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P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

HIGHER ORDER HYPERBOLIC - COUPLED - ELLIPTIC
FLUX-CONTINUOUS CVD FINITE VOLUME SCHEMES IN

TWO AND THREE DIMENSIONS

Michael G Edwards

Civil and Computational Engineering Centre
School of Engineering

University of Wales Swansea
Singleton Park Swansea SA2 8PP WALES UK

e-mail: M.G.Edwards@swansea.ac.uk

Key words: Higher-Order, Flux-Continuous, Full-tensor, Finite-volume, Unstructured

Abstract. Novel unstructured grid higher order convection schemes are presented. The
schemes are coupled with locally conservative flux continuous control-volume distributed
(CVD) finite-volume schemes for the porous medium general tensor pressure equation on
structured and unstructured grids in 2-D and 3-D.

The schemes are developed for multi-phase flow in porous media. Benefits of the
schemes in terms of improved front resolution and medium discontinuity resolution are
demonstrated. Comparisons with current methods including the control-volume finite ele-
ment method highlight the advantages of the new formulation for three dimensional reser-
voir simulation.

1 INTRODUCTION

This paper presents the development of three dimensional higher order convection
schemes coupled with optimal discrete continuous Darcy fluxes for approximation of the
multi-phase flow equations that arise in reservoir simulation. The system of equations
considered here is hyperbolic fluid transport coupled with an elliptic system for pressure
and Darcy velocity 1,2.

A novel higher order scheme with local maximum principle for unstructured grids in
three dimensions is presented. The higher order convection schemes presented here are
based on the hyperbolic schemes presented in 3,19, with improved time accuracy via a
weighted Crank-Nicolson formulation5. Higher order convection schemes for reservoir
simulation have been developed over a number of years, e.g. 3−11,19. These schemes
achieve higher order accuracy and are constructed such that the solution remains free of
spurious oscillations. These methods yield benefits in terms of improved front resolution
and have been successfully demonstrated for a variety of multi-phase flow problems in
subsurface reservoir simulation.
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The continuous Darcy flux schemes presented here are a three dimensional generaliza-
tion of the two-dimensional elliptic schemes presented in 3. Previous work in the area of
locally conservative flux-continuous full-tensor finite-volume schemes includes 12−26,39−41.
These schemes are control-volume distributed CVD where flow variables and rock prop-
erties are associated with the control-volumes of the grid and provide a consistent dis-
cretization of the porous medium pressure equation applicable to general geometry and
permeability tensors on structured and unstructured grids e.g. 12. Methods of this type
are also known as Multi-point Flux approximation schemes (MPFA) 20. Mixed finite ele-
ment methods (MFEM) e.g. 7,27−31 preserve flux continuity for full tensor flows, however
mixed methods solve for velocity components and pressure in a globally coupled system.
For a three dimensional structured grid MFEM involve solving for 4 times as many de-
grees of freedom as (the more efficient) CVD methods. The CVD schemes presented here
maintain flux continuity with one discrete pressure value per control-volume.

Coupling of the novel higher order phase component approximations with the general
tensor flux-continuous formalism is a new development for general grids in three dimen-
sions. Here general is used in the sense of allowing the grid to be composed of any element
type, arbitrary distortions of such grids and their effects remain to be investigated. The
new formulation yields an improved scheme for reservoir simulation applicable to multi-
phase flow while using an optimal number of degrees of freedom within the discretization.

Flow equations are presented in section 2. A brief summary of the three dimensional
flux-continuous CVD formulation is presented in section 3. Extension of the higher or-
der spatial schemes to general unstructured grids is presented in section 4 together with
improved temporal accuracy. Two-phase flow results are presented in section 5 that
demonstrate the advantages of the new higher order flux-continuous formulation in terms
of grid orientation and front resolution. Comparisons with the standard control-volume
finite element CVFE scheme 32, (exactly the same number of degrees of freedom), demon-
strate advantages of the new formulation with respect to medium discontinuity resolution
for reservoir simulation. Conclusions are presented in section 6.

2 FLOW EQUATIONS

The flow equations are briefly described here, the reader is referred to 1 for a compre-
hensive account. The schemes presented here are illustrated with respect to two phase
incompressible flow models, where without loss of generality unit porosity is assumed and
capillary pressure and dispersion are neglected. The integral form of the flow equations
is given over a control volume Ωcv with surface ∂Ωcv, the continuity equations for phases
p = 1, Np are written as

∫
Ωcv

(
∂Sp

∂t
+ ∇ • Vp)dτ = mp (1)

where Sp, Vp and mp are the pth phase saturation, Darcy velocity (defined below) and
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specified phase flow rate respectively and phase saturations sum to unity.
The momentum equations are defined through Darcys law where the pth phase velocity is
defined by

Vp = fp(VT −4ρ(S)gK∇h) (2)

here fp is the fractional flow of phase p, and VT is the total Darcy velocity defined via

VT = −ΛK(∇φ + ρ̄g∇h) (3)

where Λ is the total mobility 1, K is a diagonal or full elliptic Cartesian permeability
tensor, φ is the pressure and ∇ = ∂xi

.

Also, ρ̄ =
∑Np

p=1 ρpλp/Λ is the mean density and λp, ρp are the pth phase mobility and
density respectively, 4ρ(S) = (ρp − ρ̄), h is the height, g the acceleration due to gravity.

The closed surface integral of phase velocity can now be expressed as the sum of outward
normal phase fluxes Fpi

over each of the surface increments of the control-volume Ωcv, viz

∮
∂Ωcv

Vp • n̂ds =
NS∑
i=1

Fpi
(4)

where NS is the number of surface increments that enclose the volume Ωcv. The outward
normal phase flux in the ith normal direction is written in terms of the general tensor T
as

Fpi
= −

∫
∂Ωcv

fpΛ(
3∑

j=1

Tijφξj
+ ρpg

3∑
j=1

Tijhξj
)dΓi (5)

where ξi are local curvilinear parametric coordinates, Γi is the parametric coordinate
surface increment and φξj

is the derivative of φ with respect to ξj and

T = JJ−1KJ−T (6)

is the general tensor defined via the Piola transformation which is function of the Carte-
sian permeability tensor and geometry, where Jij = ∂xi/∂ξj is the Jacobian of the local
curvilinear coordinate transformation. General full tensors can arise (with non-zero cross
terms Tij 6= 0 for i 6= j) as a result of the grid type, local orientation of the grid and
permeability field and from upscaling. For incompressible flow Eq. 1 is summed over the
Np phases and since saturations sum to unity, using Eq’s. 4, 5 the pressure equation

NS∑
i=1

FTi
= M (7)
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is obtained. In order to simplify notation gravity will now be omitted from the for-
malism, however once the discrete flux is defined gravity can be included by following the
above definitions. Now using

Fpi
= −

∫
∂Ωcv

fpΛ
3∑

j=1

Tijφξj
dΓi (8)

the total flux is given by

FTi
= −

∫
∂Ωcv

Λ
3∑

j=1

Tijφξj
dΓi (9)

and involves a product of total mobility and single phase flux. Note that the single phase
flux is obtained by setting Λ = 1 in Eq. 9. Zero normal flux (Neumann) applies on solid
walls, here M is the total inflow/outflow flux which is zero away from wells. Initial data
in terms of saturation and pressure fields are also prescribed. Further details can be found
in 1.

3 FLUX-CONTINUOUS CONTROL-VOLUME DISTRIBUTED (CVD) AP-
PROXIMATIONS in 3-D

The initial or primal grid is comprised of cells, with corners defined by the grid ver-
tices. The distinction between cell centred and cell vertex schemes is discussed in 3. The
schemes presented here are vertex centred, where for a given control-volume surrounding
a grid vertex, flow variables are assigned to grid vertices and rock properties are piecewise
constant with respect to the control-volumes and are control-volume distributed CVD.
The physical constraints that must be enforced are continuity of pressure and continuity
of normal flux across interfaces (control-volume faces) that separate changes in perme-
ability tensor.

3.1 Continuous Flux Approximation in Three Dimensions

We now consider approximation of the incompressible single phase flow pressure equa-
tion and present a summary of the flux-continuous formulation in three dimensions. Pre-
vious work on flux-continuous schemes in 3-D is presented in 15,21,24,26. The primal grid
considered here can be a hybrid composed of combinations of tetrahedra, prisms, pyramids
and hexahedra elements in 3-D. In principle the only restriction on grid structure is that
tetrahedra can only be joined to hexahedra through a pyramid interface. A polyhedral
control-volume is built around each grid vertex, generating a primal-dual grid. Starting
in a primal grid cell, the cell centre is joined to cell face mid-points, cell face mid-points
are joined to cell edge mid-points. As a result the primal grid cells are decomposed into
sub-hexahedra or subcells, four for a tetrahedra, five for a pyramid, six for a prism and
eight for a hexahedra. In each case the number of subcells corresponds to the number
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of vertices defining the primal cell, and each subcell belongs to the control-volume of the
unique vertex to which it is attached. Cell vertex control-volumes are defined by a local
assembly or recomposition at each primal grid vertex of all subcells that are attached to
the vertex. The resulting set of polyhedral control-volumes defines a dual grid relative
to the primal grid which we call the primal-dual. Rock permeability and porosity are
assumed to be piece-wise constant over each polyhedral control-volume and flow vari-
ables belong to the control-volumes and are vertex centred. Fig’s. 1 and 2. Therefore
discontinuities in rock properties occur over the control-volume faces.
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Figure 1: Subcell (dashed line) of the control-volume surrounding primal cell vertex local number 1, for
(a) Tetrahedra (b) Pyramid
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Figure 2: Subcell (dashed line) of the control-volume surrounding primal cell vertex local number 1, for
(a) Prism (b) Hexahedra

As with all finite volume schemes we begin with application of the Gauss divergence
theorem to the integral of divergence c.f. Eq. (1) over a given control-volume. A unique
discrete flux is then constructed for each control-volume face and the closed integral of
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flux is approximated by the sum of discrete outward normal fluxes. For a given face
between two neighbouring control-volumes, the unique flux is subtracted from the left
hand control-volume and added to the right hand control-volume leading to a locally
conservative scheme with respect to the faces of the polyhedral control volumes that
contain the discrete permeability tensors with flow variables defined at their vertices.

The finite volume schemes presented here are also designed to be continuous across
the control-volume faces over which permeability is discontinuous. This is an important
distinction between this formulation and other standard formulations such as CVFE.
While a flux continuous scheme is locally conservative, the converse is not necessarily
true.

Within the flux build process, fluxes are approximated on control-volume subcell faces
inside each primal grid cell, in analogous steps to 2-D 3. Flux continuity conditions
are discussed in the next subsection. Each subcell flux is associated with a unique cell
edge, the number of (primal-cell) fluxes constructed inside each primal cell is equal to the
number of edges, 12 for a hexahedra, 9 for a prism, 8 for a pyramid and 6 for a tetrahedra.

The subcell fluxes are accumulated with respect to their primal cell edges within an
assembly process. The edge index e(i, j) refers to the jth primal edge attached to vertex
i. The net edge based single phase flux Fe(i,j)(φ) associated with edge e(i, j) is comprised
of the sum of adjacent sub-cell fluxes that belong to the primal grid cells with common
edge e(i, j), with

Fe(i,j)(φ) =
NSCE∑
σ=1

Fσ(φ) (10)

where NSCE is the number of subcells attached to the edge e(i, j). After assembly of
net edge based fluxes, the discrete scheme for each vertex i is completed with the closed
integral of net Gaussian flux approximated by the sum of net edge based fluxes connected
to the ith vertex. For single phase flow on unstructured grids the assembled finite volume
scheme at vertex i can be written concisely as

NedV∑
j=1

Fe(i,j)(φ) = Mi (11)

where summation is over all NedV edges passing through the ith grid vertex, ( Mi denotes
a specified flow rate at vertex i, or is zero otherwise).

3.2 Control-Volume Flux and Continuity

Here a summary of the continuous algebraic flux approximation is given. A consistent
normal flux approximation is constructed such that pressure and normal flux are continu-
ous across control-volume faces inside a primal grid cell. In order to achieve this (as in 2-D
3) local interface pressures are introduced, one per control-volume sub-face, establishing
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point-wise continuity in pressure. Sub-cell tetrahedral basis functions are then formed by
joining the cell vertices (with locally numbered vertex pressures Φv ) to the positions of
the adjacent interface pressures Φf and three normal fluxes are defined with respect to
each subcell, on the three faces of each subcell that are inside the primal grid cell, except
for the pyramid summit42. Flux continuity is then imposed by equating fluxes on the left
and right hand sides (L,R) of each of the interfaces in each primal cell resulting in

Fi = −β(Ti1φξ + Ti2φη + Ti3φζ)|
L

σ = −β(Ti1φξ + Ti2φη + Ti3φζ)|
R

σ (12)

for each interface. Here β = 1/nf where nf is the number of subcell faces making one
interior surface that slices through a primal cell, e.g. for a hexahedra nf = 4. The general
tensor T of Eq. (6) is approximated locally by resolving full-tensor fluxes with respect
to the sub-cell geometry and control-volume permeability. The flux continuity equations
Eq.12 define a local system of equations for the interface pressures, where the number of
continuity equations matches the number of interface pressures and is equal to the number
of edges of the primal cell. The discrete pressure field has a piecewise linear variation over
each subcell tetrahedra and consequently approximations of the derivatives φξ, φη and φζ

are linear functions of Φf and Φv. Here Γ |jσ denotes interface flux Γ at location σ and
state of volume j. The actual position of σ on each sub-cell face defines both the point
of continuous pressure and the flux quadrature, and in turn leads to a family of schemes
analogous to 18. In this paper tests with flux continuity quadrature points correspond to
the base members of the families of schemes with quadrature q = 1, as defined in 12,18. A
summary of pyramid discretization is given in42.

The algebraic system of fluxes of Eq. (12) are rearranged in the form

F = ALΦf + BLΦv = ARΦf + BRΦv (13)

and thus the interface pressures can be expressed locally in terms of the cell vertex pres-
sures. After elimination of the Φf from Eq. (13) it follows that

F = (AL(AL − AR)−1(BR − BL) + BL)Φv (14)

The fluxes of Eq. (14) can also be written as

AF = −∆Φv (15)

where the entries of matrix A are comprised of local inverse tensor elements and ∆Φv are
the differences of cell edge potential differences 12 and satisfy the consistency condition
that the flux is zero for constant potential.

4 HIGHER-ORDER MULTI-PHASE FLOW APPROXIMATIONS

The general finite volume discretization of Eq.(1) for multiphase flow on unstructured
grids takes the form
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(Sn+1
pi

− Sn
pi

)τi + ∆t
NedV∑
j=1

fp(S
n+q
L ,Sn+q

R )FTe(i,j)
(φn+q) = ∆tMpi

(16)

for the pth phase continuity equation, where Sn+q
L ,Sn+q

R are the left and right hand
phase saturation vectors with respect to edge e(i, j) and n + q denotes the time level of
the scheme. Here FTe(i,j)

= ΛFe(i,j)(φ) and Mpi
denotes the pth phase flow rate, prescribed

at wells and is zero otherwise. The phase continuity equations are coupled through the
discrete pressure equation

NedV∑
j=1

Λ(Sn+q
L ,Sn+q

R )Fe(i,j)(φ
n+q) = Mi (17)

Space and space-time accurate methods are considered. The system Eq’s.(16, 17) are
solved semi-implicitly with a variable q (0 < q ≤ 1) formulation based on the Crank-
Nicolson scheme in order to improve temporal accuracy 5. The new semi-implicit CVD
formulation is compared with the spatially higher order fully implicit CVD formulation
with q = 1 presented in 3,19 in the results section.

The approximate flux is defined according to the sign of the local wave direction wp,
evaluated here at the edge mid-point. Referring to Fig. 3, with respect to a local frame
of reference aligned with the direction i to k along the edge vector ∆rk,i, the standard
reservoir simulation upwind scheme is written as

fp(S
n+q
L ,Sn+q

R ) = {
fp(S

n+q
L ) wp ≥ 0

fp(S
n+q
R ) wp < 0

(18)

and the first order upwind scheme, (known as single-point upstream weighting in the
reservoir simulation literature 1) is defined with Sn+q

L = Sn+q
i and Sn+q

R = Sn+q
k .

4.1 Higher Order Schemes in Space

A three dimensional higher order approximation is now introduced with respect to the
saturation variables. From here on it is understood that all saturations are computed at
level n + q depending on the choice of scheme formulation. The scheme is expressed in
two-steps.

Higher order left and right hand side states are defined relative to the mid-point of
each edge e (along which flux is to be defined) by expansions about the edge vertices at i
and k, Fig.3. As in 3,19, the expansions are constrained with slope limiters to ensure that
the higher order data satisfies a local maximum principle, preventing the introduction of
spurious extrema.

First we define the difference in S over the edge e Fig.3, as

∆Ski = Sk − Si (19)
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where it is now understood that ∆S with a double suffix denotes a difference in S. Re-
ferring to Fig.3 the left and right states SL and SR at the midpoint of the key edge e
(joining vertices i and k) are expressed as

SL = Si +
1

2
Φ+∆Ski (20)

where Φ+ is a function of

r+
ki = (∆Siu/∆Ski) (21)

and

SR = Sk −
1

2
Φ−∆Ski (22)

where Φ− is a function of

r−ki = (∆Sdk/∆Ski) (23)

The differences ∆Siu and ∆Sdk are well defined on a structured grid.
However extension to unstructured grids requires special construction of the differences

∆Siu and ∆Sdk.
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Figure 3: Higher Order Support

Directional differences are constructed by extrapolating along the key edge defined by
vector ∆rki in the respective upstream and downstream directions, see arrows in Fig.3,
using the two and three dimensional procedures presented in 3,19. The procedure is illus-
trated for tetrahedral cells.

Extrapolation of the respective upstream and downstream data is constrained such
that a local maximum principle holds for a scalar equation. The upstream tetrahedra
i, 1, 2, 3 is labelled TU and the down stream tetrahedra k, 4, 5, 6 is labelled TD. The space
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vector corresponding to edge e (drki) is extrapolated into the respective tetrahedra TU ,
TD, see arrows in Fig.3. This is illustrated further with respect to vertex i. The edge
vector is extrapolated to the point of intersection u, on the opposite face of the tetrahedra
TU , Fig.3. The upwind difference is then obtained via the expansion

∆Siu = ∇STU
· driu (24)

and for a linear approximation of S over the tetrahedra TU the right hand side of Eq.24
is equal to the convex average of tetrahedral edge differences with

∆Siu = ξ1∆Si1 + ξ2∆Si2 + ξ3∆Si3 (25)

where ξi, i = 1, ...3 are the ratio of volumes of sub-tetrahedra defined in TU with respective
sub-base areas (u, 3, 2), (u, 1, 3), (u, 2, 1), to volume of tetrahedra TU and are therefore
positive and sum to unity. The limiter Φ+ is defined so as to bound the higher order
gradient approximation by the minimum of the slope ∆Ski on edge e and the slope ∆Siu

along the extrapolated vector from i to u, with

Φ+ = φ(r+
ki) (26)

where r+
ki is defined by Eq. 21 and φ(r) is any classical slope limiter [34] and [35]. The

higher order reconstruction is then bounded between Sk and Su. By convexity (Eq. 25)
Su = ξ1S1 + ξ2S2 + ξ3S3, ( where ξi, i = 1, ...3 also reduce to the ratio of sub-base areas
to total base area of TU ) thus bounds are such that

min
TU∪e

{S} ≤ SL ≤ max
TU∪e

{S} (27)

over tetrahedra TU and edge e yielding a local maximum principle with reconstruction
reducing to first order locally at three dimensional extrema. In cases where coincidence
or near coincidence is detected between the extrapolated edge and an upwind tetrahedral
face or edge the limiting is collapsed to be entirely face or edge based. A similar convex
average interpolant is constructed with respect to vertex k using the right hand tetrahedra
TD to obtain the difference ∆Sdk together with analogous limiter bounds that now depend
on the edge slopes ∆S4k, ∆S5k and ∆S6k ensuring a maximum principle with min{S} ≤
SR ≤ max{S} over TD and edge e.

This is similar in motivation to the Local Edge Diminishing LED schemes of 36,37, with
a higher order reconstruction applied to the data, (saturation field in this case). The
second step of the scheme uses the upwind flux where each higher order approximation
of phase saturation is upwinded via the flux using Eq’s 20, 22 in Eq.18. The van-Leer
(Fromm) limiter 33

φ(r) = max(0,min(2r, 2,
(1 + r)

2
)) (28)

is used to define φ(r) in Eq. 27, other possible limiters are presented in 34,35. Note as
before, that the first order flux is recovered locally if the limiters are set to zero.
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4.2 Higher Order Schemes in Space and Time

The system Eq’s.(16, 17) are solved semi-implicitly with a variable q (0 ≤ q ≤ 1)
formulation based on the Crank-Nicolson scheme in order to improve temporal accuracy
in addition to spatial accuracy. While the original Crank-Nicolson scheme with q = 1/2
is optimal for second order time accuracy, stability and monotonicity are CFL depen-
dent. The temporal weighting between implicit and explicit time levels is based on that
presented in 5 for time accuracy, where the basic CFL (ν) stability condition is given by

q = max(
1

2
, 1 −

1

2ν
) (29)

This gives rise to a new CVD formulation which is compared below with the spatially
higher order fully implicit CVD formulation with q = 1 presented in 3,19. Results from
the sequential scheme with q = 0 corresponding to implicit pressure explicit saturation
(IMPES), will be presented in a future report.

5 RESULTS

The test cases involve two phase flow (oil-water) initial oil saturation is prescribed and
water is injected. Water saturation contours are shown in each case. Solid wall (zero
normal flow) boundary conditions are applied on all exterior boundaries of each reservoir
domain. The grids employed here are fairly smooth although major changes in grid type
occur. In all cases flow rate is specified at the (inflow) injector and pressure is prescribed
at the (outflow) producer.

5.1 Case 1

The first case involves the classical quarter five spot problem with injection and pro-
duction wells located at the lower left corner and diagonally opposite upper right corner of
the domain, with triangular grid shown in Fig. 4a. The permeability tensor is assumed to
be diagonal isotropic so that the pressure field is essentially Laplacian in this case, water
saturation contours are shown at 0.5 pore volumes PV injected, Fig. 4. The result ob-
tained with a consistent Darcy flux approximation and first order convective flux is shown
in Fig. 4b, the result obtained with a consistent Darcy flux approximation and higher or-
der convective flux is shown in Fig. 4c. Comparing results shows that the spatially higher
order scheme provides considerable improvement in resolution of the Buckley Leverett
shock front and expansion, with considerable reduction in numerical diffusion compared
to the first order scheme. The results demonstrate the need for both a consistent Darcy
flux approximation and higher order convective flux.

The scheme has been used with quite high CFL (above 12 at later times) with temporal
errors having a strong effect on the computed solution at breakthrough. Time accuracy is
tested by comparison with a solution computed by the spatially accurate scheme using a
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reduced time step, by a quarter in this case Fig. 5a. This result shows further reduction
in spread of the front due to the reduced temporal error, leading to later breakthrough
at the producer. The result obtained using the temporally weighted scheme and original
larger time step is shown in Fig. 5b. Temporal weighting is seen to be quite effective
at recovering temporal accuracy, subject to a limited CFL constraint. The result at this
time is computed at a global CFL up to 12, using an adapted q and time step so that q
is nearer to 1/2 than Eq. 29 would otherwise permit. However, as the rate of change in
solution slows down larger CFL can be used, particularly for quasi-steady state flow.

I

P

(a) (b) (c)

Figure 4: (a)Grid and Boundary Conditions, (b) CVD 1st order,(c) CVD higher order

(a) (b)

Figure 5: (a) CVD higher order reduced time step, (b) CVD higher order weighted C-N

5.2 Case 2

The second case involves a three dimensional quarter five spot problem, now including
gravity. Injection and production wells are located at the lower (near) left corner and
diagonally opposite at the upper (far) right corner of the domain, Fig. 6. The tensor
is assumed to be diagonal isotropic and the domain with varying tetrahedral grid is
shown in Fig. 6. Water saturation contours are shown at 0.5 PV injected, viewed from
the injector in each figure, Fig. 6. The result obtained with a consistent Darcy flux
approximation and first order convective flux is shown in Fig. 6a. The contours indicate
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much spreading of the Buckley Leverett front towards the producer when using a first
order upwind scheme. The result obtained with a consistent Darcy flux approximation
and higher order spatial convective flux is shown in Fig. 6b. The spatially higher order
scheme provides considerable improvement in resolution of the Buckley Leverett shock
front, and improved resolution in the effect of the lower front (not shown here) due to
gravity, demonstrating the need for both a consistent Darcy flux approximation and higher
order convective flux on unstructured grids in three dimensions.
This case again involves quite a high CFL (above 12 as time evolves), as a result temporal
errors have a strong effect on the computed solution at breakthrough. The higher order
space-time (semi-implicit scheme) result is shown in 6c and demonstrates good agreement
with the reduced time-step solution (not shown here). This result shows the importance
of time as well as spatial accuracy for implicit calculations.
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Figure 6: Tetra: Water Saturation Contours - (a) 1st Order (b) CVD higher order (c) CVD higher order
weighted C-N

5.3 CVD versus CVFE

The following examples illustrates a fundamental difference in behaviour between the
above CVD formulation and CVFE 32. In contrast to the CVD schemes where flow vari-
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ables and rock properties are assigned to the control-volumes, the CVFE formulation
assigns flow variables to the vertices and rock properties to the cells or elements. The
CVFE formulation while locally conservative, is not flux continuous across the interfaces
between different cell permeability values. In general it is well known that this type of
approximation can cause spreading of information when rapid changes in rock properties
occur e.g. 3,19,39,40. These examples show that while higher order fluid transport approx-
imations can improve a low order result, higher order schemes do not compensate for the
loss of information inherent in the CVFE Darcy flux.

5.4 Case 3

The geometrical domain and boundary conditions here are identical to case 2. However,
a shale of 6 orders of magnitude lower permeability barrier (in bold), is now located in
the middle of the domain extending approximately 2/3 across the domain from the far
side, Fig.7a. The grid and snap-shot of results are viewed from the opposite side to
case 2, so that the effect of the (bold) barrier can clearly be seen. The first order CVD
scheme result is shown in Fig.7b. The barrier traps oil in the reservoir and the resulting
saturation contours show the strong effect of the medium discontinuity. The higher order
CVFE scheme result shows flow passing through the low permeability barrier, particularly
near the base, which should remain essentially no-flow in regions away from the end of
the barrier, Fig. 7c. In sharp contrast, the resolution of the flow in the neighbourhood of
the low permeability barrier is evident in the case of the first order CVD scheme Fig. 7b,
the flux-continuous CVD scheme provides much clearer resolution of flow and trapped oil
near the low permeability barrier. The higher order (space-time) CVD scheme provides
considerable improvement in resolution of the Buckley Leverett shock front, Fig.7d, while
retaining medium discontinuity resolution.

5.5 Case 4

This test case involves three dimensional flow in a domain comprised of a mixed hybrid
grid of hexahedral cells and tetrahedral cells joined by an interface comprised of a layer
of pyramid cells. The domain and boundary conditions (injector lower right hand corner
and producer upper left hand corner) are indicated in Fig. 8 (CVD grid). The domain
is assigned a high permeability field and is divided by two low permeability barriers with
drop by six orders of magnitude in permeability. The barriers are in the (y − z) plane,
with the second barrier placed halfway along the domain and one control-volume width
(if CVD) or cell width (if CVFE) forward of the first. They extend approximately 2/3
across the domain from opposite sides 8.

The low and higher order CVD schemes are compared with the low and higher order
CVFE schemes for this case at 0.75 pv injected. Only the CVD grid is shown here,
Fig 8. The grids are chosen so as to approximately maintain the same problem and
permeability variation with respect to the scheme formulations. Permeability is assigned
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Figure 7: Tetra-barrier: Saturation Contours - (a) CVD grid and low perm-barrier (b) CVD 1st Order
(c) CVFE higher order weighted C-N (d) CVD higher order weighted C-N
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Figure 8: Hybrid Hex-Tet and pyramid layer grid with low-perm barriers CVD grid

to the control-volumes of the CVD grid and to the cells of the CVFE grid.
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Results are viewed from below the domain base, where gravity is prominant. The
higher order CVFE result is shown in Fig. 9a and the respective CVD result is shown
in Fig. 9b. The CVFE scheme results show strong flow through the low permeability
barriers, which should remain essentially no-flow in the regions away from the ends of the
barriers, Fig. 9a. In sharp contrast, the resolution of flow in the neighbourhood of the
low permeability barrier is evident in the case of the CVD scheme Fig. 9b, with the flux
continuous CVD scheme providing much clearer resolution of flow and trapped oil near
the low permeability barriers.
The higher order CVFE scheme Fig. 9a yields sharper resolution than the first order
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Figure 9: 3D Water Saturation Contours - Hex-Tet and pyramid Layer: (a) CVFE higher order (b) CVD
higher order

CVFE scheme (result not shown to save space), however the higher order scheme cannot
compensate for the basically incorrect trend in flow behaviour predicted by the CVFE
scheme. The averaging effect inherent in the CVFE Darcy flux approximation still induces
significant flow through the low permeability barriers despite the use of a higher order
convective flux. Consequently, the flow field remains quite different to that of the CVD
scheme.

The higher order CVD scheme Fig. 9b provides improvement in resolution of the flow
field compared to the first order CVD scheme (not shown) and the low permeability bar-
riers are clearly detected by the higher order CVD scheme. The difference between higher
order CVD (Fig. 9b) and higher order CVFE (Fig. 9a) serves to again highlight the
benefits of the CVD formulation which uses the same number of degrees of freedom for
flow variable approximation.

6 CONCLUSIONS

A novel higher order convective flux approximation is presented for unstructured grids
in three dimensions. The resulting higher order convective flux approximations are cou-
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pled with consistent and efficient continuous Darcy flux approximations. The coupling
leads to new schemes for reservoir simulation on quite general structured and unstruc-
tured grids that can be comprised of tetrahedra, pyramids, prisms and hexahedra.

Benefits of the new higher order space and time CVD schemes are demonstrated by
comparisons with current methods in reservoir simulation and with the standard control-
volume finite element CVFE scheme which uses the same number of degrees of freedom
as the new schemes.
Results are presented for two phase flow in two and three dimensions and clearly show
that the higher order schemes improve front resolution. The weighted Crank-Nicolson
time accurate formulations prove to be effective in improving temporal accuracy.

The CVFE scheme tends to average flow effects in the presence of rapid changes in
permeability on grids of finite level. While the higher order CVFE scheme improves front
resolution compared to first order CVFE, the higher order CVFE scheme cannot compen-
sate for loss of crucial Darcy flux information that occurs as a consequence of the CVFE
formulation.

In addition to improved front resolution, higher order CVD schemes significantly im-
prove flow resolution in the presence of medium discontinuities.
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