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Probabilistic centroid moment tensor inversions using geologically constrained priors: application to
induced earthquakes in the Groningen gas field, the Netherlands
La Ode Marzujriban Masfara®, Cornelis Weemstra, TU Delft; Thomas Cullison, Stanford University

SUMMARY

We use the Hamiltonian Monte Carlo (HMC) algorithm to es-
timate the posterior probability distribution of a number of
earthquake source parameters. This distribution describes the
probability of these parameters attaining a specific set of val-
ues. The efficiency of the HMC algorithm, however, can
be improved through the formulation of a geologically con-
strained prior probability distribution. The primary objective
of the presented study is, therefore, to assess the role of the
prior probability in the application of the HMC algorithm to
recordings of induced seismic events in the Groningen gas
field.

INTRODUCTION

Earthquake source inversion is essential in studying earthquakes
because it provides quantitative characteristics of the earth-
quake’s source (e.g., location, focal mechanism, and magni-
tude). Applied to induced seismicity in the Groningen gas
field, it can be used to monitor the field. To obtain the uncer-
tainty of source inversion, Bayesian algorithms are often em-
ployed. However, generic Markov chain Monte Carlo (McMC)
algorithms (i.e., metropolis-hasting algorithms) are often com-
putationally inefficient. The Hamiltonian Monte Carlo (HMC)
algorithm is an alternative to those more generic McMC al-
gorithms. It is an McMC algorithm known to be highly ef-
ficient when sampling high-dimensional model spaces. This
is because, rather than sampling the model space in a ran-
dom fashion, HMC uses Hamilton’s equations to update its
model estimates. We furthermore increase HMC’s efficiency
by linearizing the forward problem. Specifically, the relation
between the hypocenter and the origin time of the event and
the recorded particle displacements is linearized. In this study,
we utilize this algorithm to estimate the source parameters of
a 3.4 local magnitude induced earthquake located near the vil-
lage of Westerwijtwerd, the Netherlands. The HMC algorithm
is run iteratively and embedded in a specific workflow previ-
ously tested on synthetic recordings of induced seismic events
(Masfara et al., 2022).

THEORY

Bayesian inference is the process of using Bayes’ theorem to
evaluate the probability of a hypothesis (or model) m given
the observed data d. Mathematically, the theorem is written as
follows,

p(m|d) o< p(d[m)p (m), (M
where p(m|d) is the posterior probability distribution, p (d|m)
is the likelihood, and p(m) the a priori known probability of
each of the earthquake source parameters taking on a specific
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value. This is usually referred to as the prior probability distri-
bution. In our case, m consists of a set of ten source parame-
ters, which are the hypocenter (three coordinate components),
moment tensor (six independent components), and origin time.
Therefore, p(m) represents the prior probability of those pa-
rameters. The likelihood p(d|jm) quantifies the difference be-
tween observed and forward-modeled data. In our context, the
observed data are the recorded particle displacements, whereas
the forward modeled data are obtained by solving the forward
problem, which involves the computation of the particle dis-
placements given specific values for each of the ten model
parameters and for an accurate (known) subsurface velocity
model. We solve the forward problem by computing particle
displacements u given a moment tensor source M (Aki and
Richards, 2002)

3

Ui (Xr,t) = Z M (t,To) * Gijk (X3 Xa,t) @)
s

with subscript i indicating the direction along which the dis-
placement is computed, whereas j and k are the other two co-
ordinate directions. The (3D) position where the displacement
is recorded is represented by x,, and the location of the mo-
ment tensor source is represented by x,. Furthermore, G is the
Green'’s tensor (9 components), and a comma followed by a
subscript represents a spatial derivative along that coordinate
axis. Finally, the in-line asterisk * represents temporal convo-
lution and T the origin time of the event.

Assuming Gaussian observational errors and a Gaussian dis-
tributed prior probability, equation 1 can be written as

p(m|d) < exp (7% (u (m) — u°bs> C;l (u (m) — u0b5>

! 3)

) (mfmo) C,;l (mfmo))7
where mY is the mean of the Gaussian prior probability with
C,, and C; being the model covariance and data covariance
matrices, respectively. These covariance matrices quantify the

uncertainties of the prior knowledge of the source parameters
and the observed data, respectively.

Hamiltonian Monte Carlo

Several probabilistic algorithms are available for evaluating
equation 3. The workflow we implement uses the HMC algo-
rithm. HMC was derived from classical mechanics, applied to
statistical mechanics (Betancourt, 2017), and considered one
of the most efficient probabilistic algorithms. A generic McMC
algorithm such as Metropolis-Hasting performs random explo-
ration of the model space by proposing random models, which
is often inefficient in high-dimensional spaces. This ineffi-
ciency is because the randomly proposed model is less likely
to be accepted in high-dimensional model spaces. This is illus-
trated for a two-dimensional model space in Figure 1a. Instead
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Figure 1: Illustration of Metropolis-Hasting algorithm (a), Hamiltonian Monte Carlo (b), and Hamiltonian Monte Carlo with a

linearized forward model (c).

of being random, our implementation of HMC uses two quan-
tities which facilitate sampling the more likely models (Mas-
fara et al., 2022). These quantities are the potential energy U,
as a function of p(m|d), and the kinetic energy K as a function
of momentum vector p

U(m)=—1Inp(m|d) 4)

K(p)=p".#"'p/2. @)
Combined, they form the Hamiltonian H(m,p), which repre-
sents the total energy of a system (Neal et al., 2011), i.e.,

H(m,p) = K(p) +U(m). (6)

The mass matrix .# in equation 5 can be seen as a tuning pa-
rameter that governs the amount of momentum applied during
sampling, which then affects the length of the HMC'’s trajec-
tory.

In application, HMC compares the Hamiltonian of a starting
model H(p,m) and the proposed model H(p(7),m(7)). The
probability 6 of accepting the proposed model is then com-
puted using the metropolis rule

exp[—H (p(7), m(7))]
exp[—H (p,m)]

6 =min |1, (7
The quantity 7 is the “artificial time” used to “propagate” the
initial model to the proposed model in phase space (Betan-
court, 2017). When propagating the model, HMC uses Hamil-
ton’s equations to simultaneously update the model and mo-
mentum vectors and hence its potential and kinetic energy. As
illustrated in Figure 1b, given an initial momentum vector (vi-
sualized using the pointing finger), solving Hamilton’s equa-
tions will propagate the starting model to an area in phase
space with low potential, which corresponds to a region of
the model space with (relatively) high probability. Hamilton’s
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equations, through the computation of the gradient of the po-
tential energy dU /dm and the corresponding solution of Hamil-
ton’s equations, make the model vector “’slide” through regions
of phase space with constant H (Betancourt, 2017).

To speed up model exploration by the HMC algorithm, Ficht-
ner and Simuté (2018) linearize equation 2 and use a prior
while computing the posterior. This leads to the estimation
of parameters that can be used to explore a “’local” posterior.
This exploration of the local posterior doesn’t require the need
for forward modeling per iteration, which is the evaluation of
equation 2. Instead, it uses simple functions to approximate
equation 3, given mean priors, which then eases the compu-
tation of Hamilton’s equations. Illustrated in Figure 1c, the
workflow we use implements this approach in multiple stages;
that is, by updating its mean prior, using the mean of the “’lo-
cal posterior” as the new mean prior. However, this approach
will not be effective if the initial prior mean is not located in
the correct lobe, which is the case when sampling multi-modal
spaces.

DATA

The detection of earthquakes in the Netherlands is mainly car-

ried out by the Royal Netherlands Meteorological Institute (KNMI)

using a local seismic network named the ‘G-network’. The
network has numerous borehole seismometers that provide high
signal-to-noise ratio (SNR) recordings. The seismometers lo-
cated at the bottom of the borehole (200 m depth), in partic-
ular, deliver high SNR recordings. The high quality of the
recordings increases the accuracy of source parameter estima-
tion in the area as previously shown by Willacy et al. (2019),
and Smith et al. (2020). In this research, we use recordings of
a 3.4 local magnitude earthquake near the village of Wester-
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Figure 2: a) Location of the ten seismometers whose recordings were used in the inversion. b) Zoom of the area where the
earthquake occurred. The white triangles represent KNMI seismometers. The blue, green, yellow, and gray stars represent the
KNMI estimate of the epicenter, the initial epicenter prior means for scenario 1, the initial epicenter prior means for scenario 2, and

the event’s epicenter estimated by Dost et al. (2020).

wijtwerd in the province of Groningen. Specifically, we use
the seismograms by the ten G-network seismometers repre-
sented by the white triangles shown in Figure 2a. In Figure
2a, we also plot the top reservoir of the Groningen gas field,
the major subsurface faults intersecting the top reservoir, and
the location of the epicenter estimated by the KNMIL.

As discussed above, a sufficiently accurate initial prior prob-
ability is a requirement to sample the “correct” mode of the
posterior. To ensure this, we generate multiple initial priors, as
such avoiding only sampling local modes, and for that, we con-
sider two scenarios. In the first scenario, the initial hypocenter
prior means are based on the assumption that the earthquake
nucleated on one of the existing (mapped) faults. The initial
epicenter prior means are the result of lateral regular sampling
of these faults (spacing of 200 m) within a circle of 1 km radius
centered at the KNMI-derived epicenter (green stars in Figure
2b). As for the second scenario, we assume that the earthquake
may not have nucleated on one of the existing (mapped) faults.
Therefore, we create a grid of initial epicenter prior means,
also centered at the KNMI-derived epicenter (yellow stars in
Figure 2b). For each epicenter’s prior mean, the depth prior
mean is set at 3 km, which is the default KNMI estimation
for all earthquake depths. For the moment tensor prior means,
we use random values for each set, whereas, for origin time,
the workflow will estimate the initial prior mean of origin time
given each of the initial prior means for the hypocenter. For
both scenarios, the epicenter prior means are depicted in Fig-
ure 2b. In total, in the first scenario, we have 15 initial prior
means, and for the second, we have 121. Each of these prior
means will be the start of a separate multi-stage HMC work-
flow, which each consists of a total of 20 stages, where each
stage is an individual HMC chain associated with an updated
prior and hence involves linearization of equation 2 about a
new prior mean m° (see also Masfara et al., 2022).
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RESULTS

Using both defined scenarios, we run in total 136 multi-stage
HMC workflows (i.e., 136 initial prior mean sets). The likeli-
hood is computed using 2.5 s of P-wave signals in each case,
i.e., the vector with observed data consists of three-component
particle displacement recordings of 2.5 s by 10 borehole seis-
mometers. For each workflow, we update the prior mean 20
times (20 stages). Of all samples by those 20 stages, for all
different initial prior mean sets, we only collect samples from
stages for which the variance reduction (e.g., Musta¢ and Tkalcié,
2016) exceeds 0.95. We compute this variance reduction with
respect to the observed data by generating modeled data us-
ing the mean of the local posteriors (i.e., associated with the
different stages). The marginal posterior probabilities derived
from those samples are presented in Figure 3 for the first sce-
nario and in Figure 4 for the second scenario. In both figures,
in (a), we show the posterior for each model parameter, includ-
ing their mean and standard deviation. In (b), we show the 2D
posterior for the epicenter, which shows the probability of the
epicenter peaks near a major fault. In fact, a bit closer to that
fault than the hypocenter estimated by Dost et al. (2020) (rep-
resented by the gray star). The latter authors, however, employ
a 1D velocity model, whereas we use a 3D velocity model (for-
ward modeled seismograms were generated using SPECFEM,
Komatitsch and Tromp, 2002). For both scenarios, given the
mean of the moment tensors posterior probability, we find that
the mean values for the strike, dip, and rake are 161, 70, and
-100, respectively (normal faulting). Similarly, For the source
mechanism, we obtain -19% and -29% as the mean value for
its isotropic and compensated linear vector dipole components,
respectively. The negative value in the isotropic components is
often linked to the compaction in the reservoir layer due to the
gas extraction in the Groningen gas field. All in all, for this
presented case, the use of geological knowledge reduces the
number of initial prior means. That is, a geologically-inspired
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Figure 4: Results from using the HMC workflow for scenario 2. a), b), and c) are explained below Figure 3.

set of initial prior hypocenter means (fault-based approach)

reduces the required computational resources compared to a

more uniform set of initial prior means(i.e., grid approach).
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