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Het toepassen van een dempercilinder vermindert het blindvermogen dat een
permanente-magneetmachine moet leveren bij gelijkrichterbelasting niet en is in
het algemeen niet nodig om commutatie mogelijk te maken (dit proefschrift).

Zowel uit theoretisch als uit experimenteel werk blijkt dat de ijzerverliezen in
gelamineerd ijzer bij frequenties boven 1000 Hz ruwweg evenredig zijn met de
frequentie tot de macht anderhalf ([Buc 84), dit proefschrift) en niet met de
frequentie in het kwadraat.

Het is onverstandig een dempercilinder in een permanente-magneetmachine dicht
bij het statoroppervlak te plaatsen (dit proefschrift). Dit geldt ook als de stromen
in de machine sinusvormig zijn.

Als stroomverdringing in de dempercilinder niet verwaarloosbaar is, kan dit
eenvoudig 1n het in dit proefschrift beschreven model verwerkt worden door de
dikte van de dempercilinder te vervangen door de indringdiepte in de demper-
cilinder.

Het is niet altijd waar dat een bovengrens voor de wervelstroomverliezen in de
magneten van een permanente-magneetmachine verkregen wordt als de magneet-
blokjes in de berekening vervangen worden door een cilinder van magneetmateri-
aal (wat wel gesuggereerd wordt door Demel [Dem 87]).

De formulering voor de algemene oplossing van de vergelijking van Laplace die
gegeven wordt in [Bin 92] en [Zhu 93a] is niet algemeen genoeg.

De perspectieven voor hybride voertuigen met een brandstofcel zijn veel beter dan
die voor hybride voertuigen met een verbrandingsmotor omdat brandstofcellen een
hoger rendement hebben en schoner zijn.

Natuurwetenschappen verklaren niets, ze beschrijven slechts hoe de dingen
gewoonlijk gaan. Over eenmalige gebeurtenissen, zoals de Schepping en de Big
Bang, kunnen natuurwetenschappen dus geen uitspraken doen.

God wil niet dat wij uit Zijn wetmatig handelen in de natuur concluderen dat Hij
er niet is of dat wij onafhankelijk van Hem zijn, maar Hij wil hierdoor laten zien
hoe betrouwbaar Hij is.
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Volgens de gereformeerde leer is de mens van nature geneigd tot het kwaad.
Daarom zouden gereformeerden zichzelf en elkaar zoveel mogelijk de gelegenheid
moeten ontnemen het kwaad uit te leven. Dit gebeurt niet voldoende; teveel zaken
worden in vertrouwen geregeld. De gevolgen bevestigen maar al te vaak de leer.

Als ouders van onvolwassen kinderen besluiten over hun taakverdeling thuis en
hun carriére, en als de overheid besluit daarop invloed uit te oefenen, dient het
belang van de opvoeding van die kinderen het zwaarst te wegen.

Het is onmenselijk uitgeprocedeerde asielzoekers die niet terug kunnen naar hun
land van herkomst geen uitzicht te bieden op het opbouwen van een bestaan.

Bestuurders die ongehinderd door historische kennis allerlei vernieuwingen
doorvoeren, creéren nogal eens situaties die eerder om goede redenen verlaten zijn.

De Nederlandse samenleving is in belangrijke mate verantwoordelijk voor de
ontwikkeling van de varkenshouderij in de jaren 1960 tot 1990 en profiteert daar
nog steeds van. Daarom behoort deze samenleving ook haar verantwoordelijkheid
te nemen als ze tot het inzicht komt dat het anders moet.

Als een boer zijn dieren stuk voor stuk kent, is het onterecht zijn bedrijf
bioindustrie te noemen.
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Chapter 1

Introduction

1.1 High-speed generator systems

This thesis deals with the losses in a high-speed permanent-magnet generator, which
is loaded with a rectifier. Such a generator system has several possible applications. The
thesis originates from a research project into a gas turbine driven generator system for
application in series hybrid vehicles. Therefore, this application is briefly introduced
before other possible applications are mentioned. For discussions on the history, the
technology, and the environmental effects of electric and hybrid vehicles, see [Cha 93],
[Cha 97], [Wak 94], [IEA 93], the proceedings of the International Electric Vehicle
Symposium (EVS), and the proceedings about electric and hybrid vehicles of the Society
of Automotive Engineers (SAE).

Hybrid vehicles are vehicles with both a combustion engine and an electric drive
system. They are used to overcome some of the main disadvantages of both normal
combustion-engined vehicles and electric vehicles:

1) They enable driving without polluting emissions in urban areas using the electric
drive system.

2) They enable the making of long journeys using the combustion engine.

In a parallel hybrid vehicle, the wheels can be driven both by the electric drive system

and by the combustion engine. In a series hybrid vehicle, the wheels are driven

electrically; the combustion engine drives a generator feeding into the electric system.

The drive system of such a series hybrid vehicle is depicted in figure 1.1.

Compared to other combustion-engined vehicles, a series hybrid vehicle has three
important advantages.

y _
1%=@*=““4“ (o)

Figure 1.1: The drive system of a series hybrid vehicle, consisting of gas turbine,
generator, rectifier, battery, inverter and AC traction motor.
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1)  The combustion engine can always work at its optimum (highest efficiency, lowest
polluting emissions) at constant power and constant speed. This advantage
compensates the disadvantage that many components of the drive system are
connected in series, so that the efficiency from combustion engine to wheels is
lower than the maximum efficiency of other combustion-engined vehicles.

2)  The drive system is built up modularly.

3) A small combustion engine suffices because the power of the combustion engine
can be limited to the average power consumption, which is usually about a quarter
of the peak power consumption.

Furthermore, there are important arguments for using a gas turbine as a combustion
engine with a generator mounted on the same shaft (figure 1.2) [Chu 96], [Chu 93],
[Mac 94], [Krii 94], [Pul 96]:

1)  Because of the high speed, the unit may be small and light.

2) In principle, the system is very simple because it has only one moving part: the
shaft with the rotors of the generator and the gas turbine.

3) A gas turbine has lower polluting emissions than a conventional internal-
combustion engine.

4) A gas turbine is suitable for different kinds of fuel.

To obtain acceptable efficiency, a rather voluminous recuperator is necessary, which

heats the incoming air from the exhaust gases. This recuperator reduces the advantage

of the system being small, although it may remain light [Mac 94].

Generally, the high-speed generators in series hybrid vehicles are permanent-magnet
machines, because of their high efficiency and power density. There are various opinions
about the layout of the generator. Because of the high speed, an important consideration

Figure 1.2: Stator and rotor of a gas turbine (left part) and generator (right part)
developed by AlliedSignal, Inc., Torrance, California.
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is the mechanical integrity of the rotor. In [Krii 94] and (Krii 92], surface-mounted
magnets are kept in place by using an exterior rotor, which also functions as a flywheel
to buffer short power peaks. In [Pul 96], the generator is of a disc type, because in this
topology, the magnet containment structure is not in the magnetic circuit. In [Chu 93]
and [Chu 96], the rotor is a cylindrical magnet encapsulated in a high strength cylinder
and the stator is slotless.

In this thesis, a generator with a cylindrical rotor and surface-mounted magnets has
been chosen. To make the generator mechanically strong enough, the use of a fibre
bandage is proposed, as in [Off 96], [Vee 97], and [And 97]. In for example, [Bou 81],
[And 87], and [Hen 94], a nonmagnetic metal cylinder is proposed. However, a serious
disadvantage of such a cylinder is that the eddy-current loss in the cylinder due to the
stator slotting may be very high.

To convert the ac voltage of the generator to the dc voltage of the battery, a six-pulse
bridge rectifier is used. This rectifier is more efficient and more robust than other
possible converters. A disadvantage of such a rectifier is that it needs reactive power,
resulting in extra stator copper loss in the generator. However, converters which do not
need reactive power, are less efficient and less robust. Moreover, six-pulse inverters used
as rectifiers increase the harmonic content of the stator currents, while pulse width
modulated rectifiers increase the rectifier loss further. For example, the efficiency of the
pulse width modulated voltage source rectifier used in [Krii 92] is estimated at 91.8%.
This is very low compared to the 96% efficiency of the generator systems (generator and
converter) claimed in [Mac 94] and [Chu 96].

A thyristor bridge rectifier is used, because this enables to control the output voltage.
In principle, a diode bridge rectifier also suffices when the generator only works at its
optimum operating point and the battery voltage is constant. However, in practice, the
battery voltage depends on the load of the battery, and therefore, it is advantageous to
use a thyristor bridge rectifier. Another possibility is the use of a chopper between the
diode bridge rectifier and the battery. If the effect of the chopper on the generator
currents is negligible, this system may also be investigated with the methods described
in this thesis, because the firing angle of the thyristor bridge rectifier can be made zero.

As mentioned earlier, the generator system described in this thesis is intended for use
in series hybrid vehicles. However, the research has been done in such a way that the
results may also be used for high-speed generator systems in other applications, for
example, in aeroplanes [Vai 91], vessels, mobile ground power stations, total energy
units [Off 96], [Vee 97], and expanders which recover power from compressed natural
gas. Moreover, the results of the research may be used for permanent-magnet motors
with load-commutated inverter [And 85], [Afld 871, [Blo 86], [And 97].

High-speed permanent-magnet machines are also used in flywheel systems [Can 82],
[Giin 84], [Mee 88], [Krii 94], [Aca 96]. However, in this case, the machine layout is
usually different from the layout considered in this thesis: exterior rotors integrated in
the flywheel are used. Although such machines are beyond the scope of this thesis, they
are in many respects comparable to the machines considered in the thesis.
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1.2 Problem definition

The previous section describes the choice of the generator system consisting of a
permanent-magnet generator with surface-mounted magnets and a controlled bridge
rectifier. Figure 1.3 depicts a cross-section of such a machine with two poles.

Figure 1.3: Cross-section of a two-pole permanent-magnet machine. The arrows in the
magnet blocks indicate the direction of the magnetization. The thick line surrounding the
magnets represents the damper cylinder.

The objective of the research described in this thesis is to derive a machine model
suitable for the optimization of the generator design. Design optimization primarily
means minimization of the losses. Such minimization is not only important for obtaining
an efficient generator system applicable in a hybrid vehicle. It is mainly important
because high rotor losses heat the rotor, which can only be cooled with difficulty, and
the magnets may demagnetize if they become too hot. For example, there are permanent
magnets (NdFeB) with a very high energy density that demagnetize at temperatures
above approximately 120°C.

The most important aim of this thesis is to investigate the effect of a damper cylinder
on the losses. On the one hand, a damper cylinder introduces extra losses. On the other
hand, it shields the rotor, avoiding excessive eddy-current losses in the rotor iron and
the magnets [Off 96], [Vee 97]. Investigation is done into whether applying a damper
cylinder decreases the rotor losses or not. Therefore, the function of the damper cylinder
in this study is not the damping of mechanical oscillations, but the shielding of the rotor.

To obtain a realistic comparison between machines with and without a damper
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cylinder, the model of the machine without a damper cylinder must include the eddy-
current loss in the magnets. Innovative research was called for to obtain a reasonable
model of this loss, because an appropriate model was not available. By modelling the
eddy-current loss in the permanent magnets, the usefulness of employing small
permanent-magnet blocks, a way of decreasing the rotor losses [Hen 89], [Sch 97], is
also investigated.

The model has to be suitable for optimizing the generator design. Therefore, the
parameters of the machine model are derived from design parameters, such as the
dimensions and the material properties of the generator.

In this thesis, only analytic methods are used. Compared to numerical methods as
Finite Element Methods, analytic methods have the disadvantage of being unsuitable for
complicated constructions and materials, so that they need more simplifying assumptions.
However, they have the advantage that they result in analytic expressions for the
relations between dimensions and parameters. This is a decisive argument, since the
machine model is used for the optimization of the generator design.

The research described is restricted to the electromagnetic aspects of the rectifier-
loaded generator. The gas turbine and the mechanical aspects of the generator are
beyond the scope of this study. By implication, mechanical losses in the generator, such
as friction and windage losses, are not considered either.

1.3 Outline of the thesis

This section gives an outline of the thesis including the most important methods and
assumptions. The introduction of each chapter gives a more detailed description of the
methods and assumptions.

In chapters 2 to 4, a machine model is derived. In the derivation, it is assumed that
- the damper cylinder is very thin,

- end effects in the machine are negligible, and
- nonlinear effects, such as hysteresis and saturation phenomena, are negligible.

The derivation of the machine model begins in chapter 2 with the calculation of the
magnetic field in the air gap and the magnets. In this chapter, effects which hardly
influence this magnetic field or influence it only locally are neglected. Therefore, this
chapter is based on the assumptions that
- eddy-currents in the stator iron, the rotor iron and the magnets are negligible,

- the magnetic permeability of iron is infinite, and

- the stator slotting is negligible.

Under these assumptions, the magnetic field is caused by the permanent magnetization
of the magnets, the stator currents, and the current density in the damper cylinder (if a
damper cylinder is present). The magnetic field is calculated two-dimensionally and in
a cylindrical coordinate system, which means that both the radial and the tangential




6 Chapter 1

component are calculated. This is done because the effective air gap, which includes the

magnets, is large and cylindrical. Space harmonics of the magnetic field are considered,

because the losses they cause may be important. The calculated magnetic field is also
visualized.

In chapter 3, the expressions for the magnetic field derived in chapter 2 are used to
derive the voltage equations of the permanent-magnet generator. They form a model of
the relation between the terminal voltages and the terminal currents of the machine.
Furthermore, these voltage equations are transformed into a useful form, and they are
partly verified by means of locked-rotor tests.

Although the derived voltage equations are suitable for the calculation of the terminal
voltages and the terminal currents, they only consider a part of the losses in the machine,
namely the copper loss. They neglect other important losses, such as
- the iron losses,

- the eddy-current loss in the magnets, and

- the losses due to the stator slotting.

Therefore, in chapter 4, these losses are modelled and incorporated in the voltage

equations to obtain a machine model suitable for the optimization of the design. As far

as possible, the models are verified by means of locked-rotor tests.

Then, in chapter 5, the derived model of the permanent-magnet generator is combined
with a model of the controlled rectifier. The resulting equations are solved in the
frequency domain to determine the steady-state performance of the rectifier-loaded
permanent-magnet generator.

In chapter 6, the complete model of the machine and rectifier is verified by comparing
measured and calculated line voltage and phase current waveforms.

In chapter 7, it is shown that the derived model can be used to optimize the machine
design by calculating the losses in a rectifier-loaded permanent-magnet generator. The
effect of a damper cylinder on the losses is explored by comparing the losses in the
generator with and without a damper cylinder.

Conclusions are drawn and recommendations are given in chapter 8.

To avoid confusion, it is noted here that three machines are used in this thesis.

1) The so-called test model (described in section A.1 of appendix A), which consists
of a three-phase stator, a removable cylindrical laminated rotor and a removable
copper damper cylinder. This model is used for the verification of the model of the
damper cylinder and for the verification of the model of the iron losses.

2) The so-called servomotor (described in section A.2 of appendix A), which is a
permanent-magnet machine without a damper. This machine is used to verify the
model for the eddy-current loss in the magnets and the calculation of the steady-
state performance of the rectifier-loaded machine used as a generator.

3)  The so-called Eindhoven machine (described in section A.3 of appendix A), which
is a permanent-magnet machine. It is used as an example to illustrate that the
derived model can be used for the optimization of the design of permanent-magnet
machines in chapter 7.




Chapter 2

The magnetic field in the generator

| 2.1 Introduction

Objective

This chapter describes the first part of the modelling of the permanent-magnet
generator, namely the calculation of the magnetic field. In later chapters, this magnetic
field is used for the derivation of the voltage equations and for the modelling of the
losses in the generator.

At this point, only the magnetic field in the air gap and the magnets is calculated,
because this part of the magnetic field dominates the machine performance. In a machine
without a damper cylinder, two sources of magnetic field are considered: the permanent
magnetization of the magnets, and the stator currents. In a machine with a damper
cylinder, the magnetic field produced by the current density in the damper cylinder is
also considered.

The magnetic field is calculated two-dimensionally in a cylindrical coordinate system
(figure 2.1), which means that both the radial and the tangential component of the field
are calculated. Often, the air gap of an electrical machine is so small that the magnetic

—

Figure 2.1: The cylindrical coordinate system, where z?r, i, and z_; are the unit vectors
in the radial, the tangential and the axial direction respectively, and r, a, and 7 are the
radial, the angular, and the axial position respectively.
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field may be assumed to cross the air gap perpendicularly (one-dimensional). However,

a machine with surface-mounted magnets has a large effective air gap due to the low

magnetic permeability of the magnets. Therefore, the magnetic field may not be assumed

to cross the air gap perpendicularly, and the field is calculated two-dimensionally. A

cylindrical coordinate system is used because the machine is cylindrical. Furthermore,

space harmonics of the magnetic field are considered, because the losses they cause may
be significant.

There are several publications about the two-dimensional calculation of magnetic
fields in cylindrical coordinate systems. A few of the important ones are mentioned.
1) Hague wrote a book [Hag 29] containing the calculation of the two-dimensional

field in cylindrical coordinates produced by a current in the air gap.

2) In his paper [Bou 85], Boules used Hague's book to calculate the no-load field of
a permanent-magnet machine. He did not use the permanent magnetization of the
magnets, but replaced it by a surface current density at the edges of the magnet.

3) Zhu wrote a series of papers about the calculation of the magnetic fields in
permanent-magnet machines. In [Zhu 93a], the field of the magnet pole arcs is
calculated. [Zhu 93b] describes the field of the stator currents and [Zhu 93c] the
effect of stator slotting. The total field on load is calculated in [Zhu 93d]. These
articles compare analytical two-dimensional calculations in cylindrical coordinates
with finite element calculations. The agreement between these calculation methods
is good. However, Zhu's articles deal with a machine without a damper.

The references mentioned all use the scalar magnetic potential to solve the equations
for the magnetic field. Here, the magnetic vector potential is used for two reasons.

1) In subsection 4.4.3, the magnetic vector potential will be used to calculate eddy
currents in the magnet material. If the scalar magnetic potential were used, it would
be much more difficult to calculate these eddy currents.

2)  Using the magnetic vector potential has the advantage that lines of magnetic flux
density can easily be plotted as lines of constant magnetic vector potential. In this
chapter, this is used to plot the lines of magnetic flux density in the air gap and the
magnets of the machine.

The magnetic field of the stator currents causes a current density in the damper
cylinder. It is possible to calculate the magnetic field and the current density in the
damper cylinder two-dimensionally (as a function of the radial and the angular position)
including skin effect by solving the Helmholtz equation, as is done, for example, in [Bou
81] and [Abu 97]. However, in this thesis, the damper cylinder is assumed to be so thin
that skin effect is negligible for two reasons.

1) The damper cylinder does not function as a retainment sleeve, because a fibre
bandage is applied when a retainment sleeve is necessary. For the shielding, a very
thin damper cylinder is sufficient. For such a thin damper cylinder, skin effect is
unimportant at the dominating frequencies. Skin effect is important at frequencies
where the skin depth is smaller than the thickness of the damper cylinder. The skin
depth 8, is given by [Sto 74] (equation (C.8) gives the skin depth in iron)
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= P (2.1)
W“oll'rf

Sskin

where

p s the resistivity of the material,

Ko is the magnetic permeability in vacuum,

, s the relative magnetic permeability of the material, and

f  is the frequency.

For example, for the copper damper cylinder of the test model with thickness
8,=0.5mm, skin effect is only important at frequencies above 18 kHz.

2) Considering skin effect in the damper cylinder would complicate the calculations
of the magnetic field considerably. It would also make it more difficult to combine
the machine model with a model of the rectifier to calculate the steady-state
performance of the rectifier-loaded machine, as will be done in chapter 5.

In this chapter, the magnetic field produced by an arbitrary current density in the
damper cylinder is calculated on the assumption that the damper cylinder is very thin.
In chapter 3, the current density in the damper cylinder caused by the total magnetic flux
density at the damper radius will be determined.

Outline of the chapter

This chapter first describes in section 2.2 how to derive the partial differential
equation and the boundary conditions for the magnetic field from Maxwell's equations.
It also explains how the magnetic field is visualized. In the next three sections, this is
used to calculate and visualize the magnetic fields produced by the three sources of
magnetic field, namely:
1) the permanent magnetization of the magnets (section 2.3),
2) the surface current density representing the stator currents (section 2.4), and
3) the surface current density of the damper cylinder (section 2.5).
The three sources of magnetic field are also described in the sections mentioned. Of
course, in a machine without a damper cylinder, the third contribution is not present.
The total magnetic field is a superposition of the different contributions, because of the
assumption of the linear magnetic permeability of the magnetic circuit. Section 2.6
concludes with a summary.

Assumptions and starting-points
To obtain functional expressions for the magnetic field, it is necessary to use
simplifying assumptions and to choose some starting-points. Many of the simplifying
assumptions are neglects of effects which hardly influence the magnetic field or
influence it only locally. The following assumptions and starting-points are used in this
chapter.
- End effects are negligible, or in other words, the machine can be considered to be
infinitely long. This implies that the magnetic field does not have a component in
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the axial direction.

The stator and the rotor of the machine are not skewed.

The stator bore (radius r,, figure 2.2) and the rotor iron (radius r,, figure 2.2) are

smooth and cylindrical: the effects of stator slots are neglected.

The relative magnetic permeability of the iron u ., is infinite. This implies that

* saturation and hysteresis phenomena are absent, and

* the magnetic field in the air gap is a superposition of the fields produced by the
magnets, the stator currents, and the current density in the damper cylinder.

The effect of eddy-currents in the stator and the rotor iron on the magnetic field

in the air gap is negligible. This will be shown in section 4.3, where the

assumption that the iron loss is negligible is reconsidered.

The effect of eddy-currents in the magnets on the magnetic field in the air gap and

the magnets is negligible. In section 4.4, this will be reconsidered.

Although it is possible to incorporate the real magnetic permeability of the magnets

([Zhu 93a], [Abu 97]), here, the relative magnetic permeability of the magnets Moy

is assumed to be one. This is a reasonable assumption for the modern rare-earth

magnets, which have relative magnetic permeabilities close to one.

As is further explained in section 2.3, the magnet blocks with permanent

magnetization Mpm of figure 1.3 can be replaced by the magnet pole arcs of figure

2.2. The permanent magnetization of these pole arcs has only a radial component,

which is inversely proportional to the radius:

rr
M, = M, (2.2)

Figure 2.2: Cross-section of a two-pole permanent-magnet machine with a damper
cylinder. An example of a winding distribution of stator phase a is depicted. The arrows
in the magnet pole arcs indicate the direction of the magnetization.
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Under the last three assumptions (concerning the magnets), the magnets have the
same electromagnetic properties as air, except for their permanent magnetization.
The stator has three symmetrical star- (or Y-)connected phases without star-point
connection. The three windings are identical, except for an angular shift of the
axes. Each of the three phase windings has p axes, where p is the number of pole
pairs. The axes of stator phases a, b, and c on the interval 0 <o, <2m/p are called
the reference axes, and lay at stator coordinates «, =0, a,=2m/(3p), and
a, =41/(3p) respectively. All turns of one stator phase are connected in series.
The conductors in the stator slots can be replaced by a winding distribution with
an infinitesimal thickness on the stator surface at the place of the slot openings.
The blocks representing an example of a winding distribution in figure 2.2 do not
mean that the winding distribution has a thickness. They indicate where the
winding distribution has a value different from zero, which is at the place of the
slot openings. The sign of the winding distribution is positive when a positive
current results in a current flowing in the positive z-direction (from the plane of the
drawing upwards, figure 2.1).

The winding distribution (or the number of conductors per radian) of stator phase
a n_(a,) is symmetric in such a way that the following equations are valid:

nsa(as) = _nsa('_as) (2.3)

and

n (e, -T) = -n_(a (2.4)
sal %% p) sa(%)

The radius of the middle of the damper cylinder is the damper radius r, (figure
2.2). The damper cylinder 8, is so thin that the current density in the cylinder can
be replaced by a surface current density at the damper radius 7,,.

Within the stack length of the machine [, the surface current density of the
damper cylinder K, only flows in the axial direction and

Kd(a,f) = -K(a) (2.5)

is valid. As will be shown in subsection 3.3.1, this follows from the assumption
that end effects are negligible.

It is possible to calculate the axial and the tangential component of the current
density in the damper cylinder, which is longer than the stack length of the
machine to provide a closing path for the damper currents. Comparable calculations
have been done for screened rotor induction machines [Bol 69] and for linear
induction machines [Mos 72], [Lan 73], [Gru 78], [Pol 80]. From these references,
it can be concluded that it is reasonable to assume that the current density only
flows in the axial direction within the stack length of the machine if the magnetic
Reynold's number (or the Goodness [Bol 69]) is large. This is the case for the
frequencies of the higher time harmonics in this thesis.
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2.2 Derivation of a method to determine the magnetic field

This section considers a method for determining the magnetic field in the air gap and
the magnets of a permanent-magnet machine. As explained in section 2.1, the magnetic
field is calculated two-dimensionally and in cylindrical coordinates.

In subsection 2.2.1, a partial differential equation describing the magnetic field in the
air gap and the magnets is derived. In this partial differential equation, the magnetic
vector potential A is used. To solve this equation, boundary conditions are required,
which are derived in subsection 2.2.2. Subsection 2.2.3 describes how to use the
magnetic vector potential to visualize the magnetic field. For a more detailed explanation
of these derivations, see literature such as [Hau 89], and [Bin 92].

2.2.1 The partial differential equation in cylindrical coordinates

The magnetic field is characterized by Maxwell's equations. This section describes
how to combine these equations to obtain one partial differential equation, from which
the magnetic field in the air gap and the magnets can be solved.

The differential form of the first of Maxwell's equations (Ampere's law) for quasistatic
fields is given by

VxH =T (2.6)
where J is the current density, and H is the magnetic field strength.

The net magnetic flux out of any region enclosed by a surface must be zero. This
magnetic flux continuity is expressed by

V-B =0 (2.7)
where B is the magnetic flux density.

The relation between the magnetic flux density B and the magnetic field strength H
is given by

B = pH+M) (2.8)
where p,, is the magnetic permeability in vacuum, and M is the magnetization.
These three equations ((2.6), (2.7), and (2.8)) characterize the magnetic field, and
form the basis for the derivation of the partial differential equation describing the
magnetic field in the air gap and the magnets.
Using equation (2.8) in equation (2.6) results in

VXB = p(J+VxM) ' (2.9)

It is possible to combine equations (2.7) and (2.9) to obtain solvable partial
differential equations for the radial and tangential components of the magnetic flux
density. For example, in [Alg 65], this is done for the air spaces, where the magnetiza-
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tion and the current density are zero. However, the equations become simpler when the
magnetic vector potential 4 is introduced. The relation between the magnetic flux
density and the magnetic vector potential is given by

B = vx4 (2.10)
To determine the vector field A completely, it is not enough only to define its rotation.
Therefore, its divergence is also defined, and it is chosen as

vA4 =0 (2.11)
The magnetic vector potential of equation (2.10) always satisfies equation (2.7), because
the divergence of a rotation is always zero.

Substitution of the magnetic flux density of equation (2.10) in equation (2.9) results
in a partial differential equation for the magnetic vector potential A :

VX(VXA) = YVA)-VA = -V’ 4 = pu (T+Vx M) (2.12)
In this equation, it is taken that the divergence of the magnetic vector potential is zero
(equation (2.11)). This partial differential equation is a form of Poisson's equation.
On the right side of equation (2.12) two assumptions are used.
1)  The stator currents and the current density in the damper have only a z-component.
2) The magnetization of the magnets has only a radial component, so that the rotation
of this magnetization has only a z-component.

Because the right side of equation (2.12) has only a z-component, the magnetic vector
potential A also has only a z-component. With this, equation (2.12) can be written as

oM
VA (r,a) = ,u,o(fz—% aa') (2.13)

This equation must be solved in two regions, namely the magnet region (r,<r<r, )
and the air-gap region (r, <r<r). The solution of this equation in the magnet region
is given in subsection 2.3.2. An expression for the general solution of this equation in
the air spaces is given here, because it is used in the next three sections. In the air
spaces, the magnetization and the current density are zero. Using this in equation (2.13)
results in

VA (ra) = 0 (2.14)

This well-known partial differential equation is a form of the potential equation or
Laplace's equation. So, by taking that the magnetization and the current density as zero,
Poisson's equation simplifies to Laplace's equation.

This partial differential equation is solved by means of separation of variables. For
the magnetic vector potential in the air spaces considered in this thesis, a satisfying
expression for the general solution is given by
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A(ra) = A+ A, ja+A, n(r) +A4, eln(r)

2.15
+ Y A, rfsin(ka)+ A, r *sin(ka)+ Ay, Fcos(ka) + A, r *cos(ka) 215)
Pt

wherfa.the constants A,,, A,;, A;;, and A,, are determined from the boundary
conditions.

2.2.2 The boundary conditions

To obtain the complete solution of the partial differential equation, boundary
conditions are necessary, because the partial differential equation is not valid at the
surface between two media. The number of required boundary conditions increases when
the equation has to be solved in different regions separated by a surface current density
or a surface between different media.

This subsection gives boundary conditions for the magnetic flux density and the
magnetic field strength, and not for the magnetic vector potential. However, these
boundary conditions are used to solve the partial differential equation for the magnetic
vector potential. Equation (2.15) gives an expression for the general solution of the
partial differential equation in the air-gap region. In subsection 2.3.2, an expression for
the general solution of the partial differential equation in the magnet region will be
derived. From the general solution, the magnetic flux density and the magnetic field
strength are calculated by using equations (2.10) (B=VxA) and (2.8) (B = p,(H+M)).
In the resulting expressions for the magnetic flux density and the magnetic field strength,
the boundary conditions are used.

There are two types of boundary conditions. The first is called Ampere's continuity
condition, the second the magnetic flux continuity condition [Hau 89], [Bin 92).

Ampeére's continuity condition
Ampére's continuity condition follows from the integral form of the first of Maxwell's
equations (Ampere's law) for quasistatic fields:

fﬁ'df - fff'd‘f (2.16)
C S

where C is a closed contour, enclosing the surface S.

This equation is applied to the dashed closed contour C in figure 2.3. This contour
C encloses a part of the surface between the two media. A surface current density X is
located at the surface between the two media at radius 7, . The length r,-r, of the two
sides of the closed contour C is infinitesimal. Because the magnetic field strength is
finite, these sides do not contribute to the line integral. With this, the result of applying
Ampere's law to the closed contour C is
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Figure 2.3: The closed contour C enclosing a part of the border between two media.

al+a dlﬂ! a1+a
r f H, (r,a)da’-r, f H, (r,e)da’ = r, f K(a'yda' (2.17)
a @ *
Differentiating this equation to a and dividing it by ry results in Ampere's continuity
condition:

H, (r,a) -H, (r,a) = K(a) (2.18)

When there is no surface current density at the surface between the two media, this
boundary condition reduces to a well-known fact, namely that the component of the
magnetic field strength parallel to a surface is continuous.

Often, the medium of one of the two regions is iron. Because the magnetic
permeability of iron is assumed to be infinite, the magnetic field strength in iron is zero.
In this case, the tangential component of the magnetic field strength at the other side of
the surface is completely determined by this boundary condition.

Hence, Ampére's continuity condition gives a boundary condition for the tangential
component of the magnetic field strength at every boundary.

The magnetic flux continuity condition

The magnetic flux continuity condition expresses that the component of the magnetic
flux density perpendicular to a surface between two media is continuous. At a cylindrical
surface at radius r; (figure 2.3), this means that the radial component of the magnetic
flux density is continuous:

B, j(r;,@) = B, (r,@) (2.19)

Often, the medium of one of the two regions is iron, the magnetic permeability of
which was assumed infinite. In this case, it is impossible and unnecessary to use the
magnetic flux continuity condition to determine the magnetic vector potential in the
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other region. It is impossible because the magnetic flux density in the iron can not be
determined. It is unnecessary because Ampere's continuity condition appears to be
sufficient.

In conclusion, the magnetic flux continuity condition gives a boundary condition for
the magnetic flux density at a surface between two media with a finite magnetic
permeability.

2.2.3 Visualization of the magnetic field

A beautiful property of the magnetic vector potential is that it can be used to plot the
lines of magnetic flux density, as shown in this subsection, and used in the next sections.

From the magnetic vector potential, the magnetic flux density follows with equation
(2.10) (B=VxA). For a two-dimensional field, this equation can be worked out to

B = -I,xVA, (2.20)

From this equation, it can be concluded that the lines of magnetic flux density are
perpendicular to the gradient of A, . Therefore, the lines of magnetic flux density can
be plotted as the lines of constant magnetic vector potential (or the equipotential lines
of the magnetic vector potential).

2.3 The magnets

This section describes the magnetic field produced by the magnets. This magnetic
field is calculated, while the stator currents and the current density in the damper
cylinder are zero.

A description of the permanent magnetization of the magnets in cylindrical
coordinates is given in subsection 2.3.1. In subsection 2.3.2, this description is used to
calculate the magnetic field of the magnets.

2.3.1 The permanent magnetization in cylindrical coordinates

This subsection describes the permanent magnetization of the magnets in cylindrical
coordinates. Figure 2.4a shows a four-pole permanent-magnet machine (p=2), the rotor
of which is partly covered with rectangular permanent-magnet blocks.

The permanent magnetization of the magnets is M, . To relate this permanent
magnetization to the data provided by magnet manufacturers, it is mentioned that
- it is equal to the remanence of the magnets divided by the magnetic permeability

in vacuum u,, and
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- for magnets with a relative magnetic permeability u,, =1 (as assumed in section
2.1), it is also equal to the coercivity or the coercive force of the magnets.

For more information on the properties and the production of permanent magnet

materials, see [Cam 94], [Mil 89] and (Adn 91].

The magnets may be magnetized before they are placed in the machine, so that their
permanent magnetization is perpendicular to the surface of the magnets. The magnets
may also be magnetized after they are placed in the machine, which is easier with regard
to the manufacturing of the machine. In this case, it is more difficult to find out the
exact direction of the permanent magnetization, but its most important component is the
radial component.

Because a cylindrical coordinate system is used, a description of the permanent
magnetization in cylindrical coordinates is necessary. As mentioned in section 2.1, it is
assumed that the magnet blocks can be represented by the magnet pole arcs of figure
2.4b. The magnet pole arcs are mounted on the rotor surface. The thickness of these
magnet pole arcs is [, =r,-r,. As expressed by equation (2.2), the permanent
magnetization of the magnet pole arc is assumed to have only a radial component, and
to be inversely proportional to the radius: MP,=M pmr,/ r.

The assumption that the rectangular magnet blocks can be replaced by these magnet
pole arcs is reasonable, because the product of the magnet area of a pole and the
permanent magnetization is equal in both situations. In the situation with magnet blocks
(figure 2.4a), the area of the magnets of a pole and their permanent magnetization are
both independent of the radius r (also inside the magnets). The product of the magnet
area of a pole and the permanent magnetization is ZIsr,amMpm, where [ is the stack
length of the machine. In the situation with the magnet pole arcs (figure 2.4b), the area
of a pole arc is proportional to the radius, and the permanent magnetization is inversely

a)

Figure 2.4: Section of a four-pole permanent-magnet machine a) with rectangular
magnet blocks, and b) with magnet pole arcs. The arrows indicate the direction of the
magnetization.
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proportional to the radius. The product of the magnet area of a pole arc and the
permanent magnetization of equation (2.2) is 2/ srramMpm , which is equal to the value
of this product in the real situation.

By using these magnet pole arcs, the variation of the magnetic flux density at the
stator surface resulting from the different magnet blocks is ignored.

Often, the magnet pole arcs do not cover the whole rotor surface. In this case, there
are air spaces between the magnet pole arcs. These air spaces are treated as magnet arcs
without magnetization. This is allowed, because magnets without magnetization are
assumed to have the same electromagnetic properties as air.

On the interval -w/(2p)<a,<3m/(2p), the radial component of permanent
magnetization M, (r,a,) can be written as

r
Mpm-r—’ when -a, <o <a,
Myra) =§ . T when T-a_<a<Teq (2.21)
oy p P
0 everywhere else on -7/(2p) <a, <3m/(2p)

In the next subsection, this permanent magnetization is used to calculate the magnetic
field of the magnets. Because the solution of the partial differential equation for the
magnetic vector potential has the form of a Fourier series, this permanent magnetization
is also written as a Fourier series:

u + I .
M, (ra) =k§5 M, —cos(kpa,) ;
. (2.22)
. 40
M, = % f M, cos(pka)da = EMPMSID(kP“m)

So, the permanent magnetization, which is a rectangular function of the rotor
coordinate, is written as a series of permanent magnetizations, which are sinusoidal
functions of the rotor coordinate. These sinusoidal functions are called space harmonics.
The pole angle of these space harmonics @, is introduced for use in the rest of this
thesis as

m
% = (2.23)

Later in this chapter, time harmonics will also be introduced. These are present
because of the rectifier. Furthermore, different references use different terms for the
various components of Fourier series [Kwa 91], [IEC 85], [IEE 72]. To avoid confusion,
it is noted here which terms are used in this thesis. A Fourier series of space harmonics
is divided into a fundamental space harmonic (k=1) and higher space harmonics
(k=2). A Fourier series of time harmonics is divided into a constant component, a
fundamental time harmonic and higher time harmonics.
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2.3.2 The magnetic field of the magnets

This subsection describes the magnetic field which is produced by the magnets. The
magnetic field is calculated by solving the partial differential equation for the magnetic
vector potential in two regions:

1) the air-gap region, called region I (r,, <7<r,), and
2) the magnet region, called region II (r,<r<r,).

Firstly, the permanent magnetization derived in subsection 2.3.1 is substituted into the
partial differential equation for the magnetic field. Subsequently, the complete solution
of the partial differential equation is calculated.

Substitution of the permanent magnetization

First, the permanent magnetization derived in the previous subsection (equation
(2.22)) is substituted in the partial differential equation for the magnetic vector potential
(equation (2.13)). It is also taken that the current density J, in the magnets is zero. The
result is

il kr, .
VA ra) = Y T tu M, sin(pka) (2.24)
: k=135,. T

It is noted that the Fourier series on the right side of this equation is not convergent.
However, it is believed that the expressions derived in the rest of this section are reliable
for the following reason. When the magnetic field is calculated by solving the partial
differential equation for the scalar magnetic potential, it is not necessary to use non-
converging Fourier series, and the results are the same. In this case, the right side of the
partial differential equation does not contain the curl of the permanent magnetization (as
equation (2.13)), but its divergence, which does not exist at a surface where a boundary
condition is applied. Besides, this problem exists because the permanent magnetization
is mathematically described as a discontinuous function of the rotor coordinate (in
equation (2.21)), while in reality, it does not change so abrupt.

For the magnetic vector potential resulting from the magnets, a satisfying expression
for the general solution is given by

A(ra) = Y (A Py P r—“oMPk }Si“(Pkar) (2.25)
k=135 pk
The constants A, , and A4, are determined from the boundary conditions.
As shown earlier, the magnetic vector potential in the air gap above the magnets is
described by equation (2.14). Equation (2.15) gives a satisfying expression for the
general solution of this partial differential equation.

The boundary conditions
Subsection 2.2.2 describes the boundary conditions. Ampeére's continuity condition,
expressed by equation (2.18), is applied to the three boundaries, namely the stator
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surface, the rotor surface and the magnet surface. This results in three boundary
conditions:

Ham,l(rs’ar) = O (226)
Ham,[l(rr’ar) = O (227) )
Haml(rm’ar) = Ham,[l(rm’ar) (2.28)

The magnetic flux continuity condition, expressed by equation (2.19), is applied to the
magnet surface:

B nn,ll(rm’ar) = Brm,[(rm’ar) ( 229)
With these four boundary conditions, the partial differential equation can be solved.

The solution of the partial differential equation

The general solution of the partial differential equation is given by equation (2.15) for
the air-gap region, and (2.25) for the magnet region. For both regions, the general
solution is substituted in equation (2.10) (B= VXA) to determine the magnetic flux
density. From this, the magnetic field strength is determined by using B =u,01-7 in the air-
gap region, and B =/.L0(H +M) (equation (2.8)) in the magnet region. In the resulting
expressions for the magnetic flux density and the magnetic field strength, the four
boundary conditions are used. The resulting expression for the magnetic vector potential
in the air-gap region (region /) is given by

©  (pRkp PRy Lk Ay
Azm ,I(r’ar) = E ( sk )(:1 kr ) r Ho pk Sin(pkar)
k=135, 2(,}’ _,.rZD rPkppe pk
2pk 2pk
© r , ,
= E § m r“[) p’k Sin(pkar)

k=13,5,.. r, COTERYL 2pk
o

This equation and many other expressions in the rest of this thesis contain terms with
radii to the power of pk or 2pk. These expressions may be written in two different ways,
as is done in this equation. In the rest of this thesis, the first form is used, but for the
accurate numerical evaluation of these expressions, the second form has to be used.

Using equation (2.10) (B'=VxA), the radial component of the magnetic flux density
in the air-gap region is obtained from equation (2.30) as

™ k 2pk _2pk
(P e PR (r 25 Py

B, [ra) =Y “poM, , cos(pke,) (2.31)

k_ 2pky pk
k135, 2r e Py Phppil

The magnetic vector potential in the magnet region (region II) is given by
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jad r20k+rr2pk rZPk_rZDk “ M .
Apprie) = 3 ! - )(,f o~ ) r,—~—2 sin(pka,) (2.32)
k=135, 2(,3" _,-rzp YrPEppk pk

Using equation (2.10) (B=VxA), the radial component of the magnetic flux density in
the magnet region is obtained as

w 2k 2k 2pk
Y |

B, are,) = - < oM, , cos(pka,) (2.33)
e k=g;5," 2r k- Py Py | 1 pk

Only the radial component of the magnetic flux density is given explicitly, and not the
tangential component. This is done because only the radial component is required in
chapter 3, where the no-load voltages are calculated.

Figures 2.5, 2.6, and 2.7 illustrate the meaning of these equations for the magnetic
field of the magnets. The fields in these pictures are calculated for the test model with
the characteristics mentioned in appendix A, section A.1. Figure 2.5 depicts the radial
component of the magnetic flux density in the air-gap region and the magnet region for
one pole. Figure 2.6 gives the amplitudes of the space harmonics of the radial
component of the magnetic flux density B,m « At the rotor and the stator surface. Figure
2.7 depicts the lines of the magnetic flux density in the air gap and the magnets for one
pole.

Three striking details in these figures are:

1) According to figure 2.5, the magnetic flux density at radius 7=r, in the magnet is
higher at the sides of the magnet than in the centre. This is also visible in figure
2.7, where there are more field lines at the sides of the magnets than in the centre.
This is so because in the centre of the magnet, there is only flux crossing the air
gap, while at the sides of the magnet, there is flux returning to the rotor besides
the flux crossing the air gap, as can be seen in figure 2.7.

2) According to figure 2.5, the magnetic flux density at the stator surface is smooth,
and the increase of the magnetic flux density at the sides of the magnets has
disappeared, for the following reason. The flux paths of the space harmonics with
small pole angles mainly close in the air gap, and do not reach the stator, because
in this way, the flux paths are shorter than when they cross the air gap. Figure 2.6
affirms that the smaller the pole angle of a space harmonic of the magnetic field,
the less it crosses the air gap.

3) Infigure 2.5, near the sides of the magnet pole arc, a small ripple on the magnetic
flux density is visible. In reality this ripple is not present, it is caused by the Gibb's
phenomenon [Kwa 91]. This phenomenon says that near the discontinuities (so near
the sides of the magnets), the Fourier series always has a truncation error.
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Figure 2.5: a) A pole pitch of the air gap and the magnets as a function of the rotor
coordinate a. b) The radial component of the magnetic flux density produced by the
magnets B, as a function of the rotor coordinate a, at different radii in the air gap of
the test model (p=2) on the same pole pitch.
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Figure 2.6: Amplitudes of the space harmonics of the radial component of the magnetic

flux density produced by the magnets Erm x at the rotor surface (+) and at the stator
surface (X) of the test model as a function of the space harmonic number k.

Figure 2.7: The lines of magnetic flux density produced by the magnets in the air gap
and the magnet pole arc of the test model (p=2).
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2.4 The stator

This section describes the magnetic field produced by the stator currents. This
magnetic field is calculated, while the permanent magnetization of the magnets and the
current density in the damper cylinder are zero.

To calculate the magnetic field of the stator currents, a description of the surface
current density of the stator is necessary, which is given in subsection 2.4.1. In
subsection 2.4.2, this is used to calculate the magnetic field.

2.4.1 The stator surface current density

This subsection describes the surface current density at the stator surface representing
the stator currents. Firstly, the surface current density of stator phase a is derived. This
is done by means of a description of the spatial distribution of the winding. Subse-
quently, the surface current density of a three-phase stator winding is calculated. It is
also shown how travelling waves of surface current density arise.

The surface current density of stator phase a

To calculate the surface current density of phase a, first the winding distribution (or
the number of conductors per radian, as introduced in [Sle 92]) of phase a n_, is
considered. The reference axis of this winding lays at stator coordinate a,=0. As
mentioned in section 2.1, it is assumed that this winding is distributed so that
ny(a,-mp)=-n (o) and n(a)=-n_(-a) are valid. Under these assumptions, the
winding distribution n_(c,) can be expressed as the following Fourier series:

-3

nsa(as) = _;5 nsa,k(as) ;
Ru(@) = SN, sin(pka,)

In this equation, N, " is the number of turns of the kth space harmonic of the winding
distribution, as appears from

(2.34)

w/(pk) w/{pk)
pk [ ng(a)de, = pk [ IN,,sin(pka) = N,, (2.35)
0 0

As shown in appendix B, this number of turns of the kth space harmonic is related to
the actual number of turns N by

4 :
N, = ;kw NV sin(zkm) (2.36)

where k,,, is the winding factor for the kth space harmonic of the actual winding.
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It should be noted that the number of turns N, may be negative for some space
harmonics. If the space harmonics of the winding distribution were expressed with
different reference axes, all numbers of turns could be chosen as positive, because
N, sin(pka,) =-N_ , sin(pk(a,~/p)) is valid for odd k. Some space harmonics would
have the reference axis at a,=0, others at a,=m/p. Because a,=0 was chosen as the
reference axis of all space harmonics of the winding distribution, the number of turns
of the kth space harmonic N, may be negative. However, the use of negative numbers
of turns does not change anything in the rest of the derivation.

The introduced winding distribution is negative at several places on the stator surface.
The meaning of a negative winding distribution becomes clear after the calculation of
the surface current density. When the winding distribution (or the number of conductors
per radian) n_, is divided by the stator radius r,, the number of conductors per meter
at the stator surface is obtained. Multiplication of this number of conductors per meter
by the current i, results in the surface current density of phase a K :

i -
K, (@) = ng(@)>= = 3} K, (@) ;
Ty k=135, (2.37)

N
Ig‘a,k(a:) = Ksa,kSin(pkas) = 2:’5 isa Sin(pkas)

s

In this equation, the winding distribution of equation (2.34) was used. A positive surface
current density flows in the positive z-direction, which means that the current flows from
the plane of the drawing upwards. A negative surface current density means that the
current flows in the opposite direction.

Figure 2.8a gives as an example the surface current density of a two-pole machine
(p=1). Figures 2.8b and 2.8¢ depict the fundamental space harmonic and the third space
harmonic of this surface current density. Figure 2.8d depicts the sum of the fundamental
space harmonic and the third space harmonic of the surface current density. If the sum
of all space harmonics would be drawn, the result would be the surface current density
of figure 2.8a.

It should be noted that the surface current density is an infinitesimal thin layer on the
surface. So, the thickness of the blocks representing the surface current densities does
not mean that the surface current density has a thickness, but it is an indication of the
value of the surface current density at that stator coordinate.

The surface current density of a three-phase stator

When a current flows in more stator phases, the total surface current density can
simply be calculated by adding the surface current densities of the different phases. The
winding distributions of phases b and ¢ are equal to the winding distribution of phase
a, except for an angular shift of their reference axes, which lay at a,=2m/(3p) and
o, =4m/(3p) respectively, as illustrated in figure 2.9.
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Figure 2.8: Surface current density of phase a, a) total, b) fundamental space harmonic,
¢) third space harmonic, d) sum of the fundamental and the third space harmonic. The
surface current density is an infinitesimal thin layer on the stator surface.
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Figure 2.9: A schematic drawing of a three-phase stator with one pole pair (p=1).

Using this, the kth space harmonic of the surface current density of a three-phase stator
is calculated as

Ks,k(as) sa,k(a ) + sb,k(as) +Ksc,k(as)

1 .
= r_s{lsa nsa,k(as) * lsb nsb,k(as) + lscnsc,k(as)} (2.38)

N . .. 2T, . . dar
= 2—;"{1 sm(pkas)ﬂsbsm(pk(as——g))+1x81n@k(as—§))}
s

To clarify the meaning of the surface current density of equation (2.38), the surface
current density of a three-phase stator is calculated. This is done for the set of stator
currents flowing when the machine is in steady-state and when it is loaded with a
rectifier. This set is written as a Fourier series:

cos((6n+1) w1~ )
| = X £, gy OO+ D(@1-27)-0, 1) (2.39)
Ly cos((6n+1)(wlt—§7r)—(p6n+1)

where w, is the electrical angular frequency of the fundamental time harmonic.
In this equation it was taken that the currents do not contain
- even time harmonics because there is half wave symmetry,
- time harmonics of which the harmonic number is an integer multiple of three
because there is no star-point connection.
It should be noted that this equation is also meaningful for n <0, because for a certam
n, this equation represents the |6n+1|th time harmonic.
The kth space harmonic of the surface current density of a three-phase stator is
obtained by substitution of these currents in (2.38), and is given by



28 Chapter 2

Kv,k(as’t) = E Ks,k,6n+1 as’t) ;

n=-co

3N,
—k i Sin(pka-(6n+l)o,t+e, ) for k=1,7,13,. (2.40)

dr,
K (@) = 4 0 for k=39,15,..
’ 3N, .
——4—”‘13Gmlsin(pkas+(6n+1)m1t—(p6m1) for k=5,11,17,..
Lt

B

For k=3,9,15,.., the space harmonics of this surface current density are zero. For
these space harmonics, the arguments of the sinuses of the surface current densities of
the three phases are equal, which is seen by substituting k=3,9,15,.. in equation (2.38).
Therefore, the sum of the surface current densities of the three phases is zero when the
sum of the stator currents is zero. This is the case for the stator currents of equation
(2.39), and this is also the case if there is no star-point connection.

For k=1,7,13,.., the space harmonics of the surface current density of equation (2.40)
are maximum when

6n+l)w -2
ko~ (6n+1) 0,1+ @, = = = a = ©) e T Pem

2 s pk 2pk
This shows that these space harmonics rotate in the positive angular direction for 7= 0,
and in the negative angular direction for # <0. This also shows that the angular velocity
is inversely proportional to the space harmonic number k multiplied by the number of
pole pairs p. These rotating space harmonics are called travelling waves.

In the same way, it can be seen that for k=5,11,17,.., the space harmonics form
travelling waves rotating in the negative angular direction for #» =0, and in the positive
angular direction for n <0. Their angular velocity is also inversely proportional to the
space harmonic number k multiplied by the number of pole pairs p.

It should be noted that this angular velocity is not equal to the electrical angular
frequency experienced at a given place on the stator surface. At a given place at the
stator surface at stator coordinate a_, the angular frequency of the surface current density
is |6n+1|w;. This is seen if the stator coordinate in equation (2.40) is held constant.

(2.41)

2.4.2 The magnetic field of the stator currents

This subsection describes the magnetic field which is produced by the stator currents.
It starts with the boundary conditions following from the surface current density derived
in subsection 2.4.1. Next, it gives the complete solution of the partial differential
equation.

To make this calculation, it is enough to consider one ‘air-gap' region. It is not
necessary to separate an air-gap region and a magnet region, because magnets without
magnetization are assumed to have the same electromagnetic characteristics as air.
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The boundary conditions

Subsection 2.2.2 describes the boundary conditions. Ampere's continuity condition,
expressed by equation (2.18), is applied to the two boundaries, namely the stator surface,
and the rotor surface:

H (r.a,) = 0 (2.42)

H (rya) = -K(a) (2.43)

In this expression, the surface current density of equation (2.38) is used. With these two
boundary conditions, the partial differential equation can be solved.

The solution of the partial differential equation

The general solution of the partial differential equation is given by equation (2.15).
This equation is substituted in equation (2.10) (B=VxA) to determine the magnetic flux
density. From this, the magnetic field strength is determined by using B =p.01-7 . In the
resulting expression for the magnetic field strength, the two boundary conditions are
used. In this way, the magnetic vector potential is calculated as

R (i FATN
k=135, (rz"k—r,z"k)rp" 2pk (2.44)

{isa Sin(Pkas) + isb sin(pk(as_i_:)) ’ lsc Sin(pk(as_ ‘;—;))}

With equation (2.10) (B=VxA), the radial component of the magnetic flux density
produced by the stator currents is obtained:

® P Phyp PRy Pk N
Brs(r’as) = E ( - X alad

w35 Pyt 2 (2.45)
. , 29T\ . 4ar
{lsa cos(pkas) *lg cos(pk(as—g)) e COS(pk(as—?’;)) }

Only the radial component of the magnetic flux density is given explicitly, because this
component is required in chapter 3, where the inductances are calculated.

As at the end of subsection 2.4.1, travelling waves of magnetic flux density arise
when a balanced set of three-phase currents flows in the stator phases.

Figures 2.10, 2.11 and 2.12 illustrate the meaning of the equations for the magnetic
field of the stator currents. The fields in these figures are calculated for the test model
with the characteristics mentioned in appendix A, section A.1. As an example that may
occur during three-phase operation, a current of 5 A flows in stator phases b and c,
which are connected in series (i, =5 A, i =-5 A), while the current in phase a is zero.
Figure 2.10 depicts the radial component of the magnetic flux density in the air gap for
one pole. Figure 2.11 gives the amplitudes of the space harmonics of the radial
component of the magnetic flux density B,s  at the rotor and the stator surface. Figure
2.12 depicts the lines of magnetic flux density in the air gap for one pole.
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The surface current density at the stator surface represents the current of six slots. In
figure 2.10, this is visible from the six maxima of the magnetic flux density at the stator
surface. In a machine with slot openings instead of a smooth stator surface, the magnetic
field will be different, mainly for the space harmonics with a small pole angle.

Again it is seen that the space harmonics with a small pole angle hardly cross the air
gap: at the rotor surface, the magnetic flux density is smooth.

Because the rotor-removed test is used in subsection 4.3.6, the solution for this
situation is also mentioned. When the rotor is removed, only one boundary condition is
valid, namely the boundary condition at the stator surface (equation (2.43)). The solution
for this situation is obtained by substituting r,=0 in the derived expression for the
magnetic vector potential (equation (2.44)).

Figure 2.10: The radial component of the magnetic flux density produced by the stator
currents B,; as a function of the stator coordinate a, at different radii. A current flows
in stator phases b and c of the test model (p=2), while the current in phase a is zero.
It is can be seen that the surface current density represents the current of six slots.
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Figure 2.11: Amplitudes of the space harmonics of the radial component of the magnetic
flux density produced by the stator currents B, , at the rotor surface (+) and at the
stator surface (X) of the test model as a function of the space harmonic number k.

Figure 2.12: The lines of magnetic flux density produced by the stator currents in the
air gap of the test model (p=2). At the stator surface, the place of the slots is indicated.
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2.5 The damper cylinder

This section describes the magnetic field produced by the surface current density of
the damper cylinder, which is of course only present in a machine with a damper
cylinder. This magnetic field is calculated, while the stator currents and the permanent
magnetization of the magnets are zero. The magnetic field is calculated for a given
arbitrary surface current density. In section 3.3, the surface current density of the damper
cylinder will be determined by deriving the voltage equations.

Before it is possible to make this calculation, a description of the surface current
density is necessary, which is given in subsection 2.5.1. In subsection 2.5.2, this is used
to calculate the magnetic field.

2.5.1 The surface current density of the damper cylinder

As mentioned in section 2.1, it is assumed that the damper cylinder is so thin that the
current density in the damper cylinder can be replaced by a surface current density for
the calculation of the magnetic field in the air gap. Furthermore, it is assumed that the
surface current density of the damper cylinder K, only flows in the axial direction, and
that K (a,-m/p)=-K (a,) is valid. Under these assumptions, the surface current density
can be written as the following Fourier series:

Kd(ar) =k=1235 Kd,k(ar) ’
K@) = Ry sin(pk(a,-v,))

This surface current density of the damper cylinder can also be considered as a series
of damper currents in a series of damper windings. In chapter 3, it will appear that this
is useful when the damper voltage equations and the equivalent circuits are derived. To
obtain the series of damper currents in the series of damper windings, the kth space
harmonic of the surface current density of equation (2.46) is written as

K, (@) = K, cos(pky,)sin(pka,) - K, sin(pky ) cos(pka,) (2.47)

The two terms on the right side of this equation can be considered as contributions
of two sinusoidally distributed windings. For the kth space harmonic, the winding
distributions of these two windings are given by

(2.46)

ny Jc(a ) = A ’ksm(pka )

Ry (@) = -—Nycos(pka,) = -N,, sin(pk(a,-

(2.48)
)

The subscripts d and g are used, because the rotor-connected two-phase system is usually
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called the dg-system, where d and g mean direct and quadrature respectively. The
number of pole-pairs of these winding distributions is proportional to the space harmonic
number k. The reference axes are chosen on the interval 0=<a, <2w/(pk).

The direct-axis component of this winding distribution is called damper winding d,k.
The current in this damper winding is called damper current i, . Its reference axis lays
at rotor coordinate a =0. The quadrature-axis component of this winding distribution
is called damper winding g,k. The current in this damper winding is called damper
current iy, ,. The windings ¢,k have different spatial reference axes for different k. As
depicted in figure 2.13, the reference g-axis a, of damper winding g,k lays at rotor
coordinate

a

= 2.49
Xk »ka ( )

q
S A :
d 43 d /ﬁqj
k=3 k=S5
Figure 2.13: The real spatial angle between the reference direct axis and the reference
quadrature axis of a two-pole machine (p=1) for different values of k.

With the introduced damper currents and damper windings, the surface current density
of the damper cylinder can be written as

Kfe) = 3 Kyl@);
k=1335,..

(2.50)
K, (o ) = { i ksm(pka )+i ” ’ksm(pk(a k))}
2r 2p
To obtain the surface current density of equation (2.46), the damper currents must be
given by

cos(pky )

i ok n sin(pky,)

It should be noted that the number of conductors N, x can be chosen arbitrarily, as long
as the products i,,, N, and qu N, do not change.

So, the surface current density of the damper is described by means of a series of
damper currents flowing in a series of sinusoidally distributed windings. This will appear
to be useful when the damper voltage equations and the equivalent circuits are derived
in chapter 3.

iddjc 2r,K 4

Nd

(2.51)
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2.5.2 The magnetic field of the damper currents

This subsection describes the magnetic field produced by the series of currents in the
series of damper windings. It starts with the boundary conditions following from the
surface current density derived in subsection 2.5.1. Next, it gives the complete solution
of the partial differential equation.

The partial differential equation for the magnetic vector potential has to be solved in
two regions:

1)  the region above the cylinder called region I, (ry<r<r,), and

2)  the region below the cylinder called region I/, (r.<r<rp).

It is not necessary to separate the region below the cylinder into two regions for air and
magnets, because magnets without magnetization are assumed to have the same
electromagnetic properties as air.

The boundary conditions
Subsection 2.2.2 describes the boundary conditions. Ampére's continuity condition,

expressed by equation (2.18), is applied to the three boundaries, namely the stator
surface, the rotor surface and the cylinder surface:

Hfar) =0 (2.52)
Hpler,) =0 (2.53)
Had,l(ar’rm) -Had,ll(ar’rm) = Kd(ar) (254)

In this expression, the surface current density of equation (2.50) is used.

The magnetic flux continuity condition, expressed by equation (2.19), is applied to
the cylinder surface:

By utm) = By (1 ,0t,) (2.55)
With these four boundary conditions, the partial differential equation can be solved.

The solution of the partial differential equation

For both regions, the general solution of the partial differential equation is given by
equation (2.15). This equation is substituted in equation (2.10) (B=VxA) to determine
the magnetic flux density. From this, the magnetic field strength is determined by using
B =,u01-.7 . In the resulting expressions for the magnetic flux density and the magnetic
field strength, the four boundary conditions are used. In this way, the magnetic vector
potential in the air gap above the damper cylinder (region I) is calculated as

© s k  2pk
(2 er PV or Y oy,

A (r’ar) =
i klz3,:5 2 Py Pk 2pk (2.56)

{i g SINPka ) +iy sin(pk(a,“%k—))}
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With equation (2.10) (B =VxA), the radial component of magnetic flux density in this
region is obtained:

B (e i (r PR P Fr Py nNy,
rd %) =
9] T % 2 (r:pk_rrzpk)r'];kr pk+1 2

{i 14 COS(Pka,) +iy, , cos(pk(a _E))}

Below the damper cylinder (region II), the magnetic vector potential is given by

(2.57)

= (r 2k, 2pk) (] Pk 2pk

) MoV, dk
Ayra) = Y
I 2(rs2"k—r,2pk)r5krpk 2pk (2.58)

{idd L Sin(pkat) +iy sin(pk(a,-ﬁ))}

With equation (2.10) (B=VxA), the radial component of magnetic flux density in this
region is obtained:

» K k k
B re) = ¥ PPN E) Ny
T i 2 P Pryepet 2 (2.59)

{i 1 xCoS(Pka) +iy, kcos(pk(a,—ﬁ))}

It should be noted that the damper currents i, x and § 44+ flowing in the damper
windings d,k and gk, only cause the kth space harmonic of the magnetic flux density.

Only the radial component of the magnetic flux density is given explicitly, because
this component is required in chapter 3, where the inductances are calculated.

The meaning of the derived equations is illustrated in figure 2.14. This figure depicts
the radial component of the magnetic flux density produced by the damper currents in
the air-gap region and the magnet region for one pole. It is calculated for the test model
with the characteristics mentioned in appendix A, section A.l. The surface current
density of the damper cylinder was chosen as equal to the surface current density at the
stator surface when a stator current of 5 A flows through stator phases b and ¢, which
are connected in series (i, =5 A, i =-5A), while the current in phase a is zero. This
surface current density was chosen for two reasons.

1) In this way, figure 2.14 is comparable to figure 2.10, where the same surface
current density is used.

2)  With this surface current density, figure 2.14 is illustrative. It is seen that the space
harmonics with a small pole angle do not cross the air gap: they are present at the
damper radius, but at the stator and rotor surface, the magnetic flux density is
smooth. With, for example, a sinusoidal surface current density, this would not be
visible.
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Figure 2.14: The radial component of the magnetic flux density B, produced by the
surface current density of the damper as a function of the angular coordinate at different
radii. The surface current density of the damper cylinder was chosen as equal to the
surface current density at the stator surface if a current flows through stator phases b

and c of the test model (p=2), while the current in phase a is zero (compare figure
2.10).

2.6 Summary

This chapter has described the first part of the modelling of the permanent-magnet
generator, namely the calculation of the magnetic field in the air gap and the magnets.
In later chapters, this magnetic field forms the basis for the derivation of the voltage
equations of the generator and for the modelling of the losses in the generator.

To obtain functional expressions for the magnetic field, it has been necessary to use
simplifying assumptions. These assumptions have mainly been neglects of effects that
hardly influence the magnetic field and effects that influence the magnetic field only
locally. The most important assumptions have been that
- the damper cylinder is very thin,

- end effects in the machine are negligible,
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- nonlinear effects, such as hysteresis and saturation phenomena, are negligible,

- eddy-currents in the stator iron, the rotor iron and the magnets are negligible,

- the magnetic permeability of iron is infinite,

- the slotting of the stator is negligible, and

- the magnet blocks can be replaced by a magnet pole arc.

Based on these assumptions, the magnetic vector potential in the cylindrical air gap of
the permanent-magnet machine has been calculated. This magnetic vector potential is
a superposition of the magnetic vector potentials resulting from the permanent
magnetization of the magnets, the stator currents, and the damper currents. From this
‘magnetic vector potential, the magnetic field is calculated two-dimensionally.

In chapter 3, these expressions for the magnetic field are used in the derivation of the
voltage equations. For this derivation, the radial component of the magnetic flux density
at the stator surface and the damper surface is required. For convenience, the radial
components of the magnetic flux density in the region between the stator surface and the
damper surface are repeated here. The radial component of the magnetic flux density
produced by the magnets between the magnet surface and the stator surface is given by
equation (2.31):

B R T (Al Ay

B_[(ra) = LM cos(pka.) (2.60)
) 5 2 2 Py Byt 0 PETE

The radial component of magnetic flux density of the stator currents is given by equation
(2.45):

@ 2pk . 2Pk Pk
r N
By = Y ot

kel (rPrpPlyppket 2 (2.61)

S

{isa cos(pkas)+isbcos(pk(as—:23—;))+iscc0s(pk(as-%’1;—))}

If a damper cylinder is present, the radial component of magnetic flux density produced
by the currents in the damper cylinder in the air-gap region is given by equation (2.57):

00 k k k

B, (ra) = Y PR PO Fer Py woNy,
d,I\"? -
T kA3 2 P Pry e 2 (2.62)

{i 12xC0s(pka) +iy cos(pk(a,—ﬁ))}

The current density of the damper is replaced by a series of damper currents flowing in
a series of sinusoidally distributed damper windings, which will appear to be useful
when the damper voltage equations and the equivalent circuits are derived in chapter 3.

From the illustrations of the calculated magnetic fields, it was concluded that the
smaller the pole angle of a space harmonic of the magnetic field, the less it crosses the
air gap.
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Chapter 3

The voltage equations of the generator

3.1 Introduction

Objective

Chapter 2 has described the first part of the modelling of the generator, namely the
calculation of the magnetic field in the air gap and the magnets of the generator. The
next part of the derivation of the machine model is the derivation of the voltage
equations, which is described in this chapter. In the following chapters, these voltage
equations will be extended with models of the most important losses in order to obtain
a machine model suitable for the analysis of the generator loaded with a rectifier.

The objective of this chapter therefore is the derivation of voltage equations relating
the terminal currents and the terminal voltages of the permanent-magnet machine
depicted in figure 3.1. The derivation is based on the expressions for the magnetic flux
density derived in chapter 2 and on the machine dimensions and material properties.
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The voltage equations must be valid for the machine with and without a damper
cylinder. Further, they must be suitable for the analysis of the machine in two situations:
1)  during locked-rotor tests, which are used to verify the derived equations, and
2)  during steady-state operation with rectifier load, which is investigated in this thesis.
Therefore, the voltage equations are transformed into fonns which are useful for these
two situations.

Outline of the chapter

This chapter starts with the derivation of the stator voltage equation in section 3.2.
Next, section 3.3 describes the derivation of the voltage equations representing the
damper cylinder. It is shown that useful damper voltage equations can be derived for the
series of sinusoidally distributed damper windings introduced in subsection 2.5.1. In
section 3.4, the voltage equations are transformed into the two-phase stator-connected
af3-system and the damper quantities are referred to the stator. This is necessary to
eliminate the dependence of the rotor position angle and to obtain simpler equations.
Furthermore, in section 3.5, these voltage equations are worked out for the situations
considered in the rest of the thesis, namely for steady-state operation with rectifier load
and for the locked-rotor tests. Subsequently, section 3.6 describes some locked-rotor
tests, which partly verify the derived voltage equations. Section 3.7 concludes with a
summary of the results obtained.

Assumptions

The derivation of the voltage equations is based on the equations for the magnetic
field derived in chapter 2, so that the assumptions mentioned in section 2.1 are also used
in this chapter. Further, the work in this chapter is based on the following assumptions.

- Skin effect in the stator conductors is negligible.

- Insection 2.1, it was assumed that end effects are negligible. Consequentially, the
resistance and the leakage inductance of the end connections of the damper
cylinder (the part of the damper cylinder outside the stack length of the machine IR
providing a closing path for the damper currents) are neglected.

- For the magnetic flux density in the air gap and the magnets,

F(r,as—g) = -B(ra,) (3.1)
is valid, as follows from the calculations of the magnetic field in chapter 2.

- The stator coordinate « is related to the rotor coordinate @, by
a, =a+l (3.2)
where @ is the rotor position angle (see figure 3.1).




The voltage equations of the generator 41

3.2 The stator voltage equation

In this section, the stator voltage equation is derived. Firstly, subsection 3.2.1
introduces a general expression for the stator voltage equation and a few separations
between the contributions to the flux linkage in this equation. Next, subsection 3.2.2
gives an expression for a part of the leakage flux of the stator. Subsection 3.2.3
describes the flux linkages of the stator windings for an arbitrary magnetic flux density
in the air gap along the stator surface. The obtained expression is used to calculate the
flux linkages of the stator windings due to the magnetic fields of the magnets, the stator
currents, and the damper currents in subsections 3.2.4, 3.2.5, and 3.2.6. Subsection 3.2.4
also gives an expression for the no-load voltage of a permanent-magnet machine. In
summary, subsection 3.2.7 gives a valuable formulation of the stator voltage equation.

3.2.1 A general expression for the stator voltages

This subsection introduces a general equation for the stator voltages of a three-phase
permanent-magnet machine. It also introduces separations between different contributions
to the flux linkages in this stator voltage equation.

The general expression for the stator voltages, which follows from the second of
Maxwell's equations (Faraday's law), can be written as

dy,
de

where R_ is the resistance of a stator phase, and where vectors were introduced for the
stator voltages, the stator currents and the stator flux linkages:

7, - R 33

usa lsa lpsa
ﬁs = usb ; iS = le ; ws = lIISb (3.4)
uSC lSC lIJSC

The resistance R, of a stator phase is constant when skin effect and effects of
temperature are neglected. In section 4.2, the increase of the resistance R_ due to skin
effect in the stator conductors will be reconsidered. Furthermore, this thesis does not pay
attention to the calculation of this resistance, because it is calculated by conventional
methods which are well described in, for example, [Ric 67].

The flux linkage § of equation (3.3) is separated into two parts, namely:
1) the flux linkage due to the air-gap field, and
2) the flux linkage due to slot leakage and end-winding leakage fields .
It should be noted that the air-gap field also includes some leakage, because a part of
the air-gap field does not cross the air gap. This leakage is included the air-gap field
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calculated in chapter 2, because the magnetic field is calculated two-dimensionally. This
leakage is called the air-gap leakage.

Chapter 2 described the air-gap field, which was separated into three contributions,
which give three contributions to the flux linkage:
1) the flux linkage due to the field of the magnets ¢, ,
2)  the flux linkage due to the field of the stator currents §, and
3) the flux linkage due to the field of the damper currents §_,.
With the four separations (into flux linkage resulting from leakage, magnets, stator
currents, and damper currents), the stator voltage equation is written as

d\T’w+ dip’:m + dq}.\‘s + d‘]}sd
dr dr dr

This voltage equation can also be used for a machine without damper cylinder; in this
case, the flux linkage caused by the damper currents @, is zero.
In the next subsections, this voltage equation is worked out and quantified.

ﬁs = Rs{;+ (3:)

3.2.2 The leakage flux of the stator

This subsection gives an expression for the flux linkage caused by slot leakage and
end-winding leakage {, . The air-gap leakage is included air-gap field.

Because of the symmetry of the stator and the air gap, the self-inductances of the
stator phases due to the leakage fluxes are equal; they are called L . For the same

reason, the mutual inductances between the different phases due to the leakage fluxes
are equal; they are called M, . Hence, the leakage flux can be written as

L _M_, M

soa soab soab

‘]}m = Msoab Lsaa Msaab ’—; =L i (3.6)

so” s
M, M L

soab soab soa
The thesis does not pay attention to the calculation of these inductances, because they
are calculated with conventional methods, which are well described in, for example,
[Ric 67].

3.2.3 The flux linkages of the stator windings

In this subsection, the stator flux linkages are calculated for an arbitrary magnetic flux
density along the stator surface satisfying equation (3.1). Firstly, the flux linkage of
stator phase a is calculated. Next, the flux linkages of the other stator phases are given.

To obtain an expression for the flux linkage of a stator winding, first the flux linkage
of a full-pitch turn is calculated. The turn lays at the stator surface at radius r_ at stator
coordinate o, see figure 3.2. The flux linkage of this full-pitch turn (e is
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Figure 3.2: A winding distribution and a full-pitch turn at stator coordinate o'

y) = [ fB -dz = f B (r )l r da, (3.7)
a —'n-/p
Equation (3.1) expresses that B(r,as-fn'/p)= —E(r,as) is valid in the air gap. With this,
the radial component of the magnetic flux density at the stator radius B (r,a,) can be
expressed as the following Fourier series:

& ) =l=l,32,:5,.. Br,l(rs’as) ; (38)
B r,l(r s’as) r,l( )cos(pl(a Bl))

It should be noted that in general both the Fourier coefficient B, 4(r,) and the phase angle
B, of the space harmonics of the magnetic flux density are a function of time.

Using this Fourier series in the expression for the flux linkage of a full-pitch turn
(equation (3.7)) results in

v -2y, 3 2D

1=1,35,..

——*sin(pl (a’-B))) (3.9)

Using this expression, the flux linkage of phase a ¥, is calculated as
mip

¥, = p [n, (@) (a)dd (3.10)
0

After substituting equation (2.34) for the winding distribution and equation (3.9) for the
flux linkage of a full-pitch turn, this equation can be worked out to

wip

v, = i‘ i sTs ”" B (r) f cos((k+pa’-pIB,) +cos((k-Dpa’+piB)da’  (3.11)
0

k=1,3,5,.. [=1,3,5,..

Because the harmonics in this equation are all even harmonics, the integral from 0 to 7/p
is 0, except if k=/ is valid. This means that a space harmonic of the magnetic flux
density only links with the space harmonic of the winding distribution with the same
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pole angle. Hence, the flux linkage of stator phase a {, resulting from any magnetic
flux density satisfying equation (3.1) is given by

Z Vs =y 4, ”‘B (7)) cos(pkB,) (3.12)
k=1,3,5, k=1,3,5,.. 2pk

where ll.lm 4 is introduced as the flux linkage of the kth space harmonic of the winding
distribution of phase a.

The winding distributions of phases b and ¢ are equal to the winding distribution of
phase a, except for an angular shift of their axes, which lay at a,=2w/(3p) and
a,=4/(3p) respectively. Therefore, the flux linkages of these windings equal the flux
linkage of phase a, except for the angular shift:

cos(pkB,) |

2w
o o l _im
B= ) Ty=) v—srs—kN’—kB,,k(’)cos(pk(ﬁ" 3p ) (3.13)
k=13,5,. k135, 2P o
_cos(pk(ﬁk—g))-

This subsection shows that the flux linkage of the kth space harmonic of the winding
distribution is maximum when the reference axis of this space harmonic of the winding
distribution coincides with a maximum of the kth space harmonic of the magnetic flux
density. In this case, the Fourier coefficient of the kth space harmonic of the magnetic
flux density has to be multiplied by a factor 7wl 7 N, /(2pk) to obtain the flux linkage
of the kth space harmonic of the winding dlsmbutlon The effect of a spatial angle
between the reference axis of the kth space harmonic of the winding distribution and a
maximum of the kth space harmonic of the magnetic flux density is the cosinus of pk
times this spatial angle. In the next three subsections, this is used to calculate the stator
flux linkages resulting from the magnetic fields of the magnets, the stator currents, and
the damper currents.

3.2.4 The no-load voltage

This subsection describes the stator flux linkages resulting from the magnetic field of
the magnets and it introduces the no-load voltage.

In section 2.3, the magnetic flux density in the air gap produced by the magnets was
calculated. The radial component of this magnetic flux density at the stator surface
follows from equation (2.60) and is written as a function of the stator coordinate by
using o, =a,-6 (equation (3.2)):

“, (r2pk Ipk rpk lr

B, (r.a) =k=1>;fs,.. o “ oM, cos(pk(a,-6)) (3.14)
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In the same way as in subsection 3.2.3, the flux linkages of the stator phases are
calculated as (compare equation (3.13))

cos(pk#)

(3.15)

= wlr N, (r FE-r oy cos(pk(e—%z))
P

m - 2 SS I.LOM
T kdds. Wk (ko ke i

_cos(pk(l)—:—:))_

The permanent magnetization of the magnets is constant. Therefore, the flux linkage
of the stator phases caused by the magnets {i,,, only depends on the position and the
speed of the rotor. The time derivative of this flux is the no-load voltage €,

sin(pk9)
e
pa . 2m
dy,, ol . . |sin(pk(0-==))
T Tar ol = D, Gyt €pk = “Cpk 3p (3.16)
k=135, 4
e .
pe sin(pk(8-—)
. 3p” |
where

k _2pkv_pk

e = (rm T, )rsp rr__T_r_l QN M

o (r P Py 270 skko™px
s r m

~

(3.17)

In this equation, the mechanical angular velocity of the rotor () was introduced as

P

m (3.18)

3.2.5 The stator flux linkages due to the stator currents

In this subsection, the stator flux linkages which result from the magnetic field of the
stator currents are calculated.

In section 2.4, the magnetic flux density in the air gap produced by the stator currents
was calculated. The radial component of this magnetic flux density at the stator surface
follows from equation (2.61), and is given by

. k k
B ) rPer®C u N,
rs(rs’as) - E 2pk QPk 2
k=135,.. (r,* -r, ) A (3.19)

{isa cos(pka ) +i, cos(pk(as—%)) +i, cos(pk(a, - ‘;_; ))}

In the same way as in subsection 3.2.3, the flux linkages of the stator phases are
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calculated as (compare equation (3.13))
1 cos(pkz—'"') cos(pkﬁ)
3p
ad = 27 2‘71'
= E L,,; L, =L, COS(pk-—) 1 cos(pk=—)| (3.20)
k=135, 3p

cos(pk—) cos(pk—) 1

where the self-inductance of the stator Lss x Was introduced as.

k  2pk
L _ MO’ITI Ns,k 52p T,
x =
T gk e

(3.21)

It should be noted that a part of this flux is air-gap leakage.

3.2.6 The stator flux linkages due to the damper currents

This subsection describes the stator flux linkages resulting from the magnetic field of
the damper currents.

In section 2.5, the magnetic flux density in the air gap produced by the damper
currents was calculated. The radial component of this magnetic flux density at the stator
surface follows from equation (2.62), and is written as a function of the stator coordinate
by using a = -0 (equation (3.2)):

e 4N,
B rd,l(rs’ar) = Z ( )

k=135,.. (rf"’k—r,bk 7, 2 (3.22)

flaacos Pk (@0 vigcosiphia-0-5T)

In the same way as in subsection 3.2.3, the flux linkages of the stator phases are
calculated as (compare equation (3.13))

cos(pkb) cos(pk(0+i))

I,= ) Msd,k 2k My, =M, cos(pk(l)——)) oos(pk(ﬂ—z’"' T_y)/(3.23)
k=13.5,.. ’ 2pk

oos(pk(G——-—)) cos(pk(O—iE ﬁ))

where the mutual inductance between stator and damper M, was introduced as
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For a two-pole machine (p=1), the angles between the axes of the stator windings
and the damper windings are depicted in figure 3.3. The axis of damper winding g,k lays
at rotor coordinate @, aS introduced in equation (2.49) and illustrated in figure 2.13.

Figure 3.3: The real spatial angles between the axes of the stator and damper windings
Jor a two-pole machine (p=1). The damper windings have 2kp poles.

3.2,7 Summary

In conclusion, using equations (3.6), (3.16), (3.20), and (3.23), the voltage equation
of the stator (equation (3.5)) can be written as

—

L i, 2 di. 4 i
Z =&+ +Rj +L —+ {L“,k?‘f+a{Mm’kzd’k}} (3.25)

3.3 The damper voltage equation

The damper cylinder has no terminals of which the voltages have to be determined.
However, the damper currents influence the stator voltages, as appears from stator
voltage equation (3.25). Therefore, the aim of this section is to derive equations for the
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damper currents which are useful in the calculation of the stator voltages.

First, subsection 3.3.1 shows that the damper cylinder can be modelled as a series of
short-circuited sinusoidally distributed damper windings. Next, subsection 3.3.2
introduces a general expression for the voltage equation of these short-circuited
sinusoidally distributed damper windings. In subsection 3.3.3, the flux linkages of the
damper windings resulting from an arbitrary magnetic flux density along the damper
surface are calculated. The expression obtained is used to calculate the resistance of the
damper windings in subsections 3.3.4. This expression is also used to calculate the flux
linkages of the damper windings due to the magnetic fields of the stator currents and the
damper currents in subsections 3.3.5 and 3.3.6 respectively. Subsection 3.3.7 concludes
with a valuable formulation of the damper voltage equation.

3.3.1 Modelling of the damper cylinder

In this subsection, the current density in the damper cylinder caused by an arbitrary
magnetic flux density along the damper is calculated. From this current density, the
damper currents in the sinusoidally distributed damper windings introduced in subsection
2.5.1 are calculated. The resulting expression shows that the damper cylinder can be
modelled as a series of short-circuited sinusoidally distributed damper windings.

The current density in the damper cylinder

When the magnetic flux density in the damper cylinder changes, this causes a current
density in the damper cylinder. As mentioned in section 2.1, it is possible to calculate
the current density two-dimensionally, but here it is assumed that the damper cylinder
is so thin that skin effect is negligible. The current density in the damper cylinder is
calculated by means of the second of Maxwell's equations, which is given by
oB

UXE = - (3.26)

where E is the electric field strength.

In this equation, it is taken that E=p df , where J is the current density, and p 4 18 the
resistivity of the damper cylinder. Furthermore, the equation is divided by the resistivity p,
and written out for the components in the cylindrical coordinate system. The result is

19, af,_ 1 9B,

roa & p, o

¥ &, 1 9B,
r_ z . _ 1t (3.27)

oz or py Ot

10#@) 14, 1 9B,

r & rda py; o

In this set of equations, two assumptions mentioned taken:
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1) The z-component of the magnetic flux density is zero as mentioned in section 2.1.

2) As mentioned in section 3.1, end effects (the resistance and the inductance of the
end connections of the damper cylinder) are neglected. Therefore, the current
density in the damper cylinder has only a z-component.

With this, equation (3.27) simplifies to

1d, 1 0B
roa py o (3.28)
a, 1 6B,

or p,; O

Skin effect is assumed to be negligible. Therefore, the second equation of this set
(representing skin effect) is omitted and the current density is not a function of the radial
position. The current density in damper cylinder at radius r, follows from the first
equation of this set as

_l a’z(ar) _ i aB r(r d’ar)

3.29

r, Oa, (o ot (3.29)
From this equation, the current density can be calculated as

_ % ry aB,(rd,a/) / d aar V; 330

T(a) = -[F—Fda! = =2 [B/(r2)da (3.30)

The second step in this equatiog is allowed be_.cause t and a, are independent.

Equation (3.1) implies that B(r,a,~m/p)=-B(r,a,) is valid in the air gap. With this,
the radial component of the magnetic flux density at the damper radius B,(r,a,) can be
expressed as the following Fourier series:

B (r,a,) = B (rpa,) ;
ATt “23:5 Kr%) (3.31)

B, (rse) = B,,(r;)cos(pk(e,By))

Substitution of this Fourier series in equation (3.30) results in

CH)

"‘ 0 f z B ylr)eos(pk(e/-B)de
k=1,3,5
(3.32)

2 (B (r)sin(pk(a,-Bp)+ C)

-

k-135,.. Pde ot

The time derivative of integration constant C in this equation must be zero, because the
paths of the current density must close within the cylinder, so that it may be omitted.
Furthermore, the rotor coordinate a, is not considered as a variable, but as a constant.
So, J (a,) is the current density at the given position «,. Therefore, the partial derivative
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can be replaced by a normal derivative. With this, the current density can be written as

Iy =- ¥ L9
a = - —
o k-135,. Papk At

According to this equation, the current density is the time derivative of a Fourier
series of space harmonics. The time derivative of each space harmonic remains a space
harmonic with the same pole angle, because only B, x(r,) and /3,/c are a function of time.
This means that a space harmonic of the magnetic flux density causes a space harmonic
of the current density with the same pole angle. Therefore, the current density of
equation (3.33) can be written as

J(e) = E T () 5
k=135,

. / d . /
Iyt {sm(pka,)%(B,m)cos(pkﬁk))—cos(pka,)Et—(g,,c(rd)sm@kﬂk))}

{B.4ra) cos(pkBy) sin(pka,) - sin(pkBy) cos(pkar))}  (3.33)

(3.34)

The currents in the damper cylinder

The space harmonics of the surface current density K 4 of the damper cylinder can be
calculated by multiplying the space harmonics of the current density J,(a,) of equation
(3.34) by the thickness of the damper cylinder §,:

)
Kd,k(ar) =" Gt

PaPk

As in subsection 2.5.1, the two terms in the right side of this equation are considered
as contributions of two damper windings. The winding distributions of these two damper
windings are given by equation (2.48). To obtain the kth space harmonic of the surface
current density of equation (3.35), the currents in these windings must be given by

{sin(pka,) %(B, k(rd)cos(pkB,’()) - cos(pka,)%(}.?, ’k(rd)sin(pkB,’())}( 3.35)

Laag

Yagk

2877 4 cos(pkpy) (3.36)

P LREIS
o PaPkN . dt | ™%\ sinpkBl)

This equation shows that the current in the damper windings d,k and g,k is only
caused by the kth space harmonic of the magnetic flux density. This kth space harmonic
of the magnetic flux density only induces a voltage in the damper windings d,k and q.k,
because these damper windings are distributed sinusoidally. Therefore, this equation is
a formulation of the voltage equation of the short-circuited damper windings d,k and g, k.
This shows that the damper cylinder can be modelled as a series of short-circuited
sinusoidally distributed damper windings.

Equation (3.36) could be used to calculate the damper currents. However, the rest of
this section describes the derivation of a more useful formulation of the damper voltage
equation using the flux linkage of the sinusoidally distributed damper windings.
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3.3.2 A general expression for the damper voltage equation

This subsection introduces the voltage equation of the short-circuited sinusoidally
distributed damper windings using the flux linkages. This voltage equation is given by

~ lo
0 —
0

where R, is the resistance of the damper windings 4,k and g,k.

In chapter 2, the air-gap field was separated into three contributions, which give three
contributions to the flux linkage of equation (3.37):
1) the flux linkage due to the field of the magnets §,,,,
2) the flux linkage due to the field of the stator currents ,,, and
3)  the flux linkage due to the field of the damper currents §,,, .
The flux linkage of the damper windings caused by the magnets is constant, because the
damper rotates with the same speed as the magnets. Therefore, the time derivative of this
flux is zero, so that the corresponding contribution may be omitted.

Using the remaining two contributions, voltage equation (3.37) can be written as:

A fad d‘pd_y,k d‘pdd,k
0=R,,i —Tddk
axtax” T

In the following subsections, this voltage equation is worked out and quantified.

As already mentioned in subsection 3.3.1, the end-winding leakage of the damper
windings is neglected. However, this does not mean that all damper leakage flux is
neglected, because the air-gap field also includes some leakage flux, which does not
cross the air gap. This leakage flux is included in the calculation of the air-gap field,
because it is calculated two-dimensionally. This leakage flux contributes to the flux
linkage caused by the damper currents §,, .

_ de;'w% (3.37)

(3.38)

3.3.3 The flux linkages of the sinusoidally distributed damper windings

In this subsection, the flux linkages of the damper windings resulting from any
magnetic flux density satisfying equation (3.1) are calculated. Firstly, the flux linkage
of damper winding 4,k is calculated. Subsequently, the flux linkage of damper winding
g,k is described. The flux linkage of the damper windings is calculated in the same way
as the flux linkage of a stator winding (subsection 3.2.3).

First, the flux linkage of a full-pitch turn at the damper radius r, is calculated,
dependent on the angular position of this turn. The flux y(a) linked by this full-pitch
turn at o’ (figure 3.2 depicts a turn at the stator radius 7,) is calculated as

Y (o) = ffﬁd‘f = af B,(ra)rde, (3.39)
s

a’-mjp
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For the magnetic flux density in this equation, equation (3.31) is substituted:

V()= Y V(@)
k=135,. (3.40)
r,k( d)

V(@) = 2Lr, sin(pk(e’"~By))
With this expression for the flux 11nkage of a full-pitch turn, the flux ¢,  linked by
damper winding d,k is calculated as

wip
Yagg = P [ ug@) ¥,y do’ (3.41)
0

In this equation, it was taken that a sinusoidally distributed winding only links with the
space harmonic of the magnetic flux density with the same pole angle. This follows
from subsection 3.2.3, where it was shown that a space harmonic of the stator winding
distribution only links with the space harmonic of the magnetic flux density with the
same pole angle. It also follows from subsection 3.3.1, where it was shown that a space
harmonic of the magnetic flux density only causes a space harmonic of the current
density with the same pole angle.

In equation (3.41), the winding distribution of equation (2.48) and the kth space
harmonic of the flux linkage of a full-pitch turn of equation (3.40) are substituted:

Ir 4 wir N
Vaas = 5 NasBoyr) [ cos(pkByyda’ = ﬁéw(r»cos(pkﬁb (342)
0
The winding distribution of damper winding g,k is equal to the winding distribution
of damper winding d,k except for an angular shift of m/(2pk). Therefore, the flux
linkage of damper winding g,k is also equal to the flux linkage of damper winding d,k,
except for an angular shift. With this, the flux vector i, % 1s given by

N cos(pkBy)
_217_ Br,k(rd) (3.43)
cos(pk(By- 2pk))

This shows that the flux linkage of damper winding d,k or g,k is maximum when the
reference axis of this damper winding coincides with a maximum of the kth space
harmonic of the magnetic flux density. In this case, the Fourier coefficient of the kth
space harmonic of the magnetic flux density has to be multiplied by a factor
wlr,N,,/(2pk) to obtain the linked flux. The effect of a spatial angle between the
reference axis of damper winding d,k or ¢,k and a maximum of the kth space harmonic
of the magnetic flux density is the cosinus of pk times this spatial angle. In subsections
3.3.5 and 3.3.6, this is used to calculate the flux linkages of the damper windings caused
by the stator currents and the damper currents.

q’dd}(

‘lpd,k

L
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3.3.4 The damper resistance

This subsection introduces an expression for the damper resistance.
After substituting equation (3.43) for the flux linkages in the damper voltage equation
(equation (3.37)), the damper currents are calculated as

cos(kBl) |

P 1d\]}d’k=_11'rlrdd,k ")
Ry & Ry 2k & Pt Os@k(ﬁi‘ﬁ))

(3.44)

Comparison of this equation with equation (3.36) affirms that the damper cylinder can
be modelled as a series of short-circuited sinusoidally distributed damper windings if the
resistance R, of the damper windings d,k and g,k is given by
2
o = TsPalax (3.45)
48,r,

It should be noted that the number of turns of the winding distribution N, , can be

chosen arbitrarily, as indicated in subsection 2.5.1.

3.3.5 The damper flux linkages due to the stator currents

In this subsection, the damper flux linkages which result from the magnetic field of
the stator currents are calculated.

In section 2.4, the magnetic flux density produced by the stator currents was
calculated. The radial component of the magnetic flux density at the damper radius
follows from equation (2.61), and is written as a function of the rotor coordinate by
using @ =a,+6 (equation (3.2)):

® (rQPk Z’pk)rPk m N

B (r,a) = O sk
rs(d r) k=§5 (r2pk— QPk) pk+1 2

{z cos(pk(a,+0)) +i, cos(pk(a, +0——))+z cos(pk(a, +0————))}

(3.46)

In the same way as in subsection 3.3.3, the flux linkages of the damper windings are
calculated as (compare equation (3.43))

Vo = Moy, (3.47)

In this equation, M) sy 18 the transpose of the matrix M,, of equation (3.23), as
expected because the mutual inductances between two linked coils are equal.
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3.3.6 The damper flux linkages due to the damper currents

This subsection describes the calculation of the damper flux linkages which result
from the magnetic field of the damper currents.

In section 2.5, the magnetic flux density in the air gap produced by the damper
currents was calculated. The radial component of this magnetic flux density at the
damper radius follows from equation (2.62), and is given by

® k., . 2pk k. 2pk
T ZAr Y Por ) u N ”

B (rp) = E
M B a2

(3.48)
{idd (os(pka) +iy cos(pk(a,—%];))}

In the same way as in subsection 3.3.3, the flux linkages of the damper windings are
calculated as (compare equation (3.43))

10
Vaay = dek[o 1}‘# Lyixia (3:49)
where the self-inductance of the damper winding L, was introduced as
k, 2pky o 2pk 2k
Lo BTl NG P (3.50)
“r " 4pk 2( szpk_r r?pk)r d

3.3.7 Summary

In conclusion, in section 3.3, expressions for the damper resistance and the flux
linkages of the damper windings have been derived. These expressions (equations (3.45),
(3.47), and (3.49)) are used in the damper voltage equation (equation (3.38)). For
convenience, the damper voltage equation is combined with stator voltage equation
(3.25):

.—‘ 0 d{. B
i, -e+Rz+L, —+ ¥ {"’,‘ d{Md’*id,k}}
k=135, ar drt "

(3.51)

-

d - di
0= Ryiay dt{MsZkls}'*de,k% for k=1,3,5,..

It should be noted that there is a damper voltage equation for each space harmonic.
The damper windings are coupled with the stator windings, but not with each other.
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3.4 Transformations of the voltage equations

In this section, the voltage equations (equation (3.51)) are transformed into a useful
form. This is necessary to eliminate the dependence of the rotor position angle § and
to obtain simpler equations. Firstly, in subsection 3.4.1, the voltage equations are
transformed into a two-phase stator-connected reference system, the af3-system.
Subsequently, in subsection 3.4.2, the damper quantities are referred to the stator. It
should be noted that the result is not a two-phase machine, but a set of two-phase
equations describing a three-phase machine.

3.4.1 Transformation into the stator-connected af3-system

The aim of this subsection is to transform the stator and the damper quantities into

| a two-phase stator-connected reference system, the af8-system. The stator quantities are

transformed into this system in order to decrease the number of equations. When the

zero-component is considered, the number of equations remains three. However, the

zero-component can often be omitted because it is zero, for example, when there is no

star-point connection. The damper quantities are transformed into this system to
eliminate the dependence of the rotor position 8.

Transformation of the stator quantities
The stator quantities are transformed into the ¢30-system by means of the well-known
Clarke-transformation [Cla 43], [Kra 95], which is given by

-isa Usa wsa
- . Fad 50 —
l:(] = lsﬂ = C23!5 ’ us = uSB ) Cuus ’ ip::o = wsﬂ = C23 qis ’
_isO Uso ll’so
- (3.52)
e, 2 -1 -1
é:():epﬂzczse;; C23=“/1—80‘/§_‘/§

The transformation matrix C,, is orthogonal. The superscript sO of the vectors denotes
that the vector belongs to the three-dimensional stator-connected qf0-system. The
superscript s is used for the two-dimensional af3-system without zero-component:

u e i Y
il e T R o IO ) P s .| (3.53)
s ) 3 s . > ‘T’s

U €op Lp Vs
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Rotation of the damper quantities

The dependence of the rotor position 8 is eliminated from the voltage equations by
rotating the damper quantities from the rotating two-phase rotor-connected dg-system to
the two-phase stator-connected a8-system.

First, it is explained how the rotation matrix might be derived. The damper winding
distribution can be transformed into the stator reference system by substituting a,=a-0
in the equation for the damper winding distribution (equation (2.48)). The result is

ng@) N sin(pk(a,-6)) N sin(pka,)
dd k = gk . = ﬂcm’k ) ) (3.54)
CH 2 sm(kp(as—())—zw) 2 sm(kpa;;qr))
where the rotation matrix C,_, x 15 introduced as
- c?s(pke) -sin(pk6) (3.55)
| sin(pk8) cos(pkf)

Using this transformation results in voltage equations with signs dependent on the space
harmonic number k. To prevent this, the rotation is combined with a transformation, the
transformation matrix of which is given by

10
01 for k=1,3,7,9,13,..
Comt = {11 0 (3.56)
for k=5,11,17,..
0 -1

The transformation matrix for the damper quantities C,; is the multiplication of this
matrix with the rotation matrix. Therefore, the transformatlon of the damper quantities
to the af3-system is given by

Link - Viak
o5 s |
Lig = = Coplay s oy = =C Vs !
g 7% (3.57)
Cr,k = Csign,lc Cmt,k

The transformation matrix C,, is orthogonal. Also here, the superscript s is used for
vectors in the two-dimensional af-system.

Incorporating the transformations into the voltage equations
These transformations are incorporated into voltage equations (3.51):

— - d s - d - d
ussO _ e_;O . R;l_gso " CZS{LSWE(nglIO)+k 1%:5 {Lsx,ka(czgl;o) dt(M' 4, kC kl d k)}}
=135, (3.58)
0=R,i +C, d(M Cpiy )+L g(
ditar™ Cray g Mk Cnts [T aak g

S

C,;i;jc)} for k=1,3,5,..
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The matrix multiplications in these equations are worked out:
L, 0 0
CyL,Cs=|0 L, O (3.59)
0 0 L +3M_,

where the leakage inductance L, was introduced as

L,=L,,M, (3.60)
100
3
ELMO 10 for k=1,5,7,11,..
r 000
Cy L, Cos = | 000 (3.61)
3L,,[0 00 for k=3,9,15,..
001
J, MsdkO 1 for k=1,5,7,11,..
CuM,,,C.h = (3.62)
/M, ko 0 for k=3,9,15,..
10
50 T
d T =50 rdi; dMs 10
c,,,,d( akCiy)) = €, M1y Coy —+C dt*cnzg
o (3.63)

i, -
=C, MdkCB +kpQG,C, sgkczgiso

where Cr’kMs,:kC23 is the transpose of the matrix C,;M, ’kC, . of equation (3.62), and
the matrix G, is given by

01
10 for k=1,3,7,9,13,..
G =400 -1 (3.64)
for k=5,11,17,..
10
d - dC,kd di';‘k ., A
rkdt( k! ds,k) Cox—.- dr ;,k = kathdf—dtL’k (3.65)

In this equation, the matrix G, is given in equation (3.64).
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The resulting voltage equations

The elaborated expressions are used in the set of voltage equations (equations (3.58)).
To obtain useful voltage equations, the zero-component is separated from the af-
components. For the zero-component, the set of voltage equations becomes

di ® di, di,,
Uy = €0+ Riig+(L,+3M, ) d;°+ » {3L 2./ M., S }
k=39,15,..

oL S (3.66)

0
+kpﬂ+/§M ' ﬁl_i . ;
S dak

It should be noted that the stator quantities in this equation are the scalar zero-
components, and not vectors. In this voltage equation, only damper currents appear of
which the space harmonic number  is an integer multiple of three: k=3,9,15,... This
means that the zero-component only causes these damper currents and these space
harmonics of the (surface) current density in the damper cylinder.

For the af3-components, the set of voltage equations (equation (3.58)) becomes

di-’s ™ 3 di—'s 3 dl.—'s
75 =gt R L —s 2L s °M dk
ST {2 *d \E e
- - 3., d di;, (3.67)
TR

+kaGk{. l %Msd oLy, kfjk} for k=1,57,11,.

The stator quantities in this set of equations are written as two-dimensional vectors with
an a- and a B-component, as in equation (3.53). In set of voltage equations, no damper
currents appear of which the space harmonic number k is an integer multiple of three.
This means that the a8-components do not cause these damper currents and these space
harmonics of the (surface) current density in the damper cylinder.

The equivalent circuit representing the a-component of this voltage equation, is
depicted in figure 3.4. In this equivalent circuit, the first, the fifth and the seventh space
harmonic are visible. For the other space harmonics, the equivalent circuit can be
extended in the same way. This figure uses the flux linkage of the damper &> Which
is given by

3 I oS
Vax = J; Mgy 8+ Lggit g (3.68)

Lagk

+de1‘ for k=3,9,15,..
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Figure 3.4: Equivalent circuit for the a-component of the voltage equation.

The coupling factor «, between the stator and the damper windings is given by
3
o M J 2Py
= =

T 2pk _2pk., 2pk _2pk
ELJS,/(LMJC (rS +rf )( )

Ya s
For the test model (described in appendix A, section A.1), this coupling factor x, is
depicted in figure 3.5 for two values of the damper radius. If the distance between the
stator surface and the damper surface decreases, the coupling factor increases. Because
the coupling factor decreases quickly with increasing space harmonic number £, it is not
necessary to consider many space harmonics. This again illustrates that the space
harmonics with small pole angles hardly cross the air gap.

(3.69)

1
;’&+ XX o
+, % %y
+ . Xoq
+ *x x
N ++ x XX %
v 0.1 +, X
ty
te
+
0.01 ’ . =
0 20 40 60
k

Figure 3.5: Coupling factor x, between stator and damper windings as a function of the
space harmonic number k for r,=55.0mm (+) and r,=56.4mm ( X ) (test model).
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3.4.2 Referring the damper quantities to the stator

In the transformation introduced in this subsection, the damper quantities are referred
to the stator to simplify the voltage equations. This is done for the aB-components, and
not for the zero-component, because the zero-component is not used in the rest of the
thesis.

"'S

Ipx =

The transformation which refers the damper quantities to the stator is given by
lDa,k 2 L ddk =s | _
EYY; Lag s Vps =

"IJDa,k
2 My q; A (3.70)
Ipak sdk Woss]

The subscript D in these vectors denotes that this quantity is referred to the stator.
This transformation is incorporated into the set of voltage equations for the a- and the
B-components (equation (3.67)). The result is

{ di—'s « dj_.s s
iz =g s s ., 3L 95 3 dld,k
P k=15711,. |2 skTdqr "2 L dr

SO3MI . M7 4 ., -
{ s sd =5 s (3.71)
0= i
2Ld2d,k d,le’k*. Zde dt( lD’k)
3MA, e s
+kpQ G (5415 ,) for k=1,5,7,11,..

| ddk
After introducing

M Ar &r P il p,N2

§,

Ry, = —*R,, = (3.72)
Dx 2L dzd . dk (rd2pk+rS2pk 2 4rd8d
LT C& Py P 3pgm N ,
KT 2Ly, 2k (PR Py R dpk (3.73)
i Ls +k-1 27:11 Lga,k ;
I k 2k (3.74)
L =31 o . —31(1—1<2)L r? _rde 3ugmrl, Ns,k

the set of voitage equations of equation (3.71) can be written as
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)

i’ E L —(l ip4)
k=1,5,7,11,.. (3’75)
0 = Ry, 05yt %(i”shi‘,; D HkPOL, G5+ ) for k=1,57,11,.

The equivalent circuit representing the a-component of this voltage equation is
depicted in figure 3.6. In this equivalent circuit, the first, the fifth and the seventh space
harmonic are visible. For the other space harmonics, the equivalent circuit can be
extended in the same way. This figure uses the flux linkage of the damper ¥}, %» Which
is given by

W = L) (76)

Figure 3.7 depicts the resistance R;,, and the inductance L, of the test model
(described in appendix A, section A.1). Both parameters decrease very quickly with
increasing k. For all space harmonics higher than the 19th, R, is smaller than 0.2 %
of R ,. L, decreases even faster: for all higher space harmonics, L, is smaller than
0.2 % of L This shows again that it is not necessary to cons1der many space
harmonics.

+i R Ly ipu1 R -
SO0 5 D1
Usop L, C)PQ‘I’Dm
- JE +
->/+
Pa =
'pos Rps 1+
Ls i C) SpQypps
F——_ 11—
'pa7 Ry, |
L, E C) TpQVY g,
+

Figure 3.6: Equivalent circuit for the a-component of the voltage equation, where the
damper quantities are referred to the stator.

3.4.3 Summary

In this section, the voltage equations of the stator and the rotor have been transformed
into a useful set of voltage equations. This has been done for any (varying) speed of the
rotor, and for any form of the stator currents and stator voltages. For the zero-
component, the voltage equations are given in expression (3.66). This equation is not
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used in the rest of the thesis, because this component is zero when there is no star-point
connection. For the af8-components, the voltage equations are given by equation (3.75).
In the next section, this set of equations is worked out for the situations considered in
the rest of the thesis.

+ | 1000

R,, (mQ)
+F
R
o L, (uH)

.001 +,+ +

0 20 40 60 0 20 40 60
k k
Figure 3.7: The damper resistance Ry, and the inductance L ¢ as a function of the
harmonic number k (test model).

3.5 Steady-state voltage equations

Until now, the derived voltage equations are valid for any form of the stator currents
and for any (varying) speed of the rotor. In this section, the voltage equations are
worked out for the two situations considered in the rest of the thesis:

1) Insubsection 3.5.2, the voltage equations are worked out for steady-state operation
with rectifier load. These equations are used in the rest of this thesis where the
steady-state performance of the rectifier-loaded machine is considered.

2) Insubsection 3.5.3, the voltage equations are worked out for the locked-rotor tests.
These tests are used for the verification of the derived voltage equations (in section
3.6) and the equations for the losses (in chapter 4).

Before the voltage equations are worked out, the slip and the rotor angular frequency are

introduced in subsection 3.5.1, because they are useful in the next subsections.

3.5.1 The rotor angular frequency and the slip

In this thesis, the slip is defined for steady-state situations, while the stator currents
form a balanced set of three-phase currents, and while there is no star-point connection.
This means that the angular speed of the rotor ) is constant, and that the stator currents
can be written as in equation (2.39).
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As explained in section 2.4, the currents of equation (2.39) cause travelling waves of
magnetic flux density. These travelling waves have the same speed and pole angle as the
surface current density. The angular frequency experienced by the stator from the

|6n+1|th time harmonic of the magnetic flux density is [6n+1|w,. The angular
frequency experienced by the rotor differs from the angular frequency experienced by
the stator because of the rotation of the rotor, and is calculated below.

Equation (3.2) expresses that @ =a,+8. The rotor position angle 8 can be written as
a function of the angular speed of the rotor () by using equation (3.18):

t
6= [Qdt’ = Q1+6;, = Qr-_ (3.77)
0 2p

where 8, is the rotor position on time =0, which is chosen as 6,=-m/(2p), because in
this way, the induced voltage in no-load of phase a e_, is cosinusoidal.

Substituting o =a,+0 and this value of @ in the harmonics of the surface current
density of equation (2.40) gives

K} 6n1(0)

3N,

4—""{ o 61 SINPK(0 + M40 )-(bn+ Dy 1+ ) for k=1,7,13,..

T

Tsﬁi‘mlsin(pk(a,+m+90)+(6n+1)m1t-<p6m1) for k=5,11,17,..
L

s

(3.78)

3N, .

4_“%3 6001 SINPK (0, +0,) -5 . B0+ D)0, 1+ 0, .)  for k=1,7,13,..
rs :

3N

—”‘fs,ﬁml sin(pk(a,+0,)+$; 6, (6n+1) 0 -9 1) for k=5,11,17,..

s

In this equation, the slip s, ,,, for the travelling wave resulting from the combination
of the kth space harmonic and the |6n+1|th time harmonic was introduced as

(6n+1)w,~kp)
(6n+1)w,

Skone1 = (6n+1)w +kpQ)
(bn+1)w,

for k=1,7,13,..
(3.79)
for k=5,11,17,..

In words, the slip is defined as the difference between the speed of a travelling wave
and the speed of the rotor, divided by the speed of the travelling wave. This means that
the slip for a travelling wave is zero when the rotor rotates at the same speed as the
travelling wave. Usually in machine theory, the slip is defined as the difference between
the synchronous speed and the actual speed of the rotor divided by the synchronous
speed [Kra 95]. This agrees with the slip introduced in equation (3.79) for the travelling
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wave resulting from the combination of the fundamental space harmonic (k=1) and the
fundamental time harmonic (n=0).

From equation (3.78), it can be concluded that the angular frequency @ experienced
by the rotor from the kth space harmonic of the winding distribution and the |6n+1|th
time harmonic of the stator current is given by

W = |5} gy (61+1) 0, | (3.80)

When the rotor is locked (£2=0), the slip St.6ne1 is one for all combinations of time
and space harmonics. In this case, the angular frequency w experienced by the rotor
from the Ath space harmonic of the winding distribution and the |67+1|th time harmonic
of the stator current is equal to the angular frequency experienced by the stator.

3.5.2 Equations for the rectifier-loaded machine

In this subsection, the voltage equations are worked out for the rectifier-loaded
machine in steady state. Using equation (3.77), the relations between the rotor position
angle 6, the angular speed of the rotor {} and the angular frequency of the fundamental
time harmonic w, during steady-state operation with rectifier can be written as

=1 = 1y T (3.81)
p p X :

This is used in the expression for the no-load voltage (equation (3.16)). Furthermore,
the time harmonics of which the harmonic number is an integer multiple of three are
omitted, because they are not present in the line voltages. Using a complex representa-
tion, this expression for the no-load voltage can be written as

1
00 .2
- 5 j6n+1ywye| TI3T (3.82)
e, =Y Re AP e
n=-o .4
i
e

The Clarke-transformation (equation (3.52)) transforms these voltages into the aB-system:

© . 1
s _ 3 R i(En 1oyt 3.83
= \/;nz Re{gp,ﬁmle 1 _J} ( ‘

=—00
Furthermore, the currents form a balanced set of three-phase currents without even
time harmonics and without time harmonics of which the harmonic number is an integer
multiple of three, as in equation (2.39). Using a complex representation, this set of
currents can be written as




The voltage equations of the generator 65

1
= itGntyo| I3 (3.84)
oo I Jj(on+l)wyt 3 .
lS E Re l‘s,ﬁnole €
n=-c 4
in

The Clarke-transformation (equation (3.52)) transforms these currents into the &8-system:

@ . 1
I N 389
AR Re{’w“e | J”

When this set of currents is substituted in the damper voltage equation (the second
expression of the set of equations (3.75)), the damper currents can be solved as

o T e jén+ho,L, . jeneyoy] 1
Ipx = \/; X; Re R L gnet® 5 (3.86)
| 2 en e L,
Sk n+1

Substitution of equations (3.83), (3.85), and (3.86) in the stator voltage equation (the
first equation of the set of (3.75)) results in

AR > Re{d ei“"*l)”l'[lJ} (3.87)
s 2 &~ “s,6n+1 :

")
where
As,6n+1 = gAp,6n+1q'-’ZGMILs,Gml 5
> j(on+w L (3.88)
Z, ., = R+jn+lyo, L+ 3 J(. JOuLRo,
k=15711,. RDk+Jsk,6n+1(6n+1)w1Lk

The equivalent circuit for the |m|th (m=6n+1) time harmonic is depicted in figure 3.8.

Figure 3.8: Equivalent circuit of the machine for the |m |th time harmonic (m =6n+1).
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Application of the inverse Clarke-transformation (the transpose of equation (3.52)) to
equation (3.87) results in

1
3 .2
o - in+ywy| 13T (3.89)
Z, =Y Re et © e

This shows that the equivalent circuit for the three machine phases is the same as the
equivalent circuit in the af-system,

3.5.3 Equations for the locked-rotor tests

In this subsection, the impedance of the machine with locked rotor is calculated. The
resistance and the inductance of this impedance depend on the frequency because of
currents in the damper cylinder and eddy currents in the iron. This impedance is called
the reflected impedance.

Figure 3.9 depicts the measurement circuit during the locked-rotor tests. The circuit
is excited by an amplifier with a voltage u amp* At low frequencies, the capacitance C
is omitted. At high frequencies, the variable capacitance C is used to bring the circuit
in resonance in order to reach sufficiently high voltages and currents. Often, locked-rotor
tests are performed with symmetrical three-phase voltages. This is not done here,
because with the single-phase system, it is possible to reach much higher frequencies
and voltages.

Because phases b and c are connected in series (as depicted in figure 3.9), =iy
and ug-u =u, are valid. With the Clarke-transformation (equation (3.52)), the af30-
components of the currents and voltages are calculated as

Figure 3.9: The measurement circuit. At low frequencies the variable capacitance C is
omitted, while at high frequencies, it is used to bring the circuit in resonance.
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i 0 0

iyl = Cplis | = V2l (3.90)
i g 0

u,, 0 0 0

Ug| = Cyylta| = %\/2 u U, | = % 2|u g, (3.91)
u U, 0 0

|0
When it is used in the voltage equations (equation (3.75)) that the angular speed of
the rotor () is zero, the voltage equations are given by
- di’ > ~s o
i =RILS Y L)
k15741, df (3.92)

0 = Roglpp+ Lyl +173) for k=1,5,7,11,.

The equivalent circuit representing the S-component of the voltage equations is depicted
in figure 3.10. In this equivalent circuit, the first, the fifth, and the seventh space
harmonic are depicted. For the other space harmonics, the equivalent circuit can be
extended in the same way.

This equivalent circuit is equal to the equivalent circuit for a higher time harmonic
(figure 3.8) if for the slip 5, ,,,=1 is used. This value for the slip follows when =0
is substituted in the equation for the slip (equation (3.79)). So, when the rotor is locked,
the voltage equation of equation (3.87) is not only valid for the balanced set of currents
of equation (3.84), but also for a single-phase current. This is so because when the rotor
is locked, the a- and the B-component of the voltage equation are completely indepen-
dent, as can be seen from equation (3.92).

Figure 3.10: Equivalent circuit of the [B-component of the voltage equation of the
machine with locked rotor.
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From the equivalent circuit of figure 3.10, it is concluded that the reflected impedance
Z(w) during the locked-rotor test is given by
g (w 28 (@ d jwL, R
o) | P e LRy,
~ 1 o
L(0) V2L (0) k15711, RpgrioLl,

Z(w) = (3.93)

where equations (3.90) and (3.91) were used for the relation between the phase
quantities and the quantities in the af-system.

The reflected resistance is the real part of the impedance Z(), and the reflected
inductance is the imaginary part divided by w:

R(w) = Re(Z(w)) ; L(w) = %Im(l(w)) (3.94)

3.6 Experimental results of locked-rotor tests

This section describes some measurements, which partly verify the derived voltage
equations. Firstly, this section describes the measurements of inductance and resistance.
Next, the measurements are compared to the calculations of subsection 3.5.3, from which
a conclusion is drawn.

The measurements

For the measurements, the test model (described in appendix A, section A.1) was
used. The resistance and the inductance of this test model were measured as a function
of the angular frequency w in the following way. A sinusoidal voltage was supplied to
phases b and c of the test model, which were connected in series (figure 3.9). The
voltage U, over the terminals of the test model, the current I, flowing through the
phases of the test model, and the power P dissipated in the test model were measured.
This was done for a wide frequency range. From the measured voltages, currents and
powers, the resistance R and the inductance L are calculated as

U, \?
rR-2 ., -1 (_sz] -R? (3.95)
I _3, w Isb

At each frequency, the measurement was done with different root-mean-square values

of the current, because hysteresis may cause non-linear behaviour.

Comparison of calculations and measurements

Figure 3.11 depicts the measured resistance and inductance as a function of the
frequency. Also values calculated according to subsection 3.5.3 are depicted. In figure
3.11a and b, the value of the damper resistance of equation (3.72) is used.
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Figure 3.11: Resistance and inductance of the test model using a), c) the calculated and
b), d) the (because of end connections) 25 % larger value of the damper resistance
— : calculated, and
+X,%,0,+ - measured with 1,=0.1A, 1,=02A, 1,=05A, I,=1A, and 1,=2A.
Comparison of the measured and calculated resistance shows a reasonable correlation
at frequencies below 1kHz. Above 1kHz, the differences are much larger. Probably,
this is caused by the iron losses and the increase of the stator resistance, as will be
shown in chapter 4. Comparison of the measured and calculated inductance shows a
reasonable correlation at all frequencies. This may seem strange, because the inductance
is calculated with equation (3.95), using a value for the resistance which does not
correlate at high frequencies. However, at these frequencies, the voltage across the
resistance (RI,) is very small compared to the voltage across the terminals (U, ), so
that the value of the resistance hardly effects the determination of the inductance.
Below 1kHz, the correlation is reasonable, but there are differences. These
differences are probably caused by the neglect of the resistance of the end connections.
That the resistance of the end connections is the cause of this difference, is seen in
figure 3.11c and d, where the correlation is very good. In these calculations, the
resistance of the damper winding for the fundamental space harmonic is increased by
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25 %. This is reasonable because of the form and the dimensions of the end connections.

This figure only tells something about the fundamental space harmonic, because the
decrease of the inductance of the higher space harmonics is negligible and not visible
in figure 3.11b and d. As a result of the higher space harmonics, there is a very small
increase in the calculated resistance at frequencies above 1kHz, as can be seen in figure
3.11a and c. However, above 1kHz, the difference between the calculated and the
measured resistance is so large, that the measurements do not verify the calculations. In
the calculations, the first 19 space harmonics have been considered.

It can be concluded that the measurements of resistance and inductance verify the
derived voltage equations for the fundamental space harmonic. Herewith, the derivation
of L, and Ry, is verified. For the higher space harmonics, the voltage equations are
neither verified, nor refuted.

3.7 Summary

In this chapter, the voltage equations of a permanent-magnet machine have been
derived. This derivation was based on the assumptions used in chapter 2, and the
expressions for the magnetic flux density derived in chapter 2, as summarized in section
2.6.

The voltage equations for the stator and the damper windings have been derived. It
has been shown that the damper cylinder can be modelled as a series of short-circuited
sinusoidally distributed damper windings. Next, the voltage equations have been
transformed into the stator-connected a3-system, and the rotor quantities have been
referred to the stator. The result is a set of voltage equations for the zero component
(equation (3.66)) and for the af-components (equation (3.75)) valid for any (varying)
speed of the rotor and for any form of the stator currents,

These voltage equations were then transformed and worked out for the two situations
which are considered in the rest of the thesis:

1) Subsection 3.5.2 has described the steady-state voltage equations of the rectifier-
loaded machine. In chapter 4, the voltage equations will be extended with models
of several kinds of losses to obtain a machine model suitable for the optimization
of the design. In further chapters, this machine model will be combined with a
model of the rectifier and it will be used for the analysis of the steady-state
performance of the rectifier-loaded generator.

2)  Subsection 3.5.3 has given the voltage equations for the locked-rotor tests. In
section 3.6, these tests have been used to verify the derived voltage equations. In
chapter 4, the machine model will be extended by including models of several
kinds of losses, and these locked-rotor tests will be used to verify the models.

The derived voltage equations can also be used for a machine without a damper
cylinder by making the damper currents zero.
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Chapter 4

The losses in the generator

4.1 Introduction

Objective

In chapter 3, the voltage equations of the permanent-magnet generator have been
derived, based on the two-dimensional calculation of the magnetic field in chapter 2. In
this chapter, the calculated magnetic field and the derived voltage equations are used to
derive a machine model including the most important losses in the generator. In later
chapters, this machine model will be used for the analysis of the steady-state
performance of the rectifier-loaded machine.

The voltage equations derived in chapter 3 form a model of the relation between the
terminal voltages and the terminal currents of the machine. However, these voltage
equations are not suitable for the optimization of the design of the generator, because
losses that hardly influence the voltage equations have been ignored:

- In chapter 2, effects that hardly influence the magnetic field, such as eddy currents
in the iron and the magnets and the slotting of the stator, have been neglected.
However, the losses due to these effects may be significant.

- Inchapter 2 and 3, skin effect in the stator conductors and the damper cylinder has
been neglected, but skin effect may increase the copper loss considerably.

Therefore, in this chapter, the voltage equations are extended with models of the most

important losses in the machine to obtain a machine model suitable for the optimization

of the design. Five kinds of losses are considered:

1)  the damper copper loss caused by the stator currents,

2) the stator copper loss,

3) the iron loss,

4)  the eddy-current loss in the magnets caused by the stator currents, and

5) the loss in the damper cylinder and the magnets due to the stator slotting.

As explained in section 2.1, skin effect in the damper cylinder is neglected.

Often, the iron loss in an electric machine is represented by ‘iron loss resistances'
connected in parallel to inductances in the equivalent circuit of the machine. In this way,
the dependence of the iron loss on the magnetic flux density is replaced by a dependence
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on the voltage across an inductance, which has two advantages:

1) The calculation of voltages in an equivalent circuit is easier than the calculation of
a magnetic field, which is a summation of contributions of different sources of
magnetic field.

2) Iron loss resistances provide more insight than a number representing the iron loss.

This approach is followed here, not only for the iron loss, but also for the eddy-current

loss in the magnets. Hence, the models of the iron loss and the eddy-current loss in the

magnets are worked out in such a way that they can be represented by resistances in an
equivalent circuit.

It should be noted that in a machine with rectifier load, there are losses because of
travelling waves, which are combinations of space harmonics and time harmonics.

In this chapter, the losses are only calculated for the two situations mentioned in
section 3.5, namely steady-state operation with rectifier load and locked-rotor tests.
Locked-rotor tests are considered, because as far as possible, they are used to verify the
models derived in this chapter.

Outline of the chapter

Section 4.2 describes the frequency-dependence of the stator resistance because of
skin effect. Next, in section 4.3, expressions for the iron loss are derived and partly
verified by means of locked-rotor tests. Section 4.4, describes the derivation of
expressions for the eddy-current loss in the magnets. These expressions are also partly
verified by means of locked-rotor tests. Subsequently, section 4.5 describes the losses
due to the stator slotting. In conclusion, section 4.6 summarizes the results obtained.
Because the derivation of each model requires its own assumptions, these assumptions
are discussed in the section where the model is derived.

In the last part of this section, it is shown that the losses caused by a travelling wave
can be calculated as the superposition of the losses caused by two pulsating fields. This
is shown here, because it is used in sections 4.3 and 4.4.

Losses because of travelling waves and pulsating fields
A travelling wave (compare equation (2.40)) of magnetic flux density can be written
as the sum of two pulsating fields in two perpendicular axes:

B, cos(pka-wt) = B, cos(pka)cos(wt)+B, ,sin(pka)sin(wi) (4.1)

When the travelling wave is written as a function of the stator coordinate, the
perpendicular axes are the a- and the B-axis; when the travelling wave is written as a
function of the rotor coordinate, the perpendicular axes are the direct and the quadrature
axis.

In sections 4.3 and 4.4, it is shown that the iron loss and the eddy-current loss in the
magnets are
- proportional to the square of the magnetic flux density, and
- calculated by integration over the angular coordinate «.
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Integrating the square of the left side of equation (4.1) results in

2m

f (B,kcos(pka—wt))zda = wak (4.2)
0

Integrating the square of the right side of equation (4.1) results in

27

[ (B, xcos(pka)cos(r) + B,  sin(pka)sin(wr))'de

0

27
=B} { cos?(pka)cos®(wf) + sin’(pka)sin?( wt) (4.3)
+cos(pka)cos(wi)sin(pka)sin( wt)da
27

=B}, f cos?(pka)cos( wi) + sin*(pka)sin’(wtyda = B,
0

The second is-equal-to sign in this equation is valid because the average of the product
of a sinus and a cosinus is zero, and therefore, the integral from 0 to 27 is zero.

The results of both integrations are equal. This shows that the losses caused by
travelling waves can be calculated as the sum of the losses caused by two pulsating
fields in perpendicular axes, which is used in sections 4.3 and 4.4.

4.2 The stator copper loss

This section describes how the stator resistance depends on the frequency because of
skin effect. Often, skin effect in the stator conductors is neglected. If it is not neglected,
Richter's expressions [Ric 67] are usually used, as is done, for example, in [Dem 87] and
[Buc 79]. Here, these expressions are also used.

A part of the stator windings lays in slots, the other part, the end windings, is situated
in air. It is assumed that the increase of the resistance of the end windings is negligible
compared to the increase of the resistance of the part of the windings laying in the stator
slots, because the magnetic field in the slots is higher than the magnetic field in the end
winding regions.

In rectangular slots with rectangular conductors, the ratio of the resistance at angular
frequency w to the resistance at angular frequency zero is (see [Ric 67] and [Dem 87])

_ ¢ SINh(2E)+sin(2E) | Mior~1 . sinh(E)-sin(E) (44)
st * cosh(2£)-cos(2E) 3 cosh(&)+cos(&)
where
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E=h Moo D @ (4.5)

N 2b4uPcy
where (see figure 4.1)
m,, is the number of layers of conductors above each other in a slot,
ng,, is the number of rows of conductors next to each other in a slot,
b, is the slot width,
h is the height of a rectangular stator conductor,
b is the width of a rectangular stator conductor, and
P, s the resistivity of the stator copper.

b
s

slot

Figure 4.1: A rectangular slot with rectangular conductors.

To calculate the increase of the stator resistance, two facts have to be considered.

1)  For conductors which are not rectangular, the expression has to be corrected. The
correction factor is called kshape, and it has the value 0.46 for round conductors
[Dem 87], [Ric 15].

2) This increase of the stator resistance is only present in the part of the stator
winding laying in slots. In the other part of the winding, consisting of end
windings, the increase of the resistance was assumed to be negligible.

Herewith, the stator resistance at angular frequency w is given by

R = (1 ki) DJRO 45

ew S

where the ratio //(/,,+) is the part of the length of the stator windings that lays in
slots, with [, the stack length of the machine, and / o the length of the end windings.

For the stator resistance during locked-rotor tests, this expression suffices. For the
stator resistance during steady-state operation with rectifier load, it is written as

lS
R g1 = R([6n+1]w)) = (1+ﬁkshape(kslm(|6n+1|wl)—l) R (0) (4.7)

ew s
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4.3 The iron loss
4.3.1 Introduction

Objective

The aim of this section is to derive expressions for the iron loss in the laminated
stator and the laminated rotor of a permanent-magnet machine. Chapter 7 will discuss
machines with solid rotor iron. The calculation of the iron loss is based on the
expressions for the magnetic flux density in the air gap and the magnets derived in
chapters 2 and 3. These magnetic fields were calculated on the assumption of a smooth
stator surface. Although the real machine has stator slots, the expressions for the field
derived for a machine without slots can be used, as is shown in this section.

Throughout the section, it is assumed that the effect of eddy currents in the iron on
the magnetic field in the air gap is negligible, as shown in appendix C, section C.1.

Outline of this section

The iron loss is divided into three parts, namely the core loss in the stator, the core
loss in the rotor and the stray load loss. Firstly, subsection 4.3.2 describes an expression
for the specific iron loss, starting from the literature. In the next three subsections (4.3.3,
4.3.4, and 4.3.5) the three parts of the iron loss are quantified. These subsections also
explain which assumptions are used to obtain the resulting expressions. Next, subsection
4.3.6 describes some locked-rotor tests, which partly verify the derived expressions.
Concluding remarks are made in subsection 4.3.7.

4.3.2 The specific iron loss

This subsection gives an expression for the specific iron loss. In literature, the iron
loss in laminated cores is calculated in different ways. Firstly, the classical and the
modern literature is discussed. Next, a description is given of how the expression for the
specific iron loss used in this thesis is obtained.

Classical literature
The most commonly used model for the iron loss separates the hysteresis loss P,
and the eddy-current loss PFC,E [Ric 67], [Cul 72], [Sen 89], [Wah 91], [Sle 90],

[Hen 94]:
PFe = PFe,h +PFe,e (48)

In this equation, the hysteresis loss Py, is given by
P, wB® (4.9)
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where § is the Steinmetz constant, which lays between 1.5 and 2.3 (1.5<5<23)
dependent on the material. Often a value of S=2 is used.

When the magnetic flux density does not vary sinusoidally, the hysteresis loss can not
be calculated as the sum of the hysteresis losses produced by the different time
harmonics. In this case, [Lav 78] describes how to calculate the hysteresis loss, but this
is fairly complicated. Mathematical descriptions of hysteresis are mainly based on the
Preisach model [Pre 35], [May 86], [Zhu 96].

At low frequencies (up to about 1kHz), the effect of eddy currents on the magnetic
field in the laminations is negligible, and the eddy-current loss is proportional to «?.
At high frequencies (above about 1kHz), the effect of eddy currents on the magnetic
field in the laminations is not negligible, and the eddy-current loss is proportional to
'3, Hence, the eddy-current loss Pr, . is given by

P

w?B? at low frequencies (4.10)
Fee ’

w!SB? at high frequencies

as shown in appendix C, section C.1, and in many books, for example, [Ric 67],
[Sto 74]. For magnetic flux densities with higher time harmonics, the contributions
caused by the different time harmonics can be added, because eddy currents are linear.

Modern literature

The commonly used model considering hysteresis and eddy-current loss is not
completely satisfactory, because the measured iron loss is much higher than theoretically
calculated. This is so because it assumes a homogenous magnetization of the
laminations, which is not a valid representation of what happens during the magnetiza-
tion process. Therefore, a better model of the iron loss is obtained by considering
magnetic domains, the magnetic domain walls (Bloch walls) of which move when the
magnetic flux density changes. The loss caused by the movements of the magnetic
domain walls is higher than the loss calculated with the commonly used model.

The difference between measured and calculated loss is called the excess loss or the
anomalous loss P, . Sometimes, this anomalous or excess loss is considered as a third
contribution to the iron loss [Pry 58], [Cul 72], [Ber 88}, [Pfii 91], [Zhu 93¢], [Ami 95].
With this third contribution, the iron loss is given by

PFe = PFC}I+PF2,8+PF8,G (4-11)

Great efforts have been made to calculate this excess loss, as indicated in, for
example, [Ber 88], [Pfii 91], and [Zhu 93e]. Because of the complexity of the domain
patterns and the domain wall movements, success has been limited unti} now. However,
many authors find that Bertotti {Ber 88], [Ber 92] derived a satisfying model for the
calculation of the excess loss. It is based on a dynamic generalization of the Preisach
model for hysteresis. In [Fio 90b], this theory is worked out to a simple expression for
the excess loss Py, ,, which is given by
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1 AdB
PFe,a x ?ﬂE

This expression is used, for example, in [Fio 90a], [Zhu 93e], [Zhu 96], [Ata 94],
[Jil 94], and [Ama 95]. When the magnetic flux density varies sinusoidally, the excess
loss is proportional to w!3B ' (compare equation (4.12)). For other waveforms, the
calculation of the excess loss is a complicated subject.

As already mentioned, for non-sinusoidal waveforms, the calculation of the hysteresis
loss and the excess loss is fairly complicated. However, even with these complicated
models, the results of the prediction of the iron loss in electrical machines are poor. Two
important reasons for this are mentioned.

1) The punching of the laminations strongly influences the material properties.

2) Itis hard to predict the magnetic flux density distribution in the teeth and yokes.

There are several ways to solve this problem.

1)  Empirical correction factors are inserted into the equations for the losses [Ric 67].

2) The equations for the losses are used in combination with Finite Element Methods,
which give an approximation of the magnetic flux density distribution. In, for
example, [Ber 91], [Zhu 92] and [Ata 94], quite accurate results are reported.

1.5
dt (4.12)

This thesis

From this brief literature survey, it can be concluded that it is not possible to derive
simple and exact analytical expressions for the iron loss in an electric machine. Besides,
it is not the aim of this thesis to make a detailed investigation of the iron loss.
Therefore, in this study, a simple expression for the specific iron loss (the loss per unit
of mass) is used, which is comparable to the expression used in [Buc 84]:

® 1.5 B 2
kFe = CFekFe,O(:o) [E] (413)
0

where
kFe,O is the specific iron loss (dimension: W/kg) at a given angular frequency w, and
magnetic flux density B, provided by the manufacturer, and

€z is a dimensionless empirical correction factor.

To obtain accurate results, the specific iron loss kg, should be given at the fundamental

frequency, because the major part of the iron loss arises at this frequency. The empirical

correction factor ¢, includes effects of material processing and flux density distribution.

Often, for example, in [Ric 67], different correction factors are used for the losses in the

teeth (where the field mainly pulsates) and the yokes (where the field also rotates).

However, in this thesis, one empirical correction factor Cp, is used, because from

measurements, it is difficult to separate the iron loss into loss in the yokes and loss in

the teeth. Furthermore, in this thesis, only values for the product ¢ Fek&,o are used.
The claim that equation (4.13) is a reliable expression for the iron loss, can be made

plausible by comparing it to the equations for the hysteresis, the eddy-current and the
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excess loss:

1) At high frequencies, the iron loss is dominated by the eddy-current loss and the
excess loss, because they increase faster with the frequency than the hysteresis loss
and at 100 Hz they are comparable. At high frequencies, the eddy-current loss and
the excess loss both increase with w!?.

2) At medium frequencies, equation (4.13) is an approximation of the sum of the
three contributions.

3) At low frequencies, equation (4.13) is not satisfactory. However, in high-speed
permanent-magnet machines, this is unimportant.

The measurements reported in [Buc 84] and in subsection 4.3.6 verify this equation
for frequencies above approximately 300 Hz.

It is assumed that the iron loss is linear, which means that the total loss can be
calculated by adding the losses caused by the different time harmonics. Later, it will be
seen that on particular assumptions this is also valid for the space harmonics. Although
it is not valid for the hysteresis and excess loss, this assumption is reasonable, because
at the frequencies of the higher time harmonics, the eddy-current loss is the major part.

4.3.3 The stator core loss

In this subsection, the core loss in the stator is calculated. Firstly, there is a
description of which space harmonics are neglected. Next, the core loss in the stator
teeth and in the stator yoke is calculated. This is done for a sinusoidally pulsating field
in the a-axis. From the calculated loss, a core loss resistance is calculated. The same
could be done for a pulsating field in the B-axis. However, the result would be the same
because of the symmetry of the machine. Therefore, the resistance calculated for the a-
axis is also used for the B-axis.

For the description of the magnetic flux density in the stator iron, figure 4.2 is used.
The number of slots per pole per phase g of this machine is 3. With this, the number of
teeth of a three phase stator is calculated as 6pg. The stator teeth are numbered from 1
to 6pg, and the axis of the /th stator tooth lays at stator coordinate ag,, where the
subscript st stands for stator tooth. The slot angle is given by

Byor = %q (4.14)

Neglect of core loss caused by space harmonics
This subsection is based on the following assumptions.

1)  The stator core loss due to the space harmonics of the magnetic flux density with
a pole angle @, (introduced in equation (2.23)) smaller than or equal to a slot
angle B, is negligible compared to the loss due to the fundamental space
harmonic. This assumption is reasonable, because for the fundamental space
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harmonic, the magnetic field goes through the stator teeth and the stator yoke,
causing loss in the whole stator iron. The magnetic fields with a very small pole
angle hardly enter the stator teeth, because the field lines close in the surface of
the teeth. Therefore, these space harmonics with a small pole angle hardly cause
any loss.

As long as the pole angle of the space harmonics is larger than the slot angle, the
fields flow through the stator teeth and the stator yoke. Therefore, in this thesis,
the loss caused by these space harmonics is considered. For these harmonics, the
pole angle (equation (2.23)) is larger than the slot angle (equation (4.14)):

@y > By = f,;>% - k<3 (4.15)

Figure 4.2: Sketch of the flux lines in the permanent-magnet machine.

2)  The stator core loss caused by the higher space harmonics of the fields of the stator
and the damper currents is negligible compared to the loss caused by the
fundamental space harmonic of this field.

- This assumption is reasonable for a permanent-magnet machine without a damper
cylinder, as can be concluded from figure 2.11. This figure shows that the
amplitudes of the higher space harmonics of the magnetic flux density produced
by the stator currents at the stator surface B,s «(r;) are small compared to the
amplitude of the fundamental space harmonic Bm(rs) . Therefore, the loss resulting
from these higher space harmonics is negligible compared to that resulting from
the fundamental space harmonic.
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- This assumption is also reasonable for a permanent-magnet machine with damper
cylinder. In this case, the sum of the magnetic fields of the stator currents and the
damper currents is smaller than that of the stator currents alone, because of the
damping of the damper cylinder. Therefore, the loss due to the higher space
harmonics of the fields of the stator and the damper currents remains negligible
compared to the loss due to the fundamental space harmonic.

When the rotor rotates, the core loss caused by the higher space harmonics of the
magnetic field of the magnets is not negligible (as also shown in [Sle 90]). As can be
seen in figure 2.6, the amplitude of the kth space harmonic Bm 4(r;) of the magnetic flux
density is smaller than or equal to 3m,1(rj)/k. The angular frequency w, experienced
by the stator from the kth space harmonic of the magnetic flux density produced by the
magnets is proportional to k. (This is not the case for the frequency experienced by the
stator from the space harmonics of the stator currents, which all have the same
frequency.) With this, the ratio of the loss caused by the kth space harmonic to that
caused by the fundamental space harmonic is given by

2 15
PsFe,k = Brm,k(rs) (")k < i (4 ]6)
P Brfn,l(rs) wi's vk
It should be noted that, in contrast to the field of the stator currents, the field of the
magnets also contains space harmonics of which the harmonic number k is an integer
multiple of three, as can be seen in equation (2.60).

The core loss in the stator teeth caused by a pulsating field

The stator core loss is calculated for a field in the a-axis pulsating sinusoidally with
angular frequency ®. F(r,as—':r/p) = —B'(r,as) (equation (3.1)) is also valid. Furthermore,
only the loss produced by the space harmonics with a pole angle larger than the slot
angle are considered: k<3g (as expressed by equation (4.15)). With this, the radial
component of the magnetic flux density at the stator surface can be written as the
following Fourier series:

3g-1
Bra(rs’as’t) = Z B ra,k(rs) COS(pkas)Sin((‘ot) (417)
=135,..

The magnetic flux density in the ith stator tooth B (#) is calculated from the radial
component of the magnetic flux density in the air gap at the stator surface B (roa.f).
The following assumptions are used.

- The tooth width b is not a function of the radius, as indicated in figure 4.2.

- The magnetic flux density B (a,f) has only a component parallel to the sides of
the stator teeth, other components are neglected.

- The number of stator slots is high.

- The pole angle a,, of the space harmonics is large compared to the slot angle

leo '
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The flux flowing through one slot pitch B, 7, at the stator surface has to flow
through a tooth with width b,. Because the pole angle ar, is large compared to the slot
angle B, the magnetic flux density in the Ith stator tooth is calculated as

3¢-1
B, () = B‘Z" B (roapt) = Y P sl’)"‘ *B, i) COs(pka, )sin(w?) (4.18)
st k-135.. Oy

The amplitude of this magnetic flux density is used in equation (4.13) to calculate the
specific iron loss in the /th stator tooth:

-y rleot ra,k()

—=— = cos(pka,, J) (4.19)
k=135,. bs,

0

®
ke = cFekFe,O( © )

Multiplication of this expression by the mass of a stator tooth m_/(6pq) (where m,
is the mass of all 6pq stator teeth together) gives the iron loss in the Ith stator tooth.
Summation over all stator teeth results in the total iron loss in the stator teeth:

% m
PstFe(w) - IE_“_ F
1
2
m, ® 15 6pg [ 3q-1 rs slot m.k( )
M, (o cos(pkar,) 4.20
6pg " Fo(wo] ; i35. by B, N -

15 o 2 31, B )
~m_cpk, [-2| L st """ —2 % cos(pka) | de,
st~ Fe FeO( mo] 277_[ &5, b_\-; 0 (p )
The approximation in the last step of this equation is based on the assumption that the
number of stator slots is large. If the series between the parentheses is written out and
squared, the result is a series of products of cosinusoidal functions of the stator
coordinate. The integral from 0 to 2 of these products is only different from zero if
the sinusoidal functions have the same harmonic number k. Therefore, the total iron loss
2
Bra,k(rs)

in the stator teeth is given by
slot)
st BO

This shows that the iron loss in the stator teeth can be calculated as a superposition
of the losses caused by the different space harmonics.

(4.21)
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The core loss in the stator yoke due to a pulsating field

The magnetic flux density in the stator yoke B (a,f) (where the subscript sy stands
for stator yoke) is calculated from the radial component of the magnetic flux density in
the air gap at the stator surface B, (r,af). The flux density in the stator yoke B (1)
is assumed to have only a tangential component; radial components are neglected. The
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air-gap flux flowing through the stator surface between the stator coordinates 0 and a
has to flow through the stator yoke with height h at stator coordinate a, as 111ustrated
in figure 4.2:

L 3g-1
B (a) - -’;1_ [Bo(roattydel = ¥ T:;TB'“ () sin(pka,)sin(wr) (4.22)
90 k=135,. PN,
In the stator yoke, the magnetic flux density has its maximum at another place than in
the air gap, as also appears from figure 4.2.
The amplitude of this magnetic flux density is used in equation (4.13). In this way,
the specific iron loss in the stator yoke is calculated as

bnte) = enbra ] | 32 PO
Fe Fe0

Wo) \ki35. B, Pkhg

This expression is only a function of the stator coordinate a,, and not of the axial and
the radial position. When this specific loss is averaged over the stator coordinate, and
multiplied by the mass of the stator yoke m -+ the iron loss in the stator yoke is
calculated:

2
——sin(pka )] (4.23)
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Again, the second step in this equation is valid, because the square of a series of
sinusoidal functions is a series of products of sinusoidal functions, and the integral from
0 to 27 of these products is only different from zero if both sinusoidal functions have
the same harmonic number k. And again, this shows that the iron loss can be calculated
as a superposition of the losses caused by the different space harmonics.

The total stator core loss is calculated by adding the contributions of the stator teeth
(equation (4.21)) and the stator yoke (equation (4.24)):

PsFe(m) = E sFe,k(“))

k=13.3,..

1 | (Barp, (¥l
PsFe,k(w) ZcFekFeO[ (")0] ’; { sp( Zm s] +m-‘}’(pk—;l) }
’ 0 5y
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The stator core loss resistance
For reasons mentioned in section 4.1, it is useful to represent the stator core loss by
core loss resistances, which are placed in equivalent circuits. However, this is only
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useful for the fundamental space harmonic, and not for the higher space harmonics
because the core loss caused by the higher space harmonics of the fields of the stator
and the damper currents is neglected. So, this loss is independent of the stator currents;
it only depends on the geometry of the machine and the speed of the rotor. Therefore,
only the stator core loss caused by the fundamental space harmonic of the magnetic flux
density is represented by a core loss resistance. The loss resulting from the space
harmonics of the magnetic flux density produced by the magnets are calculated with
equation (4.25).

To calculate the stator core loss resistance, first, the flux linkages of the fundamental
space harmonic of the winding distributions of the three stator phases resulting from the
magnetic flux density of equation (4.17) are calculated. This is done in the same way
as in subsection 3.2.3. The result is (compare equation (3.13); there still is only a
component in the a-axis)

2
Ilr N
Voo = TUCSB ()2 - sin(on) (426)
s @ _1

With the Clarke transformation (equation (3.52)), this flux linkage is transformed to
the stator-connected a80-system. The time derivative of this flux linkage is the voltage
in the af0-system, which has only an a-component:

d‘l’ml 3 wlr.N,

Upske = T4, A2 32; LB, () ©c0s(6t) = dg, cOS(w1) (4.27)

When this voltage is indicated in the equivalent circuit of figure 3.4, the equivalent
circuit of figure 4.3 results. In this figure, the no-load voltage is divided into the
contributions induced in the different space harmonics of the winding distribution. The
voltage induced in the fundamental space harmonic of the winding distribution consists
of the contributions of the magnets, the stator currents and the damper currents. The
contribution of the magnets is represented by the no-load voltage.

The stator core loss resistance is connected across the voltage up . . Therefore the
power dissipated in this resistance is

a\;sFe lzl?sFe
T = Ry (0) = (428)
2RsFe((")) sFe 1((0) |
There is a factor 2 in the denominator because in the numerator, the amplitude\\of the
voltage is used.

The stator core loss resistance R (w) must have such a value that the average loss
dissipated in this resistance is equal to the stator core loss. Therefore, the value of this
resistance follows when equations (4.25) and (4.27) are used in equation (4.28):

Pipe (@) =
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Figure 4.3: The equivalent circuit with an indication of the voltage u RsFe-
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When this core loss resistance is depicted in an equivalent circuit, it should be noted
that the resistance is frequency dependent. Therefore, this core loss resistance can only
be used in equivalent circuits which represent one frequency.

Adding this resistance to the equivalent circuits of figure 3.10 results in the equivalent
circuit of figure 4.4c. Adding this resistance to the equivalent circuit of figure 3.8 results
in the equivalent circuit of figure 4.4a for the fundamental time harmonic and in the
equivalent circuit of figure 4.4b for the higher time harmonics, as will be explained
further. The travelling wave resulting from the fundamental time harmonic of the stator
currents and the fundamental space harmonic of the winding distribution rotates with the
same speed as the rotor. Therefore, it does not cause currents in the damper cylinder,
and the damper resistance R;, in figure 3.8 has been omitted in figure 4.4a.
Furthermore, during steady-state operation with rectifier load, the no-load voltage
induced in the fundamental space harmonic of the winding distribution has the
fundamental frequency. Therefore, it appears in the equivalent circuit for the fundamen-
tal time harmonic (figure 4.4a), and it does not appear in the equivalent circuit for the
higher time harmonics (figure 4.4b).

The core loss resistance is not only connected in parallel to L,, but also in parallel
to a part of the inductance L , for two reasons:

RsFe(w) =
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c)

Figure 4.4: The equivalent circuit including the stator core loss, a)} for the fundamental
time harmonic and b) for the higher time harmonics during steady-state operation with
rectifier (m =6n+1), and c) for the locked-rotor tests.

1) When the damper quantities are referred to the stator (as in subsection 3.4.2), a part
of the inductance 3/2Lss’1 (in figure 4.3) is included in the inductance L_, namely
the part Lga’1 introduced in equation (3.74).
2) The magnetic flux density in the stator iron is further increased by the slot leakage.
This slot leakage is represented by a part of inductance L, in figure 4.3, and by
a part of inductance L in figure 4.4.
In the literature about induction machines, the stator core loss is often modelled as
a resistance parallel to only the main inductance [Ven 82], [Mur 83], [Uda 89], [Sou 92],
[Eld 95]. In induction machines, this results in a very small error, because the leakage
inductance is very small compared to the main inductance. However, in permanent-
magnet machines, the leakage inductance is not negligible compared to the main
inductance because of the large effective air gap. In the literature about permanent-
magnet machines, the core loss is sometimes represented by a resistance connected in
parallel to the whole machine inductance [Col 87], [Mor 93]. However, not all leakage
flux contributes to the field in the stator iron. In this thesis, it is assumed that 2/3 of the
leakage inductance L., contributes to the stator core loss, which is only a rough
estimate. Therefore, the resistance R ,, is connected across the series connection of the

inductances L, Lga,l, and 2/3L_ .

4.3.4 The rotor core loss

In this subsection, the core loss in the rotor is calculated. This loss is not zero because
the stator currents contain time harmonics because of the rectifier load. Firstly, this
subsection describes why the loss produced by the higher space harmonics is neglected.
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Next, the rotor core loss is calculated. This is done for a sinusoidally pulsating field in
the direct axis. From the calculated loss, a core loss resistance is calculated. The same
could be done for a pulsating field in the quadrature axis. However, the result would be
the same because it is assumed that the relative magnetic permeability of the magnets
is one (u,,, =1), so that the machine is symmetric. Therefore, the resistance derived for
the direct axis is also used for the quadrature axis.

Neglecting loss caused by higher space harmonics

In this subsection, it is assumed that the rotor core loss due to the higher space
harmonics is negligible compared to the loss due to the fundamental space harmonic.
This is a reasonable assumption, because the loss in the rotor yoke is caused by the
magnetic field of the stator currents and the space harmonics of this magnetic field
hardly cross the air gap, as can be seen in figure 2.11.

Calculation of the rotor core loss due to a pulsating field

The core loss is calculated for a field in the direct axis pulsating sinusoidally with
angular frequency . (It should be noted that the frequency experlenced by the rotor
may be different from that experienced by the stator.) B(r,a,-m/p)= -B(r,a,) is also
valid, as follows from equation (3.1). The loss produced by the higher space harmonics
of this field is ignored, as explained above. With this, the component of the magnetic
flux density causing losses in the rotor iron can be written as

B, ,(rpa.t) = B, (r,)cos(pa,)sin(wi) (4.30)

The magnetic flux density in the rotor yoke B (a,,t) (where the subscript ry stands
for rotor yoke) is calculated from the radial component of the magnetic flux density in
the air gap at the damper radius B,,(r,,,t). It is assumed that all flux linked by the
damper windings flows through the rotor yoke, which is a reasonable assumption for the
fundamental space harmonic if the number of pole pairs is small. The magnetic flux
density at the damper radius is taken, because the resulting rotor core loss resistance can
easily be placed in the equivalent circuit. Furthermore, it is assumed that the magnetic
flux density in the rotor yoke B,(a,t) has only a tangential component; other
components are neglected. The flux flowing through the rotor surface between the rotor
coordinates 0 and a, has to flow through the rotor yoke with height h at rotor
coordinate «,, as 111ustrated in figure 4.2:

B (a,t) = fB,dl(rd,a ) do’ = -ph B, ,(r )sin(pa,)sin( wt) (4.31)
y
In the rotor yoke, the magnetic flux density has its maximum at another place than in
the air gap, as illustrated in figure 4.2.
The amplitude of this magnetic flux density is used in equation (4.13). In this way,
the specific iron loss in the stator yoke is calculated as
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This expression is only a function of the rotor coordinate «,, and not of the axial and
the radial position. When this specific loss is averaged over the rotor coordinate and
multiplied by the mass of the rotor yoke m,, the iron loss in the rotor yoke is
calculated:

rFe(w) m CFekFe 0( 0] ( ]%f( ndl(rd)sln(Par)]
0
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The rotor core loss resistance

For reasons mentioned in section 4.1, it is useful to represent the rotor core loss by
a rotor core loss resistance, which is placed in the equivalent circuits.

To calculate the rotor core loss resistance, firstly, the flux linkage of the damper
windings resulting from the pulsating magnetic flux density of equation (4.30) is
calculated. This is done in the same way as in subsection 3.3.3. The resulting flux
linkage (compare equation (3.43)) has only a component in damper winding d,1:

Vaa _ 'n-lsrde,IB
Vg p "
The voltage induced in damper winding d,1 is the time-derivative of the flux linked by
this damper winding:

d wlr N .
Ugyp = q;‘;d'l = ’;p 2L @B, \(r)cos(wt) = 1y, cos(wt) (4.35)

The rotor core loss resistance R (w) is connected in parallel to the inductances
representing damper windings d,1 and g,1. Therefore, the dissipation in this resistance
caused by the magnetic flux density of equation (4.30) is given by

(4.33)

¥,y = (4.34)

1(ry) sin(wt) 3

.2 .2
Ugi1 _ Maay
P = —— R _(w) = (4.36)
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There is a factor 2 in the denominator, because in the numerator, the amplitude of the
voltage is used.

The rotor core loss resistance R (®w) must have such a value that the average loss
dissipated in this resistance is equal to the rotor core loss. Therefore, the value of this
resistance follows when equations (4.33) and (4.35) are used in equation (4.36):
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Before this resistance can be used in the equivalent circuits of figures 3.8 and 3.10,
it must be rotated to the stator-connected af3-system and it must be referred to the stator.
Because in section 3.4 the same was done with the damper resistance R, n this is not
extensively repeated here. The rotation to the stator-connected aB-system is done by
means of equation (3.57). This rotation does not effect the value of the resistance.
However, it should be noted that the angular frequency experienced by the rotor is
different from the angular frequency experienced by the stator, as expressed by equation
(3.80). The rotor quantities are referred to the stator by means of equation (3.70). The
value of the rotor core loss resistance is calculated as (compare equation (3.72))

RrFe((‘o) =

R () = Metnp (1 o O TN ©
RFe - 2 rFe % 2\2 15 2 2 4.38
2L a1 (’s +’d) 4chkFei 1 m 1 (4.38)
g Bo ’ k’}’

As the damper resistance R/, , this rotor core loss resistance Ry (o) must be
divided by the slip s,,, when it is used in the equivalent circuit of figure 3.10. It is
connected in parallel to the inductance L, , as depicted in figure 4.5 for the higher time
harmonics during steady-state operation with rectifier load and for the locked-rotor tests.
The fundamental time harmonic of the magnetic flux density produced by the stator
currents does not cause core loss in the rotor, because it rotates with the same speed as
the rotor. Therefore, figure 4.4a remains valid for the fundamental time harmonic.

i:a,m Rs,m LO'
+
R R
L “py RFe
usu,m epa,m sFe 1 5 m Sl,m
- - +
-/
L3 || Ros
5 sS,m
J R
L D1 L R
7 ST,; 7 D7
a) b)

Figure 4.5: The equivalent circuit including the stator and rotor core loss, a) for the
higher time harmonics during steady-state operation with rectifier (m =6n+1), and b)
for the locked-rotor tests.
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Chapters 2 and 3 introduced sinusoidally distributed damper windings to describe the
linear current density of the damper cylinder. The damper loss was represented by
damper resistances in parallel to these damper windings. At first sight, the introduction
of these damper windings seems to be meaningless for a machine without a damper
cylinder. However, these damper windings appear to be useful in this case also, because
the rotor iron loss can be represented by an iron loss resistance connected in parallel to
the introduced damper windings. In this case, the radius of these damper windings is
chosen at the magnet radius 7, .

4.3.5 The stray loss

The stray loss represents a group of losses [Alg 59], [Sch 64], [Eld 95], [Gle 98].

Which ones belong to this group, is not clearly defined. Contributions are:

- the eddy-current loss in the end regions induced by leakage fluxes, and

- the loss due to the higher space harmonics of the field of the stator currents.
Further, there is little agreement in the literature about the models for the calculation of
the stray loss. According to Glew [Gle 98], this subject is a challenge to academia;
Williamson [Wil 971 even calls it a residue of ignorance.

In this thesis, the different contributions to the stray loss are not separated, but treated
as a whole, as in [Sou 92]. The stray loss is represented by a stray loss resistance R g,
connected in parallel to the inductance L, , because the fields causing this loss are
mainly leakage fields. This is illustrated in figure 4.6.

It is assumed that the stray loss resistance is the same function of the angular
frequency as the core loss resistance, because, as the core loss, the stray loss is basically
due to hysteresis, eddy currents and excess loss effects. Therefore, the stray loss is
assumed to be proportional to i 2 o'?. This roughly agrees with the literature, where loss
due to end-winding leakage is reported to be proportional to between i*w and i?w'®
[Alg 591, [Cha 68], [Lar 70], [Buc 78], [Mur 83], [Eld 95].

Several authors report that for the higher time harmonics in an induction machine, the
loss due to end-winding leakage fields is comparable to or higher than the regular core
loss [Cha 68], [Lar 70], [Buc 78], [Mur 83], [Buc 84]. The same is probably true for a
permanent-magnet machine with a damper cylinder. From this, a conclusion can be
drawn about the relation between the stray loss resistance R, and the stator core loss
resistance R g, . For the higher time harmonics, the voltage across these resistances is
comparable,

- because the voltage across the inductance L, is negligible compared to the voltage
across the inductance L, and

because both the stator core loss resistance and the stray loss resistance are
connected across a large part of the inductance L.

Therefore, the value of the stray loss resistance R g, is comparable to or smaller than
the value of the stator core loss resistance R, .
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Figure 4.6: The equivalent circuit including stator and rotor core loss and stray loss,
a) for the fundamental time harmonic and b) for the higher time harmonics during
steady-state operation with rectifier (m=6n+1), and c) for the locked-rotor tests.

In a permanent-magnet machine without a damper cylinder, the stray loss is less
important, because in this case, the regular time harmonic fields are not reduced by the
damper currents and therefore, the regular core loss is probably dominant.

4.3.6 Locked-rotor tests of the test model

This subsection describes some locked-rotor tests, which partly verify the derived
expressions for the iron loss. Firstly, the configurations of the test model are described.
Next, the measured and calculated resistance and inductance are compared.
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Configurations

The locked-rotor test (as described in section 3.6) was applied to the test model
(described in appendix A, section A.1) in three configurations, namely:

1)  with the rotor and with the damper cylinder (as in section 3.6),
2)  with the rotor and without the damper cylinder, and
3)  without the rotor and without the damper cylinder (rotor-removed).

The equivalent circuits for the first two configurations are given in figure 4.7a and
4.7b. The inductance during the rotor-removed test is different from the inductance in
the first and the second configuration. At the end of subsection 2.4.2, it was shown that
the magnetic flux density during the rotor-removed test was obtained by substituting
r,=0 in the expression for the magnetic flux density. Using this magnetic flux density
in subsection 3.2.5 results in an expression for the self-inductance of the stator L,
during the rotor-removed test, which is called L, » (where the subscript rr stands for
rotor-removed):

L MmN (4.39)

ke ~ 4pk
This inductance is used in the stator voltage equation (3.25) and the Clarke transforma-
tion described in subsection 3.4.1 is applied. Further, it is taken that the no-load voltage
is zero, and the damper currents are absent. The result is (compare equation (3.67))

-

- dr’ o d’

a;s = RSiSs+LSU - * é ﬂ',k ; (4l40)
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If the stator core loss resistance and the stray loss resistance are added to the equivalent
circuit representing the S-component of this voltage equation, figure 4.7c results.

Figure 4.7: The equivalent circuits of the test model during the locked-rotor tests, a)
with the rotor and the damper cylinder, b) with the rotor and without the damper
cylinder, and c) without the rotor and the damper cylinder.
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The stray loss resistances R _, in these three equivalent circuits are different, because
the end-winding fields are different for the different configurations. However, the order
of magnitude of this resistance is the same in the three different configurations.
Therefore, a first indication of the stray loss resistance R ,, is obtained when this
resistance is assumed to be equal in the three configurations.

Measured and calculated resistance

Figures 4.8, 4.9, and 4.10 depict the resistance measured at the terminals of the test
model during the locked rotor tests together with the calculated values. Also the
contributions (iron loss, stator copper loss and damper loss) to this resistance are given.

The resistance of the stator winding was calculated as in section 4.2. For the damper
resistance, equation (3.72) was used. The resistance for the fundamental space harmonic
was increased by 25% because of the end connections as discussed in section 3.6.

The values of the specific iron loss multiplied by the empirical correction factor
CreKro and of the stray loss resistance R, are obtained from curve fitting to the
measurements. The resulting values are given by ¢ FekFe’0=6 Wikg (at wy=1007 rad/s
and B)=1T), and R ;=R /3. The same values are used in the three configurations.
That R p, =R /3 is valid, means that the larger part of the iron loss caused by higher
time harmonics in a machine with a damper cylinder is stray loss. This agrees with what
is said in the literature about induction machines, as mentioned in subsection 4.3.5.
When the rotor is removed, the core loss and the stray loss are comparable. In the
configuration with the rotor and without the damper cylinder, the core loss forms the
major part of the iron loss.

1000} y
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Figure 4.8: Resistance of the test model with the rotor and the damper cylinder as a
Jfunction of the frequency. a) Calculated resistance (—) and contributions of iron loss ( ++),
damper loss (--), and stator copper loss (--). b) Calculated (—), and measured (+,X ,%,0,*
with 1,=0.1A, I,=02A, I,=05A, I,=1A, I,=2A respectively) resistance.
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Figure 4.9: Resistance of the test model with the rotor and without the damper cylinder
as a function of the frequency. a) Calculated resistance (—) and contributions of iron loss
(), and stator copper loss (--). b) Calculated (—), and measured (+,X,*,0,* with
1,=01A, I,=02A, I,=05A, [,=1A, I,=2 A) resistance.
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Figure 4.10: Resistance of the test model without the rotor and the damper cylinder as
a function of the frequency. a) Calculated resistance (—) and contributions of iron loss
(+) and stator copper loss (--). b) Calculated (—), and measured (+,X,*,0,* with
I,=01A, I,=02A, I,=05A, I,=1A, I,=2A respectively) resistance.

In subsection 4.3.2, it was assumed that the iron loss is proportional to 3. The
measurements at very high frequencies suggest that the exponent of the angular
frequency might be a little larger than 1.5. However, this was not incorporated in the
model for two reasons.

1) At the highest frequencies, the measurements are not very reliable because of
resonance phenomena. These phenomena appear from the increase of the measured
inductance in figure 4.11 at the highest frequencies. The parasitic capacity of the
stator windings was neglected in the machine model. However, it probably causes
resonances in combination with the machine inductance at the highest frequency.

2) In the theory about iron loss, no indications were found that the iron loss might
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increase with an exponent larger than 1.5.

The measured and calculated resistances neither verify nor refute the calculated
increase of the stator resistance described in section 4.2, because the extra loss due to
the increase of the stator resistance is small compared to the other losses.

In the calculations which produced the figures in this subsection, only the loss caused
by the fundamental space harmonic was considered; that caused by the space harmonics
was neglected. Therefore, this subsection does not verify the calculation of the iron loss
caused by the higher space harmonics of the magnetic field of the magnets.

The good correlation between the measured and calculated resistances indicates that
the proposed model for the iron loss is useful for the fundamental space harmonic and
for frequencies above approximately 300 Hz. Below this frequency, the iron loss forms
such a small part of the losses, that the model is neither verified nor refuted.

Measured and calculated inductance

Figure 4.11 depicts the measured and the calculated inductance of the test model
without the damper cylinder and with and without the rotor. In figure 3.11d, the
inductance of the test model with the damper cylinder and the rotor was already given.

The measured inductance depends on the amplitude of the current: the larger the
current, the larger the measured inductance. The explanation of this effect is illustrated
in figure 4.12, which depicts some sketched BH-curves of iron. The figure shows that
with an increasing amplitude of the current, the relative magnetic permeability of iron
may increase at low values of the magnetic flux density. During these tests, the
amplitude of the magnetic flux density is smaller than 0.1 T (compare figure 2.10). For
the test model with the rotor and without the damper, this effect is strong, because the
major part of the flux is the main flux, which flows through the iron. For the test model
with the rotor and the damper cylinder, this effect is small, because the major part of the
flux is leakage flux.
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Figure 4.11: Calculated (—) and measured (+,X,*,0,* with 1,=0.1A, 1,=02A,
1,=05A, I,=1A, I, =2 A) inductance of the test model without the damper cylinder,
a) with and b) without the rotor as a function of the frequency.
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The inductances were calculated on the assumption that the relative magnetic
permeability of iron is infinite. This explains why the calculated inductance of the test
model with the rotor and without the damper cylinder is a little larger than the measured
inductance. However, the inductance measured during the rotor-removed test is larger
than the calculated inductance, which may be explained in the following way. The
inductance is calculated on the assumption that the magnetic field in the machine has
only a radial and a tangential component. However, during the rotor-removed test, the
magnetic field in the end regions may also have a considerable axial component; the
magnetic field spreads over a larger length than stack length of the machine /.. This
results in a larger flux and therefore, in a larger measured inductance.

The measured inductance in figure 4.11 hardly depends on the frequency; only at very
high frequencies does the inductance decrease slightly. This means that the effect of
eddy currents in the iron on the magnetic field in the air gap is very small. In appendix
C, section C.1, it is shown that the very small decrease of the inductance at very high
frequencies is probably caused by the eddy currents in the iron. The small increase of
the inductance measured at the highest frequency is probably caused by the resonance
phenomena discussed earlier in this subsection.

Figure 4.12: Sketch of BH-curves of iron, illustrating that the relative magnetic
permeability of iron may increase with increasing magnetic field strength at low values
of the magnetic flux density.
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43,7 Concluding remarks

In this section, a model for the iron loss has been derived. The model is mainly based
on the assumption that the specific iron loss is proportional to w!*B?2. Using this,
expressions for a stator core loss resistance and a rotor core loss resistance have been
derived. The stray loss has been modelled by a resistance connected in parallel to the
leakage inductance L.

For the verification of the derived model, locked-rotor tests were used. The good
correlation between measurements and calculations verifies the proposed model for the
iron loss for the fundamental space harmonic and for frequencies above approximately
300 Hz. For the higher space harmonics of the magnetic field of the magnets, the model
was verified nor refuted.

The effect of eddy currents in the iron on the magnetic field in the air gap is
negligible. This is shown in appendix C, section C.1, and this is affirmed by the
experimental results. Therefore, it is possible to use the voltage equations without iron
foss resistances (given in section 3.5) for the calculation of the terminal voltages and the
terminal currents. Afterwards, the voltages over the iron loss resistances and the loss in
these resistances can be calculated.

4.4 The eddy-current loss in the magnets
44.1 Introduction

Objective

The aim of this section is to model the eddy-current loss in the magnets of a
permanent-magnet machine and to represent this loss by magnet loss resistances in the
equivalent circuits. This loss is not zero because the generator is loaded with a rectifier,
which produces time harmonics in the stator currents. Here, the eddy-current loss in the
magnets is called the magnet loss.

The calculation of the magnet loss is mainly important for sintered rare-earth magnets
which have a relatively low resistivity. The resistivity of plastic bonded and ferrite
magnets is usually so high that the magnet loss is negligible.

Usually, eddy currents in the magnets are neglected. However, there are a few
indications in the literature that this is not allowed for high-speed high-frequency
machines. Henneberger and Schleuter [Hen 89] report on high-speed permanent-magnet
machines with large magnets that became too hot because of eddy currents in the
magnets, although the machines were without load. Van der Meer and Rietema [Mee 88]
state that the loss in the magnets and the iron loss in the solid rotor of their high-speed
permanent-magnet machine are in the same order of magnitude.

Some authors consider the magnet loss in permanent-magnet machines [Bou 80],
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[Bou 81], [Wes 83], [Dem 87], [Abu 97], [Sch 97]. However, they all replace the
magnets with a cylinder of magnet material. This does not give realistic results when the
magnets are divided into small magnet blocks to reduce the eddy-current loss [Hen 89],
[Sch 97]. Therefore, in this thesis, the eddy-current loss in permanent-magnet blocks is
modelled. In such a way, the usefulness of applying small permanent-magnet blocks is
also investigated.

Sebastian and Slemon [Seb 89] represented the effect of eddy currents in the magnets
by a resistance in the equivalent circuit. They concluded that the effect of this resistance
on the transient performance was negligible. However, they did not study the loss in this
resistance.

Outline of this section

In this section, a resistance representing the magnet loss is calculated. It is done for
space harmonics with a large pole angle in subsection 4.4.2, and for space harmonics
with a small pole angle in subsection 4.4.3. Next, in subsection 4.4.4, the magnet loss
resistance is incorporated in the machine model, and the loss is calculated for the space
harmonics with pole angles which are neither large nor small. Subsection 4.4.5 describes
some locked-rotor tests, which partly verify the derived expressions. Concluding remarks
are made in subsection 4.4.6.

Assumptions

The derivations in this section are based on the following assumptions.

- The effect of eddy currents in the magnets on the magnetic field in the air gap is
negligible: the loss is resistance-limited. Although this assumption is not valid at
high frequencies, the derived expressions are useful, as will be explained in
subsection 4.4.5 and in appendix C, section C.2.

- The rotor of the machine is completely covered with magnets. Therefore, eddy
currents in the direct and the quadrature axis are equal and the magnet loss
resistances in the direct and the quadrature axis are also equal. In [Pol 97], the
magnet loss caused by the fundamental space harmonic is calculated without using
this assumption. Subsection 4.4.6 gives a method to approximate the loss in the
magnets of a machine the rotor of which is not completely covered with magnets.

- End effects are negligible. Therefore, the current density J and the electric field
strength E in the magnets have only a z-component. Considering end effects would
increase the resistance and decrease the loss, because the loss is resistance-limited.
Therefore, this assumption results in an overrating of the magnet loss.

Because of the last assumption, it cannot be expected that the magnet loss is
calculated very accurately. However, it is expected that the results form a much better
approximation, than the results calculated assuming a cylinder of magnet material.

In subsections 4.4.2 and 4.4.3, the magnet loss is calculated for a pulsating field in
the direct axis. From the calculated loss, a magnet loss resistance is calculated. The same
could be done for a pulsating field in the quadrature axis. However, the result would be
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the same because it is assumed that the rotor is completely covered with magnets, so
that the machine is symmetric. Therefore, the resistance derived for the direct axis is
also used for the quadrature axis.

4.4.2 The magnet loss due to space harmonics with a large pole angle

This subsection describes the calculation of the magnet loss produced by the space
| harmonics of the magnetic flux density with a large pole angle.

Specific magnet loss
Figure 4.13a depicts a cross-section of the permanent-magnet machine. Figure 4.13b

depicts a cross-section of a magnet in a rectangular coordinate system, in which the x-,

y-, and z-component agree with the tangential, the radial and the axial component. Both

figures are used to explain the calculation of the eddy currents in the magnets.

This subsection is based on the assumptions mentioned in subsection 4.4.1, and on
two assumptions, which are only used in this subsection:

1)  The magnetic flux density in the magnets has only a radial component, which is
not a function of the radius. In figure 4.13b, this means that the magnetic flux
density has only an y-component, and is not a function of y. That the magnetic flux
density is not a function of the radius is a reasonable assumption for the
fundamental space harmonic, but not for the higher space harmonics, as is seen
from figure 2.11. The amplitudes of the higher space harmonics of the magnetic
flux density in the magnets decrease with decreasing radius. Therefore, this
assumption results in an overrating of the magnet loss for the higher space
harmonics.
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Figure 4.13: a) Section of the permanent-magnet machine, and b) cross-section of a
magnet in a rectangular coordinate system.
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2) The magnet width b, is so small compared to the pole pitch of the space
harmonics a,,r (where r <r<r,), that the magnetic flux density can be
considered constant over the magnet width. In figure 4.13b, this means that the
magnetic flux density is not a function of x. Consequently, the electric field
strength and the current density are odd functions of x. For the fundamental space
harmonic, this assumption is reasonable, because the pole pitch is much larger than
the magnet width b, . For the higher space harmonics, this assumption is
questionable.

The current density in the magnets is calculated with the integral form of the second
of Maxwell's equations (Faraday's law):

$E a5 - -%ffl?'da" (4.41)
C S

This equation is applied to the dashed closed path C in figure 4.13b. In the z-direction,
this closed path has length /.. Because the electric field strength has only a z-
component, the two sides of this closed path parallel to the x-axis do not contribute to
the line integral. Furthermore, it is taken that the magnetic flux density is not a function
of x. The result is

X
~1LE,(x)+1 E,(x) = —IC% [Bax’ = -2lcx% (4.42)

In this equation, it is taken that
- the electric field strength is an odd function of x: E (-x)=-E (x), and
- the electric field strength is the current density multiplied by the resistivity of the
magnet: E (x)=p,J,(x).
The resulting expression for the current density is given by
J(x) = x dB
@2

Herewith, the specific magnet loss (the eddy-current loss per unit of magnet volume) k,
is calculated as

p bn (dBY
k = — J2 dx = m -

(4.43)

(4.44)

Comparable expressions are derived, for example, in [Kiip 84], [Ric 67] and [Sto 74]
for the specific eddy-current loss in laminated iron.

Calculation of the magnet loss

The loss in the magnets is calculated for a pulsating field in the direct axis.
§(r,a,—w/p) = -E(r,ar) is also valid, as follows from equation (3.1). With this, the radial
component of this magnetic flux density at the damper radius can be written as the
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following Fourier series:

B, (rpa.t) = HZ” B, (r sty cos(pka,) (4.45)

The magnet blocks are numbered 1 to N, (figure 4.13a), where N, is the number
of magnet blocks around the rotor circumference. The axis of /th magnet lays at rotor
coordinate a,,,. As mentioned at the beginning of this subsection, the magnetic flux
density is assumed not to be a function of the radius and to be constant over the magnet
width. With this, the magnetic flux density in the Ith magnet block can be written as

B, () = B (10, ) = E ax (7 ot) COS(pker,,, ) (4.46)

If this magnetic flux den51ty is used in equation (4.44), the eddy-current loss per unit
of magnet volume in the /th magnet block is calculated as

w 2
d

k , = —=1— B, (r 1) cos(pke

™ 12p, df{k=§s... wdla) o5 ""”)})

2
b2 [ = dB

m Jk_(’“j_’t_zcos(pkaml)]
120, \k-135,.

Multiplication of this expression by the volume of the magnet V. /N, (Where V_ is
the volume of all magnets together) gives the eddy-current loss in the Ith magnet
Summation over all magnets results in the total magnet loss:

(4.47)

2
m V bt dB ’
o o T o)
I=1 Nm ,,,l- 12p kk=1,3,5,.. dr (4 48)
. s
by 17 & !
- om 1 Mcos(pka,)] da,
12p,, 2m ¢ \k-135.. d

The approximation in the last step of this equation is based on the assumption that the
number of magnets is large.

If the series between the parentheses of this equation is written out and squared, the
result is a series of products of cosinusoidal functions of the rotor coordinate. The
integral from O to 27 of these products is only different from zero if the sinusoidal
functions have the same harmonic number k. This implies that the magnet loss can be
calculated as the sum of the losses caused by the different space harmonics:

=ZPm,k

k=1,3,5,..

Vb aB (.Y V. b2(dB  (r.t
P,,- mOm ( (e )] cosz(pka,)dar = “mOm T at)
24mp,. dt 24p,,. dt

5 (4.49)
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Comparable expressions are derived, for example, in [Kiip 84] and [Sto 74] for the
eddy-current loss in laminated iron.

Representing the magnet loss by a resistance

For reasons mentioned in section 4.1, it is useful to represent the magnet loss by
magnet loss resistances, which are placed in the equivalent circuits.

To calculate the magnet loss resistances, first, the flux linkage ¥, of the damper
windings d,k and g,k resulting from the magnetic flux density of equation (4.45) is
calculated. This is done in the same way as in subsection 3.3.3. The resulting flux
linkage @, (compare equation (3.43)) has only a component in the direct axis:

Vaux 'rrlsr Ny s

1
kB (r.f
ll!qu 2}) k r,k( & )[O
The voltage induced in damper winding d,k is the time-derivative of the flux linkage of
this damper winding:
wo 1 ) wlr Ny dﬁ,k(rd,t)
ddk dt 2pk dt
The magnet loss resistance for the kth space harmonic R, , is connected in parallel
to the inductance representing the damper windings d,k and gk. The magnet loss

resistance R, , must have such a value that the loss dissipated in this resistance is equal
to the magnet loss. Therefore,

'I'd,k (4.50)

{4.51)

. 2
Ugax Ugax
- -~ R, = %k (4.52)
™ R kP

Substitution of equations (4.49) and (4.51) in this equation results in
6p w22 IIN?
R, = —n 2o 4k (4.53)
vV pk 2bm
For the fundamental space harmonic, the loss calculated with this magnet loss
resistance is a realistic approximation, although the loss may be overrated a little,

because of the used assumptions. For the higher space harmonics, the assumptions used
probably result in a significant overrating of the loss.

4.4.3 Magnet loss due to space harmonics with a small pole angle

In this subsection, the magnet loss produced by the space harmonics of the magnetic
flux density with a small pole angle is calculated.
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The loss in a cylinder of magnet material

This subsection is based on the assumptions mentioned in subsection 4.4.1.
Furthermore, in this subsection, it is assumed that the pole pitch of the space harmonics a_, 7
(where r, <r<r,, ) is so small compared to the magnet width b, that for the calculation
of the eddy currents, the magnets can be replaced with a cylinder of magnet material.

For the space harmonics with a small pole angle, the magnetic flux density strongly
depends on the radius, as can be seen in figure 2.11. Therefore, the loss is calculated
two-dimensionally, namely as a function of the angular coordinate and as a function of
the radius in the cylindrical coordinate system.

The current density in the cylinder of magnet material is calculated by means of the
differential form of the second of Maxwell's equations (equation (3.26)), in which the
magnetic vector potential is used. Substituting equation (2.10) (B'=VxA) in the second
of Maxwell's equations results in

VXE = -%{vm} (4.54)

In this equation, it is taken that £ = pmf , and that the magnetic vector potential and the
current density have only a z-component. The result is written out for the three
components of the cylindrical coordinate system:

Pn O, 1904,

r oo r ot oa

aJ, g 04, (4.55)
Py T a
0=0
From this, the current density is calculated as
J = 1 aA (4.56)
z P, al

where C is an integration constant.

According to equations (2.44) and (2.58), the z-components of the magnetic vector
potentials resulting from the stator currents and the damper currents in the m §net region
are the same function of the radius: they are both proportional to 7, rP"+r r Pk, With
this function of the radius, the z-component of the magnetic vector potential belonging
to a field in the direct axis is given by

Afrat) = Y A rd (r,“’"rp"+r"kr ‘P")sin(pka,) (4.57)
k=1,3,5,..

With equation (4.56), the current density resulting from the magnetic vector potential
is calculated as
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o d4_ (.t
Jre)=-Y -—1——(r,_pkrpkﬂfkr""‘)sin(pka,)——%t(-—d—)+C (4.58)
k=135,.. P,

The integration constant C in this equation must be zero, because the paths of the
current density must close within the cylinder of magnet material.
From the current density, the magnet loss is calculated as

2n I

(4.59)

T 21, P
k f f [ E (r,_P Ky pk , p P kr'Pk)Sln(pka) Z’:;i d’) rda,dr
k

=1,3,5,.

As in earlier sections, if the summation between the parentheses of this equation is
written out and squared, an infinite series of products of two cosinusoidal functions
results. The integral from O to 27 of these products of two cosinusoidal functions is
only different from zero if these two functions have the same the harmonic number .
Therefore, the magnet loss can also be calculated as the sum of the losses caused by the
different space harmonics:

00
= E P mk
k=1,3,5,..
T'm 2%

P, f f Phyply p Pk 'P")Zsinz(pka )(%] rda, dr (4.60)

ZDk k+2 2 2pk k+2
7Tl 2p r’. 2 2 r, 2{1 r ]( z,k(rd’t))

____—+rm—rr
o\ 2pks2 22 ar

The magnet loss resistance

For reasons mentioned in section 4.1, it is useful to represent the magnet loss by
magnet loss resistances, which are placed in the equivalent circuits.

To calculate the magnet loss resistances, first, the flux linkage ¥,, of the damper
windings d,k and g,k resulting from the magnetic vector potential of equation (4.57) is
calculated. The magnetic flux density belonging to this magnetic vector potential is
calculated with B=VxA (equation (2.10)). At the damper radius, this magnetic flux
density is given by

At &
B(rpe0) = l—ﬁL') 3 A A Qo) (P75 1P P ke cos(phar)  (461)

Ca, 135

The flux linkage §,, of the damper windings d,k and g,k resulting from this magnetic
flux density is calculated in the same way as in subsection 3.3.3 (compare equation
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(3.43)), and it has only a component in damper winding d,k:

¥ I

\Irdq,k 2P
The voltage induced in damper winding d,k is the time-derivative of the flux linkage of
this damper winding:

1] (4.62)
0

‘T’d,k

d N Tt
Uggp = ll;‘:d* = ; TN, @, Phppky pPlp Py Tk & ’J‘( 2) (4.63)

The magnet loss resistance for the kth space harmonic R , 4 is connected in parallel
to the inductance representing the damper windings d,k and g,k. The magnet loss
resistance R, , must have such a value that the loss dissipated in this resistance is equal
to the magnet loss. Therefore,

2

udd ,k udd k
P = = R = — (464)
X
™ Ry mek P
Substitution of equations (4.60) and (4.63) in this equation results in
R P LN (P r B s r Py PRy
mck
_ 2 2 k_-2pk+2 2 4.65
rrbkrmzpk -r 2_2 rr2prm2p -r, ( )

k2 ™ 2pk2

For the space harmonics with a small pole angle, the loss calculated with this magnet
loss resistance is a realistic approximation, although the loss is overrated a little, because
the ‘lamination’ of the magnets is ignored. For the space harmonics with a large pole
angle, the magnet loss is overrated significantly, because the 'lamination’ of the magnets
results in an important reduction of the eddy currents.

4.44 Incorporating the magnet loss resistance in the machine model

In this subsection, the magnet loss resistances are incorporated in the machine model,
and the loss is calculated for the space harmonics with a pole pitch which is neither
large nor small.

Before the magnet loss resistances derived in subsections 4.4.2 and 4.4.3 can be used
in the equivalent circuits of figures 3.8 and 3.10, they must be rotated to the stator-
connected a3-system and they must be referred to the stator. Because in section 3.4 the
same was done with the damper resistance R, 4> this is not extensively repeated here.
The rotation to the stator-connected a-system by means of equation (3.57) does not
effect the value of the resistances. The rotor quantities are referred to the stator by
means of equation (3.70); the resulting values of the magnet loss resistances are
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calculated as (compare equation (3.72))

2 k 2
R, - 3M‘i"‘R . R Moy sp o Mk &7 Noy (4.66)
Mbk 7 mbk > CMck T mek ? 2 2wk 2pk NZ '
2L 4y 2L gy Wy [P N

In this equation, the capital M in the subscript denotes that the resistance is referred to
the stator.

The magnet loss resistance R,,, was calculated for space harmonics with a pole
pitch much larger than the magnet width. The magnet loss resistance R, x was
calculated for space harmonics a pole pitch much smaller than the magnet width. In
figure 4.14a, the two calculated magnet loss resistances are given as a function of the
space harmonic number & for the test model (described in appendix A, section A.1).

For the fundamental space harmonic, the magnet loss resistance R, , is larger than
the magnet loss resistance R,, . Since the loss is resistance-limited, the magnet loss
resistance R, | results in lower loss. This was already expected at the end of subsection
443, where it was explained that the loss caused by the space harmonics with a large
pole angle is overrated when it is calculated with the magnet loss resistance R, x:

For the space harmonics with a small pole angle, the magnet loss resistance R, PR
larger than the magnet loss resistance R,,,. Since the loss is resistance-limited, the
magnet loss resistance R,, , results in a lower loss. This shows that for the space
harmonics with a small pole angle, the loss is overrated when it is calculated with the
magnet loss resistance R, ,, as already expected at the end of subsection 4.4.2.

Because both expressions for the magnet loss result in an overrating of the magnet
loss, the magnet loss resistance resulting in the lowest loss is used:

R, =max(R,,,.R, ); Ry =max(Ry,, Ry ,) (4.67)
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Figure 4.14: a) The magnet loss resistances R,, , and R, ., and b) the ratio of the
magnet loss resistance and the damper resistance R, /R, , as a function of the
harmonic number k (for the test model).
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Figure 4.14b depicts the ratio of the magnet loss resistance and the damper resistance.
It can be seen that the magnet loss resistance is an order of magnitude larger than the
damper resistance. Therefore, in a machine with a damper cylinder, the loss in the
magnets is small compared to that in the damper cylinder.

The magnet loss resistance R,, is added to the equivalent circuits of figures 3.8 and
3.10. It is connected in parallel to the inductance L,, as depicted in figure 4.15. In this
figure, the iron loss resistances are omitted because their effect on the terminal voltages
and terminal currents is negligible.

Figure 4.15: The equivalent circuit of the machine a) for a time harmonic during steady-
state operation with rectifier load, and b) for the locked-rotor tests.

To obtain the voltage equations during steady-state operation with rectifier and during
the locked-rotor tests, the resistances R, . and Ry, . are introduced. These resistances
replace the parallel connection of the damper resistance and the magnet loss resistance:

R R R, R
R, =—"mkdk . p_ _ “MkDk 4.68
mdk R, Ryt MDk Ry *Rp, (4.68)

Herewith, the equation for the Fourier coefficients of the steady-state stator voltages of
the rectifier-loaded machine (given in subsection 3.5.2, equation (3.88)) becomes

~ = & .

u‘s,6m1 ép,6n+1+z6n+lLs,6n+l ’

. ®© i(n+w.L, R (4.69)
Z., = Rga*iGn+l)o, L+ 3 K . VO Ly Ryp
k15700 Ragp 8 gnn (Gt 1) o Ly

The impedance during the locked-rotor tests (given in subsection 3.5.3, equation
(3.93)) becomes

joL, R
Z(w) = Z{Rs(m)+ija+ ﬁ’_"_@*_} (4.70)

k-15741,.. RyppptiwLl,

Subsection 4.3.4 explained that the introduction of the sinusoidally distributed damper
windings is also useful for a machine without a damper cylinder, because the rotor core
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loss can be represented by a rotor core loss resistance connected in parallel to these
damper windings. This section shows that the magnet loss in a machine without a
damper cylinder can also be represented by magnet loss resistances connected in parallel
to these damper windings. In a machine without a damper cylinder, R, =Ry 18 valid.

4.4.5 Locked-rotor tests of the servomotor

This subsection describes some locked-rotor tests, which partly verify the derived
expressions for the magnet loss.

The locked-rotor test (as described in section 3.6) was done with the servomotor,
which is a permanent-magnet machine without a damper cylinder (see further appendix
A, section A.2). The equivalent circuit of this machine during the locked-rotor tests is
given in figure 4.16.

The locked-rotor test was done in two rotor positions:

1)  The quadrature axis coincides with the axis of stator phase a (p6=1/2). Because
a voltage is supplied to the stator phases b and c (as depicted in figure 3.9), the
direct axis coincides with the armature winding field axis.

2)  The direct axis coincides with the axis of stator phase a (§=0). Because a voltage
is supplied to the stator phases b and ¢ (as depicted in figure 3.9), the quadrature
axis coincides with the armature winding field axis.

The resistance of the stator winding was calculated as in section 4.2. The iron loss
resistances were calculated as in section 4.3. The values used for the specific iron loss
multiplied by the empirical correction factor and the stray loss resistance are
Crekpo=4 W/kg (at ;=100 rad/s and Bj=1T), and R =R /3.

Figure 4.16: The equivalent circuit of the servomotor during the locked-rotor tests.
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Figure 4.17 depicts the calculated resistance between the machine terminals during
the locked-rotor tests and the contributions to this resistance of iron loss, stator copper
loss, and magnet loss. This figure shows that at frequencies above approximately 3 kHz,
the magnet loss forms the major part of the losses. This figure also shows that the extra
loss due to the increase of the stator resistance is small compared to the other losses.
Therefore, the locked-rotor tests neither verify nor refute the calculated increase of the
stator resistance, as was the case in subsection 4.3.6.

Figure 4.18 depicts the resistance and inductance measured at the machine terminals
during the locked-rotor tests in the direct and the quadrature axis together with the
calculated values.

The measured values depend on the amplitude of the current: the larger the amplitude
of the current, the larger the measured inductance. This may be caused by hysteresis
effects, as explained in subsection 4.3.6 and illustrated in figure 4.12.

In subsection 4.4.1, it was assumed that the effect of eddy currents on the magnetic
field in the air gap is negligible. At frequencies above approximately 10kHz, this
assumption is not valid, as is seen from the decrease of both the measured and the
calculated inductance in figure 4.18. The calculated inductance decreases at high
frequencies, because the impedance of the resistance R,,, in the equivalent circuit of
figure 4.16 becomes smaller than the impedance of the inductance L, . The fact that the
calculated inductance decreases shows that by placing the magnet loss resistances in an
equivalent circuit, the effect of eddy currents in the magnets on the magnetic field is
considered. However, this effect is not considered in a correct way, because the magnet
loss resistance was calculated on the assumption that this effect is negligible.
Nevertheless, appendix C, section C.2, shows that this way of considering the effect is
a simple and useful approximation for frequencies up to 100 kHz.

In the direct axis, the correlation between the measured and the calculated resistance
is reasonable. The correlation between the measured and the calculated resistance in the
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Figure 4.17: The calculated resistance of the servomotor (—) and the contributions to this
resistance of iron loss (-*), magnet loss (- -), and stator copper loss (- -).
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Figure 4.18: a) Resistance and c) inductance in the direct axis and b) resistance and d)
inductance in the quadrature axis,
— : calculated, and

+X,%,0," : measured with 1,=02A, I,=05A, I1,=1A, 1,=2A, and I,=5A.

quadrature axis is poorer. This may be so because during these measurements, the
machine develops a (large) pulsating torque. The rotor was locked to minimize the
power consumed by this torque, but it was impossible to prevent all vibrations.
Therefore, the measurements in the quadrature axis may include mechanical loss.
The measured inductance in the direct axis is a little smaller than the calculated
inductance, which may have two causes:
1) In the calculation, the magnetic permeability of iron is assumed to be infinite,
while the real magnetic permeability is finite (as discussed in subsection 4.3.6).
2)  In the direct axis, there may be saturation due to the magnetic field of the magnets.
That the measured inductance in the direct axis is smaller than the measured
inductance in the quadrature axis may also have two causes:
1) The rotor iron is not exactly cylindrical. The rotor is almost completely covered
with magnets forming poles, but between these poles, there is a small region in
which the radius of the rotor iron is a little larger than under the poles. This may
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result in a larger inductance in the quadrature axis.
2) In the direct axis, there may be saturation because of the magnetic field of the
magnets, which is not present in the quadrature axis.

The measured decrease of the inductance starts at a lower frequency than the
calculated decrease. More research work is necessary to explain this. The opposite was
expected because the assumptions used result in an overrating of the calculated loss and
therefore, in an underestimate of the calculated magnet loss resistance.

During the locked-rotor tests, the calculated loss caused by the higher space
harmonics is negligible compared to that caused by the fundamental space harmonic.
This means that the measurements do not verify the calculation of the loss resulting from
the higher space harmonics. It should be realized, that the loss caused by the higher
space harmonics is not necessarily negligible when the rotor rotates.

The correlation between measurements and calculations is reasonable. Therefore, it
can be concluded that the proposed way of calculating the magnet loss is useful for the
fundamental space harmonic and for frequencies above approximately 1 kHz. Below this
frequency, the magnet loss is such a small part of the losses, that the derivation is
neither verified nor refuted.

4.4.6 Concluding remarks

In this section, a model for the calculation of the eddy-current loss in the magnets has
been derived. For space harmonics with a large pole-pitch, this model calculates the
eddy-current loss in magnet blocks with a finite width. For space harmonics with a small
pole-pitch, the magnet blocks are replaced with a cylinder of magnet material.

For the verification of the derived model, locked-rotor tests have been used. The good
correlation between measurements and calculations indicates that the proposed model is
useful for the fundamental space harmonic. For the higher space harmonics, the model
has been neither verified nor refuted.

The effect of eddy currents in the magnets on the magnetic field in the air gap is not
completely negligible at high frequencies. This is seen from the measurements and is
affirmed by the calculations of appendix C, section C.2. This effect can be considered
by incorporating the magnet loss resistances in the machine model, as illustrated in
figure 4.15 and expressed by equation (4.69).

In subsection 4.4.1, it was assumed that the rotor is completely covered with magnets.
This assumption was necessary for the derivations of this section. However, it is possible
to approximate the loss in a machine the rotor of which is not completely covered with
magnets. Because the magnet loss is mainly resistance limited, the loss is proportional
to the magnet volume. Therefore, the magnet loss in a machine the rotor of which is
partly covered with magnets can be calculated as the magnet loss in a machine the rotor
of which is completely covered with magnets multiplied by Zam/ap,l.
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4.5 The loss due to the stator slotting
4.5.1 Introduction

Objective

When the rotor of a permanent-magnet machine rotates, the rotor experiences a
pulsation of the magnetic flux density because of the stator slotting, even when the
machine is without load. Until now, this pulsation has been ignored. However, it causes
extra eddy-current loss in the magnets and the damper cylinder. During the locked-rotor
tests, this loss is zero. The aim of this section is to approximate this loss.

The following references deal with the pulsation of the magnetic field due to the
stator slotting and the resulting loss in permanent-magnet machines.

- The eddy-current loss in a retaining cylinder is calculated by means of finite
element methods in several papers, for example in [Mec 93] and [Oya 91].

- In [Hen 94], the loss in a nonmagnetic retaining cylinder is approximately
calculated for a given pulsation of the magnetic flux density. The loss is calculated
for a machine without load and on the assumption that the effect of the current
density in the cylinder on the magnetic field is negligible. Furthermore, it is stated
that the pulsation of the magnetic flux density can be calculated by means of a
conformal transformation or a finite element calculation.

- In (Bou 80] and [Bou 81], the magnetic vector potential in a slotted air gap is
calculated analytically. This is done for a linear model of the machine. The slots
are modelled as triangular extensions of the air gap, where the field is one-
dimensional. In [Bou 80), this is used to calculate the loss in the magnets, which
are replaced with a cylinder of magnet material. In [Bou 81], the loss in a metallic
retaining cylinder is also determined.

- Kramer [Kra 83] calculates the scalar magnetic potential in a slotted air gap
analytically for a linear model of the machine with rectangular slots. However, at
the border of air gap and slot, approximations are necessary.

- Demel [Dem 87] determines the amplitude of the pulsation of the magnetic flux
density with measurements and with finite element calculations. He approximates
the form of the pulsation, and calculates the resulting loss in the magnets, which
are replaced with a cylinder of magnet material.

- In [Wes 83], [Zhu 93c], and [Tak 94], conformal transformations are used to
calculate the pulsation of the magnetic flux density due to the stator slotting.
Weschta [Wes 83] calculates the resulting loss in the magnets, which are replaced
with a cylinder of magnet material. Takahashi [Tak 94] calculates the resulting loss
in a nonmagnetic retaining cylinder for a machine without load and on the
assumption that the effect of the current density in the cylinder on the magnetic
field is negligible.

In this section, the extra loss due to the pulsation of the magnetic flux density because
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of the stator slotting is approximated for a given pulsation. As appears from the
references mentioned, the pulsation can be calculated in various ways. Here, the
conformal transformation described in appendix D is used to calculate the amplitude of
the pulsation.

In contrast with some of the references mentioned, this section describes the
calculation of the extra loss in the damper cylinder and the magnets for a machine on
load. Furthermore, the effect of the current density in the cylinder on the magnetic field
is not neglected.

The validity of some of the assumptions used in the derivation is questionable.
However, the value of the calculation discussed in this section is that it results in a
reasonable first approximation of the extra loss caused by the stator slotting without
using extremely complicated methods. Furthermore, the calculations in chapter 7 show
that the extra loss due to the stator slotting is not important compared to the other losses.
Therefore, it is of no major consequence that some of the assumptions are questionable.

Outline of this section

Firstly, subsection 4.5.2 describes the pulsation of the magnetic flux density because
of the stator slotting and discusses the assumptions used in this derivation. In subsection
4.5.3, the losses resulting from this pulsation in the magnets and in the damper cylinder
are calculated. Concluding remarks are made in subsection 4.5.4.

4.5.2 The pulsation of the magnetic flux density

In chapter 2, the magnetic flux density in the air gap and the magnets of the machine
was calculated on the assumption of a smooth stator surface (without slots). It is
assumed that the radial component of this magnetic flux density at the damper radius
B, oo (T®t) can be used to calculate the radial component of the magnetic flux

density at the damper radius in the machine with the real slotted stator B, slotte 4T 0 st)
as

1
B rslotted (r d’as’t) =B rsmooth (ra"a.r’t) k_ Y (r d) COS(6P qas) (4 71 )
C

This equation is based on the following assumptions and starting-points.

1) It is assumed that the pulsation resulting from the stator slotting is a sinusoidal
function of the stator coordinate with a wave length equal to the slot pitch.

2) Itis taken that o =0 coincides with the axis of a stator tooth.

3) Itis taken that 6pgq is the number of stator slots, where g is the number of slots per
pole per phase.

4) The amplitude of the pulsation is proportional to the factor y(r,). It is assumed
that the factor y(r,) can be calculated with equation (D.10) of appendix D. This
assumption is only a rough estimate, mainly if the gap between the damper
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cylinder and the stator surface is small, as appears from appendix D.

5) The Carter factor k. describes the average reduction of the magnetic flux density
because of the stator slotting. In the rest of this thesis, it is assumed to be one,
because the difference from one is negligible, as shown in appendix D.

Furthermore, it is assumed that the extra loss resulting from the stator slotting can be
approximated by considering only the pulsation on the fundamental space harmonic of
the magnetic flux density, that rotates with the same speed as the rotor:

B(rpaa,t) = B, (r,)cos(pa,+€) ki+ ¥(r,)cos(6pqa,) (4.72)
c

where

B r,l(rd) cos(pozr+s) =B rm,l(rd’ar) * rs,l(r d’ar) (4 73 )

where

- B,,l(rd) cos(pa,+e) is the fundamental space harmonic of the magnetic flux density
which rotates with the same speed as the rotor. The maximum of this harmonic of
the magnetic flux density lays at pa,=-¢. Generally, € is not equal to zero
because of the field of the stator currents.

- B, (rpa) is the fundamental space harmonic of the magnetic flux density
produced by the magnets of equation (2.60).

- B, ,(r,) is the fundamental space harmonic of the magnetic flux density
produced by the stator currents, that rotates with the same speed as the rotor. This
harmonic follows from equation (2.61) when the fundamental time harmonics of
the stator currents and a,=a,+ w,t/p -m/(2p) (as follows from equations (3.2) and
(3.81)) are used in this equation.

The damper currents do not contribute to the fundamental space harmonic of the

magnetic flux density which rotates with the same speed as the rotor.

Besides, this section is based on the following assumptions.

- The current in the damper cylinder can be calculated by means of the voltage
equations of the short-circuited damper windings of section 3.3.

- The rotor of the machine is completely covered with magnets. Subsection 4.5.4
gives a method for calculating the loss in a machine the rotor of which is not
completely covered with magnets.

As mentioned earlier, the magnetic field in chapter 2 and the voltage equations in
chapter 3 are derived assuming a smooth stator surface. In this section, the effect of the
stator slotting on the losses is investigated. However, the effect of the stator slotting on
the voltage equations is assumed to remain negligible.
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4.5.3 The damper currents caused by the pulsation of the magnetic field

According to equations (3.2) and (3.81), the relation between the angular coordinates
of stator and rotor is given by a =a,+w,t/p-m/(2p). If this is substituted in equation
(4.72), the result can be worked out to

B,(r,,4) = B, (r,)-cos(pa,e)
1 ke (4.74)
+ > ,,1("d) Y(r) (cos((6q—l)pa,+6q(o1t—3q7r—e)+cos((6q+1)par+6qw1t—3q1-r+e))

The first component of this equation rotates with the same speed as the rotor.
Therefore, it does not induce eddy-currents in the damper cylinder and the magnets. The
second and the third component induce voltages in the 6g-1th and the 64+1th damper
winding.

Equation (3.37) gives the voltage equation of the 6g+1th damper winding. In this
equation, the resistance R, ., is replaced with the resistance R, 64+1 introduced in
equation (4.68) to incorporate the effect of eddy currents in the magnets. As explained
in subsection 4.4.4, this resistance represents the parallel connection of the damper
resistance Rd,6q:t:1 introduced in equation (3.45) and the magnet loss resistance Rm_,;q,_,1
introduced in equation (4.67). In this way, equation (3.37) becomes
0= Rmd,ﬁq:l{:i,ﬁqt1+dlzi:qfl (4.75)

The flux linkage in this equation consists of three contributions:

1) the flux linkage due to the pulsation because of the stator slotting dslot,6q1°
2) the flux linkage due to the field of the stator currents Ll ds.bgx1 and

3)  the flux linkage due to the field of the damper currents Vuseq+1

Using these contributions, equation (4.75) can be written as

A - AV soregsr Vaeper AV gpe
0 = R ysqetiagger” dt‘ﬁ"” dt“‘“+ ”’(‘l’f‘“ (4.76)

In the same way as in subsection 3.3.3, the vector for the flux linkage of the 6g+1th
damper winding resulting from the pulsation described by equation (4.74) is calculated
as

cos(6qw t-3gm*e)

T Ny
W sstor 6041 = _4;‘(6‘1_,__—6;)1Y(" d)Br,l(rd)

The time derivative of this flux linkage is called the slot voltage € ison bq+1"

; (4.77)
cos(6qwlt—3q7r+57ria)
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2 = dqjdrtomq:l
edslot,6q1-1 - T
| - 4.78
_ 3q (ol'n'lsrde’thl (r (r ) Sln(ﬁqmlt 3q7Ti£) ( )
= p(6qx1) v etnla sin(6qwt-3qm+Limze)

In equation (3.47), the flux linkage caused by the stator currents was expressed as
| P M,:M:li_;. Furthermore, in equation (3.49), the flux linkage caused by the
damper currents was expressed as W01 =L 0,017 460+1- With this, equation (4.76)

can be written as

~ - - Ao
0 - Rmd,ﬁqid,6q:1+€dsbt,6qtl+%{Msifqi‘lis}+l’dd,6qtl_%‘q_—l (4.79)
Because the effect of the stator slotting on the voltage equations is assumed to be
negligible, the stator currents can be calculated from the equations derived for a stator
with a smooth stator surface. Using these stator currents and the slot voltage of equation
(4.78), the current i;ﬁqﬂ can be solved from equation (4.79). Therefore, the extra loss
caused by the pulsation due to the stator slotting can also be calculated.
It should be noted that this extra loss may be negative when the slot voltage € siot,6q+1
opposes the time derivative of the flux linkage caused by the stator currents { dsgr1:

4.5.4 Concluding remarks

In this section, the extra loss due to the stator slotting in the magnets and in the
damper cylinder has been calculated. The pulsation of the magnetic flux density has
been calculated with a conformal transformation. For the calculation of the loss, the
voltage equations introduced in section 3.3 and the magnet loss resistance introduced in
section 4.4 have been used.

In subsection 4.5.1, it was assumed that the rotor is completely covered with magnets.
However, as in section 4.4, it is possible to approximate the loss in a machine the rotor
of which is not completely covered with magnets. Because the magnet loss is mainly
resistance limited, the magnet loss is proportional to the magnet volume. Therefore, the
magnet loss in a machine the rotor of which is partly covered with magnets can be
calculated as the magnet loss in a machine the rotor of which is completely covered with
magnets multiplied by 2e, /.
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4.6 Summary

In chapters 2 and 3, the voltage equations of the permanent-magnet machine were
derived. The derivations in these chapters were based on the assumptions
- that the effect of eddy currents in the iron and in the magnets on the magnetic field

in the air gap is negligible, and
- that the effect of stator slotting on the magnetic field is negligible.

This chapter shows that these assumptions are useful for the derivation of the voltage
equations, but that more complicated models are necessary for the calculation of the
losses in the machine. These models are derived and partly verified in this chapter.

In section 4.2, the frequency-dependence of the stator resistance was described.

Next, section 4.3 introduced expressions for the iron loss, which are considered
proportional to w*B?. This model for the iron loss is different from the commonly
used models, but it is simple and it correlates with the results of the locked-rotor tests
for the fundamental space harmonic. For the higher space harmonics, the model has been
neither verified nor refuted.

Subsequently, in section 4.4, a model for the eddy-current loss in the magnets has
been derived. For space harmonics with a large pole pitch, the real width of the magnets
has been considered. Also this model has been verified for the fundamental space
harmonic by means of locked-rotor tests. For the higher space harmonics, this model has
been neither verified nor refuted.

In section 4.5, an approximation of the extra loss due to the stator slotting was given.
The pulsation of the magnetic flux density was calculated with a conformal transforma-
tion.

In the following chapters, the resulting model will be used to determine the steady-
state performance of the rectifier-loaded machine. The voltage equation for the Fourier
coefficients of the stator voltages that will be used is given by equation (4.69):

~

Ly~ ép,6n+1+zﬁn+1l-s,6m1 ;
. s j(6n+1)w.L,R (4.80)
Zg, = R ti(6n+w L + 1O DL iRun

k15711, Rygpp*iS ene(6n+1)00 L

This voltage equation includes the copper loss in the stator, the copper loss in the
damper and the eddy-current loss in the magnets.

After calculating the currents and the voltages with these voltage equations, the iron
loss will be calculated with the model introduced in section 4.3. The extra loss due to
the stator slotting will also be calculated afterwards with the model derived in section
4.5. This is possible, because the influence of the stator slotting and of the iron loss on
the terminal voltages and the terminal currents is negligible.
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Chapter 5

Calculation of the performance
of the generator with rectifier

5.1 Introduction

Objective

In chapters 2 to 4, a model of the permanent-magnet machine was derived. In this
chapter, the model is used to determine the performance of the rectifier-loaded
permanent-magnet generator. The complete model of the generator with rectifier load
will be verified experimentally in the next chapter. In chapter 7, it will be shown that
the model can be used to optimize the machine design.

The objective of this chapter therefore is to combine the machine model with a model
of the controlled rectifier and to derive a calculation method for the steady-state
performance of the rectifier-loaded machine. Figure 5.1 depicts the machine terminal
voltages and the controlled rectifier, feeding into a circuit with an inductance, a
resistance, and a voltage, which may represent the battery of a series-hybrid vehicle.

The steady-state performance of the rectifier-loaded machine can be determined in
several ways. In this thesis, the calculation method introduced by Bolognani and Indri
[Bol 78] is used. This calculation method determines the steady-state performance in the
frequency domain using Fourier analysis. This is possible because the phenomena are
periodic. The calculation method is used in a few references.

+4 i
~ ZST, ZST, AST, Z
= + ; dc
uSd sa
-O+ * Ry

i Uge

Uy, sb .
O U,
e |wIST, ST, AT, | T

Figure 5.1: The terminal voltages of the generator and the controlled rectifier.
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- The method was introduced in [Bol 78], where it was used to analyse a synchro-
nous machine loaded with a three-pulse rectifier. In [Bol 91], Bolognani worked
the method out for the analysis of a synchronous machine with six-pulse rectifier.
In [Bol 93], the method was applied to analyse a twelve-pulse rectifier connected
to the utility grid. In this paper, the possibility of using frequency-dependent
parameters was mentioned, but it was not used.

- Hoeijmakers [Hoe 84] used this method to analyse the steady-state performance of
a synchronous machine with six-pulse rectifier. He used a machine model with
measured frequency-dependent operational inductances, which did not only
represent the copper loss, but also the iron loss in the rotor.

- In [Pol 96], the same was done for a permanent-magnet machine with six-pulse
rectifier. Here, the measured frequency-dependent operational inductances
represented the overall loss in the generator caused by the time harmonics of the
stator currents. The iron loss caused by the fundamental time harmonic of the stator
currents and the field of the magnets was not calculated. Differences between the
direct-axis and the quadrature-axis operational inductances were neglected.

This calculation method is used in this thesis because it has two important advantages.

1)  Itis capable of using frequency-dependent parameters. This is necessary, because
in the derived machine model, the effects of space harmonics and eddy currents in
the magnets are represented by frequency-dependent parameters.

2) The steady-state performance can be calculated without considering the transient
interval. Another frequently used calculation method is simulation in the time
domain using numerical integration. With this method, the steady state is usually
reached after the simulation of a transient interval.

Two disadvantages of the calculation method used in this thesis are the use of large

matrices and the use of an iteration process to determine the angle of overlap, as will

be explained later in the chapter. However, the advantages are considered decisive.
To use this calculation method, it is necessary to split the machine terminal voltages

into voltages across so-called external inductances L, and so-called internal voltages e,.

In this way, figure 5.1 changes into figure 5.2. In this figure, the thyristors are also

replaced by switches, as will be explained further. The internal voltages are given by

| | | Y :
e (T (T, (T, 1 Y

Uge

e, Le i (L. (T. (T |

Figure 5.2: Model of the generator with rectifier with external inductance.
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g, (5.1)
¢ dt

Bolognani does not explain how to choose the value of the external inductance. This
choice is also discussed in this chapter.

e =u-L

QOutline of the chapter

Firstly, section 5.2 describes the controlled rectifier and the use of Fourier series in
this chapter. Next, in section 5.3, the phase currents are calculated for the case where
the self-inductance in the direct-current circuit L, is infinitely large. Subsequently, in
section 5.4, the phase currents are calculated for the case where the self-inductance L,
is finite. From this, the voltage across the direct-current circuit u, and the current in
the direct-current circuit . can be calculated, which is done in section 5.5. Section 5.6
deals with the choice of the external inductance L,. Concluding remarks are made in
section 5.7.

Assumptions and starting-points
In this chapter, the machine model derived in the previous chapters is used. Therefore,
the assumptions used in those chapters are also used here. Furthermore, this chapter is
based on the following assumptions.
- The current i, flows continuously: it is always larger than zero.
- The thyristors can be modelled as ideal switches, as illustrated in figure 5.2.
- The angle of overlap u is assumed to be smaller than or equal to /3.
- The system is in steady state.

5.2 Rough description of the generator with controlled rectifier load

Firstly, subsection 5.2.1 briefly describes the operation principles of a controlled
rectifier. For a more extensive description of the operation of rectifier circuits, see other
books, for example, [Hof 86]. Subsequently, subsection 5.2.2 introduces the Fourier
series which are used in the calculation method.

5.2.1 The operating principles

This section generally describes the operation principles of a controlled rectifier and
it introduces some quantities which are used in the rest of the chapter.

In section 5.1, it was assumed that the system is in steady state. Therefore, it is
enough to consider one period of the fundamental time harmonic; each period is a
repetition of the previous one. In this chapter, the interval -m/3+a, < Wyt <5m/3+a,
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(where a, is the delay angle) is considered.

Figure 5.3 depicts a sketch of the three no-load line voltages and the three phase
currents of the rectifier-loaded machine. On w,t=-7/3, the no-load line voltage
€pac =€pg €, Decomes larger than zero. On @,f=-m/3+a, thyristor 7, is fired and the
current starts commutating from phase c to phase a. Often, the terminal voltages lag the
no-load voltages, so that the terminal line voltage is still negative on W f=-m/3.
However, thyristor 7, is only fired if the terminal line voltage u, =u -u_ is positive
on the firing moment. The angular duration of this commutation is . In figures 5.3 and
5.4, this interval has number 1. After the commutation has finished, the current flows
through the phases a and b, as can be seen in interval 2 of figures 5.3 and 5.4. Each
/3, a thyristor is fired on a moment @, after the zero-crossing of one of the no-load
line voltages. The sequential order of triggering is T, - T - T; - T, - Ts - T,. In this way,
a period is divided into twelve intervals, the beginnings and the ends of which coincide
with the beginnings and the ends of the commutations. Figures 5.3 and 5.4 depict the
twelve intervals. Table 5.1 mentions the twelve intervals and exhibits which thyristors
are conducting during these intervals, which are also used in the rest of the chapter.

It should be noted that the delay angle a, is here related to the no-load voltage,
which is directly related to the rotor posmon as can be seen in equation (3.16). This
introduction of the delay angle @, is different from the usual introduction of the delay
angle or the firing angle. Usually, the delay angle is defined as the angle by which the
starting point of commutation is delayed by phase control in relation to rectifier
operation without phase control. Therefore, the delay angle is usually related to the
terminal voltages. However, here, the delay angle @, is related to the no-load voltages.

123456789101112

—+— + ~—> 0, !
/3 0 n o !
Figure 5.3: Sketch of the three phase currents (—) and the no load line voltages (--) of
the PM machine with rectifier load.
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Figure 5.4: Sketch of the current paths during the twelve intervals of a period.

Table 5.1: The twelve intervals of a period with the conducting thyristors.

interval number time interval conducting thyristors
1 1 1 T,, T T,
———< - 1 5 4
@, TS @ <@ o d
2 1 T T,
Llr< 1 4
Q- TS Ot<a,
3 a,< 01<a,u T, T, T,
4 1 T, T,
< 1 1
=< w1t<ap+3'rr 6
5 1 1 T, T T,
o Swr< Q2T 31 6
6 « +;.L+l7r< W t<a -+l T Ty
P 3T T 1 P 3
7 2 2 T T, T
Qo sSwir< A 3 2 76
8 a +,u+3'rr< W t<a -+ I, T,
P 30 = 1 P
9 QTS Wt <a T, T, T,
10 4 T. T
< s 5
QT < w1t<ap+37r 2
1 o +irswt<a prin T Tp T,
p 3 T 1 P 3
12 4 s T. T
LT < + 5 4
QAT S Wt <o 2T
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5.2.2 The use of Fourier series

In this chapter, Fourier series are used in another way from that in chapters 2 to 4,
and in a way slightly different from usual. Therefore, the Fourier series used in this
chapter are briefly described in this subsection.

If f(¢) is a periodic function of time with period T=2m/w,, it can be written as a
Fourier series:

1) = Ly 7 ehor (5.2)
2"
where the Fourier coefficients fn are calculated as
2x+T .
£, = 3 [fe e (5.3)

t=x

This introduction of Fourier series and Fourier coefficients slightly differs from the
usual definition: the factor 1/2 in equation (5.2) and the factor 2 in equation (5.3) are
added to the usual definition. The different introduction is used here because in this way,
the Fourier coefficients are equal to the complex amplitudes of the harmonics.

Furthermore, a useful property of Fourier series is that if f(?) is a real function,

'£n=£zn

is valid, where f, is the complex conjugate of f.
Using this form of Fourier series, the set of no-load voltages of equation (3.82), the
set of stator currents of equation (3.84), and the set of terminal voltages of equation

(3.89) during steady-state operation with rectifier load are written as

(5.4)

1 1
e =1 f: 5 g iEn Doy e‘jf" PP (AT ej%" (5.5)
(N Qp,ﬁnq gp,6n+1
= .4 .4
—j=ar j=m
3 e 3 J
1 1
] . .
L SN R CEY It PP o W (5.6)
§ 2 e “s,6n+1 Ls,6n+1
= 4 4
(5] i CJS‘"
1 1
7 -1 i IS e LT e P R (5.7)
s 2 ot Ts6n+l us,6n+1
=" 4 .4
]?7" ej;‘n’
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The internal voltages are also written as Fourier series. This is done by substituting the
Fourier series for the stator currents (equation (5.6)) and the terminal voltages (equation
(5.7)) in the equation for the internal voltages (equation (5.1)). Furthermore,
Lzs,6n+1=ép,6n+l+z6n*1£s,6n+1 (equation (4.80)) is used for the Fourier coefficients of the
terminal voltages. The result is

1 1
1 = jn+yw s 'jE‘"' j6n+1)w ¢ j'g'"' (5 8)
5 o= J 1 3 et K ¥la's .
€ 2 E és,tSmle © gs,6n+1e
n=-% .4 .4
J;ﬂ' ej;ﬂ

where the Fourier coefficients of the internal voltage are calculated as

€ g1 = 1 Lt Lot Z, i = Ly im0 L, (5.9)

5.3 An infinitely large self-inductance in the direct-current circuit
5.3.1 Introduction

In this section, the machine current is calculated for the case where the self-
inductance in the direct-current circuit L 4 18 infinitely large. In this case, the current
in the direct-current circuit i, is constant; the magnitude of the current is I P

To determine the steady-state performance of the rectifier-loaded permanent-magnet
machine, the voltage equations of the machine have to be combined with the switching
pattern of the rectifier, and the resulting (differential) equation has to be solved. This
section describes a method for doing so.

An ideal calculation method would use all known quantities to determine the
unknown quantities. Thus, the ideal calculation method would use the machine
parameters, the no-load voltages, the delay angle @,, the voltage U, and the resistance R ”
to calculate the phase currents and the angle of overlap. However, the calculation
method used in this section is not ideal: it uses the machine parameters, the no-load
voltages, the delay angle @, and the angle of overlap to calculate the phase currents and
the current i, . So, the calculation method needs the unknown angle of overlap as an
input, and it can not use the known voltage U, of the voltage source as an input. This
causality problem is solved by means of an iteration process. Firstly, the calculation is
done with an arbitrary value of the angle of overlap. If the resulting constant component
of the voltage u,_is smaller than the calculated voltage across the resistance R 4 Plus
the voltage U, (u 20 <14 R+ U,), the angle of overlap is decreased and the calculation
is repeated. If the resulting constant component of the voltage u, is larger than the
calculated voltage across the resistance R 4 Plus the voltage U, b (U 4e0> L4 R+ Up), the
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angle of overlap is increased and the calculation is repeated. In this way, the correct
value of the angle of overlap is obtained by means of an iteration process.

When the direct-current circuit contains a current source with a constant current, a
comparable iteration process may be applied. This is not worked out further, because it
is not used in this thesis.

In subsection 5.3.2, the equations describing the machine and the direct-current circuit
are combined with the switching pattern of the rectifier. The result is an equation for the
time derivative of the current i ,. From this equation, the Fourier coefficients of the
phase current are calculated in subsection 5.3.3.

5.3.2 Forming an equation for the time derivative of the phase current

In this subsection, an equation for the time derivative of the current of phase a i_, is
formed. This is done, because it appears from the references mentioned in section 5.1
that this equation can be solved. The angle of overlap has a value determined by the
iteration process.

Figure 5.5 depicts the circuit during interval number 1. The switches that do not
conduct are omitted, and the layout of the circuit is changed to obtain planar meshes.
Furthermore, the elements of the direct-current circuit are replaced by a current source
with a constant direct current [, .

The time derivative of the current i, is determined by solving the mesh equations,
which prescribe that the sum of the voltages of a mesh are zero. For the circuit of figure
5.5, it is enough to consider the mesh equation of the mesh which includes phase a:

di di
esc+LeE”--Lel-em =0 (5.10)
Furthermore, an extra equation is valid for this circuit:
I e Y (5.11)

6 ) ~— |Tl T5 +
= + A
€., Le Lsa
£\ -~ <
L T “ae Slld‘
e s
sc
{ ) YV, <
esb+ Le Lsb T4 -

Figure 5.5: The circuit during interval number 1.
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Substituting this equation in equation (5.10) results in an equation for the time derivative
of the current i ,:

di
2L = ey, (5.12)

In the same way, the time derivative of the current i, during the other intervals can
be determined. The results are given in table 5.2. During the intervals 2, 3, 4, 6, 8, 9,
10, and 12, the current i, is constant so that its time derivative is zero.

To form an equation for the time derivative of the current i, which is valid during
the whole period, the pulse function p is introduced. This pulse function p is one during
interval number 1, and zero during the rest of the period:
. 1 for -m+a < w t<-lmra +p
pof) =4, o b oo (5.13)

or —;71'+ap+p. Swi< ;'rr+ap
With this pulse function and table 5.2, the time derivative of the current i, can be
written as

di
= = (esc-esa)(P(mlt)'Pp(wlt_w)) * (esb—em)(p(&)11“‘32-77')"'}7((011‘—%17)) (514)

2L, o

Table 5.2: The time derivative of the current during the 12 intervals of a period.

interval number pulse function that is one ol di,
‘de

1 p(o,t) €sc™ Csc

2,34 - 0

5 p(® 1,_%.,,-) €~ €sc

6 - 0

7 p(w,t-7) €sc ™ Ese

8,9,10 - 0

11 p((olt-%‘n') €5 s

12 - 0
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5.3.3 Solving the Fourier coefficients of the phase current

In the previous subsection, an equation was derived for the time derivative of the
current i ,, namely equation (5.14), which is solved in this subsection. This is done by
substituting Fourier series for all functions in the equation. The resulting equation can
be solved for a finite number of harmonics.

The pulse function p introduced in equation (5.13) can be written as a Fourier series:

p(og) = = Z pe”" (5.15)
where the Fourier coefficients p, are calculated with equation (5.3) as
-vr/3+a vt . o
B, == [ ™oy = LT Ve (5.16)
n 27r nfiva 1rn

It should be noted that the Fourier coefficients of the pulse function p can only be

determined because the angle of overlap has a value determined by the iteration process.
The Fourier series for the current, the internal voltages and the pulse function p

(equations (5.6), (5.8), and (5.15) respectively) are substituted in equation (5.14):

= E (2](6n+1)<,) LeL i i oy_ 2j(6n+1) LeL - -1(6,”1)(,,1,)

n-—au

= % i ( 3 6'”1(6 -j%ﬂ_l)ej(&Nl)(')l‘*_é‘:s’l”.(ej%w_l)e _j(6"+1)“’1')

- ¥ B (1veimye e (5.17)
n=-o0

1 w 2w j(Gn+)a e j2m -j(6n+l)o

Z,.z;( ssml(e ’ 'l)e l‘”f;am(e ’ '1)6 :

- 2
Y B (e Terer

n=-o

The multiplications of the series on the right side of this equation results in

E (](6n+1)m LJ_ ont® N RIS j(6n+1)w L,_,L ot ‘l(ﬁml)wlt) 21 E ooy

" 44
°° s tymle 7o 7 )e ST I5T (5.18)
.m;¢ (é&ﬁmﬂﬁk-am-l(hej(k o 1)”){6 3 -1+(e ? —l)e 3 }
-j (ke + 3_"
* merP k+6m+1(1+ej(km+l)"){e 3 1+( —l)e Wesbm1)3 })
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When the right side of this equation is worked out, it appears that the harmonics of
which the harmonic number is an integer multiple of 2 or 3 are zero. This could already
be expected, because the left side of this equation does not contain these harmonics
either. Furthermore, this equation must hold for each time harmonic. By substituting
k=6n+1 on the right side of this equation, an equation for a series of Fourier
coefficients is obtained:

_ .3 . A . iy
j(n+l)w L'-"s6n+1 = —Em;» (Qs,Gm+lp6(n-m)+és,ﬁmde 3 ps(mmyz) (5.19)

By substituting k=-(6n+1) on the right side of equation (5.18), an expression for
another series of Fourier coefficients is obtained:

= (. A . Sl
“j(6n+yo L L oone "%mgw (Qs,ﬁm+12—6(n—m)+gs,6m+lp _(Emmy2)” ’ ) (5.20)
This equation is the complex conjugate of equation (5.19), as can be seen when it is
taken that g =p’,, which is valid because the pulse function p is a real function (see
equation (5.4)).

That these equations are each other's complex conjugates, means that if one of the
equations is solved, the solution for the other is also known. Therefore, it is sufficient
to solve one of these equations. Here, equation (5.19) is solved.

The Fourier coefficients of the internal voltage in this equation are substituted by
equation (5.9):

j(6n+1)co Li,.
1 (5.21)
A% * [ J T
) E (( € smor igomen sﬁlml)26(n-m) ( 6m01+zi,6m+lLs,6m+1) 26(n+m)+2)

All unknowns in this equation (the Fourier coefficients of the phase current) are
transported to the left side of this equation:

3 - ( . . i N )
j(6n+1)w Le_ el Em;eo Zi.ﬁln'lp6(n-m)Ls,6rn+1+Zi,ﬁmﬂe Py nmybsomn

(5.22)
3 E i)
I &y bmot 6(n-m) gp,6m+l 26(n+m)+2
After introducing
_ JienDw,L, for n=m (5.23)
nm 0 for n#m
b 3 (5.24)

an = 5% maPsem)
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-3z o (5.25)
Com = 3iomeiPomy2® '
--2 2 ( e p j%"] (5.26)
6m+1 6(n-m) " p,6m+t 6(mm)+2 ’
equation (5.22) can be written as
E (@ 8y e Cnagme) = 4, (5.27)

ms=-o

This equation contains the Fourier coefficients of the current and their complex
conjugates. It can be solved by splitting these Fourier coefficients into real and

imaginary parts. Using

fal .
Liomes = ¥m*Wm
this can be written as a set of equations:

m=-co

m=-co

(Re(a +h +C )x +Im(—4 —b +C )ym) Re(dn)

E (1111(4 +h +C )x +Re(g_ +Ig -C )ym) Im(dn)

(5.28)

(5.29)

For a finite number of harmonics, m,n=~N,.,N, this is a set of 4N+2 equations with

4N+2 unknowns, which can be written as a matrix equation:

T

L] [Re@,)
4 .
Al 1 1,4N+2 xN i Re(dN)
A v -N Im(d.N)
4N+2,1 4N+24N+2

where
A N+1+n N+1+m = Re(g-"m+bnm+cm)

AN+1+n,3N02+m = Im(_g'nm_bmn+cmn)
Asyizmneom = I, b +c )

A3N+2+n,3N+2+m = Re(a'nm+hnm —cnm)

(5.30)

(5.31)
(5.32)
(5.33)
(5.34)

From this matrix equation, x,, and y,, can be solved. When x,, and y, are solved, the
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Fourier coefficients of the current follow with [ s.6ms1 =Xm*1Y (equation (5.28)). Using
the Fourier coefficients of the current, the Fourier coefficients of the terminal voltages
can be calculated by means of & ,., = Ap,6n+1+l6n¢1£s,6n+1 (equation (4.80)).

Although this solution may be very accurate, it remains an approximation, because
only a finite number of harmonics can be considered.

It should be noted that the equation for the time derivative of the phase current could
only be solved in this way because the angle of overlap had a value before the
calculation started.

5.4 A finite self-inductance in the direct-current circuit

5.4.1 Introduction

In this section the current is calculated for the case where the self-inductance in the
direct-current circuit L, is finite. In principle, the method used is the same as in the
previous section. However, the equations are much more complicated because the current
in the direct-current circuit i, is not constant. Also, the iteration process to the correct
value of the angle of overlap is different.

As in the previous section, an ideal calculation method would use all known quantities
to determine the unknown quantities. It would use the machine parameters, the no-load
voltages, the delay angle a,,, the parameters of the direct-current circuit, and the voltage U,
to calculate the phase currents and the angle of overlap. However, the calculation
method used in this section is not ideal: it uses the machine parameters, the no-load
voltages, the delay angle «, the parameters of the direct-current circuit, the voltage U, ,
and the angle of overlap to calculate the phase currents. So, the calculation process
needs the unknown value of the angle of overlap as an input. There is only one correct
value for the angle of overlap. When this correct value is used, the output voltage of the
rectifier u,, fits to the parameters of the direct-current circuit and the voltage U,. When
another value is used, the calculation method produces nonsense: the output voltage of
the rectifier #, does not fit to the parameters of the direct-current circuit and the
voltage U, . The consequence of this is that the current i, is not zero during the time
phase a does not conduct (during the intervals 6 and 12 in figure 5.3).

This problem is solved by using an iteration process. Firstly, the calculation is done
with an arbitrary value for the angle of overlap. If the calculated current i, during
interval number 6 is smaller than zero, the angle of overlap is increased and the
calculation is repeated. If the calculated current i, during interval number 6 is larger
than zero, the angle of overlap is decreased and the calculation is repeated. As the value
of the current i , during interval number 6, the current in the middle of this interval is
used. This is done because in the middle of the interval, the Gibb's phenomenon
[Kwa 91] is smaller than at the borders, and therefore the numerical accuracy of the
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calculation is better. Writing this current as a Fourier series as in (5.6) results in

. had a J(6m+1)(—1r+a ) RPN -j(6m+1)(i—n-+a WL )
1 [_(_TT+ )] E (Ls,6m+le IJ’ L_g,ﬁmde L 2“) = 0 (535)
m=—m

In subsection 5.4.2, the equations describing the machine and the direct-current circuit
are combined with the switching pattern of the rectifier. The result is an equation for the
time derivative of the current i ,. From this equation, the Fourier coefficients of the
phase current are calculated in subsection 5.4.3.

5.4.2 Forming an equation for the time derivative of the phase current

This subsection describes the derivation of an equation for the time derivative of the
current of phase a i,

The determmatlon of the time derivative of the current iy, if the self-inductance L,
is finite is much more difficult than if this self-inductance is mﬁmtely large. For mterval
number 1, this determination is given. For the other eleven intervals, the time derivative
of the current i, can be determined in a similar way.

Figure 5.6 depicts the circuit during interval number 1. The switches that do not
conduct are omitted, and the layout of the circuit is changed to obtain planar meshes.
The time derivative of the current i, is determined by solving the mesh equations. For
the two meshes of figure 5.6 a set of two equations results:

L % di, ~di,
e_+
SC dt dt sa

-0

5.36

dl . di di ( )
esb+Le?+Ub+Rdctdc+L ?—L ?—e =0

Furthermore, two extra equations are valid for this network:

{’.x ~ Tla Tl (5.37)
Iy =gy

These equations are substituted in equation (5.36).
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From the result, the time derivative of the current i, can be solved as

di _ de(esc_esa) +esb+esc'zesa+Rdcisb+Ub

sa

‘&t L,3L,2L,) 3L+2L,

In the same way, the time derivative of the current i, during the other eleven intervals
can be calculated from the mesh equations. The results are given in table 5.3. It can be
seen that this table becomes equal to table 5.2 if the self-inductance L, is made
infinitely large.

To form an equation for the time derivative of the phase current i, which is valid
during the whole period, the pulse functions p and 4 are used. The pulse function p was
introduced in equation (5.13). The pulse function # is introduced here, it is one during
interval number 2, and zero during the rest of the period:

(5.38)

1 for -im+a tu<wt<a
h(w,f) = o o (5.39)
0 for a, < wt<Imra,
The following inductances are introduced:
L =2L|1 L, (5.40)
= +
1 e Zde .
L,=3L,+2L, (5.41)
L3 = 2Le+de (542)

With these inductances and table 5.3, the time derivative of the current i, can be
written as

disa esc_esa esb+esc-2esa+isdec
—_— = + w . H+p(w. t-
b T o p(om)
+ esb_esa+isdec
L3
epte, 2, 24 R, / 1 _4
e e e -y p(o -4
+ €€ _isaRdc
L3
+ ( €p €5 . esb+esc—2esa+i:cRdc

{h(w)+h(w,t-m))

(h(wlt—-;-w)m(wlt—%w)} (5.43)

e S o)
U,
+ -L_:(p( W,1)-p(w 1t“1T)+2P( w lt—%ﬂ)—ZP( w 1"%"”’( @ lt_%n.) 7 wlz—%rr))

U
+ z's(h(wﬂ)-h(w J-m)+h(® 1t-—;—'rr) -h( wlt—gﬂ-))
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Table 5.3: The time derivative of the current during the 12 intervals of a period.

h(w,t-2m)

interval pulse function di,
number that is one dt
1 p ( ® lt) L dc(esc_ esa) esb+esc 2esa sdec+ U
L(L2L,) 3L,+2L,
2 h( w 1t ) esb—esa+isbR dct Ub
2L L,
3 p(colt—é':r) Esp* ey 28520 R 4 *2U,
3L +2L
4 h((l) U "-:l;'ﬁ') esc_esa_isaRdc+ Ub
2L ,+L,,
5 p(w 1t‘%’17) L dc(esb_esa) + CsptCsc” ~2e +lscRdc+ Ub
L(3L+2L,) 3L 2L,
6 h(w,t-2m) 0
7 p ((")lt_w) dc(esc sa) + € +e Zesaﬂsdec_ Ub
e(3L e+2L dc) 3L e+2L de
8 h( (")lt—w) sb esaﬂs dc”
2L +L,,
9 P( wlt—gv-r) €€ 285,21, Ry ~2U,
3L +2L
10 h((olt"-}’ﬁ') escnesa—isaRdc_Ub
2L +L,
11 p((o It—g’ﬂ) L dc(esb—esa) + bt esc 2esa+lscR U
L, (L2L,) 3L ,+2L,,
12 0
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5.4.3 Solving the Fourier coefficients of the phase current

In the previous subsection, an equation was derived for the time derivative of the
current £ ,, namely equation (5.43), which is solved in this subsection. This is done by
substituting Fourier series in the equation. The resulting equation can be solved for a
finite number of harmonics. The structure of this solution is the same as in subsection
5.3.3, but the equations are much larger. Therefore, a part of the derivation has been
moved to appendix E.

The pulse function 4 of equation (5.39) can be written as a Fourier series:

<

h(w,f) = % Y A et (5.44)
n=-
where the Fourier coefficients i_in are calculated with equation (5.3) as
R 2 ap . . . ‘jﬂ(‘lﬁ'*}&)
E -2 [ oMoy - devfie M) (545)
n 21r~1r/3+a w ™

Equation (5.43) is worked out by substituting the Fourier series for the pulse functions,
the currents and the internal voltages. This is done in appendix E. The resulting equation
is given by

j(6n+ 1)(;.)1£S,6m1

-jtar
+ E 3p Ziont , igm Rac +h 3'Z‘i,5m+1+Rdc(1'e ’ )
s 6m+1| T 6(n-m)  J ) L2 6(n-m) L

m=-co

3

1 .n, .
i i [ el gna® T WR
5,6m+1 6(n+m)+2 L 1 L2 6(n+m)+2 L3 (5 46)
_ 3 cigm 1(, -
20fBype ™ th—s(l ’ )]
- 1.3 1
3m:_& { s, 6m+1[ﬁ6(n-m)[ L, +L—2)+Eﬁ(n-m)z3-J
* ~ 1 ]lﬂ ~ 1 _Jl‘”
+ép,6m+1(‘26(n+m)+2L_le T <5(n+m)+2L_3e ’ )}
After introducing
j(6n+1)w for n=m
¢ = 1 (5.47)
nm 0 for n#m
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_jz,,
b o-3p |G, i Re| 3Z.-,6m+1+Rdc(1‘e ) (5.48)
nm 6(n-m) L, L, 6(n-m) L 3
=1
* * _]-"_'
c =3 Zi,ﬁrn+l - R_dc igm +h 3Zi,6m+le " iV3R,, (5.49)
nm ¢z 6(n+m)+ Ll L2 6(n+m)+2 L3
3 o 1, -
d = 2Ub[ﬁ6n+11—ze Vb, 1L, (1+e } ))
- 1 3)., 1
-3 —t— — 5.50
mg_:w ep,ﬁrml(ﬁﬁ(n—m)( L1+ L2]+h6(n—m) L3) ( )
o 1 i . 1 -igm
+€;,6m¢1(p6(n+m)+2L_le ’ +h6(n+m)+2L_3e ’ )}
equation (5.46) can be written as
2 ((a- b )L 5,6m+1 nmi:&m-l) = dn (5.51)

m=-o

Except for the value of the coefficients in this equation, the equation is equal to that in
the previous section (equation (5.27)). The Fourier coefficients of the current can be
solved in exactly the same way. Therefore, this solution is not repeated here.

5.5 The quantities in the direct-current circuit

In this section, the current i, and the voltage u 4 are calculated from the Fourier
series for the currents and the voltages derived in the previous sections.

5.5.1 The current in the direct-current circuit

Using the pulse functions p and h, the current in the direct-current circuit i 4 can be
written as

iy = —im(p(mt—%w)%(wt—%w)—p(wt—%w)—h(wt—%v))
i (p(wt-m)+h(wt-m)-p(wt)-h(wt)) (5.52)
-z‘x(p(m—gqr)+h(m—§1r)—p(mt-gw)-h(m—gqr))

The stator currents and the pulse functions p and 4 in this equation are replaced by their
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Fourier series, equations (5.6), (5.15), and (5.44) respectively:

1 « _|(6n+l)m1t o -j(6n+1)w,t
Z E (56n+1 +Lsﬁn+1e )
n=-c0
1
E @, )(1 e hmye et
n=-~oo
1 > -j3m o 6oy, o jim —j(5n+1)mlr)
Z Z (S,Gml +l‘s,6n+1e e
n=-e - (5.53)
. - _p Cjpmy o —jp jnwyt
Y @, h,)1-e e e
_1 - “J"‘"' J(6n+1)m1t r ; J(6n+1)m1r)
Z E (s6n+1 +Ls,6n+le c

=—00

b

Y @, 46 )(1-e Fmye TN
n=-c
The multiplications of the series on the right side of this equation can be worked out to

i 1 - A o
e Z ; E {s,&n+1(2k,6m_l+hk_6m_1)(1—e j(ke-6m-1) )

-(e -j(ke- 6m-l);1r+e -j%ﬂe k-t g -jgwe -j(k—6m-l)§-n-)
(5.54)

[l
L

-j(k+6m+1Yy
s,6m+1(pk+6m+1 “k+6m+ 1)(1 ° ‘”)

s 1 . -4 : 5
'(C J(k+6m+l)?‘ﬂ'+e J;"'e _j(k‘,&nﬂ)ﬂ.*—e J;‘ﬂ'e ](k+6m+1)§'"')}

When this equation is worked out further, it appears that the current i, only has
harmonics of which the harmonic number is an integer multiple of six; the other
harmonics are zero. This could already have been expected, because this current is
periodic with angular period /3. By substituting k=6n, the current i, can be written
as the following Fourier series:

.1 - bnay |
tae = 5 2 bye® ’
(5.55)

£ 3 = (f‘ a ~ J%’” ~x R ~ -j%‘lr)
de,ﬁn T mg_:w l‘s,ﬁmfl (26(n-m)-1+h6(n—m)-l)e +Ls,6m+1(26(n+m)+1+h6(n+m)+l)e
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5.5.2 The voltage across the direct-current circuit

The voltage across the direct-current circuit 4, can be calculated in a way
comparable to the calculation of the current i, :
uy = (uw—ux)(p(wt--;-7r)+h(wt—%w')—p(wt—%ﬂn-)—h(mt-%q:))
(U ) p(@t-m)h(wt-m)-p(w)-h(wh) (5.56)
(U p(t-2m)th(wt-2m)-p(wt-2m)-h(wt-2m)

The stator terminal voltages and the pulse functions p and £ in this equation are replaced
by their Fourier series, equations (5.7), (5.15), and (5.44) respectively:

u, = %‘._ng ( 16”*1(1 e 3 ) i(en+lyoqt 0 (1 e’ ) -_|(6n+1)wlt)

E ([2 +h )(1 e‘J"‘rf)e in ejﬂ(olt
ne=—c
1 had -jl‘n' i(6n+1 R JL". e
Z E ( SGI‘HI( ? —l)e}( )mlt+ﬁs,6n+1(e ? ‘1)6 j(6n 1)01')
h . (5.57)
. a ~ _ i o jm.) .
nZ; (E"+hn)(1 e Me e !
2

- ( g 'i;") Do o ( 5 i%") im0yt
— - +17 - 1
4 E s6n+1 © © us&ule ¢ ©

n=-c

ll

E ®,h,)(1-¢ Imye Ve

n=-o

The multiplications of the series on the right side of this equation can be worked out to

Hae -l e > {Qs&m1(2k-sm-1+ﬁk-&n-1)(1—e eemtim)

4 k=-o m=-o
%\ -ik-6m-1)1 .y . i3 27\ 5 -ni
-((l-e js‘n')e j(k-6m 1);4r+(e Jaw-l)e -](k-6m-1)rr+(e jsvr-e )Jw)e -j(k~6m: 1)37:-)
(5.58)
ak - —j(k+6n|+1
+us,6m+1(lzk+6m*l+lik+6mtl) (1 ¢ )’ﬂ’)

((1 e i ) e -jkrbme1) L +( e j%"-l)e -j(k+6m+1)1-,-+(e i}w_c j—j—w)e -j(k+6m+1)§n)}

As was the case in the previous subsection, and as expected, when this equation is
worked out further, the voltage u, appears only to have harmonics of which the
harmonic number is an integer multiple of six, the other harmonics are zero. By
substituting k=6n, the voltage u,. can be written as the following Fourier series:
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1 - 6nmt .
dc i E J I§
nem® . A (5.59)

% 1
o J§T | o o ~ i
Z ( 5,6m+1 6(n-m) -1 E6(n-m)~l)e +u‘s,6m-l (26(n+m)+1+h6(n+m)+1)e

5.6 On the choice of the external inductance

This section deals with the choice of the external inductance L,. [Bol 80], [Bol 91],
and [Bol 93] do not discuss this choice, suggesting that it is free. Hoeijmakers [Hoe 84]
says that the external inductance should be chosen as equal to the subtransient
inductance of the synchronous machine. He noticed that this produced the best numerical
accuracy, but he did not explain why. Here, an explanation of this choice is given, which
was already published in [Pol 96].

The external inductance L, should be chosen as equal to the commutation inductance.
The commutation inductance is the inductance opposing the transfer of current from one
phase to another during a commutation. In a rectifier-loaded machine, the commutation
inductance is the inductance experienced by the important higher time harmonics of the
current. It is approximately equal to the leakage inductance L in a machine with a
damper cylinder, and to the sum of the inductances L, and the leakage inductance L,
in a machine without a damper cylinder (compare figure 4.15a). Generally, this
commutation inductance is equal to the subtransient inductance used in [Hoe 84].

It is sensible to choose the external inductance equal to the commutation inductance
for the following reason. The terms Z, 4.1 (introduced in equation (5.9)) and the terms b,..
and ¢, (used in equations (5.27) and (5.51)) become very small for the important time
harmomcs Therefore, the matrices in the matrix equations used to solve the Fourier
coefficients of the current (the matrix equations (5.27) and (5.51)) become mainly
diagonal. This improves the numerical accuracy of the calculation process.

This choice also has physical meaning: the jumps in the terminal voltage caused by
commutation are included in the voltage drop across the external inductance L ¢» and the
internal voltage &, becomes a smooth function of time. In the extreme case that
Z, 6,1 =0 is valid for all frequencies, the internal voltage €, becomes equal to the no-

load voltage &,.
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5.7 Concluding remarks

In chapters 2 to 4 a model of the permanent-magnet generator has been derived. In
this chapter, this machine model has been combined with a model of the controlled
rectifier. The resulting equations have been solved with a calculation method which
calculates the steady-state performance of the rectifier-loaded machine.

In the modelling of the rectifier and the derivation of the calculation method, it has
been assumed that
- the current in the direct-current circuit i, flows continuously,

- the thyristors can be modelled as ideal switches, and
- the angle of overlap p is smaller than or equal to 7/3.

The derived calculation method solves the equations in the frequency domain using
Fourier analysis. Two important characteristics of this method are
- frequency-dependent machine parameters can be used; and
- the steady-state performance can be determined without considering the transient

interval.

Furthermore, this chapter has shown that the external inductance L, should be chosen
equal to the commutation inductance.

In the next chapter, the complete model of the rectifier-loaded generator will be
verified experimentally.
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Chapter 6

Experimental verification of the
model of the generator with rectifier

6.1 Introduction

Objective

In chapters 2 to 4, a model of a permanent-magnet generator was derived. In chapter
5, this model was combined with a model of the rectifier. The objective of this chapter
is to verify the combination of these models experimentally. In the next chapter, it will
be shown that the model derived can be used to optimize the generator design.

The verification of the complete model of the rectifier-loaded generator is done by
comparing measured and calculated voltage and current waveforms. Figure 5.1 depicts
the circuit in which the voltage and current waveforms have been measured. The
permanent-magnet machine used in the experiments is the servomotor, which was also
used for the locked-rotor tests described in subsection 4.4.5.

For the comparison of measured and calculated waveforms, the line voltage
Ugy,=Uy -u , and the phase current i, are used. The direct-current circuit quantities, the
current i, and the voltage u, , are not used, because they may (nearly) directly be
derived from parts of the phase currents and the line voltages.

In this chapter, there are differences between measured and calculated waveforms, as
is always the case. Because these differences may have various causes, it is difficult to
explain them. They may be caused by shortcomings of the machine model, by
shortcomings of the model of the rectifier, and by measuring errors. In order to improve
understanding of the causes of these differences, a second machine model is used,
namely a machine model based on measured operational inductances. So, in this chapter,
two machine models are used and verified, namely the machine model derived in
chapters 2 to 4 and the machine model based on measured operational inductances.

The calculations have been done both considering the real self-inductance L 4 and
assuming an infinitely large self-inductance L, in the direct-current circuit. In this way,
the usefulness of the calculation assuming an infinitely large self-inductance can be
investigated for situations with a finite self-inductance.
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Outline of the chapter

Firstly, in section 6.2, the machine model based on measured operational inductances
is introduced. Subsequently, section 6.3 deals with four experiments with different values
of the self-inductance in the direct-current circuit L, and with different values of the
delay angle a,.In section 6.4, some conclusions are drawn.

6.2 Machine model based on measured operational inductances

This section gives a brief description of a machine model based on measured
operational inductances. This model has been published in [Pol 96]; for a more extensive
description, see [Hoe 84].

This section is structured as follows. Firstly, subsection 6.2.1 introduces the machine
model based on operational inductances. Next, in subsection 6.2.2, the operational
inductances are determined from locked-rotor tests. In subsection 6.2.3, the voltage
equation representing this machine model is written as a Fourier series, which can be
used in the calculation method of chapter 5.

6.2.1 Introduction of the machine model with operational inductances

This subsection introduces the machine model based on operational inductances. This
is done by transforming the stator voltage equation from the time domain to the
frequency domain, after which the operational inductances are introduced.

The machine model based on measured operational inductances is based on the
following assumptions.

- The stator winding is distributed sinusoidally; space harmonics of the magnetic
field of the stator currents are neglected.

- The iron losses in the stator are negligible.

- Nonlinear effects (such as saturation and hysteresis phenomena) are negligible.

- The resistance of a stator phase is not a function of the frequency.

In this machine model, differences between the direct-axis and the quadrature-axis

magnetic circuit can be considered [Hoe 84]. However, in this section, the difference is

not considered because it is small in the used permanent-magnet machine with surface-

mounted magnets.

For the derivation of the model, the starting point is the general equation for the stator
voltages, which was already given in equation (3.3). It was assumed that nonlinear
effects are negligible. Therefore, the magnetic flux density is a superposition of the
different contributions, and the flux linkages of the stator phases of equation (3.3) can
be split into two parts:

1) Apart l]is/ dependent on the stator currents. This part includes the flux caused by
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the stator currents, but also the fluxes caused by the rotor currents which are
induced by the stator currents. These rotor currents may be eddy currents in
magnets, eddy currents in the rotor iron, which may be solid, and damper currents.

2) A part independent of the stator currents and dependent on the excitation of the
rotor. In this thesis, this excitation is the magnetization of the magnets. The time
derivative of this part is the no-load voltage €,. In this machine model, the
measured no-load voltage is used.

With such a separation, the voltage equation becomes

i = ep+Rszs+

/
g, 6.1)

The stator quantities are rotated to the rotor-connected dg-system by means of the
well-known Park transformation [Par 29]. In its normalized form, it is given by

7 /
L epd Ugy ‘l’sd
. Ll _ = . _ - o /.,
Iyl = Pi_; € —Pep, Uyl = Pa, Yy, =Py, ;
. /
L €50 Us ¥y

) ‘ (6.2)
cos(pf) cos(p 0—;77) cos(p 0—317)

P- ’ _§_ ~sin(pf) -sin(p-2m) -sin(po-m)
12 12 L2
2 2 2
Because there is no star-point connection, the zero-components are zero and are omitted

in the rest of this section. Application of the Park transformation to equation (6.1) results
in

u e i / -
sd _ | +RS 'sd +_d_ "J_;d Q) 1l’lsq (6.3)
Ug, €pq iy dr Ve V.

The Fourier transform of this equation is
s / /
U (@) |E (@) L ()| ¥ ()| 2 ()
In this equation in the frequency domain, the fluxes can be written as functions of the
currents by introducing operational inductances:
¥ (@) =L, (@) (o)
¥/ (0) = L_(0)L ()

where L, (w) and L, (w) are the direct-axis and the quadrature-axis operational

(6.5)
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inductance respectively.
Using this in equation (6.4) gives

U @) [E )] [RjoL, (@)L )

L (@)L ()
U (@) [E ()| |RHOL (O (0)] | L (@)L (o)

This equation gives the machine model based on operational inductances. As appears
from [Par 29], [Hoe 84] and [Kra 95], machine models based on operational inductances
have been used since 1929, mainly in the analysis of synchronous machines. In this
thesis, as in [Hoe 84], the term operational inductance is used, because the operational
inductance gives a relation between the current and the flux. However, in other work,
other names may be used, such as operator [Par 29], or operational impedance [Kra 95].

It should be noted that the operational inductance is introduced as a complex quantity,
the imaginary part of which represents losses. The stator iron loss was assumed to be
negligible, and the stator resistance was assumed not to be a function of the frequency.
Therefore, the imaginary part of the operational inductances represents the rotor losses.

+pQ) (6:6)

6.2.2 Determination of the operational inductances

This section describes how the operational inductances can be determined from
locked-rotor tests. These tests were already described in subsection 3.6, and for the used
machine, the results were already given in subsection 4.4.5.

During the locked-rotor tests, {2=0 is valid, the no-load voltage €, is zero and the
voltage and the current are sinusoidal. Using this in voltage equation (6.6) results in

U ()] [RrioL, (@)L ()
U (0)] |RjoL (@) (0)

For the determination of the direct-axis operational inductance L (@), the rotor is
placed so that the quadrature axis coincides with the axis of stator phase a (p8=1/2).
A voltage is supplied to the stator phases b and ¢, which are connected in series.
Therefore, i _=-i,, and u -u =u, are valid. With the Park transformation (equation

(6.2)), the dg-components of the currents and voltages are calculated. Substitution of
these dg-components in equation (6.7) results in

U, (0) = 2R, 0L, (0),(9) = {Rfw) oL (@))L,(®) (6.8)
where the resistance R (w) and the inductance L (w) were introduced as
Ry (w) = 2Rs—2(.oIm(Ldo(w))
Ly(w) = 2Re(L , (»))

So, the determination of the direct-axis operational inductance L ,(w) comes to the

(6.7)

(6.9)

-



Experimental verification of the model of the generator with rectifier 143

determination of an impedance R (w)+jwL (w).

After placing the rotor so that the direct axis coincides with the axis of phase a
(0=0), the quadrature-axis operational inductance L 20(®) is determined in the same
way.

The same test was done in subsection 4.4.5, and the results were depicted in figure
4.18. In figure 6.1 the results are repeated. In this figure, it can be seen that the direct-
axis and the quadrature-axis operational inductance are not equal. However, the
difference between the direct-axis and the quadrature-axis operational inductance is
small, because the machine has a cylindrical rotor with surface-mounted magnets. As
mentioned in subsection 6.2.1, this difference is neglected in the calculations throughout
the rest of the chapter:

L, ()= qu(w) =L (w) (6.10)
1000 — 1000
100 100
<) <)
10 10
o o y
1 1
0.1 0.1
1 100 10000 1 100 10000
a) f (Hz) b) f (H2)
10 10

1 100 10000 ‘ 1 100 10000
c) f (Hz) a) f (Hz)
Figure 6.1: a) Resistance and c) inductance in the direct axis and b) resistance and d)
inductance in the quadrature axis,
+X,%,0,* : measured with 1,=02A, 1,=0.5A, I,=1A, 1,=2A, I,=5A,
— . values used in the calculation method based on operational inductances, and
- - 2 values calculated with the machine model derived in chapters 2 to 4.
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The value of the operational inductance L () is determined from the measured values
by taking the average of the measured values of the direct-axis and the quadrature-axis
operational inductance.

In figure 6.1, it can also be seen that the value of the operational inductance depends
on the amplitude of the current. This means that the magnetic circuit is nonlinear, as
discussed in the subsections 4.3.6 and 4.4.5. However, as mentioned in subsection 6.2.1,
nonlinear effects are ignored. The value of the operational inductance L (w) is
determined from the measurements with I, =2 A. This value is taken because the
important time harmonics of the stator currents of the rectifier-loaded machine have
amplitudes of a few Amperes. At high frequencies (above 8 kHz), measurements with
I,=2 A were not possible because the power of the amplifier was limited and because
the terminal voltages became too high for the insulation. At these frequencies, the values
measured with the largest current are used. The resulting values for the resistance and
the inductance during the locked-rotor tests (determined with equation (6.9) for the direct
axis) are also depicted in figure 6.1.

From this figure, conclusions can be drawn on the commutation inductance, which
was introduced in section 5.6. As mentioned there, the commutation inductance of a
rectifier-loaded machine is the inductance experienced by the important higher time
harmonics of the current. For the permanent-magnet machine used in the experiments,
the most important time harmonics have frequencies of 1.8 kHz or 3.6 kHz. According
to figure 6.1, the commutation inductance of the machine model derived in chapters 2
to 4 is larger than the commutation inductance of the machine model based on measured
operational inductances.

As mentioned earlier, the imaginary part of the operational inductance represents the
rotor losses. In the permanent-magnet machine, the rotor losses consist of iron loss and
eddy-current loss in the magnets. However, it should be noted that in reality a part of
the measured loss arises in the stator iron and contributes to the imaginary part of the
operational inductance.

6.2.3 The use of Fourier series in the machine model

In the subsections 6.2.1 and 6.2.2, a machine model based on measured operational
inductances was derived. This machine model is represented by a voltage equation in the
frequency domain. In this subsection, the voltage equation representing this machine
mode] is written as a Fourier series which can be used in the calculation method
described in chapter 5.

In the voltage equation in the dg-system (equation (6.3)), all quantities are replaced
by Fourier series. As explained in subsection 5.2.2, Fourier series are used in a slightly
different way from usual: the Fourier coefficients are a factor 2 larger than usual.
Furthermore, it is taken that this voltage equation only contains time harmonics of which
the harmonic number is an integer multiple of six, as follows from the Park transforma-
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tion of equations (5.5), (5.6), and (5.7). The result is

o0
d i d,6n
AP N (6.11)
.usq n=-e 5q.6n
where
[ o 5 o / /
u é L ¥ -
“sd,6n pd,6n sdon| | sd,6n 5q,6n
= +R, +j6nw, + 0, (6.12)
u é i" -m/ 111/
| sq.6n pq:6n “sq,6n 'sq,6n sd,6n

This equation is an equation in the frequency domain in the dg-system. Therefore, the
fluxes in this equation can be replaced by operational inductances multiplied by currents
(as in equation (6.6)):

~ ~

7] € L L
sdon| | “pd6n _ - sd,6n sq.6n

2 |7l +(Rpj6nwL (6nw)) " |+oL (6ne)| (6.13)
5q,6n Pa.6n l‘sq,6n l‘sd,ﬁn

In this equation, it was also taken that the direct-axis and the quadrature-axis operational
inductance are assumed to be equal, as expressed by equation (6.10).

The Fourier coefficients of this equation are substituted in the Fourier series of
equation (6.11), and equation (6.11) is transformed back with the inverse Park
transformation (the transpose of the matrix P in equation (6.2)). The resulting equation
for the Fourier coefficients of the stator terminal voltages is given by
L_ls,6n+1 - g‘\17,6rl+1+Z6n+1£s,6n+1 ; Z6n+l = R-‘+j(6n+1)w1Lo(6nw1) (614)
This equation can be used in the calculation method described in chapter 5 in the same
way as equation (4.80).

P

6.3 Comparison of measured and calculated waveforms

This section covers four experiments with different values of the self-inductance in
the direct-current circuit L, and with different values of the delay angle o,

6.3.1 Large self-inductance L, and small delay angle ,

This subsection covers an experiment with a large self-inductance L, and with a
small delay angle a, (a,=5°). For the voltage, the self-inductance and the resistance in
the direct-current circuit, U, =367 V, L, =74 mH, and R, =0.29 {} are valid.

Figure 6.2 depicts the measured and the calculated line voltage and phase current
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waveforms. In the calculations, the machine model derived in chapters 2 to 4 has been
used. The waveforms have been calculated both assuming an infinitely large self-
inductance L, and considering the real self-inductance L, . Because this self-
inductance L, is large, the difference between these calculations is invisible. Figure 6.3
also depicts the measured and the calculated waveforms, but here the machine model
based on measured operational inductances has been used in the calculation method.

In figure 6.2, the measured angle of overlap is a little smaller than the calculated. This
is probably because the modelled commutation inductance is larger than the real
commutation inductance. That a smaller commutation inductance results in a smaller
angle of overlap is shown in figure 6.3, where the machine model based on measured
operational inductances has been used. Probably, the commutation inductance of this
machine model correlates better with the real commutation inductance.

500 T T T T T T L) T I

Usba 4]

0.5 1 1.5 2 25 3 35 4 4.5 5

ia (A)

! l 1 1 i 1 1

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
t (ms)

Figure 6.2: Line voltage and phase current waveforms,

— ! measured,

- - : calculated considering the real self-inductance L, , and

.. calculated assuming an infinitely large self-inductance L, .

Calculations have been done with the machine model derived in chapters 2 to 4.
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Furthermore, from figure 6.2, it can be concluded that the measured current i, is a
little larger than the calculated current i, . This difference is probably also because the
modelled commutation inductance is larger than the real commutation inductance. That
a smaller commutation inductance results in a larger current i, is also shown in figure
6.3, where the machine model based on measured operational inductances has been used.
Again, the commutation inductance of this machine model probably correlates better
with the real commutation inductance.

The spikes on the measured line voltage at the beginning and the end of the
commutation are caused by the snubbers and by the reverse recovery in the thyristors.
The spikes on the calculated line voltage at the beginning and the end of the commuta-
tion are caused by the Gibb's phenomenon [Kwa 91]. In the figures in this subsection,
this phenomenon is hardly visible, but in later subsections, it is clearly visible.
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Figure 6.3: Line voltage and phase current waveforms,

— : measured,

- - : calculated considering the real self-inductance L ,, and using the machine model
based on measured operational inductances.
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6.3.2 Large self-inductance L, and large delay angle a,

This subsection covers an experiment with a large self-inductance L, and with a
large delay angle a, (ap=58°). For the voltage, the self-inductance and the resistance
in the direct-current circuit, U, =197V, L, =74 mH, and R, =0.29 () are valid.

Figure 6.4 depicts the measured and the calculated line voltage and phase current
waveforms. In the calculations, the machine model derived in chapters 2 to 4 has been
used. There is hardly any difference between the calculations assuming an infinitely
large self-inductance L, and the calculations considering the real self-inductance L &
because the self-inductance L, is large, as in subsection 6.3.1. Figure 6.5 also depicts
the measured and the calculated waveforms, but here the machine model based on
measured operational inductances has been used in the calculations.

500

Uspg (V)

0.5 1 1.5 2 2.5 3 35 4 4.5 5
t (ms)

Iq (A)

0 0.5 1 1.5 2 25 3 35 4 4.5 5
t (ms)
Figure 6.4: Line voltage and phase current waveforms,

— : measured,

- - » calculated considering the real self-inductance L ;, and

.. : calculated assuming an infinitely large self-inductance L ,,.

Calculations have been done with the machine model derived in chapters 2 to 4.
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Figure 6.5: Line voltage and phase current waveforms,

— ! measured,
- - » calculated considering the real self-inductance L, , and using the machine model
based on measured operational inductances.

In figure 6.4, after the commutation interval, the calculated line voltage increases
faster than the measured line voltage. In figure 6.5, the measured and the calculated line
voltage after the commutation interval correlate much better. This again shows that for
the determination of the waveforms, the machine model based on measured operational
inductances is better than the machine mode! derived in chapters 2 to 4.

In figure 6.4, the calculated current i, is a little smaller than that measured. In figure
6.5, the correlation is better. As explained in subsection 6.3.1, this indicates that the
commutation inductance of the machine model derived in chapters 2 to 4 is too large.
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6.3.3 Small self-inductance L, and small delay angle a,

This subsection deals with an experiment in which the coil in the direct-current circuit
is omitted and in which the delay angle a, is small (a,=6°). The calculations have been
done with U,=369V, L, =10uH, and R, =0.07 Q.

Figure 6.6 depicts the measured and the calculated line voltage and phase current
waveforms. In the calculations, the machine model derived in chapters 2 to 4 has been
used. The waveforms calculated considering the real self-inductance L, correlate much
better with the measurements than the waveforms calculated assuming an infinitely large
self-inductance L, . This was to be expected, because here the ripple on the current i,
is considerable. Figure 6.7 again depicts the measured and the calculated waveforms, but
here the machine model based on measured operational inductances has been used in the
calculations.
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Figure 6.6: Line voltage and phase current waveforms,
— : measured,

- - : calculated considering the real self-inductance L ., and
.. : calculated assuming an infinitely large self-inductance L ;.
Calculations have been done with the machine model derived in chapters 2 to 4.
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Figure 6.7: Line voltage and phase current waveforms,

—  measured,

- - » calculated considering the real self-inductance L, and using the machine model
based on measured operational inductances.

In figure 6.6, the calculated angle of overlap is larger than that measured. In figure
6.7, the correlation is better. As explained in subsection 6.3.1, this indicates that the
commutation inductance of the machine model derived in chapters 2 to 4 is too large.

6.3.4 Small self-inductance L, and large delay angle @,

This subsection deals with an experiment in which the self-inductance L ;, is omitted
and in which the delay angle a, is large (a,=60°). The calculations have been done
with U,=199V, L, =10uH, and R, =0.07 (}.

Figure 6.8 depicts the measured and the calculated line voltage and phase current
waveforms. In the calculation, the machine model derived in chapters 2 to 4 has been
used. The waveforms calculated considering the real self-inductance L, correlate much
better with the measured waveforms than the waveforms calculated assuming an
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infinitely large self-inductance L, . This was to be expected, because here the ripple on
the current i, is very large. Figure 6.9 again depicts the measured and the calculated
waveforms, but here the machine model based on measured operational inductances has
been used in the calculations.

In figure 6.8, the calculated current i, is a little smaller than the measured. In figure
6.9, the correlation is better. As explained in subsection 6.3.1, this indicates that the
commutation inductance of the machine model derived in chapters 2 to 4 is too large.
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Figure 6.8: Line voltage and phase current waveforms,

— ! measured,

- - : calculated considering the finite self-inductance L, and

.. : calculated assuming an infinitely large self-inductance L, .

Calculations have been done with the machine model derived in chapters 2 to 4.




Experimental verification of the model of the generator with rectifier 153

500} ' '
&
3 0 | |
—500_ 1 ] 1 1 1 1 1 1 i _J
0 05 1 15 35 4 45 5

iy (A)

i 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 35 4 45 5
t (ms)

Figure 6.9: Line voltage and phase current waveforms,
— ! measured,

- - » calculated considering the real self-inductance L ., and using the machine model
based on measured operational inductances.

6.4 Conclusions

In this chapter, measured and calculated voltage and current waveforms are compared.

From this, the following conclusions can be drawn.

1)  The calculation method determining the steady-state performance derived in chapter
5 is good.

2) The calculation assuming an infinitely large self-inductance in the direct-current
circuit can only be used when the ripple on the current in the direct-current circuit
is small. This can be done by using a sufficiently large self-inductance in the
direct-current circuit.

3)  For the calculation of the steady-state performance of the rectifier-loaded generator,
the machine model based on measured operational inductances is very accurate,
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4) For the calculation of the steady-state performance of the generator loaded with a
rectifier, the machine model derived in chapters 2 to 4 (which was already partly
verified by means of locked-rotor tests) is reasonable.

5)  The main deficiency of the machine model derived in chapters 2 to 4 is probably
that the commutation inductance is too large.

The machine model based on measured operational inductances is very suitable for
the determination of the steady-state performance of the rectifier-loaded generator.
However, this model can only be used for existing machines. The aim of this thesis is
to derive a machine model which can be used for the optimization of the design before
the machine is built. This is not possible with the machine model based on measured
operational inductances. Therefore, the model based on measured operational inductances
is only used to verify the calculation method. For the optimization of the machine
design, the model derived from the design parameters in chapters 2 to 4 is used. That
it is possible to optimize the machine design using this model is shown in the next
chapter.
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Chapter 7

On the design of
permanent-magnet generators

7.1 Introduction

Objective

In the previous chapters, a model for the determination of the steady-state perfor-
mance of the rectifier-loaded permanent-magnet generator has been derived. In this
chapter, the method is used to investigate some important design aspects of permanent-
magnet generators. The effects of the damper cylinder, the magnet width, the rotational
frequency, and the damper radius on the losses are investigated. In this way, it is also
shown that the derived model is suitable for the optimization of the design of permanent-
magnet generators.

The permanent-magnet machine used in this chapter has been built at Eindhoven
University of Technologys; it is called the Eindhoven machine. The machine dimensions
and material properties are given in appendix A, section A.3.

Restrictions
This chapter is restricted to the investigation of the machine in the following
circumstances.

- Only the steady-state performance is investigated, because the generator is intended
for steady-state applications.

- For the constant component of the current in the direct-current circuit, i, ,=100 A
is valid. In this way, the machine current is approximately the rated current, which
is used because the generator system is intended for rated-power applications.

- The value of the voltage of the voltage source in the direct-current circuit U, is
chosen as proportional to the rotational frequency »:

U, - 600 V (7.1)

167 s’1

This relation between the rotational frequency and the voltage is used to obtain
comparable results at different rotational frequencies and to obtain a small delay
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angle. The delay angle is chosen as small in order to limit the reactive power, but
it is not chosen as zero because it is used for control of the system.

- The magnet loss is multiplied by Zam/ap’1 because the rotor is not completely
covered with magnets, as discussed in subsections 4.4.6 and 4.5.4.

- The resistance of the damper winding for the fundamental space harmonic R b1 18
increased by 50 % because of the end connections, as discussed in section 3.6.

- Itis assumed that the stator conductors have been split into 10 parallel conductors
to reduce the increase of the stator copper loss because of skin effect. Furthermore,
it is assumed that the voltage induced in these parallel conductors is exactly equal,
so that there are no circulating currents in the parallel conductors.

- Toreduce the ripple on the current in the direct-current circuit, a coil in the direct-
current circuit is used: L, =0.5 mH.

- The resistance of the coil in the direct-current circuit is assumed to be negligible:
R, =0.

- In the calculations, the first 37 space harmonics are considered, which is sufficient
as will be shown in section 7.3.

Outline of the chapter

Firstly, in section 7.2, the effect of a damper cylinder on the performance of the
machine and on the rotor losses is investigated. Next, section 7.3 gives more detailed
separations of the generator losses. In section 7.4, some conclusions are drawn.

7.2 The effect of a damper cylinder

This section deals with the effect of a damper cylinder. Firstly, in subsection 7.2.1,
the effect of the addition of a damper cylinder on the voltage and current waveforms is
investigated. Next, in subsection 7.2.2, the effect of the addition of a damper cylinder
on the rotor losses is investigated. Subsequently, subsection 7.2.3 describes the influence
of the damper radius on the rotor losses. In closing, subsection 7.2.4 describes why high-
speed machines with solid rotor iron need a damper cylinder.

7.2.1 The voltage and current waveforms

Figure 7.1 depicts the calculated waveforms of the line voltage u_, , the phase current
I, the phase voltage u_,, and the no-load voltage e,, of the Eindhoven machine with
and without a damper cylinder. Of course, the damper cylinder has no effect on the no-
load voltage. Because these voltage and current waveforms hardly depend on the
rotational frequency, they are only depicted for one rotational frequency: n=333 s,
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Figure 7.1: Calculated waveforms of the line voltage u ,, the phase current i, and
the phase voltage u, of the generator at n=333 st
— . with damper cylinder (8,=0.5 mm ), and
- - : without damper cylinder (b, =10mm ).
The no-load voltage €5 is depicted dotted {..).
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The effect of the addition of a damper cylinder on the angle of overlap is that it is
reduced from about /6 to about 7/15. That the use of a damper cylinder resuits in a
smaller angle of overlap was to be expected, because the commutation inductance of a
machine with a damper is smaller than the commutation inductance of a machine
without a damper cylinder.

The use of a damper cylinder results in a smaller angle of overlap. However, this does
not mean (as is often suggested) that the machine with a damper cylinder supplies less
reactive power. The phase angles between the fundamental time harmonics of the
terminal current, the terminal voltage, and the no-load voltage hardly depend on the
presence of a damper cylinder.

When a normal synchronous machine is loaded with a rectifier, a damper is usually
necessary to obtain a sufficiently small angle of overlap. However, from figure 7.1, it
can be concluded that the rectifier-loaded permanent-magnet machine does not need a
damper to obtain a sufficiently small angle of overlap. This difference can be explained
as follows. The effective air gap of a permanent-magnet machine is much larger than
the effective air gap of a normal synchronous machine because in a permanent-magnet
machine, the magnets also belong to the effective air gap. Therefore, the main
inductance of a permanent-magnet machine is much smaller than the main inductance
of a synchronous machine. In a machine without a damper, the main inductance is an
important part of the commutation inductance. Hence, the commutation inductance of
a permanent-magnet machine without a damper is much smaller than the commutation
inductance of a normal synchronous machine without a damper.

It is concluded that in a rectifier-loaded permanent-magnet machine, a damper is
usually neither necessary to obtain a sufficiently small angle of overlap, nor effective to
reduce the reactive power. This is in contrast to what is often said about a synchronous
machine with rectifier load.

7.2.2 The addition of a damper cylinder and the rotor losses

Figure 7.2 illustrates the effect of the addition of a damper cylinder on the rotor losses
as a function of the rotational frequency »n. From this figure, the following conclusions
can be drawn.

1) At low rotational frequencies, the addition of a damper cylinder results in a large
increase of the rotor losses. At very high rotational frequencies, the addition of a
damper cylinder results in a decrease of the rotor losses. At medium rotational
frequencies, a general statement about the effect of the addition of a damper
cylinder on the rotor losses is not possible.

2) At rotational frequencies above n=100s, the rotor loss in a machine with a
damper cylinder is mainly inductance-limited: the loss is hardly a function of the
rotational frequency.
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Figure 7.2: Calculated rotor losses as a function of the speed of the generator,
— : with a damper cylinder with different values of the thickness of the damper 8, and
- - : without damper cylinder with different values of the magnet width b, .

3) The rotor losses in a machine with a damper cylinder are roughly inversely
proportional to the thickness of the damper cylinder ,. However, this is only the
case because skin effect in the damper cylinder is neglected. For the thinner
damper cylinder (8,=0.5mm), this is reasonable, because skin effect is not
important for the dominating harmonics. However, for the thicker damper cylinder
(8,=1mm), skin effect is not negligible for the dominating harmonics at higher
rotational frequencies. Therefore, the curve for §,=1 mm is not reliable at higher
rotational frequencies. This shows that it is worthwhile incorporating skin effect
in the damper cylinder in the machine model.

4)  The rotor losses in a machine without a damper cylinder are mainly resistance-
limited: the losses roughly increase with the square of the rotational frequency.
This affirms that the effect of eddy currents in the rotor on the magnetic field in
the air gap is very small.

5) The rotor losses in a machine without a damper cylinder are nearly proportional
to the square of the magnet width b, . The magnet loss caused by the space
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harmonics with a large pole angle derived in subsection 4.4.2 (equation (4.44)) is
proportional to the square of the magnet width b,,. This indicates that the magnet
loss caused by the space harmonics with a large pole angle forms an important part
of the rotor losses. Therefore, in a machine without a damper cylinder, decreasing
the magnet width b,, is a very effective means of decreasing the rotor losses.

7.2.3 The damper radius and the rotor losses

Figure 7.3 illustrates the effect of the damper radius on the rotor losses. The damper
radius r, increases from the rotor radius r, to the stator radius r,. The results in this
figure are questionable for two reasons.

1y

2)

As mentioned in section 4.5, the calculation of the extra loss due to the stator
slotting is not accurate when the gap between the damper and the stator is small.
The rotor losses have also been calculated for the case where the damper radius 7,
is smaller than the magnet radius 7, =69 mm. In this case, the damper cylinder is
in the magnets, which is impossible. To obtain comparable results at different
values of the damper radius, the calculations have been done assuming that the
magnetic field of the magnets does not depend on the damper radius. Besides, in
this case, the model for the calculation of the magnet loss is not valid because the
magnet loss resistance of subsection 4.4.3 has been calculated assuming that the
damper radius is larger than the magnet radius. Therefore, the calculations have
been done assuming an infinitely high resistivity of the magnets.

However, the results of figure 7.3 are given because they are accurate enough to draw
two important conclusions from.

R diss kW)

65 70 75 65 70 75
r4 (mm) rg(mm)

Figure 7.3: Calculated rotor loss P,’dm (—) and the no-load loss (- -) as a function of
the damper radius r; at n=333 s! with & ;,=0.5mm. The only difference between the
figures is the scale of the vertical axis. The damper radius r, increases from the rotor
radius r,=61 mm fo the stator radius r,=75 mm.
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1) Itis not sensible to use a small distance between the stator and the damper.
2) It is worthwhile investigating whether or not it is useful to place the damper
cylinder under the magnets instead of surrounding the magnets.

7.2.4 Machines with solid rotor iron

It is necessary to make a remark about an assumption used in the calculations, namely
the assumption that the rotor is laminated. Often, the rotor iron of a high-speed machine
is solid instead of laminated (as in [Vee 97]) to make the rotor strong enough. In this
case, the use of a damper cylinder is advantageous, as can be concluded from the
following rough comparison of the loss in a copper damper cylinder and the loss in the
solid rotor iron.

In a high-speed machine with solid rotor iron and without a damper cylinder, the solid
rotor iron functions as a damper. Because of skin effect, the currents only flow in a thin
cylinder at the surface of the rotor iron. Assuming a specific resistance of the solid iron
of pg=0.1u0m, a relative magnetic permeability of wu, ., =1000, and a rotational
frequency of n=333 s, the skin depth for the fifth and the seventh time harmonic is
8 in e = 0-08 mm . Herewith, the resistivity of the iron damper cylinder is about six times
the resistivity of a copper damper cylinder, and the thickness of the iron damper cylinder
is about one sixth of the thickness of a copper damper cylinder of §,=0.5mm. For
higher time harmonics, the skin depth in iron is even smaller. Therefore, the losses in
the solid iron are at least 36 times the losses in a copper damper cylinder at the radius
of the rotor iron. In a copper damper cylinder surrounding the magnets, the losses are
higher, but they remain much smaller than the losses in the solid rotor iron. In [Vee 97],
comparable results are reported.

The model derived in this thesis can also be used for a machine with solid rotor iron
and a damper cylinder, because the damper cylinder shields the rest of the rotor, so that
the iron loss in the solid rotor is negligible.

7.3 Separation of the generator losses

In table 7.1, the calculated losses of a machine are tabulated for six different
situations. The first four columns give the losses with and without a damper cylinder at
two different rotational frequencies. The third and the fourth column give the losses in
the situation for which the voltage and current waveforms are depicted in figure 7.1. To
illustrate the effect of the magnet width in a machine without a damper, the magnet
width is halved in the fifth column. To illustrate the effect of the damper radius in a
machine with a damper, the damper radius is increased in the sixth column.

In this table, the subscripts fsh, hsh, fth, and hth stand for fundamental space
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harmonic, higher space harmonics, fundamental time harmonic and higher time
harmonics respectively.

The magnet loss due to the higher space harmonics with the harmonic numbers
k=23.37 P, ;g 423.37 18 always smaller than 30 mW, which is negligible. Therefore,
it is not separately mentioned in the table.

The row in table 7.1 giving the rotor losses affirms the conclusions drawn in
subsections 7.2.2 and 7.2.3. Furthermore, the following conclusions can be drawn.

Table 7.1: Calculated losses in a machine with and without damper cylinder at different
rotational frequencies n. Also the effect of the magnet width b,, and the damper radius r,
are illustrated.

n (s1) 167 167 333 333 333 333
b, (mm) 10 10 10 10 5 10
r, (mm) . 69.5 - 69.5 - 73
Pogn (W) 501 513 559 572 559 572
Powin (W) 33 93 83 237 82 259
Proingn (W) 812 805 | 2293 2268| 2289 2266
Porongn (W) 31 4 89 11 89 9
Popn (W) 72 72 204 204 204 204
P, (W) 12 13 35 36 35 " 36
P W) 5 15 15 43 14 47
Pogs W] 1466 1514 3277 3371| 3273 3394
P, W) 7.4 0.0 214 0.0 21.4 0.0
Pigis (W) - 2067 -1 2091 - 2137
Pynisas (W) -1 1196 -1 1524 | 17241
Py roninszr (W) - 0.4 - 0.6 -1 2148
P (W] 1063 03| 4270 03| 1089 0.3
Py (W) 10.3 2.7 41.0 3.5 163 3.3
Piractoning (W) 0.3 169 -12 224 13| 6027
P W[ 1237] 3467 4882 3883 1453] 27589
P M| 1590 1861| 3766| 3759| 3418] 6153
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- The stator copper loss caused by the fundamental time harmonic P, ,, increases
with the rotational frequency because of skin effect in the stator conductors.

- The addition of a damper cylinder results in an increase of the stator copper loss
P, mainly of the copper loss caused by higher time harmonics P, ,,,. This is
so because addition of a damper cylinder results in an increase of the harmonic
content of the current, as can be concluded from figure 7.1.

- As was to be expected from the model, all iron loss components increase with the
rotational frequency.

- The stator core loss caused by the fundamental time harmonic and the fundamental
space harmonic Pp, 5, ., hardly depends on the presence of a damper cylinder.

- The stator core loss produced by the higher space harmonics P, asn does not
depend on the presence of a damper cylinder. This was to be expected, because
only the space harmonics of the magnetic field of the magnets are considered, and
this magnetic field is not influenced by the damper cylinder.

- The stator core loss produced by the higher time harmonics P g, Jangsn decreases
when a damper cylinder is added because the time harmonic fields are reduced by
the currents in the damper cylinder.

- The stator iron loss is the largest part of the losses in the generator. If this loss has
to be decreased, the use of magnetic materials other than laminated iron should be
investigated.

- In a machine with a damper cylinder, the rotor core loss P, and the eddy-current
loss in the magnets P, are negligible compared to the loss in the damper cylinder:
the damper cylinder shields the rest of the rotor.

- To calculate the damper loss P, in a machine with a damper cylinder, it is enough
to consider a limited number of space harmonics. When the distance between the
damper and the stator surface is not too small, it is sufficient to consider the first
19 space harmonics; the contribution of the higher space harmonics is negligible.

- The damper loss due to the fundamental space harmonic P, fng-1 18 hardly a
function of the damper radius, while the damper loss due to the higher space
harmonics P,,, strongly depends on the damper radius. This again illustrates that
the larger part of the fundamental space harmonic of the magnetic field crosses the
air gap, while the larger part of the higher space harmonic of the magnetic field
does not.

- Inamachine without a damper cylinder, the magnet loss P, is considerably higher
than the rotor core loss P ,.

- In a machine without a damper cylinder, the most important part of the rotor losses
is the magnet loss P, caused by the fundamental space harmonic. This loss is
proportional to the square of the magnet width b, , as shown in subsection 4.4.2
(equation (4.44)). This agrees with the fifth conclusion of subsection 7.2.2, where
it was said that the magnet loss caused by the space harmonics with a large pole
angle forms an important part of the rotor losses. Furthermore, it implies that it is
not terrible that the magnet loss produced by the higher space harmonics is
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overestimated, as explained in section 4.4.

- In a machine without a damper cylinder, the extra loss due to the stator slotting

P, sloning 3PPEQrs to be negative. This means that eddy currents induced by the
stator slotting oppose the eddy currents due to the stator currents (compare
equation (4.79)).

- In a machine with a damper cylinder, the extra loss due to the stator slotting

P, slotting is neither negligible nor dominant.

7.4 Conclusions

This chapter illustrates that the model derived in this thesis can be used for the
optimization of the design of high-speed permanent-magnet generators. In this chapter,
the effects of the damper cylinder, the thickness of the damper cylinder §,, the magnet
width b, , the damper radius 7, and the rotational frequency » have been investigated.
In the same way, other dimensions that influence the rotor losses can be investigated,
such as the slot opening angle B, the number of pole pairs p, the air gap length re-r,,
and the magnet length [, .

In contrast to what is said about a rectifier-loaded synchronous machine, in a rectifier-
loaded permanent-magnet machine, a damper is usually neither necessary for obtaining
a sufficiently small angle of overlap, nor effective for reducing the reactive power.

A general statement about the usefulness of a damper cylinder is not possible. At high
rotational frequencies, the addition of a damper cylinder results in a decrease of the rotor
losses, while at low rotational frequencies, it results in an increase of the rotor losses.
The decision therefore whether to use a damper cylinder or not should be based on
careful calculations.

In a machine with a damper cylinder, the rotor core loss and the eddy-current loss in
the magnets are negligible compared to the loss in the damper cylinder: the damper
cylinder shields the rest of the rotor. Furthermore, the rotor losses are roughly inversely
proportional to the thickness of the damper cylinder if skin effect in the damper cylinder
is negligible, which is not always the case. The rotor losses strongly depend on the
radius of the damper cylinder. When the distance between the stator surface and the
damper is too small, the rotor losses are excessive.

In a machine without a damper cylinder, the magnet loss is roughly proportional to
the square of the magnet width. Therefore, decreasing the magnet width is a very
effective means of decreasing the rotor losses in a machine without a damper.

When the rotor iron is solid instead of laminated, the use of a damper cylinder will
generally be necessary to limit the rotor losses. The machine model derived in this
chapter can also be used for these machines with a solid rotor and a damper cylinder.
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Conclusions and recommendations

This thesis deals with the losses in a high-speed permanent-magnet generator with a
cylindrical rotor and surface-mounted magnets loaded with a six-pulse controlled bridge
rectifier. As described in chapter 1, the objective of the thesis has been to derive a
machine model suitable to optimize the machine design. In this optimization, special
attention would be paid to the effect of a damper cylinder. Also the effect of using small
permanent-magnet blocks on the rotor losses would be investigated.

In chapters 2 to 6, a model of the rectifier-loaded machine has been derived and
verified. In chapter 7, some design aspects have been investigated. In this chapter,
conclusions are drawn and recommendations for further research are given.

8.1 Conclusions

The machine model
A model of a high-speed permanent-magnet generator has been derived. This model
has five characteristics that make it suitable to optimize the machine design.

1) The model is analytic.

2) The parameters of the model are calculated from the dimensions and material
properties of the machine.

3) The effect of a damper cylinder can be investigated, because the model may be
used for a machine with a damper cylinder and for a machine without a damper
cylinder.

4) The effect of using small magnet blocks on the rotor losses can be investigated,
because the eddy-current loss in the magnets has been modelled as a function of
the width of the magnet blocks.

5) The model includes the most important electromagnetic losses.

The derivation of the model has been based on the two-dimensional calculation of the
magnetic field in the air gap and the magnets. Space harmonics of the magnetic field
have been considered because they contribute significantly to the rotor losses. Based on
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the calculated magnetic field, voltage equations have been derived. Five kinds of

electromagnetic losses have been incorporated into the machine model.

1) The copper loss in the stator conductors is calculated considering skin effect.

2)  If a damper cylinder is present, the damper loss is considered. The damper cylinder
has been modelled as a series of short-circuited sinusoidally-distributed damper
windings.

3)  The iron loss is considered to be proportional to »!’B?. This model is different
from those commonly used, but it is simple and effective.

4) The eddy-current loss in the magnets is considered. The effect of eddy currents in
the magnets on the magnetic field in the air gap and the magnets is not completely
negligible at high frequencies. It can be approximated by incorporating a magnet
loss resistance in the machine model.

5) The loss due to the stator slotting is calculated using a conformal transformation.

Most of these losses have been represented by resistances in the machine model.

Rectifier load

The model of the permanent-magnet generator has been combined with a model of
the controlled rectifier, in which the thyristors are replaced by ideal switches. The
resulting equations are solved in the frequency domain to determine the steady-state
performance of the rectifier-loaded permanent-magnet machine.

Verification of the derived models

In this thesis, two kinds of measurements have been used to verify the derived
models, namely locked-rotor tests and measurements of steady-state voltage and current
waveforms of the rectifier-loaded machine.

Locked-rotor tests have been used to verify the machine model. From the comparison
of measured voltages, currents, and powers to calculated values,

1) the voltage equations of the generator with a damper cylinder,

2) the model of the iron loss, and

3) the model of the eddy-current loss in the magnets

have been verified for the fundamental space harmonic. For the higher space harmonics,
these models have been neither verified nor refuted. Also the model for skin effect in
the stator conductors has been neither verified nor refuted. Furthermore, these tests have
verified that the effect of eddy currents in the laminated iron on the magnetic field in
the air gap and the magnets is negligible, and that the effect of eddy currents in the
magnets on the magnetic field in the air gap and the magnets is not completely
negligible at high frequencies.

Measurements of voltage and current waveforms have been used to verify the model
of the generator loaded with the rectifier. From the comparison of measured voltage and
current waveforms to calculated waveforms, it is concluded that the model is suitable
for the calculation of voltage and current waveforms.

The model for the loss due to the stator slotting has not been verified.




Conclusions and recommendations 167

The generator design
The model of the permanent-magnet machine has been used to investigate some

design aspects of permanent-magnet machines. Regarding the usefulness of a damper

cylinder, three important conclusions can be drawn.

1) In a rectifier-loaded permanent-magnet machine, a damper is generally neither
necessary to obtain a sufficiently small angle of overlap, nor effective to reduce the
reactive power. This is in contrast to what is often said about a rectifier-loaded
synchronous machine.

2)  In a machine with laminated rotor iron, the effect of a damper cylinder on the rotor
losses depends on the rotational frequency. At very high rotational frequencies, the
addition of a damper cylinder results in a decrease of the rotor losses, while at
lower rotational frequencies, it results in an increase of the rotor losses. Therefore,
the decision whether to use a damper cylinder or not should be based on careful
calculations.

3) In a machine with solid rotor iron, the use of a damper cylinder is generally
necessary to limit the rotor losses.

Further, about a machine with a damper cylinder, three conclusions can be drawn.

1)  The rotor core loss and the eddy-current loss in the magnets are negligible
compared to the damper loss: the damper cylinder shields the rest of the rotor.

2)  The rotor losses are roughly inversely proportional to the thickness of the damper
cylinder if skin effect in the damper cylinder is negligible, which is not always the
case.

3)  The rotor losses become excessive when the distance between the stator surface
and the damper becomes too small.

Subsequently, one conclusion about a machine with laminated rotor iron and without

a damper cylinder is drawn. Decreasing the magnet width is a very effective means of

decreasing the rotor losses, because the rotor losses are roughly proportional to the

square of the magnet width.

The calculations from which these conclusions were drawn illustrate that the derived
model of the permanent-magnet machine is suitable for the optimization of the machine
design.

Originality

This thesis is original in its combination of the methods used. When the rotor losses
in a permanent-magnet machine with a damper are calculated analytically, stylized
current waveforms are often used. When voltage and current waveforms in a machine
are calculated analytically, usually machine models are used which do not include effects
of space harmonics and losses other than the copper loss. This thesis combines the
calculation of voltage and current waveforms with a machine model based on a two-
dimensional calculation of the magnetic field including effects of space harmonics and
losses other than the copper loss.
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Furthermore, this thesis is original in its modelling of the eddy currents in the magnet
blocks. Other authors replace the magnets with a cylinder of magnet material. In this
thesis, the real width of the magnet blocks is considered.

8.2 Recommendations for further research

Modelling of the machine
The machine model derived in this thesis may be improved or extended by further
research into the following five areas.

1) In this thesis, skin effect in the damper has not been included. However, this is not
appropriate if a thicker damper cylinder is used to reduce the damper loss.
Therefore, skin effect in the damper cylinder should be incorporated in the machine
model.

2) Within this study, the machine model has only been verified for the fundamental
space harmonic. For the higher space harmonics, the models have been neither
verified nor refuted. In addition, the model for the loss due to the stator slotting
has not been verified. More experimental research is necessary in order to do so.

3) The modelled commutation inductance of a permanent-magnet machine without a
damper cylinder is larger than that measured, see section 6.4. The cause of this
difference should be investigated.

4)  An increase in the distance between the stator surface and the damper cylinder
decreases the damper loss. Therefore, it would be worthwhile investigating whether
or not it is useful to place the damper cylinder between the magnets and the rotor
iron instead of around the magnets. This would especially be interesting if magnets
with a very high resistivity or 'laminated' magnets were to be used. The machine
model derived in this thesis is not valid when the damper cylinder is placed
between the magnets and the rotor iron.

5) To reduce the iron loss in the stator, the use of magnetic materials other than
laminated iron should be explored.

The generator design

In this thesis, only a few generator design aspects have been investigated. Others
should also be explored, such as the form of the stator winding, the slot opening angle,
the number of pole pairs, the air gap length, the magnet pole angle, and the magnet
length.
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Appendix A Machine parameters

This appendix describes the dimensions and the material properties of the machines
used for the measurements and the calculations. Firstly, section A.1 describes the so-
called test model. Next, section A.2 gives the nameplate data of the servomotor. Section
A.3 describes the Eindhoven machine.

A.1 Parameters of the test model

The test model consists of three parts.
1) A three-phase stator with laminated iron (the stator of an induction machine).
2) A removable cylindrical rotor with laminated iron without slots.
3) A removable copper cylinder in the air gap.
This test model does not have magnets on the rotor, although some figures have been
produced assuming magnets on the rotor.
The nameplate data of the three-phase stator are the following.

- rated rotational frequency n=235s1
- rated power (at n=23.5s") P=22kW
- rated stator phase current I=5A

- rated stator line voltage U=380V

The test model has the following dimensions and properties.

- total number of turns per phase N=252

- slot width b, =8 mm
- stator tooth width b,=4 mm

- stator yoke height s =20 mm
- tooth height h,=20 mm
- stack length or active length of stator and rotor [,=110 mm
- number of pole pairs p=2

- number of slots per pole per phase g=3

- radius of the stator bore rs=57.8 mm
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- chording angle B.iora=0

- slot angle By, =m/18

- skew angle B, =0

- slot opening angle B,,=m/72

- rotor radius r,=50.6 mm

- rotor yoke height h,y=20 mm

- radius of the middle of the damper cylinder r,=55.0mm

- thickness of the damper cylinder within the model 3,=0.5mm

- resistivity of the damper cylinder p,=0.0175 udm

The damper cylinder is longer than the active length of the stator and the rotor to
provide a closing path for the damper currents. The thickness of the damper cylinder
within the machine is less than the thickness of the end connections outside to provide
closing paths with a small resistance. The end connections have the following
dimensions.

- length of the end connections of the damper cylinder [,=40 mm
- thickness of the end connections of the damper 8,=2.0mm

Other parameters obtained from measurements.

- specific iron loss multiplied by a correction factor Crokp =6 W/kg
- stray loss resistance R r=R/3

- resistance of a stator phase R =2.67(2

- leakage inductance (without air-gap leakage) L_=10mH

Some calculations are done for this model assuming magnets on the rotor. In this
case, the following dimensions and properties of the magnets are assumed.
- permanent magnetization of the sintered NdFeB magnets M, =796 kA/m

- width of the magnet blocks : b,,=10 mm

- magnet length in the direction of the magnetization l,=41mm

- half of the magnet pole arc angle a, =m/5

- resistivity of the magnets P, =13 u{lm

A.2 Parameters of the servomotor

The dimensions and properties of the servomotor were made available for the
research, but only on condition that they would not be published. Therefore only the
nameplate data are given here. The machine type is Bosch SE-B4 170.050.
- rated torque (at n=3.33s1) M;=14 Nm
- rated current (at n=3.33s71) I,=24 A
- rated rotational frequency n=833s!
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A.3 Parameters of the Eindhoven machine

The Eindhoven machine was designed to meet the following requirements.

- rated rotational frequency n=200s"
- rated power (at n=200s™) P=80kW
- rated stator phase current I=85A

- rated line voltage U=640V

The rotor was designed for a rotational frequency of n=500s".

The Eindhoven machine has the following dimensions and properties.

- total number of turns per phase N=24

- slot width b 4, =8 mm

- stator tooth width b,=7mm

- stator yoke height hy,=23 mm

- tooth height h,=20 mm

- stack length or active length of stator and rotor [,=225 mm

- number of pole pairs p=2

- number of slots per pole per phase q=3

- radius of the stator bore r,=75.0 mm
- chording angle Bora=0

- slot angle By =m/18

- skew angle By =0

- slot opening width b,=2.7mm

- rotor radius r,=61.0mm

- rotor yoke height h,,=20 mm

- radius of the damper cylinder r,=69.5 mm
- thickness of the damper cylinder within the model 6,=0.5mm

- resistivity of the damper cylinder p,=0.0175 udm
- length of the end connections of the damper [,=5.0mm

- thickness of the end connections of the damper 8,=6.0 mm

- permanent magnetization of the sintered NdFeB magnets M, =760 kA/m
- width of the magnet blocks b,=10mm

- magnet length in the direction of the magnetization l,,=8.0mm

- half of the magnet pole arc angle a, =3m/16

- resistivity of the magnets p,,=1.3 udm

Other estimated parameters which are used in the calculations.

- specific iron loss multiplied by a correction factor Crokp,0=3 Wikg
- stray loss resistance R,p,=R/3
- resistance of a stator phase R =27 m{}

- leakage inductance (without air-gap leakage) L_=0.10mH
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Appendix B The number of turns of the space harmonics of a winding

In chapters 2 to 4, the stator winding distribution is used. The numbers of turns of the
space harmonics of the winding distribution N, , follow from the Fourier analysis of the
winding distribution. As explained in chapter 2, the number of turns N;, may be
negative for some space harmonics. This appendix describes the relation between a
winding and the number of turns of the space harmonics of the winding distribution
N, . In this description, the winding factor is used. Firstly, in section B.1, this winding
factor is related to the winding distribution. Next, section B.2 describes the determina-
tion of the winding factor of an arbitrary winding.

B.1 The definition of the winding factor

This section starts with an example of a winding. For this example, the numbers of
turns of the space harmonics of the winding distribution N;, are calculated. Next, the
winding factor is introduced.

As an example, the numbers of turns of the space harmonics of the winding
distribution of a full-pitch winding N,  In a machine with one slot per pole per phase
are calculated. Figure B.1 depicts the full-pitch winding of a two-pole machine. The full-
pitch winding has N turns and its axis lays at stator coordinate a,=0. On the interval
0<a,<2m/p, the winding distribution n_(a,) can be written as

N when T--"2<g < L.l
Jpﬁso 210 2 217 2
n(a)=4_N_ when 37 P _ s<§17_ B, (B.1)
PB,, 2p 2 p 2
0 everywhere else on 0<a,<2m/p

nSﬂ

L H
0

l_' B

Figure B.1: The winding distribution of a full-pitch winding of a two-pole machine
(p=1). The winding distribution forms an infinitesimal layer on the stator surface.
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where B is the slot opening angle (in mechanical radians).
The winding distribution n_(a,) can also be written as a Fourier series:

o«

ma= X SNsingpka,) (B2)
k-135,. 2
where the Fourier coefficients of the winding distribution 2N, are calculated as
2mip sin(1pkB, )
IN, - ZP f n_(a,)sin(pka,)da, - Z—Nsm(——kw)ﬁ (B.3)
27 PhB,

For a winding with infinitesimal slot openings, the last part of thlS equation
approaches one, and the Fourier coefficients of the winding distribution 14N s x Are given

by
NG = Lsin(tem) (B.4)

The winding factor k,,, is introduced as the ratio of N, of a real distributed winding
to N, x of a full-pitch wmdmg in infinitesimal slots. In other books, the winding factor
may be introduced in other ways. Slemon [Sle 92] and Miller [Mil 89] introduce the
winding factor k,, as the ratio of the magnetomotive force of the real distributed
winding to the magnetomotive force of a full-pitch winding in infinitesimal slots. Richter
[Ric 67] introduces the winding factor k,, as the ratio of the flux linked with the real
distributed winding to the flux linked with a full-pitch winding in infinitesimal slots.
However, the same winding factor is meant, although it is introduced in different ways.

Using the winding factor k, ., the number of turns of the kth space harmonic of the
winding distribution N,, for a real winding is given by

4N .
N, =k, k—;sm(%kw) (B.5)

Comparison of this equation with equation (B.3) shows that the winding factor &, , k
of a full-pitch winding in slots with a real width is given by

sin(1pkB,,
Kustorse = IL) (B.6)
kg
2p SO

Schuisky [Sch 57] gives the same expression for the winding factor resulting from slots
with a real width. ,

In the same way, the winding factors of distributed, short-pitched and skewed
windings can be derived. This is not done here, because other books describe these
derivations extensively. The results are summarized in section B.2.
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B.2 Contributions to the winding factor

This section describes the various contributions to the winding factor as a function of
the harmonic number k. It is assumed that the machine has an integral-slot winding,
which means that the number of slots per pole and phase g is an integer. In this case,
the following four contributions to the winding factor k,, x can be distinguished.

1)  Section B.1 describes how the slot width contributes to the winding factor. This
contribution to the winding factor is called the slot factor kysior % [Sch 57], and it
is given by equation (B.6). Mostly, this slot factor is neglected, because it is nearly
equal to one for the important space harmonics. :

2) Often, a winding is distributed over several slots. The effect of this distribution is
considered by the distribution factor or spread factor K vistribution « [Sle 92], [Ric 67],
[Sch 57], [B&d 62], [Lev 84]. For a three-phase machine, it is given by

sin(%’i

gsin(-=

6q

3)  Frequently, windings are short pitched: the winding span is not a whole pole pitch,
but, for example, a pole pitch minus a tooth pitch. This effect is considered by the
pitch factor or the chording factor K chora % [Sle 92], [Ric 67], [Sch 57], [Bsd 62],
[Lev 84]:

Kchord e = COS(PRB,40g) (B.8)

where B, ., is the chording angle in mechanical radians.

4)  Sometimes, the rotor and the stator are skewed with respect to each other to reduce
higher space harmonics or to reduce cogging torque. In permanent-magnet
machines the skew angle is often equal to the slot angle, because in this way the
cogging torque is eliminated. The effect of skewing on the Fourier coefficients of
the winding distribution is considered by the skew factor K pten % [Sch 57],

[Lev 84]:
sin(pkB,,,,)
wekewk T (B.9)
2P skew

where B, is the skew angle in mechanical radians.
Often, the skew factor is not considered as a part of the winding factor, because
it is not present in the self-inductance of a winding. However, it is present in the
mutual inductances between windings which are skewed with respect to each other.
It is also present in the no-load voltage of a permanent-magnet machine if the
magnets are skewed with respect to the stator.

The winding factor k,, is the product of the various contributions.
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Appendix C The effect of eddy currents on the air-gap field

In chapter 4, the resistances representing the losses in the magnets and the iron are
calculated on the assumption that the effect of eddy currents on the air-gap field is
negligible. Although this assumption is not always correct, the derived loss resistances
are still useful, as is shown in this appendix. This is done for the eddy currents in a
laminated core and in the magnets in sections C.1 and C.2 respectively.

For a more elaborate analysis of eddy currents see a book, such as [Sto 74], which
is also used in the analysis in this appendix.

C.1 Eddy currents in the iron

In section 4.3, the iron loss is calculated on the assumption that the effect of eddy
currents in the iron on the magnetic field in the air gap is negligible. The measurements
of subsection 4.3.6 affirm this, but in the measurements of subsection 4.4.5, the effect
of eddy currents on the magnetic field is not negligible. This section shows that the
effect of eddy currents in laminated iron on the magnetic field in an air gap is negligible
for frequencies up to 100 kHz.

In this section, the eddy currents in a laminated core are calculated without neglecting
the effect of eddy currents in the laminated core on the magnetic field. An idealized
magnetic circuit is used. Firstly, the used assumptions are described. Next, a differential
equation for the magnetic field in a lamination core is derived and solved. This solution
is used to determine the impedance of an energizing winding. From this conclusions are
drawn for the magnetic circuit of an electrical machine.

Assumptions
Figure C.1 is used to explain how the eddy currents in laminated iron are calculated.

Figure C.la depicts the idealized magnetic circuit consisting of an ideal core, a

laminated core with length /., and an air gap with length g. That one of the cores is

ideal means that the resistivity and magnetic permeability of this core are infinite. The

laminations of the laminated core are parallel to the yz-plane. Figure C.1b depicts a

cross-section of a lamination.

The derivations in this section are based on the following assumptions.

- All flux remains in the magnetic circuit, leakage flux is negligible.

- In the air gap, the magnetic field only has a component in the y-direction.

- In the air gap, the magnetic field is not a function of x, because of the high
magnetic permeability of the cores; the surfaces above and below the air gap are
equipotential surfaces.

- End effects are negligible, which means that the laminations can be treated as if
they were infinitely long in the y- and the z-direction.
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Figure C.1: a) Magnetic circuit consisting of an ideal core, a laminated core with length
lg, and an air gap with length g. b) Cross-section of a lamination.

- The magnetic field in the laminations only has a component in the y-direction. This
is not valid at the ends of the laminations, but the end effects are neglected.

- The field varies sinusoidally as a function of time with angular frequency .

As a consequence of these assumptions,

- the current density in the laminations only has a component in the z-direction,

- the magnetic field in the laminations is a function of x, and

- the current density in the laminations is a function of x.

The differential equation

A differential equation for the magnetic field strength in the iron is obtained by
applying Maxwell's equations to the lamination. In the differential form of the second
of Maxwell's equations (equation (3.26)), it is taken that the magnetic flux density only
has a y-component and that the electric field strength only has a z-component:

OE,(x) _ 3B,q(x)

(C.1)
ox ot
With E=pgJ and By, =pu,z, Hp,, this can be written as
an(x) - I"'O#‘rFe aHyFe(x) ( C.2 )

ox Pr. ot

In the differential form of the first of Maxwell's equations (equation (2.6)), it is taken
that the magnetic field strength only has an y-component and that the current density
only has a z-component. The result is
oH . (x)
yFe =J(x ( C.3 )
ax Z( )
Differentiating this equation to x and incorporating equation (C.2) results in a differential
equation for the magnetic field strength:
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yFe(x) “’Olu’rFe yFe(x) ( C4 )
ox 2 ppe ot
The magnetic field strength H ., (x) varies sinusoidally with frequency w:
H,(x) = Re{]jyh(x)ej“”} (C.5)
where H yre(*) is the complex amplitude of the magnetic field strength at position x.
For this magnetic field strength, the solution of the differential equation is given by
cosh(a _x)
B, =H, Gby)——F— (C.6)
Fe Fe' 2 Fe 1 :
yFe y e cosh(za, bg,)

where H yre(72bg,) is the complex amplitude of the magnetic field strength at the surface
of the plate (x==*%b,),
_ 14
@ Fe '5—— (C.7)
skin Fe
and &, , is the skin depth of the eddy currents in the laminations, given by

2pp,
5 - I_ (C.8)
sinfe 'u’(]l‘l'rFem

The complex amplitude of the average of the magnetic field strength A, Feqy 1S given by
br/2 inh(1 b
1 2 S ( a. Fe)
H_ = Lo = H (b (C.9)
yFeav bFe —b{ " yFe\g  Fe Q b Fe msh( Q bFe)

The problem which remains is to determine the relation between the magnetic field
strength and the excitating current i with complex amplitude {, see figure C.la. To
determine H yre(V2bg,), the integral form of the first of the Maxwell's equations
(equation (2.16)) is applied to the closed path C in figure C.1a. In the laminated core,
this closed path is on the surface of a lamination, so the closed path does not enclose
eddy currents in the laminations. The result is:

Fe-—ype( bFe) +gH - L {CIO)
where H 1 18 the complex amplitude of the magnetic field strength in the air gap.

The magnetic flux continuity condition prescribes that the magnetic flux flowing
through the laminated core also crosses the air gap. It was assumed that the magnetic
field in the air gap was not a function of x. Therefore, the magnetic flux density in the
air gap is equal to the average of the magnetic flux density in the laminated core:

I""Ol-Z ’u‘OI"’rFeE YFe,av (C.11)
If this is substituted into equation (C.10), and equation (C.9) is used, the complex
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amplitude of the average of the magnetic field strength A \Fev is solved as

2

L

““yFe,av N

le, Ggbr oSG, br) (C.12)
8tre 2 sinh(Ca,bp)

gl‘LrFe 1+

The impedance of the energizing winding

The presence of eddy currents in the laminations causes a change in the impedance
of the energizing winding. The eddy currents reduce the flux linkage, and they set up
ohmic losses. This (frequency-dependent) impedance of the winding is referred to as the
reflected impedance, which is given by

Z-= R+jw% = R+Rp,+]0L, (C.13)
'

where

R is the resistance of the energizing winding,

Ry, is the reflected resistance representing the iron losses, and

L, is the reflected inductance, including the effect of eddy currents in the laminations
on the flux linkage.

If all flux flows through the laminations and the air gap, the flux linkage § is

proportional to the average magnetic field strength of equation (C.12). Therefore,

T L
£ lre %pPr COSh(—lz-gFebFe) (C.14)
8ty 2 sinh(Ga, bg)

1+

where L is a constant with dimension Henry.

The reflected inductance and resistance are depicted in figure C.2. In the calculations
for this figure, values have been taken that form an approximation of the values valid
for the test model:

- Pp=03x0m,

= Mr=5000,

- bg=05mm, and
- g lg=12.

Conclusions
From figure C.2, two conclusions can be drawn.
1) The effect of eddy currents in the laminated core on the magnetic field in the air
gap is visible in the observed frequency range. This may explain small decreases
in the measured inductances at high frequencies in subsection 4.3.6. However, for
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frequencies up to 100 kHz, the decrease is so small that it is negligible. Therefore,
the effect of eddy currents in laminated iron on the magnetic field in the air gap
is neglected in this thesis.

2) In this section, the eddy current loss in a laminated core excitated by a current with
a constant amplitude was calculated as a function of the frequency. At low
frequencies (up to about 1kHz), this loss is proportional to w2, and at high
frequencies (above about 1kHz), this loss is proportional to ®w!>. This was
already mentioned and used in subsection 4.3.2.

2
1000
< S
1 ) =
5 e
o
0.001}
0.5
1 100 10000 1 100 10000
a) f (Hz) b) f (Hz)

Figure C.2: The reflected inductance a) and resistance b) as a function of the frequency.

C.2 Eddy currents in the magnets

In subsection 4.4.2, a magnet loss resistance has been calculated on the assumption
that the effect of eddy currents in the magnets on the magnetic field in the air gap is
negligible. However, the measurements of subsection 4.4.5 show that this assumption
is not correct at high frequencies. Incorporating the magnet loss resistance in the
machine model is an incorrect way of considering the effect of eddy currents on the
magnetic field, as explained in subsection 4.4.4. However, this section shows that
incorporating the magnet loss resistance in the machine model results in a useful
approximation of the eddy current loss in the magnets for frequencies up to 100 kHz.

In this section, the eddy currents in a magnet block are calculated without neglecting
the effect of eddy currents in this magnet block on the magnetic field. An idealized
magnetic circuit is used. Firstly, the used assumptions are described. Subsequently, a
differential equation for the magnetic field in the magnet block is derived and solved.
This solution is used to determine the impedance of the energizing winding, which is
compared to the impedance calculated using the magnet loss resistance. From this,
conclusions are drawn for the magnetic circuit of an electrical machine.
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Assumptions

Figure C.3 is used to explain how the eddy currents in the magnet block are
calculated. Figure C.3a depicts the idealized magnetic circuit consisting of an ideal core,
a magnet block with length /, , and an air gap with length g-/ . Because the relative
magnetic permeability of the magnet is assumed to be one, the effective air gap is g.
That the core is ideal means that the resistivity and magnetic permeability of this core
are infinite. Figure C.3b depicts a cross-section of the magnet block.

1 i h
: gél? i H
¢ |®i i.’f’fr.—i%-T—*x |
! L
: by T
a) b)

Figure C.3: a) A magnetic circuit consisting of an ideal core, a magnet and an air gap
in a rectangular coordinate system. b) A cross-section of the magnet.

The derivations in this section are based on four assumptions.
- All flux remains in the magnetic circuit, leakage flux is negligible.
- The magnetic field in the magnet and the air gap only has a component in the y-
direction.
- The magnetic field in the air gap and in the magnet is the same function of x. This
is reasonable because of the low magnetic permeability of the magnet.
- The field varies sinusoidally as a function of time with angular frequency w.
- End effects are negligible, which means that the magnet block is treated as if it
were infinitely long in the z-direction.
As a consequence of these assumptions,
- the current density in the magnet only has a component in the z-direction,
- the current density in the magnet block is a function of x, and
- the magnetic flux density in the magnet and in the air gap is a function of x.
Eddy currents are caused by changing magnetic fields. The magnetic field of the
magnet is constant, and consequently, it does not cause eddy currents. Therefore, the
eddy currents in the magnet can be calculated while the magnetization of the magnet is
made zero, which is done in this section.

The differential equation
A differential equation for the magnetic field strength in the iron is obtained by
applying Maxwell's equations to the magnet block. In the differential form of the second
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of Maxwell's equations (equation (3.26)), it is taken that the magnetic flux density only
has an y-component and that the electric field strength only has a z-component:

JE,x) 0B,
ox ot

With E = pmf and Em =y,0h_f . (because the magnetization M is assumed to be zero), this
can be written as

al,(x) _ B oH,,,(x)
ox P, Ot

Application of the integral form of the first of Maxwell's equations (equation (2.16)) to
the dashed closed path C in the magnetic circuit results in

(C.15)

(C.16)

@-L)H, @)+ H, () = i+l [T x"dx’ (C.I7)

5,2

The magnetic flux continuity condition is valid, which means that the magnetic flux
flowing through the magnet, also crosses the air gap. It is assumed that the magnetic
flux density in the air gap and the magnetic flux density in the magnets are the same
functions of x:

Hya(x) = I’LOHym(x) = Hya(x) = Hym(x) (C‘18)
Incorporating this in equation (C.17) gives

H,(x) = i+l, [ J("dx’ (C.19)
_bmlz

Twice differentiating this equation to x results in
g &FH,,, (x) )
1 ax2 ox

m

(C.20)

Using equation (C.16) results in a differential equation for the magnetic field strength:
azHym(x) _ l_m My oH, (x)

(C.21)
ax? g p, Ot
This equation resembles equation (C.4), and the solution has the same form:
( ) - 5) cosh(a x)
X EETEE— C.22
}’m 2 m OSh(%mem) ( )

where H ym(¥2b,;) is the complex amplitude of the magnetic field strength at the side
of the magnet (x=x%b, ),
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1+j

(C.23)

m /
asla'n,m

and 83',6,, m 18 a corrected skin depth of the eddy currents in the magnet, given by

2p,,
My @
If the air gap is zero (g=/, ), the normal formula for the skin depth of a material with
a relative magnetic permeability of one is obtained.

A comparable expression for a corrected skin depth is obtained by Lammeraner and
Stafl [Lam 66], who calculate the eddy currents in the solid core with air gap of a choke
coil.

The complex amplitude of the average of the magnetic field strength is given by

/ -_—

8l = (C.24)

&
lm

, sinh(Ga b,)

b2
g - bl [ 8, @& =8 (b, (C.25)

ym m b, 2 Va b, cosh(%gmbm)

The problem which remains is to determine the relation between the magnetic field
strength and the excitating current i with complex amplitude . The magnetic flux
density at the side of the magnet follows from equation (C.19) when x = -¥b,, is used
in this equation:

1 = E C.26
2 (;b,) . (C.26)
Incorporating this in equation (C.25), results in

_E 2 sinh(3,5) (C.27)
ymav amb,,, cOSh(%gmbm) ) .

Impedance of the energizing winding

The presence of eddy currents in the magnet causes a change in the impedance of the
energizing winding. The eddy currents reduce the flux linkage, and they set up ohmic
losses. This change in the impedance of the winding is referred to as the reflected
impedance, which is given by

Z = R+jw£i = R+R, +joL, (C.28)
L

where

R s the resistance of the energizing winding,

R, is the reflected resistance representing the eddy current loss in the magnet, and

L, is the reflected inductance, including the effect of eddy currents in the magnet on
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the flux linkage.
If all flux flows through the laminations and the air gap, the flux linkage ¢ is
proportional to the average magnetic field strength of equation (C.27). Therefore,
sinh(Xa b, )
. 1 L zm " (C.29)
—z—(_xmbm cosh(;gmbm)

s
L

where L is a constant with dimension Henry.

The reflected inductance and resistance are depicted in figure C.4. In the calculations
for this figure, values have been taken that form an approximation of the values valid
for the servomotor:

- P,,=0.5 um,
- b,=5mm, and
- gl =53.

In subsection 4.4.2, a magnet loss resistance was calculated on the assumption that
the effect of eddy currents in the magnets on the magnetic field is negligible. In the
same way, a magnet loss resistance is calculated for the magnetic circuit of figure C.3a.
The resulting reflected resistance and inductance are depicted in figure C.4.
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Figure C.4: The reflected inductance a) and resistance b) as a function of the frequency,
according to this appendix (—) and to the calculation of section 4.4.2 (- -).

Conclusions
From figure C.4, two conclusions can be drawn.

1)  As already mentioned in 4.4.5, the effect of eddy currents on the magnetic field in
the air gap is not negligible at frequencies above 10 kHz. However, the approxi-
mation obtained with the magnet loss resistance of section 4.4.2 remains reasonable
for frequencies up to 100 kHz.

2) At frequencies up to approximately 20 kHz, the eddy current loss is proportional
to w?, at very high frequencies (above approximately 20 kHz) it is proportional
to y/w, as already mentioned in subsection 4.4.1.
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Appendix D Conformal transformation for a stator slot
D.1 Introduction

This appendix describes the conformal transformation which is used to calculate the
amplitude of the pulsation of the magnetic flux density in the air gap because of the
stator slotting. Conformal transformations may be useful to calculate magnetic fields like
the magnetic field the air gap of a machine with slots, as appears form this appendix and
from publications as [Bin 92] and [Len 96]. For a recent and thorough explanation of
the use of conformal transformations, see [Bin 92]. In this appendix, the conformal
transformation described in [Zhu 93¢] is used.

Firstly, section D.2 describes the conformal transformation which is used to calculate
the magnetic field under a stator slot. In section D.3, this conformal transformation is
used to determine the pulsation of the magnetic flux density caused by the stator
slotting.

Assumptions
This appendix is based on the following assumptions.

- The conformal transformation used to calculate the magnetic flux density is based
on the idealized single slot model depicted in the z-plane of figure D.1, as in
[Wes 83], [Bin 92] and [Zhu 93c]. In this idealized single slot model, it is assumed

that the air gap can be considered linear instead of cylindrical,

that it is sufficient to consider one slot,

that the slot can be considered infinitely deep,

that the slot can be considered rectangular, and

that the magnetic permeability of the iron is infinite.

- The pulsation can be calculated for a machine in which the stator currents are zero.

* % X X *

D.2 The conformal transformation

This section describes the conformal transformation which is used to calculate the
magnetic field in the air gap and the slot of a machine with a slotted stator.

Figure D.1 depicts the three planes that are used in the conformal transformation, as
is explained further. In the complex z-plane, the idealized slot model is depicted. This
figure introduces the points z, to z,, the distance between the iron surfaces of the stator
and the rotor g=7,-r,, and the width of the slot opening b, .

Because the magnetic permeability of iron is assumed to be infinite, the lines
representing the iron surfaces of the stator and the rotor are equipotential lines. The
magnetic potentials of the stator at the two sides of the slot are equal because the stator
currents are zero. Furthermore, the difference between the magnetic potentials of the
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stator and the rotor surfaces because of the magnets is called ¢,.

The first transformation relates the region of the air gap and the slot in the complex
z-plane to the upper half of the complex ¢-plane. This is done in such a way that the
corresponding points in the z-plane and the z-plane are
z=z,=-b_[2+jg — t=t=-a,

2=2,=-® = t=t,=-1,
z=z,=0 - t=t;=1, and
z=z,=b_J2+jg — t=y=a.

jv jo

A

(t<-1) . (t>1)

Py
-a_ -1 1l a > (-1<t<0) | (0<t<1) >y
Lot 0ty ty 0 o
z-plane t-plane w-plane

Figure D.1: The three planes used in the conformal transformation.

The points ¢, to ¢, are on the real axis of the t-plane, as depicted in figure D.1. The
transformation from the #-plane to the z-plane is given by
t

) Ja 2—12+Z—gt
z= —’ﬂarcsin(—)+£ln —————-2&
™ a) w 2 .2 4§
yas-tc-—=t
bSO

where a was introduced as

_ | .f28) (D.2)
a 1 (bso]

In the z-plane, the magnetic potential of the stator surface and the rotor surface is
different. Both surfaces are transformed to the real axis of the z-plane. Therefore, the
magnetic potential on the real axis of the r-plane is ¢, between -1 and 1 and zero on
the rest.

Next, the upper half of the complex z-plane is transformed to the complex w-plane.
In this plane, the field is uniform, which means that the lines {s = constant are flux lines,
and the lines ¢ = constant are equipotential lines (figure D.1). The transformation from
the z-plane to the w-plane is given by

= ﬂln(y—t) (D.3)

(D.1)

T \1-t
Using the two transformations, the field lines and the equipotential lines in the z-plane
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and the z-plane are calculated from the uniform field in the w-plane. The results are
depicted in figure D.2. In this figure, a slot pitch of the test model (described in section
A.1 of appendix A) is depicted. Although for the test model b, =2.5 mm is valid, in this
figure, b =5 mm is used to obtain clearly visible effects.

1.5

8
6 15 I
4f 05
0

-0.5
-5 0 5 4 2 0 2 ~1 0 |

z-plane t—-plane w—plane

Figure D.2: The field lines (—) and the equipotential lines {(..) in the three planes.

D.3 The pulsation of the magnetic flux density

In this section, the pulsation of the magnetic flux density because of the stator slotting
is calculated from the conformal transformation described in the previous section.

As far as is known, it is not possible to use the described conformal transformation
to calculate the magnetic flux density as an explicit function of z. However, it is possible
to calculate the magnitude of the magnetic flux density as a function of ¢. This is
sufficient to obtain a reasonable approximation of the pulsation of the magnetic flux
density with simple calculations. The magnitude of the magnetic flux density is
calculated as ([Bin 92], [Zhu 93c])

_ _ dw| _ dw 1
L e R e (D4
dr
Using equations (D.1) and (D.3), this can be worked out to
2¢ 1 1
|B| = pp— = B,
w(1-t%) b, \Ja2-2 b\ (D.5)
o 1-¢2 1+[—s‘1) (1 —t7')
%
where B, was introduced as
B, = Ho ¥ (D6)

g
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B, is the magnetic flux density far from the stator slot in the air gap (z==*), This can
be seen by substituting ¢=x1 in equation (D.1), which results in z=*o, and in
equation (D.5), which results in |B| =B,,. Two substitutions are necessary because both
zand |B| are written as function of .

Figure D.3a depicts the magnitude of the magnetic flux density as a function of x for
different values of y in the air gap. From this figure, two conclusions can be drawn.
1) The assumption that the calculation can be based on a single slot model is

questionable, because at the axis of a tooth (x==*5 mm), the magnetic flux density
is still different from B,,.

2) In chapters 2 and 3, the magnetic field in the air gap was calculated on the
assumption that the stator surface was smooth: the stator slotting was neglected.
According to figure D.3a, the average magnetic flux density at the rotor surface is
about 0.99B,. (This means that the Carter factor k. [Ric 67] is about 1.01.)
Therefore, the error in the average magnetic flux density made by neglecting the
stator slots is about 1 %, which is indeed negligible.

The minimum of the magnetic flux density B, depends on y, and lays at the axis
of a stator slot, which coincides with the imaginary axis of the complex z-plane. By
means of the transformation given by equation (D.1), the imaginary axis of the z-plane
is transformed to the imaginary axis in the z-plane. This is seen from the fact that z is
purely imaginary when ¢=jv is substituted in equation (D.1). Herewith, y is calculated
as

1
(=]
So ‘ g QS 0.6}
3 0.95 \\ i’ o
\ /
v
0.9 LN
-5 ~b,/2 0 by,/2 5
a) x (mm) b) y (mm)

Figure D.3: The magnetic flux density in the air gap of the test model (g=7.2 mm )
a) as a function of the stator coordinate over one slot pitch at different radii

(- -: y=0, --: y=0.4g, —: y=0.6g, --: y=0.8g) if b =2.5mm, and

b) as a function of the radius at the axis of the slot for different slot openings

(- - b,=1.25mm, — b, =2.5mm, --: b =5mm).
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ya2w2+ ;_g jv
arcsin(ﬂ]+ | — "0 (D.7)

R e
sO

The minimum of the magnetic flux density B, is obtained by substituting ¢ = jv into
equation (D.5):

Bmin = BO P .
\J (b )2 (D.8)
1+ =2 (1+v?
2g

In this equation, the minimum of the magnetic flux density B, .. is not written as a
function of y, but as a function of v. As far as is known, it is not possible to write v as
an explicit function of y by solving v from equation (D.7). Therefore, equation (D.7) is
used to iterate to the value for v which agrees with the damper radius y=r PR
Substitution of this value of v in equation (D.8) results in the value for B, atthe
damper radius.

Figure D.3b depicts this magnetic flux density as a function of y for different values
of the slot opening b_,. From this figure, it is concluded that to obtain a small pulsation
of the magnetic flux density in the damper cylinder, the slot opening b, should be
small, and the distance between the stator and the damper cylinder should be large.

In subsection 4.5.2, it is assumed that the described conformal transformation can be
used to calculate the pulsation of the magnetic flux density caused by the stator slotting
in the following way. The radial component of the magnetic flux density at the damper
radius of a machine with a slotted stator B, Slotte (T »2,t) can be calculated from the radial
component of the magnetic flux density at the damper radius of a machine without stator
slots B,m,h(rd,as,t) as

B r,slatted(r d’as’t) =B r,snwoth(r d’as’t ) ki+ y(rd)cos(6pqas) (D9)
C

This equation is based on the following assumptions and starting-points.

1)  Itis assumed that the pulsation caused by the stator slotting is a sinusoidal function
of the stator coordinate with a wave length equal to the slot pitch.

2) Itis taken that e =0 coincides with the axis of a stator tooth.

3) Itis taken that 6pg is the number of stator slots.

4) It is assumed that the factor y(r,) follows from the described conformal
transformation with equation (D.8) as
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1 min 1 1
YD) = 5157 = 5|1
‘ 2( B, ) 2 bV (D.10)
1+{=2| (1+v?
(23]( )
5) The Carter factor k. describes the average reduction of the magnetic flux density
due to the stator slotting. In the rest of this thesis, it is assumed to be one, because
the difference from one is negligible.

In figure D.3a, it can be seen that some of these assumptions are questionable, mainly
when the damper cylinder is close to the stator surface.
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Appendix E Derivation of equation (5.46)

This appendix describes the derivation of equation (5.46) from equation (5.43).
Substituting the Fourier series for the internal voltages, the currents, and the functions
p and h (equations (5.8), (5.6), (5.15), and (5.44)) in equation (5.43) results in
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Working out the multiplications of the series on the right side of this equation gives

-

n=-c

Z (](6n+1)h)1l o lej(6n+1)ﬁ)1'__j(6n+l)wli:’&'qe -j(6n+1)w1t)

=-00

= E MU, (1 e”"’)( 1026 *37e ""‘é”)+%(1+e'”‘§")J

3
1 - e 2Ak-6m—1 _Ji" ‘j‘z"'" 'j(k-ﬁm-l)l-rr
S Y ((1+eitbml) X, e I (e -1+ * -1)e 3 )
m=-o 1
3B, omil. -ik-bm-)im  jk-6m-1)in hk ot i(k-6m-1)ln
————(1+e 3 +e 3 ( 1+(e ~1)e : )
L, L,
vms Progma -j(k+6me1)2m
+(1+eJ(k 6m 1)1r)€s omot| T ( 1+(€ l)e 3 )
3 : i (E2)
/) _itk+6m+1)L -i(k+6m+1)< —i(k+6m+1)L
Prigmat (1+e j(k+6m 1)317+e j(k+6m+1) ‘rr) k+6m+1( 1+(e 1)e j(k+6m 1)3#)
L, L,
By gmor|_iim . itebmln  jdr getmon)in
+R (1+ej(k -6m- 1)7-;-)_56””1 L2 (e 3" 2e 3 4e e 3 )
R by gma ( . —jévr_e -j(k-sm-ng«)
L,
R, ( 1+ iCcs6meTymy;™ 2k+6m+1< e i%ﬂ_ze -j(k+6m*1)§w+ej§we -j(k+6m+1)§qr)
‘56m+1 L2

hk+6m+l(el T -j(k+6m+1)§7)J

L,

As expected, when the right side of this equation is worked out, the harmonics of which
the harmonic number is an integer multiple of 2 or 3 appear to be zero.

By substituting k=6n+1 on the right side of this equation, an equation for a series of
Fourier coefficients is obtained:
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By substituting k=-(6n+1) into the right side of equation (E.2), an expression for
another series of Fourier coefficients is obtained. The resulting expression is the complex
conjugate of equation (E.3). Therefore, this expression does not contain extra information
and is omitted.

The Fourier coefficients of the internal voltage in equation (E.3) are substituted by
equation (5.9). The result can be worked out to
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This is the equation that had to be derived, equation (5.46).
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Summary

Objective

This thesis deals with the losses in a high-speed permanent-magnet generator with
cylindrical rotor and surface-mounted magnets. The generator is loaded with a six-pulse
controlled bridge rectifier. Such a generator system may be used in series-hybrid
vehicles, aeroplanes, vessels, mobile ground power stations, total energy units, and
expanders which recover power from the expansion of compressed natural gas.

The objective of the research is to derive a machine model suitable for optimizing the
machine design. The model is mainly intended to minimize the rotor losses. This is
important, because high rotor losses heat the rotor, which may result in demagnetization
of the magnets.

A way of decreasing the rotor losses may be the use of a damper cylinder. Such a
damper cylinder introduces damper loss, but it shields the rest of the rotor, avoiding
excessive eddy-current loss in the rotor iron and the magnets. Another way of decreasing
the rotor losses is the use of small permanent-magnet blocks. Both methods are explored.

Modelling of the rectifier-loaded generator and model verification

The derivation of the machine model is based on the two-dimensional calculation of
the magnetic field in the air gap and the magnets. Space harmonics of the magnetic field
are considered, because they contribute significantly to the rotor losses.

The model has five characteristics making it suitable to optimize the machine design.
1) The model is analytic.

2) Its parameters are calculated from the machine dimensions and material properties.

3) It can be used for a machine with and without a damper cylinder.

4) It includes the most important electromagnetic losses, namely the stator copper
loss, the iron loss, the eddy-current loss in the magnets, and the loss due to the
stator slotting. It also includes the damper loss if a damper cylinder is present.

5)  The eddy-current loss in the magnets is modelled as a function of the width of the
magnet blocks.

The model of the permanent-magnet generator is combined with a model of the
controlled rectifier. The resulting equations are solved in the frequency domain to
determine the steady-state performance of the permanent-magnet machine loaded with
a controlled rectifier.
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Locked-rotor tests verify the voltage equations of the machine with a damper cylinder,
the model for the iron loss, and the model for the eddy-current loss in the magnets for
the fundamental space harmonic. For the higher space harmonics, these models are
neither verified nor refuted by the locked-rotor tests. Measurements of voltage and
current waveforms of the rectifier-loaded generator during normal steady-state operation
verify the complete model of the machine with rectifier.

On the generator design

The derived model of the permanent-magnet machine has been used to investigate
some design aspects of permanent-magnet machines. From these investigations, the
following conclusions can be drawn.

In contrast to what is said about rectifier-loaded synchronous machines, in a rectifier-
loaded permanent-magnet machine, a damper is generally neither necessary for obtaining
a sufficiently small angle of overlap, nor effective in reducing the reactive power.

In a machine with laminated rotor iron, the effect of a damper cylinder on the rotor
losses depends on the rotational frequency. At very high rotational frequencies, the
addition of a damper cylinder results in a decrease of the rotor losses, while at lower
rotational frequencies, it results in an increase of the rotor losses. Therefore, the decision
whether to use a damper cylinder or not should be based on careful calculations. In a
machine with solid rotor iron, the addition of a damper cylinder generally results in a
decrease of the rotor losses.

In a machine with laminated rotor iron and without a damper cylinder, the greater part
of the rotor losses is eddy-current loss in the magnets. In this case, decreasing the
magnet width is a very effective means of decreasing the rotor losses, because the eddy-
current loss in the magnets is mainly proportional to the square of the magnet width.

In a machine with a damper cylinder, the rotor core loss and the eddy-current loss in
the magnets are negligible compared to the damper loss: the damper cylinder shields the
rest of the rotor. If skin effect in the damper cylinder is negligible, the rotor losses are
roughly inversely proportional to the thickness of the damper cylinder. The damper loss
becomes excessive when the distance between the stator surface and the damper
becomes too small.

In conclusion

The model of the permanent-magnet machine derived in this thesis is suitable for the
optimization of the design of a permanent-magnet machine with rectifier load and for
the investigation of the effect of a damper cylinder. The additional value of this model
is that it combines the calculation of voltage and current waveforms of a rectifier-loaded
machine with a machine model based on the two-dimensional calculation of the
magnetic field including the most important electromagnetic losses.
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Samenvatting

Doelstelling

Dit proefschrift gaat over de verliezen in een sneldraaiende permanente-magneetgene-
rator met een cilindrische rotor en magneten in de luchtspleet. De generator is belast met
een stuurbare zespulsige bruggelijkrichter. Zo'n generatorsysteem kan gebruikt worden
in serie hybride voertuigen, vliegtuigen, schepen, aggregaten, warmte-kracht gekoppelde
installaties en turbines die energie terugwinnen uit de expansie van gecomprimeerd gas.

Het doel van het onderzoek is het afleiden van een machinemodel dat gebruikt kan
worden om het machineontwerp te optimaliseren. Het model is vooral bedoeld om de
rotorverliezen te minimaliseren. Dit is belangrijk omdat hoge rotorverliezen de rotor
verhitten, wat tot demagnetisatie van de magneten kan leiden.

Een methode om de rotorverliezen te reduceren is het gebruik van een dempercilinder.
Zo'n demper cilinder introduceert demperverliezen, maar hij schermt de rest van de rotor
af, zodat grote wervelstroomverliezen in het rotorijzer en de magneten vermeden worden.
Een andere methode om de rotorverliezen te verkleinen is het gebruik van kleine
magneetblokjes. Beide methoden worden onderzocht.

Modelvorming van de generator met gelijkrichter en modelverificatie

De afleiding van het machinemodel is gebaseerd op de twee-dimensionale berekening
van het magnetisch veld in de luchtspleet en de magneten. Hierin worden ruimtelijke
harmonischen van het magnetisch veld meegenomen omdat hun bijdrage aan de
rotorverliezen belangrijk is.

Het machinemodel heeft vijf eigenschappen die het geschikt maken om het
machineontwerp te optimaliseren.

1)  Het model is analytisch.

2)  De parameters van het model worden berekend uit de afmetingen en de materiaal-
eigenschappen van de machine.

3) Het kan gebruikt worden voor een machine met en zonder dempercilinder.

4) Het omvat de belangrijkste elektromagnetische verliezen, namelijk de koperverlie-
zen in de stator, de ijzerverliezen, de wervelstroomverliezen in de magneten en de
verliezen ten gevolge van de statorgroeven. Het omvat ook de demperverliezen als
een dempercilinder gebruikt wordt.
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5) De wervelstroomverliezen in de magneten worden berekend als functie van de
breedte van de magneetblokjes.

Het afgeleide model van de permanente-magneet generator wordt gecombineerd met
een model van de stuurbare zespulsige bruggelijkrichter. De resulterende vergelijkingen
worden opgelost in het frequentiedomein om het gedrag van de permanente-magneet
generator met gelijkrichter te bepalen.

Kortsluitproeven met geblokkeerde rotor verifiéren de spanningsvergelijkingen van de
machine met dempercilinder, het model voor de ijzerverliezen en het model voor de
wervelstroomverliezen in de magneten voor de ruiimtelijke grondharmonische. Voor de
ruimtelijke hogere harmonischen zijn de modellen geverifieerd noch gevalsifieerd.
Metingen van spannings- en stroomvormen van de generator met gelijkrichter in normaal
bedrijf verifiéren het complete model van machine met gelijkrichter.

Het ontwerp van de generator

Het afgeleide model van de permanente-magneetmachine is gebruikt om enkele
belangrijke ontwerpaspecten van permanente-magneetmachines te onderzoeken. Hieruit
kunnen de volgende conclusies getrokken worden.

In tegenstelling tot wat beweerd wordt over synchrone machines met gelijkrichter, is
een demper in een permanente-magneetmachine met gelijkrichter niet nodig om een
voldoende kleine commutatiehoek te krijgen, noch effectief om het reactieve vermogen
te reduceren.

In een machine met gelamineerd rotorijzer hangt het effect van een dempercilinder
op de verliezen af van het toerental. Bij zeer hoge toerentallen leidt het toevoegen van
een dempercilinder tot een reductie van de rotorverliezen, terwijl bij lagere toerentallen
het toevoegen van een dempercilinder leidt tot een toename van de rotorverliezen.
Daarom moet de beslissing over het gebruik van een dempercilinder gebaseerd worden
op zorgvuldige berekeningen. In een machine met massief rotorijzer leidt het toepassen
van een dempercilinder over het algemeen tot een reductie van de rotorverliezen.

In een machine met gelamineerd rotorijzer en zonder dempercilinder is het grootste
deel van de rotorverliezen wervelstroomverlies in de magneten. In dit geval is het
verkleinen van de breedte van de magneetblokjes een zeer effectief middel om de
rotorverliezen te reduceren omdat het wervelstroomverlies in de magneten ruwweg
evenredig is met het kwadraat van de breedte van de magneten.

In een machine met dempercilinder zijn de ijzerverliezen in de rotor en de
wervelstroomverliezen in de magneten verwaarloosbaar ten opzichte van de demperver-
liezen: de dempercilinder schermt de rest van de rotor af. Als stroomverdringing in de
dempercilinder verwaarloosbaar is, is het demperverlies ruwweg omgekeerd evenredig
met de dikte van de dempercilinder. De demperverliezen worden zeer groot als de
afstand tussen de dempercilinder en het statoroppervlak te klein wordt.
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Afsluitend

Het model van de permanente-magneetmachine afgeleid in dit proefschrift is geschikt
voor de optimalisatie van het ontwerp van een permanente-magneetmachine met
gelijkrichter en voor het onderzoek naar het effect van een dempercilinder. De
meerwaarde van dit model is dat het de berekening van de spannings- en stroomvormen
van de machine met gelijkrichter combineert met een machinemodel gebaseerd op de
twee-dimensionale berekening van het magnetisch veld inclusief de belangrijkste
elektromagnetische verliezen.
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