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A B S T R A C T   

Data-driven metamodels reproduce the input-output mapping of physics-based models while significantly 
reducing simulation times. Such techniques are widely used in the design, control, and optimization of water 
distribution systems. Recent research highlights the potential of metamodels based on Graph Neural Networks as 
they efficiently leverage graph-structured characteristics of water distribution systems. Furthermore, these 
metamodels possess inductive biases that facilitate generalization to unseen topologies. Transferable metamodels 
are particularly advantageous for problems that require an efficient evaluation of many alternative layouts or 
when training data is scarce. However, the transferability of metamodels based on GNNs remains limited, due to 
the lack of representation of physical processes that occur on edge level, i.e. pipes. To address this limitation, our 
work introduces Edge-Based Graph Neural Networks, which extend the set of inductive biases and represent link- 
level processes in more detail than traditional Graph Neural Networks. Such an architecture is theoretically 
related to the constraints of mass conservation at the junctions. To verify our approach, we test the suitability of 
the edge-based network to estimate pipe flowrates and nodal pressures emulating steady-state EPANET simu-
lations. We first compare the effectiveness of the metamodels on several benchmark water distribution systems 
against Graph Neural Networks. Then, we explore transferability by evaluating the performance on unseen 
systems. For each configuration, we calculate model performance metrics, such as coefficient of determination 
and speed-up with respect to the original numerical model. Our results show that the proposed method captures 
the pipe-level physical processes more accurately than node-based models. When tested on unseen water net-
works with a similar distribution of demands, our model retains a good generalization performance with a co-
efficient of determination of up to 0.98 for flowrates and up to 0.95 for predicted heads. Further developments 
could include simultaneous derivation of pressures and flowrates.   

1. Introduction 

1.1. Metamodels of water distribution systems 

Hydraulic models are essential for the design, management, and 
control of water distribution systems (WDS). These physics-based 
models, such as EPANET (Rossman, 2022), usually solve the mass and 
energy conservation equations to estimate the steady state of the system 
at any given time, i.e., the flow rates in every pipe and pressures at all 
nodes. These models utilize the information about network layout and 
static component settings (e.g. pipe and pumps parameters, and eleva-
tion) as well as hydraulical parameters (e.g., reservoir heads and 

demands) in order to provide reliable results. However, they can be too 
time intensive for certain applications that require a multitude of sim-
ulations, especially for large WDSs. That includes, but is not limited to 
the optimization of network design (Bi and Dandy, 2014), criticality 
assessment of the network parts (Meijer et al., 2021), and real-time 
control (Pasha and Lansey, 2014). This is of increasing importance as 
digitalization steadily revolutionizes the water sector (Makropoulos and 
Savić, 2019). In order to meet the necessary criteria for implementing a 
comprehensive digital twin of a WDS (Fuertes et al., 2020), utilities can 
resort to surrogate models, commonly referred to as metamodels 
(Garzón et al., 2022) to allow for timely results for the given tasks. These 
metamodels play a crucial role in integrating the hydraulic model with 
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various sources of information and employing advanced analytics, ul-
timately enabling efficient computations. 

Metamodels are designed to decrease simulation time while main-
taining comparability to the results of the original hydraulic model. 
Machine learning methods, such as artificial neural networks (ANN) 
successfully approximate the input-output relation of the physics-based 
model to obtain results in a fraction of the time while still retaining a 
sufficient accuracy (Bi and Dandy, 2014; Garzón et al., 2022). As such, 
ANN-based metamodels were used in near real-time modeling and 
extended period simulation based on pressure metrics (Lima et al., 
2017). Similarly, these models were adopted to speed-up the water 
quality optimization with genetic algorithms (Broad et al., 2004). 
Although ANNs efficiently leverage network parameters such as eleva-
tion, pipe roughness, and length, they omit the topological information 
and the connectivity of the WDS. This information, however, is a vital 
element of an accurate approximation and an efficient model transfer 
between varying network layouts and configurations. Here we denote 
transferability as the capacity of a model to preserve predicting power 
for WDSs or the variations of a WDS that have not been seen during the 
training process (Levie et al., 2019; Neuman and Bramburger, 2023). 
This feature opens the way for solving a plethora of design problems, e. 
g., when the design of a new or expansion of the existing WDS requires 
looking at alternative topological options (McClymont et al., 2015; 
Mala-Jetmarova et al., 2018). In that regard, one would need to re-train 
a current metamodel for every considered layout, which defeats its 
purpose. 

1.2. Graph neural networks in water distribution system analysis 

A possible solution to the highlighted issue involves utilizing a 
graph-based representation of WDSs. The graph represents junctions, 
reservoirs, and storage tanks as nodes, while pipes, pumps, and valves 
are considered as edges. Graph neural networks (GNNs) can account for 
the non-euclidean structure of graph-based datasets (Isufi et al., 2022; 
Gama et al., 2020). GNNs extend Deep Learning with consideration of 
the graph topology by using, for example, the adjacency or the laplacian 
matrix. Additionally, GNNs can have permutation equivariant proper-
ties, which allow them to consider arbitrarily sized graphs (Isufi et al., 
2022). These inductive biases preserve the additional information 
embedded in the graph structure and decrease the number of trainable 
parameters in the metamodel, which leads to more lightweight models 
(Kerimov et al., 2023). 

By virtue of these qualities, we observe the increasing popularity of 
graph-based machine learning methods in various problems related to 
urban infrastructure (Donon et al., 2020) and water systems. For 
example, GNNs aided in the imputation of missing pipe diameters in a 
sewer system database (Belghaddar et al., 2021). Applications for WDS 
include burst detection (Zanfei et al., 2022), district metered area sec-
torization (Rong et al., 2021), and identification of cyberattacks (Tsiami 
and Makropoulos, 2021). Another work by Örn Garðarsson et al. (2022) 
introduced the ChebNet variant of a GNN to identify and localize leak-
ages for the BattLeDim 2020 dataset (Vrachimis et al., 2022). 

Building on this progress, the water engineering community focused 
on state estimation of WDS based on sensor readings using graph 
learning techniques. Some of the first works approach the problem from 
a signal reconstruction perspective. Such an approach does not neces-
sarily consider demands or flowrates in the system and relies solely on 
pressure readings. Hajgató et al. (2021) tested a ChebNet model on 3 
different water networks separately. They achieved high accuracy of 
recovered pressure heads, equipping only 5 % of nodes with pressure 
meters. Zhou et al. (2022) introduced a non-parametric graph-based 
technique to reconstruct pressure signals. Their approach utilizes graph 
Fourier transform to recover heads on the nodes by assuming a 
smoothness of the signal on neighboring nodes. The term "smoothness" 
here refers to low spatial signal variability. These methods assume a 
uniform distribution of flow velocities and demands, which may not 

always be realistic. Nevertheless, Zanfei et al. (2023) applied this type of 
metamodel for the quantification of the uncertainty of nodal demands 
and pipe parameters, although the proposed method does not formally 
guarantee that the prediction intervals cover the true values. 

State estimation based on sensor reading differs from response sur-
face surrogate modeling. The latter which attempts to replicate the 
input-output relationship of the underlying physical simulator (Garzón 
et al., 2022). Xing and Sela (2022) showcased the first application of 
GNNs for response surface surrogate modeling of WDS. They considered 
varying demand patterns as an input feature (Xing and Sela, 2022). 
Additionally, they showed that the flowrates could be derived by using 
the Hazen-Williams equation and predicted nodal pressure. The loss 
function further takes the error in the flow rates into account. Such a 
construction of the loss function permits posing the problem as semi--
supervised learning, where only a limited number of sensors are utilized 
during training. Similar work by Ashraf et al. (2023) introduced 
multi-hop filters in the graph convolutional network in order to process 
data from larger networks. However, the number of parameters in the 
model for those WDSs remained large. 

1.3. Transferable metamodels 

Aside from showcasing the robustness to pipe removal in (Xing and 
Sela, 2022), the evidence on the transferability of the trained model in 
the literature is fairly limited. A sufficiently transferable metamodel, if 
achievable, will obviate the need for re-training the surrogate model 
after modifying the network and could be applied to a network with an 
arbitrary layout and configuration. Ultimately, the model could replace 
the physical simulator in performing downstream tasks and tedious 
iterative optimization and training processes. One can draw analogies 
from the existing large language models pre-trained on large text 
corpora and capable of executing arbitrary tasks given a few examples 
(Brown et al., 2020; Devlin et al., 2019; Touvron et al., 2023). 

The first exploratory work (Kerimov et al., 2023) studied the trans-
ferability of GNN-based metamodels by training multi-hop ChebNet 
models on multiple water networks simultaneously. The findings indi-
cated that GNNs can learn shared representations across various WDS. 
However, their usefulness in unfamiliar domains is still limited. 

We argue that this limitation is rooted in the lack of expressivity of 
GNNs when modeling physical processes in the pipes. In the physical 
simulators, fundamental variables such as flow rate, pipe properties, and 
headlosses are defined on the edge space. More to that, flowrates are 
present in both the equations of mass and energy conservation that 
define the well-established approach of global gradient (Todini and 
Pilati, 1988). The headloss near the reservoir is crucial as it affects nodal 
pressure downstream. GNNs, however, treat edges as elements of sec-
ondary importance and do not explicitly operate on the edge space. This 
also leads to the inability to consider input from the flow meters (Xing 
and Sela, 2022). 

Recent advancements in graph-based deep learning might alleviate 
this issue. This includes novel models that operate on higher-order 
geometrical structures, e.g. edge-centered networks, and more general 
representations, i.e. simplicial and cellular complexes (Yang et al., 
2022a,b; Bodnar et al., 2021). In these models, edges connect to each 
other via a common node, analogously to two nodes connected by an 
edge. The connectivity of the edge-centered network is represented with 
a laplacian matrix, which captures compelling properties of conservation 
of the signal between incident edges (Jia et al., 2019). This allows 
processing signals in the edge domain, e.g. performing signal recon-
struction, smoothing, and trajectory embedding (Schaub and Segarra, 
2018). 

Based on the aforementioned arguments, this work introduces a 
novel approach for response surface surrogate modeling of WDS with an 
Edge-based Graph Neural Network (EGNN). By addressing the limita-
tions of existing GNN-based surrogate models, our approach takes a step 
towards a first step flowrates in every pipe based on the given demands 
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in consumption nodes and pipe parameters. Then the method derives 
pressures in every node from the predicted flowrates using one of two 
proposed techniques. To evaluate the performance we generate a syn-
thetic dataset of hydraulic simulations based on multiple benchmark 
models available in the literature. We firstly compare the accuracy of 
predictions with the method proposed by Xing and Sela (2022) in the 
setting when the network topology is known in advance. Next, we 
evaluate the performance of EGNN in an unknown setting by jointly 
training it on a variety of topologies and evaluating it on several other 
WDS excluded from the training set. Lastly, the work examines the 
speedups of the edge-based approach. 

2. Method 

The following section presents our method. It starts with a mathe-
matical formulation of the problem and introduces the reader to tradi-
tional GNN-based metamodels. The section contains a technical 
background on GNNs and highlights its core limitations. The method 
defines and Edge-based Graph Neural Network on the basis of GNN, 
highlights the necessary steps to switch from node-based to edge-based 
representation, and addresses the mentioned limitations. 

2.1. Problem statement 

We represent a water distribution network as a graph G = G(V ,E ). 
The graph consists of a node set V ⊂ V (G) with Nu junctions and Nr 
reservoirs, and the set of edges E ⊂ E(G). Input node variables, such as 
elevation, or demands and readings from the pressure sensors comprise 
node signals. Together they construct the node matrix xn ∈RN×Fn , where 
Fn represents the total number of input node features. Similarly, edge 
features can be concatenated into the matrix xe ∈ RE×Fe , with a total of Fe 
features. The full description of the input parameters are included in 
Table 1. Tanks, pumps, and valves are not considered in this 
representation. 

The output of the metamodel is a vector of flowrates f and vector of 
pressures pu on the consumption nodes. Typically, metamodels based on 
machine learning techniques are trained on a set of simulations and 
evaluated on a separate set, i.e. test set. The performances on the test set 
should reflect how well these metamodels can be applied across 
different scenarios. Ideally, a metamodel should display strong general-
ization capabilities and allow for transferability (Garzón et al., 2022). 
Here, we define these properties as follows:  

(i) Generalization. We define generalization as the ability of a trained 
metamodel to preserve good predictive accuracy when tested on 

the same WDS of the training set, but with unseen inputs, e.g. 
demands, pressures, or pipe parameters.  

(ii) Transferability. We define transferability as the ability of a trained 
metamodel to preserve good predictive accuracy when tested on 
different WDS and inputs than those in the training set (Neuman 
and Bramburger, 2023). Strong transferability, by definition, 
implies strong generalization. 

2.2. GNN-based metamodels 

We pose the model in an Encoder-Processor-Decoder fashion, where 
each module in this composition is shared across all nodes (San-
chez-Gonzalez et al., 2020; Xing and Sela, 2022). The purpose of an 
encoder (ENC) is to transform xn into a feature matrix H(0) ∈RN×C in a 
hidden space of dimension C. The processor (PRC) then processes the 
feature matrix in this high-dimensional space with consideration of the 
topology. Finally, the decoder (DEC) projects the processed feature 
matrix H(L) into single-dimensional output of pressures p ∈ RN on nodes. 
Thus, the final architecture will have the following structure: 

H(0) = ENC(xn)

H(L) = PRC
(
H(0))

p = DEC
(
H(L))

(1)  

2.2.1. Encoder 
The encoding into a higher dimensional space can be performed with 

a multi-layer perceptron (MLP). An encoding MLPψ: RFn → RC embeds 
the input features xn and projects it into the initial hidden feature matrix 
H (0) 

H(0) = MLPψ (xn) (2) 

Each layer within the MLP transforms the feature matrix with a 
linear transformation and a non-linearity function which enhances 
feature representation and improves the expressivity of the model. The 
encoder step pre-processes node features in parallel and does not include 
the topological information. 

2.2.2. Processor 
The feature matrix can then be propagated from one node to its 

neighbors by multiplying a shift operator S with a feature matrix. The 
shift operator is a matrix with its elements defined as Sij ∕= 0 if (i, j) ∈ E , 
and Sij = 0 otherwise (Isufi et al., 2022; Gama et al., 2020). In general, 
any connectivity matrix can act as a shift operator, be it an adjacency 
matrix A or a Laplacian matrix L = D − A. Here D is a diagonal matrix of 
node degrees. Applying the shift operator multiple times allows propa-
gating signal from a larger hop neighborhood. The wider the receptive 
field (i.e. the number of layers) the wider the reach of information 
sharing throughout the graph, as depicted in Fig. 1. 

The multiplication of the shift operator with a feature matrix can be 
performed as a sparse matrix multiplication (Yang et al., 2018). Such a 
property allows processing graphs of various sizes in parallel batches, 
which has been widely adopted in GNN frameworks (Paszke et al., 
2019). Thus, the model needs not to be trained and evaluated on the 
same topology. More information can be found in Appendix A. We can 
use the shift operator to define the graph convolution layer for a node 
signal (e.g. H) as 

H(l+1) = σ
(
SH(l)Θ(l)) (3)  

where Θ ∈ ℝCxC is a trainable weight matrix, σ is a nonlinearity function, 
and l is the layer number. Multiplication with the weight matrix linearly 
transforms a node signal. In general, it is possible to apply an MLP before 
propagation at each graph convolutional layer to increase expressivity, 
e.g. 

H(l+1) = σ
(

S⋅MLP(l)
ξ

(
H(l))

)
(4) 

Table 1 
List of input variables and parameters used for metamodelling with description.  

Symbol Description 

G ∈ G Mathematical representation of a water distribution network as a 
graph, with V denoting the set of N nodes (including junctions and 
reservoirs) and E denoting the set of E edges (i.e. pipes). 

S Graph shift operator matrix, defined as Sij ∕= 0 if (i, j) ∈ E , and Sij =

0 otherwise. 
xn ∈ RN×Fn Node matrix representing input variables defined on the nodes. Here, 

N is the number of nodes and Fn is the number of node features. 
pr ∈ RNr Vector of known heads (m), where Nr is the number of nodes with 

known heads. 
q ∈ RN Total nodal water flow (m3/s), with subsets of reservoir outflows qr ∈

RNr and consumer demand qu∈ RNu . In cases with a single source, qr 

=
∑

i
q(i)

u 

xe ∈ RE×Fe Edge matrix representing input variables defined on the edges. Here, 
E is the number of edges and Fe is the number of edge features. 

d, l, r ∈ RE Pipe diameters (m), lengths (m), and Hazen-Williams coefficients 
defined on the edges.  
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We formulate the GNN by stacking L graph convolutional layers and 
employ it as a processor. Each 

GNN layer updates the H based on the graph structure and captures 
the nodal interactions. However, theoretical research has identified a 
problem of "oversmoothing" that occurs in models with many layers (NT 
and Maehara, 2019). To combat oversmoothing, a residual connection, 

in general, adds the previously computed internal node matrix to the 
updated node matrix with a coefficient α, e.g. 

H(l+1) = H(l) + α⋅σ
(

S⋅MLP(l)
ξ

(
H(l))

)
(5)  

which reduces oversmoothing effect (Chen et al., 2020; Chamberlain 
et al., 2021b). This phenomenon occurs since propagation with S 
effectively averages out the signal, rendering it indistinguishable be-
tween nodes. In the context of WDS, similar pressures result in small 
headlosses. 

2.2.3. Decoder 
Finally, the decoder MLPϕ ∶ ℝC → ℝ obtains the desired output p 

from the hidden feature matrix in the last layer. 

p = MLPφ
(
H(L)) (6)  

2.3. Metamodeling with edge-based graph neural networks 

To address the highlighted issue of oversmoothing in GNN-based 
metamodels, we propose an alternative approach by switching from 
node-based to edge-based representation. Instead of outputting pres-
sures on nodes, EGNN predicts the flowrates f first by ingesting and 
processing the edge features xe and. Using Hazen-Williams relationship, 
the flowrates are translated into headlosses. Finally, nodal pressures are 
derived from the headlosses. The procedure is performed in 3 steps and 

Fig. 1. A 3-layered graph neural network. The figures from left to right depict 
the propagation of the information from the neighborhood N (j)={j (i, j) ϵ E} of 
a node j to the node itself. Such computation is performed in parallel for every 
other node. 

Fig. 2. Overview of the method.  
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the overview is illustrated in Fig. 2. 

2.3.1. Virtual sinks 
As the first step of transformation into edge-based representation, the 

underlying graph G becomes directed with arbitrarily chosen edge ori-
entations. Next, we couple every node in the directed graph with a 
virtual node uv ∈ V v where V v is a set of virtual nodes. The set of edges 
is thus extended with a set of virtual edges E v = {(u, uv)|u ∈ V and 
and uv ∈ V v}. We then assign demand on the node u to the incidental 
virtual edge ev, i.e. 

f(ev) := q(u)|u ∈ev (7) 

The sign of f(e) at edge e reflects the true orientation of the flow. If 
the sign is negative, the true orientation is the oppo site of the initially 
chosen one. The resulting matrix of edge input features is constructed 
based on three input parameters: demand q, hydraulic resistance κ, and 
the indicator of the virtual pipes to help the model distinguish between 
two types of edges 

xe =

[ 0 κ 0

q 0 1

]

(8) 

The virtual sinks are assumed to be perfect and cause zero friction, 
while the flowrates on the real pipes are unknown and thus they are not 
in the input. Hydraulic resistance is derived from Hazen-Williams 
equations (Rossman, 2022) employed for the calculation of headloss 
along a pipe, (see Table 1). 

κ =
10.67⋅l

r1.852d4.870 (9) 

The virtual connection to the reservoir would contain reservoir 
outflow. In a network with a single reservoir, we assume that a total 
reservoir outflow is equal to the sum of the demands. 

2.3.2. Edge-based representation 
We continue by defining the connectivity between an edge and a 

node B ∈ R N×E as bij = 1 if the edge i is oriented towards the node j and 
bij = − 1 otherwise, while bij = 0 when there otherwise no connectivity 
between the elements. Literature defines an Edge Laplacian as a result of 
the multiplication of a transposed incidence matrix with itself (see more 
in Schaub and Segarra (2018); Yang et al. (2022b). 

Le = BTB (10) 

The resulting matrix Le ∈ R E×E represents the connectivity between 
edges via common nodes and can act as a shift operator for the edge 
signal. The example of the connectivity is presented in Figure 2.2.3. For 
example, if 4 edges are connected through a single node, in the edge 
representation it will transform into 4 interconnected nodes. 

According to Schaub et al. (2020) a normalized version of an Edge 
Laplacian is therefore calculated as follows, with D as a diagonal matrix 
of node degrees. 

L̂e = BTD− 1B (11) 

An intriguing property of the incidence matrix B (and consequently, 
Le) is that it can function as an operator measuring the divergence of an 
edge signal which is related to mass conservation. 

Inductive bias of mass conservation The divergence on a node i is 
calculated as the sum of signal on incidental edges with respect to their 
orientations 

(div f)i =
∑

j,i∈E

fji −
∑

i,j∈E

fij (12) 

The divergence of f is present in the equation of mass balance for 
water flow. In a WDS that operates without leakages, the divergence is 
equal to demands on nodes 

Bf = q (13) 

However, f becomes divergence-free on real nodes when considering 
the flowrate on virtual edges. The divergence-free condition can be 
expressed with Le and written as 

‖ Bf ‖2
2 = fTBTBf = fTLef = 0 (14) 

This equation leads to an important aspect of adopting Le as a shift 
operator. Instead of averaging out the features as in the case of shift 
operator for nodes, Le drives the features to divergence-free values. Such 
a property has been successfully leveraged in determining synchroni-
zation and consensus of a dynamical system (Ziegler et al., 2022). By 
using Le as a connectivity matrix we turn a limitation into a 
physics-based prior. 

2.3.3. Flowrate and headloss interpolation 
With the shift operator of the edge signal defined, we formulate an 

Edge-based Graph Neural Network with a residual connection as fol-
lows: 

H(l+1) = H(l) + α⋅σ
(

L̂e⋅MLP(l)
ξ (H(l)

)
(15) 

This time, H ∈ RExC is an internal edge representation of the hidden 
size C. The update of the representation is based on Eq. (5). In a similar 
Encoder-Processor-Decoder fashion, EGNN here acts as a processor. The 
encoder MLP ψ and decoder MLP φ are separate MLPs: 

H(0) = MLPψ (xe)→f = MLPφ
(
H(L)) (16) 

Thus, the flowrate reconstruction module interpolates the flowrates 
on each real pipe. Assuming Hazen-Williams relationship, f determines 
the headlosses at the corresponding pipe e: 

h(e) = κe⋅f(e)⋅|f(e)|0.852 (17) 

Adding virtual pipes converts the nodal water demands q into edge 
features. By employing the demands as a known signal, we frame the 
problem as a signal reconstruction, similar to (Hajgató et al., 2021; Zhou 
et al., 2022) but on the edge space. 

2.3.4. Pressure reconstruction module 
The last step in the pipeline is the derivation of pressures from the 

output of the neural network. Below we propose two possible ap-
proaches and the necessary steps before the reconstruction. Note that 
the virtual connections are not considered in this step. 

The derivation of heads on the unknown nodes pu is based n the law 
of energy conservation (Todini and Rossman, 2013) 

BT
u ⋅pu + h = − BT

r ⋅p̂r (18)  

where p̂r is the known nodal head (e.g. pressure sensor or a reservoir 
head), Br ∈ RNr×E and Bu ∈ RNu×E are the incidence matrices of the 
nodes with known (total Nr) and unknown (total Nu) head values 
correspondingly. Examples of the former are reservoir nodes or pressure 
meters. Both proposed manners derive pu based on matrix inversion:  

(i) Least squares method This approach is based on the solution of Eq. 
(18) via solving the least squares problem. This method still acts 
as a bottleneck as it requires solving problems for each network 
one by one. This work employs the implementation of a least 
squares solver in PyTorch (Paszke et al., 2019).  

(ii) Power approximation method To address this limitation we provide 
an alternative approach. Multiplying both sides of Eq. (18) with 
Bu on the left we obtain the following equation 

L(u)⋅pu = − Bu
(
h+BT

r ⋅pr
)
. (19)  

Here, L(u) ∈ RNuxNu is the graph laplacian of the junction nodes. 

B. Kerimov et al.                                                                                                                                                                                                                                



Water Research 261 (2024) 121933

6

To circumvent the need for a linear solver we engage the prop-
erties of the geometric series of a matrix (Stewart(1998)). In fact, 
from the properties of the Neumann series, it follows that if an 
arbitrary matrix I − P is non-singular and the powers of Pk 

converge zero, then it is possible to approximate a matrix inverse 
with an infinite sum as follows 

P− 1 =
∑∞

i=0
(I − P)i (20)   

It is sufficient to show that the largest eigenvalue a real symmetric 
matrix P is λmax < 2 to satisfy the convergence requirement. The largest 
eigenvalues of the normalized graph laplacian L̂ = D− 1L is bounded by 2 
(Kipf and Welling, 2016). Moreover, the λmax = 2 if and only if the graph 
G is bipartite (Beers and Mulas, 2024). The infrastructure network needs 
to have a grid-like structure (Bandelt et al., 2010). 

Normally, calculation of the power of the laplacian is a slower 
method than obtaining the inverse. It is possible, however, to leverage 
batching and GPU parallelization, which substantially increases speed. 

2.3.5. Loss function 
The edge-based model is trained in a supervised fashion by mini-

mizing the loss function that consists of two components 

L = α1‖ κ(f − f̂)‖2
2 + α2‖ h − ĥ||1 (21)  

where f and ̂f are predicted and true flowrates on each real edge, while h 
and ĥ are derived and true headlosses on each real edge. Each term in 
(21) is calculated as a deviation from the true values derived by a hy-
draulic simulator α1 and α2 are weighting coefficients. 

The first term is weighted by hydraulic resistance κ. This term 
overrepresents the pipes with a potential high headloss and avoids 
erroneous predictions of such conduits to propagate to the remaining 
elements. Previous studies have shown the efficiency of this approach, e. 
g., (Kerimov et al., 2023) 

The second term in the loss function is obtained with a familiar 
equation employed in the physical simulator. Based on the predicted 
flowrates on real edges f we derive respective headlosses via the Hazen- 
Williams equation. 

ĥ = κ⋅ f̂
1.852

= BT⋅p (22) 

This term is calculated with L1-norm to keep the values in the same 
order of magnitude as the values in the first term. 

3. Experiments 

This section describes the experiments in this study. Based on defi-
nitions of generalization and transferability in Section 2.1 we compose 
two sets of experiments. We describe case studies and the data 

generation procedure for each of them. The first experiment (Section 
3.2) compares the generalization and performances of node-based and 
edge-based models. The experiment contains two subsets (A and B). The 
second experiment measures the transferability of an EGNN in an un-
known setting (Section 3.3). The last experiment evaluates the runtime 
and speed-up of our method (Section 3.4). 

3.1. Case studies 

Selected case studies are shown on Table 2, along with their number 
of nodes, pipes, reservoirs in the system, and the network diameter. The 
network (or graph) diameter here characterizes the shortest distance 
between the two farthest nodes in a network. The same table also shows 
which case studies were used for each experiment. 

The chosen WDSs do not feature hydraulic elements, such as pumps 
and valves, while existing tanks are transformed into reservoirs. The 
modeling of physical components can be studied in future work, for 
example by including them as a binary flag per each node or edge in 
node or edge features. Some of the networks contain pairs of junctions 
which are connected with parallel pipes, that were originally used 
within the optimization task (Lee and Lee, 2001). In the graph repre-
sentation that results in a multi-edge setting, complicates the calculation 
of the Edge-Laplacian. To avoid that, we merged those pipes into one. 
The final diameter of the merged pipe is derived to represent equivalent 
losses in energy as the initial setting. For each of these networks, we 
employed the WNTR Python package with EPANET simulator as the 
backbone to generate steady-state simulations for every experiment 
(Klise et al., 2018). 

3.1.1. Data generation 
Based on the selected networks, we generate individual datasets of 

steady state simulations for each experiment. Within each experiment, 
the simulations are produced by sampling one or more of the following 
parameters:  

• Nodal demands q were sampled uniformly around a base value shared 
across nodes. For some WDSs, this sampling strategy results in hy-
draulically unfeasible simulations (i.e. negative pressure on the 
nodes). Instead, we uniformly sampled demands around the original 
base demand on each node provided in the .inp file. 

• Pipe parameters κ include length, diameter, and Hazen-Williams co-
efficients. The values are sampled uniformly within a range centered 
on each original pipe characteristic (± 20 % of the original values). 
To avoid unrealistic configurations, leading to very low or very high 
pressures (Zischg et al., 2015), the bounds may be lowered. The 
altered values of the Hazen-Williams coefficients are selected from 
distributions that reflect commercial ranges (50 to 150).  

• Topology G modifications diversify the variety of networks in the 
training data and benefits the transferability (Xie et al., 2022). For 
these modifications, each pipe is removed with a probability of 10 %. 
After that, with a probability of 25 % the network undergoes one of 

Table 2 
Description of water networks used in the experiments ordered by the number of pipes.   

APULIA JILIN BAK ASnet2 PES LT NT3 ZJ MOD KL 

Parameters 
Network diameter 10 10 14 14 22 22 30 26 38 53 
Nodes 24 28 36 51 71 93 97 114 272 936 
Pipes 34 34 58 65 99 109 119 164 317 1274 
Reservoirs 1 1 1 1 3 1 3 1 4 1 

Experiments 
Generalization of GNNs and EGNNs   ✓ ✓  ✓  ✓  ✓ 
Transferability of EGNNs: Training*   ✓  ✓ ✓ ✓  ✓ ✓ 
Transferability of EGNNs: Testing ✓ ✓  ✓    ✓   
Speed-up ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

* The networks are combined into a single set. 
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the skeletonization procedures (i.e. parallel pipe removal, trim 
branching, etc.), as described in Table 3 (Cesario and Association, 
1995). The probability values are taken arbitrarily to introduce 
variations in the topology. This procedure can be repeated for mul-
tiple iterations. 

Table 4 summarizes the modifications applied in each experiment. 
When a parameter is not sampled, it is the same in all simulations within 
both the training and testing sets. 

3.2. Generalization of GNNs and EGNNs 

This experiment provides the comparison of the performance by 
training and evaluating within the same WDSs. 

With this experiment, we aim to assess how accurately each of the 
models predicts pu and f in different cases when the network layout is 
known in advance and used during training. 

The models are evaluated on two subsets: a dataset with varying 
demands and fixed κ (Subset A), and a dataset with varying demands and 
pipe parameters (Subset B). In both subsets, the topology is the same in 
both training and testing set. We are interested in studying the change in 
the performance with the introduction of additional complexity. The 
models are trained and evaluated separately on the basis of 5 networks 
with single reservoirs: BAK (Fig. 3c), ASnet2 (Fig. 3d), area C of l-Town 
(Fig. 3f), ZJ (Fig. 3h), and KL (Fig. 3j). The number of trained models 
within this experiment totals to 10. For each network, except for KL, we 
generated 10,000 steady-state simulations by altering demands, and 
another 10,000 simulations by varying both demands and pipe charac-
teristics. For KL, specifically, the number of simulations is 2000 due to 
the large size of the network. Each of the subsets is split into training, 
validation, and test subsets with a ratio of 80:10:10. 

3.2.1. Description of models 
As a benchmark GNN candidate we selected the work provided by 

Xing and Sela (2022). The model is similar to the GNN described in 2.2 
but extends a classical GNN by including extra steps in the processor 
module, such as separate multi-layer perceptrons for in- and out-going 
edges and self-loops, an intermediate supervised loss function, and in-
clusion of the pipe parameters in the processor module. The original 
study was originally only applied on a single network (i.e. ASnet2). In 
this work, we were able to adapt the same architecture to create a 
metamodel and apply it to different water networks using the original 
code of the authors. We used the same set of hyperparameters as pro-
vided in the original work. Both EGNN and GNN have 20 hidden units in 
each linear layer. The number of layers L corresponds to the diameter of 
each WDS. Given that a WDS is a complex and interconnected system, it 
is crucial for the receptive field to encompass the entire network. The 
total number of parameters in the GNN is larger due to the more complex 
architecture. A detailed description of the chosen hyperparameters is 
provided in Appendix B. https://github.com/erytheis/egnn 

The performance is measured with the coefficient of determination 

R2 = 1 −
‖ y − ŷ‖2

2

‖ y − y‖2
2

(23) 

Here y, ŷi are vectors of values produced correspondingly by the 
neural network and EPANET, and ŷ is a mean nodal or edge values 
obtained with EPANET. 

3.3. Transferability of EGNNs 

In the second experiment, we assess the performance of EGNNs 
trained on a subset of networks, when tested on a subset of unseen 
networks. We do not perform these tasks for the GNN since the available 
implementation does not allow for training across different water 
network sizes and layouts. We jointly train the EGNNs on multiple WDSs 
to increase generalization capabilities. Due to the limited number of 
publicly available water distribution systems, we apply a set of topo-
logical modifications to the training set described in Section 3.1.1. With 
this augmentation technique, we generated 13,600 samples, divided 
into training and validation subsets with a ratio of 80:20. 

We measure transferability by computing the discrepancy between 
predicted flowrates and heads in terms of R2, MAE, and RMSE for WDSs 
not featured in the training set. The systems selected for training and test 
sets are marked in Table 2. These cases vary in network size, pipe pa-
rameters, and demand distribution. For test networks, we used the same 
data generation strategy as in the experiment described in Section 3.2 
with 100 generated steady states per case. The demands for every node 
in the test set were sampled uniformly around 5 L/s. 

3.4. Speed-up 

The ultimate goal of a response surface metamodel is to provide 
computational gains with a minimal loss of accuracy. This experiment 
provides the evaluation of the execution time for each step in our 
method. According to the discussion in the method section, our 
approach presumes execution in two steps, with one of the 2 variants of 
the pressure reconstruction stage. Based on every network we measured 
the required time to obtain the end result and visualized the results. For 
each case study, we constructed a model with the number of layers that 
is equal to the diameter of the network and with a hidden size C of 20 
units. We compare those speeds with the time required to run a simu-
lation with EPANET as a baseline. Note that we do not compare the 
speed-ups of EGNN with the ones of GNN. The latter utilizes TensorFlow 
(Abadi et al., 2015) and, in general, results in faster computations than 
PyTorch. However, it requires additional time for compilation before 
running the model. 

4. Results & discussion 

4.1. Generalization of GNNs and EGNNs 

We begin this section by presenting the comparison of the perfor-
mances of metamodels based on EGNN and GNN. Following, we visu-
alize the robustness of their prediction to changing pipe parameters and 
demands. 

Fig. 4 summarizes the results of the evaluation of the models. As 
expected, the performance of the models trained on Subset A (tops of the 
bars) is higher than the one of Subset B (bottoms of the bars). We see that 
the edge-based approach consistently outperforms the node-based GNN 
in terms of flowrates. In terms of junction heads and pressures, EGNNs 
are more likely to provide reliable results when the parameters are 
varied (Subset B). When the pipe parameters are sampled in the training 
and testing sets, the influence of energy losses due to the friction in pipes 

Table 3 
Summary of applied topological modifications.  

Skeletonization technique p Number of iterations 

Pipe removal 0.10  
Parallel pipe merge 0.25  
Series pipe merge 0.25 1–10 
Branch trim 0.25   

Table 4 
Summary of variabilities within each experiment.    

Modifications   

Training set Testing set   

q κ G q κ G 

Generalization of GNNs and EGNNs A ✓   ✓   
B ✓ ✓  ✓ ✓  

Transferability  ✓ ✓ ✓ ✓ ✓ ✓  
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becomes more prominent. Thus, adding this variability increases the 
complexity of the problem as the model must adapt to a wider range of 
data (Sato et al., 2021). The improved generalization becomes especially 
visible for larger WDSs, as can be seen in Fig. 4. There, the performance 
of GNN degrades significantly more than the one of EGNN. We included 
further comparison in terms of MAE to Appendix The primary difference 
in generalizability arises from the challenges of GNNs to effectively 
model pipe headlosses, as energy loss within the pipes are intricately 
tied to the flowrates. In contrast, EGNNs gain an advantage in this 
problem due to their edge centering and iterative updates of edge rep-
resentations. It initially predicts flowrates and subsequently deduces 
pressure values, thus decomposes a complex problem into smaller steps. 

The second distinction arises from the effect of stacking multiple 
layers in each method, which is essential to cover the whole WDS. In the 
case of nodes, this setting may lead to oversmoothing of the nodal signal 
(NT and Maehara, 2019) such as node heads, which leads to small 
variations in neighboring nodes, i.e. small headlosses. Such an inductive 
bias can be detrimental as it disregards the physical relation between the 
headloss and the flowrates. In the case of Le smooth signal is diver-
gent-free or mass-conservative on the junctions. Thus, an EGNN with 

multiple layers drives the prediction of flowrates towards 
mass-conservative values. This results in a more stable model for larger 
WDSs. 

4.2. Transferability of EGNNs 

Table 5 summarizes the results of the evaluation of the model trained 
on multiple networks simultaneously. It shows that the R2 of the pre-
dictions of flowrates and pressures on the unseen settings are consis-
tently above 0.8. Generally, the flowrate accuracy is higher for smaller 
networks. In addition, the model accurately approximates the pressure 
values for all networks. The results present good evidence of the trans-
ferability of the model in unseen domains when the distribution of nodal 
demands is similar to the one in the training set. Further analysis of the 
model’s sensitivity to input nodal demands is provided in the Appendix 
C.2. 

Moving to specific network cases, Figs. 5 and 6 showcase the trans-
ferability of EGNN on the example ASnet2, ZJ, Apulia and Jilin. 
Although these networks were not present in the training dataset, EGNN 
performs well. The error is manifested in the underestimation of 

Fig. 3. Water distribution networks used in the experiments (Bragalli et al., 2012; Kang and Lansey, 2012; Dandy, 2016; Hall, 2021; Rossman, 2016).  

Fig. 4. Degradation of performance in terms of R2 with the introduction of variability of the parameters in terms of predicted heads (left) and flowrates (right) 
between GNN (pink) and EGNN (purple). The top of the bar corresponds to the accuracy of the model trained on the dataset with fixed pipe parameters (Subset A in 
Section 3.2), while the bottom of the bar corresponds to the accuracy of the model trained on the dataset with variabilty in κ and q (Subset B in Section 3.2). 

Table 5 
Results of evaluation of transferability of EGNN (Section 4.2).  

Case study Maximum κ Pressures, (m) Flowrates, (L/s) 

R2 RMSE MAE R2 RMSE MAE 

ASnet2 4.5 ⋅101 0.832 0.069 ± 0.017 0.040 ± 0.011 0.793 10.785 ± 6.716 9.416 ± 6.192 
ZJ 3.5 ⋅102 0.858 0.233 ± 0.108 0.135 ± 0.050 0.848 19.689 ± 13.190 17.122 ± 11.598 
Jilin 1.5 ⋅104 0.950 0.552 ± 0.324 0.379 ± 0.218 0.983 2.419 ± 2.346 2.015 ± 2.179 
Apulia 7.4 ⋅105 0.883 0.907 ± 0.862 0.402 ± 0.210 0.982 2.820 ± 2.055 2.218 ± 1.687  
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pressures for certain areas of the networks. Simultaneously, the highest 
errors in predicted headlosses h appear near the reservoirs, particularly 
in pipe 62 in the case of ASnet2 in Fig. 5b and pipe 29 in the case of Jilin 
in Fig. 6d. These pipes connect districted zones to the rest of the 
network. Consequently, the errors in headloss propagate downstream to 
the rest of the sectors. 

One can additionally observe in Figs. 5a and 5c, that the relative 
error in f is generally higher for the smaller flows. Since the optimization 
is based on minimizing mean squared error in flowrates, these errors are 
more visible on pipes with low water flow. Nonetheless, large relative 
errors in predicted flowrates can lead to substantial disparities in 
headloss, as defined by Eq. (17). This is specifically evident when 
dealing with smaller pipe diameters, for example in the case of Apulia in 
Fig. 6b. The pipe with the largest headloss error features the highest κ 

and the lowest flowrate f. We introduced a weighting term with κ in the 
loss term in Eq. (21) to alleviate the issue. Because the loss is calculated 
per pipe, the weighting oversamples pipes with small diameters and 
prioritizes the important pipes during optimization. 

4.3. Speed-up 

Fig. 7a depicts the results of speed up experiments as a comparison of 
computational gains of the total model with each pressure reconstruc-
tion method. As we see iterative smoothing in general provides more 
speed improvements than the least squares, as it can be executed in 
parallel on a GPU. Thus, with the same graphic memory limit, iterative 
smoothing is significantly faster for smaller networks (up to 350 times 
faster). For larger networks, the methods seem to be providing relatively 

Fig. 5. Detailed evaluation of transferability on the example of ASnet2 (a, b) and ZJ (c, d) averaged over (n = 100) simulations for each case study. The left side 
shows the comparison of f with f and p with p̂. The right side depicts the layouts of the networks with the color on nodes and edges indicating an average absolute 
error of derived pressures and headlosses correspondingly (b,d). 
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similar speedups to the least squares method (up to 8 times faster). This 
is due to the fact that each iteration described in Eq. (20) propagates into 
the nearest neighborhood. Thus, the number of iterations required for 
convergence is scaled with the network diameter. Still, both of the 
methods act as bottlenecks in the system, as seen in Fig. 7b. 

4.4. Limitations & future work 

Although EGNNs show better performance for most of the networks 
and display good evidence for transferability, there are several possible 
paths for improvement. 

Firstly, we identified that the main difficulties arise in modeling the 
pipes near the reservoir and pipes with high hydraulic resistance κ. 

Future avenues could employ an architecture that simultaneously pre-
dicts on a nodal and pipe level. The main purpose of such architecture is 
to achieve differentiable predictions of both heads and pipe flows. This 
can be done, for example, by updating nodal representation simulta-
neously with the one of edges and predicting the pressures in the output. 
Such a setting will optimize for the accuracy of pressures during 
training, and provide further speed-ups. Further analysis is required to 
ensure that this setting will result in the same transferability as for 
EGNN. Another option could leverage a richer training corpus composed 
of a multitude of synthetically generated networks (Sitzenfrei et al., 
2013) and various demand sampling techniques. 

Secondly, both EGNNs and GNNs perform computation locally, i.e. 
for every node or edge and its neighborhood in parallel. Since physical 

Fig. 6. Detailed evaluation of transferability on the example of(a, b) and Jilin (c, d) averaged over (n = 100) simulations for each case study. The left side shows the 
comparison of f with f and p with p̂. The right side depicts the layouts of the networks with the color on nodes and edges indicating an average absolute error of 
derived pressures and headlosses correspondingly (b,d). 
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processes within WDS are not strictly local and are dependent on the 
global topology altogether (Todini and Pilati, 1988), the perceptive field 
of the deep learning model must be relative to the network diameter to 
convey the global topology. This results in scaling difficulties and 
challenges with propagating the signal from distant nodes (NT and 
Maehara, 2019). Conversely, hydraulic simulators effectively approach 
this challenge by approximating the state with the Global 
Newton-Raphson algorithm (Todini and Rossman, 2013). Possible di-
rections to tackle the issue include decoupling the WDS graph from the 
computational graph, for example with a coarser network (Shamir and 
Salomons, 2008; Paluszczyszyn et al., 2013) or graph rewiring tech-
niques (Gasteiger et al., 2019; Chamberlain et al., 2021a). 

Lastly, representing other elements of WDS, such as multiple pumps, 
valves, and tanks remains an open challenge. At this point, the EGNN 
can include readings from flow meters as an input, while further 
research could investigate incorporating readings from pressure meters 
and reservoir heads in the input of the model as a part of xe. This will 
extend the analysis to networks with multiple reservoirs. In the extended 
period simulation, tanks can be included similarly to Rossman (2022). 
However, that imposes additional complications, as the prediction er-
rors at each steady state can propagate to the following time steps. 
Posing the problem as a time series rather than a steady state prediction 
might be beneficial. In that case the metamodel inputs and outputs 
several prediction for several timesteps, similar to metamodels that 
accelerate simulations for urban drainage systems (Garzón et al., 2022). 

5. Conclusion 

In this study, we proposed a new approach to metamodelling of WDS 
using edge-based graph neural networks. The metamodelling is per-
formed in 2 consecutive steps: flowrate prediction and pressures deri-
vation. We additionally presented a novel approach to the derivation of 
pressures from flowrates using power approximation. 

The study evaluated 2 main properties of the model: generalization 
to varying demands and pipe parameters in the dataset with fixed to-
pology and the transferability to unknown topology. The model shows 
better generalization capabilities than the traditional GNN-based met-
amodels, consistently providing higher prediction accuracy in terms of 
flowrates. For most of the cases, EGNN shows similar or better results in 
terms of predicted pressures. We additionally displayed that EGNN can 
generalize the predictions out-of-sample. By leveraging inductive biases 
rooted in the physical laws of mass conservation, the model presents the 
best transferability so far. This method showed higher speedups for 
smaller WDSs (up to 350 times for smaller networks and 8 times for 
larger networks) and is parallelizable on GPUs. 

Improved generalization of a metamodel can be leveraged in 
downstream tasks that require evaluation of alternative layouts and pipe 
parameterizations. We believe the proposed methodology is a first step 
towards the development of a fully transferable EPANET metamodel, 
capable of accurate zero-shot predictions for unseen case studies. Future 
research could address the mentioned limitations and investigate the 
performance of our method with available sensor readings and the 
applicability of EGNNs in surrogate modeling over an extended period. 
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Appendix A. Vector representation of batching 

Multiple networks can be processed in a batch. In that case, Laplacian matrices are stacked as a block diagonal matrix that represents the con-
nectivity of a large graph network with n connected components, where n is the batch size. Edge features and flowrates are concatenated in the first 
dimension, i.e. 

Fig. 7. Comparison of execution time and speed-up.  
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As a block diagonal matrix, combined Le is sparse. Sparse aggregation techniques allow for parallel multiplication of thousands of WDSs (Yang 
et al., 2018). 

Appendix B. Training details 

Below we provide hyperparameters selected for the experiment. All of the experiments were executed on the cluster node with Intel Xeon(R) Gold 
6132 CPU and NVIDIA V100 with 16GB graphic memory. The batch sizes for each experiment were selected to fully fill the GPU. 

B.1. Experiment 1 

For each of the case studies, we trained ENNs with Adam optimizer for 70,000 epochs with a learning rate of 0.003. The number of layers L 
corresponds to the diameter of each WDS. For every case except for BAK, we chose a 2- layer MLPs as an encoder MLPψ and a single-layer MLPξ . A 
nonlinearity σ in the encoder ψe is LeakyReLU with a coefficient of 0.2. Only the first term in loss function 21 is used, as it was sufficient. 

For BAK the training procedure required additional fine-tuning. After 10,000 epochs, we decreased the learning rate to 0.0003. The coefficients α1 
and α2 in the loss function are 1000 and 1 correspondingly. Additionally, ξ is a 2-layer MLP with Tanh activation function. 

For the baseline GNN, we used the same set of hyper-parameters as provided in the original work. The provided code uses TensorFlow framework. 

B.2. Experiment 3 

In the case of transferable training we additionally normalized the input features κ between and scaled the flowrates by multiplying by 10. The 
selected learning rate is equal to 0.001 and a batch size is selected as 1000. We additionally applied a gradient clipping with a maximum value of 0.01. 
We selected LeakyReLU with the coefficient of 0.2 as a nonlinearity σ in the encoder ψe. For the rest of the network, the σ is a Tanh. After each layer of 
MLP we applied a dropout with the probability of 0.1. In addition, we randomly change the orientation in the representation every 25 epochs. 

Appendix C. Additional experiment results 

C.1. Generalization 

This section includes a visualization of the evaluation of trained EGNN models in Experiment 3.2. Particularly, Fig. C.1 presents the difference in 
performances of trained models measured by MAE. The plot shows the same trend as in Fig. 4. 

Since the network topology is the same in the training and testing set, the prediction accuracy is visibly higher. However, the limitations high-
lighted in Section 4.2 remain. Particularly in Fig. 5 we see errors in pressures, propagated from the errors in flowrates. Additionally, relative errors in 
predicted flowrates are higher for smaller flows. 

C.2. Model sensitivity to demand values 

In a separate experiment, we explore the sensitivity of the model trained in Section 3.3 to nodal demands and energy losses within the system. This 
evaluation setting differs from the one presented in Table 5. Instead of sampling q uniformly, we employed the original values from .inp files and scaled 
them with a fixed multiplier m. The original demand values are also visualized in Fig. C.3. We obtained 200 simulations per network by varying m 
between 0 and 100 % (400 % for ASnet2) with a step of 0.5 %. We use the head difference between the reservoir and a node with the lowest pressure 

Δpmax = pr − min
i∈V

pi  

as a proxy for the total energy losses in the system. 
Fig. C.4 depicts the sensitivity of the model to the input demands and energy losses. For every network except the largest, i.e. ZJ, the model 

produces predictions with positive R2 when Δpmax is contained within 10 m. Depending on the network, Δpmax corresponds to specific demand ranges, 
mostly under 10 L/S 

The root cause of the limitation arises from the distribution of the nodal demands in the training set. As we see in Fig. C.5, the demands are 
contained within the range of 0 and 5 L/S and are sampled uniformly. Conversely, the original q from .inp files does not follow the same distribution 
(Fig. C.3). This is especially visible in Apulia, where the lower bound of the demands is located on 8 L/S, contrary to 0 L/S in all other networks. This 
could explain a discrepancy between accuracies depicted in Fig. C.4 and in Table 5. 

One can also observe that the accuracy decreases when Δpmax is small. This could be the result of the higher relative errors for smaller flowrates 
mentioned above and a general sensitivity of R2 to errors when the target values are small. A broader range of demand distributions and alternative 
sampling techniques, such as latin hypercube (Babayan et al., 2005) and sparse sampling, may hold the potential for improvement. 

Fig. C.1 
Fig. C.2 
Fig. C.3 
Fig. C.4 
Fig. C.5 
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Fig. C.1. Degradation of performance (MAE) with the introduction of variability of the parameters in terms of predicted heads (left) and flowrates (right) between 
GNN (pink) and EGNN (purple). The top of the bar corresponds to the accuracy with fixed pipe parameters (Subset A in Section 3.2), while the bottom of the bar 
corresponds to the accuracy with introduced variability in κ and q (Subsest B in Section 3.2).  
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Fig. C.2. Visualization of generalization to q and κ (Subset B of Experiment 3.2) on the example of ZJ (top) and ASnet2 (bottom). The values are averaged over (n =
1000) samples.  
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Fig. C.3. Demand distribution in the original .inp files.  

Fig. C.4. Sensitivity of the prediction accuracy to the maximum head difference and average nodal demand. Each point corresponds to a simulation and is scaled by 
the average nodal demand.  
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Fig. C.5. Demand and pipe parameter distributions for generated networks in the training set of the experiment 3.3.  
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Hajgató, G., Gyires-Tóth, B., Paál, G., 2021. Reconstructing nodal pres- sures in water 
distribution systems with graph neural networks URL: https://arxiv.org/abs/2 
104.13619, arXiv:2104.13619. 

Hall, A., 2021. 01 Apulia. URL: https://uknowledge.uky.edu/wdst_international/1. 
international Systems, 1. 

Isufi, E., Gama, F., Shuman, D.I., Segarra, S., 2022. Graph filters for signal processing and 
machine learning on graphs. arXiv:2211.08854. 

Jia, J., Schaub, M.T., Segarra, S., Benson, A.R., 2019. Graph-based semi- supervised 
&amp active learning for edge flows. In: Proceedings of the 25th ACM SIGKDD 
International conference on knowledge Discov- ery Data Mining. https://doi.org/ 
10.1145/3292500.3330872. 

Kang, D., Lansey, K., 2012. Revisiting optimal water-distribution system design: issues 
and a heuristic hierarchical approach. J. Water. Resour. Plan. Manage 138, 208–217. 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000165. 

Kerimov, B., Bentivoglio, R., Garzón, A., Isufi, E., Tscheikner-Gratl, F., Steffelbauer, D.B., 
Taormina, R., 2023. Assessing the performances and transferability of graph neural 
network metamodels for water distribution systems. J. Hydroinformatics. https:// 
doi.org/10.2166/hydro.2023.031. 

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional 
networks. arXiv preprint arXiv:1609.02907 . 

Klise, K.A., Murray, R., Haxton, T., 2018. An overview of the water net- work tool for 
resilience (WNTR). In: 1st International Water Distribution Systems Analysis 
(WDSA) /3rd International Conference on Computing and Control for the Water 
Industry (CCWI) Joint Conference. 

Lee, S.C., Lee, S.I., 2001. Genetic algorithms for optimal augmentation of water 
distribution networks. J. Korea Water Res. Ass. 34 (5), 567–575. 

Levie, R., Isufi, E., Kutyniok, G., 2019. On the transferability of spectral graph filters. In: 
2019 13th International conference on sampling theory and applications (SampTA), 
pp. 1–5. URL: https://api.semanticscholar.org/CorpusID:59413913. 

Lima, G.M., Brentan, B.M., Manzi, D., Luvizotto, Edevar, J., 2017. Metamodel for nodal 
pressure estimation at near real-time in water distribution systems using artificial 
neural networks. J. Hydroinform. 20 (2), 486–496. https://doi.org/10.2166/ 
hydro.2017.036 arXiv. https://iwaponline.com/jh/article-pdf/20/2/486/657814/ 
jh0200486.pdf. 
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