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Summary
Since the start of space flight the amount of space debris orbiting the Earth has steadily increased.
Because these space debris objects have a very high velocity even very small pieces, 1 cm, could
cause the total failure of an operational satellite. To minimise the chance of this happening and to
ensure that space flight will be possible in the future, it is necessary to be able to avoid and one day
hopefully remove these space debris objects. To do this, it is important to have an accurate estimation
of the orbits of these objects. Due to the non-cooperative nature and small size of space debris, precise
orbit determination is difficult to achieve. This is especially the case for smaller space debris objects
in GEO, at the moment there is no method which can be used to detect and therefore perform orbit
determinations for these objects. One possible solution is by using space based optical sensors, this
research aims to answer the following question: ”To what extent can a constellation of satellites with
optical sensors increase the surveillance of 1 to 10 cm sized space debris in GEO?”

To answer this question a simulator was created which simulated optical observations of space
debris objects made by satellites and used these observations to determine the orbit of those objects.
Using this simulator a constellation design was optimised using five different design variables, the semi-
major axis, the number of satellites per group, the total number of satellites in the constellation, the focal
length and finally the inclination difference between satellites in a group. These design variables were
optimised for two different performance metrics, the accuracy of the orbit determination and the number
of successful orbit determinations, while also taking into account the mission cost. The performance
of the resulting optimal design was evaluated to answer the main research question.

The average position accuracy of the orbit determinations for the optimal design was 198 meters.
This accuracy is high enough for the system tomaintain custody and thus provide regular estimated orbit
updates for objects that can be frequently observed. The optimal design is able to provide successful
orbit determinations for only 17% of all space debris objects, if only one group of 3 satellites is used.
This percentage can be increased significantly by using more satellite groups, but even when using as
much as 30 total satellites, the system is still only able to provide orbit determinations for 35% of all
space debris objects. This poor performance is mainly caused by objects smaller than 4 centimeter
and objects with high inclinations.

It was found that the system is capable of providing regular accurate orbit estimations and maintain-
ing custody for newer space debris objects with a size larger than 4 centimetres using only a limited
amount of satellites and perhaps even slightly older objects if the satellite position and measurement
errors can be reduced. The system will also be able to sporadically observe and provide an accurate
orbit estimation for older space debris objects with a higher inclination. However, the system will not be
capable of doing so regularly even when using a large number of satellites, thus making maintaining
custody very difficult for these objects. At this moment no orbit determinations can be done for objects
in the GEO region smaller than 10 centimetres, they can not even be observed. A system such as this
can thus increase the space situational awareness for the GEO region significantly. Space debris ob-
jects smaller than 2 centimetres are still not detectable by this kind of system, unless a very non-optimal
constellation design is used.
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Nomenclature

Abbreviations

Abbreviation Definition

CCD Charged Couple device
ECI Earth centered inertial frame
EKF Extended Kalman filter
ESA European space agency
FOV Field of view
GEO Geostationary orbit
GSSAP Geosynchronous Space Situational Awareness Program
GTO Geostationary transfer orbit
IOD Initial orbit determination
LEO Low Earth orbit
MEO Medium Earth orbit
NASA National Aeronautics and Space Administration
OD Orbit determination
RK4 Runge-Kutta 4
RSW Radian, along-track and cross-track
SBSS Space Bases Space Surveillance
SNR Signal to noise ratio
TLE Two line element
UKF Unscented Kalman filter

Symbols

Symbol Definition Unit

A area [m2]
a acceleration [m/s2]
a semi-major axis [m]
d diameter [m]
d distance [m]
E eccentric anomaly [rad]
e eccentricity [m]
G gravitational constant [m3 / kg s2]
g versor [-]
h height [m]
i inclination [rad]
J Cost value [-]
M mean anomaly [rad]
M mass [kg]
m visual magnitude [-]
m order of spherical harmonic gravity field [-]
n degree of spherical harmonic gravity field [-]
n mean orbital angular velocity [rad/s2]
n line of sight unit vector [-]
P solar radiation pressure [N/m2]
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Symbol Definition Unit

P Covariance matrix [-]
p Relative position vector [-]
R radius [m]
R Measurement covariance matrix [-]
r position vector [m]
U gravitational potential energy [J]
Q Process noise matrix [-]
QE Quantum efficiency [-]
w width [m]
x state vector [-]

ϵ error [-]
Θ true anomaly [rad]
Θ FOV angle [rad]
Θ geographic longitude [rad]
µ gravitational parameter [m3/s2]
ρ range [m]
ρ albedo [-]
σ noise [-]
τ optical transmittance [-]
ϕ geocentric latitude [rad]
ϕ solar phase angle [rad]
Ω longitude of the ascending node [rad]
ω argument of periapsis [rad]
ω perigee longitude [rad]
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1
Introduction

Many critical systems that play a large part in the world’s economy and governments are heavily reliant
on the continuous operation of satellites. This dependency is expected to only increase in the following
decades. One of the major threats to the operation and safety of current and future space based
systems is space debris. Space debris is ”any human-made object in orbit about the Earth that no
longer serves a useful function. Such debris includes nonfunctional spacecraft, abandoned launch
vehicle stages, mission-related debris, and fragmentation debris” according to the definition of NASA.
It has been estimated that there have been more than 640 break-up events 1, which have increased
the number of space debris objects in space. The largest break-up event was the anti-satellite test
performed by China in 2007 which added approximately 3500 new space debris objects (Johnson,
2010), however, with every new space mission more space debris is added. Due to the high velocities
at which these space debris objects travel, the consequences of a collision between an operational
satellite and a piece of space debris can be massive. A collision with an object as small as 1 cm can
lead to the complete failure of a mission (Chen, 2011). The estimated number of space debris objects
larger then 1 cm is around one million1 and is expected to keep growing.

There are two ways to deal with the problems occurring due to the ever increasing amount of space
debris, either a space mission needs to perform a manoeuvre to avoid a collision or the space debris
objects need to be removed from space or put into a non harmful orbit. For both these methods, an
approximate orbit of the space debris objects needs to be known. For satellites this is most commonly
done by using radarmeasurements from ground-stations to the satellites. By determining the travel time
of the radar signal between the satellite and the ground-station, the psuedorange can be determined,
this pseudorange is then used in either batch or sequential estimation methods in order to determine
the orbit of the satellite. Other methods to obtain the pseudorange that are commonly used for orbit
determination are laser ranging and Doppler measurements (Schutz et al., 2004). These methods are
also used for the orbit determination of space debris objects. However, the orbit determination of space
debris comes with extra challenges. Space debris is so called non-cooperative, these objects do not
have (operational) receivers, antenna’s or reflectors which can be used to accurately determine the
orbit. Additionally, most of these objects are very small and it is thus harder to detect and track them.
Due to these extra challenges optical methods are also commonly used for the orbit determination
of space debris objects. Ground-based telescopes make angular measurements of the position of
the object, using these measurements, so-called angles-only orbit determination methods are used to
estimate the orbit of the space debris objects (Fadrique et al., 2012).

1.1. Heritage
In the first 30 years of space flight no efforts were made to detect and determine the orbit of space
debris. In the 1980’s, as the number of possibly harmful objects and the possibility of catastrophic
collisions increased, space agencies and other experts in the field started to recognise the need for
orbit determination of space debris and multiple offices were set up for this purpose (ESA, 2017a)

1 https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers: date accessed:12/1/2023
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(Reynolds and Potter, 1989). Two different orbit determinationmethods can be identified, ground-based
and space based.

1.1.1. Ground-based orbit estimation
The past and current ground-based methods for the orbit determination of space debris can also be
split up into two different methods, optical orbit determination and orbit determination based on radar
measurements. In Appendix A two tables can be found where the main systems for both optical and
radar based orbit determination are described.

Currently ground-based optical orbit determination methods are being used for the detection of
relatively large space debris objects for all altitudes from LowEarth Orbits (LEO) to Geostationary Orbits
(GEO) (Silha, 2020). At LEO the optical ground-based systems are able to detect objects as small as
1 cm (NASA, 2007), while at GEO the minimum size is 10 cm (Garcia-Talavera et al., 2002). There
is also a clear motion toward using satellite laser ranging which provides superior orbit determination
accuracy and increases the operational window of the systems (Zhang et al., 2012)(Kirchner et al.,
2013)(Lejba et al., 2018)(Steindorfer et al., 2020).

Radar based methods are currently only being used for the orbit determination of space debris
located in the 400-2500 km altitude range. Compared to the ground-based optical methods it can
detect far smaller objects, space debris as small as 3 mm can be detected (Czerwinski M.G., 2014).
There are also two different antenna types being used, a dish antenna and a phased array. The majority
of the older systems uses a single large parabolic antenna. But the newer and proposed systems are
mostly by-static and phased arrays, which give improved performance compared to the older systems
(Muntoni et al., 2021) (Saillant, 2016) (Baskakov et al., 2017). However, even these newer radar
systems will not be able to detect space debris in GEO and beyond.

1.1.2. Space-based orbit determination
As can be concluded from the previous section, ground-based methods can only detect particles >4
mm in LEO and around 10 cm in GEO, space-based methods can detect particles that are a lot smaller.
There are two different methods one could employ to determine the orbits of space debris in space,
impact sampling and remote sensing. Impact sampling can be done either passively or actively, pas-
sively by bringing exposed surfaces of satellites back to Earth and analysing the impacts of space
debris on these surfaces (Clark et al., 1984). Active sampling can be done by using different sensors
(optical/radar) (Committee on Space Debris, 1995). At this point only two missions using space-based
active sampling have been flown, while numerous impact sampling missions have taken place. Firstly,
the impact sampling missions will be discussed.

The first instance of impact sampling was done by looking at the returned exposed surfaces of
manned mission to space, like the Apollo, Mercury, Space Shuttle, Hubble space telescope missions,
where the windows or other exposed surfaces of these spacecraft were inspected and analysed for
impact of small debris (Reynolds and Potter, 1989)(Committee on Space Debris, 1995). Impact sam-
pling could thus be seen as the first instance of orbit determination of space debris. However, there are
some severe limitations on the orbit determination capabilities of the impact sampling technique. First
of all, it can only detect space debris that directly hit the exposed surfaces, thus there is a big change
that the impact sampling gives a wrong estimation of the number and size of particles that actually
orbit in that particular altitude regime. Secondly, it is very difficult to determine the orbital parameters
of the space debris by just looking at the impacts (Committee on Space Debris, 1995). However, the
added benefit of impact sampling is the fact that it is able to detect sub-millimetre sized particles, some-
thing that ground-based methods are not able to do yet. As mentioned before, almost all spacecraft
that are returned to Earth are analysed for the impact of space debris. There have also been mission-
s/instruments that had as primary or secondary mission to determine the space debris flux in certain
altitude regions, like the Debris in-Orbit Evaluator (Kuitunen et al., 2001), Long Duration Exposure Fa-
cility (1984)(Clark et al., 1984), Geostationary Orbit Impact Detector (1996)(Drolshagen et al., 1999).
These were all able to provide very rough orbit determinations of the space debris objects that hit the
sensors.

As mentioned before, there have only been two mission that had as main mission the remote sens-
ing of space debris, the Space Based Space Surveillance (SBSS) and the Canadian Space Surveil-
lance System; Sapphire. The SBSS is a constellation of satellites that will perform OD for both LEO
and GEO based space debris using optical sensors. At this moment the SBSS consists of only five
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satellites. The first satellite, SBSS-1, was launched in 2010 and consisted of a 30 cm telescope which
flew in a Sun-synchronous orbit at an altitude of 630 km (ESA, 2017b). The other four satellites are all
Geosynchronous Space Situational Awareness Program (GSSAP) satellites, which all fly in GEO and
are also used for OD of space debris in GEO, the first pair were launched in 2014 and the second pain
in 2016, a third pair is scheduled to be launched in 2021 (ESA, 2019). The Sapphire mission is a single
satellite orbiting at an altitude of 750 km and was launched in 2013. It also uses an optical telescope
to detect space debris between 6,000 and 40,000 km altitude (Maskell and Oram, 2008). There have
been multiple studies into the use of a constellation of satellites equipped with optical sensors for the
use of orbit determination of space debris in LEO, which showed promising results (Du et al., 2019)
(Felicetti and Emami, 2016). Additionally, there have been some studies that looked at the used of a
space based radar system, however, the power requirements and dish size would severely limit any
mission design (Carl et al., 1993).

1.2. Research questions
As could be read in the previous subsections the orbit determination of space debris is already being
done for all the meaningful orbits (LEO-MEO-GEO). However, there is a difference in the amount and
size of space debris that have been tracked and catalogued between the three orbit regimes. In LEO
both radar and optical, either passive or active, are being used to detect objects down to 10 mm. While
for MEO and GEOmost of the orbit determination is done using optical methods either ground-based or
space-based, and the minimum detection size is around 10 cm for the current systems. As mentioned
in the introduction, space debris down to a size of 1 cm can cause significant harm to spacecraft. These
objects in LEO are already being detected and using improved radar techniques, active optical systems
and space-based optical systems, the accuracy of orbit determination for these objects should, in the
near future be enough to ensure the save operation of satellites and perhaps removal of space debris.
The space debris of size <10 cm in GEO can, however, still cause harm to satellites. These objects can
not be observed by any ground-based system, radar or optical, and a space-based radar system would
result in a non-feasible design. Additionally, it has been shown that a constellation of satellites using
optical telescopes can be used for the orbit determination of space debris in LEO. The main research
question for this thesis is therefore:

1. To what extent can a constellation of satellites with optical sensors increase the surveillance of 1
to 10 cm sized space debris in GEO?

To help answer this research question a couple of sub-questions can be formulated that will help in
answering the main research question. The first sub-question reads as follows:

1.1 How does the accuracy of the orbit determination compare, when only one satellite observes a
satellite versus when multiple satellites observe the same object?

Having multiple satellites observing the same object can increase to accuracy of the OD for this
object. However, the cost of such a systemwould also increase, the increase in accuracy thus should be
substantial. Can a single observing satellite achieve a high enough accuracy to full fill the requirements,
or are multiple observers a must?

1.2 How does the constellation design change the performance of the system?

The orbit of the observing satellite will have a major effect on the observations that can be done
and the coverage of the space debris population. If the observing satellite is closer to the space debris
objects the aperture size and thus satellite size can be smaller, the time it takes for the space debris
to cross the field of view of the satellite will be longer, as the relative velocity is lower, thus making it
possible to make more observations. However, having an observing satellite farther away increases
to section of the GEO that the sensor can see thus making it possible to observe more objects at the
same time. The larger relative velocity will also means that the observing satellite will be able to cover
the whole orbit in a shorter amount of time, thus increasing the time in which the orbit estimations can
be updated. Additionally, the inclination and number of total satellites will also effect both the number
of observations that can be performed and the accuracy of the orbit determinations.

1.3 How does the orbit and size of the space debris objects effect the performance of the system?
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The orbit and size of the space debris objects will effect the number of observations the system can
make of a particular object, which will in turn effect the accuracy of the orbit determinations. For exam-
ple, the eccentricity and inclination will determine the maximum time that an object can be observed.
Knowing the relative performance of the system for the different orbits and sizes of the space debris
objects will help answer the main research question.

To answer these questions, first the constellation design needs to be optimised. There are two
main performance metrics for this optimisation, the number of successful orbit determinations and the
accuracy of the orbit determination. To determine the value of these performance metrics for a single
constellation design the following methodology has been used. Firstly, the orbits of both the observing
satellites and space debris objects will be simulated. The orbital elements of the satellites are design
variables and will be optimised. The orbits of the space debris objects are based on statistical data
to give a realistic performance of the different constellation designs. An optical sensor is modelled
to simulate real-life observations. This model takes into account the position and relative velocity of
the satellites and space debris objects, the background signals and errors. The design for the optical
sensor parameters is also part of the optimisation. The resulting measurements are then used to first
get an initial orbit determination, using a simplex fusion method. If this initial orbit determination is suffi-
ciently accurate, this initial orbit determination will be used as an initial guess for the unscented Kalman
filter. The resulting accuracies and the number of successful orbit determination are then used to find
the optimal constellation design. A design space exploration will then be performed to determine the
lower and upper bounds for the optimisation. The Taguchi method will first be used for a preliminary
optimisation. After which a factorial optimisation will be done to find the optimal constellation design.
The performance of the optimal design will then be analysed to answer the main and sub-research
questions.

The report is structured in the following way, in Chapter 2 the optical observations will be discussed.
In Chapter 3 the methods used for the propagation of the orbits are discussed. This is followed by a
discussion of the estimation methods used for the orbit determination in Chapter 4. The used numer-
ical methods are described in Chapter 5. In Chapter 6 the used software can be found. Chapter 7
describes the design space explorations. The design optimisation and subsequent analysis are dis-
cussed in Chapter 8. Finally, in Chapter 9 the conclusions and recomendations can be found.



2
Optical observations

To determine the orbit of the space debris objects, all satellites in the constellation will have a optical
sensor to make measurements. These are called angles-only measurements as they only provide the
direction from the observer to the object and not the range between the two. An optical sensor works
by detecting the photons that hit the sensor, usually a charged-coupled device. A space debris object
can be detected if the ratio between the signal photons (the photons that are reflected by the object)
and the noise photons, the signal to noise ratio (SNR), detected by a optical sensor is higher than a
certain threshold. In this chapter an overview will be given on how these observations will be simulated.
In Section 2.1 the method to determine if a space debris object lies in the field of view of the satellite
is discussed. Section 2.2 describes the errors which effect the measurement and finally in Section 2.3
the method to determine the signal to noise ratio is discussed.

2.1. Observation
The performance of different types of constellations will be analysed. Two different types of constella-
tions will be looked at. The first type is a constellation where all satellites are relatively far away from
each other and a single space debris object can only by observed by one satellite at the same time.
The second type is a constellation where two or more satellites orbit close to each other and look in the
same direction. This type of constellation makes it possible for a space debris object to be observed
by multiple satellites at the same time. The main advantage of the first constellation type, is that it can
observe more unique space debris objects with the same number of satellites as the second type. This
will lead to more observations and a higher frequency of observations per unique space debris object.
The second type of constellation, however, will provide more accurate orbit determination per space
debris object, due to the multiple observations per time step.

To determine if the optical sensor can observe a space debris object, it must lie in the field of view
(FOV) of the sensor. To determine this, a line of sight vector is projected from the location of the
observing satellite to infinity, a pyramid shape centered around this line of sight is then created, the
angle between the vertices and the line of sight vector is determined by the FOV angle. The direction
of the line of sight vector is dependent on the type of constellation the observing satellite is in. For
the first type, all satellites are far away from each other, the direction of the line of sight vector is the
same as the radial direction of the observing satellite in the RSW reference system. For the second
constellation type, multiple satellites orbiting close to each other, the direction for the line of sight vector
for each satellite is determined in the following way. The average inclination and true anomaly for all
satellites in the same group are determined at each time step. The Cartesian position of a target point
is determined, using the average true anomaly and inclination and a semi-major axis at the centre of
the GEO region (a = 42,163 km). The direction of the line of sight vector for each satellite in the group
is then calculated by taking the direction vector between the position of the satellite and the target point.
This makes sure that the FOVs for each satellite in the group overlap as much as possible at the point
where most space debris objects are expected, this will lead to more simultaneous observations.

To check if the space debris object lies in the FOV of the optical sensor, the following method is

5
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used. To speed up the simulation, it is first checked if the object lies in front of the observing satellite:

p · n̂ > d (2.1)

where p is the relative position vector from the observing satellite to the space debris object, n̂ is the
line of sight unit vector, d is the distance from the optical sensor to the projection plane. Then, the
relative vector from the origin of the projection plane, to where the vector p intersects the projection
plane, is calculated as follows:

p′ =
dp
n̂ · p − dn̂ (2.2)

The object lies in the FOV of the optical sensor if it satisfies the following constraints:{
−w

2 ≤ u′ ≤ w
2

−h
2 ≤ v′ ≤ h

2

(2.3)

where u′ and v′ are the horizontal and vertical coordinates of p′ respectively and w and h are the width
and height of the projection plane, see Figure 2.1. These are calculated in the following way:

w, h = tan θ · (p · n̂) (2.4)

where θ is the FOV angle.

2.2. Error
In an ideal world it would be possible to measure the exact position of an object relative to the optical
sensor. However, we do not live in an ideal world and at every step of the measurement process errors
are introduced. In this subsection the different error sources that influence the optical measurements
will be discussed.

The first error is the noise. Noise is a random, unwanted disturbance in all non ideal electronic sig-
nals. This noise error causes random fluctuations in the measured signal. There are multiple different
types of noise, there is both internal noise generation (in the electronics of the sensor) and external
noise. The internal noise can be split up into two different noise sources, read-out noise and dark noise.
Read-out noise, σro, is caused by the internal fluctuations and noise of the components of the sensor.
Dark noise, σdark, is caused by thermal conditions of the sensor. External noise is noise caused by
the environment, for example, the light of stars of the reflection of sunlight by the Moon. In the SNR
calculation this noise represented by the eb.

Figure 2.1: FOV check
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Another error that is present for all optical measurements is the pointing error. A pointing error is
the difference between the intended pointing angle of a sensor/instrument versus the actual pointing
angle. The intended angle at which the object is detected is thus slightly wrong and leads to an error
in the OD. Pointing errors can occur due to, misalignment’s in the sensors, external disturbances or
miscalculations. For satellites additional pointing errors can occur due to, reaction wheel errors, star
tracker errors or gyro errors (Ott et al., 2011). The average pointing error is around 1-σ = 1-5 arc-
seconds in a Gaussian distribution (Ansalone and Curti, 2013). For the first simulations a pointing error
of 1-σ = 3 arc-seconds will be used. The effect of smaller or larger pointing errors on the performance
of the system will be investigated during the sensitivity analysis.

Additionally, the optical measurements will be made from a satellite. So only the relative angle
between the satellite and the object will be known. To get the relative angle between the centre of
the earth and the object, the position of the observing satellite needs to be known. This position can
be determined using orbit determination, however, the orbit determination is not perfect so an error is
introduced due to the uncertainty of the position vector of observing satellite. The orbit determination
of an operational satellite is luckily a lot more precise then that of space debris. For (near) GEO based
satellites the position can be determined with an accuracy of around 1 m (Guo et al., 2010)(Deng et al.,
2014), this error becomes smaller as the semi-major axis becomes smaller. However, since it is not
yet known in what the orbit of the satellites will be the upper value 1 m will be used in the following
simulations. The effect of smaller or larger satellite position errors on the performance of the system
will be investigated during the sensitivity analysis.

The pointing and satellite position error is added to the measurements in the following way. The
position vector of the space debris object (target) can be written as (Ansalone and Curti, 2013):

rT = ρL̂+ r0 + ϵr0 (2.5)

where rT is the position of the target, ρ the range between the target and the observer, rO the position
vector of the observer, ϵr0 is the position error of the observing satellite and L̂ is the unit vector between
the target and observer, all these vectors are expressed in the ECI frame, see Figure 2.2.

The angular measurement unit vector L̂ is noiseless, to add noise from a random direction, two
different rotations are needed. Let:

L̂ = l1k̂1 + l2k̂2 + l3k̂3 (2.6)
where k̂1, k̂2, k̂3 are the unit vectors in the ECI frame, then one of these unit vectors are chosen such
that:

L̂× k̂i ̸= 0 (2.7)
The angular measurement with random noise then becomes:

L̂meas = ĝ cosβ + (L̂× ĝ) sinβ + L̂(L̂ · ĝ)(1− cosβ) (2.8)

where the versor ĝ is given by the following:

ĝ = L̂ cosα+ (ĥ× L̂ sinα) (2.9)

with:

ĥ =
L̂× k̂i
|L̂× k̂i|

(2.10)

Figure 2.2: Target orbital position with respect to the observer (Ansalone and Curti, 2013)
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where α is a angle determined by the Gaussian distribution with the standard deviation of the sensor,
β is a randomly chosen angle from a uniform distribution between 0 and 2π.

2.3. Signal to Noise ratio
To know how close a space-based optical sensor should be placed to detect space debris objects as
small as 1 to 10 cm, first it needs to be known how an optical sensor works. An optical sensor works by
detecting the photons that hit the sensor, usually a charged coupled device (Krag et al., 2001). A space
debris object can be detected if the ratio between the signal photons (the photons that are reflected
by the object) and the noise photons, the SNR, detected by a optical sensor is higher than a certain
threshold. To calculate the SNR ratio, first the following assumptions need to be made to simplify this
calculation:

• All space debris objects are spherical in shape.
• All space debris objects have the same value for its albedo, from observations the mean value
for space debris is 0.175 (Mulrooney et al., 2008).

• There is an equal number of diffuse and specular (mirrored) surfaces for the space-debris popu-
lation. This assumption is supported by observational data (Shell, 2010).

• Grey-body reflectance is assumed, which means that the albedo is the same for all wavelengths.
• An SNR threshold of 2.5 will be used (Shell, 2010) (Xi et al., 2016).

Using these assumptions the signal photon flux is calculated using the following method (Shell,
2010). The apparent visual magnitude needs to be determined:

mobj = msun − 2.5log
[
d2

R2
· ρ · p(ψ)

]
(2.11)

where R is the distance between the observer and the space debris object, d is the diameter of the
object, msun is the visual magnitude of the sun and has a value of -26.73, ρ is the albedo of the object.
The function, p(ψ), is a function of the solar phase angle, ψ, and is given by the following expression
for diffuse objects:

pdiff (ψ) =
2

3π
[sinψ + (π − ψ) cosψ] (2.12)

while for specular surfaces the phase angle function is a constant 1/4. Equation 2.11 then becomes:

mobj = msun − 2.5log
[
d2

R2
·
∣∣∣ρspec

4
+ ρdiff · pdiff (ψ)

∣∣∣] (2.13)

The visual magnitude of the object is then converted to the resulting signal photon flux, ERSO that
reaches the sensor in the following way:

ERSO = 5.6× 1010 · 10−0.4·mobj (2.14)

The SNR is then calculated using the following method (Tola, 2015). The signal photon flux is used
to determine the number of electrons generated by the charge coupled device, es, as a result of the
signal photons hitting the sensor:

es = Erso · τ ·QE ·A (2.15)

where τ is the optical transmittance, for the simulation a value of 0.75 is used (Shell, 2010), A is the
aperture area, QE is the quantum efficiency of the sensor. The per-pixel noise due to read-out noise,
dark noise, and background noise is:

σ2
pixel = σ2

ro + Ebackground · texp + σdark (2.16)

where σro is the read out noise, texp is the exposure time which is determined depending on the con-
stellation design and FOV of the sensor. The exposure time should always be longer than the dwell
time (the total duration for which the light spot created by the space debris object is over a single pixel),
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td, so the exposure time will be set equal to the maximum possible dwell time encountered during the
simulation. The dwell time is calculated as follows:

td =
θ

ω × w
(2.17)

where θ is the FOV angle, ω is the angular velocity of the space debris object with respect to the optical
sensor and w is the number of pixels in each row and column of the charge coupled device. The
maximum possible dwell time occurs when the observing satellite and space debris object lie in the
same orbital plane and when the angular distance of space debris object to the observing satellite is π
radians to the observing satellite. However, since a space debris object can only be observed if it lies
in the FOV of the optical sensor, the maximum possible dwell time is calculated when a space debris
is located at the edge of the FOV from a co-planar observing satellite.

The Ebackground is calculated using the following expression:

Ebackground = 5.6× 1010 · 10−0.4·mbackground (2.18)

where mbackground is the apparent visual magnitude, this value can change depending on the viewing
direction of the optical sensor, solar activity, and other factors, however, the commonly used average
sky brightness for space based sensors is 22 mv/arcsec2 (Shell, 2010). The SNR is then determined
using the following equation:

SNR =
es × td√

es × td + σ2
pixel

(2.19)

For the simulation, some of the parameters of the charge coupled device will be based off a off the
shelf charge-couple device. The CCD270-00 F5 1 produced by Teledyne imaging will be used, this
charge coupled device has been extensively tested and will be used for ESA’s Plato mission (Endicott
et al., 2012), which also uses optical observations in the visible wavelength. The specifications of this
charge coupled device can be seen in Table 2.1.

An example of a SNR calculation for a space debris object observed by a space based optical
sensor is provided in (Shell, 2010). Here it is shown that a 5 cm space debris object in GEO observed
by a GEO based optical sensor at a distance of 736 km with a difference in inclination of 7.5 degrees,
using a comparable charge-coupled device and a aperture size of 5 cm would result in a SNR of around
eight, while a 1 cm sized space debris object in the same orbit would result in a SNR of around one.

Table 2.1: Charge-coupled device parameters

QE 87 [%]
σro 0.8 [e−]
σdark 28 [e−]

1https://www.teledyneimaging.com/en/aerospace-and-defense/products/sensors-overview/ccd/ccd270-00-f5/
accessed: 10/1/2023

https://www.teledyneimaging.com/en/aerospace-and-defense/products/sensors-overview/ccd/ccd270-00-f5/
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3
Orbit propagation

To asses the extend to which a constellation of satellites with optical sensors can increase the surveil-
lance of 1-10 cm size space debris in GEO, the positions of both the satellites and space debris objects
need to be known. Therefore, the orbits of these objects need to be propagated. In Section 3.1 the
difference in orbit propagation between satellites and space debris objects will be discussed, following
this Section 3.2 described the reference frames that will be used. In Section 3.3, the different trans-
formations needed to change between reference frames will be explained. Section 3.4 discusses the
different sets of state variables that will be used in the simulations. The to be used force and environ-
ment models are talked about in Section 3.5, and finally Section 3.6 discusses the different equations
of motions that will be used.

3.1. Space debris objects vs satellites
The orbit propagation for the space debris objects and the satellites will be different from each other.
The orbit of the space debris objects should be a relatively accurate representation of a real orbit and
be use a more precise force model compared to the force models used in the estimation models. This
is because for real life orbit determination the force model used will always slightly differ from the real
dynamics acting on the space debris object. The use of a force model that is too simplified and similar
to the force model used in the estimation methods will thus lead to unrealistically high accuracies. A
realistic orbit of the space debris objects is thus needed to accurately asses the performance of a similar
real life system.

For the satellites the accuracy of the orbit is less important, because the accuracy of the orbit
does not have an effect on the performance of the system. A small deviation from the real life orbit
will not have a significant effect on the orbit determination methods and the number of observations
made. So to save computational time, a more simplified force model can be used for the satellite orbit
propagation, because this will not effect the final performance of the system. The differences in the
orbit propagation also means that the used reference frames, transformations, state variables, force
models and equations of motion will differ.

The method for generating the initial states for the space debris objects and the satellites is also
different. The initial states for the different satellites in the constellation are design variables, a list of
Kepler elements are provided by the user for each satellite and these are used for the orbit propagation.
The initial states of the space debris objects are randomly generated from a statistical distribution, which
can be seen in Figure 3.1. The semi-major axis of the space debris objects roughly follow a normal
distribution centered with a mean of around 42,200 km. All inclinations lie between 0 and 15 degrees
and the number of space debris objects increases as the inclination gets higher. Most of the objects
have an eccentricity close to zero and the number of objects rapidly decreases as the eccentricity gets
bigger. Probability functions will be used that closely resemble these distributions. The distribution
was generated by using publicly available orbit information of space debris objects in GEO 1. Only
the distributions of the semi-major axis, inclination and eccentricity are shown. This is because the
distribution of the other Kepler elements where close to uniform. The orbital information are of course

1https://www.space-track.org: date accessed:10/11/2022
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only of larger space debris objects (>10 cm), however, there are no significant differences between the
distributions of Kepler elements for different size’s of space debris for which TLE’s are available, so the
existing space debris objects between 1 cm and 10 cm will most likely follow the same distribution. One
additional note on the distribution of the inclinations of the space debris objects, the objects usually start
with an inclination close to zero, however, the object gradually increase their inclination to a maximum
of around 15 degrees (Schildknecht et al., 2004).

3.2. Reference frames
Not all computations done in the simulation will use the same reference frame. It is, therefore, important
to have a clear overview of which reference frames will be used and what transformations need to
performed to change to a different reference frame. The three reference frames that will be used are the
Earth centered inertial (ECI), Body fixed and the Local Vertical Local Horizon (LVLH) reference frame,
shown in Figure 3.2. The ECI frame will be used for the orbital propagation of the space debris objects
and the satellites. Optical measurements are measured in the reference frame of the observing satellite,
therefore, the Body fixed frame will be used for the simulation of the optical measurements, the Body
fixed frame can be defined in different manners. To decrease the computational cost it has been decided
to let the Body fixed frame coincide with the LVLH reference frame, this allows the measurements to be
converted to the ECI frame with one transformation instead of two. The space debris objects will only
use the ECI reference frame, while the satellites use all reference frames described in this section.

Figure 3.1: Distribution of Kepler elements of space debris in GEO region
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Figure 3.2: Body fixed, LVLH, ECI reference frames (Ismail, 2016)

3.2.1. Earth centered inertial reference frame
The ECI reference frame has its origin in the centre of mass of the Earth. The xECI axis points in the
direction of the vernal equinox. The zECI axis is pointed along the rotational axis of the Earth, while
the yECI axis completes the right handed coordinate system. The xECI, yECI plane coincides with the
equatorial plane. However, due to the precession of the rotational axis of the Earth, the vernal equinox
is not fixed. Therefore, the orientation of the xECI is usually defined to point in the direction of the vernal
equinox at a certain epoch. The most commonly used ECI frame is the J2000 frame, where the xECI
axis points toward the vernal equinox measured at 01-01-2000 at 12:00 terrestrial time, this reference
frame will also be used for the orbit propagation.

3.2.2. Body Fixed frame
As mentioned before, the body fixed reference frame, FBF, is commonly used for the representation
of observation angles or vectors. The body fixed frame is uniquely defined for each satellite. But it is
common to have the origin of this reference frame in the centre of mass of the satellite and to have one
of the planes of the reference frame to coincide with the symmetry axis of the satellite (Wakker, 2015).
However, since the propagation of the satellite will treat the satellite as a point mass, no rotational
dynamics will be applied. It is, therefore, beneficial to let the body fixed frame coincide with the Local
Vertical Local Horizon reference frame, this will make the transformation between the observation in
the body fixed frame to the ECI reference frame easier.

3.2.3. Local Vertical Local Horizon
The Local Vertical Local Horizon reference frame, FLVLH, has its origin in the centre of mass of the
satellite. One of either the xLVLH or yLVLH points along the velocity vector of the satellite. The zLVLH axis
is commonly pointed in the radial direction of orbit, usually towards the centre of mass of the object the
satellite is orbiting. The remaining axis then completes the right-handed reference frame.

3.3. Transformations
Since FBF and FLVLH will coincide in the simulation, only one reference frame transformation needs to
be performed, the transformation between the LVLH and the ECI reference frame. This transformation
can be performed by performing three rotations around the axis of the ECI frame:

[xlvlh ylvlh zlvlh]
T = Rz(θt)Rx(i)Rz(Ω)[xeci yeci zeci]

T (3.1)
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with the following rotation matrices:

Rz(θt) =

 cos θt − sin 0
sin θt cos θt 0
0 0 1

 Rx(i) =

 1 0 0
0 cos i − sin i
0 sin i cos i

 Rz(Ω) =

 cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1


(3.2)

where θt is the argument of latitude (ω+ θ), i is the inclination of the orbit, and Ω is the right ascension
of the ascending node.

3.4. State variables
Different sets of state variables will have to be used for the simulation of the system. In this section
these state variables will be described, along with the reason why these sets of state variables are
needed for the simulation. Furthermore, the transformations between the different state variables will
be discussed.

3.4.1. Cartesian coordinates
Cartesian coordinates will be used for the orbit propagation of the satellites. Cartesian coordinates have
been chosen because this allows the Kepler orbit of the satellites to be calculated without needing to
transform to state variable, this makes it computationally faster than using other sets of state variables.
The Cartesian coordinates consist of x, y and z-coordinates to describe the position of an object in
three dimensional space and ẋ , ẏ and ż are used to represent the velocity of an object. Which gives
the following state vector:

x = [x, y, z, ẋ, ẏ, ż]T (3.3)

3.4.2. Kepler elements
Kepler elements will be used to generate the initial states of the satellites and space debris. This
is because the publicly available orbit information of the space debris objects, see Figure 3.1, are
provided in Kepler elements. Additionally, Kepler elements can provide a better understanding of the
actual state of the object in comparison to for example Cartesian or Rodrigues parameters. This will be
especially useful for answering research question 1.3, how the orbit of the space debris object changes
the performance of the system. The state vector expressed in Kepler elements gives the following:

x = [a, e, i, ω,Ω, θ]T (3.4)

where a is the semi-major axis, e the eccentricity, i the inclination, ω the argument of periapsis, Ω
the longitude of the ascending node and θ the true anomaly, see Figure 3.3. Additionally, the mean
anomaly,M , and eccentric anomaly, E, are sometimes added to this state vector, these variables are
used for the transformation between state variable sets.

To transform from Cartesian coordinates to Kepler elements the following computations need to be
performed, the semi-major axis and eccentricity can be computed in the following way (Wakker, 2015):

r = ∥r∥ ;V = ∥V∥; h = r× V; N =

 0
0
1

× h (3.5)

a =
1(

2
r − V 2

µ

) ; e =
V× h
µ

− r
r
; e = ∥e∥ (3.6)

where µ is Earth’s gravitational parameter. The other Kepler elements can be found using the following
equations:

i = acos
(
hz
∥h∥

)
; Nxy =

√
N2

x +N2
y ; Ω = atan2

(
Ny

Nxy
,
Nx

Nxy

)
(3.7)

ω = ±1 · arccos(e · N); θ = ±1 · arccos(r · e) (3.8)



3.4. State variables 15

Figure 3.3: Kepler elements (De Weck et al., 2008)

where the sign of ω is +1 if (N× e) · h > 0, the sign of θ is +1 if (e× r) · h > 0, otherwise the signs are
-1. The eccentric anomaly and mean anomaly can then be found in the following way:

E = 2 · atan

(√
1− e

1 + e
tan θ

2

)
;M = E − e sinE (3.9)

The transformation from Kepler elements to Cartesian coordinates is done using the following method
(Wakker, 2015):

(
ξ
η

)
=

(
rcos θ
rsin θ

)
;

 x
y
z

 =

 l1 l2
m1 m2

n1 n2

( ξ
η

)
;

ẋ =
µ

H
[−l1 sin θ + l2(e+ cos θ)]

ẏ =
µ

H
[−m1 sin θ +m2(e+ cos θ)]

ż =
µ

H
[−n1 sin θ + n2(e+ cos θ)]

(3.10)
with:

l1 = cosΩ cosω − sinΩ sinω cos i
l2 = − cosΩ sinω − sinΩ cosω cos i
m1 = sinΩ cosω + cosΩ sinω cos i
m2 = − sinΩ sinω + cosΩ cosω cos i ; H =

√
µa (1− e2)

n1 = sinω sin i
n2 = cosω sin i

(3.11)

To find θ the eccentric anomaly needs to be found. There is no analytical solution for this, so this needs
to be done iteratively in the following way:

Ei+1 = Ei +
M − Ei + e sinEi

1− e cosEi
(3.12)

this calculation is repeated until it converges to a eccentric anomaly. The true anomaly can then be
computed using the following formula:

θ = 2 arctan(
√

1 + e

1− e
tan E

2
) (3.13)

3.4.3. Modified Equinoctial Elements
Modified Equincotial Elements will be used for the orbit propagation of the space debris objects. There
are multiple different methods which could have been used for the propagation the orbits of space
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debris objects, Cowell, Encke, Kepler Elements, Modified equinoctial elements and the Unified State
Model. The Modified equinoctial elements have been chosen for the propagation of the orbit of the
space debris due its computational efficiency, accuracy and because it does not have singularities for
orbital elements that will be used for the space debris population.

The state vector using Modified Equinoctial Elements are the following:

x = [a, ec, es,Wc,Ws, λ]
T (3.14)

To transform classical Kepler elements to Modified Equinoctial Elements, the following equations can
be used:

a = a
ec = e cos(ω +Ω)
es = e sin(ω +Ω)
Wc = sin(i) sin(Ω)
Ws = sin(i) sin(Ω)
λ = ω +Ω+M

(3.15)

3.5. Force and environment models
There is a significant difference between the force and environment models used for the satellites and
space debris objects. For the satellites only the point mass gravity force due to the Earth is included.
The force and environment model for the space debris objects is more extensive, taking into account all
forces that have a significant effect on the orbit of the space debris objects, like the Earth’s gravitational
model, third body perturbations and solar radiation pressure. Other perturbations due to ocean or solid
Earth tides, relativistic forces and drag did not have a large enough effect on the orbits of objects in GEO
to be worth the additional computational cost (Roh et al., 2011)(Yoon et al., 2004)(Lee et al., 1997).

3.5.1. Point mass gravity
The point mass gravity is the only forces which will be used for the propagation of the orbit of the
satellites. As already mentioned in Section 3.1, the orbit of the satellites does not have to be very
accurate since the accuracy of the satellite orbit will not effect the performance of the system as long
as the orbit of the satellites remains constant for the whole simulation time. Using only point mass
gravity will provide a computationally fast circular orbit for the satellites. Adding more forces to the
dynamical model will only increase the computational cost with no added benefit to the research.

The point mass gravity can be expressed in the following way:

apoint = − µ

r2
r (3.16)

where µ is the standard gravitational parameter of Earth equal to 3.986× 1014[m3 s−2].

3.5.2. Earth’s gravitational model
For short term orbit propagation it was found in literature that using a spherical harmonic gravity field
with a degree and order of five gave sufficiently accurate results (Roh et al., 2011) (Yoon et al., 2004).
Using a higher degree and order did give an even more accurate orbit, however, for short term orbit
propagation (less than a year) the difference in accuracy was not worth the extra computational cost.
The spherical harmonic gravity field is expressed in the following way (Wakker, 2015):

U(r) = µ

r

nmax∑
n=0

n∑
m=0

(
REarth

r

)n

P̄nm(sinϕ)
(
C̄nm cosmθ + S̄nm sinmθ

)
(3.17)

where R is the mean equatorial radius, θ is the geographic longitude, ϕ is the geocentric latitude, Cn,m

and Sn,m are constants which depend on the chosen model. The degree and order, n,m, are as
mentioned before 5 and 5. The function P̄nm(sinϕ) is the Legendre function:

P̄n(x) =
1

(−2)nn!

dn

dxn
(
1− x2

)n
P̄n,m =

(
1− x2

)m/2 dmP̄n(x)

dxm

(3.18)
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The gravitational force acting on a body orbiting the Earth would then be:

agrav = ∇U(r) (3.19)

3.5.3. Third body perturbation
In literature it was found that only the point mass gravitational effect of the Sun and the Moon need to be
included in the force model to provide an accurate orbit. The effects of other bodies in the solar system
did not have an significant enough effect on the accuracy compared to the added computational cost
(Roh et al., 2011) (Yoon et al., 2004) (Lee et al., 1997). The acceleration caused by these third bodies
can be described in the following manner (Wakker, 2015):

abody = µbody

(
− rbody−Object

||rbody−Object||2
+

rbody−Earth

||rbody−Earth||2

)
(3.20)

3.5.4. Solar radiation pressure
The only other perturbation that needs to be included in the force model is the solar radiation pressure,
all other perturbations did not have an significant enough effect on the accuracy to be worth the extra
computational cost (Roh et al., 2011) (Yoon et al., 2004). The acceleration due to the Solar radiation
pressure can be written as follows (Wakker, 2015):

asolarrad = −vP cRA
m

rSun−Object

||rSun−Object||
(3.21)

where P is the solar radiation pressure, A is the cross sectional area of the object, cr is the reflection
coefficient which is usually assumed to be equal to 1(Schutz et al., 2004), v is the shadow function,
which is zero if the object lies in the shadow of the Earth and one if it is out of the shadow. The object
is in the shadow if (Curtis, 2013):

ϕ > v1 +
π

2
with : v1 = arccos RE

r
and ϕ = arccos(r · rSun) (3.22)

3.5.5. Ephemerides model
Both the acceleration due to the third body perturbations as well as the solar radiation pressure, require
the position vector between the Earth and a third body or between the object and the Sun. To compute
these position vectors, the position of this third body is required. The position of these third bodies
are contained in the ephemerides model, which give the position of a body as a function of time. The
ephemerides model can be numerically generated, by assuming the body has a Kepler orbit (possibly
with analytical variations in the Kepler elements). However, the ephemerides model can also be taken
from tabulated data, which are usually obtained by numerical integration. These have a higher accuracy
compared to the Kepler orbits while also not being computationally expensive and are therefore also
the preferred ephemerides model for this simulation.

3.6. Equations of motion
As discussed earlier the orbit propagation for the space debris objects will be done using modified
equinoctial elements, while for the satellites an Kepler orbit will be used.

3.6.1. Modified equinoctial elements
The equations of motion for these modified equinoctial orbital elements are (Brouwer and Clemence,
2013):

da

dt
= 2

na

GM⊕

∂R

∂M
(3.23)

dec
dt

=
na

GM⊕

√
1− e2

∂R

∂es
− na

GM⊕

es√
1− e2

tan i
2

∂R

∂i
− na

GM⊕

ec
√
1− e2

1 +
√
1− e2

∂R

∂M
(3.24)

des
dt

=
na

GM⊕

√
1− e2

∂R

∂ec
+

na

GM⊕

ec√
1− e2

tan i
2

∂R

∂i
− na

GM⊕

es
√
1− e2

1 +
√
1− e2

∂R

∂M
(3.25)
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dWc

dt
= − na cos i

GM⊕
√
1− e2

∂R

∂Ws
− na

GM⊕

Wc cos i√
1− e2(1 + cos i)

(
∂R

∂ω̃
+
∂R

∂M

)
(3.26)

dWs

dt
= − na cos i

GM⊕
√
1− e2

∂R

∂Wc
− na

GM⊕

Ws cos i√
1− e2(1 + cos i)

(
∂R

∂ω̃
+
∂R

∂M

)
(3.27)

dλ

dt
= − 2nar

GM⊕
R+

(
1−

√
1− e2

) ∂(ω +Ω)

∂t
+ 2
√
1− e2 sin2 i

2

∂Ω

∂t
(3.28)

where n is the mean orbital angular velocity, G is the gravitational constant,M⊕ is the mass of the
Earth,M is the mean anomaly, ω̃ is the perigee longitude, R is the perturbation function, which contains
all the perturbations that are included in the simulation (Yoon et al., 2004).

3.6.2. Kepler orbit
The equations of motion for the Kepler orbit can be written in the following way:

xi+1

yi+1

zi+1

vx,i+1

vy,i+1

vz,i+1

 =


xi + vxi

∗ δt
yi + vyi ∗ δt
zi + vzi ∗ δt
vxi

+ axi
∗ δt

vyi
+ ayi

∗ δt
vzi + azi ∗ δt

 (3.29)



4
Estimation methods

To turn the measurement into orbit estimations different orbit determination methods will be used. An
initial orbit determination will first be used to provide an initial guess for the more precise orbit determi-
nation method. In this chapter the orbit estimation methods that will be used during the simulation are
described. In Section 4.1 the initial orbit estimation method will be discussed and in Section 4.2 the
precise orbit determination method will be talked about.

4.1. Simplex Fusion
If the initial guess for the position of the space debris object is not accurate enough, the sequential
estimation methods will not converge to a viable solution. Therefore, an initial orbit determination (IOD)
needs to be performed that will result in a reasonably accurate orbit estimation. The observing satellites
will only be able to measure the unit direction vector from the satellite to the target, no range information
is available. Therefore, so called angles-only orbit determinations need to be used. These methods
provide an initial orbit estimation using only the unit direction vector. There exists many angles-only
IOD methods, such as the Gauss and double-r method (Vallado, 2001). However, most of the com-
monly used angles-only IOD methods perform very poor for co-planar observation cases, space based
observations and or require observations with very large time intervals due to the poor observability of
these objects (Karimi and Mortari, 2011).

The proposed system will make use of space based observations, where co-planar observations
and observations with a short time interval are likely to occur. The commonly used angles-only IOD
methods are therefore not suitable for this problem. A simplex fusion method for IOD proposed in
(Handley and Hagerty, 2020) performs well for these specific cases as well as for more conventional
observations cases. Additionally, this method can easily combine observations of multiple satellites
even if the satellites can only make observations for a part of the total observation time, which is also
something that is likely to happen for the proposed system. For these reasons the simplex fusion
method will be used. The simplex fusion method consists of three parts, the sensor data fusion, the
cost function and the optimisation of the cost function, these three parts will be discussed in the following
sections.

Sensor data fusion
The simplex fusion method works as follows (Handley and Hagerty, 2020), the IOD problem for n
observations can be written as follows:

r1
r2
...
rn

 =


R1 + ρ1p̂1

R2 + ρ2p̂2
...

Rn + ρnp̂n

 (4.1)

where ri is the position vector of the space debris object, Ri is the position vector of the observing
satellite, p̂1 is the unit direction vector from the satellite to the space debris object and ρi is the range
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between the satellite and space debris object. All the continuous observations of a single space debris
object will then be combined in the following way:

t1 R1 p̂1

t2 R2 p̂2
...

...
...

tn Rn p̂n

 (4.2)

where ti is the time at which the observation has been made.

Cost function
For each observation set, the state vector of the space debris object at one time, tk, is estimated. This
state vector is estimated by optimising the cost function using a candidate solution. The cost function
for each candidate solution is determined in the following way, firstly, the state vector is propagated
to each time step, ti, in the observation set, this is done by using an RK4 integrator, this integrator
was chosen because it is a fixed step size integrator that is computationally fast and provides high
enough accuracies for the relatively short integration times that will be used. Using the state vectors
at each time, ti, a measurement vector is calculated between the propagated candidate state vector
and the actual position vector of the observing satellites, p̂i. For each time step, ti, the angle error,
βi, between the actual measurement vector, p̃i, and the measurement vector using the propagated
candidate solution, p̂i, is calculated in the following way:

βi = tan−1 ∥p̂i × p̃i∥
p̂i · p̃i

(4.3)

This will result in n angle errors for each candidate solution. The cost function for that candidate solution
is then determined by using the sum of squares of the n angle errors:

J =

√√√√ n∑
i=1

|βi|2 (4.4)

The cost function will be determined in this way for all candidate solutions and this cost value will
be used as an input for the optimisation method described in the following section.

Optimisation
The cost function is minimised using the Nelder-Mead simplex optimiser, see Chapter 5. A simplex
is the smallest convex set containing all vertices, for example, a 1-dimensional simplex is a line, a
2-dimensional simplex is a triangle, a 3-dimensional simplex is a tetrahedron and so on for the higher
dimensions. The initial simplex consists of n + 1 points in n-dimensional space, in this case the state
vector (x, y, z, vx, vy, vz) needs to be estimated, so n is equal to six.

The initial simplex is generated by projecting the measurement vector at a time, tk, from the position
of the observing satellites, using 40 different plausible ranges, Rn, see Figure 4.1. The upper and lower
limit of these plausible ranges are determined by subtracting the semi-major axis of the observing
satellite from the upper and lower bounds of the GEO region defined in Chapter 3. The fitness for each
of the 40 candidate solutions is then calculated, by determining the value of the cost function, J . The
seven (n + 1) best candidate solutions will then form the initial simplex.

The optimiser runs for a maximum of 400 iterations or until a tolerance of 10−8 is reached. The
number of iterations was determined by looking at the difference in average position accuracy per
number of iterations, see Figure 4.2, where it is clear that average position accuracy does not improve
significantly after around 400 iterations, therefor the maximum number of iterations that will be used is
400.
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Figure 4.1: Initial simplex generation

Figure 4.2: Average position accuracy as a function of iterations
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4.2. Unscented Kalman filter
Depending on the constellation design, the time interval between two observation sets of a unique
object can differ from one day to sometimes a couple of weeks. The orbit determination thus needs
to be precise enough to make it possible to track the space debris object. Additionally, a sequential
estimation method is preferred compared to a batch method, because, when one satellite detects a
space debris object it needs to be able to perform real time orbit determination, in order for other
satellites to start tracking the same object.

There are three commonly used sequential estimation methods, the extended Kalman filter (EKF),
the unscented Kalman filter (UKF) and particle filters. Compared to an EKF, a UKF shows better perfor-
mance for most problems, especially non-linear problems, for a similar computational cost. A particle
filter normally provides a better accuracy than a UKF, however, due to the relatively slow dynamics
in GEO, it is estimated that this increase in accuracy would be quite small compared to the UKF. A
particle filter is also much more computational expensive and considering that a large number of orbit
estimations need to be performed for each run, it was decided to use a UKF.

The Unscented Kalman filter (UKF) is a non linear version of the Kalman filter. The UKF makes use
of a minimal set of sigma points, which are a weighted set of sample points based on the covariance
of the estimation. A unscented transformation, which is a function that estimates the result of a proba-
bility distribution transformed by a non-linear transformation, uses these sigma points to propagate the
covariance and mean of the state distribution (Ebeigbe et al., 2021).

The sigma points are determined as follows (Julier and Uhlmann, 2004):

Xa
0,i = xei

Xa
k,i = xei + (

√
(n+ λ)Pe

i−1)k for k = 1, ..., n

Xa
k,i = xei − (

√
(n+ λ)Pe

i−1)k for k = n+ 1, ..., 2n

(4.5)

where Xa
k,i is the kth column of Xa

i , n is the dimension of the state vector, the matrix P is the covariance
matrix. The covariance matrix is a 6x6 matrix, which is initialised in the following way:

P0 =

[
σ2
r,0I3×3 0
0 σ2

v,0I3×3

]
(4.6)

where σr,0 and σv,0 are the initial position and velocity co-variances respectively. The matrix Q is the
process noise matrix, this matrix is initialised the following way:

Q0 =

[
σ2
v,QE3×3 0

0 σ2
a,QE3×3

]
(4.7)

the composite scalar λ is defined in the following way:

λ = α2(n+ k) (4.8)
where α is usually set to a small positive value (e.g., 1e-3) and κ is usually set to zero (Wan and
Van Der Merwe, 2000). The k th column of the term (

√
(n+ λ)(Pi +Qk)) can be found by applying

a Cholesky factorisation, which decomposes a positive-definite matrix into a lower triangular matrix
and its corresponding conjugate transpose, this factorisation makes numerical solutions more efficient
(Krishnamoorthy and Menon, 2013). A prediction for the state vector can then be made by using a
weighted mean of the previously described sigma points in the following manner:

Xp
i =

2n∑
k=0

= W(m)
i Xa

k,i|i−1 (4.9)

with the following weights W(m)
i :

W(m)
0 = λ

λ+n ; W(m)
i = λ

2(λ+n) ; i = 1, ..., 2n . (4.10)

The covariance matrix is updated using the following equation:

Pp
i =

2n∑
k=0

= W(c)
i [Xa

k,i|i−1 + Xp
i ][Xa

k,i|i−1 + Xp
i ]

T +Q (4.11)
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where Q is the process covariance matrix, the weights W(c)
k are given by:

W(c)
0 = λ

λ+n + (1− α2 + β); W(c)
k = λ

2(λ+n) ; k = 1, ..., 2n (4.12)

with β = 2 (Wan and Van Der Merwe, 2000). The predicted measurements then become:

Yp
i =

2n∑
k=0

W(m)
i Ya

k,i|i−1 (4.13)

The measurements are ordered in the following manner:

Yp =



L̂p
s1−ti
...

L̂p
si−ti
...

L̂p
sq−ti


(4.14)

where L̂si−ti is the unit direction vector between the satellite and the object. The predicted measure-
ments can than be calculated in the following manner:

d̂p
si−ti =

rpti − rsi√
(rti − rsi) · (rti − rsi)

(4.15)

The covariance matrix that is associated with the measurements then becomes:

Pyy
i =

2n∑
k=0

W(c)
i [Ya

k,i|i−1 − Yp
i ][Ya

k,i|i−1 − Yp
i ]

T + R (4.16)

the matrix R is the measurement covariance matrix:

R = σ2
mE3nx3n (4.17)

where σm is the measurement covariance. The covariance matrix between the state and measure-
ments is computed as follows:

Pxy
i =

2n∑
k=0

W(c)
i [Xa

k,i|i−1 − Xp
i ][Ya

k,i|i−1 − Yp
i ]

T (4.18)

This can then be used for the computation of the Kalman gain matrix Ki in the following way:

Xi = Pxy
i (Pyy

i )−1 (4.19)

The estimation of the state and the covariance can then finally be updated using the following relations:

Xe
i = Xp

i + Ki(Ym
i − Yp

i ) (4.20)

Pe
i = Pp

i + KiPyy
i KT

i (4.21)
This next observation is then read, this is done until all observations have been read.

For example, an observer makes a measurement of the elevation, ϵ and declination, δ of a space
debris object. These measurements will be non-linear. The UKF uses sigma points to approximate a
linear function from the original non-linear function. These sigma points have two coordinates, ϵ and δ,
the coordinates of these sigma points are dependent on the current estimation of the state (ϵ, δ) and
the current covariance, according to Equation 4.5. These sigma points are then transformed using the
non-linear dynamics that act of the space debris object. These new transformed sigma points are used
to predict the new mean (estimation of ϵ and δ) and covariance. The actual measurements of the ϵ and
δ of the space debris object made by the observer will most likely be different from the predicted values.
The predicted state estimation and covariance are updated using the ϵ and δ measurements made by
the observer, using Equations 4.20 and 4.21. This is repeated for all made observations.
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5
Numerical methods

To test the performance of each constellation design different numerical methods need to be used. This
chapter describes the numerical methods and where they will be used in the simulation. In Section 5.1
the numerical integrator will be discussed, in Section 5.2 the random number generator and in Section
5.3 the Nelder-Mead optimisation method.

5.1. Integrator
An integrator will be used to generate the orbits of both the space debris objects and the satellites,
additionally the IOD method described in Chapter 4 also uses an integrator during it optimisation to
generate candidate solutions.

The orbit of quite a few objects need to be propagated for at least a couple of days and with a time
step between 1 second and a couple of minutes, therefore, a computationally fast integrator should be
used to decrease the computation time. Furthermore, the satellites have a constant sampling size for
the optical measurements, the position of both the satellites and space debris object thus needs to be
known at each regular spaced time step. Using a variable time step integrator would require the use
of an interpolator, which is less computationally efficient and introduces additional errors.

The Runge-Kutta 4 (RK4) integrator is a computationally efficient fixed step size integrator, which
has also been shown to provide good accuracies for the long-term integration of the orbit of GEO based
satellites (Lee et al., 1997). Therefore, an RK4 integrator will be used for the integration.

The RK4 integrator uses for function evaluations and works as follows (Lambert, 1991):

xi+1 = xi +
1

6
h(k1 + 2k2 + 2k3 + k4) (5.1)

ti+1 = ti + h (5.2)

with:
k1 = f(ti, yi)

k2 = f(ti +
h
2 , yi + hk1

2 )

k3 = f(ti +
h
2 , yi + hk2

2 )
k4 = f(ti + h, yi + hk3)

(5.3)

where h is the fixed step size, which will be chosen to be equal to the sampling rate of the optical
observations.

5.2. Pseudo Random number generator
For the space debris population, a random set of orbital elements will be chosen from the distribution
of space debris, as explained in Chapter 3. A computer is not actually able to select a truly random
number, so instead different algorithms are used to create so-called Pseudo-Random numbers. In
order for the simulations using pseudo random numbers to be reproducible a seed is used, which
makes sure that sequences are fixed between different runs. As the software will be written in Python,
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the used Pseudo-Random number generator will be the Mersenne Twister. This algorithm is very well
tested and broadly used. For a extensive explanation of this algorithm see (Matsumoto and Nishimura,
1998).

5.3. Simplex Nelder-Mead optimisation
As mentioned in Chapter 4 the Nelder-Mead optimisation method will be used to minimise the cost func-
tion for the IOD method. The Nelder-mead method is a direct search method used for multidimensional
unconstrained optimisation without using derivatives. This method is chosen, instead of for example
a univariate or grid search method, for its robustness when dealing with non-linear and discontinuous
solution spaces, its low computational cost and its suitability for parameter estimation when the function
values are subject to noise (Gao and Han, 2012).

The simplex Nelder-Mead optimisation works as follows (Nelder and Mead, 1965). The method is
first initialised by determining the fitness value for n+1 (in this case n = 6) points, these seven points
form the initial simplex. A simplex is a geometrical shape, it is the n-dimensional version of a triangle,
so for one dimension it is a line, for two dimensions it is a triangle and for three dimensions it is a
tetrahedron. The vertices are ordered from best to worst (lowest fitness function to highest). The
method changes the variables such that the simplex moves towards the minimum function minimum,
the way in which the simplex moves is determined using the following algorithm. First the centroid, x̄,
of the simplex is calculated, the centroid is the centre of each point in the simplex except for the worst
point:

x̄ =

∑n
i=1 xi
n

(5.4)

The parameters of the worst point are then changed using the centroid. First the parameters are
reflected in the following way, see Figure 5.1:

xr = x̄+ α(x̄− xworst) (5.5)

where α is the reflection coefficient, if the reflected point has a lower fitness value than another point in
the simplex except for the best point, a new simplex can be formed and the next iteration can be done.
If the xr has a lower fitness value than the best point in the simplex, xr is expanded even further in the
direction of the earlier reflection, see Figure 5.1:

xe = xr + γ(xr − x̄) (5.6)

where γ is the expansion coefficient. If xe results in a better fitness value than xr, a new simplex is
formed by replacing xworst with xe, the simplex has then moved to the minimum and a new iteration
can be done. However, if the reflected point was worse than its initial value, a contraction is tried, see
Figure 5.1. There are two types of contraction, inside and outside contraction, inside contraction is
used when the xr is worse than the original value:

xc = x̄+ β(xworst − x̄) (5.7)

where β is the contraction coefficient, if xc is better than the original point, a new simplex is formed and
a new iteration is started. Outside contraction is used when xr is better than the original value but is
worse than the second worst point:

xc = x̄+ β(xr + x̄) (5.8)

If xc is better than xr a new simplex is formed and a new iteration can be done. If both inside and
outside contraction do not result in a new simplex a lest operation is performed, shrinking, this is mostly
a fail-safe and is rarely used:

x∗point = xbest + δ(xpoint ̸=best − xbest) (5.9)

The Nelder-Mead stops when either the maximum number of iterations has been reached or when the
simplex has converged. The convergence is reached when:

σ < tol (5.10)
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σ = 2 ∗
(

f(xworst)− f(xbest)

f(xworst) + f(xbest) + tol

)
(5.11)

For the IOD method, these simplexes would be generated in a six dimensional space, where each
axis represents one of the six elements of the state vector, so there would be an x-axis, y-axis, vx-axis
etc. The location of the seven vertices that make up the initial simplex would then be determined by the
seven state vectors that resulted in the lowest cost function. The simplex will then be transformed by
changing the location of the worst performing vertex (state vector) using the algorithm explained earlier.
There will then be a new worst vertex, which is then again transformed, this shrinks the simplex. This
goes on until the simplex has converged or the maximum number of iterations has been reached. The
estimated state vector is then the mean value of the seven vertices (state vectors) that form the final
simplex.

Figure 5.1: Nelder-Mead optimisation (Jiang et al., 2019)
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6
Software

In this chapter the software needed to perform the design and simulation of the system. All the code
will be written in Python, due to it easy of use compared to other languages such as C++. This chapter
is separated in to three sections. In Section 6.1 external software packages that will be used for the
simulation will be discussed, in Section 6.2 the software architecture will be described. Finally, in
Section 6.3 the validation and verification of the software will be discussed.

6.1. External Software
If all the individual software blocks in the architectural design would have had to be coded, the seven
month period designated for the thesis would have never be enough. Luckily, use can be made of
external software. In this section the external software packages that will be used for the simulation
will be discussed. The rest of the software blocks will have to be coded from scratch.

6.1.1. Tudat
The TU Delft Astrodynamics Toolbox, Tudat, contains several usefully libraries for the propagation of
orbital dynamics, written in both Python and C++. Tudat is developed and updated by students and
staff of the Aerospace Engineering Faculty of the TU Delft. For this simulation Tudat will be used for
the orbital dynamic propagation of the space debris population and the satellites. Tudat will be used
because of it allows for a lot of freedom in the set-up of the simulations, is relatively fast and can be easily
combined with the other code written in Python. The, in Chapter 3 mentioned, environment models can
be automatically generated by Tudat. Furthermore, Tudat also offers a wide range of propagation and
integration methods, which also include the RK4 integration method as well as the propagation using
the Modified Equinoctial Elements 1. The ephemerides database, along with properties of bodies in
the solar system, that will be used will be provided by SPICE ephemerides files. These ephemerides
files are provided by NASA 2 and can be easily loaded into Tudat.

All libraries and features present in Tudat have their own build in unit test. All these unit tests can
be run to verify the functions in Tudat. These individual functions can be considered verified if these
unit tests are successfully run, no additional verification and validation tests have to be run.

6.1.2. NumPy and SciPy
NumPy and SciPy are both free open source libraries, which are commonly used in engineering based
software. SciPy 3 mostly contains modules for mathematical operations such as, integration, ordinary
differential equation solvers and interpolation. While NumPy 4 is mainly used for matrix related com-
putations such as matrix multiplication or inversion. Both NumPy and SciPy come with build in unit
tests.

1http://tudat.tudelft.nl/index.html: date accessed:6/1/2023
2https://naif.jpl.nasa.gov/naif/index.html: date accessed:6/1/2023
3https://www.scipy.org/: date accessed:6/1/2023
4https://numpy.org: date accessed:6/1/2023
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6.2. Architectural Design
The architectural design diagram will give an overview of how all software blocks are connected and
which inputs and outputs are needed for each block. In the diagrams, the square blocks are the input
and or outputs of the software functions (round blocks), the arrows signify the data-streams of the in
and outputs in to or out of the software functions. An overview of the whole architectural design can
be seen in Figures 6.1. The architectural design can be split up into four different sub-modules. Each
run starts with the initial state sub-module which generates the initial states of all space debris objects
and satellites, according to provided statistical distribution of space debris and constellation design
parameters. The generated initial states are then used as an input for the orbit propagation modules,
which provides the full state history of space debris objects and satellites. The observation sub-module
uses these state histories to generate all possible measurement vectors that the observing satellites
could have made of each space debris object. If enough measurement vectors have been made for
a space debris object, the measurement vectors will be used as an input for the orbit propagation
sub-module, which will output a state estimation of for that particular space debris object. This state
estimation is then compared to the propagated orbit of the space debris object to determine the accuracy
of the orbit determination. The number and accuracy of the successful orbit determinations are then
used to determine the relative performance of the constellation design. This whole process is repeated
for each constellation design.

Figure 6.1: Software modules diagram
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6.2.1. Initial state
The Initial state module is responsible for the initial states of all the objects for which the orbit will have to
be propagated. The number of space debris objects and the statistical distribution of the space debris
in GEO, see Chapter 3, are the inputs for the generation of initial states of the space debris objects. It
uses these inputs to generate a space debris population with a similar Kepler element distribution as
that of the inputs. For the initial states generation of the satellites, the constellation design parameters
are used as the input. The output of this module are the initial states of each satellite and each space
debris object, see Figure 6.2.

6.2.2. Orbital Propagation
The Orbital propagation module is responsible for providing the state vectors of each satellite and
space debris object for each epoch. The module can be separated in to two different parts, the orbit
propagation of the space debris and the orbit propagation of the satellites, see Figure 6.3.

The inputs for the orbit propagation of the space debris objects are the initial states generated by the
Initial state module, the force model as defined in Chapter 3, the propagation method, simulation time,
simulation time step, integrator settings, the tabulated ephemerides of the Earth, Sun, and Moon and
the solar radiation parameters. The output are the full state histories in Cartesian coordinates for each
space debris object, which are generated using the build-in dynamic simulator of the Tudat software
package.

The inputs for the orbit propagation of the satellites are the simulation time, simulation time step,
integrator settings and the initial states generated by the initial state module. It then uses a simplified
dynamic model to generate the Kepler orbit for each satellite. The outputs of this module are the full
state histories in Cartesian coordinates for each satellite.

6.2.3. Observation
The Observation module is responsible for providing observation vectors. The inputs for this module
are the state vectors of the space debris and satellites, FOV angle, Sun position, space debris pa-
rameters, sensor parameters, background parameters, SNR threshold and measurements errors. The
module first checks whether or not the space debris objects lies in the FOV of a satellite, this is done
by projecting a pyramid shape from the observing satellite and checking if the space debris lies in this
pyramid according to Equations 2.2-2.4. If the space debris object does not lie in the FOV of the satellite
the procedure is repeated for a different epoch and/or space debris object. If the space debris object
does lie in the FOV, the SNR is calculated by determining the amount of signal photons that reach
the optical sensor according to Equations 2.11-2.15 and comparing this value to the amount of noise

Figure 6.2: Initial state module diagram
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Figure 6.3: Orbit propagation module diagram

photons that reach the sensor, which is calculated using Equations 2.16-2.18. If the the SNR is higher
than the threshold, a measurement error is added to the measurement vector, according to Equations
2.6-2.10, to simulate real life observations. The collection of all the measurement vectors with added
errors is the output of this module.
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Figure 6.4: Observation module diagram

6.2.4. Orbit Determination
The inputs for the Orbit Determination module are the following, the unit measurement vector and the
satellite position uncertainty. First the initial orbit determination is performed using the Simplex fusion
method described in Chapter 4, if this method converges the estimated state vector of the space debris
is given. This estimated state vector is then used as an initial guess for the UKF. However, since the
UKF requires a lot more observations than the IOD method to converge, the orbit propagation and
observation modules need to be run for again for the same time interval of the current measurement
set, using a smaller time step size. The observations are then used for the UKF, which produces an
estimated orbit. It is then checked if the UKF has converged after which the estimated orbit is compared
to the actual orbit to give the estimated orbit accuracy. The output of this module if the orbit accuracy
of each observed space debris object.
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Figure 6.5: Orbit determination module diagram

6.3. Verification and validation
All software that will be used for this simulation will first need to be verified and validated before they
can be used. All software modules and or functions that come from external software come with build
in unit tests and if run successfully these parts of the code can be assumed to be verified. For the
software modules and or functions that are written from scratch verification and validation tests need
to be done. In this chapter the methods and results of the verification and validation of all the different
software modules will be discussed.

6.3.1. Initial state
The initial state module can be split up into two different functions which will be verified in this section.

Random initial state
This function needs to generate the initial states of the space debris objects using the publicly available
distribution of the Kepler elements seen in Chapter 3. To verify this function, it was visually checked if
the distribution of the Kepler elements of the space debris objects generated by the function matched
that of the publicly available distributions. This was done by generating a histogram of 1000 initial
states and comparing those initial states to the distributions in Chapter 3.
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State conversion
This function is build in by Tudat and thus was verified using the build in acceptance tests. It was also
verified by comparing the results of the conversion to hand calculations.

6.3.2. Orbit propagation
The external software Tudatpy is used for the entire orbit propagation module. Tudatpy has build in
acceptance tests which are run during installation. All the acceptance tests were successful, thus the
orbit propagation module is considered verified and validated.

6.3.3. Observations
The first observation sub-module, the visual magnitude calculation, will be verified by comparing the
results from the simulations to those reported by Congnion (2013). This paper was chosen, because it
also uses real-life data of GEO-based satellites to validate its results. The paper provides the results
for the following observation scenario:

• Distance between observer and satellite is 36,000 km
• The satellite is assumed to a diffuse Lambertian (ideal reflecting surface) sphere with a radius of
2.5 m and an diffuse albedo of 0.2.

The visual magnitude as a function of the phase angle for both the verification data and the simula-
tion results are shown in Figures 6.6a and 6.6b. The results of the simulation match up perfectly with
those reported in the paper and thus can be considered to be verified.

(a) Verification data (Cognion, 2013)

(b) Simulation results

Figure 6.6: Apparent magnitude of a Lambertian sphere, with albedo = 0.2 for different phase angles
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The second observation sub-module that needs to be verified, is the SNR calculation. This sub-
module will be verified by comparing the result to those reported by Tola (2015). In this paper the SNR
is calculated for stars with different visual magnitudes and varying values of the sky background. The
paper uses some slight differences between the methods used in the paper and those used in the code.
First of all, the signal electrons received by the sensor is calculated in the following way

ε(m,T ) = Φi(m,T ) · ηT (λ0, λ1) · κoptics ·QE · FF ·A (6.1)

where koptics is the optical lens transmittance, FF is the fill factor, in the method described in Chapter
2, these two values are represented by the total optical transmittance, τ . The photo irradiance for the
star is calculated in the following way:

Φi(m,T ) = 7.37 · 1014 · 10
−0.4·m

T
(6.2)

wherem is the apparent magnitude of the star and T is the temperature of the star. The ratio of photons
for the specific bandwidth of the sensor is calculated in the following way:

ηT (λ0, λ1) =
1

Φ(T )

∫ λ1

λ0

ϕλ(T )dλ (6.3)

where the total number of photons are calculated in the following way:

Φ(T ) = αT 3 (6.4)

where α is a constant (α = 1.52·1015 [-]). The energy of a photon for a specific wavelength is determined
as follows:

ϕλ(T ) =
2πc

λ4
(
e

hc
λkT − 1

) (6.5)

where c is the speed of light (c = 2.997 ·108 [m/s]), k is the Boltzmann’s constant (k = 1.38 ·10−23 [JK−1]),
and h is Planck’s constant (h = 6.626 · 10−34 [J/s]).

The paper uses the telescope parameters for their simulation, which can be seen in Table 6.1. The
SNR as a function of apparent magnitude and background irradiance from the simulation and the paper
can be seen in Figures 6.7a and 6.7b. Here it can be seen that as the apparent stellar magnitude
increases (the brightness decreases) the SNR exponentially drops, there is also a clear drop in the
SNR as the background brightness increases, which is expected since more noise signal reaches the
optical sensor. For both the SNR as a function of apparent magnitude and background irradiance, the
simulation results and the verification data match up perfectly, which indicates that the module works
as intended and can be viewed as verified.

6.3.4. Orbit determination
The orbit determination module can be split up into two sub-modules, the initial orbit determination
using the simplex fusion method and the precise orbit estimation method using the unscented Kalman
filter, in this section these two methods will be verified.

Simplex Fusion
The initial orbit determination simplex fusion method will be verified by comparing it to the results pro-
vided by Handley and Hagerty (2020). This paper uses the following simulation settings, the states of

Table 6.1: Simulation parameters

Parameter Value Unit Parameter Value Unit
Temperature Star 10000 K koptics 78.472 %
[λ0, λ1] [400 , 800] nm w 2048 pixels
FOV 4 deg A 972 cm2

FF 90 % vslew 1/240 deg/s
QE 50 % σro 30 e−
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(a) Verification data (Tola, 2015)

(b) Simulation results

Figure 6.7: SNR as function of different stellar apparent magnitude (Left). SNR as a function of background brightness (Right).

3000 targets were propagated using an RK8(9) integrator, the maximum number of iterations is 2000, a
tolerance of 10−12, the initial state of these targets were randomly chosen using a Gaussian probability
distribution using the values for the mean and standard deviation, [µ, σ], seen in Table 6.2:

Two observing satellites were simulated also using the same RK8(9) integrator, the initial states
reported in Table 6.3 were used. The observations of these satellites were simulated with an interval
of 300 seconds. Additionally, zero-mean Gaussian noise was added to the angle measurements in the
same way as described in Chapter 2, the σ value of this noise was varied to determine the convergence
rate of the method for different noise values. The paper reports a success rate of the initial orbit deter-
mination as function of the observation angle. This success rate is percentage of the targets for which
a successfully initial orbit determination has been performed, in this paper an initial orbit determination
is successful if the estimated semi-major and semi-minor axis are accurate to 1% of the true value and

Table 6.2: Mean and standard deviation values for target initial states

a [km] e [-] i [deg] ω [deg] Ω [deg] Θ [deg]
[42164, 100] [0, 0.001] [0, 45] [0, 180] [0, 180] [0, 180]
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Table 6.3: Initial states of observing satellites

a [km] e[-] i [deg] ω [deg] Ω [deg] Θ [deg]
Satellite 1 42,164 0 10 0 0 20
Satellite 2 42,164 0 0 0 0 0

if the attitude error is lower than 1 degree. The attitude error is calculated in the following way:

∆ = CtCT
e (6.6)

θerror = cos−1 [(tr(∆)− 1)/2] (6.7)
where Ct and Ce are the ECI → LVLH rotation matrices for the true and estimated states respectively.

There are two notable differences between the simulation reported in the paper and the simulation
performed for the verification. First of all, for the propagation of the state vectors of the satellites and
targets a fixed step size RK4 was used instead of a variable step size RK8(9) used in the paper. Since
the propagation of the candidate solutions is also performed using an RK4 integrator, it is expected that
the success rate of the verification simulations are higher than those reported in the paper.

The paper does not describe the method it used to generate the full state vector from the candidate
position vector, it only mentions that it assumes a circular orbit. At first, it was assumed that the velocity
in the z-direction was zero, such that a perpendicular vector could be generated counterclockwise
to the xy-position vector and using the orbital velocity corresponding to the semi-major axis of the
target. However, using a zero z-velocity for all candidate solutions prevented the optimiser to converge.
Therefore, a random z-velocity was added to each candidate state vector, with a mean of zero and a
standard deviation of 100 m/s. It is unknown, how this issue is handled in the paper, so this could lead
to differences between the verification data and the results. However, this most likely only results in
a difference of convergence speed, since almost all successful initial orbit determinations needed far
less iterations than the maximum of 2000.

In Figure 6.8 the results of the verification of the simplex fusion can be seen. The success rate of
the simulations is always slightly higher (1-4%) than those reported in the paper. The cause of this is
most likely the fact that the simulation uses the same integrator as that used for the propagation of the
candidate state vector, while the paper uses a more precise integrator for the propagation of the targets
and observing satellites.

To check whether this is the case, the simulations were repeated again using an RK4 integrator
for the orbit propagation, however, instead of comparing the results to the verification data, a second
simulation was run where the orbit was propagated using a variable step size RK7(8) integrator (an
RK8(9) integrator is not available in Tudat). For the propagation of the candidate solution an RK4
integrator was again used for both the simulations. Since everything is exactly the same for the two
simulations expect the integrator, the difference in the success rate should be should be similar to the
difference in success rate for the original simulation and the verification data. This is confirmed by
looking at Figure 6.9, were it can be seen that the differences in the success rate are very similar for
the simulation using the RK7(8) integrator and the verification data using the RK8(9) integrator. The
small differences could be explained by the fact that there is a difference in the accuracy of the RK7(8)
and RK8(9) integrator and the fact that it is not known how the z-velocity is calculated for the verification
data.

UKF
The UKF will be verified in two steps, first a simple 1d linear problem is used to check if the UKF
works properly. Secondly, a more representative model is used to fully verify the UKF. The following 1d
dynamics have been used: (

xi
yi

)
=

[
1 dt
0 1

](
xi−1

yi−1

)
(6.8)

the system is initialised in the following way:(
xi
yi

)
=

(
1
2

)
P 0 =

[
1 1.1
1.1 3

]
R0 =

[
0.0065

]
Q0 =

[
0 0
0 0.001

] (6.9)
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Figure 6.8: Success rate of Simplex fusion as a function of the observation error for N observations

Figure 6.9: Difference in success rate as a function of the observation error for five observations

The observations are generated by adding an error to the x position from a normal distribution (σ
= 0.1). The results can be seen in Figure 6.10, the filter converges quickly in around 20 seconds,
the estimation error of 0.16 m oscillates between the 3-σ bounds which indicates that the UKF works
properly for this simple 1d problem.

The above mentioned model is very simple and very different from the dynamics and observation
model that will be used in the simulations. Therefore, the UKF will be verified using a more similar
problem. Felicetti and Emami (2016) report the performance of a UKF which has been used to estimate
the orbit of highly inclined space debris in LEO using the observations of an observing satellite in a polar
orbit, see Table 6.4. These simulations settings were used to generate line of sight measurements, this
was done using a simulation time of one hour and a time step of one second. The UKF was initialised
using the values below:
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Figure 6.10: x-position error as a function of time

Table 6.4: Simulation settings

Observing satellite Space debris Unit
Number 4 200 [-]
Semi-major axis 7171 6900-7300 [km]
Inclination 98.2 53-113 [deg]

(
x0
v0

)
=

(
x+ 10, 000
v+ 100

)
P 0 =

[
10, 0002I3×3 0

0 1002I3×3

]

R0 = (5
′′
)2I3nx3n Q0 =

[
0 0
0 0.00012E3×3

] (6.10)

Since the initial states of both the space debris and satellites are randomly chosen within the bounds,
it is impossible to recreate the exact observations scenarios, for which the results are provided in the
paper. The paper does mention that for an ideal observation scenario, where all four satellites can
make measurements at the same time, the UKF converges quickly to an accuracy of 3-σ = 6 m. To
replicate this result, an object and time interval of at least 10 minutes was chosen where the object
was observable by all satellites. The results of this simulation can be seen in Figure 6.11, it can be
seen in the figure that it is similar to the results of Felicetti and Emami (2016), the filter converges
quickly and does this to around an accuracy of 3-σ = 8 m. The small difference between accuracies
of 2 meters could be caused by the two following things. First of all, it is not reported in the paper
how the measurement error is applied to each measurement, this could be different from the method
mentioned in Chapter 2, which could lead to a difference in measurement vectors and thus a difference
in the maximum achievable estimation accuracy.

Secondly, the paper does not report the exact orbit of the space debris for which the estimation
accuracy is given which corresponds to the ideal observation scenario. Thus it is likely that the orbits of
the space debris are different. A smaller semi-major axis will lead to faster dynamics, which will effect
the accuracy of the prediction step in the UKF. A difference in orbit is thus most likely the cause of the
difference in estimation accuracy between the two models.

To check whether this was the case two different simulations were run. The effect of varying the
observation error on the position error was investigated. It is expected that a varying observation error
effects the position error and this can indeed be seen in Figure 6.12, were there , this confirms that
a differently applied measurement error can indeed increase the estimation accuracy. However, this



6.3. Verification and validation 41

Figure 6.11: x-position error as a function of time

alone does not explain the accuracy difference of 2 m. The effect of changing the semi-major axis of
the space debris objects on the position error was also looked into. In Figure 6.12, it can be seen that
the position error decreases as the semi-major axis increases. The position error between the upper
and lower bounds of the semi-major axis can be as large as 2.5 meters. The difference in observation
error and semi-major axis of the space debris object can thus explain the estimation accuracy between
the simulation and the verification data.

Figure 6.12: Difference in position error as a function of the observations error (left) and the semi-major axis of the observed
space debris object (right)
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7
Design space

In this chapter the design space in which the optimisation will take place will be discussed. This design
space consists of all design variables that make up a constellation design and their lower and upper
bounds between which the value can change. In the Section 7.1 of this chapter the design variables
will be discussed, what is the effect of these variables on the performance of the constellation and what
are their lower and upper bounds? In Section 7.2 a design space exploration is performed where the
bounds are decreased to improve the speed and robustness of the optimisation. In Section 7.3 the
UKF will be tuned using the design variables. Finally, in Section 7.3 the final lower and upper bounds
for the design variables are given which will be used for the optimisation.

7.1. Design variables
There is a total of six design variables that make up the full constellation design, the sensor size, focal
length, semi-major axis, inclination, number of satellites per group and the total number of satellites in
the whole constellation. In this section their effect on the performance of the constellations is discussed
as well as the initial upper and lower bounds.

Sensor size
The CCD sensor size, Asensor, is the area of the CCD sensor which actively converts the incoming
photons into a electrical signal. A larger sensor will be able to receive more individual photons at the
same time and will provide a higher resolution, this increases the SNR for an object. However, a larger
sensor will also lead to a larger FOV angle (when using the same focal length), which will have a
negative effect on the SNR for an object. The bounds for the sensor size were determined by looking
at the state of the art CCD sensors that are currently available. Most CCD sensors used in NASA and
ESA missions are produced by the same company, Teledyne, so the bounds for the sensor size will be
determined by looking at their smallest and largest sensor size’s available, designed for space-based
observations. From their website 1, the smallest possible sensor size is 10 x 10 mm and the largest is
82 x 82 mm. These will be the initial bounds used for the simulations.

The sensor size is determined by two factors, the pixel size, p and the amount of pixels per row of
the sensor, w. As can be seen in Chapter 2, the pixel size and number of pixels per row both have an
effect on the SNR calculation. From the Teledyne website, it can be seen the the lower and upper size
limit for the pixel size is 10 µm and 50 µm. To determine which combination of pixel size and number
of pixels gives the best performance for this observation scenario, simulations where run. For different
observations (varying; distance between satellite and object, focal ratio’s, and FOV angles) the SNR
was calculated for different combinations of pixel sizes and number of pixels per row. In Figure 7.1, the
results of this optimisation can be seen. It is clear that the performance of the optical system is higher
when the pixel size is as small as possible and the number of pixels is as large as possible. Thus, for
the following simulations, the smallest pixel size will be used, 10 µm, and the number of pixels per row
then follows from the sensor size.

1https://www.teledyneimaging.com/en/aerospace-and-defense/applications/space-astronomy-space-science/
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Figure 7.1: SNR for as a function of pixel size and number of pixels per row

Focal length
The focal length of the optical telescope is the distance between the aperture of the sensor and the
CCD sensor. The focal length has a large effect on the performance and the design of the different
constellations. This is because of two reasons. First of all, the larger the focal length the larger the
satellite will have to be to house the telescope, the focal length should thus be as small as possible.
Secondly, the focal length is proportional to the field of view of the telescope. A large focal length will
allow for a smaller field of view and as could be seen in Chapter 2, this will lead to a higher SNR, which
will increase the conversion rate of space debris objects that pass through the field of view to actual
observations. However, a smaller FOV also leads to less space debris objects crossing that FOV, which
will limit the possible observations. There are no clear definitive lower or upper bound limitations for
the focal length. The focal length could theoretically be a couple of meters, however, this would result
in a very large and expensive satellite. On the other hand, the focal length could also be very small,
but this would mean that the distance between satellite and space debris would also have to be very
small, which would severely limit the number of observations. Since there is no clear definitive lower
and upper bound for the focal length, an initial lower and upper bound for the design-space exploration
have been chosen to be, 0.05 and 1.0 m, respectively, however if the system shows good performance
close to the lower and upper bound they will be changed.

Semi-major axis
The semi-major axis of the satellites will have a large effect on the performance of the constellation. A
small semi-major axis will increase the distance between the satellite and the space debris objects, this
has two advantages. Firstly, the region of the GEO that it can observe using the same FOV angle is
larger the further away the satellite is from GEO, this will lead to more space debris objects crossing the
FOV of the satellite and thus more potential observations. Secondly, the relative velocity of the satellite
with respect to the space debris objects is larger when the semi-major is smaller, this will lead to more
potential observations of unique space debris objects for the same time period as a larger semi-major
axis, additionally, each object will be observed more regularly.

A larger semi-major axis also has two major advantages compared to a smaller one. The distance
between satellite and space debris object will be smaller, thus more light from the object will reach
the optical sensor, which will increase the SNR of the objects, so more potential observations will be
converted to actual observations. Secondly, the smaller relative velocity between satellite and object
will lead to more consecutive observations which will in turn result in a higher accuracy of the orbit
estimations.

To determine the lower bound for the semi major axis, the largest possible distance between the
satellite and space debris object in GEO is calculated for which an object with a diameter of 10 cm is
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visible for the largest possible telescope (focal length 1.0 m). Figure 7.2 shows that the SNR increases
as the semi-major axis increases and that the slope also increases as the semi-major becomes higher.
At 13,750 km the line crosses the SNR threshold of 2.5, thus this semi-major axis will be used as the
lower bound. The upper bound of the semi-major axis is equal to the lower bound GEO region which
in this case is 41,000 km.

Inclination
The inclination of the observing satellites can have two different effects on the performance of the
constellation. First of all, satellites in orbits with varying inclinations, will be able to observe a slightly
different GEO region than other satellites. If many space debris objects are located in this particular
GEO region, this could lead to an increase in space debris objects. Furthermore, when satellites in
the same group have different inclinations, the measurement vectors that each satellite will make for
a specific space debris object will vary more, than when all satellites have the same inclination. This
could benefit the accuracy of the IOD and UKF, especially when the observed space debris object are
in a co-planar orbit with one or more of the satellites (Hippelheuser, 2021).

The lower and upper bounds of the satellite inclination are determined by the GEO region that will
be investigated. Having an inclination higher than that of the space debris objects will not be beneficial,
the satellite would then also start to observe parts of space where no space debris objects could ever
be observed. The lower and upper bounds of the satellite inclination will be the same as those for the
space debris objects, thus ± 15 degrees.

Number of satellites per group
The constellation will most likely consist of multiple groups of satellites that orbit closely to each other.
A high number of satellites per group will lead to observations from multiple points of view of the same
space debris object at a certain time. This will improve the accuracy of the IOD and UKF and make it
less susceptible for measurement errors. A smaller number of satellites per group will make it possible
to observe more of the GEO region using the same amount of total satellites, which will lead to more
observations of unique space debris objects.

For the 3D positioning using GPS satellites at least four satellites are needed, however, these
satellites make range observations, while for this constellation only line of sight vectors are measured.
In theory, the line of sight measurements of only two satellites are needed to determine the position of
an object in 3D space. However, due to the measurement errors that effect each measurement, using
more satellites will lead to a more precise orbit estimation, however after a certain number of satellites,
the accuracy improvement does not improve significantly. Therefore, the lower and upper bound for
the number of satellites per group are two and five, respectively.

Figure 7.2: SNR as function of semi-major axis of the observing satellite (SNR threshold = 2.5)
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Number of total satellites
A larger number of total satellites will always lead to a better performance of the whole constellation,
it will lead to more observations as well as more simultaneous observations of the same space debris
object, which will improve the orbit determination accuracy. However, using more satellites will increase
the cost of the constellation and thus should be kept as small as possible. For this optimisation a
maximum of 16 total satellites has been chosen as the upper limit. The lower limit is two, since at least
two satellites are needed per group to get an accurate orbit estimation. All upper and lower bounds for
each design variable discussed in this section are summarised in Table 7.1.

7.2. Design space exploration
The computational cost to determine the performance of the different constellation designs are quite
high ranging from five minutes to more than one hour depending on the amount of satellites in the con-
stellation. The current bounds for design variables as described in the previous section are too broad at
the moment, either a very long simulation time is needed (1-2 weeks) or the interval between possible
values for a design variable need to be large, such that there is a limited number of combinations tested,
however, this will likely not result in the actual best constellation design. Therefore, a design-space
exploration is needed, this will hopefully result in decreasing the bounds of the design variables and
perhaps give some additional insight in the effect of the different variables on the performance. To
determine the bounds for each design variable, separate simulations will be run for all design variables.
This way the true lower and upper bounds for a single design variable can be determined without having
to take interactions between design variable into account.

Sensor size
To further narrow down the bounds of the sensor size, the SNR for different FOV angles and sensor
sizes are simulated. The simulations were run using the simulation settings in Table 7.2, however, the
overall trends and conclusions that can be seen/made from the results are the same for all observation
scenarios.

The results of these simulation can be seen in Figure 7.3. Here the SNR is shown for different
combinations of sensor size and FOV angles, additionally the figure also shows the corresponding focal
lengths that result from particular sensor size and FOV angle combinations. As could be expected the
lower FOV angles lead to higher SNRs for the same sensor size. One surprising trend can be seen in
Figure 7.3 is the fact that the SNR is constant for the same focal ratio and is thus not dependent on the
sensor size. A larger sensor, for the same focal length, leads to a larger FOV, which in turn leads to
more possible observations. Since the SNR is independent from the sensor size, it is always preferable
to use the largest possible sensor and thus largest FOV. Therefore, for the rest of the simulations, a
sensor size of 82x82 mm will be used.

Table 7.1: Initial design variables

Lower bound Upper bound Unit
Asensor 10 x 10 82 x 82 [mm]
Lf 0.05 1.0 [m]
asat 13,750 41,000 [km]
isat 0 ± 15 [deg]
Nformation 2 5 [-]
Ntotal 2 16 [-]

Table 7.2: Simulation settings

Observing satellite Space debris Unit
Semi-major axis 35,000 42,167 [km]
Inclination 0 0 [deg]
Theta 0 0 [deg]
Phase angle 0 0 [deg]
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Figure 7.3: SNR for different FOV angles and sensor size

Focal length & semi-major axis
To narrow down the bounds of the focal length and semi-major axis, it was investigated what percentage
of space debris objects the satellite could observe. The overall performance of a constellation design is
very dependent on the amount of space debris objects it can observe in a certain time period. If certain
values of focal length and semi-major axis results in significantly lower performance than others, these
focal length and semi-major axis will then be excluded from further investigation.

The results of these simulations are shown in Figure 7.4a. At the higher bound of the semi-major
axis the percentage is very low, however, when looking at Figure 7.4b, it can be seen that almost all
objects in its FOV have a SNR higher than the threshold. The very low percentage is thus caused due
to a lack of space debris objects that cross the FOV of the satellite. The opposite effect can be observed
near the lower bounds of the semi major axis, where only a very limited amount of space debris objects
have a SNR higher than the threshold, however, due to the large number of space debris objects that
cross the FOV of the sensor, there is still a significant percentage of space debris objects observed.

In Figure 7.4b, it can be seen that a higher focal length leads to more objects with a SNR higher
than the set threshold, which could be expected since the a higher focal length leads to a smaller FOV,
which in turn leads to a higher SNR. However, when looking at Figure 7.4a, there is no significant
relation between the focal length and the percentage of space debris objects observed. This is again
caused by the fact the a larger focal length leads to a smaller FOV, which means that the satellite can
observe only a small amount of space debris objects. So the performance for constellations with large
semi-major axis and focal length, are limited by the amount of space debris objects that crosses the
FOV, while for the smaller semi-major axis and focal lengths, the performance is limited by the SNR of
the objects.

In Figure 7.4a, a triangular region is marked, this region contains all combinations of focal length
and semi-major axis that result in at least a 35% observation performance, and perform significantly
better than the combinations outside of this region. The upper and lower bounds for the semi-major
axis bounds will now be 20,000 km and 36,000 km, respectively. The upper and lower bounds for the
focal length bounds will now be 0.1 m and 1.0 m respectively.

Inclination
To try and narrow down the bounds of the inclination of the satellites the performance of constellation
designs using different delta inclinations. To asses the performance of each constellation design two
metrics were used, the average number of observations and the average position error per constellation
design. Two different types of constellation designs were tested, for which multiple different simulations
where run for each type. The first type of constellation uses co-planar orbits in this case all satellites
will have an inclination of 0 degrees and a spacing between them of 2 degrees. The second type of
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(a) % observed space debris objects as a function of focal length and
semi-major axis

(b) % observed space debris objects with SNR > 2.5 as a function of focal
length and semi-major axis

Figure 7.4: Focal length and semi-major axis design exploration

constellation uses different inclinations for each satellite of the group, one constellation will have a
difference of inclination of 5 degrees (i1 = -5◦, i2 = 0◦, i3 = 5◦), the other constellation will have a differ-
ence of inclination of 15 degrees (i1 = -15◦, i2 = 0◦, i3 = 15◦). Using these two types of constellations
gives insight into the effect of the inclination of a satellite on the number of observations as well as the
effect of the difference in inclination between satellites in the same group on the accuracy of the orbit
determination.

The results can be seen in Table 7.3. It can be seen that there is a smaller negative relation between
the average number of observations and the difference in inclination of the satellites. There is also a
clear difference in the average position error. When the satellites in a group are in co-planer orbits, the
average position error is significantly worse than when different inclinations are used for each satellite
in the group. As mentioned before, this is due to the fact that the measurement vectors are very similar,
which decreases the observability of an object which in turn decreases the accuracy. So, no co-planar
orbits will be used for satellites in the same group.

Satellites per formation
The number of satellites per formation will have an effect on the accuracy of the IOD and the subse-
quent UKF, to try and narrow down the initial design bounds the accuracy of the IOD will be compared
between the different number of satellites per formation. For each number of satellites per formation,
nine different constellation designs are simulated, varying in semi-major axis and inclination. The av-
erage position error for all these nine constellation designs is then calculated, the results can be seen
in Table 7.4. As expected, the IOD method does not converge when only each formation consists of
only one satellite, leading to very large position errors. The larger number of satellites per formation
all result in relatively accurate orbit estimations. As expected, using a larger number of satellites will
lead to a higher accuracy. However, using five instead of four satellites per group only improves the
accuracy by 10 meters and this accuracy improvement is not significant enough to be worth the extra
cost and decrease in total observations. Therefore, the lower and upper bounds for the number of
satellites per formation will now be two and four respectively.

Table 7.3: Constellation performance for varying inclination differences

∆ i 0 ± 5 ± 15
Average number of observations [-] 57 53 50
Average position error [km] 14.75 2.93 2.86
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Table 7.4: Orbit determination accuracy for different numbers of satellites per formation

# satellites per formation 1 2 3 4 5
Average position error [km] 7.78e5 2.44 1.86 1.30 1.32

7.3. UKF tuning
The UKF needs to be initialised such that it converges and gives accurate orbit estimations for each
of the different observations scenarios. For example, a difference in semi-major axis will increase the
estimation uncertainty due to the relatively larger measurement error. Using the final design bound
for the semi-major axis, the UKF can be tuned such that it will converge for the different possible
observation scenarios. By trial and error the appropriate initialisation values were found for different
observation scenarios, these data points were then used to determine the relation between the semi-
major axis and the needed initialisation values. Two different metrics were used to determine if the
initialisation values resulted in a well working UKF. First, it was checked whether or not the UKF had
converged after the last measurement was made. Secondly, the estimation error of the UKF needed to
oscillate between the 3-σ bounds. Since the orbit determination accuracy will be different for different
constellation designs, no accuracy requirement was used in order to determine the performance of
the UKF. The initialisation values were chosen such that it provided (close to) the maximum accuracy
possible as long as it complied with the two metrics mentioned earlier. This resulted in the following
initialisation values:

P 0 =

[
(750)2I3×3 0

0 (5)2I3×3

]

R0 = (( −1.5
12×106 × (a− 24× 106) + 4)) · 4.84814× 10−6)I3nx3n

Q0 =

[
0 0
0 (0.4)2E3×3

] (7.1)

where 4.84814 × 10−6 comes from the conversion of radians to arcseconds. As can be seen
in Figure 7.5 these settings leads to a well-tuned UKF, the UKF converges and the error oscillates
between the 3-σ bounds. It can also be seen that a larger semi-major axis leads to a lower estimation
uncertainty, as explained previously, this is caused due to the relatively higher measurement error when
the distance between space debris object and observer becomes larger.

Conclusions
Table 7.5 shows the final design variable bounds for the design variables that will be used for the
optimisation of the constellation design. For the sensor size it was found that the best performance
would always occur for the largest possible sensor size. The performance of the system was the best
for semi-major axis values in the middle of the initial interval, so the lower and upper bound can be
brought closer together. For the focal length all values from the initial range could provide adequate
performance, however, the best performance was seen for focal lengths in the middle of the initial
interval. An increase in the difference in inclination of the satellites had a positive effect on the accuracy
of the orbit determination, however, it had a negative effect on the number of observations the system
could make. The optimal value for the difference in inclination will thus dependent on which metric is
deemed more important. Finally, the satellites per formation increased the average position accuracy
of the orbit determinations, however, this was only up until four satellites, after which the accuracy
increase was negligible. Using only one satellite per formation gave a very large position error and will
therefore no longer be considered in the optimisation.
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Figure 7.5: UKF performance for different semi-major axis: a = 25,000; 30,000; 35,000; 40,000 km

Table 7.5: Design variables

Lower bound Upper bound Unit
Asensor 82 x 82 82 x 82 [mm]
Lf 0.1 1.0 [m]
asat 20,000 36,000 [km]
isat 0 ± 15 [deg]
Nformation 2 4 [-]
Ntotal 2 16 [-]



8
Design optimisation & analysis

To answer the main research question it is first important to find the (near) optimal constellation design.
To find the optimal design different optimisation methods will be used. In Section 8.1 the results of
initial optimisation using the Taguchi method is presented. Following that, in Section 8.2 the factorial
optimisation method is used to find the optimal design. The performance of this optimal design is
discussed in Section 8.3. The sensitivity of both the design process as well the performance of the
optimal design will be looked at in Section 8.4. Finally, Section 8.5 will discuss the robustness of the
design.

8.1. Taguchi method
The Taguchi method is a method developed to gather the most relevant data points in the least number
of experiments possible. The method is used to design experiments to investigate the effect of different
design parameters on the mean and variance of the performance metric of a system. Instead of testing
all possible combinations of design variables, the Taguchi method tests pairs of combinations. This is
done by using orthogonal arrays. The results of the experiments designed using the Taguchi method
gives valuable insight into how (much) the different design variables influence the performance of a
system, while using the the least amount of experiments necessary. The Taguchi method is best used
when single runs of an experiment are computationally costly and when between three to 50 design
variables are investigated (Taguchi, 1995). Since this is the case for the design space exploration the
Taguchi method will be used.

The first step of the Taguchi method, is specifying the performancemetric that needs to be optimised.
This needs to be a singular value. Therefore, the simulations will be run twice, one time for measuring
the effect of the different design variables on the number of successful orbit determinations and once
for the average position accuracy.

The values for each design variable are determined by using an orthogonal array. There are many
different orthogonal arrays available to choose from. The objective in choosing an orthogonal array is
to minimise the number of experiments that need to be performed. The orthogonal array is dependent
on the number of design variables and the number of levels for each design variable (number of values
the design variable can be). In this case, there are five design variables and it has been decided to use
at least three levels for each variable. The lowest number of levels that can be chosen is two, however,
this only provides a linear line and in many cases does not give any insight into where the possible
optimal value of the design parameter lies. The smallest orthogonal array that can be used is the L25
array, see Appendix B. This orthogonal array allows for six design variables with five levels each; only
five design variables will be tested, however, one or more columns can be left open without effecting
the orthogonality (Taguchi, 1995). For the number of satellites per formation, only three levels can be
used (Nfor = 2,3,4), however, each design variable has five levels each, this is resolved by using the
dummy level technique which allows for the assigning of a factor withm levels to a column with n levels,
where n > m, this is done by assigning levels four and five to an already used value, these values will
then be estimated with a higher level or precision than the levels that are not repeated (Taguchi, 1995).
For the number of satellites per formation level four will be assigned to two satellites per formation and
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level five to four satellites per formation.
The value which some design variables can take is dependent on another design variable. For

example, the minimum focal length needed when the semi-major axis is 20,000 km is 0.82 m, while for
a semi-major axis of 35,000 km the focal length can be as small as 0.15 m. So instead of using the
same focal length for each level irregardless of the semi-major axis, the possible focal length range
is divided in to five levels (a=21,000 km; [1=0.8, 2=0.85, 3=0.9,4=0.95, 5=1.0], a=35,000 km; [1=0.2,
2=0.4, 3=0.6, 4=0.8, 5=1.0]). The same holds for the relation between the number of satellites per
formation and the total satellites, however, for the total satellites only four levels will be used, as this
is the maximum when four satellites are used in a formation, the total number of satellites can only be
four, eight, 12 or 16.

To determine the effect of each design variable on the performance metric a signal to noise ratio
is calculated for each run. The signal to noise ratio is then calculated in the following way (Taguchi,
1995):

SNi = 10 log
[
ȳ2i
σ2
i

]
(8.1)

where ȳ2i is the mean of the performance metric and σi is the variance. If performance metric needs to
be maximised, which is the case for the number of orbit determinations, this equation can be written in
the following way (Taguchi, 1995):

SNi = −10 log

[
1

Ni

Ni∑
u=1

1

y2u

]
(8.2)

where y is the value for the performance metric and N is the number of tests per experiment. If the
design variable needs to be minimised, which is the case for the average position accuracy, the signal
to noise ration is calculated in the following way (Taguchi, 1995):

SNi = −10 log

[
Ni∑
u=1

y2u
Ni

]
(8.3)

In this case, the simulation is run three times per experiment and for each run a different seed (1,
242, 2345) is used to initialise the orbit of the space debris objects. The average S/N ratio for each
level of each design variable is then calculated.

The simulation settings that will be used are the following:

Number of space debris objects 200 [-]
Simulation time 1 [week]
Time step 120 [s]

A total of 200 space debris objects will be simulated, this value has been chosen to give a good
coverage of all possible orbits that could occur. The bounds for the orbital elements of the space
debris objects are the same as mentioned in Chapter 3. A total simulation time of one week has been
chosen, such that the constellations where the satellites have a semi major axis equal to the highest
bound mentioned above has made a full revolution compared to the space debris objects in GEO. The
time step is determined by the requirement of the IOD method that the spacing between observations
needs to be at least 120 seconds (Handley and Hagerty, 2020). The smallest possible simulation step
has been chosen because this allows for a fairer comparison between the constellation designs with a
larger and smaller semi-major axis. For smaller semi-major axis the relative velocity is higher, which
can result in too few observations of an object for the IOD, to limit this the smallest possible time step
will be used.

8.1.1. S/N results
When looking at the different signal to noise ratios for the separate levels of the different design vari-
ables, the individual values of the S/N do not provide a lot of insight. The main use of these SNR values
comes from looking at the difference between the maximum and minimum SNR value that occur for
each design variable. The larger this difference is, the larger the effect the design variable has on the
performance of the design.
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In Table 8.1 the maximum and minimum SNR are given for each design variable as well as the
difference between these values for the number of successful orbit determinations. As can be seen
the total number of satellites has the largest effect on the number of successful orbit determinations,
followed by the semi-major axis of the satellites in the constellation, the focal length has the third most
effect, followed by the inclination difference of the satellites and the number of satellites per formation
has the least amount of effect on the number of successful orbit determinations.

The SNRs for the average position accuracy are given in Table 8.2. The semi-major axis has the
most effect on the position accuracy of the different constellation designs, followed by satellites per
formation, difference in inclination, focal length and finally the total number of satellites.

The semi-major axis has a large effect on both the performance metrics and is therefore the most
important design variable. A slight change in the semi-major axis will have a large effect on both the
metrics, so extra consideration should be given to this parameter during the following optimisation.

The total number of satellites and the number of satellites per group have a large effect on one of
the performance metrics but have only a limited effect on the other. These design variables can thus
be changed to improve the performance with regards to one of the metrics while only having a limited
effect on the other performance metric. This could be especially useful if increasing or decreasing the
design variables had a positive effect on one of the metrics but a negative effect on the other metric.

The focal length and inclination both have an average influence on the two performance metrics.
These design variables can be mostly used to further tune the constellation design.

8.1.2. Successful orbit determinations
The SNR presented in the previous section only provides a metric of how much each design variable
effects the performance of the constellation design. It does not give insight into the relation between
the different levels of each design variable and the two different performance metrics. To get a better
understanding of these relations, the average performance metric for each level of each design vari-
ables are plotted in Figures 8.1 and 8.5, these figures will be discussed in this and the following section.
Because for each level there are only five data points, there is a level of randomness that should be
taken into consideration when discussing the results. This randomness is caused by interactions be-
tween two or multiple design variables. For example the performance of a certain focal length will partly
be dependent on the semi-major axis, since not all combinations will be tested, it could be that certain
focal lengths are tested using a more favourable semi-major axis than other focal lengths.

Semi-major axis
As can be seen in Figure 8.1, between levels two and five, there is a clear negative relation between
the semi-major axis and the average number of successful orbit determinations. This was expected,
a smaller semi-major axis (lower levels) allows a satellite to observe a larger region of the GEO belt
at a single time step compared to when a satellite orbits closer to the space debris objects, leading to
more observations which can turn in to successful orbit determinations. Additionally, the higher relative
velocity of satellites with a smaller semi-major axis also allows that satellite to observe more different
parts of the GEO belt in the same time frame as compared to a satellite with a higher semi-major axis.

These two reasons explain the negative relation between the semi-major axis and the number of
observations. This negative relation, does no hold up for the first level, where there as a very signifi-

Table 8.1: Maximum, minimum and delta SN of the design variables for the number of successful orbit determinations

Semi-major axis Focal length Sats. per formation Inclination Total satellites
Max SN [-] 27.1 24.5 22.5 23.8 28.0
Min SN [-] 16.2 16.2 17.7 17.0 14.1
Delta SN [-] 10.9 8.3 4.9 6.8 13.9

Table 8.2: Maximum, minimum and delta SN of the design variables for the number of successful orbit determinations

Semi-major axis Focal length Sats. per formation Inclination Total satellites
Max SN [-] 30.6 25.4 29.2 28.1 25.3
Min SN [-] 19.1 19.6 18.4 20.9 21.9
Delta SN [-] 11.5 5.9 10.8 7.2 3.3
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cant drop in observations compared to levels two and three, where an increase of observations was
expected. The reason for this sudden drop can be explained by looking at Figure 8.2a, where the con-
version rate (the number of successful orbit determinations compared to the number of observations)
as a function of the semi-major axis is plotted. It can be seen that the conversion rate for a semi-major
axis of 20,000 km is significantly lower than that of semi-major axis larger than 24,000 km. This explains
why the number of successful orbit determinations for level one is significantly lower than for levels two
and three.

There are two reasons why the conversion rate is lower for smaller semi-major axis, the measure-
ment time and the relative measurement error. In Figure 8.2b the average measurement time as a
function of the semi-major axis is plotted, there is clear positive relation between the measurement time
and the semi-major axis. This is caused by the difference in relative velocity between the space de-
bris objects and the satellites for the different semi-major axis. Additionally, for the smaller semi-major
axis the relative measurement error is larger compared to that of satellites with a larger semi-major
axis, due to the increased distance between satellite and space debris object. A shorter measurement
time, which means less measurements, and a larger relative measurement error leads to an decreased
accuracy of both the IOD and the UKF. In Figure 8.3a, the effect of an inaccurate IOD can be seen
on the performance of the UKF, a very large error in the initial guess of the object causes the UKF
to not converge and work properly. If the IOD or the UKF does not converge properly for a particular
measurement set, this measurement set is not used, which leads to a lower conversion rate.

These two reasons explain why smaller semi-major axis result in a lower conversion rate, however,
a more linear relation was expected, but there is a sharp jump between 20,000 and 24,000 km. Looking
again to Figure 8.2b, the average measurement time is exactly 240 seconds for a semi-major axis of
20,000 km. This is equal to the minimum possible measurement time, at least three observations
with a time step of 120 seconds. Since there is no occurrence of a measurement set with a higher
measurement time than 240 seconds for a semi-major axis of 20,000 km, it is likely that the lower
conversion rate is caused by the fact that for most observed space debris objects only one or two
observations could be made, caused by the high relative velocity of the satellite compared to the object.

A lower time step would thus most likely result in a higher conversion rate and thus a higher number
of successful orbit determinations. To test this, a smaller time step of 60 seconds was used for the
constellations with a semi-major axis of 20,000 km, the results of this can be seen in Figure 8.3b. The
number of successful orbit determinations for the first level is now no longer an outlier and follows the

Figure 8.1: successful orbit determinations as a function of different design variable levels
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(a) Conversion rate as a function of semi-major axis
(b) Measurement time as a function of semi-major axis

Figure 8.2: Conversion rate and measurement time as a function of semi-major axis

(a) Non converging UKF for smaller semi-major axis

(b) Average position accuracy and number of successful orbit
determinations per level where level one uses a adjusted time step (dt =

60)

Figure 8.3: Non converging UKF (left) and effect of adjusting the time step (right)

trend of the other levels. However, it can also be seen that the accuracy of these orbit determinations for
level one are significantly worse compared than would be expected from the other levels. The optimal
design will thus not have a lower semi-major axis than 24,000 km and the time step can be kept at 120
seconds.

Focal length
The effect of the focal length on the number of successful orbit determinations can be seen in Figure
8.1, there is a clear negative relation between the focal length and the number of successful. There
are two main reasons for this effect. First, a larger focal length results in a smaller FOV, this limits
the number of objects a satellite can observe. Fewer observations will result in fewer measurement
sets, which can be used for the IOD and UKF, and thus a larger focal length will limit the number of
successful orbit determinations. Second, a smaller FOV also means that an object is less likely to
be in this FOV for a longer amount of time and thus a smaller FOV will comparably result in more
objects, where less than three observations can be made. This limits the number of successful orbit
determinations. Additionally, the larger FOVs also results in more measurements, which increases the
changes of convergence of both the IOD and UKF. This increases the conversion rate and thus the
number of successful orbit determinations.
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Satellites per formation
In Figure 8.1 it can be seen that the number of observations slightly decreases as the number of
satellites per formation increases, especially when going from two satellites per formation to three
satellites. As expected from Table 8.1, the effect of the number of satellites per formation is not that
great, the difference between two and four satellites is only around 15 successful orbit determinations.
The main reason for the difference is the fact that for a measurement set to be used for IOD and UKF,
the object needs to be observed by all satellites in the formation for at least three measurements. The
object thus needs to be in the region where the FOV of all satellites in the formation overlap for more
than three time intervals. For a larger number of satellites per formation, this region where the FOV’s
overlap is smaller compared to when only two satellites make up a formation. This leads to a slight
decrease in observations and thus a decrease in successful orbit determinations.

Inclination difference
The number of successful orbit determinations for different levels of inclination difference shows com-
parable behaviour as for the different levels of semi-major axis, as can be seen in Figure 8.1. Between
levels two and five there is a clear negative relation between the inclination difference and the number
of successful orbit determinations. But for level one there is a sudden drop in number of successful
orbit determinations.

The reason for the negative relation between level two and five is partly the same as the reason
why there exists a negative relation for the number of satellites per formation. For larger differences
in inclination between satellites, the region where all FOVs coincide is smaller, especially when the
argument of periapsis is close to π/2 or 3π/2. This smaller region leads to less observations and thus
successful orbit determinations compared to when the inclination differences between the satellites in
the formation is smaller.

The reason for the sudden drop in number of successful orbit determinations can be seen in Fig-
ures 8.4 and 8.5. Figure 8.4 shows that there is a significant difference in conversion rate between 2.5
degrees and the higher differences in inclination. The reason for this is the relatively high average posi-
tion accuracy for an inclination difference of 2.5 degrees as can be seen in Figure 8.5. This inaccuracy
sometimes leads to the UKF not converging, which in turn lowers the conversion rate and therefore the
number of successful orbit determinations.

Total satellites
As expected, in Figure 8.1 it can be seen that a larger number of total satellites lead to an increase in
the number of orbit determinations. A larger number of total satellites increases the total region of the
GEO belt that can be observed at each time interval, as well as increasing the GEO belt coverage of
the whole constellation compared to a constellation with less total satellites. The number of successful
orbit determinations increases for each higher level, however, it can be noted that the gradient of the

Figure 8.4: Conversion rate as a function of inclination
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increase between levels decreases for the higher levels. This could signify that after a certain amount
of satellites the number of successful orbit determinations would not increase anymore.

8.1.3. Average position accuracy
Semi-major axis
In Figure 8.5 there is a clear positive relation between the accuracy of the orbit determinations and
the semi-major axis. The position accuracy for a semi-major axis of 36,000 km is almost a factor of
magnitude smaller than that of a satellite constellation with a semi-major axis of 20,000 km. There are
two reasons for this positive relation.

The first reason is the fact that the relative measurement error is smaller when the observing satel-
lites are located closer to the space debris object. The resulting position error, when using the same
measurement error, is almost four times as large for a constellation with a semi-major axis of 20,000 km
compared to a semi-major axis of 36,000 km. This larger relative measurement error has a negative
effect on the accuracy of both the IOD and the UKF. The second reason is that the relative velocity
is higher for a smaller semi-major axis compared to a larger semi-major axis, as already explained in
the previous section, this leads to less measurements of the same object, which in turn decreases the
accuracy of the IOD and UKF.

Focal length
A larger focal length leads to worse position accuracy as can be seen in Figure 8.5. Increasing the
focal length decreases the FOV of the telescope, if the sensor is the same size, a decrease in FOV
means that on average each space debris object spends less time in the FOV of the satellite, which
limits the number of observations that can be done and this in turn decreases the accuracy of both the
IOD and UKF.

Between levels four and five, the accuracy is actually slightly better for the higher level, but this
is most likely caused by the randomness due to the limited amount of data points for each level and
the fact that the effect of the focal length is not that great, as could be seen in Section 8.1.1, which
increases the relative effect of the randomness.

Satellites per formation
The larger the number of satellites per formation, the better the average position accuracy gets, as can
be seen in Figure 8.5. This effect is most noticeable between level three (two satellites per group) and
level three (three satellites per group), where the average position error is almost twice as large for

Figure 8.5: Average position accuracy per level
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level two compared to level three. Adding a fourth satellite to the group still has a positive effect on the
average position error, but the effect is smaller compared to when a third satellite is added, this also
confirms results seen in Chapter 7.

Having more satellites per formation improves the average position accuracy in two different ways.
First of all, the extra satellites increases the number of measurements for each object. This reduces
the effect of the random errors and therefore leads to a better accuracy. Secondly, when a satellite
and a space debris object are in a co-planar orbit, the accuracy of the orbit determinations decreases
significantly. Adding extra satellites with a different inclination to the group, makes sure that at least
one satellite is in a non co-planar orbit, which improves the average position accuracy.

Inclination difference
In Figure 8.5 there is a clear positive relation between the inclination difference and the average position
accuracy, for the lower levels. However, for the levels three, four and five the position accuracy does
not improve significantly when increasing the difference in inclination.

The larger the difference in inclination between the satellites in the group, the better the accuracy of
the IOD and UKF becomes. A larger difference in inclination will lead to a larger difference in position
between each satellite in the group. Therefore, the measurement vectors taken for a space debris
object by each satellite in the formation will varymore to each other compared to when a small inclination
difference is used. This apparently has a clear positive effect on the accuracy of both the IOD and the
UKF, up until a certain inclination difference after which the position accuracy does not further improve
with an increase in inclination difference.

Total satellites
In Figure 8.5 it can be seen that the average position accuracy for the different level of total satellites
fluctuates around 1000 meters, this is also close to the average of the position accuracy for all 25 dif-
ferent constellation designs. In theory the different levels of total satellites should not have a significant
effect on the average position accuracy. This is because the level of total satellites signifies the number
of satellite groups. An increase in the number of satellite groups should not effect the position accu-
racy, since an object can only be observed by one group at the time. Adding extra groups thus should
not effect the accuracy of the IOD or UKF. The fluctuation that can be seen in the figure is most likely
caused by randomness and the fact that for each level only five constellation designs were simulated.

Conclusions
The semi-major axis has a negative relation on the number of succesfull orbit determinations, except for
the lowest level, where the number of successful orbit determinations is limited due to the low average
observation time. The semi-major axis has the opposite effect on the average position accuracy, where
a higher semi-major axis leads to a higher average accuracy.

A smaller focal length leads to both a higher number of successful orbit determinations and a higher
average position accuracy. A small focal length will thus lead to the best overall performance. The
lowest possible focal length is dependent on the semi-major axis of the design, however, choosing the
absolute minimum focal length for the chosen semi-major axis will most likely not lead to the optimal
performance. This is because the lowest possible focal length is calculated by using the most optimal
observation scenario, the system will then not be able to detect smaller objects or objects that are
further away. The focal length thus still needs to be optimised, however, only the larger focal lengths
do not have to be considered anymore.

The number of satellites per formation has a negative relation with the number of successful orbit
determinations and a positive relation with the average position accuracy. However, for both the perfor-
mance metrics the difference between three and four satellites is far smaller compared to the difference
in performance between two and three satellites. Considering the extra cost of adding a satellite, using
three instead of four satellites will most likely not be worth it.

The inclination difference between the satellites in a group has a negative relation with the number
of successful orbit determinations, except for the first level where a low conversion rate limits the perfor-
mance. The inclination difference has a positive relation with the average position accuracy, however,
as the inclination differences become larger the effect of increasing the inclination difference does not
improve the accuracy significantly. The most optimal inclination difference will therefore most likely
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be at or before the point where increasing the inclination difference does not significantly improve the
average position accuracy.

The number of total satellites in the constellation has a positive relation with the number of suc-
cessful orbit determinations and it has almost no effect on the average position accuracy. When only
looking at the performance of the constellation, a large number of total satellites will always be preferred,
however, this does not take into account the added cost of adding these satellites.

As can be seen the semi-major axis, inclination difference and number of satellites per formation
have a positive effect on one of the performance metrics, but a negative effect on the other. The most
optimal design point will thus most likely not be at lower or upper bounds of the design variables, but
somewhere in the middle region. Where exactly this optimal point will be, will also depend on which
performance metric is deemed more important and other consideration such as the complexity and cost
of the mission.

8.2. Limited factorial design
In the previous section it could be seen that most of the design variables have a negative effect on one
of the performance metrics but a positive effect on the other metric. A large semi-major axis leads to
higher position accuracy but a lower amount of total orbit determinations etc. The only design variable
where this is not the case is the focal length, where a smaller focal length leads to both higher accuracy
and number of orbit determination. This, in combination with the low number of constellation designs
that have been simulated, makes it very difficult to find a optimal design. Therefore, further optimisation
still needs to be performed.

To perform this optimisation a grid search, or limited factorial design, will be used. A grid search
evaluates all possible combinations of discrete design variables. This method has been chosen in
favour of other optimisation methods, such as genetic algorithms, because each simulation of a con-
stellation design is computationally intensive and thus the total number of constellation designs that can
be tested is limited. Furthermore, the use of discrete design variables can also give additional insight
into the relation between the design variables and performance metrics and the interactions between
multiple design variables.

A grid search can still be very computational intensive if many design variables with many different
possible values are used. Both the number of design variables and the number of different possible
values for each design variable thus need to be limited. One way to do this is by not using the total
number of satellites as a design variable. The total number of satellites has no effect on the accuracy
of the orbit determination, it also does not effect the number of orbit determinations a single group of
satellites can make. The best performing design of a group of satellites will therefore also lead to the
best performing constellation design once the total number of satellites is increased. Additionally, not
including the total number of satellites as a design variable has the added effect on limiting the average
simulation time per constellation design, as only a maximum of four satellites will be used instead of 16
satellites. The effect of the total number of satellites will be further investigated once the best formation
design has been found.

The values that each of the remaining design variables can take can be found in Table 8.3. Most of
these bounds are similar to those used in Taguchi method, but this time with a smaller interval between
the bounds. This is because each design variable has positive effect on one of the performance metric
and a negative effect on the other, thus all of these values can lead to a Pareto optimum point and should
thus be taken into account during the simulation. However, for the semi-major axis and the focal length
slight differences have been made compared to the Taguchi method. In the previous section it became
clear that at the lowest level of semi-major axis (a = 20,000 km) the number of observations suddenly
dropped due to a lower conversion rate, this will therefore not lead to an optimal solution, therefore, the
lowest semi-major axis that will be used is 24,000 km. For the focal length, different levels will again
be used instead of real values, this is because the possible focal lengths are determined by the semi-
major axis. In the previous section it was also found the a lower focal length leads to both a higher orbit
determination accuracy and a larger number of orbit determinations. This has been accounted for by
taking only the smallest 2/5th of the possible focal lengths and dividing those into five different levels.

In Figure 8.6 the results of the grid search are plotted. The effect of the different design variables
on the two performance metrics follow the same behaviour as already reported in the previous section.
A larger number of satellites per group results in a higher position accuracy, while only having a very
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Table 8.3: Design variables limited factorial design

Number of satellites per group [2, 3, 4] [-]
Semi-major axis [24,000; 26,000; ...; 36,000] [km]
Focal length [1, 2, 3, 4, 5] [-]
Inclination difference [2.5, 5, ..., 15] [deg]

small effect on the number of total orbit determinations. As can be seen in the figure, most of the Pareto
optimal constellation designs have four satellites. A small semi-major axis leads to a higher number of
observations but a lower position accuracy. All possible values of the semi-major axis could lead to a
Pareto optimum constellation design. As discussed earlier, a smaller focal length leads to both more
orbit determinations and to a higher position accuracy. In Figure 8.6, there seems to be a mix of both
large and small focal lengths near the Pareto front. However, this is due to the fact that the focal length
is dependent on the semi-major axis, a small semi-major axis can only use large focal lengths, all points
near the Pareto front use the smallest or second smallest possible focal length for the semi-major axis.
For the inclination difference, there is no clear best solution, although it is clear that the constellation
designs with a inclination difference between 5 and 12.5 degrees offer better performance than the
inclination difference at the lower and upper bounds.

From the results mentioned above, a Pareto optimal front could be made and an optimal solution
could be chosen. However, the intervals between each possible value for the design variables is still
quite large, which means that the true optimal design probably lies somewhere between the intervals.
So instead of choosing a Pareto optimal constellation design from the results above, the results will be
used to further narrow down the upper and lower bounds of the design variables, which will allow for
smaller intervals and this will more likely result in a (near) optimal design.

The narrowing down of the bounds of the design variables will be done in the following way. First
a point will chosen, where the x-coordinate is the number of succesfull orbit determinations and the y-

Figure 8.6: Performance metrics for different constellation designs
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coordinate is the average position accuracy, this point will represent the most optimal performance. The
distance between each point in Figure 8.6 and the chosen point will be calculated. The 20 points closest
to the optimal performance will be selected, from these 20 best points, the minimum and maximum
value of each design variable will be used as the new bounds.

When picking the coordinates for the point, two things need to be taken into account i.e., perfor-
mance and mission cost. The performance should be maximised and the mission cost should be
minimised. There are two performance metrics, the number of successful orbit determinations and the
average position accuracy of the orbit determinations. Looking at Figure 8.6, it is clear that a higher
number of successful orbit determinations leads, on average, to a lower position accuracy. There is
thus no solution that will lead to the highest performance for both metrics and a point should be cho-
sen that leads to satisfactory performance for both of the metrics, this also means that this point will
not lie close to the edges of the Pareto front. There are also no requirements for the number of orbit
determinations and average position accuracy, although for the average position accuracy it should
be noted that the average position accuracy of publicly available orbit estimations is around 4 km for
objects in GEO (Vallado et al., 2013). Considering this, and the fact that all points already have a higher
accuracy, a slight preference could be given to a higher number of orbit determinations at the cost of
a worse accuracy. There is thus still a large number of points that could be chosen, to make a choice
the mission cost should also be considered.

There are three design variables that will have a direct effect on the mission cost, the number of
satellites per group, the total number of satellite and the focal length. The total number of satellites
will be discussed in a later section, so for now the focus lies with the other two variables. The number
of satellites per group will increase the production and launch cost of the mission, a smaller number
of satellites per group is thus preferable. Additionally, for the same number of total satellites using
less satellites per group also has the added benefit of making it possible to use more groups and thus
increasing the GEO region it can search at the same time. However, as could already be seen in Figure
8.6, most of the optimal constellation designs consist of four satellites per group.

A larger focal length will lead to a larger telescope, this has two main effects on the mission cost,
it will increase the size of the satellite, which in turn will increase the weight and subsequently launch
cost. A larger telescope will also require more power, this will increase the size, cost and weight of
the power subsystem and total satellite. It is thus important to minimise the focal length as much as
possible.

In Figure 8.6, one point can be identified that offers a high number of observations a relatively good
accuracy and minimises the focal length and possibly the number of satellites per group. At a number
of successful orbit determinations of around 27.5 there are still constellation designs with an focal
length between 0.2 and 0.3 meters and there are also some constellation designs with 2 or 3 satellites
per group. Therefore, this point will be chosen as a reference point. By looking at the minimum and
maximum values of the design variables of the 20 points closest to the reference point, the new bounds
can be set, which can be seen in Table 8.4, the focal length are again adapted to only use the 5 smallest
possible focal lengths per semi-major axis. The usage of more than 20 points was also investigated.
When using the closest 40 points, 38 of those points still lie inside of the bounds described in Table 8.4
and the best 10 points were centered around the middle of the bounds. It is thus highly unlikely that
the optimum lies somewhere around the bounds described below, using more than 20 points would
thus be computationally inefficient (more simulations) or would negatively impact the accuracy of the
optimisation (larger intervals).

The results of the factorial design simulation using smaller bounds and intervals can be seen in
Figure 8.7. The results follow the same trends as those in Figure 8.6, with some slight differences. For
the number of satellites per group, there is more separation in the average position accuracy between
the different number of satellites per group, four satellites clearly provide the best accuracy and two

Table 8.4: Design variables limited factorial design, narrow bounds

Number of satellites per group [2, 3, 4] [-]
Semi-major axis [27,500;28,000; ..., 33,000] [km]
Focal length [1, 2, 3, 4, 5] [-]
Inclination difference [5, 6, ..., 13] [deg]
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satellites the worst. In Figure 8.6, there were some constellation designs using two satellites that gave
a comparable accuracy as four satellites per group. However, using these smaller bounds it is clear
that more satellites will always provide a higher accuracy when all other parameters are the same. By
decreasing the bounds of the inclination difference, the performances of the different designs are more
randomly distributed than previously. This signifies that the inclination difference has only a limited
effect on the two performance metrics.

The same procedure of choosing a point and narrowing the bounds by using the 20 points closest
to this point was again repeated. However, there was only an increased performance for the lower
constellation designs with a low number successful orbit determinations, where the accuracy was in-
creased significantly. However, this was only the case for constellation designs which resulted in 25
or less successful orbit determinations, for the points with more orbit determinations, the accuracy in-
crease was not significant. As mentioned earlier a higher number of successful orbit determinations is
preferred to a higher accuracy. So the smaller bounds and intervals did not improve the performance
in the most important region, therefore, a constellation design in Figure 8.7 will be used.

The same reasons that were used for picking a reference point to narrow down the bounds and
intervals are used again to pick the best performing point. For the performancemetrics, a larger number
of successful orbit determinations is preferred over an increase in accuracy. For the design variables,
a smaller focal length and a lower number of satellites per group is preferred. Using these objectives,
a constellation design was chosen, for which the parameters are displayed in Table 8.5 and Figure
8.8. This design resulted in 32 successful orbit determination with an average position accuracy of
232 meters. This specific constellation design was chosen because, constellation designs with four
satellites per group only resulted in an increased accuracy of around 10%, while the constellation
designs with only two satellites resulted in a decrease of accuracy of 60%, without increasing the
number of succesfull orbit determinations significantly. Additionally, this constellation design also uses
a relatively small focal length.

Figure 8.7: Performance metrics for different constellation designs using smaller bounds
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Table 8.5: Design variables for optimal constellation design

Number of satellites per group 3 [-]
Semi-major axis 31,000 [km]
Focal length 0.37 [m]
Inclination -11, 0, 11 [deg]

Figure 8.8: Constellation design
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Analysis of variance
One of the benefits of using a factorial design and thus discrete values for the design variables is that
the effect of the different variables on the performance metrics can be more precisely analysed using
an analysis of variance (anova), compared to when continuous values for the design variables are used.
One way to test which design variable has the largest effect on the is by looking at the F-test for each
variable. The F-test compares the variance between sample means and the variance within samples,
the larger the F-value for a design variable the larger the effect that variable has on a performance
metric. To perform this F-test, the performance metrics of all constellation designs which used either
the maximum or minimum value of a design variable were used. It should be noted that the F-test
works the best when the samples are normally distributed. For both the performance metrics this is not
the case, this means that the actual F-values do not give any real insight into the effect of the design
variable on the performance metrics. However, comparing the F-values for each performance metrics
of the different design variables does provide insight into which variable has the largest effect on the
metrics.

In Table 8.6, the results of these F-test can be seen. Looking at the F-values for the orbit determina-
tion accuracy, it is clear that the number of satellites per formation has the largest effect on the accuracy,
followed by the semi-major axis, inclination difference and finally the focal length has the smallest effect
on the accuracy. The reasons for why these variables have certain effects on the performance metrics
has already been discussed in previous sections and will thus not be repeated. The design variable
which has the largest effect on the number of successful orbit determinations is the semi-major axis,
followed by the focal length, number of satellites per formation and finally the inclination difference.

The semi-major axis has a large effect on both accuracy and number of successful orbit determina-
tions and is thus the most important design variable which has the most effect on the total performance
of a constellation design. If the accuracy needs to be improved without effecting the number of suc-
cessful orbit determinations too much the number of satellites per formation should be changed. If the
opposite is needed, more succesfull orbit determinations without effecting the accuracy too much, the
focal length needs to be changed.

8.3. Optimal design performance
In this section the performance of the optimal constellation design will be discussed. To do this, first the
UKF can be tuned for this specific constellation design. In the previous sections, the UKF was initialised
using values that were dependent on the semi-major axis of the constellation design. This was done by
using some test cases and using that data in a regression analysis to determine a formula for the initial
values of the UKF which produced good performance for all different constellation design. However,
this performance was not optimal for most cases. Using more optimal values for the initialisation of
the UKF gives the following performance, number of successful orbit determinations = 34 and average
position accuracy = 198 m, which is an increase of 6% and 15%, respectively. However, it should be
noted that for only 17% of the space debris objects at least one successful orbit determination could
be performed.

In Figure 8.9 the distributions of the orbit determination errors in the RSW-frame are plotted, in Table
8.7 the average errors are shown. There is not a lot of variance in the distribution of the errors, except
for the along track velocity error and some outliers for the radial and along track position error. For the
position errors, the radial errors are significantly larger than both the along- and cross-track position
error, this is also the case for the velocities. Notably, the orbits of the space debris objects did not have
a significant effect on the orbit determinations.

Table 8.6: F-values of the different design variables for the two performance metrics

Number of satellites
per formation Semi-major axis Inclination

difference Focal length

Orbit determination
accuracy 358.2 243.6 79.3 20.97

Number of successful
orbit determinations 67.2 296.0 39.4 148.3
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Table 8.7: Mean orbit determination error in RSW-frame

Radial 249.1 [m]
Along-track 96.1 [m]
Cross-track 69.1 [m]
Radial velocity 8.9 [m/s]
Along-track velocity 6.2 [m/s]
Cross-track velocity 6.6 [m/s]

Figure 8.9: Errors of orbit determination in RSW-frame
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8.3.1. Number of total satellites
In this section the effect of adding more groups of three satellites to the constellation design on the
performance metrics is investigated. The total number of satellites does not effect the accuracy of the
orbit determinations so only the effect on the number of successful orbit determinations will be looked
at, this can be seen in Figure 8.10. As expected there is a clear positive effect of the total number of
satellites on the number of successful orbit determinations. However, there are two things that can be
noted.

First of all, it was expected that each additional group of three satellites would increase the number
of successful orbit determinations, however, when looking at the graph it can be seen that this is not
the case: there are multiple points on the graph, where an additional group of satellites actually leads
to a significant decrease in the number of orbit determinations (for example between 18 and 21 total
satellites). This can be explained by looking at the way the initial states of the satellites are determined.
Each group of three satellites are divided evenly over the whole orbit, the angle between all groups is
the same. This means that when a group is added the initial state of each satellite is changed. As can
be seen from the graph the initial states of the satellites can have a significant influence on the number
of successful orbit determinations that can be done. Secondly, the effect, barring the fluctuations due to
changes in the initial states of the satellites, of adding extra satellites to the constellation design on the
number of successful orbit determination gets smaller the higher the number of total satellites. There
is a 43% increase between three and six total satellites, but after around 30 satellites this increase lies
somewhere between 1 and 4%.

In Figure 8.11, the percentage of space debris objects for which a successful orbit determination
has been performed is plotted as a function of their orbit parameters and size for a constellation with
a total of 18 satellites, for example 80% of space debris objects with an inclination between 0 and 2
degrees had at least one successful orbit determination. It should be noted that due to the distribution
of the space debris objects, see Figure 3.1, some results are effected by randomness, for instance
only two space debris objects had a semi-major axis in the highest bin, those two objects also happen
to have a small radius and high inclination which decrease the change of observations, thus making
the percentage very low. Thus, at some bins with only a few objects (less than 10), there is a lot of
randomness in the results and these results should not be given a lot of significance and will be mostly
ignored during the analysis. For the semi-major axis, the first and last bin only have very few space
debris objects, for the inclination there are very few objects between 0 and 5 degrees. For eccentricity,
there are only very few objects with an eccentricity above 0.004. The size of each space debris object
is uniformally distributed, so each bin has approximately the same number of objects in them.

Looking first at the distribution for the semi-major axis, there is a slight decrease in percentage as the

Figure 8.10: The number of successful orbit determinations as a function of total satellites
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semi-major axis gets larger, however, this decrease is only around 10%. Two reasons can be identified
for this decrease. First, a larger distance between the observer and object decreases the SNR and
thus decreases the change of observations. Second, the relative velocity between the observer and
object is smaller for larger semi-major axis, which increases the observation time, which increases the
change of a successful orbit determination.

For the inclination difference there is a clear negative relation between the inclination difference
and percentage of successful orbit determinations. Between 12 and 15 degrees inclination difference,
a successful orbit determination can be performed for only around 20% of the objects. Looking back at
Figure 3.1, most of the currently tracked space debris objects have an inclination in this interval. This
poor performance for objects with a high inclination is thus a large reason for the low total percentage
(34% for 18 total satellites) of space debris objects for which an successful orbit determination could
be performed. The main reason for this bad performance for the higher inclination is these objects
only cross the possibly observed region for a relatively short period of time. It was found that the
system could observe these objects, around 85% of all objects with a inclination near 15 degrees were
observed at least once, however, due to the short observation time a successful orbit determination
could not be performed.

The eccentricity has a small negative effect effect on the number of successful orbit determina-
tions. This could be caused by the larger chances in orbital velocity for the higher eccentricity, which
decreases the amount of time an object can be observed and thus decreases the chances on a suc-
cesfull orbit determination.

As already expected, a larger sized-space debris-object leads to more successful orbit determina-
tions, this is caused by the larger object reflecting more light and thus increasing the SNR and thus the
chance on observation. One thing that should be noted is the fact that zero objects with a size between
1 and 2 cm has been detected. To detect these objects, a larger focal length or a larger semi-major
axis should be used, but as already discussed in this report, this will lead to an overall degradation of
the performance of the constellation design.

Figure 8.11: Percentage of observed space debris objects as a function of their orbit parameters and size
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8.3.2. Maintain custody
Another way to look at the performance of the constellation design is by looking at if the system would
be able to reacquire an already observed object, which is called maintaining custody. If the constella-
tion design is not able to do this, each object needs to be reacquired and it would be very difficult to
determine if an observed space debris object is new or if it has already been observed. Custody can
be maintained if, by using an active search method, pointing the sensors to where it is estimated the
object will be, the object flies through the FOV of the sensor. This is achieved if the following criteria
are met:

ϵcross−track < D · tan θ
2

(8.4)

ϵalong−track < D · tan θ
2

(8.5)

where D is the distance between the observing satellites and the space debris object and θ is the
FOV-angle. Maintaining custody is a good performance because it is both dependent on the accuracy
of the orbit determination and the frequency of observations of a single space debris object, which is
influenced by the number of total satellites.

To determine if custody can be maintained, the following method is used: 200 orbits are simulated
between the time of the first orbit estimation and the second orbit estimation. The initial states are
determined by randomly adding an error to the actual initial state of the space-debris object. The
mean of this random error is zero, while the variance comes from covariance matrix from the UKF. The
covariance will thus be different for different space-debris objects, it can be anywhere from a couple
of meters to upto around 500 m. The cross and along track error at the time of the second orbit
determination is then calculated, for each of the 200 orbits. If the 3-σ variance of these errors are lower
than the maintain custody limit set by the FOV-angle and the distance between observer and object,
custody can be maintained.

In Figure 8.12 the results can be seen, here the percentage of objects, with at least one successful
orbit determination, for which custody could be maintained is plotted as a function of number of total
satellites. As can be seen using additional groups of satellites increases this percentage, this is caused
by the fact that each single space debris object is observed more regularly when more satellites are
used. However, after around 15 total satellites the percentage does not increase significantly anymore.
When comparing the results between a one week versus one month total simulation time, it can be
seen that using a longer simulation time leads to the same trend but a higher percentage. This higher
percentage is most likely caused by certain space debris objects being observed for the first time in the
later stages of the week, which does not allow for a second observations and thus can not be tested
for the maintenance of custody.

These percentages are most likely lower than the actual percentages. Since, if an active search
is done, the time interval between the first and second measurement will be shorter than it is at the
moment, since now a passive search method is used which relies on the space debris crossing the
FOV of the sensors again.

For most of the space-debris objects, the reason for the system not being able to maintain custody
is that no second orbit determination has taken place. This can be seen in Figure 8.13, only for a
small percentage, around 10% of space debris objects, for which a second orbit determination has
been don,e does not fall in the maintain custody limit. So especially when using a small number of
total satellites, the low percentage is caused by the fact that no second orbit determination could be
performed and not by the inaccuracy of the orbit determination. It can also be noted from the figure
that the along-track error is a lot larger than the cross-track error. The errors for orbit determination
for the along- and cross-track were similar, as could be seen in Figure 8.9, however, depending on the
accelerations acting on the object the propagation error can vary for the different RSW directions even
if the initial error is similar (Mooij and Dirkx, 2021).

Conclusions
The average position error for the optimal design is equal to 198 meters, the radial error is significantly
larger than the cross- and along-track errors. This error is good enough to allow the system to maintain
custody for approximately 90% of all space debris objects for which at least two different observation
sets could be performed. For the 10% of objects for which this was not the case, it was caused by the
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Figure 8.12: Percentage of observed objects for which custody could be maintained as a function of number of satellites and
total simulation time

Figure 8.13: Along- and cross-track errors for space debris objects at the time of the second orbit determination
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along-track error which was around 10 times larger than the cross-track error. It was also found that
the accuracy of the orbit determinations did not depend on the orbit of the space debris objects.

The number of successful orbit determinations for the optimal design is 34, which is only 17% of all
space debris objects. This low percentage is mainly caused by the systems poor performance for space
debris objects with a high inclination and smaller objects, for objects smaller than 2 cm, no observations
can be made. The semi-major axis and eccentricity of the orbits of the space debris objects only have
a small effect on the performance of the system. However, this is partly due to the limited GEO region
that has been investigated, if broader bounds would have been used the semi-major axis of the space
debris objects would have a far greater effect on the number of successful orbit determinations.

The low number of successful orbit determinations is also the reason why the system is only able
to maintain custody for around 25% of all objects for which at least one observations could be made. It
was also found that the initial state of the satellites have a significant effect on the number of successful
orbit determinations that could be performed. However, this effect would have been smaller if a longer
simulation time is used.

Increasing the total number of satellites in the constellation will lead to more successful orbit de-
terminations. However, the increase in the number of orbit determinations decreases as more total
satellites get used. The same holds for the systems ability to maintain custody of the observed space
debris objects, where there is a significant increases for the first couple of added satellites, but after
around 15 satellites, the percentage does not increase significantly anymore.

To conclude, the design is able to provide valuable information for space-situational awareness
purposes, as long as the system is able to regularly observe the space debris objects. However, due
to its poor performance for objects with a high inclination and small size, and the fact that most of
the space debris objects in GEO will have a high inclination and small size, the lack of successful
orbit determinations severely limits the usefulness of this and similar systems. The performance of the
system can be significantly improved by increasing the number of total satellites, however, this will also
increase the mission cost. Another way in which this system could prove useful, is by observing and
providing orbit determination for relatively new space debris objects. These new space debris objects
have an inclination close to zero and gradually move to higher inclinations. The system will thus provide
very good performance for these newer space-debris objects.

8.4. Sensitivity
For the simulations done in the previous sections certain values for the two different errors, satellite
position and measurement, were used. However, these values could change. Additionally, both the
initial state and size of the space debris objects are randomly generated using a certain seed, changing
this seed could thus have an effect on the design and performance. In this section the effect of changes
of the magnitude of these errors and the different seeds will be investigated. Two different sensitivity
analysis will be performed, first the effect of the different errors and seeds values on the design will be
looked at. This will investigate how the optimal design chances when different error values and seeds
are used. Secondly, the sensitivity of the performance of the optimal design will be investigated.

The lower and upper bounds for the errors were determined by looking at literature. For the position
error a nominal value of 1 m is used, it has been shown that for satellites in MEO the position can be
known as accurately as 0.5 m (Ansalone and Curti, 2013) (Van den Ijssel et al., 2003) (Guo et al.,
2010)(Deng et al., 2014), so this value will be used as the minimal value for the position error. To
make a fair comparison between the lowest and highest possible position error, a similar increase in
the position error is used as the upper bound, so a maximum position error of 2 meters will be used.
For the measurement error a nominal error of 3 arc seconds has been used, however, this error can
range between 1 and 5 arc seconds according to literature (Felicetti and Emami, 2016) (Ansalone and
Curti, 2013) (Armellin et al., 2016), so these will be used as the minimum and maximum values for the
measurement error. The nominal seed that has been used is 1, the other two seeds to be tested have
been randomly chosen to be 242 and 2345.

8.4.1. Design sensitivity
To determine how the different error values and seeds effect the optimisation process, the factorial
design process has been repeated for all different seeds and error values. For the first run, the same
bounds and intervals were used as for the nominal case, see Table 8.3, then, using the same method,
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the new bounds and intervals were determined for each individual case and a new simulation was run.
Using those results, the average value of each design variable of the 20 closest points to the chosen
optimal point were then compared to each other and to the nominal case. This method was chosen
instead of comparing the chosen optimal designs to each other, because this method eliminates a larger
part the randomness of choosing the optimal solution and thus provides a better comparison.

In Table 8.8, the results for the different errors and seeds are shown. First looking at the effect
of the satellite position error on the design, it can be seen that a larger position error increases the
number of satellites per group, semi-major axis and the inclination difference compared to the nominal
case, the focal length decreases slightly. These results make sense, since a larger position error will
decrease the accuracy of the orbit determination, to account for this the number of satellites per group,
semi-major axis and inclination difference increases, which have been shown in previous sections to
increase the orbit determination accuracy. The decrease in focal length is not directly related to the a
difference in error, however, it changes, because the semi-major axis has changed. Since the semi-
major axis increased, the focal length can be decreased slightly, which allows for a larger FOV and
thus more observations. As expected, the exact opposite happens when decreasing the position error,
which sees a decrease in the number of satellites per group, semi-major axis and inclination difference
and a slight increase in focal length. The deviations from the nominal case are similar for both the
increased and decreased position error.

The effects of varying the measurement errors are similar to those of the satellite position error.
A larger measurement error leads to more satellites, a larger semi-major axis and a larger inclination
difference, and vice verse for a smaller measurement error. However, it can be noted that the measure-
ment error has a larger effect on the optimisation process compared to the position error. This makes
sense since the measurement error caused by a satellite position error of 2 meters is smaller than the
maximum measurement error of 5 arcseconds. The satellite position error thus has less influence on
the optimisation process.

Using a different seed and thus different initial states and sizes of the space debris, has only a slight
influence of the optimisation process. There are some differences between the average nominal design
and the average design for the different seeds. As could be seen in the previous section the initial state
of the satellites and the space debris objects have a significant effect on the performance of the system,
especially for the number of successful orbit determination, which influences the optimisation process.
Additionally, the different seeds were also used for a optimisation run using a minimum measurement
error. It can be seen that the difference in seeds has a similar effect on the nominal case as on the
case with a minimum measurement error.

In Figure 8.14 the Pareto fronts for the nominal, minimum and maximum values of the different

Table 8.8: Average value of the design variables of the 20 closest points to the chosen optimal point for the different values of
errors and seeds

Number of satellites
per group [-]

Semi-major axis
[km]

Inclination
difference [deg]

Focal length
[m]

Nominal 3.6 29,100 9.6 0.40
Max. Position
error 3.8 29,700 9.9 0.38

Min. Position
error 3.5 28,400 9.2 0.47

Max. Measurement
error 3.8 31,100 10.7 0.38

Min. Measurement
error 3.4 26,400 8.5 0.53

Seed 242 3.5 29,200 9.8 0.40
Seed 2345 3.6 28,800 9.7 0.42
Min. Measurement
error, seed 242 3.4 26,700 8.6 0.51

Min. Measurement
error, seed 2345 3.5 26,200 8.5 0.54
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Figure 8.14: Pareto fronts for different error values

errors are shown. In the figure the Pareto fronts for the different seeds have not been shown, since
these were very similar to the nominal case and made the graph difficult to read. As already seen from
Table 8.8, the effect of changing the measurement error is significantly larger than the effect of changing
the position error. This is especially true for the right hand side of the graph, which corresponds to a
higher number of successful orbit determinations.

Looking more closely to the Pareto fronts for the minimum and maximum measurement error, it
can be seen that for the lower number of successful orbit determinations the Pareto fronts do not
differ to much from the nominal case. However, as the number of successful orbit determinations
increases, the difference in the accuracy of the orbit determinations starts to grow bigger between the
minimum and maximum measurement error. This makes sense, as the lower number of successful
orbit determination use a large semi-major axis as could be seen in Figure 8.7, for these cases the
measurement error has relatively less effect on the orbit determination accuracy since the distance
between the observer and the space debris object is smaller. The effect of increasing or decreasing
the measurement error increases as this distance becomes larger. A smaller measurement error both
leads to more successful orbit determinations and a higher accuracy.

A changing position error has less effect on the Pareto fronts. The difference in the Pareto fronts
for the maximum and minimum position error remains roughly the same for the whole front. Except for
the at highest number of successful where the Pareto fronts are very similar. Again this makes sense,
as these points correspond to a lower semi-major axis, a small position error has less influence on the
measurement the further the distance between the observer and the space debris object gets.

8.4.2. Performance sensitivity
To test the sensitivity of the performance of the chosen optimal design to differing values of the errors,
all combinations of error values were simulated and the average accuracy and number of successful
orbit determinations was then compared to the nominal performance. For the performance sensitivity
analysis the position error was split up into three distinct errors in the RSW-frame, this was done in
order to determine if position errors in different directions in the RSW-frame have a different effect on
the performance. The error values can be found in Table 8.9.
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Table 8.9: Measurement and position error values

Measurement error [1, 2, 3, 4, 5] [arcsec]
RSW-position error [0.5, 1.0, 1.5, 2.0] [m]

In Table 8.10, the percentage difference in accuracy of the orbit determination for the different mea-
surement and position errors are shown compared to the nominal case. As already seen in the design
sensitivity analysis, the measurement error has a significantly larger effect on the accuracy of the orbit
determinations compared to the position error. The average accuracy can change as much as 50%
when the measurement error differs from the nominal value. It can also be noted that, for both the
measurement and position errors, a larger error has a larger negative effect than a comparable smaller
error has a positive effect. For example, if the along-track position error decreased by 100% the accu-
racy improvement is around 18%, but when the error increases by 100% the accuracy decreases by
as much as 35%. Additionally, the effects of the radial and cross-track position errors are very similar,
however, the along-track position error has a larger effect on the average orbit determination accuracy.
This difference in effects is also explained by the fact that a difference in along-track position has a
larger effect on the measurement error than the other two directions.

Due to the relatively high sensitivity of the accuracy to the varying error values, it was also inves-
tigated how this would effect the systems ability to maintain custody of the regularly observed space
debris objects. In Figure 8.15 this percentage is plotted as a function of a decreasing orbit estimation
accuracy. If the errors stays between the bounds specified earlier, the percentage only drops by about
10% and the system is still able to provide a good performance. However, if the error in the orbit esti-
mation of the observing satellites becomes very large, the percentage of objects for which custody can
be maintained drops rapidly.

In Table 8.11, the percentage difference in number of successful orbit determinations for the different
measurement and position errors are shown compared to the nominal case. The same relation between
the errors and the performance holds as for the accuracy, the measurement error has the largest effect,
followed by the along-track position error and the radial and cross-track error have a similar effect on
the performance. The negative effect of increasing the error is again larger than the positive effect
of decreasing the errors. The number of successful orbit determinations is not very sensitive to the
changing error values, especially compared to the sensitivity of the accuracy. The maximum change is
around 5%. The errors did have a noticeable effect on the number of successful orbit determinations
in the design sensitivity analysis, however, this is because the lower measurement error allowed for a
smaller semi-major axis and thus an increased amount of observations. When using the same constel-
lation design, decreasing the errors does not have a large influence on the amount of observation the
system can do. The only way the errors influence the number of successful orbit determinations is by
either increasing or decreasing the accuracy of the orbit determinations which increases or decreases
the number of orbit determinations that converge, thus making them successful or unsuccessful.

Conclusions
The design is sensitive to the different error values. There are significant differences between the
optimal design for the nominal values and the designs, which used different error values. If the errors
increase the semi-major axis, number of satellites per group and inclination difference all increase, to
negate the errors affect on the orbit determination accuracies. The design process is more sensitive
to the measurement error compared to the position error. Additionally, the changes of the design due
to an increase in error are larger than the changes due to a decrease in error. Furthermore, the initial

Table 8.10: Percentage change in the orbit estimation accuracy for different error values

Measurement error [arcsec] /
position error [m] 1/0.5 2/1.0 3/1.5 4/2.0 5/-

Measurement error +37.2 +14.6 +2.10 -28.2 -48.7
Radial pos. error +11.6 -1.38 -16.0 -27.2 -
Along-track pos. error +18.2 +1.21 -24.1 -35.6 -
Cross-track pos. error +11.9 -1.92 -14.8 -28.1 -
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Table 8.11: Percentage change in the number of successful orbit determination for different error values

Measurement error [arcsec] /
position error [m] 1/0.5 2/1.0 3/1.5 4/2.0 5/-

Measurement error +4.1 +1.2 +0.5 -1.5 -5.1
Radial pos. error +2.1 -0.2 -1.0 -3.8 -
Along-track pos. error +3.6 +0.6 -2.1 -4.8 -
Cross-track pos. error +1.9 +0.1 -0.8 -3.4 -

states of the space debris objects only have a small effect on both the design and performance.
The average position accuracy of the optimal design is also sensitive to the different error values.

An increase of the error values can decrease the accuracy by as much as 50%. Themeasurement error
has a larger effect on the average position accuracy compared to the position errors. Additionally, the
along-track position error has more effect on the accuracy than the radial and cross-track position error.
It was also found that if the error becomes too large the system will not be able to maintain custody
for a large part of the space debris objects. The number of successful orbit determinations is not very
sensitive to the different error values, changes in the number of successful orbit determinations are also
not caused directly by varying error values but due to differences in accuracy of the orbit determinations.

To conclude, both the design process as well as the performance of the optimal design are sensitive
to varying values for the errors. Determining the predicted error values accurately before the design
process starts is thus very important for finding the optimal design. If the actual values for the error
differ from the predicted values, the real-life performance can change significantly. The error values
are also not constant, especially the position errors, so the accuracy of the orbit determinations can
also vary during its operation. Additionally, the measurement error has the largest effect on both the
design process and performance, so if the performance of the system needs to be enhanced the best
way to do it would be to decrease the measurement error as much as possible.

8.5. Robustness
In this section the design will be tested for its ability to be used for different mission objectives, i.e., its
robustness. It will be investigated how the design performs for space debris objects that do not orbit in
the GEO regime, two different regimes will be looked at, space debris objects close to GPS-satellites

Figure 8.15: Percentage of objects with at least 2 observations which fall inside the maintain custody limit as a function of the
average position accuracy
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and objects in a geostationary transfer orbit.

8.5.1. Space debris near GPS-satellites
The GPS satellites are arguably the most important satellites for the day-to-day operations on Earth.
Therefore, the robustness of the design will be tested by looking at the performance of the design for
space debris objects orbiting close to the GPS satellites. The orbital parameters for the GPS-satellites
can be seen in Table 8.12.

In earlier parts of the report it was already found that the optimal design does not perform well
for space debris objects with high inclinations, so it is expected that the design will not work well for
this particular scenario. To test the robustness, 500 space debris objects will be simulated with orbital
parameters similar to those of the satellites. The optimal design does need to be changed, since at the
moment the satellites will have a larger semi-major axis than the objects, which will make it impossible
for the satellites to observe the object. To adjust the design for the GPS region, a quick optimisation
for the semi-major axis and the focal length was done, while keeping the inclination difference and
number of satellites the same as these should not be influenced by the changing of semi-major axis of
the space debris objects. A factorial optimisation was done using the values in Table 8.13, which were
based on the ratios between the semi-major axis of the space debris objects and the semi-major axis
of the optimal design.

The best performing design has a semi-major axis of 19,000 km and a focal length of 0.2 meters.
This has almost the exact same ratio between the semi-major axis of the space debris objects and the
semi-major axis of the optima design (19,000/26,560 = 0.72, 31,000/42,500 = 0.73). The best perform-
ing design in this case is very relative, since even this design only managed to provide a successful
orbit determination of just two space debris objects, a percentage of 0.4%. This was expected since,
as could already be seen in Figure 8.11, there is a negative relation between the number of observa-
tions of a space debris object and the inclination of that object, even for a inclination of 15 degrees
only for 20% of the objects a successful orbit determination could be performed. The accuracy of the
orbit determinations was also 200% higher than for the optimal design for the GEO case. This was
caused by the very low observation time, which was equal to the lowest possible observation time of
240 seconds. This design is thus clearly not suitable for this mission objective and more broadly, the
design is not suitable for any mission where highly inclined objects need to be observed.

8.5.2. Geostationary transfer orbit
GEO based space debris objects are not the only space debris objects that could be observed by the
satellites. Space debris objects that have a geostationary transfer orbit (GTO) can also be observed. A
GTO is a highly elliptical orbit which is used to transfer from a LEO to a GEO, see Figure 8.16. A GTO
for a satellite usually has the same inclination as the initial LEO, a manoeuvre is performed to lower the
inclination to 0 degrees at the apogee. Space debris objects in a GTO only spend a small portion of their
orbit in the observable region of the satellites, it is thus expected that the number of successful orbit
determinations will decrease significantly compared to the nominal case. To test whether the optimal
design is able to make accurate orbit determinations for space debris objects in a GTO, 200 objects are
simulated using the semi-major axis, inclination and eccentricity seen in Table 8.14, and with a varying
argument of periapsis, true anomaly and right ascension of the ascending node.

The performance of the constellation design for the orbit determination of space debris objects in
GTO is far worse, especially for the number of successful orbit determination, then for objects in GEO.

Table 8.12: Kepler elements of space-debris objects near GPS-satellites

Semi-major axis 26,560 [km]
Eccentricity 0.0 - 0.02 [-]
Inclination 54.0 - 56.0 [deg]

Table 8.13: Adjusted design variables ranges for near space-debris near GPS-satellites

Semi-major axis [15,000, 17,000, 19,000, 21,000, 23,000] [km]
Focal length [0.10, 0.15, 0.20, 0.25, 0.30] [m]
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Table 8.14: Orbit parameters for space-debris objects in a GTO

Semi-major axis 24,371 [km]
Eccentricity 0.73 [-]
Inclination 0 - 15 [deg]

The constellation was only able to observe 3% of all space debris objects compared to 17% for the
nominal case. This makes sense since the space debris objects spend only a short time in a possibly
observable region for each orbit. Similarly to the nominal case, the constellation also performed way
better for space debris objects with a inclination close to zero. However, when a satellite reaches
apogee, a combined manoeuvre is used to change the perigee and inclination, so if a space debris
object has a inclination of 0 degrees it is most likely already in GEO, so 0 degree inclination GTO’s are
not likely to be found. The accuracy of the orbit determinations is also significantly lower than for the
GEO based space debris objects, the average position accuracy is 450 meters compared to the 198
meters for the nominal case. This could be caused by the lower average observation time and the fact
that the objects are in a highly elliptical orbit instead of a near-circular orbit.

The design is thus not very capably of providing an orbit determination for a lot of space debris
objects in GTO, as the number of successful orbit determinations is very small. However, the design is
able to provide a reasonably accuracy orbit determination if a space debris object in GTO happens to
be spotted during its nominal operations.

Conclusions
For both scenarios, differing from the nominal case, the (adapted) constellation did not perform well.
There was a significant drop in the number of successful orbit determinations both caused by the same
reason, the space debris objects spend too little time in the observable GEO. This decreases the
chances that the space debris object can be observed. Due to the limited observation time the accuracy
of the orbit determinations is also significantly lower than for the nominal case. The optimal constellation
design is thus not robust and a serious redesign would be necessary to provide adequate performance
for these observation scenarios.

Figure 8.16: Geostationary transfer orbit



9
Conclusions & Recomendations

In Section 9.1 of this chapter, the conclusions of this research will be discussed and in Section 9.2 the
recommendations will be presented.

9.1. Conclusions
The main goal of this research was to answer the following research question:

To what extent can a constellation of satellites with optical sensors increase the surveillance of 1 to
10 cm sized space debris in GEO?

To answer this question a simulator was created which simulated optical observations of space debris
objects made by satellites and used these observations to determine the orbit of those objects. Using
this simulator a constellation design was optimised using five different design variables, the semi-major
axis, the number of satellites per group, the total number of satellites in the constellation, the focal length
and finally the inclination difference between satellites in a group. These design variables were opti-
mised for two different performance metrics, the accuracy of the orbit determination and the number of
successful orbit determinations, while also taking into account the mission cost. The performance of
the resulting optimal design was evaluated to answer the main research question. To help answer this
main research question, first the sub-research questions will be answered:

1.1 How does the accuracy of the orbit determination compare, when only one satellite observes a
satellite versus when multiple satellites observe the same object?

When only one satellite was able to observe a space debris object both the initial orbit determination
method as well as the UKF did not converge and resulted in very high errors. Using only one satellite
for the orbit determination of space debris objects in GEO is thus not feasible. However, a single
satellite could be used for just the observation of objects in GEO. For two or more satellites, the initial
orbit determination method and the UKF did converge for most cases. There is a significant increase
between the orbit determination accuracies when two satellites observe an object compared to when
three satellites observe an object. The same holds for four satellites compared to three, however, the
change in accuracy is smaller. It was also found that using more than four satellites did not significantly
improve the accuracies of the orbit determinations. Three or more satellites also provide accuracies
good enough to maintain custody of 90% of all space debris objects for which two or more separate
observations could be made.

1.2 How does the constellation design change the performance of the system?

Lowering the semi-major axis of the constellation increases the number of successful orbit deter-
minations, however, it also lowers the accuracy of those orbit determinations. The semi-major axis
also has a lower bound which can be used, if the semi-major axis is smaller than this lower bound
the number of observations will not be enough for the initial orbit determination method, so no orbit
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determinations can be performed. Another constraint for the semi-major axis comes from the fact that
for a constellation design with a lower semi-major axis, the focal length and thus the whole satellite will
have to increase in size. Compared to the other design variables, the semi-major axis has the largest
effect on the overall performance of the system. However, due to its positive effect on the accuracy
but its negative effect on the number of successful orbit determinations, the semi-major axis can not be
easily changed to increase a certain performance metric without changing the other metric drastically.

Increasing the difference in inclination of the satellites in a group increases the accuracy of the
orbit determinations. However, the increase in accuracy due to the increase in inclination difference
becomes smaller as the inclination difference gets larger. After around 12 degrees of inclination dif-
ference, there is no significant increase in accuracy. Increasing the inclination difference also has a
negative effect on the number of successful orbit determination that can be performed by the system.
However, the effect of the difference of inclination of the satellites in a group on both the number of
successful orbit determinations and the accuracy is minimal compared to the other design variables.
The inclination difference can thus mostly be used to further tune a design.

Decreasing the focal length has a positive effect on both the number of successful orbit determi-
nations and the accuracy of those orbit determinations. The focal length has a far larger effect on the
number of successful orbit determinations compared to the accuracy. It is nonetheless not possible to
choose the smallest possible focal length, as the focal length still needs to be large enough to allow for
the observation of most of the space debris objects in the protected GEO region.

As mentioned earlier, the number of satellites per group increases the accuracy up until three to four
satellites, after which the increase in accuracy is not significant. The number of satellites per group
also decreases the number of successful orbit determinations. However, the number of satellites per
group has a far larger positive effect on the accuracy than a negative effect on the number of successful
orbit determinations. If needed, the number of satellites per group can thus be changed to increase
the average accuracy without negatively influencing the number of orbit determinations too much.

Increasing the total number of satellites in the constellation increases the number of successful
orbit determinations, without influencing the accuracy of the orbit determinations. If the number of suc-
cessful orbit determinations need to be increased, it can be done by increasing the total number of
satellites. However, this also increases the mission cost. Additionally, the increase in orbit determi-
nations becomes smaller as the total number of satellites increases. Increasing the total number of
satellites also allows the system to maintain custody for a higher percentage of observed space debris
objects, however, after 12 total satellites, the increase in this percentage is minimal.

1.3 How does the orbit and size of the space debris objects effect the performance of the system?

The accuracy of the orbit determinations was not significantly effected by the orbits of the space
debris objects. The orbits of the space debris objects did influence the number of successful orbit
determinations that the system could perform. A larger semi-major axis and eccentricity of the space
debris objects lead to a degradation in overall performance of the system. However, for the GEO region,
due to its relatively small difference in maximum and minimum semi-major axis and eccentricity, the
effect of these orbit parameters was very limited. If this or a similar system would be used for the orbit
determination of space debris in a larger region of space, the semi-major axis and eccentricity would
have a much larger effect on the overall performance of the system. The number of successful orbit
determinations is very dependent on the inclination of the space debris objects. For objects with an
inclination close to zero, the performance of the system was very good, however, there was a near
linear decrease in the number of successful orbit determination as the inclination of the space debris
objects increased.

A larger size of the objects increased the number of successful orbit determinations. For the optimal
design, objects smaller than 2 centimeter could not be observed. It is possible to observe these objects
using a similar system, either the focal length or semi-major axis would needs to be increased, however,
this would significantly degrade to overall performance of the system.

1 To what extent can a constellation of satellites with optical sensors increase the surveillance of 1
to 10 cm sized space debris in GEO?

The average position accuracy of the orbit determinations for the optimal design was 198 meters.
This accuracy is high enough for the system to maintain custody and thus provide regular estimated
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orbit updates for objects that can be frequently observed. However, it was also found that the accuracy
is sensitive to changing position errors. If the error of the estimated orbit of the observing satellites
is much larger than the nominal value, the orbit estimation accuracy can degrade enough to where
custody can not be maintained for a large number of space debris objects.

The optimal design, see Table 9.1, is able to provide successful orbit determinations for only 17% of
all space debris objects, if only one group of three satellites is used. This percentage can be increased
significantly by using more satellite groups, but even when using as much as 30 total satellites, the
system is still only able to provide orbit determinations for 35% of all space debris objects. This poor
performance is mainly caused by objects smaller than 4 centimeter and objects with high inclinations.
For objects with an inclination near 0 degrees, the system is able to provide orbit determinations at a
rate of around 75%. New space debris objects in the GEO region usually have an inclination close to
zero and gradually increase their inclination to around 15 degrees.

To answer the main research question, the system is capable of providing regular accurate orbit es-
timations and maintaining custody for newer space debris objects with a size larger than 4 centimetres
using only a limited number of satellites and perhaps even slightly older objects if the satellite position
and measurement errors can be reduced. The system will also be able to sporadically observe and
provide an accurate orbit estimation for older space debris objects with a higher inclination. However,
the system will not be capable of doing so regularly, even when using a large number of satellites, thus
making maintaining custody very difficult for these objects. At this moment, no orbit determination can
be done for objects in the GEO region smaller than 10 cm, they cannot even be observed. A system
such as this can thus increase the space situational awareness for the GEO region significantly. Space
debris objects smaller than 2 cm are still not detectable by this kind of system, unless the semi-major
axis is increased significantly, however, this would be very detrimental to the overall performance of
the system.

9.2. Recommendations
For the research done in this report a passive searchmethod was used i.e., the relative viewing direction
did not change, however, this lead to a relatively low number of objects for which an orbit determination
could be performed. This was mainly caused by the fact that the system could not make enough
observations to perform a successful orbit determinations for space debris objects with a high inclination.
One method that could be used to increase the number of observations of these objects, is an active
search method. With an active search method the relative viewing direction changes depending on the
situation. This could improve the systems ability to make successful orbit determinations for objects
with a high inclination in the following way.

Once an object has been observed, the observing satellites can adjust their viewing direction to
follow the space debris object. This will result in more observations for each object, which can increase
the number of successful orbit determinations for objects with a high inclination. The extra observations
will also increase the overall accuracy of each orbit determination. Additionally, using an active search
method will also allow each satellite in a group to observe a different part of the GEO region and only
when a object has been observed by one of the satellites, will all satellites in the group focus on the
region where the object was spotted. Furthermore, earlier performed orbit determinations can be used
to predict where space debris objects will be at a certain time, an active searchmethod can then be used
to aim at the predicted position, allowing the system to maintain custody easier. One drawback of an
active search method is the added propulsion and power consumption to accommodate the changing
of the viewing direction.

During the research it was found that a higher average orbit estimation accuracy would allow the
design to use a smaller semi-major axis and this would increase the number of successful orbit estima-
tions. One possible way to increase the orbit determination accuracy is by using a particle filter instead

Table 9.1: Design variables for optimal constellation design

Number of satellites per group 3 [-]
Semi-major axis 31,000 [km]
Focal length 0.37 [m]
Inclination -11, 0, 11 [deg]
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of a unscented Kalman filter. A particle filter was not used for this research due to its high computa-
tional cost, however, it is expected that a particle filter would provide higher accuracy orbit estimations
compared to the UKF. It could be interesting to analyse both the difference in performance as well as
the differences in the optimal designs that results from the use of a particle filter instead of a UKF.

For this research it was assumed that it was known which observations corresponds to which space
debris objects. However, in real life this is not known and for each observation set it needs to be
determined whether it corresponds to an already observed space debris object, or if it is the first time
this objects has been observed. This can be done using different techniques, such as the admissible
region method (Tommei et al., 2007). Such a method could be used to determine if a system such as
this would be able to provide regular and accurate enough orbit determinations of space debris object
to allow for the correlation of different observation sets.
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A
Heritage tables

In this Appendix a quick overview off all major systems that have been used for the orbit determination
of space debris is given. In Table A.1 the names, operational years, configurations and capabilities of
all major systems are listed that make use of an optical telescope to make observations of space debris
objects. In Table A.2 the names, configurations and capabilities of the major systems are listed that
make use of radar measurements of space debris objects.

Table A.1: Past and present optical OD systems

Name Operational
years Configuration Capabilities

Socorro project
(Reynolds and Potter, 1989) 1984-1987 78 cm aperature telescope 5 cm @ LEO

GEODSS
(Command, 2019) 1985-present

3 telescopes at 3 different sites,
1.02 m aperture, 2◦ field of
view.

20 cm @ GEO

LENZAR
(Reynolds and Potter, 1989) 1986-1989

20 cm aperture telescope,
1.9◦ by 2.1◦ field
of view

35 cm @ 1000 km

NODO
(Lederer et al., 2013) 1990-2002

3 m diameter liquid mirror telescope,
and a charged coupled device debris
telescope

1 cm @ LEO,
10 cm @ MEO

OGS
(Garcia-Talavera et al., 2002) 2000-present 1 m aperture telescope 10 cm @ GEO

MODEST
(Seitzer et al., 2004) 2002-present 0.9 Schnidt telescope, 1.3◦

field of view 20 cm @ GEO

Shanghai SLR
(Zhang et al., 2012) 2008-present

SLR station, 20 Hz repetition rate,
pulse width 10 ns, pulse energy 2J
at 532 nm

50 cm @ 900 km

Graz SLR
(Lejba et al., 2018) 2011-present

SLR station, 1 kHz repetition rate,
pulse width 10 ns, pulse energy 25 mJ
at 532 nm

30 cm @ 2500 km

MCAT
(Lederer et al., 2013) 2015-present 1.3 m telescope 13.5 cm @ GEO
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Table A.2: Past and present radar OD systems

Name Configuration Capabilities
AN/FPS-85 (Reynolds and Potter, 1989) Bi-static phased array, 442 MHz 4 cm @ LEO

AN/FSY-3 (Fonder et al., 2019) Bi-static phased array No data yet

TIRA- Effelsberg
(Fraunhofer FHR, 2015)

Bi-static 34 m parabolic dish antenna,
1.33 GHz 2 cm @ 1000 km

EISCAT(ESA, 2017a) 3 incoherent scatter radars,
antennas 32-42 m, 929 MHz ∼3 cm @ LEO

GSSR
(Slade et al., 2010)

Bi-static radar, 70 m dish
antenna, 8.56 GHz

0.01 cm @ LEO,
0.1 cm @ 2500 km

MU radar(Sato et al., 1991) Mono-static phase array, 46.5 MHz 2 cm @ 500 km
RT-70(Pupillo et al., 2008) Bi-static 70 m dish antenna, 5 GHz ∼1 cm @ 1000 km

HUSIR(Czerwinski M.G., 2014) Mono-static 37 m dish antenna,
8-10 GHz

0.003 cm @ 400 km,
5 cm @ 2000 km

HAX
(Stansbery and Settecerri, 1997)

Mono-static 12 m dish antenna,
16.7 GHz 1 cm @ LEO



B
Taguchi table

In Table B.1 the Taghuci table that has been used for the optimisation method is shown. These types of
tables are used to gather as much information while minimising the amount of experiments that need to
be performed. These tables are orthogonal arrays which means that it is a matrix whose columns have
the property that in every pair of columns each of the possible ordered pairs of elements appears the
same number of times. Each column represents a design variable and each row represents a single
experiment. The values in each cell represents the level of the design variable for each experiment.
This particular Taghuci table allows for six different design variable, with five levels, to be tested, using
25 experiments.

Table B.1: L25: Taghuci Table

1 1 1 1 1 1
1 2 2 2 2 2
1 3 3 3 3 3
1 4 4 4 4 4
1 5 5 5 5 5
2 1 2 3 4 5
2 2 3 4 5 1
2 3 4 5 1 2
2 4 5 1 2 3
2 5 1 2 3 4
3 1 3 5 2 4
3 2 4 1 3 5
3 3 5 2 4 1
3 4 1 3 5 2
3 5 2 4 1 3
4 1 4 2 5 3
4 2 5 3 1 4
4 3 1 4 2 5
4 4 2 5 3 1
4 5 3 1 4 2
5 1 5 4 3 2
5 2 1 5 4 3
5 3 2 1 5 4
5 4 3 2 1 5
5 5 4 3 2 1
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