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Abstract

It has been argued that for the real-world application of an Evolutionary Robotics (ER) system,
in which both body (morphology) and brain (controller) are being evolved, a learning stage must
occur directly following the ‘birth’ of a robot. This additional learning stage is deemed necessary
because the inherited brain of a newborn robot may not match its inherited body after recombination
of the parents’ morphologies. In a system that both evolves and learns, the design and optimization
of robots take place through two processes: 1) the evolutionary process, where both robot body and
brain evolve to obtain a higher fitness, 2) a lifetime learning loop, where the brain is optimized to
control a fixed body (produced by the evolutionary process) to obtain a high performance in a certain
task. Here, we will only focus on the development of controllers in the lifetime learning loop for the
task of directed locomotion, meaning we do not conduct evolution.

The ER perspective with lifetime learning challenges us to develop a controller that can learn
rapidly on a broad range of morphologies while being eligible for evolution. This is because lifetime
learning is seen as a sub-task that precedes the accomplishment of the user-defined goal in ER.
Currently, most simulated robots that are being optimized in ER use an open-loop controller design.
For real-world applications, this is clearly limiting, since in practice feedback control is often the
norm. The implementation of feedback control in ER can be tricky as the robot morphologies and
environments are unknown beforehand. Furthermore, static feedback control limits the range of
morphologies on which the controller is applicable, and will likely influence the performance during
lifetime learning. To enable learning on a broad range of morphologies we propose the use of adaptive
feedback.

In this study, we present an adaptive Internal Model Control (IMC) design for feedback control,
that can be used as an extension to an open-loop controller. The core idea is to add a forward model
and an inverse model for feedback control, which are both being learned on-the-fly. We will apply
two different versions of feedback learning in our IMC design, 1) using a simple deep neural network
as our internal models which learns in all layers (IMC vanilla), and 2) using reservoir computing
networks that only learn at the output layer (IMC reservoir).

In the end, our controllers contains two learning systems. 1) a lifetime learning loop that improves
on the task of directed locomotion, and 2) Adaptive control, which learns optimal control. To our
knowledge, we are the first that conduct a study on lifetime learning with adaptive feedback control in
a broad range of morphologies. It is therefore uncertain if/how lifetime learning and adaptive control
influence each other. To see if such a controller is eligible for evolution within an ER framework, we
will test if it can learn directed locomotion rapidly on a broad range of morphologies.

Directed locomotion is learned by changing the weights of Central Pattern Generators within
the controller, using Bayesian Optimization. Feedback learning is done by updating the weights
and biases of the internal models in the IMC, using Adaptive Moment estimation. A comparison
on directed locomotion performance will be made between an open-loop controller and the same
open-loop controller with the addition of either IMC vanilla or IMC reservoir, on a set of modular
robots with different morphologies. Additionally, we also investigate the effect of adding noise at the
actuator level, as a test for transferability to real robots.

The results show that for the task of directed locomotion the IMC reservoir performs just as
good or better in every morphology compared to the open-loop controller, while the IMC vanilla
performed worse. Additionally, transferring the IMC reservoir and the open-loop controllers to a
noisy environment yielded less detrimental effects on the former. We suspect the improvement in
transferability to occurs in two ways: 1) Learning directed locomotion with feedback control directs
learning towards behaviours that are less sensitive to perturbations, compared to open-loop; 2) the
IMC was able to learn proper feedback control which made the controller more robust.

With our study, we showed that the addition of adaptive feedback control can both affect the rate
of learning directed locomotion, the performance of the final controller, and the transferability to a
noisy environment. Our controller is special in the sense that it could learn proper feedback control
on top of the task of learning directed locomotion in a feasible amount of time for a broad range of
morphologies. For future work, we will test our controller in real robots.
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Nomenclature
General

1 . . . i . . . k Servomotor i up to total number of k servomotors

φ̇i Angular velocity of servomotor i

φi Angle of servomotor i

φref Reference angle

EA Evolutionary Algorithm

ER Evolutionary Robotics

ToL Triangle of Life

Learning Locomotion

CPG Central Pattern Generators

1 . . . j Neighbouring joints

N j
i Set of neighbouring CPGs j at servomotor i

w CPG weight (direction is often denoted as xiyi = xi → yi)

Ddev Distance travelled perpendicular to the target direction

Ddir Distance travelled in target direction

~w Vector of CPG weights of a single run/sample

Y Vector containing the fitness values of the corresponding samples of X: [F1,F2, . . . ,Fn]

F Fitness function

X Matrix consisting of all sample vectors: [~w1, ~w2, . . . , ~wn]

BO Bayesian Optimization, method used to learn directed locomotion

GP Gaussian Process

f(~w) Function approximator

a (f(~w)|X,Y ) Acquisition function

LHS Latin Hypercube Sampling, pseudo random initial sampling method

UCB Upper Confidence Bound, sampling approach used for a (f(~w)|X,Y )

Adaptive Control

IMC Internal Model Control

modelinv Inverse model

modelff Feedforward model

DNN Deep Neual Networks

ReLU Rectified Linear Units

L Loss function

ADAM Adaptive Moment estimation, optimizer used for updating the internal models
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1 Introduction

1.1 Evolutionary Robotics, and Learning Locomotion
Developing a robot can be a difficult task that requires a lot of time and iterations in the design process.
An often employed strategy is to reduce the complexity of this task by creating a static environment for
the robot. Unfortunately, this cannot be done for robots that are being developed to operate outside
of such controlled settings. Especially, when the environment is (partly) unknown beforehand like the
deep sea, volcanoes, or other planets [37], the traditional designing method can fall short to account for
every obstacle possible. If we look at how nature resolves this issue, we can see a solution to this problem
through evolution. The evolutionary process has shown to be able to find designs that can coop with
a wide variety of the most extreme environments. The field of Evolutionary Robotics (ER) attempts
to recreate the circumstances by which such optimal designs could emerge for robotic applications. An
advantage of this evolutionary approach is that the overall designing process can be autonomous, cheaper,
and generally applicable in a wide range of different situations. Additionally, it has been shown before
that an evolutionary process can present novel ‘out of the box’ design ideas that outperform human design
[8].

The field of ER “aims to apply evolutionary computation techniques to evolve the overall design
(morphology) or controllers, or both, for real and simulated autonomous robots” [80]. In more detail, an
ER system consists of a population of robots that are stationed in an uncontrolled (unknown) environment
and subjected to survival. Each robot tries to accomplish a predefined task e.g gathering as many
resources as possible in the environment. An algorithm selects and mates specific parent robots that
performed well on this predefined task, which is expressed in their fitness (for example, in the gathering
resources task this can be the total amount acquired till the robot breaks). New offspring designs are
created by recombination of the parent robot designs (i.e. cross-over and mutation of their genetic code),
much like in natural evolution [18]. A major advantage of this approach is that designing can take place
on the spot autonomously without the need for prior knowledge about the environment. Evaluation is
only done on the fitness for the user-defined task, which circumvents the need for in-depth knowledge
about the environment itself. Optimal robot designs emerge on their own and the robot population is
adaptive to unforeseen challenges or changes in the environment. The only decision a human has to make
is formulating the predefined task via an objective function that is suitable for the evolutionary algorithm
(EA).

Early ER research dates back to 1990 [5; 72] and was then primarily seen as a way to study models
of cognition with minimal prior assumptions [24; 62]. ER provided a core methodology for research into
artificial life, using simple integrated sensorimotor control systems for robots. This has led the main
focus of ER to be on the development of EA for designing mobile robots with the predefined task of
moving through space [59]. Moving through space has been formulated in different types of objectives:
1) gait learning moving as far away as possible from a starting position; 2) targeted locomotion moving
from starting position A to an end position B; 3) directed locomotion move as far as possible in a certain
direction. In this thesis, we are mostly concerned with the latter, which can be formulated by an objective
function that increases with the amount of traveled distance in a certain direction and decreases with the
amount of deviation from this direction.

Most ER experiments are focused on improving the design of a controller in robots with a fixed
morphology (this was estimated to be the case for over 95% of the ER literature in 2015 [61; 83]). This
is because

In a system that both evolves and learns, the design and optimization of robots take place through
two processes: 1) the evolutionary process, where both robot body and brain evolve to obtain a higher
fitness, 2) a learning loop, where only the brain is optimized to control a fixed body (produced by the
evolutionary process) for high performance. This idea is conceptualized in a framework called the Triangle
of Life (ToL [16], see Figure 1), which distinguishes three important events and stages in the life of a
robot: 1) when a design is formulated and subsequently built during morphogenesis, 2) after the robot is
delivered it will enter an infancy stage where the additional learning occurs (represented by the blue loop
in Figure 1), and lastly 3) a mature stage where the robot attempts to complete the predefined tasks and
can become eligible for mating by the EA. The selection of the parents takes place during this last stage,
which will eventually lead to the conceptualization of a new robot design to start a new life. The learning
stage in the ToL serves as a way to improve basic motor behaviors like locomotion before attempting to
accomplish the more complex tasks, much like a child learning to crawl and walk [35]. The idea is that
this additional learning can reduce the chance that a potentially good morphology is discarded when it is
paired with an initially bad controller. Additionally, such an extra optimization step can be used to test
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for early viability to the predefined tasks (e.g. did a robot learn locomotion sufficiently before we try to
gather resources). For a more detailed introduction to the ToL, we refer to Appendix A. The additional
learning loop in the ToL is also referred to as lifetime learning [36], and will be the main focus of our
research for the task of directed locomotion.

MORPHOGEN
ES

IS
INFANCY

2

1 3MATURE LIFE
Survival, mating, learning, task execution

Learning 
LoopBirth process

Conception Fertility

Delivery

Figure 1: Triangle of Life, adapted from [16]. Here the lifecycle of a robot starts at conceptualizing its
design. Subsequently, the robot is born either by hand or in an automated process. To properly assess the
robot performance, we first optimize its controller in a learning loop (similar to an infant learning to walk). At
last we can consider the robot to be eligible for selection by evolution in its mature life

It might seem to the attentive reader that the ToL re-framed the optimization done with evolution,
to a machine learning optimization problem that learns directed locomotion in a single robot with fixed
morphology. Although there are clearly some similarities between machine learning in general and lifetime
learning, we would like to emphasize that the ER perspective challenges us to design a controller that
can learn rapidly on a broad range of morphologies while being eligible for evolution. Often machine
learning is narrowly focused on a certain task for a specific machine, while lifetime learning is intended
for learning multiple sub-tasks in a robot for which the morphology and environment are not known
beforehand. Additionally, the intended real-world application in evolving robots reduces the number of
computational resources available for learning as each robot learns on its own and presents a unique
test case which prevents the use of parallelization. Furthermore, the main goal for the robot is not to
learn but to accomplish user-defined tasks after the initial learning phase. In the end, this motivates the
development of controllers that can be optimized efficiently on a broad range of morphologies.

1.2 Simulations and the reality gap
It has been estimated that the majority of the experiments conducted in ER are solely done in simulation
[67]. Most of the studies that did test their designs on real robots only constructed the final product
of their EA, as a means of validations [48]. This bias towards simulations is because real-world ER
experiments are often very time-consuming, which ultimately limits the number of evaluations and robots
tested. On the other hand, simulation run much faster, but often fail to capture the rich complexity of
the outside world. This has lead to a bad transferability of the controllers developed from a simulated
robot to their real counterpart. Meaning that the most optimal controllers that were developed inside
the simulation often perform significantly worse in the real world. This phenomenon is also called the
reality gap [33], which refers to differences that emerge from the simplifications in simulators.

The reality gap calls for ER research to step out of the simulator, but the resources and time that
are needed for multiple generations of different robots that evolve seems problematic. It has therefore
been argued that a real-world application of a full-fledged ER system (evolving both body and brain)
must contain an additional learning loop as proposed by the ToL [17] (for efficient use of both resources
and time). Although the development of controllers within the ToL framework has shown its feasibility
in simulation [14; 34; 46; 36], we still lack the time efficiency to conduct a full-fledged experiment in the
real world. A recent study by Gongjin et. al [45] developed a lifetime learning algorithm that was able
to reliably learn directed locomotion in simulation within 5 h, which makes real-world experiments seem
possible soon. Unfortunately, real-world testing of the final controllers did show a reality gap as well. We
believe that this was caused by the use of open-loop control in simulation during the learning process.

ER studies that use feedback often implemented sensory information as a means for adjusting the
overall motor behavior of a robot controller [26; 13; 63]. For example, touch sensors can turn certain parts
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of a neural network controller on/off when sensing the ground. Changing the overall motor behavior is
different from closed-loop feedback control in which the robot tries to follow a reference trajectory. Here,
the state of the robot is monitored to compensate for disturbances acting on the robot. When the
actual movement deviates from the intended movement, the robot attempts to reduce the movement
error accordingly. To our surprise, we found that much of the research in ER has been focused on the
development of control strategies without such a closed-loop design. For real-world applications, this is
clearly limiting, since in practice closed-loop feedback control is often the norm. Disturbances acting on
the robot, measurement noise, and model-robot mismatch can all be a source for movement errors. These
deviations from the intended movement are intrinsic to the real world (not necessarily due to a reality
gap) and require some form of feedback to compensate for correct movement execution. If we transfer
an evolved open-loop controller from simulation to a real-world robot we can, therefore, already see a
reality gap emerging by the fact that the controllers are different. Hence, the controllers obtained by
the EA in the simulator will most likely show a difference in behavior in the real world. Adding to that,
the absence of feedback control can also impair the transferability of (already developed) optimization
algorithms in ER. Meaning, the learning performance of developed EA may also depend on the types
of controllers they optimized (open-loop vs. feedback). It is therefore uncertain if we can transfer these
optimizers directly to a real-world ER system without losing in learning performance. If we want to step
out of the simulator we should investigate the influence of feedback control on our algorithms.

There have been multiple solutions proposed for reducing the reality gap, e.g. adding noise, randomly
changing parameters, and switching between simulator environments [42; 78]. Besides being more realistic,
closed-loop controllers themselves can also reduce the reality gap by stabilizing for proper movement
execution in the case of perturbations. We should consider the effects of feedback control on our learning
algorithms, especially now that we are approaching the feasibility of real-life experiments. In this thesis,
we will investigate the influence of adding feedback control on the task of learning directed locomotion
using the lifetime learning algorithm from [45]. In general, this subject is of interest as there seems to
be a significant gap in the literature about ER learning with feedback control. It would be interesting to
see if the addition of feedback hurts the learning algorithm that was used by [45]. In the next section,
we will introduce the type of feedback control that we will be using.

1.3 Adaptive Internal Model Control
Correct implementation of feedback control in ER can be tricky as the robot morphologies and
environments are unknown beforehand. As for now, when an open-loop ER controller is transferred
from simulation to a real robot, then the latter often employs a PID feedback control system. The
feedback signal from a PID-controller is based on the error signal between the intended movement and
the actual movement of the robot. PID control takes the dynamics of this error signal (its current,
integral, and derivative value) and alters the motor input signals via gains (respectively: Proportional,
Integral, and Derivative gains) [2]. PID control is the most used type of feedback control in the industry
since it is easy to implement and works sufficiently well for most applications. A drawback to PID
control is its limitation in the amount of control complexity it can accommodate. For complex systems,
there is often significant coupling among the effects of the three PID gains and thus correct tuning can
become very difficult [3]. Subsequently, bad design can lead to oscillations and instability of a PID
controller. The use of PID, therefore, might influence the complexity of the controllable morphologies it
can accommodate.

We propose the use of a bio-inspired feedback controller schema named internal model control (IMC)
[40; 27]. The IMC scheme was both proposed in industry [21; 15], and in neuroscience [40; 53] as a
way for (human) controllers to compensate for errors in (movement) control. We present more in-depth
information on the bio-inspired background of IMC in Appendix B. A major advantage of our controller
design is its easy implementation as an extension to an already existing open-loop controller. Figure 2,
shows the addition of the IMC control scheme to the open-loop controller used in [45]. The original
open-loop controller used to learn directed locomotion by changing the weight of a network of Central
Pattern Generators (CPG) that sends an input signal u to the servomotor(s) in the robot (more on this
in the method, Section 3.2). In response, the robot tries to move the corresponding servomotor to angle
φ. The IMC design is an extension to the (CPG-based) open-loop controller and ads two internal models
for proper movement execution with additional feedback Figure 2.
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Open-loop controller design:

CPG Robot
u φ

Closed loop IMC design:

CPG modelinv Robot

modelff

φref
+

u φ

+φpred
−

error

−

Figure 2: Schematics of the open-loop controller (top) and the closed-loop IMC controller (bottom). Signals
denoted between processes can be either single-valued (in the case of 1 actuator) or vectors (for multiple actuators).
In the open-loop case, a Central Pattern Generator based controller (denoted as CPG) sends an input u to the
servomotor(s) in the robot, which directly dictates the movement of the robot by actuating the corresponding
servomotor(s) to angle φ. Here, the CPG is uninformed about the current state or actual execution of the
movement. In the case of the IMC, the CPG controller produces a pattern that defines a preferred state i.e.
reference state φref for the servomotor(s). The inverse model (modelinv) calculates the required servomotor input
u to get to this state. Based on u the feedforward model (modelff ) predicts the state of the robot φpred in parallel
to the robot moving. The difference between the state prediction and the actual state φ is fed back as an error
signal.

The two internal models in the IMC are called the inverse and feedforward model in the open-loop
control scheme. The inverse model calculates the required control input u to get the robot from the
current state to the reference state, modelinv : φref → u. The feedforward model predicts the expected
sensor output of that movement based on the control input, modelff : u → φpred. Differences between
the predicted sensor output and the actual sensor feedback are relayed back to the inverse model thereby
closing the loop. The idea behind the added feedforward model working in parallel with the robot is
to subtract the expected effect of the motor input on the servomotor from the actual angle. When the
difference between the predicted movement and actual movement is zero then the error becomes zero.
With a perfect model of the robot, the IMC scheme allows for filtering and canceling out disturbances
via the error signal. Additionally, some studies apply a filter on this error signal to limit the effects of
measurement noise and to provide stabilization for higher frequencies [3]. We did not deem this necessary
as we bounded the possible output behavior of our controller and expected the adaptive control scheme
to learn to accommodate for destabilization.

For robots that live in uncontrolled dynamic environments, internal models with fixed models will
likely fall short. For the use in ER, a static feedback controller may limit the range of morphologies
on which the controller is applicable, and will likely influence the performance during lifetime learning.
Adaptive control is an approach where the parameters of the controller are (continuously) changed online
to improve and/or maintain the required performance, even when (unforeseen) changes in the environment
or robot take place. In IMC we can apply adaptive control by changing the internal models to cope with
the mismatch between the robot and the model. The amount of change can be based on an error signal
that represents how well the inverse model controls the robot, and how well the feedforward model
predicts the outcome of that control. How the models are adapted depends on the type of model that
is being used as an internal representation. The names inverse and feedforward refer to the type of
dynamical model necessary when using a mechanical approach [60]. Unfortunately, in ER the robot’s
morphology and environment are not known beforehand, which denies the use of such a mechanical
representation. To implement adaptive control in our robot, we will use two Deep Neural Networks
(DNN) to learn the functions of both internal models. DNNs has shown great potential for IMC because
of their broad applicability and strong function approximation capabilities [39; 32; 1]. The DNNs will
allow optimal feedback control within the IMC structure, by learning the mapping of the internal models
modelinv : φref → u, and the modelff : u → φpred. We refer to learning the internal models as feedback
learning, which runs in parallel to the lifetime learning task of directed locomotion.
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We will test two different implementation of DNN for our internal models. As a start we will begin
with a naive approach, using a simple of the shelf DNN which we will call IMC vanilla. Secondly, we
add a bit more sophistication in our internal models by implementing a similar DNN on which we will
only learn on the output layer (based on reservoir computing models in neuroscience [51]), which we
will refer to as IMC reservoir. More information on the distinction between these two will follow in the
method.

To summarize, lifetime learning in ER challenges us to develop a controller that can learn rapidly
on a broad range of morphologies while being eligible for evolution. Current controllers suffer from a
reality gap when transferred to real robots with feedback control. We propose an adaptive IMC design to
increase the transferability of existing open-loop controllers. Here, we test how such a feedback controller
influences lifetime learning performance. Taken together, we implement lifetime learning for the task of
directed locomotion on an open-loop controller with the addition of adaptive IMC using two different
implementations (vanilla and reservoir).

1.4 Research Question
In this paper, we address the transferability of ER controllers from simulation to real robots by learning
directed locomotion with feedback control. For our test case we will use the open-loop controller that
was used by [45], and two different implementations of our IMC controller on a set of robots. Due to the
novelty of learning locomotion with adaptive feedback control in ER, we are interested in answering the
following question:

What effect does adding the IMC have on learning directed locomotion on a broad range of
robot morphologies?

We will answer this question in terms of

1. Speed of learning, the rate at which the controllers improve on the task.

2. Task performance, the end-values of the fitness for each morphology.

3. Movement strategies, the eventual best-performing robot behaviors.

Subsequently, to validate if the IMC does increase the transferability of the learned controller we will
answer the following sub-question:

Is the IMC able to retain a higher level of fitness in a noisy environment compared to open-loop
control?

2 Related Work
As mentioned before, many ER experiments stay inside the simulator where their open-loop controller is
never transferred to a real robot. In the experiments where the controllers are tested on their physical
twins, real-world performance is often worse than what would be expected from simulation [65; 69; 44].
Our work investigates the role of feedback control on learning directed locomotion which is overlooked by
most of the work in ER. The experiments that do address feedback control are the ones in which evolution
is solely done in real robots, e.g. by Brodbeck et al. [5], Vujovic et al. [81], and Nygaard et al. [64].
In these papers, feedback control is implemented using a P(I)D controller on simple robot morphologies.
As PID is limited in its capability, we believe that it can greatly influence the resulting morphologies.
The idea behind our IMC controller is to be minimally invasive to the evolutionary process with the
controllers that are currently used in ER. We attempt to achieve this by adapting the internal models
for learning optimal feedback control, which makes them suitable for a wide range of morphologies. An
additional advantage of our setup is the fact that real ER experiments are often limited in population
size, the number of parameters that are being optimized for in the search space, and/or the number of
generations, due to constraints in time and/or resources. Nevertheless, they do show that EAs can be
used to learn locomotion in real robots.

The benefits of adaptive feedback control have been shown before in a famous paper by Bongard et
al. [4]. They showed that their four-legged robot was able to learn locomotion rapidly through efficient
sampling and continuous self-modeling. Here, self-modeling was done by white-box system identification
with predefined parameterized shapes. Based on the motor input data and feedback from the joint
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angles and IMU sensors multiple explanatory self-models could be produced by the white-box algorithm.
Efficient sampling was done by collecting new data that could discriminate the most between these
hypothesized models. The adaptive self-modeling made their machines resilient meaning it was able to
reconfigure its self-representation and control policy after physical damage. Other forms of adaptive
control have been studied by implementing different types of neural networks [68; 31]. In the case of
CPGs, sensory feedback has been used to modulate the frequency and/or amplitude of the output signals
to the motors. For other types of neural networks like HyperNEAT and recurrent neural networks [26;
13; 63], feedback allowed switching on/of certain parts of the network to change overall behavior. As
mentioned before, such adaptive feedback control aims to change the overall robot behavior based on
the sensory feedback, which is different from our controller that aims to follow a reference trajectory. In
other words, our feedback control is much more focused on the correct execution of movements at the
local joint level while these studies change the combined motor behaviors as a whole.

The idea of bio-inspired control is not new and has already been studied in the field of neurorobotics
[19]. The mathematical formulation of the oscillatory behavior in groups of neurons in the spinal cord of
mammals [20; 11; 38] has aspired the development of CPG controllers that successfully learned locomotion
in different types of robots like salamanders [30], fish [43], and insects [49]. In these studies, open-loop
control was used to learn locomotion. In previous studies, our IMC scheme has been used for (simulated)
robotic applications as a means to reverse-engineer certain brain structures like the cerebellum [84].
Kawato et al. [40] implemented an inverse model controller that learned to follow a reference signal
with a three linked manipulator using a neural network. In a study by Miyamoto et al. [58], two
neural networks were used in a similar IMC structure with feedback error learning to control a simulated
manipulator as well. Hunt and Sbarbaro [27] implemented IMC with two neural networks that learned
their models first by example (a pre-existing feedback controller) before implementing it on a simulated
plant. Li and Deng [47] implemented an IMC design in which a single neural network was used to
compensates for model mismatches in both internal models. Much more recently [52] compared two
adaptive feedback controllers that used evolution to learn locomotion in a quadruped robot. One PID
based and the other PID + a convolutional neural network. These studies show that the IMC structure
can be used to obtain high performing non-linear control. Most of the aforementioned studies focused
on a single type of (robotic) application. We are more interested in testing the general applicability of
our IMC design to learn optimal feedback control for a wide variety of morphologies, which would be
beneficial in an ER context. To our knowledge, we are the first to test an adaptive IMC controller in an
ER context.

Our work positions itself in a rare intersection of adaptive feedback control and ER. Many (adaptive)
feedback control studies focus primarily on the performance of the feedback signals i.e. the dynamics
of the errors, not on the actual movements itself. However, here behavior is also (mainly) given by the
feedforward CPG. On the other hand, much ER research is solely focused on the learned performance
of the robot behavior, while forgetting the difficulties arising from implementing feedback control. We
think that the interplay between both can play a vital role in transferring ER from simulation to the real
world. Lastly, in comparison to other (bio-inspired) controllers, we position ourselves uniquely from an
ER perspective which requires the IMC to be broadly applicable on multiple morphologically different
robots.
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3 Method
Our code with the presented IMC implementation is publicly available here.

3.1 Overall system architecture
3.1.1 Test suite

To test the general applicability of our algorithm we use a test suite of 6 morphologically different robots
(Nr = 6). The robots are made of off-the-shelf components that are based on the modular RoboGen1

framework, see Figure 3 below. Three robots are designed beforehand which are Spider, Gecko, and
Snake (top row). The other three are a product of an evolutionary process of which BabyA and BabyB
are first generation children from the Gecko and Spider, while the 6677 is a product of the evolution of
multiple generations starting from random shapes.

(a) Spider (b) Gecko (c) Snake

(d) BabyA (e) BabyB (f) 6677

Figure 3: The six robot subjects Spider, Gecko, Snake, BabyA, BabyB, and 6677. Hand-designed robots are
shown in the top row while the robots in the bottom row are a product of an evolutionary process.

3.1.2 Simulator

We use the software kit Revolve2 that is designed as a wrapper for ER experiments around Gazebo3 which
is an open-source 3D robotic simulator [28]. Revolve facilitates ER experiments by calculating fitnesses,
selecting parents, recombining/designing new robots, and loading and starting new experiments/trials.
The simulations of the robot behavior are done in Gazebo, from which the results are subsequently used
to assess the fitnesses for learning locomotion. With Revolve, we are able to design and place robots
efficiently in Gazebo while designing/improving our own controllers during a simulation and in-between
trials. In Gazebo we use the ODE physics engine for Runge–Kutta 4 integration with a fixed step size of
0.05 s. The sampling period of the whole controller is set to 0.125 s in which the reference signal, sensory
input, internal models, and controller outputs are updated. The output of the controller is converted
to a continuous signal using a zero-order hold. A more technical in-depth description of the robots and
simulator can be found in Appendix C.

3.1.3 Test procedure

At the start of each learning trial, we place a single robot in the center of a flat horizontal plane
environment with a gravitational pull of 9.81 m/s2 downward. Each joint i of the robot receives a signal

1http://robogen.org
2https://github.com/ci-group/revolve
3http://gazebosim.org
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generated by the controller. We test each robot in 10 different experiments (Ne = 10) with three
different controllers (OL, IMC vanilla, IMC reservoir). Each experiment consists of 300 learning trials in
which the weights of the CPG controller are updated to learn directed locomotion. In total, we conduct
3× 6× 10 = 180 robot experiments that each contain 300 learning trials. In the end, this will add up to
a total of 180 × 300 = 54000 learning trials. Each learning trial takes 60s in simulation, which totals to
54000× 60 = 3.24× 106 s of simulated time (equal to 900 h).

3.1.4 Learning systems

It is important to note that we end up with two different learning systems: 1) lifetime learning for
directed locomotion through updating CPG weights with Bayesian Optimisation (BO, [73]), and 2)
feedback learning for IMC that changes internal models by adapting the DNN weights and biases with
Adaptive Moment estimation (ADAM, [41]). Updating the CPG weights for directed locomotion is done
in between trials while adapting the DNN models is done during each trial every 0.125 s (see Figure 4).
First, we explain our implementation of lifetime learning with the open-loop CPG controller in Section
3.2. Followed by the implementation of feedback learning with the closed-loop IMC design in Section 3.3.
Here, the two flavors of IMC (IMC vanilla or IMC reservoir) will also be explained in detail. The complete
implementation of the IMC in this paper is the combination of the same open-loop CPG controller with
two DNN for internal models as an extension (as shown in Figure 2).

Simulator

Feedback learning: change 

the weights and biases of  

the DNN models every 

0.125s

t0

t1

t2

tend

Lifetime learning: change 

the weights of the CPG 

network in between trials

Fitness

N
e
w

 s
a
m

p
le

BO Optimizer

ADAM Optimizer

Trial 2

Figure 4: Overview of the two learning systems. For lifetime learning we evaluate the fitness of the CPG
controller after each simulation. Subsequently, the BO algorithm updates the CPG weights as a next sample in
between the trials (shown in blue). For feedback learning, we assess the amount of error the robot makes when
following a reference state in simulation during each trial. Here, the DNN weights and biases are adapted every
0.125 s by the ADAM optimizer (shown in green). Feedback learning is not present in the open-loop controller.
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3.2 Learning Directed locomotion
In the directed locomotion task, the goal is to learn how to maximize the distance traveled in a certain
direction within 60 s. This distance measure defines the fitness of the controller and will be determined
by a fitness function F( ~w). We use a network of CPGs as our controller, encoded by a vector of weights
~w, which determines the behavior of the robot. The BO algorithm attempts to maximize the fitness of
the controller by changing the weights in the CPG network. For learning locomotion, the architecture of
the CPG network, the BO algorithm, and F always remain the same.

3.2.1 CPG network

CPGs are used to model the behavior of groups of neurons that were found in the spinal cord of different
types of mammals [20; 11]. For controller applications, CPGs are represented by a neuron pair (xi,yi)
that reciprocally inhibit and excite each other, which results in oscillatory behavior. Here i denotes the
specific servomotor that is associated with this CPG (ranging from 1 to the kth servomotor within a
single robot). Connected to the xi neuron is an output neuron (outi) that computes the input signal
(φref,i) for a specific servomotor at joint (see Figure 5).

xiyi outi

wxiyi

wyixi

wxioi

Figure 5: Overview of a single CPG with its neuron pair (xi, yi) and output neuron outi. The connections
between each neuron is multiplied by a weight wxiyi , wyixi and wxioi respectively.

The dynamics of a single CPG is solely defined by the current state of its neuron pair. Meaning,
that the change in the state of every neuron is coupled by multiplying the current state of the opposite
neuron with a weight (w). The weights wxiyi

and wyixi
represent a connection strength between each

neuron pair within a CPG, and are responsible for its oscillatory behavior. The weight wxioi represents
the coupling strength from the x-neuron to the output neuron and defines the CPG output behavior.
Changing the motor inputs can thus solely be realized by changing the values of these CPG weights. To
enable more complex output patterns we will implement a network of multiple interconnected CPGs to
control our robots (see Figure 6).

4 3

2

1

6 5

8

7

Figure 6: The CPG network that is being used for our Spider. CPGs in the network also influence neighboring
CPGs up to 2 blocks distance. This network contains 8 CPGs (numbers) with 10 neighboring pair connections
(blue lines).

Earlier work in ER often assigned a single CPG per joint [29; 56; 7], where each CPG would act
independently of one another. To increase the complexity of possible motor behaviors we also allow
CPG connections to be made between the x-neurons of nearby joints, thereby creating an interconnected
CPG network. This means that the dynamics of joint i are also influenced by the state of the CPGs at
neighboring joints j through additional coupling denoted as wxjxi . In this study, the set of neighboring
joints (Ni) at joint i, consist of all the joints j positioned within a distance of two-modules (see Figure 6).
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From this, the dynamic behavior of (xi,yi) can be described with the following two ordinary differential
equations.

ẋi = wyixi
yi +

∑
j∈Ni

xjwxjxi
ẏi = wxiyi

xi (1)

Here we use Newton dot notation to denote derivatives with respect to time. The first part of ẋi shows
the connection of the neuron pair within the CPG. Where, the value of the y-neuron (yi) is influencing
the derivative of xi with a specific connection strength wyixi

. Vice versa the same holds for calculating ẏi.
The second part of ẋi represents the summed effect of the connections with the x-neurons of neighboring
CPGs. Ni refers to the set of CPG neighbors for joint i, xj the state value of the neighboring x-neuron,
and wxjxi

their connection strength. The output neuron is a tangent hyperbolic activation function that
is only dependent on the x-neuron of its own CPG (see Equation 2).

outi(xi) =
2

1 + e−2xiwxioi
− 1 (2)

For a given network containing NC CPGs and |N | neighboring pairs, the total number of weights to
be optimized would equate to Nw = 3NC + 2|N |. In the case of our Spider (Figure 6) this would result
in 44 weights. To simplify the learning task for our search algorithm we define the following symmetries
to reduce the total number of weights to be optimized to Nw = NC + |N | = 18:

wxiyi = −wyixi wxjxi = wxixj wxioi = 1 (3)

At the start of every learning trial, all neuron states are reset to a predefined value
(x, y) =

(
− 1√

2
, 1√

2

)
. Subsequently, every 0.125 s each neuron state is updated by Heun integration

using the following computation:


~xt+1

~yt+1

~ot+1

 = (I + W · dt)


~xt

~yt

~ot

 (4)

Here ~xt, ~yt, and ~ot denotes the vector of all the neuron values in the CPG network at time t, I denotes
the identity matrix, dt the integration time step andW a sparse matrix that contains the coupling weights
of all the CPG connections w (in accordance with to the ordinary differential equations mentioned before
Equation 1). For a short example of W and a full derivation of Equation 4 we refer to the Appendix D.

3.2.2 Fitness function

To improve on the task of directed locomotion we need to formulate a fitness function F that defines the
performance of the CPG network. During a learning trial the CPG network commands the robot to move
through space, which can be described by a trajectory p(t) (see Figure 7). With directed locomotion we
want the end value of p(t) to be as far as possible in the target direction βT . The fitness function we
apply combines two objectives for directed locomotion: 1) we want to minimize the amount of deviation
from the target direction δ; 2) maximize the distance travelled in the target direction pend,⊥. Fitness can
thus be based on the starting position P0, end position Pend, target direction βT , and actual direction of
locomotion βend. We formulate F as follows:
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Figure 7: Visualization of the variables necessary for the fitness function. The robot has a target direction
βT (red arrow), and moves from position P0 to Pend in direction βend (blue line). The difference in direction is
denoted by angle δ and the projection of Pend onto the target direction by Pend,⊥.

1) Obtain the amount of angular deviation between the actual and target direction, δ:

δ(β0, β1) =

{
2π − |β1 − β0| (|β1 − β0| > π)

|β1 − β0| (|β1 − β0| ≤ π)
(5)

Note that by this definition δ ranges from [−π, π), with the range
(
− 1

2π,
1
2π
)
being (partly) towards the

target direction.

2) Calculate the total distance travelled towards the target direction, Ddir:

Ddir = ||Pend − P0||2 cos δ (6)

||Pend − P0||2 denotes the Euclidean distance between Pend and P0. Since we define our starting point
P0 at the origin, Ddir is equal to the projection of the the end position on the target direction (Pend,⊥).

3) Calculate the total distance deviated from the target direction, Ddev:

Ddev = ||Pend − P0||2 sin δ (7)

4) The fitness function F is determined as follows:

F(Ddir,Ddev) = |Ddir|Ddir −D2
dev (8)

Here, the total distance deviated from the target direction (Ddev) is squared to punish strong deviations
from the target direction, while distance traveled toward the target direction (Ddir) is multiplied by its
absolute value to encourage movement towards the target direction. The units of our resulting fitness
function is [F ]= m2. The value of F as a function of Ddev and Ddir is shown in the contour plot below
(see Figure 8).

3.2.3 Bayesian Optimization

We implement a BO algorithm for the optimization of the CPG weights, which is a state-of-the-art
black-box optimizer that has been deployed in both industry science and engineering [73]. The BO
algorithm is known for finding optimal solutions with a small number of samples. It does this by having
two functionalities: 1) a function approximator f( ~w), that models F to predict the fitness values as a
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Figure 8: Contour plot of the fitness function values. The black isolines show monotonically increasing fitness
values ranging between -6 to 8 with steps of 2, starting from the bottom to top in target direction (i.e., red arrow).

function of the optimization parameters (in our case the CPG weights ~w), and 2) an acquisition function
a(f( ~w)|X,Y ), that uses f( ~w) to select a new sample ~w to test given the current data (X, Y ). To
prevent the BO algorithm from converging too fast at a local optimum, we first obtain 50 fitness values
by Latin Hypercube Sampling (LHS). LHS chooses samples pseudo-randomly to make sure they are evenly
distributed in search-space. An overview of the whole optimization process is shown in Appendix E.

In BO, modelling F is realized by constructing a posterior distribution of functions that best describes
the values of F found so far. In short, we can construct a prior distribution of non-linear functions in
search space (~w) by using a kernel. In our BO algorithm we implement the Matérn 5/2 kernel that
describes a similarity between all the samples taken so far (X = [~w1, ~w2, . . . , ~wn], with ~w denoting the
CPG weights of a single sample). Here we can describe the value of f( ~w) as a collection of (infinite)
random variable, which is called a Gaussian Process (f( ~w) ∼ GP

(
µ( ~w), σ2( ~w)

)
. Using the prior and the

corresponding measured fitness function values (Y = [F1,F2, . . . ,Fn], where F denotes fitness values of
a single sample) a posterior can be described by Bayesian inference. The posterior induces limitations on
the non-linear function distribution from the prior and can be used formulate a predictive distribution
on the approximated fitness function f( ~w) at any point in weight-space, denoted as p(f ( ~w) |Y ,X, ~w) ∼
N
(
µ (f ( ~w)) , σ2 (f ( ~w))

)
. Here, function p describes the predicted distribution at ~w given the current

data. Now we have a probabilistic approximation of F as a function of ~w, which has the nice property
to inherently define an uncertainty over the predictions that it made. For our kernel the approximated
value of the fitness and its corresponding uncertainty is directly dependent on the distance between the
sample chosen for prediction and Y ,X. We refer to [82] for additional reading into Gaussian Processes,
different types of kernels and how to use them for optimization.

With the predictions, we can select a new sample from search space to test in our next learning trial.
This is done with the second part of the BO algorithm the acquisition function, which bases its selection of
the next sample using the GP

(
µ( ~w), σ2( ~w)

)
. As the acquisition function, we choose an Upper Confidence

Bound approach (UCB) which will be maximizing the expectation of the posterior distribution given the
current observations. In the end, this results in the BO algorithm choosing a sample that either yield a
high reward in the approximated objective function or reduces uncertainty in the GP. The pseudo-code
for the BO algorithm is presented below. This approach in the BO method is based on previous work
(Lan et al., 2020). Below is a description of the hyperparameters that we used (see Table 1).

3.3 Adaptive Internal Model Control
For learning optimal feedback control we want the IMC controller to reduce the number of errors that
the DNNs make. We define an error as a deviation of the actual robot state from the reference state,
formulated by a loss function L. Here the internal models are adapted by changing a set of weights and
biases, which we will refer to as DNN parameters for clarity. The ADAM optimizer [41] is used to update
these parameters. Learned DNN parameters are transferred in-between subsequent learning trials, but
not between experiments within the same morphology.
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Algorithm 1 Bayesian optimization for learning the weights of CPG controllers.

1: Initiate n initial samples: X = [~w1, ~w2, . . . , ~wn] . with n = 50 pseudo-random samples by LHS
2: Obtain n initial fitnesses: Y = [F1,F2, . . . ,Fn] . using Equation 8
3: Approximate the objective function: f(~w) ∼ GP

(
µ(X), σ2(X)

)
4: for k = n+ 1, n+ 2, ... do . for evaluation k
5: Select new sample ~wk based on approximation f ( ~w):

~wk = arg max
~wk

a (p(f ( ~w) |Y ,X, ~w))

6: Obtain the new sample fitness Fk(~wk)
7: Append the data X = [X, ~wk] , Y = [Y ,Fk]
8: Update the approximation: f(~w) ∼ GP

(
µ(X), σ2(X)

)
9: end for

10: return data X,Y , f(~w)

Table 1: Hyperparameters of the BO algorithm

Parameters Value Description

Initial samples 50 Number of initial samples.
learning iterations 250 Number of evaluations, excluding initial samples.
Kernel variance 1.0 Kernel variance in Matérn 5/2 kernel.
Kernel length 0.2 Characteristic length-scale in Matérn 5/2 kernel.
UCB alpha 3.0 Weight in the acquisition function.
Initial sampling LHS Method used to generate initial sampling.

3.3.1 DNNs as internal models

For the internal models we will use two different DNN. The DNN for the inverse model consists of an input
layer containing 4k neurons (input layer modelinv = [φ1:k, φ̇1:k, φref,1:k, φ̇ref,1:k]T ), with k being the
total number of servomotors. Furthermore, we use two hidden layers of the same size (4k) with Rectified
Linear activation units (ReLU). The output layer contains k neurons (output layer modelinv = [u1:k]T ),
that sends control signals to the servomotors. For the output layer we choose the same tangent hyperbolic
neuron as in Equation 2, which makes ui range between [−1, 1] (as a normalized range for the servomotor
torque).

The DNN for the feedforward model has an input layer of 3k neurons (input layer modelff = [φ1:k,
φ̇1:k, u1:k]T ), two hidden layers of the same size (3k) with ReLU neurons, and an output layer of 2k neurons
(output layer modelff = [φpred,1:k, φ̇pred,1:k]T ). For the output layer we also use the tangent hyperbolic
function as our neurons. The modelff tries to predict the next robot state normalised (φpred,1:k and
φ̇pred,1:k).

3.3.2 Learning optimal feedback control

The implementation of the DNN is realized using libtorch v1.4.0 (downloaded April 2020), which is a
C++ distribution of the popular PyTorch library4. Only at the start of an experiment (i.e. the beginning
of the first trial) we randomly initialize the DNN parameters by sampling from a Gaussian distribution
with zero mean and variance one. The models in the IMC vanilla are continuously updated by changing
the DNN parameters in the hidden and output layers. For the IMC reservoir, the DNN parameters of the
hidden layers are frozen after initialization, and adaptations are only done on the output layer. The DNN
parameters are updated whenever a new reference signal is sent to the IMC (every 0.125 s). For the IMC
vanilla controller the total number of parameters to be optimized in the modelinv. is 4(4+4+1)2k = 72k,
and for the modelff. 3(3 + 3 + 2)2k = 48k. While for the IMC reservoir the total number of parameters
in the modelinv. is defined as 4(0 + 1)2k = 8k, and for the modelff. 3(0 + 2)2k = 12k.

The goal of the IMC is to minimize the error between the reference state and the actual state. This
is achieved by 1) the modelinv providing correct motor inputs, and 2) the modelff correctly predicting
the next robot state. The DNNs learn optimal feedback control by minimizing the sum of errors made

4https://pytorch.org
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by the internal models, measured by a loss function L (see Equation 9). Each internal model has its own
error function based as shown in Equation 10. For the modelinv the desired output is the reference state,
with the error being the difference between the reference and the actual robot state (φ− φref ). For the
modelff , the desired model output is the actual robot state, with the error being the difference between
the actual and the predicted robot state (φpred − φ). The loss function for each model is their respective
summed square error.

L = error
1

2
errorT (9)

errorinv =
[
φ1 − φref,1, . . . , φk − φref,k, φ̇1 − φ̇ref,1, . . . , φ̇k − φ̇ref,k

]
errorff =

[
φpred,1 − φ1, . . . , φpred,k − φk, φ̇pred,1 − φ̇1, . . . , φ̇pred,k − φ̇k

] (10)

To update the DNN parameters we use the ADAM optimizer [41]. By changing the weights we can
define the gradient of L with respect to each weight. The ADAM algorithm uses this gradient to estimate
the running averages of the gradient and its moments (for a full derivation of all the ADAM functions see
[22]). The estimated running average of the gradient and moments are subsequently used to update the
weights. For regularization, we implemented L2 weight decay. A pseudo-code of the IMC optimization
is shown below. The hyperparameters for the ADAM optimizer are given in Table 2. A more detailed
overview of the IMC adaptation scheme and the ADAM optimizer is presented in the Appendix F.

Algorithm 2 IMC update rule for timestep t = 0, 1, 2, . . . , tend

1: for t = 0, 1, 2, . . . , tend do
2: Obtain the reference state vector: ~yref,t = CPG(t) . with ~y = [φ1:k, φ̇1:k]
3: Obtain the current state vector: ~yt = proprioception(t)
4: Calculate the prediction error: errorff,t = ~yt − ~yref,t

5: Calculate the movement error: errorinv,t = ~ypred,t − ~yt

6: Update the models: ADAM(modelinv, errorinv,t); ADAM(modelff , errorff,t)
Calculate for next iteration step

7: Calculate the motor input: ~ut = modelinv(~yref,t, ~yt, errormove,t)
8: Predict the next state: ~ypred,t+1 = modelff (~yt, ~ut)
9: Obtain the next state ~yt+1 = Robot(~yt, ~u)

10: end for

Table 2: Hyper parameters of the ADAM optimizer

Parameters Value Description

ADAM: α 0.005 Learning rate
β1 0.9 First moment decay
β2 0.99 Second moment decay
ε 1 e−6 Division constant

L2 0.001 Weight decay

A summary of the most important distinctions between our controller conditions is presented in
Table 3. For all conditions, directed locomotion in a CPG network is learned using BO to adjust the
weights of the CPG network. The number of CPG weights are dependent on the total number of
servomotors (k) and neighbor pairs (|N |). In addition, the IMC controllers also learn feedback control
with their two DNN models using the ADAM optimizer. The distinction between the IMC vanilla and
the IMC reservoir shows in the number of parameters that are adapted during feedback learning.

17



Table 3: Summary of the different controller conditions. The open-loop controller based on [45] is also
implemented in the two IMC controllers, which differ in the number of parameters to optimize.

Parameters Open-loop IMC vanilla IMC reservoir

Directed Controller CPG CPG CPG
Locomotion Optimizer BO BO BO

nr. param k + |N | k + |N | k + |N |

IMC Models - 2 DNN 2 DNN
Conrol Optimizer - ADAM ADAM

nr. param - (72 + 48)k (8 + 12)k

3.4 Statistical analysis
In addition to the learning task, we also want to validate our feedback controller. This will be done
by retesting the best controllers in a noisy environment (more on this in Section 3.4.2). In the end, we
conduct two types of experiments. First, testing the open-loop, IMC vanilla, and IMC reservoir. Second,
validating the best feedback control in a noisy environment. A clear overview of the difference between
the first IMC test and this feedback validation test is provided in Appendix G.

3.4.1 Testing the effects of IMC control

For the data analysis in the directed locomotion task, we compare the progression of the fitness as a
function of evaluations, between all controllers (OL, IMC vanilla, IMC reservoir) per robot. per robot
morphology, all 10 experiments are aggregated to allow for a robust comparison of the results. The
progression of the fitnesses as a function of learning trials will be plotted to see differences in learning
curves. For statistical analysis, differences between the end-values of the objective function will be
compared for each controller within a certain robot morphology. Additionally, we group these statistics
to find general differences in learning between the OL, IMC vanilla, and IMC reservoir controller. Per
robot morphology statistical differences are tested using an independent samples t-test (Ne = 10), while
for the grouped comparison statistical differences are determined by a paired-samples t-test (Nr = 6).
Assumptions on normality and equal variance will be verified by performing a Shapiro–Wilk test (with
normality assumed for p > 0.95) and an F -test (requiring a normal ratio between variances 1

2 and 2).
Additional report on the effects size will be made by using Cohens-d, for which magnitude of mean
differences are as described by [70], small : d = 0.20, medium: d = 0.50, large: d = 0.80, very large:
d = 1.20, huge: d > 2.0.

3.4.2 Validating the feedback controller

To validate our feedback controller, we want to compare the performance of the best IMC controller
(either vanilla or reservoir) in a noisy environment with the performance of the open-loop controller in a
noisy environment. We do this by selecting the best controller per run for each morphology and retesting
it. In total we will re-evaluate 120 controllers in this noisy environment, i.e. the best controllers of 10
runs for each of the 6 subjects in the open-loop and the best IMC controller.

As additional noise, we will add a Gaussian distributed perturbation to the servomotor input signal
every time the control signal gets updated. The noise signal will have a mean of zero and a standard
deviation of 0.05, which equates to 5% of the maximum torque. The control signal+noise will be sent to
the motor input signal where it will drive the servomotor.

To gain insight into the changes in fitness due to the added noise we will provide a box-plot of the
fitness values per morphology before and after adding noise. Additionally, we will plot the amount of
distance traveled towards (Ddir), and deviated from the target direction (Ddev), which are the variables
that directly influence the fitness as formulated in Equation 8.

For statistical analysis, we compare the new fitnesses with noise to the original ones without calculating
the difference (∆fitness = fitnessoriginal-fitnessnoise). A comparison between the mean ∆fitness of the
open-loop controller and the best IMC within each morphology will be done using independent samples
t-test (Ne = 10). To see if the IMC controller better controls for disturbances, we will compare the
aggregated mean ∆fitness for all morphologies in a paired samples t-test (Nr = 6). Additionally, we will
report on the effect size using Cohens-d.
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4 Results
In total conducting all 180 experiments took approximately 45 h in real-time, which is an average of
15 min per experiment. In comparison to the 900 h off simulated time this equates to a 20× speedup.
In Figure 9 below we plotted the progression of the mean fitness (±95% confidence interval) of all six
robots as a function of learning evaluations. Here we can see that learning occurs in all morphologies
for all controllers, open-loop in blue, IMC vanilla in red, and IMC reservoir in green. The highest mean
fitness value at the end of the evaluations is obtained by the gecko morphology with the IMC reservoir
controller, while the lowest mean fitness end-value is found in the 6677 with open-loop control.

When looking at the overall trend of each morphology we can see that the IMC reservoir performed
better or just as good as the other controllers. Furthermore, the open-loop performed similarly to the IMC
reservoir in most morphologies except for the Spider and BabyB in which it performed worse. Lastly, the
IMC vanilla performed worse or just as good as the open-loop for all morphologies except for the Spider.
The rate of learning is about the same for all controllers at the start of the learning task (evaluations <
100), except for the Gecko in which the open-loop and IMC reservoir learn much faster than the IMC
vanilla. After about 100 evaluations learning diverges for the Spider, BabyA, and BabyB.
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Figure 9: Results of the locomotion task for the Spider, Gecko, Snake, BabyA, BabyB, and 6677. The blue
lines denote the mean fitness (Ne = 10) of each robot for the open-loop controller as a function of samples, while
the red line denotes the mean fitness of the IMC vanilla controller, the green lines show the results for the IMC
reservoir. The similarly colored areas indicate the SE at for the aggregated data.

From the results of Figure 9 we took the end-values of all the fitnesses (so after the last evaluation)
to do our data analysis. Group analysis on the end-values met the requirements for the assumption of
normality (Shapiro-Wilk p > 0.95), and homogeneity of variance ( 12 <F -test< 2) between the different
groups that were being compared. First, we performed an independent samples t-test between the different
controller for each robot morphology (see Figure 10). Statistical significance was set at p < 0.05 (with
d.f. = 18) which is denoted with a star *. Additionally, effect sizes were calculated using Cohens-d.

In Figure 10 we can see that there was no significant difference found between the end-values of the
open-loop controller (blue bars) and the IMC reservoir (green bars) for all morphologies. Spider p = 0.24,
Gecko p = 0.36, Snake p = 0.20, BabyA p = 0.77, and 6677 p = 0.90. BabyB was closest to a statically
significant difference p = 0.08 with MEAN±STD for the OL: 0.81± 0.55 and IMC reservoir: 1.65± 1.21,
effect size= 0.89.

When comparing the performance of the open-loop control and the IMC vanilla (red bars), no
significant difference was found in the end-values for the Spider (p = 0.88), Snake (p = 0.57), BabyB
(p = 0.63) and 6677 (p = 0.32) morphologies. Significant difference in learning locomotion performance
was found between the open-loop control and the IMC vanilla for the Gecko (p = 0.02, OL: 1.72 ± 0.81
and IMC vanilla: 0.90 ± 0.48, effect size= 1.15), and BabyA (p < 0.007, OL: 1.34 ± 0.81 and IMC
vanilla: 0.50± 0.18, effect size= 1.43).
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In the final comparison, no significant difference was found between the IMC vanilla and the IMC
reservoir, for the Spider (p = 0.82), Snake (p = 0.23), and 6677 (p = 0.25). Here, a statistically
significant difference in performance end-values was found for the morphology Gecko (p = 0.003, IMC
vanilla: 0.90 ± 0.48, and IMC reservoir: 2.11 ± 0.93, effect size= 1.63), BabyA (p = 0.003, IMC vanilla:
0.50 ± 0.18, and IMC reservoir: 1.24 ± 0.64, effect size= 1.57), and BabyB (p = 0.05, IMC vanilla:
0.76± 0.32, and IMC reservoir: 1.65± 1.21, effect size= 0.99).
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Figure 10: Bar plot of the mean end-values of the fitnesses (Ne = 10) of each robot: Spider, Gecko, Snake,
BabyA, BabyB, and 6677. The blue bars denote the open-loop controller, red bars denote the IMC vanilla, and
green bars denote the IMC reservoir. Error bars are plotted as well and significant differences are denoted by *
for p < 0.05, and ** for p < 0.01.

To test for general differences between the controllers we calculated mean end-values of the fitnesses
(±STD) over all morphologies (OL: 0.77 ± 0.61; IMC vanilla: 0.50 ± 0.35; IMC reservoir: 0.98 ± 0.78).
Subsequently, a paired samples t-test was performed between these groups to check for statistically
significant differences (Nr = 6). A summary of the grouped controller statistics of the fitness end-values
is shown below in Table 4. In the end, we did not find any significant difference between any of the
aggregated controller groups: the OL vs. IMC vanilla controller: p = 0.19; OL vs. IMC reservoir:
p = 0.23; and IMC reservoir vs. IMC vanilla p = 0.08.

Table 4: Grouped comparison of the mean end-values of the fitnesses (±STD) for each controller (OL vs. IMC
vanilla vs. IMC reservoir). For statistical analysis we performed a paired samples t-test between each group. The
corresponding p-values (d.f. = 10) are shown underneath. We define significant difference at p < 0.05 (denoted
with *). Effect size was calculated using Cohens-d.

Controllers
OL IMC vanilla

0.77± 0.61 0.50± 0.35

p-value 0.22
Cohens-d 0.52

OL IMC reservoir
0.77± 0.61 0.98± 0.78

0.22
0.31

IMC reservoir IMC vanilla
0.98± 0.78 0.50± 0.36

0.08
0.79

Based on the results from the end-values of the fitnesses we choose to compare the open-loop to the
IMC reservoir controller in the additional experiment with added noise. The boxplot of the fitness values,
the amount of distance traveled towards (Ddir), and the amount of distance deviated from the target
direction (Ddev) are plotted below (see Figure 11). Here we see can that for most morphologies the fitness
and Ddir decreases, while Ddev increases, when adding noise. We can also see that the decrease in fitness
is more apparent for the open-loop control than the IMC reservoir in most morphologies. As an exception
to the rule, we see that BabyA does not seem to be affected that much by the added noise.
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Figure 11: Results from retesting the best controllers in each run for the open-loop (blue) and the IMC reservoir
(green) with added noise. For comparison, we also included the corresponding noiseless results (open-loop: light
blue, and IMC reservoir: light green). Boxplots of the fitness values, the amount of distance traveled towards
(Ddir), and the amount of distance deviated from the target direction (Ddev) for each morphology. The orange
line denotes the median value, the box indicates the bounds of 50% of the population, and the whiskers 100%
bounds when omitting outliers.

The results of the statistical analysis of the added noise experiments are shown in Table 5. It should
be noted that a negative difference indicates a decrease in fitness after adding noise. Here we can see that
for most morphologies the average fitness decreased after adding noise (except for the 6677 ∆open-loop,
and BabyB ∆ IMC reservoir for which the fitness slightly increased). Furthermore, we found that there
was a statistically significant difference in the mean ∆fitness between the open-loop and the IMC reservoir
controller for the Gecko (p = 0.008, ∆open-loop: -0.66 ± 0.42, and ∆IMC reservoir: -0.18 ± 0.25, effect
size= 1.40), Snake (p = 0.03, IMC vanilla: -0.19 ± 0.23, and IMC reservoir: -0.46 ± 3.62 · e−2, effect
size= 1.10), and BabyB (p = 2.56 · e−6, IMC vanilla: -0.51± 0.20, and IMC reservoir: 4.14± 0.11 · e−4,
effect size= 3.10). For the grouped comparison we did not find any statistical difference between the
mean difference of the open-loop control and the IMC reservoir when adding noise (p = 0.08).

Table 5: Per robot mean difference (±STD) in performance after adding noise to the best controllers of each
experiment (Ne = 10). We compare the differences in fitness values for the original and added noise condition
between the open-loop (∆open-loop) controller and the IMC reservoir (∆IMC reservoir). It should be noted that
a negative difference means that the fitness decreased after adding noise. For statistical analysis we implement an
independent samples t-test for the 10 runs within a specific robot morphology (d.f. = 18), while for the grouped
statistics we implement a paired samples t-test (d.f. = 10) is conducted to for all morphologies aggregated. We
define significant difference at p < 0.05 (denoted with *). Effect size was calculated using Cohens-d.

Controller ∆ open-loop ∆ IMC reservoir p-value d

Spider -0.24± 0.29 -0.03± 0.12 0.07 0.92
Gecko* -0.66± 0.42 -0.18± 0.25 <0.01 1.40
Snake* -0.19± 0.23 -0.46± 3.62 · e−2 0.03 1.10
BabyA -0.18± 0.38 -0.27± 0.39 0.62 0.24
BabyB* -0.51± 0.20 4.14± 0.11 · e−4 <0.001 3.10
6677 0.46± 3.39 · e−3 -1.60± 2.87 · e−3 0.18 0.65

Grouped -0.30± 0.22 -0.08± 0.10 0.08 1.24
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5 Discussion
Many controllers that are evolved in ER literature seem to have a problem with bridging the reality gap
[33]. In this paper, we addressed this issue in two ways simultaneously with our IMC implementation.
First of all, we learned directed locomotion on more realistic robots that use feedback control instead of
open-loop control. Secondly, the added feedback control might result in more robust movement execution
in the sense that the effects of perturbations and noise on the robots are actively being reduced. This led
to the formulation of the following two research questions: 1) How does the addition of the IMC controllers
affect learning? 2) Is the IMC controller able to retain a higher level of fitness in a noisy environment?
In short, our results do indicate that the addition of feedback control can improve the system (i.e. the
learning performance in robots). The more sophisticated implementation of the IMC reservoir can have
a positive effect on the achieved speed and the robustness of the controller w.r.t. an open-loop controller
in several morphologies. Furthermore, a simple sub-optimal implementation of feedback control (IMC
vanilla) can be detrimental to the learning process. These results show the importance of well-thought
feedback design

At the start of learning, we see similar learning curves for all controllers (Figure 9). This is as expected
because for the first 50 evaluations learning should occur randomly due to the LHS initialization that
was implemented for all controller conditions. A divergence in the rate of learning is visible after this
initial sampling in the Spider, Gecko, BabyA, and BabyB. This divergence starts around 100 evaluations
where the less performing controllers begin to plateau in performance. The plateauing indicates that the
end-values of the fitnesses truly represent differences in task-performance of each controller, and were
not caused by stopping the experiments too soon. In further support of our findings, it seems that the
differences in the end-values could have been more pronounced since learning in the IMC reservoir was
still apparent in most morphologies at the end of the experiments.

For statistical analysis on the directed locomotion task, we compared the end-values of the fitnesses
between controllers. Here we found that for the BabyA and Gecko both the open-loop and IMC reservoir
controllers performed similarly and significantly better than the IMC vanilla. If we look at the effect size
we can see that these differences are large to very large [70], which indicates a strong difference between
these controllers. We also found a statistically significant difference between the IMC vanilla and the
IMC reservoir for the BabyB with a very large effect size. This was not the case for the open-loop IMC
and reservoir in the BabyB (even though open-loop performed similarly to the IMC vanilla), nevertheless
it should be noted that a trend was visible p = 0.08 with a large effect size.

Overall, we did not find any significant difference between the grouped mean fitness end-values. We
suspect that this is mainly due to the low number of subjects in our study (6 robots). Especially in the case
of the IMC reservoir vs IMC vanilla where there is a clear trend-visible (p = 0.08, d = 0.79). In hindsight,
this indicates that we could have increased the number of subjects while still retaining a medium to large
effect size. Furthermore, we suspect that the differences could have been more pronounced if we had
continued learning. When we look at the learning curves (Figure 9) we can see that the IMC did not
plateau yet in some morphologies (Spider, Gecko, BabyB) compared to the others. Additionally, the
absence of a significant effect might also be caused by the choice of the fitness function. We can always
design a fitness function that would lead to a significant difference, but our choice for a quadratic F
might have been poor. If we instead took a linear function (e.g.

√
F , with unit m) than the differences

the between fitnesses would be more pronounced (especially for the Snake and 6677).
The low fitnesses for the Snake and the 6677 morphologies grabbed our attention as it greatly reduced

the size of the mean difference between the controllers (see Table 5). To us, this poor performance
was quite surprising since these morphologies performed (very) well in previous work [55; 57]. Visual
inspection of the simulated robots revealed that learning did occur in these robots, but that the direction
of locomotion was sub-optimal for these models (video5). Both morphologies seemed to require a rotation
of 90 degrees first before they could properly locomote in the target direction. Earlier work showed that
one of the optimal movement strategies for the Snake was to roll sideways, while the 6677 performed well
by hopping in a similar direction [56; 57]. Quite remarkably the highest fitness in the Snake showed a
behavior in which the open-loop controller was able to make the snake turn 90 degrees before it started
to roll sideways (resulting in an end-fitness of 1.03 m2). In retrospect, rotating the morphologies might
have been sufficient to increase the fitnesses tremendously. Rerunning the experiments for the Snake and
6677 in the ‘correct’ direction resulted in similar performances as the Gecko and BabyB respectively (not
shown).

The use of adaptive IMC has some interesting consequences for lifetime learning with BO, due to
the additional feedback learning of the internal models. As the internal models change over time, we

5https://youtu.be/TgC0gHII7mg
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can see that the IMC controllers might behave inconsistently. This means that if we would retest the
same sample a second time, after a period of feedback learning, we would likely see a slight difference in
behavior and thus fitness. As a consequence, instead of a crisp representation of the fitnesses in search
space, we should consider each data point more as a probability when dealing with adaptive control.
Luckily the BO algorithm is well equipped to do this as it in itself evaluates fitness values samples with a
certain uncertainty. Nevertheless, we did not put any extra effort into fine-tuning the BO algorithm for
this inconsistency of control as we wanted to keep all learning equal between the controllers.

Another property that can cause inconsistency in control is the fact that learning occurs in two internal
models simultaneously. When learning is done on two systems simultaneously we create the risk that the
adaptations of both systems become unpredictable and unstable [9]. Especially when the models depend
on each other’s output. This is because the changes that occur in one of the systems (in our case the
DNNs) can also influence the adaptations in the other. A clear way to show this inter-dependency of the
DNNs in our IMC is by imagining a special case in which one of the internal models is perfect. Here it
can happen that when the other model is not perfect an error will emerge, which creates a gradient that
directs the weights away from the perfect model. Unfortunately, we did not focus on the convergence of
the two adaptive models when we designed our IMC controllers. Nevertheless, we were able to reliably
learn feedback control. For future work, it might be better to learn each model differently, for example,
switch which model learns for some time, store different sets of data in a buffer (odd vs even samples),
or decrease the learning rate of one of the models (making the other model adapt to it).

Besides the two internal models that are being optimized for optimal feedback control, we also
implemented adaptations in the weights of the CPGs for the lifetime learning task of directed
locomotion. Here we recognize a problem that can lead to over-fitting. Namely, as the CPG network
keeps improving its control output we will likely see that the robot behavior converges to a (local)
optimum. During feedback learning, early convergence can cause the DNNs to recognize which output
is desired based on the robot state instead of the reference signal presented by the CPG network. When
exploring a new behavior the controller will function badly since it did not learn how to follow the
reference state correctly. As a consequence, badly functioning feedback control causes bad performance
during exploratory samples, which in return reinforces the convergence of the CPGs leading to early
plateauing of the fitness. We addressed over-fitting the internal models with L2 regularization on the
DNN weights [22]. Furthermore, the LHS should also induce a wide variety of movements to prevent
over-fitting. Another possible solution might be to change the BO in such a way that prevents early
convergence of the robot behavior (increase exploration). Additionally, we could have implemented
some form of dropout in the DNN [74] or reduce the size of the models as well. The problems arising
from over-fitting seem similar to those regarding continual learning in [50]. Here it has been found that
models show a poor ability to adapt to new problems quicker and have difficulties in retaining acquired
knowledge (also known as catastrophic forgetting). As a solution, it has been proposed to memorize and
learn on specific samples (evenly distributed in input space) rather than continuously learning on all
samples, which may cause convergence if samples become increasingly similar [71]. For our internal
models, we could implement a similar strategy by memorizing less frequent states to train our DNN.

In the end, the inconsistency of control can cause the resulting fitnesses to be badly represented by
the GP [73]. When bad samples are regarded higher and/or good samples lower we find that the sample
efficient nature of the BO algorithm becomes counterproductive, as it will negatively affect the likelihood
of samples being picked in the neighborhood of those points. The sensitivity to this bad sampling is
different for each morphology as the optimal region of samples can be big or small. A morphology that
has a narrow region with high fitnesses in search space would be more sensitive than one with a wider
region of high performance. Another reason why inconsistency in control can lead to bad approximation
by the GP is that high variability in neighboring points can cause a very erratic and/or uncertain models.
This is highly dependent on the amount of data and the type of kernel that is being used (kernels differ
in the amount of smoothing of the fitness data [82]). Inconsistency in control is not a unique property
for our IMC controller but will also be apparent in any type of feedback controller and for any robot in
a noisy environment as well. For future work, it might be better to take this into account when learning
locomotion in real robots using BO. An interesting option might be to relate the total amount of loss
(feedback error of the internal models, L) during a trial in the uncertainty of that sample for the BO
algorithm.

How the adaptive IMC influenced the learning locomotion task is difficult to tell. It is interesting
to see that for the IMC vanilla the added feedback learning seemed detrimental to its performance in
directed locomotion, while for the IMC reservoir it seemed to have a positive effect. The main difference
between the two DNN is that the reservoir computing technique has been ascribed to have a reduced
amount of learning capabilities and an increased rate of learning [76]. The above-mentioned problems
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regarding inconsistency in control and over-fitting of the DNN may explain why there seems to be an
optimal amount of learning for the internal models. For example, to prevent over-fitting, we would like
to have a slow rate of learning on a model with low learning capacity. On the other hand, to counteract
bad adaptations towards new behaviors and limitations in the complexity of the model we would like to
have a higher learning rate and model capacity. Furthermore, the effects of the inconsistency of control
between evaluations of the BO can be reduced by a slower learning rate of the DNNs, but this will also
mean that the inconsistencies take longer to fade away.

The fact that the IMC reservoir seems to outperform the open-loop controller also indicates that
some inconsistencies in control can be beneficial. It can be argued that the aforementioned argument,
bad samples are regarded higher and/or good samples lower conversely is beneficial, but we disagree.
Even though higher valued good samples might attract more samples in their neighborhood, it can also
lead to converging faster on a local optimum. Furthermore, bad samples that are evaluated worse would
have been regarded as bad and ignored by the BO anyway, thus not affecting the outcome at all. In the
end, this would cause the net influence of inconsistencies to be more harmful than good. We, therefore,
suspect the source of improvement to lie somewhere else. A possible consequence of the inconsistency in
control might be an increase in the amount of uncertainty of the GP. This could cause exploration to be
encouraged, which would result in a longer period of learning and less convergence on a specific behavior.
If we look at the learning curves we can see that the IMC reservoir seems to plateau much later than the
rest, which would also be as expected when exploration is encouraged more. It would also be possible
to look at the spread of the samples in search space where we would expect a higher variance for the
controllers with more exploration.

From the added noise experiments we can observe that the IMC reservoir controller was able to reduce
the effects of the perturbation more than the open-loop in the Gecko, Snake, and BabyB morphology.
Here, the added noise condition served as a way to validate the feedback controller but can also be seen
as a proxy for the reality gap. Overall a trend in better performing IMC was visible for p = 0.08. For
the individual comparison, two results stand out the most: 1) the effect of the noise was most apparent
in the BabyB with a huge effect size (d = 3.1), and 2) the open-loop retained a high performance on
the BabyA. We suspect that these findings are caused by the robustness of the learned behavior. Visual
inspection of the BabyA controllers with and without noise (video is the same as mentioned before) did
not reveal anything noticeable. For the BabyB controllers, we noticed that most controllers learned to
row with both long sidearms while steering with the long arm at the front. This behavior results in the
robot balancing on two points of contact for a brief moment in time. Adding noise made the robot fall
differently in the open-loop controllers which resulted in a deviation from the target direction. If we
look at Figure 11 we can see that most reduction in fitness was caused by this deviation from the target
direction (decrease in Ddir and increase in Ddev). Similarly, for the open-loop snake, the reduction in
performance of the best movement behavior in the open-loop Snake (the one that rotated 90 degrees
first) was mainly caused by the fact that the rotation was not executed properly before rolling. This is in
line with the findings that open-loop control can lead to exploitation of control behaviors that are very
sensitive to perturbations and/or the reality gap.

Even though we did not find any significant difference between the two controllers in the grouped
added noise environments, we do believe that overall the IMC reservoir feedback tends to perform better.
We base this conclusion on the fact that the difference is close to significant (p = 0.08) and the effect size
is very large (d = 1.24). Similarly to the grouped statistics of the mean fitness end-values, we suspect
that increasing the sample size, changing the fitness function or loading the 6677 and Snake in different
orientations would have been sufficient to see significant differences.

When considering real-world application of ER (whether it be transferring controllers from simulation
to real and/or conducting a real-world ER experiment), one should keep in mind that most techniques are
developed in a simulated environment [61]. This leads to difficulties when transferring controllers from
simulation to real robots, the so-called reality gap [33]. If we place our study in the context of existing
ER work we provide strong reasons for rethinking the types of controllers that are being optimized. The
results presented here revealed that small differences in these controllers can already lead to very different
results in the performance of current learning algorithms. Furthermore, our bio-inspired controller has
shown to be a solution to the reality gap by being more robust in performance after transferring to a noisy
environment and being more realistic to real-world control systems compared to the open-loop control.

ER experiments in the real world show that PID control can work for simple morphologies [65; 5; 81;
64]. Nevertheless, we believe that there is a need for adaptive feedback control like our IMC architecture.
As morphologies become increasingly complex so does the control necessary to accommodate such designs.
Exciting progress in ER is being made, in the additional evolution of building materials [25], non-modular
shapes [23], and even biomaterials [44]. Furthermore, the use of non-static control allows for cooping
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with reality gaps, damage during the life of a robot, and changing environments. We could even use
our internal models to improve the simulator as well. The implementation of adaptive feedback control
seems, therefore, a logical step to take in ER.

Here we have shown that our IMC design can provide adaptive feedback control without affecting
learning too much. Furthermore, lifetime learning in ER challenges us to develop controllers that can
learn rapidly on a broad range of morphologies while being eligible for evolution. A unique selling point
of our bio-inspired IMC design is that we can accommodate these demands while being easy to implement
on already existing controllers. In comparison, most PID controllers are limited in their capabilities for
complex morphologies and require elaborate fine-tuning [3]. Other nonlinear feedback controllers [40; 47;
43] are often highly customized and require redesigning for different morphologies. This makes the IMC
design attractive for future ER experiments. In future work, it might be interesting to see how well the
IMC works on a set of completely different robots outside of the Revolve framework.

A major limitation in our study is the absence of real-world testing, even though we consider our
controller to be better transferable to real robots. Unfortunately, limitations in resources prevented the
use of real robots. With the current experiments, we have shown that the IMC reservoir can learn with a
similar rate as the open-loop controller of [45], and retain its performance better in a noisy environment.
As a logical next step, we would want to test lifetime learning with our IMC reservoir in a real-world
experiment, which seems feasible given the low amount of simulated time. Another limitation of our
study lies in the fact that we purposely did not reduce the reality gap by implementing solutions found in
other work (as mentioned in the introduction) [33; 42; 78]. As a consequence, we may have overestimated
the effect of the IMC reservoir on its ability to reduce the reality gap. We choose to disregard these
techniques as we were interested to see the capabilities of the IMC controller only. Using more techniques
would have occluded how well our controller could reduce the reality gap in our robots. Additionally,
these techniques would also affect both learning systems in a non-obvious way. Although it would be
interesting to see how such techniques would affect the internal models, this would have been beyond the
scope of this study.

Additionally, we may have limited the IMC performance by keeping the architecture simple and fixed.
We purposely designed the DNNs simple and only compared different learning capabilities to keep the
difference as clear as possible. In the future we might want to optimize our DNN designs more, or make
them eligible for evolution as well through NEAT [75]. Adding to that is the possibility of placing a filter
on the error signal before feeding it back in the IMC. This has been done in the industry, as error signals
often need some form of smoothing and filtering to prevent instability caused by noise and high peaks
[21]. Since the modelinv output layer was bounded by Equation 2, we did not expect such high peaks
(even during the added noise condition). Furthermore, we expected that our IMC would learn to adapt
its control adequately to prevent instabilities.

The last shortcoming we want to address is not retesting the IMC vanilla to see if the transferability
is similar to the IMC reservoir. Although it could have strengthened our position on the value of the
IMC feedback control in general, we want to emphasize that if performance was worse it would have been
difficult to explain the results. Both IMCs were modeled differently making it hard to identify the possible
causes for a difference in performances. Therefore we tested the validity of the feedback controller to only
apply to the IMC reservoir.

This study aimed to see if IMC was a viable option for feedback control during lifetime learning. The
necessity of a learning loop in ER is based on the difficulties that arise with the simultaneous body and
brain evolution [6; 16]. Other proposed methods often rely on preserving novelty after morphological
mutations [7]. [7] noted that for larger creatures, novelty protection was only beneficial with a minimum
mutation threshold (which was obtained by a parameter sweep). The advantage of lifetime learning
over such methods is the scalability to more complex morphologies since such tuning is not required
beforehand. Unfortunately, we could not show this advantage since we omitted the evolutionary process
in this study. For future work, we should consider an experiment in which both body and brain evolve,
with additional lifetime learning during a robot life using our IMC control.

6 Conclusion
Limitations of current ER research lies in bridging the reality gap for controllers that learn locomotion
in simulation. With our bio-inspired IMC controller, we showed that the addition of adaptive feedback
control can both affect the amount of learning as well as the transferability of the final controllers. Our
controller is special in the sense that it could learn proper movement execution on top of locomotion in
a feasible amount of time for a broad range of morphologies.
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A Triangle of Life Background
Most of the research in ER only involves the evolution of controllers with fixed robot morphologies [61].
However, for a full-fledged robotic evolution system, the robot controller and morphology should be
evolved together [12]. [61]. In the few studies with simultaneous controller and body evolution, we found
that real-world testing only takes place at the end, as a means of validation [65]. This is because the
simultaneous evolution of both body and brain is challenging, since the inherited brain of a newborn robot
may not match its inherited body even if the parents perform well (a so-called body-brain mismatch). It
has therefore been argued that a real-world application of a full-fledged ER system (evolving both brain
and body) should also introduce an additional learning loop at the early stage of a robot life [17]. The
ToL conceptualizes what it would take for a full-fledged ER to take place in the real world (see Figure 12).

MORPHOGEN
ES

IS
INFANCY

2

1 3MATURE LIFE
Survival, mating, learning, task execution

Learning 
LoopBirth process

Conception Fertility

Delivery

Figure 12: Triangle of Life, adapted from [16]. Here the lifecycle of a robot starts when we conceptualize its
design. Subsequently, the robot is born either by hand or in an automated process. To properly assess the
performance of a robot, its controller will first be optimized in an additional learning loop (similar to an infant
learning to walk). At last in the mature stage, the robot will perform its predefined task and becomes eligible for
selection by the evolutionary algorithm

Conception, signals the start of the ToL in which a new robot design is formulated. From here on a
birthing process takes place in which the body is actualized. In current literature, this process is mostly
done manually, which is very time-consuming. The ToL envisions an automated robot birthing clinic that
could speed up the assembly process. The use of modules with 3D printing can enable the pre-fabrication
of parts for rapid prototyping, and robotic assembly may allow for a fully automated birthing process.
Currently, there are some labs that are working on developing such an automated birthing clinic [5; 81].

Delivery, denotes the birth of a newborn baby robot and is followed by an infancy stage. Our study
investigates the learning loop that takes place during this stage. The ToL suggests that learning should
take place in a safe environment, a so-called nursery. In a nursery, the robot will learn some fundamental
motor tasks like locomotion and grasping under direct supervision in a shielded environment. The nursery
has two important advantages for real-world applications. 1) learning reduces the effect of an initial body-
brain mismatch, and 2) very weak individuals (ones that do not perform well on the fundamental motor
tasks) can be filtered out and recycled early on in the evolutionary process. In the end, this will result
in more efficient use of time and resources.

Fertility, starts at the moment a robot is deemed good enough in the fundamental motor tasks. From
here on, the mature robot is released into the world to accomplish its predefined task (e.g. collecting
resources) with the skills it learned during infancy. Additionally, the robot is now eligible for mating as
well, thereby starting a new loop when it is selected for reproduction.
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B The Bio-inspired IMC
In biological systems, information about joint angles, velocities, and torques are provided by different
sensors of the proprioceptive system [79]. The proprioceptive system relays its sensory information back
to the central nervous system where it is used for movement control [10]. A long-lasting hypothesis
on how proprioceptive feedback is used by humans states that the nervous system constructs predictive
models of the body in the physical world to guide behavior [53]. These predictive models are internal
representations of the body in the real world based on proprioceptive feedback. To guide behavior two
predictive models are necessary for the movement of the limbs. The first model (called the inverse model)
computes the correct motor-input to the muscles in order for the body to move as intended. The second
model (called the feedforward) computes the expected proprioceptive feedback based on the motor-input
of the inverse model. The expected proprioceptive output is sent as an efferent copy to the motor neurons
where it is used as a way to detect deviations in the actual movement. This flow of information is similar
to the IMC in our robots [77].

The internal model hypothesis in neuroscience has driven research into finding a specific brain region
that could serve as body representations. For the inverse model, it has been found that the cerebellum
plays an important role in the computation of motor inputs for the muscles [40; 52]. Namely, sensory
information about the current state is transferred into the cerebellum via mossy fibers and encode specific
commands for certain joints through granular cells and parallel fibers. Subsequently, Purkinje cells have
been proposed to encode for the dynamic signals to produce motor input commands.

Evidence for the existence of a forward model in the cerebellum has been less direct [54]. Data
from previous studies showed that the cerebellum is concerned with processing sensory re-afference [84].
More recent work suggests that the output of the Purkinje cells can both function as a motor input and a
prediction of proprioceptive feedback [66]. Furthermore, climbing fibers are assumed to carry information
about movement errors back to the Purkinje cells to close a feedback loop.

Unfortunately, the similarity between our IMC design and the brain stops here. In real biological
systems, the sensory output is defined by large groups of neurons that encode information by firing
rates. Our implementation of ReLU units falls short to accommodate such an encoding mechanism.
Furthermore, in the cerebellum, one can see that computations occur by deploying many more neurons
at the input level (mossy fibers), often with much more redundancy between them, converging with less
connectivity to a small number of output neurons (i.e. a network with a sparsely connected funnel shape).
Lastly, learning itself occurs differently in a biological brain (through Hebbian learning) in contrast to
the back-propagation of an error signal in artificial neural networks like our DNNs.
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C Revolve, Robots, and Other Technicalities
The robot evolution simulator Revolve is developed in earlier work as a way to enable ER experiments
within the ToL framework in simulation [28]. A major part of the ToL is that besides the evolution of
both body and brain, additional learning takes place after the birth of a robot. In the case of a population
of learning robots, this would mean that learning is also influenced by interactions between robots. After
a quick assessment, it was found that pre-existing evolution simulators could not accommodate such
requirements, which launched the development of Revolve6. The Revolve library consists of tools to
create robots throughout an evolutionary experiment. This library includes ready to go experimental
setups, as well as setups that require more in-dept experimental specification. For example, the robot
genome (for both body and/or brain), its phenotype (into construct-able robots), which evolutionary
operators, different types of robotic frameworks, fitness functions, and robot environment can all specified.
Additionally, Revolve allows developed controllers to be used onto real robots.

In our experiment, we used Revolve to create the robots that were subjected to learning in simulation.
These robots consist of modular parts that make them applicable to evolution. The modules are based
on the RoboGen framework and are designed in such a way that they can be bought/3d printed in the
real world. In the end, we only implemented a subset of RoboGen modules, see Figure 13a: 1. The main
core, consisting of a battery, micro-controller with an IMU; 2. Fixed blocks; and 3. Servomotor Towerpro
MG996R (with a range between -45, and 45 degrees). For the servomotor module, the axis of rotation is
positioned in the middle. We redesigned the RoboGen modules in such a way to accommodate for the
Towerpro servomotor, as we want to implement our IMC in real robots in the future (see Figure 13b, video
here7). The physical properties of these new blocks are listed below in Table 6. We assume symmetry in
each dimension and homogeneity for all modules.

(a) Modules (b) Gecko

Figure 13: (a) Robot modules: 1. main core component; 2. fixed brick; 3. servomotor. (b) A real version of
the Gecko robot.

Table 6: Physical properties of the modules used in the robots

Parameters Core Component Fixed Brick Servomotor

Dimensions w×d×h (mm) 89×89×60.3 63×63×60.3 103.5×53×53
Mass (gr) 250 30 69
Ang range (rad) - - ±0.25π

Max. Ang vel (deg/s) - - 5.24

Max. torque (Nm) - - 0.92

Building a robot in Revolve is simple. A robot architecture is defined in blocks on a 2D lattice that
can differ in orientation. Only one module can be placed in the position of a block on the lattice. This
block can be connected at 4 sites (north, east, south, west). These sites correspond with one of the four
faces of a module. Different rotations between modules are in steps of 90 degrees.

After the creation of our robot, Revolve will place it in the Gazebo8 simulator. In Gazebo we signal
the robot servomotors using our IMC controller. The update rate (0.125 s) of the controller was set in
such a way that it is feasible in a Raspberry PI micro-controller extended with a custom HAT. In Gazebo
we use the Open Dynamics Physics Engine9 in which each module is described as a physical body with
a bounding box. The Revolve code with the modules and robot designs is publicly available here.

6https://github.com/ci-group/revolve
7https://youtu.be/iS1pEOF4Ur4
8http://gazebosim.org
9https://www.ode.org/
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D Building a CPG Network
The dynamics of a single CPG as described by Ijspeert [29] is shown in Equation 1 without the summed
term for the x-neuron. Because these weights have static values, we can describe the dynamics as a
system of linear equations in the following form:

v =


x

y

o


dv

dt
=


0 wyx 0

wxy 0 0

wxo 0 0



x

y

o

 = wv

(11)

With x and y representing the value of their respective neuron state and o the signal that is send to
the output neuron. This system representation can be easily extended to encompass two CPGs:

~v =


~x

~y

~o

 with,

~x = [x1, x2]t

~y = [y1, y2]t

~o = [o1, o2]t

d~v

dt
=



0 0 wy1x1 0 0 0

0 0 0 wy2x2
0 0

wx1y1
0 0 0 0

0 wx2y2
0 0 0

wx1o1 0 0 0 0

0 wx2o2 0 0 0





x1

x2

y1

y2

o1

o2


= W~v

(12)

From here on introducing more CPGs will lead to similar extension of the matrix by adding weights
diagonally. Creating a connection between the x-neurons of the two CPGs can be done as well:

d~v

dt
=



0 wx2x1
wy1x1

0 0 0

wx1x2
0 0 wy2x2

0 0

wx1y1
0 0 0 0

0 wx2y2 0 0 0

wx1o1 0 0 0 0

0 wx2o2 0 0 0





x1

x2

y1

y2

o1

o2


= W~v (13)

To calculate the values of the CPGs in the network at a next time step we can do the following:

~vt+1 = ~vt +
d~vt
dt
· dt

~vt+1 = ~vt + W~vt · dt
~vt+1 = (I + W · dt)~vt

(14)

With I denoting the identity matrix. Equation 14 is equal to the Equation 4 from the report.
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E Learning Locomotion
Learning Locomotion is done through the optimization of the CPG weights (~w) using BO. First, we
initialize 50 samples pseudo-randomly using LHS and test them in the simulator. Subsequently, the BO
algorithm approximates the fitness function F by using Gaussian Processes. A schematic overview of the
learning directed locomotion loop is shown below (Figure 14). For the mathematical implementation of
the acquisition function (upper confidence bound, UCB) and the GP approximation kernel (Matérn 5/2)
we refer to [82].

LHS

BO

Initialize 50 samples

Robot

��(μ(X),σ2(X))

Simulator

+

+

�(Y |�)
UCB

X

Y

�k

Figure 14: Schematic overview of the learning directed locomotion loop. At first we initialize our data-set,
by evaluating 50 samples in weight space using Latin Hypercube Sampling. The initial samples (orange blocks,
X = [~w1, ~w2, . . . , ~wn]) and their corresponding fitness values (yellow blocks, Y = [F1,F2, . . . ,Fn]) are used
to approximate the fitness function (f) using Gaussian Processes (GP). With this approximation the Upper
Confidence Bound (UCB) approach selects a new sample for the subsequent learning trial (wk).

35



F Learning the Internal Models
Learning the two internal models is done by adapting the DNN of each internal model every time the
CPG output is updated (which is 0.125 s) in simulation. Adaptation of the internal models is done by
using two different error functions (errorinv and errorff ). For the modelinv the error is the difference
between the reference state and the current state at the next time step. For the modelff the error is the
difference between the predicted state and the current state at the next time step. A schematic overview
of the information flow for updating the DNN is shown in Figure 15.
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�pred
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�
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+
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Figure 15: Schematic overview of the information flow for updating the DNN. It should be noted that we omitted
the flow of the current state (robot output) to the model inputs for the sake of clarity.

With the error functions, we can formulate the loss as mentioned in Equation 9. In the ADAM
optimization algorithm, running averages of both the gradients of the loss function with respect to the
network weight (∇wL) and the second moments of the gradients are used (∇wL ⊗ ∇wL). We use the
same calculations as formulated by [41].

Calculate the moving average of the first (m) and second (v) moments of L at time t:

mt+1
w ← β1m

t
w + (1− β1)∇wLt

vt+1
w ← β2v

t
w + (1− β2)∇wLt ⊗∇wLt

(15)

Implement bias correction:

m̂w =
mt+1

w

1− β1

v̂w =
vt+1
w

1− β2

(16)

Update the weights accordingly:

wt+1 = wt − α m̂w√
v̂w + ε

(17)
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G Overview Experimental Setup
In the end, our experimental setup consists of 2 tests. In the first test, we learn directed locomotion in
all 6 robots with all 3 controllers. Learning is done in 300 learning trials. An overview of the first test is
shown in Figure 16. In the second test, we retest the best fitness from each experiment in all 6 robots
for the Open-loop and the best IMC controller, while we add noise in the simulator. An overview of the
second test is shown in Figure 17.

Simulator
BO

Learning trial

300x

Single experiment

10x

Single robot:

- Spider

- Gecko

- Snake

- BabyA

- BabyB

- 6677

Single controller:

- Open-loop

- IMC vanilla

- IMC reservoir

Figure 16: Schematic overview of all learning experiments that are being conducted. For 3 controllers we will
learn locomotion in 6 morphologically different robots in 10 runs, with 300 learning trials per run. Each trial
entails a simulation of 60 s.

Simulator+noise

Best tness

1x

Retesting experiment

10x

Single robot:

- Spider

- Gecko

- Snake

- BabyA

- BabyB

- 6677

Single controller:

- Open-loop

- IMC vanille/

   IMC reservoir

Figure 17: Schematic overview of all retesting experiments that are being conducted. From the open-loop and
the best IMC controller we take the best controller per 10 runs of all 6 morphologies. We only retest once to see
the effect of adding noise on the controllers’ performance.
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