geometrically configured mechanical metamaterials with
stable states and nonlinear stiffness characteristics is currently
lacking. While previous reviews have considered individual
properties or principles, they have not explored in depth the
role of geometric configurations, stability principles and their
interplay in creating these materials.

The aim of this work is (i) to provide an overview of
different geometrically configured mechanical metamaterials
with nonlinear stiffness characteristics and their stable states,
(ii) to find the principles for stability in those metamaterials,
and (iii) to identify gaps in the literature for new research
directions.

The paper is structured as follows. The methods for col-
lecting relevant literature, categorizing literature, and rating
the performance are described in section II The results of
the categorization and performance overview will be shown
in section III and discussed in section IV. Finally, section V
concludes the literature review.

II. METHOD:LITERATURE REVIEW,
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CATEGORIZATION AND PERFORMANCE OVERVIEW

For this literature review, the Scopus database was searched
using specific terms and Boolean operators (as shown in
Table I) to identify relevant articles published before Novem-
ber 24, 2022. The search included different spellings and
synonyms of the terms to maximize the number of relevant
results. The results were then manually filtered to include only
articles related to nonlinear stiffness characteristics.

TABLE I
OVERVIEW OF SEARCH TERMS USED. THE COLUMNS ARE COMBINED

WITH OR BOOLEAN OPERATORS, WHILE THE ROWS ARE COMBINED WITH
AND BOOLEAN OPERATORS.

AND
Metamaterial Force Displacement
Meta-material Programmable Stiffness
Cellular material Bistable
Lattice material Bi-stable
Architected material Multi-stable

OR Micro lattice Multistable
Zero stiffness
Continuous equilibrium
Constant potential energy
Neutral stable

Afterward, the collected literature is categorized into two
independent categories. This categorization is visualized in
Figure 1. The first category is geometry, this category describes
the geometry of metamaterials. Metamaterials come in all
kinds of shapes. Some metamaterials’ working principles can
be explained by solely looking at the 2D planar configura-
tion, the out-of-plane dimension of the structures is in those
cases constant and less relevant. Other shapes can be derived
from a 2D planar configuration but are merely curved into
a cylinder or other zero-gaussian shapes. Non-zero-Gaussian
shapes are also included such as spheres. Lastly, there are
3D configurations, these shapes have varying parameters in
all three dimensions and are subdivided into origami-inspired
metamaterials and non-origami-inspired metamaterials.

The second category describes the stability of metamateri-
als. In this category, a distinction is made between three types
of stability. Firstly, metamaterials that are monostable. Monos-
table means that after a force is removed the metamaterial
will return to its initial stable position. One could argue that
every metamaterial which is not multistable or neutrally stable
is monostable. To prevent over-saturating this sub-category
solely metamaterials with negative stiffness and zero stiffness
properties are considered. Secondly, metamaterials can have
multi-stable displacement states. Multi-stability means that
after removing a force, the metamaterial can maintain a finite
number of positions which is different than the initial position.
Lastly, there are neutrally stable metamaterials. Neutrally
stable metamaterials have the property of zero stiffness and
also require zero force to deform the material. Due to these
properties, it can retain infinite stability positions.

Finally, a performance overview will be provided to com-
pare the different metamaterials on their properties. In this per-
formance overview, the stiffness characteristic will be shown,

Fig. 1. Categorisation of the literature

this describes the characteristic of the force-displacement
graph of the metamaterial. To add, their working dimensions
are also displayed in the overview. This shows how many
working directions the metamaterial has. However, since the
metamaterials have different shapes and sizes they will also
be rated on their scalability and manufacturability. Scalabil-
ity describes the ability to make the metamaterial smaller
and manufacturability is the difficulty and effort required to
manufacture the metamaterial. Many metamaterials are being
tested in their intended working direction, however, they are
not always stiff enough in the other degrees of freedom. Thus,
the support stiffness is also rated. The ratings are performed
by comparing the different metamaterials and giving them a
score ranging from ’++’ to ’- -’.

III. RESULTS

A. Monostable - 2D planar configuration

This category mainly consist of metamaterials with Quasi-
zero stiffness(QZS) properties. Quasi-zero stiffness is a force-
displacement relationship where a flat range occurs. Within
that range, no additional force is required to increase the
displacement. Thus, for that range there is zero stiffness. The
relationship is illustrated in Figure 2

Fig. 2. Example of a force-displacement relation with QZS
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In general, there are two types of QZS categories:
combined-type and monolithic [14]. The combined-type con-
figuration is made from unit cells with positive and negative
stiffness elements, while the monolithic configuration is made
from unit cells where the QZS property comes from a single
element. Lin et al. [14], Zhou et al. [15], and Zhang et al. [16]
designed a monolithic variant using a folded slender beam to
achieve the QZS property. They conducted a folded slender
beam optimization to determine the geometries of the slender
beam. An example of the optimized unit cell can be seen in
Figure 3.

Fig. 3. Unit cell of a monolithic QZS unit cell. Retrieved from [15]

The unit cells can be arranged in different ways to create
differently structured metamaterials. These arrangements in-
clude lateral arrangements, combined lateral and longitudinal
orientations, or a pyramid-like stacking structure. As shown in
Figure 4,Figure 5, and Figure 6, respectively. In the pyramid
stacked configuration, the QZS behavior occurs periodically
in the force-displacement relation. This is due to the uneven
number of unit cells on each layer, which causes the required
force to deform the layers to be unequal. When an increasing
force is applied, the upper layer deforms past the QZS region
first, followed by the middle layer, and finally the bottom layer.
This deformation is also shown in Figure 6

Fig. 4. Metamaterial with laterally arranged unit cells. Retrieved from [15]

Fig. 5. Metamaterial with laterally and longitudinally arrange unit cells.
Retrieved from [14]

Fig. 6. Metamaterial with pyramid-like stacked unit cells. Retrieved from
[16]

Cai et al. [17] and Fan et al. [18] designed a metama-
terial with combined-type QZS-configured unit cells, shown
in Figure 8. In both designs, the negative stiffness elements
are designed to exhibit snap-through buckling behavior with
bi-stable positions. In contrast, the positive stiffness element
behavior can be represented as a spring with constant stiffness.
Figure 7 shows the negative stiffness and positive stiffness
elements in the force-displacement curve. Combining these
two stiffness lines results in a QZS curve similar to Figure 2.

Fig. 7. Force-displacement relationship of positive and negative element.
Retrieved from [18]

For the metamaterial, unit cells are arranged laterally and/or
longitudinally, as shown in Figure 8. This arrangement of unit
cells does not change the overall force-displacement behavior,
except for a wider QZS range.

B. Monostable - Cylindrical configuration

Zolfagharian et al. [19] designed QZS cylindrical meta-
materials with several variations as shown in Figure 9. Two
different unit cells are used to create the variations, one unit
cell is ’soft’ and the other is ’stiff’. Except for the difference in
stiffness, the stiff unit cell also exhibits a hardening behavior
while the soft unit cell possesses a softening behavior [19].
This means that the stiff unit cell increases in stiffness after a
certain point while the soft unit cell has decreasing stiffness.
Making the metamaterial out of only one type of unit cell
will lead to global buckling instabilities which are unwanted.
By employing soft and stiff unit cell configurations along
with multi-thickness walls, we can densify the cylindrical
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Fig. 8. a) Unit cell design of Fan et al. [18] b) unit cell design of [17]

metamaterial layer-by-layer, thereby preventing the occurrence
of global buckling. The unit cells are stacked along a single
direction to create the metamaterials. All models show a QZS
behavior, however, models 1 and 4 show a larger stiffness than
models 2 and 3.

Fig. 9. Cylindrical monostable metamaterials. Retrieved from [19]

In addition, another cylindrical metamaterial by Wang et al.
[20] is chiral and has negative stiffness properties. Chirality
is described as the inability of an object to coincide with
its mirror image and one of the basic properties is negative
Poissons’ ratio [20]. The unit cells of this metamaterial consist
of tape springs as shown in Figure 10. That is also where the
negative stiffness property originates from. Besides, stiffness
of the unit cell increases with the increase of the concave angle
of the tape spring. The metamaterial is illustrated in Figure 11.

C. Monostable - 3D origami-inspired configuration

In recent years origami has aroused great interest from
engineers and mathematicians, due to its special characteristics

Fig. 10. 2D stacked chiral unit cell. Retrieved from [20]

Fig. 11. Chircal metamaterial. Retrieved from [20]

and wide application prospects. Studies revealed that origami-
based mechanical metamaterials possess unique properties that
traditional mechanical metamaterials do not have [21]. The
most studied origami-based metamaterials are based on Miura
origami, shown in Figure 12. The Miura origami is on itself
a mechanical metamaterial with a negative Poissons’ ratio for
in-plane deformations and a positive Poissons’ ratio for out-
of-plane deformations. [21]

Fig. 12. Miura-ori unit cell. Retrieved from [22]

First consider the stacked Miura-ori metamaterial shown in
Figure 13. The unit cells are not individually glued or con-
nected to each other but are folded out of a single paper sheet.
There are two variants of this metamaterial. One with uniform
unit cells and one with unit cells varying in folding angle. The
deformation mechanism of the uniform metamaterial is mainly
dominated by the origami motion mechanism, while the non-
uniform metamaterial it is more complex. In the case of the
non-uniform metamaterial, the smallest cells collapse first due
to their low initial collapse strength, but their final collapse
strength is the highest. Despite their different deformation
mechanisms, the overall responses are similar. Both show QZS
behavior.

Another variant of the Miura-ori unit cell is a zigzag-
based stacked-origami (ZSBO) [21]. This unit cell is made

7



Fig. 13. Stacked uniform Miura-ori metamaterial [22]

Fig. 14. ZSBO unit cell (left) and the metamaterial (right). Retrieved from
[21]

by adding additional creases to a classical Miura-ori fold.
The metamaterial shows different force-displacement behav-
iors depending on how many creases and on which side the
creases are added because the creases change the stiffness of
the unit cell. In general, the metamaterial shows a multistage
stiffness behavior, with periods of increasing stiffness followed
by negative stiffness. When compressing, the unit cells will
deform until a certain point where snap-through instabilities
occur that cause negative stiffness. In this paper, the ZSBO
metamaterial deformed permanently in the final state, so it
cannot be used to achieve the mechanical properties under
cyclic loading. However, this could be prevented by using a
hyperelastic material as the constituent material.

In addition, the metamaterial by Kamrava et al. [23] is also
based on the Miura-ori unit cells as shown in Figure 15. Two
unit cells are positioned in a zigzag pattern and then mirrored
to create a symmetric structure, known as the ”first-order
element.” These first-order elements are then arranged to form
the metamaterial, illustrated in Figure 16. The metamaterial
is monostable, but it can exhibit negative stiffness behavior
depending on the angles of the unit cell α and θ. It exhibits
negative stiffness behavior under out-of-plane loading for
θ ≥ 155◦ and under in-plane loading for θ ≤ 40◦, when
α = 60.

Fig. 15. Zigzag patterned Miura-ori unit cell. Retrieved from [23]

Fig. 16. Metamaterial of the Zigzag patterned Miura-ori unit cell. Retrieved
from [23]

D. Monostable - 3D non-origami-inspired configuration

Metamaterials found for this category have the ability to
exhibit negative stiffness, which can be either monostable or
multi-stable. The type of negative stiffness behavior exhibited
by these metamaterials is influenced by the geometric ratios
of the unit cell.

In the case of the monostable buckling beams, the unit
cell consists of four components: four caps, six double-curved
beams, four near-rigid columns, and one skeleton [24]. This
is shown in Figure 17a. The caps are used to immobilize
the skeleton and double-curved beams. The key component
is the two-curved centrally-clamped parallel beams because
this component is responsible for the snap-through negative
stiffness behavior. Using double-clamped beams prevents it
from twisting therefore the motion is restricted to only one
direction. Whether the unit cell is monostable or bistable
depends on the geometric ratio of Q = h

t . This is the ratio
between the deflection of the beam to the middle line and the
thickness of the beam.

Fig. 17. a) Double-curved beams unit cell. b) 3x1x1 unit cell configuration.
c) 3x3x3 unit cell configuration Retrieved from [24].

To create the metamaterial, the unit cells are placed in
3x1x1 and 3x3x3 configurations, shown in Figure 17b and c.
The number of unit cells affects the overall energy dissipation
behavior. Additionally, the 3x3x3 configuration of the meta-
material allows for tri-directional energy dissipation due to its
negative stiffness behavior in the X, Y, and Z directions. While
for the 3x1x1 configuration the negative stiffness behavior
acts only in one direction. The unit cell is monostable for
Q < 2.31.
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Fig. 18. 3x1x1(left) and 3x3x3(right) metamaterial configuration. Retrieved
from [25]

In the case of the conical shell, shown in Figure 18, the
negative stiffness behavior is exhibited by the cone-shaped
structure. The conical shells are placed on each face of a
cube to create the unit cell. The mechanical responses are
influenced by the height, thickness, and internal and external
diameter [25]. The stability of the unit cell was sensitive to
the height-span ratio, but no specific value was mentioned in
the paper. The metamaterial is structured by arranging the unit
cells in three directions, allowing the material to move in three
directions.

E. Multi-stable Planar configuration

Multi-stable metamaterials are often made out of bistable
unit cells. The most common type of unit cell designs makes
use of buckling beams, such as the designs in Figure 19.
Restrepo et al. [26] and Tan et al. [27] both made use of
curved beams, shown in Figure 19a and c respectively. In the
design of Restrepo et al. [26] a sinusoidal beam was used.
The sinusoidal beams act as compliant bistable mechanism,
while the stiffening walls provide local support to prevent
transverse displacement at the ends of the sinusoidal beams.
The metamaterial is composed of an array of sinusoidal beams
that are connected in series to form mechanism chains and
multiple chains are stacked on top of each other. The stacking
arrangement is similar to the one in Figure 8a. When a load is
applied to the metamaterial, it exhibits a linear stress-strain
response until the first row of sinusoidal beams collapses,
leading to a new stable position. The effective stiffness of the
metamaterial is dependent on the stiffness of the sinusoidal
beams and the number of sinusoidal beams in a chain. Adding
more beams or chains decreased the effective stiffness.

Tan et al. [27] on the other hand created the curved beam
by pre-compressing laterally. The pre-compression is imposed
by using spacer pins that are fixed on the stiff walls of
the unit cell. The stretchability is tunable by changing the
lateral compression. An increase in compression leads to an
increase in the longitudinal dimension. The unit cells are also
arranged longitudinally and laterally just like the metamaterial
of Restrepo et al. The metamaterial snaps through row by row,
however, the deformation sequences are unpredictable. The
unit cell design was also modified by replacing the spacer with

Fig. 19. a) Unit cell constructed with sinusoidal beams. b) Unit cell
constructed with V-shaped triangles. c) Unit cell constructed with curved
beams. Retrieved from [26], [28] and [27] respectively.

a stiffer curved beam, shown in Figure 20. Two of these stiffer
curved beams are placed between the two stiff walls of the unit
cell. The beams are heated and pre-compression is applied,
causing them to bend and maintain the pre-compressed state
when cooled.

Fig. 20. Adjusted pre-compressed unit cell. Retrieved from [27]

Furthermore, the unit cell shown in Figure 19b by Ma et al.
[28] uses V-shaped triangles to achieve bistability via snap-
through behavior. The triangles are narrower at the point of
connection such that is can deform in the narrow sections, act-
ing like hinges. The unit cells are arranged in both horizontal
and vertical directions. And the metamaterial deforms layer
by layer.

Besides, the unit cells shown in Figure 21a also use bistable
triangular frames to achieve bistability, while the unit cell
in Figure 21b makes use of a hinge mechanism to achieve
multistability. With these unit cells, a wide variety of metama-
terials can be constructed allowing multi-degree-of-freedoms
and multistability in 2d and 3d [29]. However only, two planar
variants of the metamaterials were tested. Figure 22 shows two
different metamaterials, both can have horizontal and vertical
deformations but each is constructed with a different unit
cell. The difference between the two metamaterials constructed
with the multistable unit cell can achieve large displacements
with a relatively small load, while the other metamaterial
requires a larger load.

Additionally, metamaterials with triple-negative-index (neg-
ative Poissons’ ratio, negative stiffness, and negative ther-
mal), double-negative-one-zero-index(negative stiffness, nega-
tive thermal expansion, and zero Poissons’ ratio), and double-
zero-one-negative-index(zero Poissons’ ratio, zero thermal ex-
pansion, and Negative stiffness) were designed by Yang et
al. [30] The bistability in the unit cells and the multistability
of the metamaterial are also created by pre-compressed curved

9



Fig. 21. a) Bistable unit cell. b) Multistable unit cell. Retrieved from [29]

Fig. 22. a) Metamaterial made from bistable unit cell. b) Metamaterial made
from multistable unit cell. Retrieved from [29]

beams. The other index properties of the metamaterial however
originate from the design of the stiffer framework and the
unit cell arrangement. There are two types of frameworks
for the unit cells: a hexagonal one and a square one shown
in Figure 23. The triple-negative-index metamaterial is made
from the hexagonal unit cell in the compressed state, shown
in Figure 24a. The rectangular unit cells provided the double-
negative-one-zero-index and double-zero-one-negative-index
metamaterials. Arranging the rectangular unit cells differently
leads to different properties. The rectangular arrangement,
shown in Figure 24b, can have zero thermal expansion prop-
erty. While, arranging the unit cells at an angle, shown in
Figure 24c, can lead to negative thermal expansion property.

Fig. 23. Unit cells with hexagonal and rectangular framework. Retrieved from
[30]

Lastly, a unit cell design by Niknam et al. [31] made use of
thermal softening behavior to control the bistability, shown
in Figure 25. When a certain compressive load is applied
the unit cell will retain its deformed stable position. The
principle behind this is again the use of beams that exhibit
negative stiffness behavior. The unit cell can restore to its

Fig. 24. a) Metamaterial made from hexagonal unit cells. b) Metamaterial
made from rectangular unit cells arranged rectangularly. c) Metamaterial made
from rectangular unit cells arranged at an angle. Retrieved from [30]

initial position when the temperature surpasses a critical value.
At lower temperatures, the beams will soften which allows
the beams to snap back to the initial position. While at higher
temperatures the stiff walls will soften which allows lateral
movement for the beams and no snap-back behavior will
occur, making the unit cell monostable. The unit cells can be
arranged vertically with smaller units on top of each other or
horizontally. The vertical arrangement collapses layer for layer
leading to multistability, while the horizontal arrangement is
bistable because the row deforms simultaneously.

Fig. 25. Bistable thermal unit cell. a) Initial position. b) Deformed stable
position. Retrieved from [31]

F. Multi-stable Cylindrical configuration

Ma et al. [28] also designed a cylindrical metamaterial. The
cylindrical unit cell is the same as the planar one shown in
Figure 19b, but it is convolved with a bending angle θ. The
peak force in the force-displacement curve tends to increase
for a decreasing θ and saturates when θ increases. Moreover,
the bistability in the cylindrical unit cell configuration is
weaker than in the planar configuration because less force is
required to restore the initial position.
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Fig. 26. Cylindrical configuration of the metamaterial. Retrieved from [28].

Fig. 27. a) One direction bistable unit cell. b) Two direcitions bistable unit
cell. Retrieved from [32]

In a study by Yang et al. [32], two cylindrical metamaterial
designs were presented. One of the designs was multistable in
the longitudinal (1D) direction, while the other was multistable
in both the longitudinal and radial directions (2D). The unit
cells of both designs are shown in Figure 27. It is worth noting
that curved beams were used to achieve negative stiffness
behavior in these designs. Unlike other metamaterials, these
designs were tested under tensile loading. The mechanical
responses of both metamaterials were similar, with the snap-
ping forces increasing under tensile loading and decreasing
under compression loading. However, the stability in the 1D
metamaterial appeared to be stronger, meaning that it requires
more energy to transition from one stable state to another.

G. Multistable - 3D origami-inspired configurations

Previously, several monostable Miura-ori-inspired metama-
terials were shown. Another miura-ori inspired metamaterial
was designed by Kamrava et al [33]. The unit cells are built by
folding a Miura-ori string. This is a sequence of n individual

Miura-ori. The crease pattern of the string is defined by the
number of Miura-ori(n), the characteristic angles α1 and α2

with α1 > α2, and the dimensions a and H shown in Figure 28.

Fig. 28. The Miura-ori string. Retrieved from [33]

The stability of the unit cell depends on the characteristic
angles, the unit cell can be monostable and bistable. Varying
the parameter n allows the creation of different unit cell
shapes, as illustrated in [Figure 29]. These different unit cells
can be stacked on top of each other to form metamaterials as
shown in Figure 30a. Due to the auxetic property of the unit
cells, the metamaterials have a decrease in cross-sectional area
and volume in the final stable state. However, the unit cells
can also be arranged differently to create a metamaterial that
allows multistability in two directions shown in Figure 30b.
This metamaterial is created by placing three different types
of bistable unit cells along the X-axis, one type of bistable
unit cell along the Y-axis, and one monostable unit cell along
the Z-axis.

Fig. 29. Different Miura-ori strings shapes. Retrieved from [33]

Research by Liu et al. [34] presented a multi-stable origami
pattern, named the shrimp pattern. The geometry is inspired
by the segmented structure of a shrimp, hence the name. The
unit cell switches from stable states by snap-through behavior.
The unit cell is created by modifying the geometry of a rigid
foldable pattern to block a range of kinematics, which can only
be overcome by non-rigid origami deformations, illustrated in
Figure 31. This separation of rigid and non-rigid kinematics
allows the shrimp pattern to display both types of origami
behavior. In reality, the flexibility of materials allows the
Shrimp pattern to transition between its two rigid origami
configurations through non-rigid deformation. The tail panels
are added to allow the blocked range to be overcome without
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Fig. 30. a) Metamaterial with stability in one direction. b) Metamaterial with
stability in two directions. Retrieved from [33]

damaging the material. Together, the addition of these panels
leads to bistable snapping between the two parts of the rigid
origami configuration of the Shrimp pattern. Figure 32 shows
the various stable states of the metamaterial.

Fig. 31. Shrimp pattern unit cell. Retrieved from [34]

Fig. 32. Shrimp pattern metamaterial and its stable states. Retrieved from
[34]

Another origami-inspired metamaterial is the hypar chain
by Filipov et al. [35]. The origami hypar is made by using
a square sheet and creasing it along diagonal lines that cross
in the center of the sheet. Concentric perimeter folds are then
added, starting from the outside and working toward the center.
The fold polarity (mountain or valley) is alternated as the folds
are added. The hypar does not have uni-directional folding

motion like most other unit cells. Instead, the hypar deforms in
a way that is similar to two von-Mises trusses. As the system
changes between stable states, the points where the support
and load are applied move outward. This deformation is shown
in Figure 33. Local sequential and perimeter buckling does
occur which results in force jumps in the force-displacement
response. For the metamaterial, the hypars are connected on
top of each other so it forms a chain. The metamaterial shows
multistability through global sequential snap-through behavior.
However, the deformation is not smooth and local defor-
mations in the unit cells occur when the system transitions
between stable states.

Fig. 33. Hypar unit cell. Retrieved from [35]

H. Multistable - 3D non-origami-inspired configurations

In subsection III-D we have presented the monostable
variants of the double curved beam [24] and conical shells
metamaterial [25], shown in Figure 17 and Figure 18. Their
stability depends on their geometric ratios. For the double
curved beam unit cell, bistability occurs when Q = h

t > 2.31.
The bistability becomes stronger with increasing Q. For the
conical metamaterial, the stability depends on the height-span
ratio.

Another metamaterial design by Ma et al. [28] was also
based on the unit cell shown in Figure 19b. The stereometric
configured unit cell of this design can be obtained by rotating
the planar unit cell in by 90◦. This results in the unit cell
and metamaterial shown in Figure 34. The bistability of this
metamaterial is shown to be stronger than the planar variant.
With a compression load, the metamaterial also deforms layer
by layer like the planar and cylindrical variants.

Furthermore, research by Ma et al. [36] provided a unit
cell design for a potential metamaterial. Herein the unit cell
is a modular system that is composed of three different types
of base mechanisms: two planar mechanisms and one spatial
mechanism, illustrated in Figure 35. The planar mechanisms
are designed to have different ranges of the radius when
they move individually. When the ranges overlap, the unit
cell is kinematically compatible and moves like a mechanism.
However, when there is a difference in radius between the two
planar mechanisms, the unit cell becomes incompatible and
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Fig. 34. a) Stereometric unit cell. b) Stereometric metamaterial. Retrieved
from [28]

Fig. 35. Modular unit cell. Retrieved from [36]

requires some structural deformation, in order to maintain the
connection between the base mechanisms. As a result of this
design, the unit cell exhibits bistable behavior, with two ex-
tended quasi-stable regions rather than two stable states. This
means that the unit cell can be in one of two different stable
configurations, and it requires a relatively large force to switch
between these configurations. The deformation sequence is
shown in Figure 36. No metamaterial was constructed in this
paper but it was mentioned the unit cell can also be tessel-
lated in space to form a metamaterial with similar bistable
performance.

Fig. 36. Deformation sequence of the modular unit cell. Retrieved from [36]

Moreover, a perforated shellular unit cell was introduced
by Shi et al. [37]. Shellulars are composed of periodic 3d
unit cells of continuously smooth and curved shells. The unit
cell design is based on Schwarz’s Primitive surface. This
surface however is monostable, but by applying perforations
to the surface it can become bi-/multistable. Two perforation
strategies are used to create bi-/multistability. The first strategy
involves the use of elliptical holes to create bistable shellular
unit cells. The bistability of these materials arises from the
balance between compression-induced buckling and bending
of the flexible parts of the structure. The second strategy
involves the use of multilayer staggered perforations that
form hinges and ease local instabilities to create multistable

shellular unit cells. With n-layer staggered perforations, a
maximum of 2n−1 stable states can be achieved in each
shellular unit cell. The unit cells can be arranged as shown
in Figure 38 to get the metamaterial. The metamaterial is
multistable in three directions. Also, other arrangements and
variations can be made to make the metamaterial one or two-
directional multistable.

Fig. 37. a) Elliptical perforated unit cell. b) Multilayer staggered perforated
unit cell. Retrieved from [37]

Fig. 38. Metamaterial composed of staggered perforated unit cells. Retrieved
from [37]

Lastly, a wire shaped metamaterial, called the metawire, by
Liu et al. [7] can also achieve multistability. This metamaterial
is shaped like a wire with crease-connected truncated cones
as unit cells. Figure 39 shows the unit cell and the stable
states. The metawire is made up of units that have three basic
stable states: deployed, retracted, and bent. These units can
be combined into a metamaterial in different ways to create
complex 2D or 3D stable configurations.

Fig. 39. Stables states of the unit cells and the metawire. Retrieved from [7]
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I. Neutral stable - planar configuration

The design QZS from Figure 8c by Cai et al. [17] could
also be tuned such that it has a near-zero force region. Within
that displacement region almost zero force is required to make
deform the metamaterial. However, when it moves outside that
range the stiffness increases steeply.

J. Neutral stable - 3D origami inspired configuration

Here an origami-based metamaterial by Mukhopadhyay et
al. [38] is able to achieve near zero stiffness, thus almost neu-
tral stable. The metamaterial is based on a tubular waterbomb
geometry. The waterbomb crease pattern is shown in Figure 40
with the red marked square being the unit cell. Unlike other
metamaterials where the overall force-displacement response
does not change drastically, this metamaterial does show a
change in behavior for increasing numbers of unit cells. Two
variants of the metamaterial are shown in Figure 41, one with 7
rows(m=7) and 12 unit cells per row(n=12) and one consisting
of 9 rows with 30 unit cells per row. Both initial shapes are
tubular, but their final shapes differ a lot. Also, it is notable
that one metamaterial has near-zero stiffness for the whole
deformation path while the other is only near zero stiff for a
part of the deformation. The reason that it differs is due to the
energy conservation of the system. The total applied energy is
equal to the sum of energy required due to the rotation(opening
and closing) of all folds in the system. So when a compression
load is applied some folds open up and some folds close. In
the case of the metamaterial in Figure 41 the amount of energy
needed to close a fold and to open a fold is equal till a certain
point. From that point on a net positive amount of energy is
needed to deform the system.

Fig. 40. Tubular waterbomb crease pattern and unit cell. Retrieved from [38]

K. Performance Overview

The performances are estimated and rated shown in Table II.

IV. DISCUSSION

Rating the results on their performances makes the com-
parison between metamaterial easier. What is noticeable is
that, in general, the scalability and manufacturability of planar
metamaterials are better. Scalability and manufacturability are
related to a certain extent because often easy to manufacture
designs can also be scaled down more easily. Conversely,

Fig. 41. Two variant of the metamaterial. a) Metamaterial with m=7 n=12.
b) Metamaterial with m=9 n=30. Retrieved from [38]

origami metamaterials score the lowest on scalability and
manufacturability because the folds are harder to realize when
the geometry is scaled down. In addition, planar metamate-
rials have relatively bad support stiffness in the non-intended
working direction. Mainly stiffness in the out-of-plane rotation
is weaker. Origami metamaterials also have worse stiffness
in other directions because they are often made of paper.
However, that could be improved by changing the constituent
material. Cylindrical and 3D metamaterials show greater sup-
port stiffness. So slightly changing and arranging planar unit
cells could improve the support stiffness, as shown by Ma et
al. [28]. While the ratings focused on the absolute stiffness
of different metamaterials, it’s worth noting the limitations
inherent in this approach. Comparing absolute stiffness values
doesn’t necessarily provide a comprehensive picture of a
material’s overall performance characteristics. In particular,
it fails to capture the importance of relative stiffness, which
considers the relationship between stiffness in one direction
to another direction. Unfortunately, the existing literature
primarily focuses on absolute stiffness, which means the data
necessary to compare metamaterials on relative stiffness is
largely absent

Furthermore, all multistable metamaterials have negative
stiffness properties. In general, this property is realized through
some compression-induced snap-through behavior. The most
common method to realize snap-through behavior is through
curved buckling beams. In the case of origami-inspired de-
signs, most designs are inspired by the well-known Miura-
ori fold. Monostable metamaterials on the other hand can
also possess QZS properties. This can be realized by either
combining a negative stiffness and positive stiffness element
or by designing a single monolithic element that has QZS
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TABLE II
PERFORMANCE OVERVIEW OF ALL METAMATERIALS

Metamaterial concept Scalability Manufacturability Support
stiffness

Stiffness
characteristic

Working
dimensions

Monostable planar:
[15], [16], [17], [18] ++ ++ - - QZS 1D
[14] ++ ++ - - QZS 1D

Monostable cylindrical:
[19] + + ++ QZS 1D
[20] + + ++ NS 1D

Monostable origami-inspired:
[21] - - - NS 1D
[22] - - - - - NS 2D
[23] - - - - - NS 1D

Monostable 3D:
[24] - - - - + NS 1D
[25] + + ++ NS 3D

Multistable planar:
[26], [28] ++ ++ - NS 1D
[27] - + - NS 1D
[29] ++ ++ - NS 2D
[30] + - - NS 2D
[31] ++ ++ - NS 1D

Multistable cylindrical:
[28] + + ++ NS 1D
[32] + + ++ NS 2D

Multistable origami inspired:
[33] - - - - + NS 2D
[34] - - - - - NS 1D
[35] - - - - NS 1D

Multistable 3d
[28] - + + NS 1D
[36] - - - ++ NS 1D
[37] - + + NS 3D
[7] + + ++ NS 3D

Neutral stable planar [17] ++ ++ - - zero stiffness 1D
Neutral stable origami inspired [38] - - - + zero stiffness 1D

properties. While combining positive and negative stiffness
elements can be used to create QZS stiffness metamaterials, it
can also be used to create neutral stable metamaterials. Also,
origami can be a method to create near-neutral stable meta-
materials. To achieve near-neutral stability, it is essential to
ensure a redistribution of strain energy within the system. This
redistribution entails maintaining a balance between the energy
released through negative stiffness and the energy absorbed
by positive stiffness [38]. Moreover, most metamaterials are
designed for 1-dimensional displacements. But adjusting and
arranging the unit cell slightly differently could increase the
number of displacement dimensions, the design by Shi et al.
[37] and Tan et al. [25] are some examples.

Improvements in the search for literature could also be
made. For the literature compilation process, all search queries
included the word ’metamaterial’ and its synonyms. However,
it is worth considering whether this approach inadvertently
excludes potentially promising unit cell designs that have

yet to be transformed into metamaterials. While it might
be questioned whether the term ’unit cell’ is often used
outside the context of metamaterials, it is important to explore
alternative search strategies that include unit cells, to uncover
a broader range of options. Thus, it would be worthwhile
to investigate whether including unit cells in the search pa-
rameters yields additional relevant literature. By observing
the categorization it can be noticed that there is a gap in
neutral stable metamaterials. There may be limited demand
for neutral stable metamaterials in some applications, as other
materials that exhibit positive or negative stiffness may be
more suitable for certain tasks. But there is extensive literature
available for neutral stable structures. So for future research
on neutral stable metamaterials, one could start by reviewing
neutral stable structures for unit cells.

V. CONCLUSION

The goal of this literature review is to provide an overview
of different geometrically configured mechanical metamate-
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rials with stable states, find the principles for stability and
identify gaps in the literature for new research directions.
An overview has been created by categorizing the literature
based on their stability type and geometry, and a performance
overview is provided to make comparisons between the meta-
materials. Strategies were found to achieve non-linear stiffness
in monostable metamaterials, multistable metamaterials, and
neutral stable metamaterials. Even though many metamaterials
have a single working dimension, it can be increased by
making small adjustments to the unit cell and arranging it
differently. Lastly, There is currently a lack of research on
neutral stable metamaterials, although there is a significant
amount of research on neutral stable structures. Therefore,
future research can focus on exploring the properties and
potential applications of neutral stable metamaterials.
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Abstract—Neutrally stable metamaterials can maintain differ-
ent shapes without any energy input, making it a key innovation
in the quest for more energy-efficient technologies. Despite this
intriguing property, the research in this area is scarce. This study
proposes a method for achieving neutral stability in metama-
terials. This method is validated with a novel unit cell design
that utilizing two identical beam elements that are mirrored.
Each element displays a constant force characteristic. By pre-
tensioning these elements, we align their constant force regions,
thereby inducing a state of neutral stability. Through finite
element method (FEM) simulations and geometrical optimisation,
the beam of this design is optimised to achieve the optimal
constant force response. A prototype is made and a test setup is
constructed to validate the accuracy of the simulations and the
feasibility of the method for achieving neutral stability. Results
indicate that while perfect neutral stability was not fully achieved,
this method can be applied on other constant force mechanisms
to create neutrally stable metamaterials.

I. INTRODUCTION

Metamaterials have attracted much attention in the last two
decades due to their ability to possess unusual properties
[1]. Their extraordinary properties are derived not from the
materials they are made of but from their precisely designed
geometric structures [2] [3]. This gives metamaterials the
ability to possess properties that are unusual and extreme
compared to constituent materials.

Mechanical metamaterials are a subgroup of metamaterials
that focus on motion, displacements, stresses, and mechanical
energy [4]. For example, they can display negative stiffness
behaviors [5] [6], where the material compresses under tensile
stress and expands under compressive stress, defying con-
ventional material responses. Additionally, they can exhibit
negative thermal expansion [7], contracting when heated rather
than expanding as traditional materials do. Furthermore, the
Poisson’s ratio in these materials can be tailored to be positive,
zero, or negative [7] [8] [9], allowing for expansion, neutral
response, or contraction perpendicular to an applied force,
respectively.

Mechanical metamaterials with nonlinear stiffness proper-
ties are captivating for their stiffness programmability [10],
their potential in energy absorption applications [11], and their
shape-morphing capabilities [12]. These nonlinear stiffness
metamaterials can be classified into three types of stability,
namely monostability, multistability, and neutral stability.

Monostable nonlinear stiffness metamaterials include meta-
materials with constant force properties, also called Quasi-

zero stiffness properties. This refers to metamaterials with a
single minimum in their potential energy landscape. The corre-
sponding stiffness characteristic is high stiffness transitioning
to almost zero stiffness as the displacement increases to a
certain level. A possible application for these metamaterials
is vibration isolation [13] [14].

Conversely, metamaterials with multistability introduce a
framework where multiple equilibrium states are feasible,
caused by the presence of multiple local minima within their
potential energy landscape. This is typically achieved through
the tessellation of bistable unit cells. The unit cells often
consist of some variation of a beam with two equilibrium
positions. These types of metamaterials could be used for
energy absorption [15] [16] and shape morphing [17].

On the other hand, neutral stability in metamaterials is also
an intriguing feature. In theory, these structures maintain a
constant potential energy across the energy landscape, indi-
cating that they do not require a force to deform or remain
deformed. Their ability to change and sustain different shapes
without requiring energy makes them an important innovation
in developing more energy-efficient technology. For example,
in linear guidance systems, mechanisms with zero stiffness
in one direction (the guiding direction) but high stiffness in
others are required. Neutrally stable metamaterials could meet
this requirement. Despite the intriguing nature of neutrally
stable metamaterials, research in this area is noticeably scarce.
Research by Mukhopadhyay et al. [18] showcases an origami-
based tubular-shaped metamaterial. This metamaterial is based
on a waterbomb crease pattern and can exhibit negative
stiffness properties and near-neutral stability by changing the
tesselation sequence and folding angle. Additionally, research
by Cai et al. [19] designed a novel one-dimensional quasi-zero
stiffness metamaterial. The unit cell of this metamaterial is
made of an elastic positive stiffness element and two buckling
beams with negative stiffness elements. The positive stiffness
can be neutralized by the negative stiffness, leading to the
quasi-zero stiffness behavior. Near-neutral stability can be
achieved in the unit cell by applying a pre-load. However,
the neutral stable behavior is within the boundaries of the
unit cell, thus the displacement region of neutral stability will
not increase for the metamaterial. All in all, in the current
research, no general method was found for creating neutrally
stable metamaterials.

This paper presents a novel method for achieving neutral
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stability in metamaterials. It proposes a novel unit cell design
with constant force properties. This unit cell consists of an
upper half and a lower half. The upper half is the mirrored
version of the lower half, both made up of four spline-shaped
beams that are designed to experience lateral torsional buck-
ling (LTB), inducing a constant force behavior. By introducing
pre-tension in both the upper and lower halves of the unit cell,
the areas exhibiting constant force characteristics are aligned
with one another. This alignment shifts the behavior from a
constant force response to a zero-force state, thereby achieving
a neutrally stable behavior.

The primary goal of this paper is to assess the feasibility
of this approach for achieving neutral stability. To accomplish
this, the unit cell is geometrically optimized and then subjected
to tests that mimic the expected behavior of the metamaterial.
The subsequent analysis of the force-displacement results
from these tests serves as the foundation for determining the
method’s viability.

This paper is structured as follows: in section II, the concept
of the design and working principle will be explained. The
corresponding finite element method (FEM) model and the
optimization model will also be discussed. Afterward, the
prototype fabrication and the test setup are elaborated upon.
The experimental results of the constant force unit cell and
the pre-tensioned unit cell will be shown in section III. In
section IV, the results are analyzed, and ideas for future
improvements and recommendations are presented. Finally, the
conclusion and contributions will be summarized in section V.

II. METHOD

The process of making and evaluating the unit cell in the
metamaterial consists of different aspects. These aspects are
discussed in the following subsections. The overall procedure
can be summarized as follows: (1) A numerical model was
made to predict the behavior of the metamaterial. (2) The
final geometry was derived from an optimisation consisting of
different beam parameters. (3) The unit cells were produced
and (4) tested under boundary conditions that correspond to
the behavior of a metamaterial.

A. Concept

The core idea of the unit cell’s design revolves around
employing two identical elements that exert a constant force
and arranging them such that their forces neutralize each other,
resulting in a neutrally stable behavior. In this design, the
identical elements are mirrored and then pre-tensioned. Pre-
tensioning is required to align the constant force regions with
each other. The force-displacement behavior and the influence
of pre-tension are shown in Figure 1.

There are two variants of this unit cell design, namely a
simplified 2D variant of the unit cell mainly used for the
experiments and a 3D unit cell used for the construction of
the metamaterial. The 2D unit cell consists of a top part and a
mirrored bottom part. Both the top and bottom parts, consisting
of two B-spline curved beams, exhibit constant force behavior.
In Figure 2 the top part consists of two beams referred to as

Fig. 1. Visualisation of constant force element 1 (red), mirrored element (light
blue), mirrored and pre-tensioned element (dark blue), and the resulting zero
force when combined (green).

beam set 1 and the beams of the bottom part are referred
to as beam set 2. Figure 2 also shows the 2D unit cell in
the state where it is not pre-tensioned, the state where pre-
tension is applied, and the state where it is pre-tensioned and
a displacement is applied.

Fig. 2. 2D schematic view of unit cell with pre-tension and deformation
sequence. A) shows the unit cell in neutral position. B) shows the unit cell
in pre-tensioned state. C) shows the deformed pre-tensioned unit cell. The
response of the applied force corresponds to the ’combined force’ behavior.
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The proposed 3D unit cell of the metamaterial consists
of eight B-spline curved beams. The unit cell can be split
into an upper and lower part, either consisting of four beams
connected at a 90-degree angle, as can be seen from the top
view in Figure 3. This design contrasts with the 2D unit cell,
where the top and bottom parts are formed by two beams
joined at a 180-degree angle. Figure 3 shows the 3D outline
of the unit cell without dimensions and cross-sectional area of
the beams. The unit cell is also symmetric in the xy-, xz-, and
yz-planes.

Fig. 3. Outline of the unit cell shown in three different perspectives.

Finally, the unit cells are tessellated to form the metamate-
rial. The top and side views of a 3x3x5 metamaterial can be
seen in Figure 4. The side views show how the unit cells are
tessellated in height. As can be seen in the undeformed side
view, the output junction of one unit cell is connected to the
input junction of the unit cell underneath. The output passes
a displacement along to the input, such that the displacement
range of the metamaterial is proportional to the number of
rows.

B. FEM model

The simulations are performed using a three-dimensional
beam model with a custom finite element method (FEM)
model. This solver is based on geometrically non-linear and
co-rotational beam elements using the Euler-Bernoulli beam
formulation proposed by Battini [20]. The beam model creates
a beam structure based on a set of nodes. Each node has
its own user-defined locations, nodal mechanical material
properties (youngs modulus E, shear modulus G), and nodal
cross-sectional properties (area moment of inertias Iyy , Izz
and torsional constant J). The computation of the deformation
is based on the nodal properties. Application of forces and
displacements is simulated through the custom FEM solver.

A cruciform was selected as the cross-section for the
beam. A cruciform cross-section can exhibit lateral torsional

Fig. 4. The undeformed and deformed side view and the top view of the
metamaterial consisting of 3x3x5 tessellated unit cells. The input junction is
connected to the output junction so that the displacements of the rows can
be passed along to the other rows. Three unit cells are highlighted in the top
view to show how the unit cells are tessellated.

buckling, inducing constant force behavior. Besides, the area
moment of inertia and torsional constant can span a wide
range of values by changing the geometrical parameters. The
cruciform is defined with the parameters tv , Hv , th, and Wh

as depicted in Figure 5.

The area moment of inertias is derived using the following
formulas:

Iyy =

∫
z2dA (1)
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Fig. 5. Cruciform cross-section defined with parameters Hv , tv , Wh and,
th.

and
Izz =

∫
y2dA (2)

The torsional constant for open cross-sections can be ap-
proximated by breaking the sections down into rectangles
with sides b and t, where t<b. The following formulation by
Timoshenko [21] can then be used:

J =
∑

(
bt

3
− t4

5
) (3)

Periodic boundary conditions (PBCs) were used to simulate
the metamaterial behavior efficiently. PBCs are a mathematical
construct applied in simulations to model a small part of a
material while representing the behavior of an infinite system,
in this case the unit cell and metamaterial, respectively. The
PBCs method simulates the unit cell as an endless meta-
material by ensuring that every pair of opposite boundaries
undergo identical deformations. This creates a condition where
influences from the edges or boundaries are entirely removed,
effectively replicating an infinite system where the central
repeating unit’s behavior is isolated from external constraints
[22].

NURBS an acronym for Non-Uniform Rational B-Splines,
were adopted as the shape for the beams. Initially, the beams
were designed to be straight, which worked for individual unit
cells. However, significant stress concentrations were observed
at the junctions. NURBS was implemented as a replacement
for the straight beams to avoid this issue. Figure 6 visualizes
the principle for defining the NURBS coefficients.

The NURBS is constructed using the NURBS Toolbox by
D.M. Sprink [23] on Matlab. C4 is the midpoint and lies at
the intersection of the horizontal and vertical axes. To derive
the coefficients C5, C6, and C7, start by reflecting C1, C2,
and C3 about the vertical axis, followed by a reflection about
the horizontal axis. The y coordinates of C1 and C2 are
identical, a pattern also observed between C6 and C7. This
way, the stresses at the junction will be reduced. C3 and C5 are
equal in magnitude with respect to C4 but located in different

0

0

C1(-x1,-y1) C2(-x2,-y2)

C3(-x3,-y3)

C4(0,0)

C5(x3,y3)

C6(x2,y2) C7(x1,y1)

Fig. 6. Visualisation of the relative positions between NURBS coefficients.
C1 & C7, C2 & C6, and C3 & C5 have the same magnitude but are positioned
in different quadrants.

quadrants. The following non-decreasing knot sequence was
used for the creation of the NURBS: [0 0 0 0 0.4 0.5 0.6 1
1 1 1]. The coefficients used for the construction of Nurbs
are shown in Table I. Note that the final NURBS shape is
calibrated such that C1 is on the origin instead of C4. The
principle remains the same.

TABLE I
COEFFICIENTS USED FOR THE FINAL NURBS SHAPE

Coefficient X and Y coordinates (in mm)
C1 X=0, Y=0
C2 X=0, Y=37.5
C3 X=51.9, Y=21
C4 X=75, Y=42
C5 X=98.1, Y=63.375
C6 X=112.5, Y=84.375
C7 X=150, Y=84.375

The material properties were also required for the simu-
lation. Polyactic acid (PLA) was used as the material for the
simulation. The corresponding value for Young’s modulus was
E =3.5 GPa, and the shear modulus was G =1.1 GPa [24].

C. Geometric optimisation

The cross-section geometry was optimized using Matlab.
The ’fmincon’ function from Matlab’s optimisation toolbox
was used for this task. The advantage of using ’fmincon’ is
that it allows the user to set specific upper and lower bounds
for the parameters being optimized. This feature was necessary
to avoid unrealistic solutions. The parameters Hv and Wh were
established with lower and upper limits of 1e-4 m, and 20e-
3 m, respectively. The parameters tv and th were bounded
between 0.1e-3 m and 1.5e-3 m.

Fmincon searches for solutions that reduce the objective
function until it finds a local minimum. In this case, we
are looking for a force-displacement behavior that exhibits
constant force behavior. A mean squared error (MSE) equation
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was used to convert the desired behavior into an objective
function. The objective function is designed to calculate the
squared relative error between a measured force (F ) value and
the mean force (Fm), averaged over all measured values. The
MSE equation is described as follows:∑

(
F − Fm

Fm
)2 (4)

The objective function focused solely on the last 70% of
displacement, leaving out the first 30%. This approach comes
from the goal of maximizing the displacement range over
which the force remains constant. The initial displacement
segment was excluded because it is considered the settling
phase, which the system needs to approach the constant force
phase.

D. Prototype fabrication

It was not possible to 3D print the unit cell monolithically,
so the prototype building process was divided into several
parts. The unit cell consists of beams that are connected to
one another. So firstly, the beams were printed as two halves
and bonded together with Loctite super glue. The beams are
then connected with a block with a geometric cutout matching
the cross-section of the beams. The tolerance was set such that
the beams could be tightly fitted and not slip out. The design
of the connecting block is shown in Figure 7. The beams and
connecting blocks are connected to each other to form the
full unit cell and metamaterial. The complete 3D unit cell
prototype is shown in Figure 8.

Fig. 7. Top isometric view of the connecting block (top). Bottom isometric
view of the connecting block (bottom).

Fused deposition modeling 3D printing was a suitable
option for fabricating the physical model due to its ability
to make complex shapes. The prototypes are all printed using
the original Prusa i3 MK3S+ 3D printer. The default bed is

interchanged with a flexible bed, such that the prints can be
removed easily afterward. For the filament, PLA from the
brand REAL is used. All CAD files were made in Solidworks,
and the corresponding g-codes were generated in PrusaSlicer.
An infill density of 100% was used for the beams and 15%
was used for the blocks, with a gyroid infill pattern. More
information about the dimensions of the block can be found
in Appendix A.

Fig. 8. Complete prototype of the 3D unit cell.

E. Experimental setup

To validate the accuracy of the simulations and the method
used to establish neutral stability, an experimental setup was
designed. This setup involved testing both individual beam sets
and the entire 2D unit cell. Firstly, beam set 1 and beam set
2 are tested on their constant force behavior. A comparison
will then be made between the experimental results and the
FEM simulation results to validate the simulations. This setup
is shown in Figure 9

Subsequently, the pre-tensioned 2D unit cell will be tested.
Tests will be conducted on various levels of pre-tension. As
seen in Figure 1 the force-displacement responses will shift
when a pre-tension is applied. These experiments aim to
validate whether adjusting the constant force regions through
pre-tension effectively achieves neutral stability. This 2D unit
cell’s experimental setup is shown in Figure 10. The experi-
mental results will be compared to the FEM simulation results.
Also, the experimental results of beam set 1 will be manually
combined by mirroring and shifting the force-displacement
response the same way as shown in Figure 1. This is done
to get a more accurate approximation of the behavior of the
physical pre-tensioned 2D unit cell. This approximation will
also be compared to the experimental results of the 2D unit
cell.

The setup consists of two rails made from Thorlabs
25x25mm profiles. A rail guide was attached to each rail,
providing one degree of freedom (DOF) in the x-direction, as
seen in Figure 9. The rail guide was made of a V-slot profile
guided by three V-slot wheels and the lower part of the beam
sets is connected to the V-slot profile with a steel axis. A hole
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Fig. 9. Top view of half a unit cell experimental setup.

Fig. 10. Top view of complete unit cell experimental setup. Beam set 1 and
beam set 2 are pre-tensioned with the pre-tension rod. The rod is made from a
screw thread such that the distance between the two beam sets can be adjusted
accordingly.

was made in the geometric cutout block such that the axis
could fit through the block with a ball bearing allowing only
one rotational DOF around the Z-axis. More on the dimensions
and design of the rail guide can be found in Appendix A. The
top part of the beam sets is connected to the Futek FSH03875
load cell to measure the reaction forces, with a force limit of
45 N . Finally, the load cell is connected to the M-505.4DG
PI stage. The PI stage can realize a maximum translation of
100 mm, which is used to compress and extend the unit cell.

The experimental setup for the 2D unit cell is a little
different. To apply pre-tension the two opposing blocks of the
beam sets are connected by screwing a screw thread through
the center of the blocks. The pre-tension can be manually
adjusted by adjusting the distance between the two blocks. The
force-displacement behavior of the pre-tensioned 2D unit cell
is tested with pre-tension levels of 40 mm, 60 mm, 80 mm,

100 mm, 120 mm, and 140 mm. A pre-tension of 40 mm
means that the distance between the two blocks was reduced
by 40 mm from the equilibrium distance, so in principle, each
beam set of the 2D unit cell is pre-tensioned by 20 mm.

III. RESULTS

The results section is divided into several parts. First, the
results of the force-displacement behavior of the optimized
beam sets will be compared to the experimental results to
validate the constant force behavior. Subsequently, the results
of the 2D pre-tensioned unit cell will be shown.

A. Constant force

The results of the geometric optimisation discussed in
subsection II-C is shown in Table II. One prototyped beam
of beams set 1 is measured for comparison and the measured
values are also displayed in Table II.

TABLE II
OPTIMISED PARAMETER VALUES AND THE MEASURED VALUES

Geometry parameter Optimised value in(m) Measured value in(m)
Hv 13.3× 10−3 13.5× 10−3

tv 0.786× 10−3 0.85× 10−3

Wh 2.77× 10−3 2.85× 10−3

th 0.566× 10−3 0.65× 10−3

Experiments were conducted on the two beam sets. A
displacement of 70 mm was applied to each beam set. In
Figure 11 the grey area corresponds to the hysteresis result
of the experiment. The elastic response of the experimental
results is addressed with dashed lines. The elastic response
is the mean of the hysteresis area. Furthermore, the overall
shape of the two beam sets is similar, showing high stiffness
from 0 to 20 mm and a reduced stiffness profile from 20 mm
to around 50 mm. However, the two beam sets do show a
discrepancy in the magnitude of their force profiles.

Fig. 11. Experimental results of the beam sets (dashed lines) compared to
the simulation results (solid lines).
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Figure 11 also shows a comparison of the experimental
results with the simulation results. The purple line represents
the results of the simulation with optimized cross-sectional
dimensions. The blue line also represents the results of the
simulations but with the corrected dimensions.

A few things can be noticed when comparing the experimen-
tal and simulation results. First of all, the settling distance for
reaching the reduced stiffness is nearly zero for the simulation
results. Secondly, the reduced stiffness of the simulation results
is lower than the reduced stiffness of the experiments. Finally,
while both results show a reduction in stiffness, none show a
perfect zero stiffness area.

B. Neutral stability

The results of the influence of pre-tension are shown in
three different ways. Firstly, the results of the optimal case are
shown in Figure 12 depicted with solid lines. These results are
extracted from the FEM simulation by manually combining the
results of the two optimized single beams using the method
explained in subsection II-A.

Secondly, the experimental data from beam set 1 is also
manually combined to analyze the theoretical results when
two beams identical to beam set 1 are pre-tensioned. These
results are capped at a pre-tension of 100 mm, constrained by
the absence of comprehensive experimental data. These results
are shown in Figure 12 depicted with dashed lines.

In both results, it can be noticed that with increasing pre-
tension, the stiffness remains lower for longer displacements.
Also, the reduced stiffness area for the combined beam set 1
case is larger than the optimal case.
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Fig. 12. Influence of pre-tension for the optimal case and the case of manually
combined beam set 1. The solid lines correspond to the optimal case and the
dashed lines correspond to the case of beam set 1.

Lastly, the experimental results validating the method for
achieving neutral stability are shown in Figure 13. Experi-
ments with different pre-tensions ranging from 40 to 120 mm
were conducted on the 2D unit cell. The results show the
elastic responses derived from the hysteresis mean. It can be

seen that applying a pre-tension of 40 and 60 mm to the
2D unit cell increases the stiffness, while a pre-tension of 80
to 140 mm reduces the stiffness. Another noticeable thing is
that the 80 to 140 mm pre-tensioned unit cell responses are
clustered together.
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Fig. 13. Experimental results of the 2D unit cell with increasing pre-tensions.

IV. DISCUSSION

A. Constant force

In Figure 11 a magnitude difference can be noticed be-
tween the two beam sets. Several factors may cause this
difference. First of all, prototyping irregularities. The beams
are 3D printed and have feature sizes in the order of sub-
millimeters. Even though measurements were made to reduce
the error by decreasing the layer height and printing speed
for more accuracy, errors still occurred. Examples of errors
are uneven surfaces and differences in dimensions. Besides
irregularities in the 3D printing, imperfections also occurred
in the gluing part. This resulted in the cruciform cross-section
not being entirely aligned and symmetrical. Cumulatively,
these imperfections could impact both the magnitude and
general behavior of the beams. The impact of enlarging the
cross-section by 0.1 mm, 0.3 mm, and 0.5mm beyond the
optimized dimensions is depicted in Figure 14. Notably, there
is a significant increase in magnitude correlating with the
increase in error size. Additionally, when the error reaches
0.5 mm, there is also an observable increase in the stiffness
of the section with reduced stiffness.

The experimental results also showed some discrepancies
compared to the simulation as shown in Figure 11. Firstly, the
settling distance for the beam to reach the reduced stiffness
area is very small in the simulation case. This can be explained
by the fact that the simulations are run in perfect conditions,
meaning there are no imperfections in the material. This makes
the simulation not deform laterally, but rather no deformation
happens until it reaches a certain bifurcation point where it
instantly snaps into post-buckling mode, while in real life
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Fig. 14. Effect of a larger cross-section. Every parameter of the cross-section
is enlarged with 0.1mm, 0.3mm, and 0.5mm.

this buckling happens less abruptly. This phenomenon can be
illustrated by an axially compressed bar. When the load is
not far away from the buckling load, an imperfection in the
bar or a small eccentricity of the loading will bend the bar
significantly. While in perfect condition, the bar will remain
straight [25]. In the simulation, imperfections can be added to
the geometry. In this case, the imperfection is added as a small
random displacement to the nodes in the x- and y-directions.
In Figure 15 a response with imperfections in the geometry is
compared with the response of the ideal geometry. As can be
noticed, the imperfections increase the settling distance, and
the transition from high stiffness to reduced stiffness is more
gradual.
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Fig. 15. Effect of adding geometrical imperfections.

Despite using the known Young’s modulus and shear mod-
ulus values of PLA for the simulations, these may not be
entirely accurate reflections of the material properties. The 3D

printing process used to create the physical components signif-
icantly influences these moduli. Factors such as the orientation
of printing and the direction of load application play a crucial
role in determining the ’real’ moduli. The strength of the parts
is greater in directions parallel to the printing direction and
weaker in perpendicular directions. Additionally, the bonding
strength of the super glue used in assembly can also affect the
’real’ moduli of the parts.

Figure 16 and Figure 17 present simulation results with
varying moduli. In Figure 16, while the Young’s modulus is
altered, the shear modulus is held constant, and the reverse is
true for Figure 17. Both figures illustrate that the changes in
moduli only affect the magnitude, while the settling distance
and stiffness of the models remain unchanged.
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Fig. 16. Variation of Young’s modulus compared to the used Young’s
modulus. With values 20% lower to 20% higher than the used Young’s
modulus.
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Furthermore, a remark can be made about the FEM method.
The simulations employed an Euler-beam model, which might
not be the most suitable choice considering the optimized
cross-section’s thin features. A shell model could potentially
offer more accuracy in this context. This is because an Euler-
beam model operates under the assumption that the cross-
section stays flat and perpendicular to the neutral axis post-
deformation, and keeps its in-plane shape. However, this
assumption does not hold for shell structures.

In conclusion, by accounting for the cumulative errors of
an imperfect geometry, a cross-section enlarged by 0.3 mm,
and a 10% decrease in Young’s modulus, the response aligns
more closely with experimental observations, as depicted in
Figure 18. Notably, the settling distance is further increased
compared to when the geometric imperfection is considered
in isolation from other errors.
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Fig. 18. Effect of combining an imperfect beam geometry, 0.3mm larger
cross-section, and a 10% reduction in Young’s modulus compared to the
perfectly optimised response (normal).

B. Neutral stability

In examining how pre-tension affects both the optimal case
and the combined beam set 1 case, various distinctions are
noticeable from Figure 12. The singly optimized beam exhibits
a notably brief yet sharp settling distance and an almost
flat area of reduced stiffness. When two such beams are
coupled and pre-tensioned, this results in an area that more
closely approaches a near-zero force profile. This contrasts
with combining beam set 1, which requires a larger pre-tension
to reach the near-zero force profile. Moreover, in the case of
the combined beam set 1, the achieved near-zero force profile
is less close to actual zero force compared to the combined,
pre-tensioned optimized beams. This can be explained by the
fact that the reduced stiffness area of beam set 1 is larger than
the reduced stiffness area of the optimized beam set.

There are two main discrepancies between the experimental
data and the approximation from the manually combined data
of beam set 1. The first one is the force profile. The expected

behavior is that the slope of the force profile increases after
a certain displacement. For example, in the case of 20 mm
pre-tension, the slope was expected to increase after 10 mm,
but this behavior can not be observed in the experimental
data. Furthermore, the secant stiffnesses from the experimental
results and approximated results were evaluated. The secant
stiffness for a pre-tension of 20 mm was evaluated at 10 mm
displacement. The other secant stiffnesses are evaluated at 20
mm displacement. The results are shown in Table III. It can
be noticed that there is a factor difference between the secant
stiffness of the approximation and the experiment. The factor
difference decreases with the increase of the pre-tension. These
discrepancies could be caused by the method of connecting the
beams. These discrepancies could potentially be attributed to
the method used for connecting the beams, suggesting that
the connection technique might have influenced the structural
behavior. While the exact causes of these discrepancies are not
currently understood, they point to areas for further investiga-
tion.

TABLE III
SECANT STIFFNESS

Pre-tension Secant stiffness
from approximation

Secant stiffness
from experiment

20 mm k ≈0.39 N/mm k ≈1.2 N/mm
40 mm k ≈0.25 N/mm k ≈0.63 N/mm
60 mm k ≈0.11 N/mm k ≈0.58 N/mm
80 to 120 mm k ≈0.11 N/mm k ≈0.2 N/mm

The experimental data detailed in Figure 13 demonstrate
that pre-tensioning successfully lowers the stiffness of the unit
cell. Even though the overall shape differs from the expected
results, the experimental results do show that by adding pre-
tension the stiffness reduces. So by adding energy to the
system, less energy is required to make the same displacement.

Although the goal of neutral stability was not fully realized,
these results validate the method’s effectiveness. The inability
to achieve neutral stability can be attributed to the beam
sets not exhibiting constant force behavior. Consequently, this
led to the absence of regions with zero stiffness, thereby
eliminating the potential for neutralizing the forces. This
novel approach to achieving neutral stability relies on the
constant force behavior of the beam sets. If this behavior were
perfected, the unit cell would likely attain neutral stability.
Therefore, this method opens up possibilities for employing
other designs that exhibit constant force characteristics to
achieve similar outcomes.

C. Future research

For future research, several improvements can be made
regarding the design and manufacturability. A primary goal
is to refine the force response, as neither FEM simulations
nor experimental outcomes currently exhibit the ideal constant
force response necessary for achieving neutral stability. This
objective might be accomplished by exploring alternative
designs, including experimenting with different cross-sectional
shapes capable of exhibiting LTB behavior. An I-shaped
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cross-section, for example, may offer a more consistent force
response. Additionally, investigating the impact of varying B-
spline shapes combined with the new cross-section may also
provide valuable insight. Another area of potential improve-
ment involves examining the effects of altering the cross-
section orientation. Currently, the local coordinate systems at
each node of the beam are uniform. Changing this may lead
to improvements.

In terms of manufacturability, it is worth exploring alter-
native prototyping techniques to make the prototype more
accurate. Nevertheless, given the complexity of the design,
3D printing likely remains the most feasible method for
creating prototypes. The current flaws mainly come from
the relatively small feature sizes. Additionally, creating the
prototype as a single, monolithic piece would more closely
align with the outcomes predicted by FEM simulations while
also significantly reducing prototyping time. Also, the current
method for pre-tensioning is not optimal. A design change
should be made such that the whole metamaterial can be pre-
tensioned in one motion.

This research primarily focuses on the behavior of a single
unit cell under periodic boundary conditions, aiming to repli-
cate the overall behavior of the metamaterial. However, the
impact of the tessellation sequence on the metamaterial’s prop-
erties remains uncertain. Addressing this uncertainty requires
either constructing a smaller-scale prototype or using a larger
test setup. This step is crucial for a deeper understanding and
effective application of the metamaterial in practical scenarios.

Lastly, while investigating the deformations of the unit cell
it seemed that the beams could buckle in two directions when
being compressed. This behavior allows the metamaterial to
have a sign-switching Poisson’s ratio which does not exist in
constituent materials. This can also be further investigated.
More on the sign switching Poisson’s ratio behavior of this
metamaterial can be found in Appendix D.

V. CONCLUSION

This study presents a novel method for creating neutral
stability in metamaterials. This is done by employing two
identical elements that possess constant force-displacement
behavior. These two elements are mirrored and pre-tensioned
such that the constant force regions align and result in a
constant zero force region, creating neutral stability.

A beam cross-section optimisation was conducted to find the
optimal cross-section for the best constant force performance.
The optimized solutions showed nearly constant force behavior
but not a perfect one.

Prototypes were made and experimentally tested to validate
this method of creating neutral stability. Discrepancies were
observed between the simulations and the experimental results,
which can be partially explained by manufacturing uncertain-
ties. Even though perfect neutral stability was not achieved,
the experiments proved that the method could work if a perfect
constant force element could be manufactured.

The results give confidence that this method can be applied
to other constant force mechanisms to create neutrally stable
metamaterials.
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4
Conclusion

This study presents a novel method for creating neutral stability in metamaterials. This is done by
employing two identical elements that possess constant force-displacement behavior. These two ele-
ments are mirrored and pre-tensioned such that the constant force regions align and result in a constant
zero force region, creating neutral stability.

A beam cross-section optimisation was conducted to find the optimal cross-section for the best constant
force performance. The optimized solutions showed nearly constant force behavior but not a perfect
one.

Prototypes were made and experimentally tested to validate this method of creating neutral stability.
Discrepancies were observed between the simulations and the experimental results, which can be par-
tially explained by manufacturing uncertainties. Even though perfect neutral stability was not achieved,
the experiments proved that the method could work if a perfect constant force element could be man-
ufactured.

The results give confidence that this method can be applied to other constant force mechanisms to
create neutrally stable metamaterials.
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A
Appendix A - Test setup design

The experimental test setup consists of multiple PLA 3D-printed parts. This appendix will discuss the
design and dimensions of the parts. The test setup consists of a linear rail guide for movement in the
x-direction, with the unit cell mounted on the rail. An overview of the test setup is shown in Figure A.1.

Figure A.1: Overview of the test setup

The rails are constructed with Thorlabs XE25L500/M profiles. These profiles are connected with Thor-
labs RM1G cubes. The whole structure is mounted to the breadboard with Thorlabs XE25A90 angle
brackets. The height of the horizontal beam with respect to the breadboard is adjusted such that it is
in line with the load cell.

The rail guide consists of 3 Creality v-slot wheels and a v-slot profile. The v-slot profile is 3D-printed

Figure A.2: Test setup rails
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and the dimensions are displayed in Figure A.3. The v-slot wheels are connected with m5 bolts and
nuts to the 5mm diameter holes and the 5.05mm diameter slit.

Figure A.3: Dimensions of v-slot profile in milimeters

The unit cell is also connected to v-slot profiles with a 6mm diameter steel axle that is pressed-fit in the
6mm hole of the v-slot profile. The geometric cut-out block has a hole through the middle with a ball
bearing in it such that the steel axle can be connected to the block while keeping the rotation around the
axle free. To prevent the block from moving up or down the axle two internal tooth washers are applied
on the top and bottom of the block. An impression of the complete rail guide is shown in Figure A.4.

Figure A.4: Rail guide with unit cell attachment

Figure A.5 shows the dimensions of two different geometric cut-out blocks. Figure A.5a is the block
connected to the V-slot and Figure A.5b is the block connected to the Pi-stage.
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(a) Dimensions of the block connected to the v-slot profile (b) Dimensions of the block connected to the Pi-stage

Figure A.5: Dimensions of the geometric cut-out block



B
Appendix B - Combined optimisation

case

Optimization was conducted only on the beam’s cross-section because optimizing the spline shape
would give an unrealistic shape. The scenario involving simultaneous optimization of both the cross-
section and spline shape was not explored before the experimental stage. Presented here are the
findings from the integrated optimization case.

The upper and lower boundaries of the cross-section are set to the same values as the single optimiza-
tion case. The boundaries of the NURBS coefficients are set as shown in Figure B.1

Figure B.1: Upper and lower boundaries of the NURBS coefficients for optimization

However, combining the optimization cases does not significantly change the outcome compared to
the isolated cross-section optimization. The changes are sub-millimeter which is not noticeable in the
results.
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Appendix C - Other concepts and

ideas

At the initial stage of this study, multiple designs were considered as starting points. The designs do
have potential but require extra research to realize the goal of neutral stability.

C.1. Concept 1
The first concept is based on a squared shape that is pre-tensioned with some kind of hook mechanism.
The pre-tension makes the square bi-stable as can be seen in Figure C.1. The idea to make this unit
neutrally stable is based on the fact that the total stiffness of the unit cell is a combination of the linear
material stiffness and the nonlinear geometry stiffness. So if the unit cell is bi-stable it can in theory
be made into a constant force unit cell by increasing the material stiffness, such as by increasing the
thickness.

Figure C.1: 1) shows the top view of the concept. It shows a rectangular circumference which is pre-tensioned with a hook. 2)
shows a side view of the unit cell in stable equilibrium position 1. 3) shows the side view in stable equilibrium position 2.

C.2. Concept 2
The second concept uses the same principle as concept 1 to achieve neutral stability. However, the
method of pre-tensioning differs. Concept 2 uses a squared profile that has a cut and is slightly bent
as shown in Figure C.2. By attaching both open ends it will be pre-tensioned and possess bi-stable
behavior. Same as concept 1 the material stiffness can be increased to achieve a constant force
behavior and eventually neutral stability.

34



C.3. Concept 3 35

Figure C.2: 1) shows the top view of the unit cell. 2) shows the side view of the unit cell. The open ends are held together with
an adjustable wrench.

C.3. Concept 3
The design of concept 3 is inspired by the origami hypar[5]. The origami hypar is bistable and made
from a sheet of plastic or paper, but this concept is 3D printed and has a larger thickness than the
original origami hypar. The increase in thickness changes the bi-stable behavior into a constant-force
behavior. When connecting another mirrored cell and applying pre-tension, the combined unit cell
should in theory be neutrally stable. Different views of the design are shown in Figure C.3.

Figure C.3: Isometric view and side view of concept 3

C.4. Alternative beam
In the literature, an interesting beam design was made by Zhang et al.[21]. This beam has pro-
grammable constant force properties. The beam has a certain curve and uses a rectangle as a cross-
section, so it seems to be easier to manufacture. This beam might serve as an alternative to the design
we initially proposed, but further investigation is necessary to verify its feasibility. Figure C.4 shows the
force-displacement behavior of the beam and a variation of the curved beam.
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Figure C.4: Constant force beam design by Zhang et al. Retrieved from [21]
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Appendix D - Sign switching Poisson's

Ratio

A unique property was observed in this metamaterial design which was not intended. It has to do
with Poisson’s ratio behavior. When a certain elastic elongation is applied to an isotropic material, the
length in the longitudinal direction is extended, while the length in the lateral direction is contracted.
This behavior can be found in normal materials with a Poisson’s ratio larger than zero. The Poisson’s
ratio is as follows:

v = − ϵlat
ϵlong

(D.1)

Here ϵlat and ϵlong are the lateral strain and longitudinal strain respectively.

Figure D.1: Illustration of the deformation in the lateral direction when a material is elongated. Retrieved from [16]

A small 3x3x1 version of this metamaterial was built to observe the behavior of the deformations. This
prototype is shown in Figure D.2. When compression is applied in the Z-direction, the metamaterial
will extend in the x-direction and contract in the y-direction. This deformation is caused by the buckling
of the beams. Figure D.3 shows the deformed metamaterial. In isotropic materials, the strain resulting
from the compression would be the same for the x and y directions. Using Equation D.2 results in a
positive Poisson’s ratio for the lateral x-direction and a negative Poisson’s ratio for the lateral y-direction.

vzx = − ϵx
ϵz

, vzy = − ϵy
ϵz

(D.2)
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Figure D.2: 3x3x1 metamaterial in undeformed state

Figure D.3: Metamaterial in deformed state with elongation in x-direction and contraction in y direction

However, the beams have a second buckling mode, causing the deformations to be the other way
around. Instead of a contraction in the y direction, the x-direction will be contracted and the y-direction
will be extended. This deformation is shown in Figure D.4. Analyzing the Poisson’s ratio it can be no-
ticed that instead of having a positive Poisson’s ratio for the lateral x-direction and a negative Poisson’s
ratio for the lateral y-direction, the Poisson’s ratio will be negative for x and positive for y. This behav-
ior indicated that the metamaterial possesses a sign-switching Poisson’s ratio behavior depending on
which way the beam buckles.
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Figure D.4: Metamaterial in deformed state with contraction in x-direction and elongation in y-direction



E
Appendix E- Matlab code

E.1. Objective function
The objective function for the optimisation:

1 function objective = mean_absolute_deviation_CA(param)
2

3 param_1=param(1)
4 param_2=param(2)
5 param_3=param(3)
6 param_4=param(4)
7

8 coefs= [0 37.5 51.9 75 98.1 112.5 150;
9 0 0 21 42 63.375 84.375 84.375]/1000;

10

11

12

13

14 nx=1;
15 ny=1;
16 nz=1;
17 % Update the nrbs structure with the new coefficients
18 [x, y, z, elementNodes] = create_single_unit_cell_opt(coefs);
19 [x, y, z, elementNodes] = replicate_unit_cells_opt(nx, ny, nz,x,y,z,coefs);
20

21 % (Include the existing script here with the updated nrbs structure)
22 par.nTimestep = 500;
23 par.nIter = 100;
24 par.conv = 5e-5;
25 par.plots = 'off';
26 par.getKend = 0;
27

28 nbeam = numel(x);
29 m.X = [x, y, z, zeros(3, nbeam)'];
30

31 % Update the m.elementNodes matrix with the new node connections
32 m.elementNodes = elementNodes;
33 m.numberNodes = size(m.X,1);
34 m.numberElements = size(m.elementNodes ,1);
35 m.eqn = 6*m.numberNodes;
36 m.x = reshape(m.X',m.eqn,1) ;
37

38

39
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40 %PLA
41 m.E = 3.2e9*ones(1,m.numberElements);
42 m.G = 1.1e9*ones(1,m.numberElements);
43

44

45

46 m = DefineCrossSection(m,'Cruciform', param_1, param_2, param_3, param_4);
47

48

49

50 %%Use this for a single orientation point
51 CSO = [ 0 0 10000]'; % cross section orientation. Is the point towards which

e03 points. Used to be fixed [0.00001 0.000001 1]'
52 m.GuideCurve = repmat(CSO,1,m.numberNodes);
53 m.guidecurve = reshape(m.GuideCurve ,3*m.numberNodes ,1) ;
54 % %%Use this to specify an orientation curve
55 % m.GuideCurve = m.X(:,1:3)';
56 % m.GuideCurve(1,:) = m.GuideCurve(1,:) + param_1;
57 % m.GuideCurve(2,:) = m.GuideCurve(2,:) + param_2;
58 % m.GuideCurve(3,:) = m.GuideCurve(3,:) + param_3;
59 % m.guidecurve = reshape(m.GuideCurve ,3*m.numberNodes ,1) ;
60

61 %% core
62

63 for e = 1:m.numberElements
64 % m_beams.tr1(:,:,e) =

eye(3)*rotRo1(m_beams.X(e+1,1:3)'-m_beams.X(e,1:3)');
65 % m_beams.tr2(:,:,e) =

eye(3)*rotRo1(m_beams.X(e+2,1:3)'-m_beams.X(e+1,1:3)');
66

67 %modified rotRo1 met richting e03 naar bepaald punt (niet de snelste versie)
68 x21=(m.X(m.elementNodes(e,2) ,1:3)'-m.X(m.elementNodes(e,1) ,1:3)');
69 e01 = (x21)/norm(x21);
70 % e03star = veccross(e01,[0.00001 0.000001 1]');
71 e03star = cross(e01, m.guidecurve(3*(m.elementNodes(e,1)-1)+[1:3]) -

m.X(m.elementNodes(e,1) ,1:3)');
72 e03 = e03star/norm(e03star);
73 e02 = cross(e03,e01);
74 %e03 e02 roteren hier voorzichtig
75

76

77

78 Ro = [e01 e02 e03]; % voor eqn 4.28
79

80 m.tr1(:,:,m.elementNodes(e,1)) = eye(3)*Ro;
81 m.tr2(:,:,m.elementNodes(e,1)) = eye(3)*Ro;
82 end
83 m.tr1(:,:,m.numberElements) = eye(3)*Ro;
84 m.tr2(:,:,m.numberElements) = eye(3)*Ro;
85

86 % m_beams.tr1 = repmat(eye(3),1,1,m_beams.numberElements);
87 % m_beams.tr2 = repmat(eye(3),1,1,m_beams.numberElements);
88 m.Rg1 =

repmat(eye(3),1,1,m.numberElements);%repmat({eye(3)},m_beams.numberElements ,1);
89 m.Rg2 = repmat(eye(3),1,1,m.numberElements);
90

91 m.D = zeros(6,m.numberNodes)';
92 m.d = zeros(m.eqn,1);
93

94 %
mex('-O','-I"C:\Program','Files','(x86)\Microsoft ','Visual','Studio ','14.0\VC\include"','COMPFLAGS="/openmp','$COMPFLAGS"','..\core\AssembleMatrices.cpp','-output',
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'AssembleMatricesBeams ', ['-Deqn=' num2str(m_beams.eqn)], ['-Dnel='
num2str(m_beams.numberElements)] )

95 %
mex('-O','-I"C:\Program','Files','(x86)\Microsoft ','Visual','Studio ','14.0\VC\include"','COMPFLAGS="/openmp','$COMPFLAGS"','StrainEnergyCRbeams.cpp','-output',
'StrainEnergyCRbeams ', ['-Deqn=' num2str(m_beams.eqn)], ['-Dnel='
num2str(m_beams.numberElements)] )

96 plotBeams(m)
97 try
98 %% BOUNDARY CONDITIONS on begin- and endpoint
99 height = coefs(2,7);

100 indices_max=find(z==max(z));
101 indices_min=find(z==min(z));
102 pointconstraints=zeros(6,m.numberNodes); %creates a 6 by N array with zeros
103

104 allIndices = [indices_min; indices_max];%all top and bottom nodes
105

106 % Set corresponding elements in pointconstraints to 1
107 pointconstraints([1 2 3 4 5 6], 1) = 1; % constraint in node 1 to prevent shifting
108 pointconstraints([3 4 5], allIndices) = 1;% contraints for the top and bottom

nodes
109

110 dofs.bc = find(pointconstraints)';
111 dofs.dp = zeros(sum(pointconstraints ,'all'),1);
112

113

114 Fe = zeros(m.eqn,1);%geleidelijke kracht toepassen
115 PreFe = zeros(m.eqn,1); %instant kracht
116

117

118 count = 0;
119 activeconstraints = [];
120 for i = 1:size(pointconstraints , 2)
121 for j = 1:size(pointconstraints , 1)
122 if pointconstraints(j,i) == 1
123 count = count + 1;
124 if j == 3 && ismember(i, indices_max)
125 activeconstraints = [activeconstraints , count];
126 end
127 end
128 end
129 end
130

131 dofs.dp(activeconstraints) = -1*height; %displacements on the 4e en 8e dof.
132

133 dofs.all = (1:m.eqn)';
134 %dofs.bc = bc(~isnan([dofs.dp]));
135 %dofs.dp = dofs.dp(~isnan([dofs.dp]));
136 dofs.R =

sparse(1:length(dofs.bc),[dofs.bc],1+0*dofs.bc,length(dofs.bc),m.eqn);
137 def='def';
138 [history, m] = solveNONLINstaticCOR(m,dofs,par,Fe,PreFe);
139

140 for i=1: length(history)
141 RF(i,:) = [history(i).RF(activeconstraints)] ;
142 end
143

144 % Calculate the mean absolute deviation
145 displacement = linspace(0, -dofs.dp(activeconstraints(1)), par.nTimestep);
146 startIndex= length(RF)*0.3;
147 displacement=displacement(1,startIndex:end)';
148 force = -RF(startIndex:end, 1); % beware if you change the timestep
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149

150

151

152 %% objective functions
153 fmean=mean(force);
154 objective=sum(((force-fmean)/fmean).^2) %original
155

156

157 catch ME
158 disp(['Error in Param_opt: ' ME.message]);
159 objective = NaN; % Return NaN when there's an error
160 end
161

162

163

164

165

166

167

168

169 end

E.2. Cross-section optimiser model
Code for the cross-section optimiser

1 clear all
2 %
3 %% Fmincon
4

5 %Define initial guess for the parameters
6 initial_guess = [0.0132641873479819 0.000785728297885106 0.00275747010260366

0.000566292405809865] ;
7

8 % Define constraints
9 % If you don't have any constraints , you can use empty matrices []

10 A = []; % Linear inequality constraints
11 b = []; % Linear inequality constraints
12 Aeq = []; % Linear equality constraints
13 beq = []; % Linear equality constraints
14 lb = [0.0001 0.0001 0.0001 0.0001]; %lower bounds
15 ub = [20e-3 1.5e-3 20e-3 1.5e-3]; % Upper bounds
16

17

18 % Call fmincon
19

20 %options = optimoptions('fmincon','Display','iter-detailed ');
21

22 [optimal_params , exitflag ,fval] = fmincon(@mean_absolute_deviation_CA ,
initial_guess , A, b, Aeq, beq, lb, ub,[]);

23

24 % Print the results
25 fprintf('The optimal parameters are: %.4f,%.4f\n', optimal_params(1),

optimal_params(2),optimal_params(3),optimal_params(4));
26 fprintf('The minimal objective value is: %.4f\n', fval);

E.3. Function for creating a single unit cell
Code for creating a single unit cell
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1 function [x, y, z, elementNodes , elements_side ,height] =
create_single_unit_cell_test()

2

3 %% NRBS Creation
4

5 diagonal = 0.08;
6 elements_side = 20;
7 coefs = [0 37.5 51.9 75 98.1 112.5 150;
8 0 0 21 42 63.375 84.375 84.375]/1000;
9 height = coefs(2,7);

10

11 knots = [0 0 0 0 0.4 0.5 0.6 1 1 1 1];% Define the knot sequence (degree 3, so 4
repeated knots at the beginning and end)

12

13 nrbs = nrbmak(coefs, knots);% Create the NURBS structure
14

15 param_values = linspace(0, 1, elements_side);% Define the parameter values
16

17 curve_points = nrbeval(nrbs, param_values);% Evaluate the NURBS curve at the
parameter values, outputs cartesian coordinates

18

19

20 %% define lowerspline 1
21 x_i = curve_points(1, :)';% x Initial
22 z_i = curve_points(2, :)';% y initial
23 y_i = zeros(elements_side , 1); % z initial
24

25

26 %rotate
27 rotation_angle_degrees = 45;
28 rotation_angle_radians = deg2rad(rotation_angle_degrees);
29

30 %rotation matrix
31 Rz = [cos(rotation_angle_radians), -sin(rotation_angle_radians), 0;
32 sin(rotation_angle_radians), cos(rotation_angle_radians), 0;
33 0, 0, 1];
34

35 % Perform the rotation
36 xyz = [x_i, y_i, z_i]; % initial coordinates in a matrix, every coordinate is a

column
37 xyz_rotated = xyz * Rz;
38

39 % Store the rotated coordinates
40 x_r1 = xyz_rotated(:, 1);
41 y_r1 = xyz_rotated(:, 2);
42 z_r1 = xyz_rotated(:, 3);
43

44 %% define spline lower 2
45 rotation_angle_degrees = 90;
46 rotation_angle_radians = deg2rad(rotation_angle_degrees);
47 Rz = [cos(rotation_angle_radians), -sin(rotation_angle_radians), 0;
48 sin(rotation_angle_radians), cos(rotation_angle_radians), 0;
49 0, 0, 1];
50

51 % Shift the spline to origin
52 x_shifted = x_r1 - max(x_r1);
53 y_shifted= y_r1- min(y_r1);
54

55 %perform rotation
56 xyz_r1=[x_shifted ,y_shifted ,z_r1];
57 xyz_r1_rotated=xyz_r1*Rz;
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58

59 %shift back
60 xyz_r1_rotated(:, 1) = xyz_r1_rotated(:, 1) + max(x_r1);
61 xyz_r1_rotated(:, 2) = xyz_r1_rotated(:, 2) + min(y_r1);
62

63 x_r2 = xyz_r1_rotated(:, 1);
64 y_r2 = xyz_r1_rotated(:, 2);
65 z_r2 = xyz_r1_rotated(:, 3);
66 % Define spline upper
67

68 x_i = curve_points(1, :)';
69 z_i = curve_points(2, :)';
70

71 % Define y_i variable
72 y_i = zeros(elements_side , 1);
73

74

75 %rotate
76 rotation_angle_degrees = -45;
77 rotation_angle_radians = deg2rad(rotation_angle_degrees);
78

79 % Define the rotation matrix
80 Rz = [cos(rotation_angle_radians), -sin(rotation_angle_radians), 0;
81 sin(rotation_angle_radians), cos(rotation_angle_radians), 0;
82 0, 0, 1];
83

84 % % Shift the spline so that the right end is at the origin
85 % x_shifted = x_i - max(x_i);
86

87 % Perform the rotation
88 xyz = [x_i, y_i, z_i];
89 xyz_rotated = xyz * Rz;
90

91 % % Shift the rotated spline back to its original position
92 % xyz_rotated(:, 1) = xyz_rotated(:, 1) - max(x_i);
93

94 % Store the rotated coordinates
95 x_r3 = xyz_rotated(:, 1);
96 y_r3 = xyz_rotated(:, 2);
97 z_r3 = xyz_rotated(:, 3);
98

99 % Spline upper 2
100 rotation_angle_degrees = -90;
101 rotation_angle_radians = deg2rad(rotation_angle_degrees);
102 Rz = [cos(rotation_angle_radians), -sin(rotation_angle_radians), 0;
103 sin(rotation_angle_radians), cos(rotation_angle_radians), 0;
104 0, 0, 1];
105 % Shift the spline to origin
106 x_shifted = x_r3 - max(x_r3);
107 y_shifted= y_r3- max(y_r3);
108

109 %perform rotation
110 xyz_r3=[x_shifted ,y_shifted ,z_r3];
111 xyz_r3_rotated=xyz_r3*Rz;
112

113 %shift back
114 xyz_r3_rotated(:, 1) = xyz_r3_rotated(:, 1) + max(x_r3);
115 xyz_r3_rotated(:, 2) = xyz_r3_rotated(:, 2) + max(y_r3);
116 x_r4 = xyz_r3_rotated(:, 1);
117 y_r4 = xyz_r3_rotated(:, 2);
118 z_r4 = xyz_r3_rotated(:, 3);
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119

120

121 % define x y z
122 x=[x_r1' flip(x_r2') x_r4' flip(x_r3')]';
123 y=[y_r1' flip(y_r2') y_r4' flip(y_r3')]';
124 z=[z_r1' flip(z_r2') z_r4' flip(z_r3')]';
125

126 % Find the maximum Z-coordinate value
127 max_z = max(z);
128

129 % Define the gap between the original unit cell and the mirrored unit cell
130 gap = height; % Set the desired gap value!!!!!!!!!!!!!!!!!!!!!!!
131

132 % Mirror the Z-coordinates
133 z_mirrored = (max_z + gap) - z;
134

135 %Final unit cell geometry
136 x = [x; x];
137 x([elements_side+1 2*elements_side+1 3*elements_side+1 4*elements_side

4*elements_side+1 5*elements_side 5*elements_side+1 6*elements_side+1
7*elements_side 7*elements_side+1])=[];

138 y = [y; y];
139 y([elements_side+1 2*elements_side+1 3*elements_side+1 4*elements_side

4*elements_side+1 5*elements_side 5*elements_side+1 6*elements_side+1
7*elements_side 7*elements_side+1])=[];

140 z = [z; z_mirrored];
141 z([elements_side+1 2*elements_side+1 3*elements_side+1 4*elements_side

4*elements_side+1 5*elements_side 5*elements_side+1 6*elements_side+1
7*elements_side 7*elements_side+1])=[];

142

143 elementNodes_lower = [1:4*elements_side -5;2:4*elements_side -4];
144 elementNodes_upper=

[4*elements_side -3:8*elements_side -11;4*elements_side -2:8*elements_side -10];%nodes
worden nog geconnect met elkaar ipv intersect

145 elementNodes_intersect= [[5*elements_side -6 elements_side 7*elements_side -9
3*elements_side -2 4*elements_side -4 8*elements_side -10];[elements_side
5*elements_side -5 3*elements_side -2 7*elements_side -8 1 4*elements_side -3]];

146

147 elementNodes=[elementNodes_lower elementNodes_upper elementNodes_intersect]';
148 elementNodes([5*elements_side -7 7*elements_side -10],:)=[];
149

150 % x = x + (rand(length(x),1)-0.5)*40*10^-4;
151 % y = y + (rand(length(x),1)-0.5)*40*10^-4;
152 x = x + (rand(length(x),1)-0.5)*10^-4;
153 y = y + (rand(length(x),1)-0.5)*10^-4;
154

155 end

E.4. Function for creating metamaterial (unit cell tessellation)
Code for creating metamaterial, but it is a little buggy.

1 function [x, y, z, elementNodes ,elements_side ,height] =
replicate_unit_cells_test(nx, ny, nz)

2 [x, y, z, elementNodes ,elements_side ,height] = create_single_unit_cell_test();
3 % function [x, y, z, elementNodes] = replicate_unit_cells(nx, ny, nz,x,y,z,coefs)
4 % [x, y, z, elementNodes] = create_single_unit_cell(coefs);
5 x_max = max(x);
6 y_max = max(y);
7 z_max = max(z);
8
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9 x_all = [];
10 y_all = [];
11 z_all = [];
12 elementNodes_all = [];
13

14 n_nodes = size(x, 1);
15 for k = 0:(nz-1)
16 for j = 0:(ny-1)
17 for i = 0:(nx-1)
18 x_temp = x + i * x_max;
19 y_temp = y + j * 2*y_max;
20 z_temp = z + k * z_max;
21 elementNodes_temp = elementNodes + (i + j * nx + k * nx * ny) *

n_nodes;
22

23 x_all = [x_all; x_temp];
24 y_all = [y_all; y_temp];
25 z_all = [z_all; z_temp];
26 elementNodes_all = [elementNodes_all; elementNodes_temp];
27 end
28 end
29 end
30

31 % Remove overlapping nodes
32 tol = 1e-6;
33 rounded_coords = round([x_all, y_all, z_all] / tol) * tol;
34 [C, ~, ic] = unique(rounded_coords , 'rows', 'stable');
35 x = C(:, 1);
36 y = C(:, 2);
37 z = C(:, 3);
38

39 % Update the elementNodes using the index array ic
40 elementNodes = ic(elementNodes_all);
41

42 % Remove duplicate node connections
43 duplicate_rows = (elementNodes(:, 1) == elementNodes(:, 2));
44 elementNodes(duplicate_rows , :) = [];
45

46

47

48 end
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