Recycling Bio composites

Exploring the possibilities of recycling bio composites into filler for a new bio composite façade product.

Jet Wiersma

ANNUAL GLOBAL CO₂ EMISSIONS

Source: Global Alliance for Buildings and Construction, "Global Status Report 2017"

20%

6

Circular building products

Reduce waste

Extent life cycle

Smart design choices

R-strategies

Concept

"Material made from two or more materials"

Matrix

Thermoplastic Thermoset

Fillers

Bulk fillers
Functional fillers

Fibres

Oriented Random

Bio plastic matrices

- Thermoplastic
- Thermoset

Fillers

Bulk fillers (40-65wt%)

- Reduce cost
- Increase strength

Functional filler (<5wt%)

- Fire resistance
- Pigments
- Release agents

Fibres

- Reinforcement
- Reduce shrinkage

Natural fibres

Recycling

Research questions

"How can bio composite facade panels be recycled into new bio composite panels after their end of service life?"

Sub questions

- What are the **key performance properties** of recycled bio composite façade panels?
- How do recycled filler materials **compare** to virgin raw filler materials used in current bio composite panels?
- How does the **weathering** of the pre-recycled panel influence the performance of the recycled bio composite façade panel?
- How does using a recycled filler affect the **design** of a bio composite facade panel?

Application

Application

Rain screen façade panel

Scheme of shearing layers model, based on (Brand, 1994)

Application requirements

Requirements:

- Protection from weather
- Impact resistance
- Aesthetic appearance
- Bending strength against wind load

Material selection

Matrix

Furan resin

Fillers

Almond shell

Components bio composite

Matrix: Furan resin

- Bio based
- Not bio degradable
- Dark brown colour
- Thermoset

23-06-2025 2

Components bio composite

Additives:

Catalyst

Activates curing process

Linseed oil

Release agent

Base recipe

Component	Description	Weight [%]
Matrix	Furan	45
Filler	Almond shell	45
Catalyst		7
Release agent	Linseed oil	3

Fillers

Filler types

Almond shell

Almond shells

Filler ASF

Recycled filler NEW

Sample plate base recipe

Filler RF_NEW

Recycled filler OUT

Facade panel outside

Filler RF_OUT

Recycled filler QUV

Sample plate QUV

Filler RF_QUV

Filler preparation

Filler preparation

Step 1: Hammering sample plate into small pieces

Step 2: Shredding into smaller pieces

Filler preparation

Step 3: Milling into powder

Manufacturing method

Manufacturing method

Bulk compression moulding

Process manufacturing

Step 1: Measuring ingredients & mixing

Step 2: Pressing sample plates

Process manufacturing

292 mm

- 9 Flexural strength
- 12 Impact test

- 2 QUV
- 2 Watersubmersion
- 1 Frost resistace
- 1 Reference

Step 3: CNC plates for testing

Methodology

Structure

Raw material resources

Material sample

Product sample

Testing workflow

Testing phases

Testing process

Bulk density test

Microscopic analysis

45

HY4251

3 point bending (ISO 14125A)

Charpy Impact test (ISO 179)

QUV weathering machine (Time: 3 weeks)

Frost resistance (Time intervals: 8h x 8h x 10 cycles)

Watersubmersion (Time intervals: 24h x 28 days)

Comparison results

Flexural strength

Impact resistance

Durability

Workability

Evaluation	Strength	2. Impact		
scale	(MPa)	Resistance (kJ/m²)	3. Workability	4. Durability
	Scale 0-80	Scale 1-6	Scale 0-5	Scale 0-5
	0 = 0-16	0 = 1-2	0 = liquid not workable	0 = total destruction
	1 = 17-32	1 = 2-3	1 = thick liquid	1= cracks and all of above
	2 = 33-48	2 = 3-4	2 = super sticky	2= deformation
	3 = 49-64	3 = 4-5	3 = sticky	3= visual change (coloration)
	4 = 65-80	4 = 5-6	4 = thick crumble (a bit sticky)	4= minimal visual change
	5= 80	5= 6	5 = crumble	5= no visual change

Results testing phases

Filler analysis:

- Bulk Density
- Microscopic analysis

Bulk Density

Density $[kg/m^3] = W/V_f$

V: Volume filler

Filler type	Av. Bluk Density [kg/m3]
Almond shell filler	666
Recycled filler NEW	609
Recycled filler OUT	589
Recycled filler QUV	450

Different grains size & shapes

Almond shell filler, < 80 µm

Recycled filler NEW, < 50 µm

Different grains and size compositon

Recycled filler OUT, < 50 µm

Recycled filler QUV, < 50 µm

Findings:

- Lower density
- Grain size
- Higher surface area
- Non-Homogenous

Materials sample testing

- Flexural strength
- Impact resistanceWorkablity
- Durability

Flexural testing Almond shell filler - ASF

- ASF_40
- ASF_45
- ASF_50

Name sample	Flexural strength (Mpa)	Flexural modulus (Gpa)	flexural strain	fk (Mpa)
ASF_40	71.2	5.77	1.3	62.46
ASF_45	72.2	5.42	1.3	60.82
ASF_50	71.1	4.26	1.2	61.70

Flexural testing
Recycled filler NEW - RF_NEW

- RF_NEW_45
- RF_NEW_50
- RF_NEW_55

Name sample	Flexural strength (Mpa)	Flexural modulus (Gpa)	flexural strain	fk (Mpa)
RF_NEW_45	56	3.9	1.5	48.13
RF_NEW_50	69.5	4.86	1.5	60.74
RF_NEW_55	66.1	4.68	1.4	57.16

Jet Wiersma 59

Impact resistance

Workability

ASF_45

ASF_50

RF_NEW_45

RF_NEW_50

61

Recycled filler NEW

Durability

- ASF_45

- RF_NEW_50

Reference

QUV

Reference

QUV

Findings

Recycled fillers

Name sample	Flexural strength (Mpa)	Flexural modulus (Gpa)	flexural strain	fk (Mpa)
ASF_40	71.2	5.77	1.3	62.46
ASF_45	72.2	5.42	1.3	60.82
ASF_50	71.1	4.26	1.2	61.70
RF_NEW_45	56	3.9	1.5	48.13
RF_NEW_50	69.5	4.86	1.5	60.74
RF_NEW_55	66.1	4.68	1.4	57.16

Materials sample testing

- Flexural strength
- Impact resistanceWorkablity
- Durability

Flexural strength
Recycled filler OUT - RF_OUT

- RF_OUT_50
- RF_OUT_55

Name sample	Flexural strength (Mpa)		flexural strain	fk (Mpa)
RF_OUT_50	55.6	4.24	1.3	44.02
RF_OUT_55	59.3	4.43	1.4	52.92

Flexural strength
Recycled filler QUV - RF_QUV

- RF_QUV_50
- RF_QUV_55

Name sample	Flexural strength (Mpa)		flexural strain	fk (Mpa)
RF_QUV_50	51.7	4.1	1.4	47.96
RF_QUV_55	59.4	4.49	1.4	55.73

Impact resistance Recycled filler OUT - RF_OUT

Workability Recycled filler OUT - RF_OUT

RF_OUT_50

RF_OUT_55

Durability Recycled filler OUT - RF_OUT

- RF_OUT_50

Reference

QUV

- RF_OUT_55

Reference

QUV

Findings

- Lower mechanical properties
- Similar impact resistance
- Higher durability
- Lower workability
- Overall score

3D moulding

- Workability and flow
- Visual

Distribution first test

Distribution second test

PHASE 3

ASF_45

RF_NEW_50

RF_OUT_55

RF_OUT_50

Distribution first test

Distribution second test

PHASE 3

Findings

- Small defects
- Flow visible
- Ridges
- Surface finish

Results

Recyclability

Mechanical properties

Durability

Weathering

Design freedom

Granta EduPack 2024 R2 © 2024 ANSYS, Inc. or its affiliated companies. All rights reserved.

Take away for Design

- Slopes
- Ridges
- Finished surface
- Secondary facade product

Design

Design criteria

- Minimal slopes
- Avoid ridges
- Compatible
- Corner panel

Design corner panel

Design detail

Conclusion

Questions?

Results phase 2 Flexural strength

Name sample	Flexural strength (mean)	Flexural modulus (mean)	flexural strain	fk
ASF_40	71.2	5.77	1.3	62.46
ASF_45	72.2	5.42	1.3	60.82
ASF_50	71.1	4.26	1.2	61.70
RF_NEW_45	56	3.9	1.5	48.13
RF_NEW_50	69.5	4.86	1.5	60.74
RF_NEW_55	66.1	4.68	1.4	57.16
RF_OUT_50	55.6	4.24	1.3	44.02
RF_OUT_55	59.3	4.43	1.4	52.92
RF_QUV_50	51.7	4.1	1.4	47.96
RF_QUV_55	59.4	4.49	1.4	55.73

Results phase 2 Impact resistance

Name sample	Charpy impact (kJ/m²):	<u>Charpy impact (kJ/m²) SD</u>	Charpy impact (kJ/m²) SD/2	Energy (J)
ASF_40	3.47	0.65	0.32	0.18
ASF_45	2.79	0.29	0.14	0.13
ASF_50	3.48	0.49	0.25	0.27
RF_NEW_45	3.04	0.78	0.39	0.20
RF_NEW_50	3.40	0.53	0.26	0.14
RF_NEW_55	2.43	0.21	0.10	0.23
RF_OUT_50	2.77	0.67	0.34	0.15
RF_OUT_55	2.53	0.48	0.24	0.15
RF_QUV_50	2.68	0.27	0.14	0.13
RF_QUV_55	2.67	0.44	0.22	0.13

Results phase 2 Comparison

Samples	1. Flexural Strength	2. Impact Resistance	3. Workability	4. Durability	Average .	4.1 Frost	4.2 Water absorption	4.3 QUV Results
ASF_40	4.5			X	3.7		x	X
ASF_45	4.5		5			3	4	
ASF_50	4.5			х	4.0	x	х	х
RF_NEW_45	3	2.0	2	х	2.3	х	х	х
RF_NEW_50	4.5	2.5	3	4.3	3.6	5	4	4
RF_NEW_55	4	1.5	4	х	3.2	х	х	х
RF_OUT_50	3.5	1.5	3	4.3	3.1	5	4	4
RF_OUT_55	3.5	1.5	4	3	3.0	3	3	3
RF_QUV_50	3	1.5	3	х	2.5	х	х	х
RF_QUV_55	3.5	2.5	4	х	3.3	х	х	х
Average	3.85	2.0	3.7		3.225	4	3.75	3.5

Evaluation scale	Strength (MPa)	2. Impact Resistance (kJ/m²)	3. Workability	4. Durability
	Scale 0-80	Scale 1-6	Scale 0-5	Scale 0-5
	0 = 0-16	0 = 1-2	0 = liquid not workable	0 = total destruction
	1 = 17-32	1 = 2-3	1 = thick liquid	1= cracks and all of above
	2 = 33-48	2 = 3-4	2 = super sticky	2= deformation
	3 = 49-64	3 = 4-5	3 = sticky	3= visual change (coloration)
	4 = 65-80	4 = 5-6	4 = thick crumble (a bit sticky)	4= minimal visual change
	5= 80	5= 6	5 = crumble	5= no visual change

QUV calculations

Light hours = 504 hours

a (solar radiation) = 1615 kJ/m2

 a_r (solar radiation real) = 55,5 kJ/m2

period outside = 609 days (1 year and 8 months)

$$x \ light \ hours = \frac{1}{3.6} * \frac{a * \frac{kJ}{m^2}}{0.89 \frac{W}{m^2}} \ at \ 340 nm$$

LCA

A1-3

Composite ASF: 2.30 + 0.973 kg = 3.273 kg CO2-eq/kg composite

Composite RF_NEW: 2.7075 + 0.973 kg = 3.6805 kg CO2-eq/kg composite