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ABSTRACT 

The main objective of this Master’s thesis is to develop an optimization routine to improve 

ice-class propeller design methodology using the design space within the ice-class rules.   

 

Ice impacts on a ship propeller give additional design demands to ensure reliability and 

safety. Consequently, ice class propellers feature thicker blades, therewith compromising 

fuel efficiency. However, ships trading the Baltic states and Scandinavia only sail two to five 

percent of their time in ice-infested waters. Propulsive efficiency should hence be optimized 

for ice-free conditions only, while still having sufficient ice performance and strength. The 

Finnish Swedish Ice Class Rules prescribe loads on the propeller blade as five load cases of 

uniform pressure that should be applied on the propeller blade.  

 

The Non-Dominated Sorting Genetic Algorithm II (NSGAII) is coupled to MARIN’s in-house 

propeller geometry generator, hydrodynamic boundary element analysis method PROCAL 

and a finite element analysis to evaluate the propeller blade strength. Both the radial and 

chordwise propeller distributions are parameterized by means of Bézier curves into 

optimization design variables. With these expansions, the computational framework is 

capable to automatically satisfy the ice-class stress constraints while converging to the best 

possible objective values. Each propeller within the optimization is iterated on mean pitch 

towards a design thrust. 

 

The four optimization objectives that are considered in this Master’s thesis are propeller 

efficiency, thrust variation throughout the ship’s wake field, propeller mass and ice-induced 

loading. Efficiency is considered as main objective while thrust variation is intended to 

provide interaction with the wake field. Besides the practical importance of the mass 

objective, it also guides the optimization towards high efficiency and maximum allowable 

material stresses. Based on a steady simulation of ice milling by means of an idealized ice-

load pressure distribution, the ice-induced loading can be estimated as quantification of ice-

performance. 

 

Best practice guidelines on the usage of PROCAL within the optimization are developed 

based on grid refinement and numerical uncertainty studies. Four different implementations 

of the finite element method are compared to the solution from a dense tetrahedral solid 

element mesh. Linear shell elements appear to perform best, both in terms of computational 

time and accuracy.  

 

A case study shows that ice-induced loading can be reduced as function of particularly the 

pitch distribution and blade profile geometry. It is also observed that the optimization 

searches for the weaknesses within the computational methods. For instance, it appears that 

the current ice-class rules allow highly skewed propellers, despite damage cases in practise. 

The optimization results are encouraging for future work concerning the optimization of blade 

profiles, although further work is required. It appears that the thrust variation objective steers 

towards flat chordwise pressure distributions. Cavitation computations are not yet included in 

the optimization, nonetheless, the optimized propellers show only little cavitation in the tip 

region. In conclusion, the optimization seems to provide a well-balanced starting point 

towards the design of high efficiency ice-class propellers.   
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SAMENVATTING 

Het hoofddoel van deze afstudeerscriptie is het ontwikkelen van een optimalisatie routine 

voor ijsklasse schroeven om hun ontwerpmethodiek te verbeteren aan de hand van de 

ontwerpruimte binnen de huidige ijsklasse regels. 

 

De botsingen tussen ijs en een scheepsschroef geven aanleiding to extra ontwerpeisen om 

betrouwbaarheid en veiligheid te waarborgen. Als gevolg van de ijsbelasting hebben 

ijsklasse schroeven dikkere schroefbladen waarmee het rendement aangetast wordt. Echter, 

handelsschepen naar de Baltische staten en Scandinavië varen maar twee tot vijf procent 

van hun tijd door ijs. Het rendement van de voortstuwingsinstallatie moet daarom alleen 

geoptimaliseerd worden voor ijsvrij water. Tegelijkertijd moeten de schroeven sterk genoeg 

zijn en voldoende prestaties leveren in ijs. De Fins-Zweedse ijsklasse regels schrijven de 

belastingen voor in de vorm van vijf belastingssituaties van uniforme druk die aangebracht 

moeten worden op het schroefblad.  

 

Het Niet-Gedomineerde Sortering Genetische optimalisatie Algoritme (NSGAII) is gekoppeld 

aan een schroefblad geometrie generator van MARIN, de hydrodynamische grenselementen 

analyse methode PROCAL en een eindige elementen analyse methode om de sterkte van 

het blad te bepalen. Zowel de radiale- als koorde verdelingen zijn geparametriseerd met 

behulp van Bézier krommes in ontwerpvariabelen voor de optimalisatie. Met deze 

aanvullingen is het berekeningsprogramma in staat de randvoorwaarden van de ijsklasse op 

materiaal spanningen automatisch te voldoen terwijl de optimalisatie convergeert naar de 

best mogelijke doelen. Elke propeller in de optimalisatie is onderworpen aan een iteratieve 

aanpassing van de gemiddelde spoed zodat de stuwkracht voldoet aan het ontwerppunt. 

 

De vier optimalisatie doelen in deze afstudeerscriptie zijn schroefrendement, stuwkracht 

variatie in het scheepszog, schroefmassa en de belasting als gevolg van ijs. Rendement is 

het hoofddoel terwijl de stuwkracht variatie moet zorgen voor een wisselwerking met het 

scheepszog. Behalve het praktische nut van schroefmassa, leidt dit doel de optimalisatie ook 

richting hoog rendement and maximaal toelaatbare materiaal spanningen. Gebaseerd op 

een statische simulatie van ijsvermaling door middel van een versimpelde ijsbelastingdruk 

kan een schatting gemaakt worden van de schroefprestatie in ijs. 

 

Richtlijnen voor het gebruik van PROCAL in een optimalisatie zijn ontwikkeld door middel 

van een roosterverfijningsstudie en numerieke onzekerheidsstudies. Vier verschillende 

implementaties van de eindige elementen methode zijn vergeleken met de oplossing op een 

fijn rooster van viervlakken. Lineaire schaal elementen blijken het beste te presteren op het 

gebied van berekeningstijd en nauwkeurigheid.  

 

Een casus laat zien dat de belasting als gevolg van ijs beperkt kan worden als functie van de 

geometrie van de schroef. Vooral het bladprofiel en de spoed hebben invloed. Het kan ook 

opgemerkt worden dat de optimalisatie naar de zwaktes in de berekeningsmethoden zoekt. 

Het lijkt er bijvoorbeeld op dat de huidige ijsklasse regels hoge skew toelaten ondanks de 

schadegevallen in de praktijk. De resultaten van de optimalisatie moedigen toekomstig 

onderzoek aan met betrekking tot de blad profielen. Het lijkt erop dat het stuwkracht variatie 

doel de optimalisatie naar vlakke drukverdelingen over de koorde toe stuurt. Cavitatie 

berekeningen zijn nog niet aanwezig in de optimalisatie, desondanks laten de 

geoptimaliseerde propellers alleen op de schroeftip een beetje cavitatie zien. Als conclusie 

kan gesteld worden dat de optimalisatie een goed gebalanceerd startpunt lijkt te geven voor 

het ontwerp van hoog rendement ijsklasse schroeven. 
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1 INTRODUCTION 

 

The main purpose of this Master’s thesis is to develop an analysis routine to improve ice-

class propeller design methodology. This includes further study on the validity of the 

hypothesis from the literature research.  

 

Prior to this report, a literature research and definition study were carried out by the author 

(Huisman, 2015). The research question was formulated as follows: “How can propeller 

efficiency of ice-class cargo ships in operational conditions be improved by means of an 

automated propeller design optimization routine taking design constraints into account?” It 

was hypothesized that an optimization procedure gives valuable insight in the trade-off 

between efficiency, ice strengthening, ice performance and cavitation nuisance.  

 

Sailing through ice infested waters gives additional propeller design demands because 

impacting ice blocks exert significant loads on a propeller blade. Under these circumstances, 

reliability and safety should be ensured. The Finnish Swedish Ice Class Rules
1
 (TraFi, 2010) 

prescribe maximum loads that the propeller blade should withstand. Typically, these loads 

are an order of magnitude higher than hydrodynamic loads. Consequently, ice-class 

propellers feature thicker blades and larger hubs than non-ice-class propellers, thereby 

compromising fuel efficiency.  

 

Ships trading the Baltic states and Scandinavia, however, only sail 2 to 5 percent of their 

time in ice infested waters (Huisman, 2015). For these ships, propulsive efficiency should 

therefore be optimized for ice-free conditions only, whilst having sufficient ice performance 

and strength. 

 

1.1 Background 

The definition study by Huisman (2015) starts with an analysis of the practical problem. Ship 

propulsion in ice was reviewed and the background of the ice class rules was identified. The 

conventional iterative propeller design cycle was studied together with the impact of ice class 

requirements on propeller geometry and efficiency. The definition study closed with a 

research proposal which is taken in this Master’s thesis. 

 

An investigation of the background of the ice-class rules showed that the ice failure model of 

Soininen (1998) and the time simulation model of Koskinen et al. (1996) served as a basis. 

Regression analyses of parametric studies with the simulation model resulted in the current 

ice-class load formulations. A limited number of propellers was considered for which 

diameter, thickness, blade area ratio, rotational speed and apparent angle of attack were 

varied together with ice block properties. This simulation model depends on initial ice block 

sizes and properties, velocities and hull geometry besides propeller geometry. Since it was 

concluded in Huisman (2015) that a full milling condition gives the highest ice loads, a steady 

milling simulation could be coupled to the optimization framework to predict the ice induced 

loading. 

 

Practically, the design space in the current ice-class rules is important. Five load cases have 

to be applied on the propeller blade for which its material should not yield.  Although the ice-

class rules have limited geometry dependency on the loads, the geometry dependency is 

abundantly present in the final material failure constraints. Propeller designers are 

confronted with the choice of the ‘best’ propeller for the vessel under development. 

Knowledge on the aforementioned trade-offs in propeller performance would guide the 

designer to the optimal propeller.  

 

                                                      
1
 In the remainder of this Master’s thesis referred to as ‘ice-class rules’ 



2 
 

 

Master’s Thesis 
 

1.2 Thesis Outline 

Based on the research question and the purpose of this Master’s thesis the following sub-

questions will be considered: 

1. How can stress constraints from the ice-class rules be satisfied for the propeller 

material within an optimization? 
2. How can the design space within the ice-class rules be utilized with respect to 

obtainable efficiency and hydrodynamic behavior? 

3. What are best practice guidelines for ice-class propeller design? 

 

Following the hypothesis that an optimization could provide answers to these questions, this 

Master’s thesis addresses an automatic computational framework with the following three 

main components: 

I. Objectives   and Constraints     define the core of the framework. Objectives 

should be optimized while constraints should be satisfied. Besides efficiency and 

stress, also thrust variation will be considered to guide the pressure distribution over 

the propeller. To avoid heavy propellers, a mass objective could be used to steer the 

algorithm towards maximum allowable stresses and high efficiency. Ice-induced 

loading as function of propeller geometry is studied as well with an simplified 

simulation with Soininen’s (1998) model. 

II. Geometry Generation is a key in any design problem. Propeller geometry should 

be fully parameterized, while the number of design parameters should be limited. 

III. Computational Analysis is required to assess the fitness of a propeller based on 

the objectives and constraints. Hydrodynamic and structural analysis are required 

and will be addressed. In addition, ice milling loads should be estimated. These 

analysis tools are coupled to an optimization structure   in which all design 

parameters, objectives and constraint violations will be stored. Hence, an 

optimization algorithm can indirectly be coupled to the analysis tools to obtain 

generality of the computational framework.  

 

1.3 Scope 

Within this Master’s thesis the scope is limited to fixed pitch propeller blades. Hence, in the 

following it will be assumed that the: 

 Operational propeller design point is prescribed. 

 Effective wake field of the ship is known and constant for axial and tangential 

velocities.  

 Ice-class rules solely govern propeller strength. 

 Propeller hub can be used for all propeller blade geometries. 

 

Furthermore, only focusing on the subsystem of propeller blades, this Master’s thesis does 

not address the matching of ship hull, main engine and propeller. Propeller-hull interaction, 

which should ideally be taken into account during propeller geometry optimization, is not 

considered in this Master’s thesis and left for further research.  

 

1.4 Optimization Objectives and Constraints 

Objectives and constraints form the core in any optimization problem. A propeller should 

satisfy the constraints whilst having the best objectives. Referring to Table 1-1, four 

objectives are considered in this Master’s thesis. Their further explanation is given in 

subsections 1.4.1 to 1.4.4. 
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Table 1-1: Objectives, constraints on the propeller results, constraints on the design parameters & 

constraints due to failures within geometry generation or analysis tools. 

 
 

Constraints come in different forms as indicated by Table 1-1. The user-adjusted primary 

constraints on stresses and thrust convergence relate to propeller performance. These are 

considered in subsections 1.4.5 and 1.4.6 respectively.  Design parameter constraints serve 

to generate new propeller geometries without fatal errors due to infeasible geometries and 

will be addressed in section 2.1 on propeller geometry. Avoiding fatal errors, analysis failures 

are dealt with as constraints as explained further in section 3.4. 

 

1.4.1 Objective 1: Efficiency 

Efficiency is the most important objective which should naturally be maximized for any 

propeller design. It relates the required engine power, or delivered power      to delivered 

thrust power    to propel the ship. Efficiency gives an indication of the effectiveness of the 

delivered main engine power. Together with machinery efficiency and propulsor-hull 

interaction, propeller efficiency is directly related to the operational costs of a ship by means 

of fuel consumption.  

 

A formal definition for propeller efficiency   can be written as: 

 

 
  

  
  

 
   
    

 
  
  

 

  
  (1)  

 

where   propeller thrust in [N],    propeller torque in [Nm] and   propeller rotational speed in 

[Hz]. Furthermore, in the last equality the following standard non-dimensional definitions are 

used: 

 
   

 

     
    

 

     
           

  
  

  (2)  

 

Thrust coefficient   , torque coefficient    and advance coefficient   are made non-

dimensional by a combination of density   [kg/m
3
], rotational speed   [Hz] and diameter   

[m]. It should be noted that the incoming velocity    in [m/s] is a circumferentially averaged 

quantity in behind hull conditions to present the average efficiency of the propeller in the 

wake field. 

 

1.4.2 Objective 2: Thrust Variation 

It is assumed that cavitation hindrance can be limited by minimizing the first harmonic of 

thrust variation in a non-cavitating calculation. This can be regarded as an estimator of 

Objectives 

Efficiency 

Thrust 
Variation 

Propeller 
Mass 

Ice Induced 
Loading 

Constraints 

Stresses 

Thrust 
Convergence 

Design 
Parameter 

Constraints 

Bounds 

Relationships 

Analysis 

Failures 
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pressure pulses. The pressure profile over the propeller blade will be smoothed out over a 

range of angles of attack, while the propeller will tend towards a high skew design. 

 

In unsteady computations, the thrust on a single key blade varies through the wake field due 

to the change in angle of attack. A Fourier series can be used to describe the force as 

visualized in Figure 1-1. 

 
Figure 1-1: Thrust (solid blue line) and its first harmonic (dotted red line) as function of time. The 

frequency is determined by the number of blades and rotation rate. The black horizontal line indicates 

mean thrust, while the amplitude represents the first harmonic of thrust variation over time. 

The first harmonic within this series is representative for the amplitude of the thrust variation. 

Thrust variation is presented in this Master’s thesis as the ratio between the magnitude of 

the first harmonic the time dependent thrust    and the total average thrust of the propeller  

 : 

 
   

  

 
 (3)  

 

Note that all blades feature the same thrust variation
2
 with a phase difference. Hence, the 

magnitude of thrust variation of the key blade only suffices. Within the optimization it should 

be minimized. 

 

1.4.3 Objective 3: Propeller Mass 

Especially for FPPs, mass is strongly correlated with investment costs. Additionally, propeller 

mass can be added as objective to help the algorithm converge to high efficiency propellers 

with low thrust variation while material stresses approach their limit.  

 

Mass is indirectly linked with efficiency via the expanded blade area ratio and the chord and 

camber ratios with respect to thickness. For both mass and material stresses, the thickness 

of the profile is important. Most propeller blade material stresses orginate from bending 

loads. Stresses are inverse proportional with the area moment of inertia which incorporates 

thickness to the third power. Hence, propeller mass could be used as auxiliary objective. 

 

1.4.4 Objective 4: Ice-Induced Loading 

As the ice-class rules cover the extreme loading conditions, average conditions should be 

considered as well. Ship propellers should be able to withstand the ice-loading whilst 

delivering sufficient thrust to propel the ship through ice. Hence, both the ice-induced 

bending moments as well as the ice-induced torque should be limited such that the main 

engine can drive the propeller.  

 

While the ice class rules are based on time consuming dynamic time simulations, in this 

work the prediction will be based on steady state ice milling of the propeller through an 

infinite ice mass. The simplified ice-failure model of Soininen (1998) will be used to prescribe 

the ice-induced pressure on a propeller blade. 

 

                                                      
2
 Only after the unsteady computation has converged, when the initial transients are negligible and inflow conditions 

and propeller speed remain constant. 
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The average ice-induced loading over a range of operation conditions from J = 0.2 to 0.7 is 

considered to obtain a well performing propeller in ice. From the prediction of the total ice 

force, the propeller root bending moment    and ice-induced torque    can be used as 

objectives. In the context of ice-performance, the ice induced torque is to be limited. When 

minimizing for the bending moment, the propeller will be less prone to damage.  

 

1.4.5 Constraint 1: Material Stresses 

Following the ice-class rules, blade strength is the most important ice strengthening criterion; 

the drive train of the reference ship is assumed to comply to strength and fatigue 

requirements. Furthermore, the ice class rules assume that hydrodynamic loads are 

incorporated in the load cases. Hence, no additional hydrodynamic loads are considered at 

all. 

 

For CPPs, spindle torque limits together with properly estimated hub-sizes would be 

required, while detailed fatigue life computations might disapprove best designs. However, in 

this study FPPs are considered while it is assumed that fatigue strength is sufficient since 

fatigue is explicitly based on the stresses from the ice-class load cases. 

 

It is assumed that maximum stress from either ice-load case is the only governing criterion 

for ice-class propellers. The five load cases of the ice-class rules are considered for each 

propeller in a computational structural analysis. The maximum stress    out of the five load 

cases is compared with the reference value     , which is given in the ice-class rules (TraFi, 

2011, p. 38) as the lesser of: 

 

                                (4)  

 

in which    the ultimate tensile strength and      the 0.2% proof stress. While    gives the 

ultimate strength allowing any permanent plastic deformations,      gives the stress at which 

the material experiences only 0.2% plastic strain. Hence, the ice class rules allow plastic 

deformation to a certain degree, although this is limited by their prescription of a safety factor 

in the final comparison equation, 

 

     

  
     (5)  

 

that defines the stress constraint within the optimization for each load case. 

 

 

1.4.6 Constraint 2: Design Point Iteration 

Within an optimization, propellers are compared on their performance in a certain design 

point. Ship speed and the required thrust should be prescribed. In this study also propeller 

diameter and hub size, rotational speed and blade area ratio are constant as they would 

introduce a bias in the objectives. Rotational speed and propeller diameter are strongly 

correlated with efficiency by means of the advance ratio. The optimization would converge to 

highly pitched, large diameter propellers working at low rotational speed which cannot be 

driven by the machinery installations. An iterative procedure is developed by Foeth (2013) 

which adapts the propeller’s mean pitch to obtain the required thrust. Within the optimization, 

a constraint should ensure convergence of this procedure.  
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1.5 Case Study 

The reference point for this study is the ‘Streamline tanker’. Design and optimization studies 

in the 7
th
-Framework European project STREAMLINE

3
 considered as common baseline the 

7000 [DWT], 94 [m] single-screw vessel representative of small-size short-shipping vessels 

populating European sea routes. Although recent developments resulted in longer ships with 

larger     ratios
4
, the Streamline tanker is still useful to take as case study. Only the design 

conditions and the wake field are important for the current study. For the reader’s 

imagination, the outline of the wake field, the propeller and a picture of the ship are given in 

an overview in Figure 1-2. 

 
Figure 1-2: Overview of the Streamline tanker. The wake field is given as well as an outline of the 

reference propeller and a typical blade profile at 0.7R.  

The Streamline tanker’s design speed is similar to that of newer vessels. Also the shape of 

the aft-ship and gondola, on which the wake field mainly depends, is assumed to be 

representative for those newer vessels. Furthermore, not only newer ships are important, 

results of this study could be used for retrofitting older ships with better propellers. Finally, it 

is also assumed that the Streamline tanker is representative for ice class ships, although in 

reality the ship does not have an ice class. The propeller will be assessed on compliance 

with the ice class rules. The newly designed propeller should automatically comply with 

them, since the rules are implemented in the computational framework. 

 

Besides the academic value as common test case in CFD, sufficient experimental results 

and numerical studies are available for the Streamline tanker, e.g. Ploeg (2011), Nuland 

(2014) and Foeth (2015). 

 

The Streamline tanker’s propeller will be referred to as the reference propeller in this study. It 

will be used as reference in comparison with optimization results. With 4 blades, a diameter 

of 3.85 [m] and BAR of 0.563 the reference propeller is able to propel the tanker to its design 

speed of 14 [knots] delivering a thrust of 271 [kN] at 132 [rpm]. In this design point, without 

ice-class, the reference propeller achieves an efficiency   = 0.648. Its material is a Nickel-

                                                      
3 

STREAMLINE (Strategic Research for Innovative Marine Propulsion Concepts). http://www.streamline-project.eu/ 

 
4
 Ice pieces may float up again before reaching the aft-ship, diminishing the ice-interaction process considerably. 

http://www.streamline-project.eu/
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Aluminium-Bronze alloy with a tensile strength of 640 [MPa] and a 0.2% plastic proof stress 

of 260 [MPa]. The aforementioned properties of the propeller and details of the design point 

are summarized in Table 1-2. 

 

Table 1-2: Details on the reference propeller and its design point. 

Main Particulars    

Diameter    3.85 [m] 

Blade Area Ratio      0.563  

Number of Blades    4  

Mass    3527 [kg] 

Shaft Immersion      3.75 [m] 

    

Propeller Material    

Tensile strength     640 [MPa] 

Proof stress       260 [MPa] 

Density    7650 [kg/m3] 

    

Design Point    

Speed    7.20 [m/s] 

Thrust    271.0 [kN] 

Rotational Speed    2.20 [1/s] 

Efficiency    0.637   

Advance Ratio    0.676  

Ice Strength       2 [MPa] 

 

1.6 Report Structure 

This Master’s thesis continues in chapter 2 by considering the physical and theoretical 

models to describe and analyze the propeller. Also the working principles of the optimization 

algorithm are addressed.  

 

Chapter 3 follows by explaining and assessing computational methods to solve the 

theoretical models. Grid refinement and uncertainty studies are carried out in order to find 

best practice guidelines that lead to the cheapest computation settings which are acceptable 

within the optimization. Of any propeller blade, both the hydrodynamic behavior and the 

structural integrity need to be predicted  accurately. The ice-load prediction model will be 

assessed for its sensitivity to blade section geometry in 2D and implemented within the 

computational framework in 3D. All analysis tools are coupled with the propeller blade 

geometry generator and an automatic optimization algorithm. The flowchart and 

implementation details will be considered. 

 

Chapter 4 starts with exploratory tests to check and debug the computational framework. 

Gradually, through thickness optimization, blade profile optimization with steady and 

unsteady computations, this chapter continues to full optimization in which the whole 

propeller is delivered to the capabilities of the optimization algorithm. Upon convergence, the 

trade-offs between the objectives and constraints are analyzed. Best propellers are 

assessed for performance. 

 

Finally, the observations and guidelines are presented in conclusions and recommendations 

in chapter 5 which concludes this Master’s thesis.  
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2 PHYSICAL AND THEORETICAL MODELS 

Reality, its modeling and numerical implementations are to be distinguished. In the 

qualification of a computational method the separate effects of modeling and numerical 

errors compared to reality should be addressed. Figure 2-1 gives an overview of the 

modeling of a process in reality. Verification in this framework is a mathematical exercise to 

show that the physical model is solved correctly to a certain degree of accuracy. Validation is 

an assessment whether the right conceptual physical model is solved to represent reality 

(ASME, 2009). Modeling errors are introduced at the right side of Figure 2-1 while numerical 

errors are present at the left.  

 

Figure 2-1: Overview of steps in the numerical modeling of reality.  

Keeping Figure 2-1 in mind, this chapter considers physical and theoretical models for  

1. a description of propeller geometry 

2. hydrodynamic behaviour of a propeller behind a ship 

3. extent and behaviour of cavitation on the propeller 

4. ice loads on a propeller 

5. stresses in propeller material due to mechanical loading 

6. numerical uncertainties in computational methods 

7. optimization of large, advanced systems 

as ingredients of the computational framework. These subjects will be reviewed with their 

assumptions, strengths and limitations. The enumeration will be followed in the subsequent 

sections. 

 

2.1 Propeller Blade Geometry 

A description of traditional propeller geometry is given by means of a parameterization in 

radial and chordwise direction. Table 2-1 summarizes all parameters involved and some of 

their related parameters. As explanation the following should be noted: 

 The global parameters define the overall size of the propeller blades while radial 

distributions shape the propeller blade outline.  

 Chordwise distributions are used to design blade foil profiles which are constant over 

the radius. 

 Details are not parameterized, and should be considered separately afterwards in 

detailed engineering. 

 From the global parameters and the distributions, related parameters can be derived 

which are traditionally used to describe the propeller. 

For propeller terminology the reader is referred to the standards of the ITTC (1999). 

Reality 

• Stochastic nature 

• Experimental method 

Physical Model 

• Most important physical 
processes 

• Physical laws  

Theoretical Model 

• Continuous 
mathematical 
representation 

Discretised Model 

• Numerical discretisation 
on a  finite grid domain 

Solution Method 

• Solution of discretized 
model 
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Table 2-1: Propeller geometry parameterization. 

 
 

Besides skew [rad], the radial distributions are in [m] made dimensionless with propeller 

diameter. Chordwise distributions are dimensionless since they should be scaled with their 

corresponding radial distributions. To visualize and analyze the propeller, the six radial 

distributions and two chordwise distributions are converted and dimensioned into a point 

cloud in a Cartesian coordinate system. The steps are itemized in Table 2-2: 

 

Table 2-2: Itemization of the steps involved in the conversion of propeller geometry from distributions to 

a point cloud. 

 

A coordinate transformation is convenient when adding skew to the propeller geometry 

description to include both the skew-induced rake translation and skew rotation.  

 

2.1.1 Bézier Curves 

Conform the parameterization of Table 2-1 a large family of propellers can be generated. In 

this Master’s thesis the radial and chordwise distributions are limited to first-order smooth 

functions though. A description by means of Bézier curves is used. 

 

Global 

Diameter 

Hub size   

Number of 
blades 

Radial 
distributions 

Pitch 

Chord 

Skew 

Rake 

Camber  

Thickness 

Chordwise 
distributions 

Camber 

Thickness 

Details 

Hub shape 

Root fillet 

Edges 

Roughness 

Related 

Effective 
pitch 

Blade Area 
Ratio 

Skew angle 

and many 
more... 

Discretize • all distributions with sufficient resolution 

Scale • chordwise distributions with their corresponding radial distributions 

Add • or subtract the thickness distribution from the camber distributions 

Create • blade foil geometry at each radial position. 

Scale • sections with chord length 

Rotate • sections with local pitch angle. 

Translate • sections by adding local rake. 

Add • skew in a cylindrical coordinate system 

Convert • to Cartesian coordinates to obtain a point cloud of chosen resolution. 

Scale • point cloud with propeller diameter for dimensioned propeller blade. 
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An elaboration on the working principles and mathematics of Bézier curves can be found in 

e.g. the course notes of Sederberg (2014). The implementation of the curves, with their 

specific properties, is reported by Foeth (2013, 2015) and Nuland (2014). A concise 

summary of the working principles is given below. 

 

With reference to Sederberg (2014) and Figure 2-2, the equation of a Bézier curve is similar 

to the equation of the center of mass   of a set of point masses          and    which are 

located at points          and    respectively: 

 

 
   

    

  

 

   

 (1)  

 

 

 
Figure 2-2: Working principle of a cubic Bézier curve. [Copied from Sederberg (2014, p.18)] 

For a continuous curve, the masses should be varied as function of a parameter  , such that 

point   in Figure 2-2a is swept into the curve of Figure 2-2b. For a Bézier curve of order  , 

mass functions   
    

       
     are called Bernstein polynomials. In this work usually 

cubic curves are used, i.e.,     as in Figure 2-2. The Bernstein polynomials for a cubic 

curve as function of   are given in Figure 2-3. The general equation of a Bernstein 

polynomial   
     for point    can be written as

5
: 

 

   
        

 

 
             (2)  

 
Figure 2-3: Bernstein polynomials for a cubic Bézier curve. [Copied from Sederberg (2014, p.19)] 

For a standard cubic Bézier curve, weights    are equal to one. Although not utilized in this 

work, more shapes may be generated by varying the weights in addition to the location of the 

points. 

 

The shape of the polynomials explains why the Bézier curve passes through its start and end 

point, further referred to as control points. The other points,    and   , are referred to as 

handle points. Control points can be seen as nodes through which the curve goes and are 

explicitly used to define start and end points. Handle points are used to define the shape of 

the curve. A cubic Bézier curve is tangent to the poly-line connecting a control point and its 

handle point. As such, joining two Bézier curves generates a first-order smooth, continuous 

                                                      
5
   

 
  

  

          
 is a binomial coefficient. 
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curve by prescribing equal tangents at the joint. This joint can be used to define the location 

of an extreme.  

 

2.1.2 Propeller Parameterization 

Referring to Table 2-1, each radial and chordwise distribution can be described by means of 

Bézier curves. By means of their control and handle points different distributions may be 

created. In an optimization the coordinates of the control and handle points are the design 

parameters that are tuned by the optimization algorithm. Hence, the number of design 

parameters should be limited, while the design space should be as large as possible within 

generating infeasible
6
 propeller geometry. Three types of parameterizations have been used 

as shown in Figure 2-4. Their philosophy is as follows: 

1. Allow maximum design freedom which is required for the radial skew, rake, camber 

and thickness distributions. Hence, six design variables per distribution are used, 

namely                               and     . 

2. Limit the number of design variables by defining the extreme point and bounding the 

handle points. This is used for the chord distribution and in less extent for the pitch 

distribution. For the chord and pitch distribution, three and five variables are used 

respectively. For the radial chord distribution,        and           are 

prescribed.      gives the reduction of chord and pitch at the hub while      specifies 

the reduction at the tip. Note that the  -position of     ,      and      is specified by 

the blade area ratio and mean pitch for the radial chord and pitch distribution 

respectively. 

3. Control of the position of the extreme and the width of the curve for the chordwise 

thickness and camber distributions. As the leading edge curvature is important, the 

thickness distribution is controlled by four variables while the camber distribution is 

prescribed by only three variables, leaving        constant. Note that only one blade 

profile distribution is used in radial direction, leaving varying blade profiles over 

radius for future work. 

 

Figure 2-4 indicates control points with red squares, while green circles represent the 

handles of the control points. Labeled points may be varied as design parameters. 

 

Figure 2-4: Examples of distributions in which the propeller is parameterized.  

Bounds and constraints on the parameterized distributions will be developed during the test 

phase of the computational framework in section 4.1. An overview of all design variables with 

their bounds is given in Appendix A. 

 

2.1.3 Grid Generation Procedure 

Both the hub and the blade should be discretized for computational analysis. The hub is built 

from a series of helices and rings along the root pitch line. Their intersections form the grid-

points. The blade grid generation procedure is shortly considered in the enumeration below: 

                                                      
6
 Such that the geometry cannot be generated by the procedure of Table 2-2 due to intersections, discontinuities or 

overlap.  
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1. Convert tabular data of the distributions into splines or Bézier curves 

2. Define hyperbolic tangent distributions in radial and chordwise direction. 

3. Evaluate the splines of the distributions and the blade sections at the new radial 

positions. 

4. Transform to a point cloud according to Table 2-2. This defines the grid-points. 

 

 

2.2 Hydrodynamic Analysis 

The purpose of hydrodynamic propeller analyses in this study is the fast computation of the 

efficiency of a propeller behind a ship and its cavitation pattern. Consequently, simplifications 

have to be made as much as possible for an acceptable balance between computational 

time and validity.  

 

2.2.1 Governing Equations 

Fluid dynamics are governed by conservation laws of classical physics. Mass, momentum 

and energy should be conserved in an arbitrary material volume        Conservation of mass 

implies that the rate of change of mass in      equals the rate of mass production in     , or 

 

  

  
            

        

   (3)  

 

where           and          are the local density and rate of mass production at time   

and position  . For normal propeller analyses the mass production is zero within     . Single 

phase flow is assumed, cavitation and ventilation are not resolved directly. Using Reynolds 

transport theorem
7
, Equation (3) can be expressed as 

 

  
  

  
           

     

   (4)  

  

  
          (5)  

 

Further simplification can be obtained when assuming incompressible flow: density 

differences due to fluid velocities are negligible. Conform the continuum hypothesis and the 

incompressibility assumption the flow density remains constant within the domain as density 

differences due to temperature or salinity are not considered. Equation (5) reduces to the 

continuity equation: 

 

   

  
        

  

  
                    (6)  

       (7)  

 

Irrotational Flow Hypothesis 

Furthermore, considering the hypothesis of irrotational flow in addition to the continuity 

equation, requires per definition that the curl or vorticity of the flow is zero: 

 

            (8)  

 

An order-of-magnitude analysis of the vorticity equation
8
 shows that at high Reynolds 

numbers the vorticity at the solid boundaries, where viscosity introduces shear, convects 

faster than it diffuses. Hence, vorticity remains in the boundary layer and is shed into the 

trailing wake as sketched in Figure 2-5. The external flow is hardly influenced. 

                                                      
7
 For a derivation and explanation of Reynolds transport theorem the reader is referred to standard fluid mechanics 

textbooks, e.g. White (2011)  
8
 The vorticity equation is obtained by taking the curl of the Navier-Stokes equations. Order-of-magnitude analysis is 

explained by e.g. Tennekes & Lumley (1972) and Katz & Plotkin (2001) 
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Figure 2-5: Sketch of blade profile in a flow [after Auld (2015)] 

Since mutual shear forces between fluid elements are negligible, fluid in the outer portion of 

the flowfield will remain irrotational if a uniform irrotational inflow would be assumed. A 

solution of the outer portion provides the pressure distribution and related forces on the 

body, whereas the boundary layer is important for the frictional forces and the induced 

pressure drag.  

 

Boundary layer thickness is negligible compared to the blade profile thickness. The pressure 

distribution on a propeller largely defines its performance in terms of thrust and torque. 

Hence, a solution of the outer portion of the flow will suffice for initial propeller geometry 

optimization. A correction for the viscous drag on the surface of the blade profile should be 

applied based on empirical methods such as flat plate resistance as function of Reynolds 

number. 

 

However, in behind ship conditions, the inflow is highly disturbed and rotational. A further 

simplification is the introduction of the effective wake just in front of the propeller. It takes the 

mutual effect of ship wake and propeller induced velocities into account. Rotationality is 

advected in the effective wake velocity field such that Equation (8) can still be prescribed. 

 

Definition of the Potential 

Rewriting Equation (8) gives the following requirement
9
 

 

  

   
   

 

   
   (9)  

 

for    . This can only be the case if a scalar function   exists such that: 

 

     
  

   
    or         (10)  

 

Substitution in the continuity equation yields a Laplace equation: 

 

             (11)  

 

         is called the velocity potential function and can only be defined for potential flow, 

i.e., divergence free, irrotational flow. A solution of   provides the velocity distribution within 

the domain. Note that irrotational, divergence free flow is also inviscid. Viscosity is the 

resistance to fluid shearing. In a divergence free flow, without fluid rotation no shear motions 

will occur. Hence, viscosity cannot play a role.  

 

Conservation of Momentum 

Furthermore, conservation of momentum is governed by Newton’s second law of motion: 

 

  

  
             

        

        
    

 (12)  

 

                                                      
9
 Note that the correct index notation would be       

 

    
    . 
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where body forces    are proportional to mass and surface forces    work on the surface of 

the body proportional to its area     . Under the divergence free and irrotationality 

assumptions, shear forces are not present. This leaves          where   denotes 

pressure. If a stationary frame of reference is considered, only gravity acts as body force. 

Hence,       where   denotes the constant gravity vector. Writing in index notation, 

applying Reynolds transport theorem on the first term in Equation (12) and the divergence 

theorem on the third term yields: 

 

 
  

    
  

 
 

   
                      

  

   
  

            

 (13)  

 

where the repeated subscript   implies summation by the Einstein convention to denote the 

divergence in the second term. Since this equation should hold at any time for every      it 

should be that 

 

 
 
   
  

     
   
   

      
  

   
      (14)  

 

where the continuity equation was used to simply the divergence in the second term of 

Equation (13). The assumption of incompressible flow has been used to simply the first and 

second term by considering   constant.  

 

Energy Equation 

Equation (14) is the Euler equation for inviscid, incompressible flow. Note that this equation 

simplifies further if the irrotationality hypothesis would be applied. There exists a vector 

identity
10

 that rewrites the convective term in terms of vorticity, which is zero, and the change 

in kinetic energy: 

 

 
  

   
  

          
 

   
 
 

 
  
      (15)  

 

where         the vorticity vector. Substitution in the Euler equations followed by the 

usage of the potential function, yields the energy equation: 

 

 
 
   
  

 
 

   
 
 

 
   

          (16)  

  

 

   
  

  

  
 
 

 
               

(17)  

 

where       is the potential energy of gravity with   a coordinate in the direction of the 

gravitational field. Hence it follows, supplementary to the Laplace equation, that  

 

   

  
 
 

 
      

 

  
              (18)  

 

within the flow to relate velocities to pressures. Equation (18) is the unsteady Bernoulli 

equation. 

 

                                                      
10

 For proof see e.g. Eggers (2012). For clarity and understanding, a mixed vector and index notation is used. 

Effectively, the momentum equation changes into an energy equation. 
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2.2.2 Lift Generating Bodies 

White (2011), however, points out that a potential flow theory solution is non-unique since 

circulation is not taken into account. The lift on a body is proportional to its circulation   by 

the Kutta-Joukowski lift theorem. Hence, circulation should be addressed and solved as well.  

 

Circulation 

Circulation is defined as the line integral of the velocity field around a closed curve  , or in 

words, the amount of fluid rotation within a closed contour. Circulation   is related with 

vorticity by Kelvin-Stokes' theorem
11

: 

 

 
                     

  

 (19)  

 

which states that without vorticity, i.e. irrotational flow,           , there cannot be any 

circulation. Hence, the irrotationality assumption prevents lift generation. 

 

Wake Surface 

If circulation would be manually added to a lifting body in potential flow, there  should be a 

surface    in the wake that carries the shedded vorticity between lifting body and the far 

field. The wake surface is an infinitesimal small vorticity layer which is discontinuous for the 

velocity potential, while the pressure and the normal component of velocity must be 

continuous. 

 

The wake surface should be a stream-surface of the flow such that no flow can pass through 

this surface and the pressure difference of the wake surface should be zero. This wake is 

included in the hydrodynamic analysis, varying from fully prescribed wakes supplied with 

empirical models for contraction to iterative wake-alignment methods with the above 

boundary conditions.  

 

Kutta Condition 

The Kutta condition forces the flow to behave like a viscous flow with the correct circulation. 

Physically, the Kutta condition forces the flow to leave the trailing edge smoothly like in real 

viscous flows. The rear stagnation point is artificially moved to the trailing edge due to the 

pressure equality. Mathematically, the Kutta condition states that the potential jump at the 

wake adjacent to the trailing edge should be equal to the difference of the potential values    

and    at the suction and pressure side of the trailing edge (Morino, 1993): 

 

             (20)  

 

such that the potential difference, or simulated circulation, is carried by the wake surface.  

 

Equation (20) does not necessarily satisfy the pressure equality at the trailing edge and over 

the wake surface, either due to unsteady effects by       in the Bernoulli equation or due to 

deviation from local 2D flow by 3D effects. It can only be used for steady computations 

where there is no temporal variation in lift and the flow behaves as 2D plane flow.  

 

An Iterative Pressure Kutta Condition (IPKC) should be used instead to explicitly prescribe 

the pressure at the trailing edge. Effectively, as Kerwin et al. (1987) states, the IPKC ensures 

in addition to Equation (20), the pressure equality between the suction and pressure sides of 

the trailing edge. The difference in pressure at suction and pressure side of the trailing edge, 

which is a function of the potential difference of Equation (20) by Bernoulli’s equation, should 

be zero, yielding the non-linear equation 

 

                                                      
11

 This theorem is, similar to the divergence theorem, a special case of the general Stoke’s theorem        
   

. 
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             (21)  

 

which should be solved each time step using an iterative method like Newton-Raphson 

iteration as proposed by Kerwin et al. (1987) and applied by Vaz & Bosschers (2006). 

 

 

2.2.3 Fundamental Potential Flows 

Focusing again on the governing equation, it should be noted that a Laplace equation is 

linear. Superposition of different potentials is possible. Elementary potentials satisfying the 

Laplace equation in axi-symmetric polar coordinates     are uniform flow  

 

                 (22)  

 

and point sources 

     
 

 
 (23)  

 

in which   and   define their respective strengths. For a propeller, the flow field can be 

regarded as disturbance in a uniform flow
12

. Hence, the total potential can be written as  

 

         (24)  

 

where   the disturbance potential which is to be solved. The disturbance potential can be 

compiled from sources, sinks and doublets. Their appearance in the governing equation will 

become clear from the next section. 

 

A doublet can be created by placing two sources with strengths   and –   close to each 

other. Taking the limit of their distance yields   

 

 
  

     

  
 (25)  

 

with   as strength. Streamlines for a source and a doublet are drawn in Figure 2-6.  

            
Figure 2-6: Source (left) and doublet (right). Red dotted lines give iso-potentials, blue solid lines 

represent streamlines. [Copied from Auld & Srinivas (2006)] 

 

2.2.4 Boundary Element Method  

The influence of the exact 3D propeller geometry is important for optimization purposes. 

Moreover, a full solution of the flow pattern within      is less important than the solution of 

                                                      
12

 Uniform in x-direction. Either prescribed by a wake field or uniform in radius as well.  
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resulting pressures on the propeller surface only. Hence, a boundary solution could suffice. 

This gives rise to a 3D Boundary Element Method (BEM). 

 

Consider the integration of the governing equation (11) for the disturbance potential   over 

    , multiplied with some scalar function    

 

 
           
    

       
    

       (26)  

 

Multiplication with    is mathematically required to solve the problem. Since the discretized 

domain is likely to be not smooth enough to justify the use of the divergence theorem, a 

weak formulation is used
13

:   can be solved relative to test or shape functions   . A 

convenient test function for potential flow problems is the potential of a point source with 

strength   
 

 
  which always satisfies the governing equation. 

 

By virtue of the divergence theorem, integration by parts and vector derivative identities, 

Green’s second identity
14

 can be derived from Equation (26). It relates the outward flux 

through a closed surface to the behavior of the flow within the surface. 

 

       
    

            
    

                  
    

   (27)  

 

Integration by parts a second time yields Green’s second identity, formulated as 

 

       
    

             
    

                

         
    

       
(28)  

or after rearrangement 

 

      
    

                     
    

                   (29)  

 

Hence, instead of solving Equation (26) in the whole volume     ,   can also be solved on 

the volume’s surfaces      only, i.e., by solving: 

 

 
      
    

                   (30)  

 

Before substituting    it should be noted that    is singular for     in the origin   from 

which distance   is defined. Imagine an infinitesimal small sphere within      with radius   

around   with         , as sketched by Katz & Plotkin (2001) in Figure 2-7. Within this 

sphere   does not vary anymore, i.e.,    can be neglected and Equation (30) reduces to 

 

 
   

    

  
           

  

 (31)  

 

with    . Subtracting singular point   from Equation (30) while substituting    yields 

 

                                                      
13

 In-depth explanation of the weak formulation and test functions are is considered outside the scope of this thesis, 

but can be found in e.g. course notes of Sayas (2008) for an easy understanding or any mathematical text on the 

Finite Element Method for which weak formulations are also used. 
14

 Mathematically, Green’s second identity is explained in more detail in the first chapters of the course notes of 

Antes (2010).  
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 (32)  

 

This equations states that the disturbance potential in point   can be written in terms of the 

disturbance potential on the other surfaces within      taking into account their distance   to 

 . For a further explanation and usage of this equation, Figure 2-7 should be considered. 

Equation  (32) can be split for each surface. Besides the small sphere with surface   , the 

domain      is shown with far field boundary   . Furthermore, closed lifting body   with 

body surface    is accompanied with its wake surface   .  

 
Figure 2-7: Definition of potential flow problem for a lifting body. [Copied from Katz & Plotkin (2001, 

p.45)] 

The wake surface    contains no sources since the normal velocity should be continuous
15

. 

A potential flow solution within      can be divided into a flow outside    with solution   and 

an imaginary flow inside   . This imaginary flow is not considered further, but both flows 

share a streamline at the solid boundary   , simulating the solid boundary of the propeller.  

 

Taking all surfaces into account, Equation (32) can be expanded as 

 

 
         

 

  
  

 

 
      

 

 
       

     

 
 

  
    

 

 
             

     

 

(33)  

  

in which the potential at the far field boundary       is assumed to be zero.  Note that 

       can be regarded as a source strength, while       and      can be seen as 

dipole strengths from Equations (23) and (25). Note also that for non-lifting flow a distribution 

of sources would suffice. Sources are chosen such that a streamline is formed on the 

boundaries of the body. Lifting bodies require dipoles as well to simulate circulation. A factor 

  is added which depends on the location of  . For   outside  ,     and for   inside 

       For   on a boundary,    
 

 
 since only half of    surrounding   should be taken 

into account.  

 

Discretization 

For a boundary solution of the flow, the blade and wake surfaces can be discretized into 

elements according to section 2.1.3. The centre of each element is a collocation point   for 

which Equation (33) should be solved. A system of equations is obtained for each element   

in which   ,   ,     and    
 are unknowns to be solved. Equation (33) gives the potential at 

point   induced by the distribution of sources and dipoles on surfaces    and   . A full 

matrix equation should be solved for the potential at each discrete point within the domain. 

                                                      
15

 Mathematical treatment of the boundary condition is given in Koning Gans (2012). 
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Now the sum of induced velocities from the sources and doublets forms the total flow field 

from which the pressures can be calculated by Bernoulli’s equation (18). 

 

2.2.5 Boundary Conditions 

To be able to solve the propeller problem, the Laplace equation should be supplied with 

proper boundary conditions. The most important boundary condition is the no-penetration 

Neumann condition at the propeller surface    which implies that the normal velocity is zero, 

i.e. 

 

 
                (34)  

or 

             (35)  

 

where   the normal on the propeller surface and    the free stream velocity which depends 

on the wake, angular and radial position and rotational speed. Hence the source strength    

on    is determined by Equation (35). The source will have positive strength at the leading 

edge while at the trailing edge the source will be a sink to force the flow around the profile 

and satisfy the continuity equation. As already noted, the far field boundary condition is given 

as  

 

        (36)  

 

Because of the boundary conditions,  Equation (33) only has be solved for dipole strengths 

and the unknown potentials in the collocation points with aid of the Iterative Pressure Kutta 

Condition.   

 

2.3 Cavitation Analysis 

Cavitation is regarded as a constraint due to its possible erosive characteristics. Cavitation is 

formed when the liquid’s pressure drops below its vapour pressure (White, 2011, p. 34). 

Vapour bubbles are formed in the fluid, possibly causing damage upon implosion. Cavitation 

should be taken into account in every propeller design. Cavitation may influence propeller 

performance in terms of vibrations, noise and erosion. A well balanced design allows as 

much as possible cavitation without experiencing any hindrance.   

 

The difference between the local pressure and the vapour pressure is an indication for 

cavitation inception. Bernoulli’s Equation (18), neglecting gravity effects and assuming 

steady, incompressible, inviscid flow, can be used to express the pressure variation along 

the streamline of a body, or in this case a cavity surface: 

 

 
     

 

 
     

     (37)  

   

in which       and      are characteristic pressure and velocity at the location of interest, 

respectively,   is the density of water and         [Pa] is the vapour pressure which is 

taken as reference in this Master’s thesis. The cavitation number    is formed from this 

relation. It gives the relation between the static and dynamic pressure head: 

 

   
       
 
 
     

 
 

(38)  

 

As a reference the pressure at the propeller shaft is often taken with: 

 

              (39)  

         (40)  
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in which           [Pa] the atmospheric pressure,      the static pressure head at the 

        [m] immersed propeller shaft
16

. The characteristic velocity for the reference 

cavitation number is rotational speed   times diameter  . The cavitation number acts as a 

measure for the vulnerability to cavitation. Higher numbers indicate that cavitation is less 

likely to occur.  

 

At each location on the propeller with its local velocity and pressure the pressure coefficient  

 

    
       

 
 
     

 
(41)  

 

can also be evaluated and compared with the reference number: 

 

        (42)  

 

If Equation (42) holds, cavitation is likely to occur. In general, bubble cavitation can be well-

predicted by means of the cavitation number. Sheet cavitation, however, is initiated by the 

suction peak at the leading edge. A vapour sheet builds up which may remain attached to 

the propeller surface or separate and form erosive cloud cavitation. This process is highly 

dynamic and not limited to areas for which Equation (42) holds. Sheet cavitation can 

iteratively be solved in a hydrodynamic BEM analysis. The procedure is based on Fine 

(1992) and further described and implemented by Vaz (2005) and Bosschers (2009).   

 

An additional cavitation surface    is added to the BEM with four boundary conditions. In 

words: 

1. Sheet cavitation should be aligned with a streamline of the flow. Formally, a 

kinematic boundary condition states that any point on the cavity surface should 

remain there, or that the cavity surface is a material surface of the flow.   

2. The pressure within a cavity is equal to vapour pressure   . Hence, it can be 

imposed that also the pressure on    should equal   .   

3. While in reality cavity closure is highly complex with a re-entrant jet, closure 

conditions should be specified. The pressure recovery model form Salvatore et al. 

(2003) was chosen by Bosschers (2009) which models the closure as a region in 

which pressure is gradually recovered.  

4. Also detachment conditions should be considered in order to have a continuous 

boundary of flow domain  . The detachment point may either be fixed on the leading 

edge which is valid for most blade profiles or be located at the point of minimum 

pressure.   

 

In a BEM, the location of    is part of the solution of the boundary value problem specified by 

conditions 1. and 2. above. Each time-step an iterative procedure is to be applied to estimate 

the cavity extent. Source strength on the cavity is unknown, while dipole strength is related 

to the dipole strength at the detachment point. The cavity surface can be considered 

frictionless, such that no additional vorticity is introduced here.  

 

Regarding the cavity thickness to be small compared to the blade profile thickness avoids 

mesh generation on the cavity surface. Boundary conditions are transferred to the propeller 

surface or wake surface in case of super cavity which extends beyond the propeller in the 

wake. 

 

Further explanation and mathematical details are not given here since cavitation will not be 

considered within the optimization. Optimized propellers will be checked on their behaviour 

afterwards as design check. 

 

                                                      
16

 Shaft immersion    = 3.75 [m]is given for the reference ‘Streamline’ tanker 
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2.4 Ice Loads 

Propellers operating in ice should be able to withstand the high impact loads. Ice class rules 

govern their design. The background of the ice class rules was investigated in a definition 

study (Huisman, 2015): Soininen’s ice model and a time simulation of ice interaction served 

as the basis of the rules. Therefore, Soininen’s model is considered in more detail in 

subsequent subsection. Furthermore, the ice class rules are briefly summarized.  

 

2.4.1 Soininen’s Ice Contact Model 

Based on laboratory experiments and observation of failure processes, Soininen (1998) 

developed a physical model to estimate load levels during propeller-ice interaction. Different 

phases in the loading are distinguished as Soininen (1998, p.3) states: “The blade leading 

edge opens cracks towards the groove formed by the previous blade… On the back side a 

spall is formed and the ice is crushed within the spall… The crushed ice is extruded towards 

both the leading edge and the trailing edge of the profile.” A time averaged, simplified 

pressure distribution was proposed, as given in Figure 2-8, which was eventually used in the 

simulation model (Koskinen et al., 1996). 

 

Figure 2-8: Idealized ice-load pressure distribution definition (after Soininen, 1998). 

Figure 2-8 shows the pressure distribution over the outline of a propeller blade profile. 

Positive   denotes the back or suction side which impacts the ice, negative   gives the face 

or pressure side. The typical pressure points         and   are defined in Figure 2-9. This 

figures shows a blade profile proceeding into the ice. Accompanying  Figure 2-10 from 

Veitch (1995) sketches the physical processes. The following paragraphs define the 

pressure distribution in more detail. 

 

 
Figure 2-9: Definition of the typical pressure points in the ice-load pressure distribution according to 

Soininen (1998). The figure shows a blade profile under angle of attack   proceeding in the direction of 

the dotted line. 
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Figure 2-10: Sketch of a propeller blade profile proceeding into ice in direction   (adapted from Veitch, 

1995) 

Point   is the location where the ice contact is lost on the pressure side. Single ice impacts 

from spalled ice pieces as sketched in Figure 2-10 are ignored since the ice is not confined 

at the pressure side. Loads will be negligible compared to the other loads. The location of 

point   is assumed to be proportional with cut width   in [m] according to 

 

           (43)  

 

in which    the length along the outline. Physically, the relation with cut width   represents 

the size of the spalls at the leading edge. Larger cut width   gives rise to larger spalls which 

impact the blade on a larger area. A linear loading distribution is assumed on    from     to 

zero. Point   denotes the leading edge of the blade while its pressure,    , is defined as a 

total time averaged pressure on the leading edge which can be approximated by  

 

              (44)  

 

with cut width   in [m] and pressure in [MPa]. Above a critical stress state, the propeller 

blade can proceed into the ice. A tensile crack between the leading edge and the open ice 

edge is formed. The global load to open up these cracks into spalls is directly proportional to 

cut width  .  

 

Cut width   depends on forward speed and rotational speed by 

 

 
  

 

  
 (45)  

 

in which   ship speed,   rotational speed of the propeller and   the number of propeller 

blades. Effectively, cut width   is the ratio between forward speed and the time between 

successive impacts from each propeller blade in the ice. Slowly rotating, highly pitched 

propellers at high advance speed may feature large cut width. The pressure at the leading 

edge is, however, limited to the maximum pressure     . 

 

Point   is located at the point where the angle between the local tangent along the blade 

profile outline and the angle of attack equals 25 degrees as visualized in Figure 2-9. This 

should represent the point on which the leading edge spalling behavior transitions into a 

crushing process with significant higher loading. The maximum time averaged value of the 

crushing pressure was found as  

 

            
     [MPa] (46)  
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during the laboratory experiments. It is assumed that the maximum pressure during the 

impact cycle     relates to     by  

 

    
   

     (47)  

 

Soininen used     and its ratio with the leading edge pressure     to define the pressure in 

the transition point   according to 

 

   
   

          
   
   

 (48)  

 

The position of the maximum pressure, point  , also depends on this ratio: 

 

   

  
            

 

  
           

   
   

   (49)  

 

where    and    denote the length in [m] in  -direction between the respective points. Also 

a dependency on the typical ice grain size         [m] is assumed.  

 

Similarly to point  , points   and   are defined for 3 and 0 degrees respectively as 

visualized in Figure 2-9. The pressure distribution on    and    is found from the quadratic 

distributions  

 

          
      

       
        [MPa] (50)  

 

          
      

          
        [MPa] (51)  

 

Between   and  , forceful ice crushing is fully transitioned in extrusion. Crushed is extruded 

towards open water over the trailing edge. The confinement zone between   and   gives still 

significant loading. A constant time averaged pressure      [MPa] is assumed. After point 

  the extrusion is not confined anymore and the pressure cannot be maintained and is 

assumed to be zero.  

 

The angle parameters in Soininen’s model are defined with respect to the zero-angle of 

attack line. They define the shape of the pressure distribution. Physically, they represent the 

extent of the progressive crushing and extrusion processes. Refer to Huisman (2015), 

Soininen (1996) or Veitch (1995) for a detailed description of the ice failure processes on a 

propeller blade. Significant ice loads on the pressure side are limited to a small area at the 

leading edge as sketched in Figure 2-10 due to spalling of the ice. This sketch also clarifies 

that the extent of the load is limited to the point of maximum thickness for a given angle of 

attack. In Soininen’s model, maximum pressure is a constant value due to brittleness of ice 

in combination with the high impact speeds of the propeller blades.  

 

Referring to Huisman (2015) in which the ice-interaction process is described in more detail, 

Soininen’s model only describes part of the complete ice-interaction process. Despite this, 

and all assumptions and simplifications, it is expected that the model will give valuable 

insight in the relation between geometry, ice loads and hydrodynamics at normal operation 

points within the first quadrant of propeller operation. It can be hypothesized that the blade 

shape and angle of attack will be the most important parameters. Since the location of the 

pressure distribution depends on the angle parameters, both the location of points  ,    and 

  and the angle of attack influence the pressure distribution.  

 

The proposed pressure distribution is compatible with the propeller parameterization and can 

be implemented. Further details on the implementation are described in section 3.3. 
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2.4.2 Ice Class Rules 

With reference to Huisman (2015), the general formulation of the ice class loads is 

 

                       (52)  

 

for force   in which     the expanded blade area ratio,   the number of blades,    the ice 

thickness which differs for each ice class,   the propeller diameter,   the hub diameter and   

rotational speed. Coefficients are used to tune the forces with respect to angle of attack, ice 

strength and inertia effects. The force is considered as the maximum force which will be 

experienced during the lifetime of the ship. Two separate physical phenomena are taken into 

account. 

 

The first is a load on the suction side which originates from milling loads which are described 

by Soininen’s model, section 2.4.1. Regression analysis of the results of this model in a time 

simulation (Koskinen et al., 1996) produce the backward bending force in [kN] 

 

 
                

   

 
 
   

        
(53)   

 

where                    
      and            for a FPP. Here    specifies the operation 

point in analogy with the angle of attack within Soininen’s model while     represents the 

radial contact height with the ice. The other terms specify the ice contact area. Note that, 

besides contact area based on BAR, no propeller geometry dependency is present.  

  

The second is a load on the pressure side although in reality the load is formed by suction 

due to ice-block proximity effects on the suction side. This hydrodynamic disturbance load is 

based on full-scale measurements and assumed to be reasonably represented by 

  

 
      

   

 
      (54)  

 

with typical radial blockage factor     based on ice thickness and the exposed blade area: 

 

           
     

  
 
 

    (55)  

 

Note that    does not take, contrary to   , the propeller operation point into account. The 

severity of the suction due to blockage is assumed to be sufficiently captured with the 

constant factor in front of Equation (54). 

 

Design loads    and    are applied on the propeller blade by means of load cases which 

should be considered in a Finite Element Method (FEM) stress analysis. The load cases are 

given as a uniform pressure applied on a certain area of the propeller blade. The total force 

should equal the maximum blade force    or   , uniformly applied on the area. The shaded 

area in Figure 2-11 should be considered for both backward and forward bending. In case of 

an FPP also the trailing edge should be loaded to account for operation in the third 

quadrant
17

 with the left load case in Figure 2-11 on the pressure side
18

 of the trailing edge. 

The load cases are summarized in Table 2-3. 

 

                                                      
17

 The four quadrants of propeller operation are assumed to be known. The third quadrant specifies backward 

rotation of the propeller while the ship also moves backward. 
18

 Note that the face in backward operation becomes the back or suction side which experiences the highest loads 

as described in section 2.4.1. 
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Figure 2-11: Load cases as defined by the ice class rules. The left case represents ice milling loads at 

the leading edge, while the right case accounts for tip impacts.    and   represent the dimensionless 

radial and chordwise length respectively. 

 

Table 2-3: Summary of the ice-class load cases. 

Load 

case 

Force Side Area 

1    Suction  Leading Edge 

2        Suction Tip 

3     Pressure Leading Edge 

4        Pressure Tip 

5                    Pressure Trailing Edge 

 

 

2.5 Strength Analysis 

As introduced in previous sections, the propeller should be analyzed for sufficient strength to 

withstand extreme ice loads as specified by the ice-class rules. Cantilever beam theory is 

inadequate for complex blade shapes
19

; class requires in-depth strength analysis.  

 

2.5.1 Governing Equations 

The governing equation of the strength analysis will be derived in this section with an 

emphasis on the involved assumptions
20

. The starting point is similar for fluid and solid 

mechanics. Conservation of linear momentum, Eq. (12), is valid for both. Contrary to inviscid 

fluids, both normal and shear stresses are present in solids. All nine components of stress 

which define the stress state of a material can be written in the Cauchy stress tensor  . 

Hence, surface forces    
   

    
 may be written as  

 

 
   

   
    

           
 

     
     

        

  (56)  

 

by virtue of the divergence theorem. Substitution in the equation of motion yields 

 

 
  

    
  

 
 

   
               

   
    

  
    

 
    

   
  

    

  (57)  

 

It can be noted that this equation should hold at every instance in time such that, after 

rearrangement, this equation becomes Cauchy’s first equation of motion
21

 

                                                      
19

 Classical cantilever beam theory to analyze propeller strength is explained in e.g. Kerwin & Hadler (2011). 
20

 In-depth explanation of continuum mechanics is not given here. The reader is referred to Holzapfel (2000). 
21

 Note that the subscripts   and   have been swapped. Considering the angular momentum equation (noting that 

local material elements should not be spinning) yields that the Cauchy stress tensor should be symmetric, i.e. 

       . 
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  (58)  

 

Furthermore, static analysis is prescribed by the ice class rules, unsteady effects are 

assumed to be covered by the magnitude of the forces. Hence, neglecting the acceleration 

and convective term results in the governing balance equation 

 

  

   
       

    (59)  

 

with six unknown stress components. 

 

Constitutive Equations 

The number of unknowns can be reduced by the both the kinematic relation between 

displacements and strains and the constitutive equations that relate the strains to stresses. 

Under the assumption of small deformations the kinematic relation can be linearized and 

written as 

 
    

 

 
 
   
   

 
   

   
  (60)  

 

in which displacement is denoted by  . This relation is known as the linearized Cauchy-

Green strain tensor in which stretch and rotation are combined into strain. 

 

The constitutive relation between stress and strain for linear elastic materials simplifies to  

 

                (61)  

 

in which       are elastic moduli and     are strain components. Due to the isotropic-

material assumption, the governing constitutive equation can be expressed as  

 

 
    

        

 
 
       

 
 (62)  

 

in two independent material constants: Young’s modulus   to describe elastic properties and 

Poisson’s ratio   to define contraction properties. 

 

Substitution in the governing equation yields the partial differential equation 

 

 
     

    

      
   

    
      

    
    (63)  

 

with constants   
 

       
 and   

   

    
  to define the material properties. With proper 

boundary conditions this equation can be solved for displacement field   after which the 

stresses can be computed.  

 

Boundary Conditions 

At the hub the propeller blade is thought to be constrained for displacement and rotations 

such that            on boundary     . Furthermore, the pressure from the ice-class load 

cases is converted into external surface forces      on boundary      based on the area of 

each boundary element. 
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Weak Formulation 

In order to solve Equation (63), however, a weak formulation should be constructed based 

on the principle of virtual work. A weak formulation is required for a numerical evaluation of 

the problem, in analogy with Equation (26) of the BEM. The partial differential equation is 

multiplied with a test function, a virtual displacement    , and integrated over the domain to 

obtain the work done by the force components. Additionally, the external surface forces are 

added to the equation. Without giving the derivation this can be written as 

 

 
      

   

    

    
   

       
          

        
     

  
 

 (64)  

 

for all      in   satisfying the displacement boundary conditions on     . 

 

2.5.2 Finite Element Method 

Equation (64) can be solved for the unknown displacement  . Therefore, the displacement 

field is discretized into a set of   discrete nodes within the computational domain. 

Interpolation between the nodes gives the displacement field at an arbitrary position   within 

the domain. In general, the displacement field can be written as 

 

 
               

 

 

   

 (65)  

 

where the interpolation functions   are a function of position only.  

 

Substitution of interpolated displacement fields gives 

 

 
      

   

    
  
 
   

   
   

 
       

      
 
        

        
 
  

     

    
 

 (66)  

 

where the summation signs are omitted such that besides summation over       and  , also 

summation over   and   is required. Factoring out the virtual displacement    
 
 and rewriting 

gives the following well-known equation of the Finite Element Method (FEM): 

 

              (67)  

with        the stiffness matrix 

 

 
           

   

    

   

   
        (68)  

 

and      the force vector 

 
       

      
         

        
   

     

       (69)  

 

which is a system of   linear equations for the   nodal displacements. 

 

The FEM allows to subdivide the structure into small building elements which are connected 

through their mutual nodes. Each element has it’s stiffness, connectivity, geometry, applied 

loads and boundary conditions. It is possible to solve these individual element equations at 

once with Equation (67). Stiffness is a function of geometry, material and element type. 

Equation (67) states that displacement of the propeller blade under the action of a force is 

proportional to the constant stiffness of the structure. This equation can be solved for the 

nodal displacements   under the action of nodal forces      and    and appropriate 

boundary conditions. The system is relatively small; a sparse matrix solver can be used.  
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If the displacement of the structure is known, the corresponding material strains can be 

calculated with Equation (60) after which Hooke’s law gives the desired stresses by 

evaluating Equation (62). The von Mises yield criterion
22

 is used to check for stresses that 

give rise to material yielding. Yielding implies permanent plastic deformation which should be 

avoided. Hence, material yielding is used as failure criterion. Each material has its own 

typical yield stress. 

 

2.5.3 Element Choice 

Crucial for any FEM is the element choice. Elements define the shape of the structure, 

describe its stiffness and distribute the nodal forces. Their polynomial functions      

interpolate the deformation over each element. Elements may differ in geometry, degrees of 

freedom, the polynomial-order or integration technique. By connecting the elements, the 

deformation is interpolated over the entire structure.  

 

For the analysis of a propeller blade, which is relatively thin, both shell and solid elements 

can be used. These elements use either linear or quadratic interpolation functions for 

displacements, however, shell elements are geometrically defined in two dimensions only. 

Thickness at the element nodes is prescribed externally, while solid elements feature a 3D 

geometry such that the elements describe the thickness directly. Shell elements work with 

the assumption that shear strains are linear over thickness which is valid for isotropic thin 

structures. Displacements in thickness direction are integrated by means of an integration 

method, e.g. Simpson’s rule.  

 

 

2.6 Numerical Uncertainty Analysis 

Numerical uncertainty analyses can be used to choose the cheapest solution method while 

limiting numerical errors. A numerical uncertainty assessment is usually based on grid 

refinement studies of the discretized model, see Figure 2-1. 

 

With reference to Eça et al. (2010) and the standard of the ASME (2009) , the aim is to 

estimate the numerical uncertainty     of a certain solution    for which the exact solution 

       is unknown. Numerical uncertainty analysis strives to estimate     within 95% 

confidence: 

                      (70)  

 

The basis of the estimate lies in Richardson extrapolation, in this context defined as 

expanding        in a power series in which the coefficient is the typical grid-spacing   

multiplied with an unknown factor  , i.e. 

 

               
 
 (71)  

 

Then it follows further for the discretisation error    and its estimate      

 

                   
 
 (72)  

 

in which    is an estimate of        and   the order of convergence. At least four 

geometrically similar grids with their respective    and    are required to obtain an 

acceptable fit. A least squares fitting procedure is used from which   and   follow, together 

with some translation factors. The fit value at      , can be determined. Taking the limit for 

  to zero gives   .  

 

                                                      
22

 This criterion gives an equivalent stress based on principal stress vectors. Only stresses which act to distort the 

structure matter when checking for yield. It is widely used for ductile materials in engineering applications. 
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Finally, in general, the numerical uncertainty can be composed of a safety factor     and the 

standard deviation of the least square fits   , like 

 

                         (73)  

 

Also the absolute difference between the fit and calculated result is added. Depending on the 

order of convergence  , possible oscillatory or anomalous behavior, appropriate safety 

factors are applied. 

 

A few requirements should be mentioned for the above theory. Although a constant grid 

refinement factor is not required, the grids should  geometrically similar. In this context grid 

refinement is defined as 

 

 
  
  

 
    

    
                

  
  

  
  
  
  (74)  

 

depending on grid refinement in one direction only with   cells in that direction or refinement 

in two directions with   the total number of grid cells. Subscript 1 denotes the finest grid 

during the analysis. Geometrically similar grids feature similar grid refinement ratios within 

the whole domain. Also, cell shapes, i.e., orthogonality, skewness, aspect ratio, etc. should 

remain similar. Furthermore, the approximation in Equation (72) should be reasonable 

accurate such that higher order terms are not required for the fitting. This requires that the 

solutions should behave asymptotically towards the exact solution, ideally, without 

fluctuations. If not, higher safety factors are applied. 

 

Despite the prediction of the exact value, the uncertainty is the important result in the 

analysis. The predicted exact value is based on the fit and has its own, unknown, 

uncertainty. For all grids the uncertainty can be estimated with Equations (72) and (73).  

 

Implementation 

The implementation details of the numerical uncertainty prediction method are left outside 

the scope of this report, but can be found in Eça & Hoekstra (2014). A MARIN in-house tool 

incorporates the analysis. Its input is generated by a MATLAB function 

tjh_gridUncertainty.m created by the author which only requires    and    to deliver 

   . This function executes the uncertainty analysis tool and processes the output.  

 

 

2.7 Optimization 

Optimization is the process of determining the best solution to a certain problem. Or, as 

Papalambros & Wilde (2000) define: “improve the design so as to achieve the best way of 

satisfying the need, with all the available means”. A formal definition of optimization is also 

given in this text: “The determination of values for design variables which minimize the 

objective, while satisfying all constraints”. Optimization provides a systematic problem 

solving approach with minimal human interaction. It also provides insight in design problem 

characteristics, the underlying physics and their sensitivities and weaknesses.  

 

2.7.1 Standard Formulation 

Design variables                    are variables by which the design problem is 

parameterized. The design space   is the set of all possible designs for which       

where   and   are the lower and upper bound of the design variables respectively. Usually, 

an optimization problem is given in its Negative Null Form (NNF). An objective      is a 

quantity as function of the design variables that is to be optimized. Optimization is a 

minimization of the objective,     
 

    , in case of a NNF. A constraint is a condition that has 
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to be satisfied. Inequality constraints      or equality constraints      should be defined for 

a NNF such that        and       .   

 

Typically, an optimization problem consists of an iterative procedure with a model and a 

optimization algorithm like indicated in Figure 2-12a. An optimal solution should be achieved 

using the smallest number of function evaluations.  

 

2.7.2 Multi-Objective Optimization 

Multi-objective optimization problems, with objective vector      where               , are 

often used to quantify design trade-offs. A possible design space is given in Figure 2-12b. 

Pareto points are points on the Pareto set or Pareto front for which “no other feasible point 

exists that has smaller    without having a larger   ” as Papalambros & Wilde (2000) define. 

There is no improvement of an objective possible without worsening another objective. A 

propeller designer should balance the design and pick a propeller on the Pareto front based 

on the design requirements and practical application. 

 

 

 

Figure 2-12a: Iterative optimization cycle Figure 2-12b: Visualisation of a Pareto set 

  

2.7.3 Genetic Algorithm 

A Genetic Algorithm (GA) is inspired from biological processes. A genetic algorithm can be 

compared with evolutionary spawning or breeding. The algorithm makes use of a generation 

with a certain propeller population, a collection of propellers, which is subjected to a fitness 

function. Based on fitness parents are selected for reproduction, crossover and mutation. 

Higher fitness gives higher probability to stay within the population and share geometrical 

information with others.  

 

A fitness function incorporates the objectives and constraints. Fitness is also function of the 

location of the propeller within the objective space. Pareto-front propellers get higher fitness 

than propellers which are dominated by the Pareto-front propellers. Although propellers on 

the Pareto-front are non-dominated, further distinction is made by the propeller crowding. 

Fitness is assigned such that the propellers will be distributed along the fronts without 

clustering. 

 

Design parameters are discretized in binary strings
23

, comparable with the chromosome 

structure in biology. Hence, discrete variables may easily be included.  The used algorithm 

within this Master’s thesis, the Non-dominated Sorting Genetic Algorithm II (NSGAII), uses 

analytical alternatives instead, based on probability density functions to avoid the 

discretisation errors (Deb et al., 2002). 

 

                                                      
23

 In the binary number system, any number may be represented as the sum of powers of two. Real valued numbers 

are to be discretized, often exact representation is not possible. 
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A first generation with a certain population size is randomly generated using a uniform 

distribution within the prescribed bounds of the design parameters to cover the design 

space. Better coverage and results are obtained with a larger population size, at the cost of 

longer computational time.  

 

The four steps of the algorithm for a certain generation    are summarized in the 

enumeration below.  

 

1. Tournament. The population within    is subjected to a tournament. The tournament 

gives a further probability-based selection of propellers for reproduction, the parents 

   within the population. The weakest propellers within    are rejected and the fittest 

are prioritized.  A random pair of propellers is picked from    of which fittest propeller 

selected and the weakest is both rejected for reproduction and sidelined in the 

tournament. Hence, fittest propellers may occur multiple times within the parent 

population while weaker propellers have the chance to also be chosen.  

2. Offspring. An offspring, the child population, is created from parents   . The 

principles to create an offspring are based on crossover and mutation of the binary 

strings of the parent propellers. Crossover shares random binary code between 

parent and child propellers while mutation randomly flips bits in the binary strings. 

Crossover ensures that child propellers will inherit the best properties of the parent 

propellers. Mutation, in addition, searches within the design space to overlook local 

optima and explore new designs towards the global optimum. Choices for the 

number of parameters to be subjected to crossover and mutation and their 

probability to occur are algorithm-specific. Details for the NSGAII can be found in 

Deb et al. (2002). Details of Simulated Binary Crossover (SBX) to simulate binary 

crossover with continuous variables are discussed in Deb and Agrawal (1995).  

3. Fitness. The propellers within the child population are computed for their 

performance in terms of feasibility, hydrodynamics and strength. The fitness function 

is evaluated together with the constraints.  

4. Sorting. The child population is added to the original population. The fittest half of 

this population forms the new generation     . The other half will extinct.  

 

Note that the algorithm starts with step three for the first generation. The algorithm keeps 

running until the last generation has been evaluated and sorted. Either the number of 

generations is prescribed or convergence properties determine the stopping criterion.  

 

The algorithm is based on randomness and probabilities, both within the tournament and 

creation of offspring. Since no information on gradients is required, highly scattered, 

discontinuous and non-differentiable objective functions are allowed. Although 

computationally expensive compared to higher order methods, the algorithm is versatile and 

overlooks local optima. In addition, the population can easily be computed in parallel.  

 

Nuland (2014) did extensive research in the properties and settings of the NSGAII for a 

propeller study. His conclusions are utilized in this Master’s thesis, although primary focus is 

on propeller design instead of algorithm performance. Algorithm test cases from Srinivas & 

Deb (1994) have been reproduced by Foeth (2014) which verifies the NSGAII version that is 

used in this Master’s Thesis. 
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3 COMPUTATIONAL METHODS 

Having explained the physical and theoretical models in the previous chapter, computational 

methods to solve these models are considered in the current chapter. The computational 

methods are assessed on their validity, uncertainty and best practice settings. 

 

This chapter is organized as follows: 

1. First, section 3.1 considers hydrodynamic Boundary Element Method PROCAL. Its 

capabilities will be assessed in a grid refinement study and numerical uncertainty 

estimations. A procedure to iterate for mean thrust will be explained as well. This 

section is finished with open water validation computations and a self-propulsion test 

case. 

2. Second, in section 3.2 different implementations of the Finite Element Method are 

developed and compared to a reference computation for one ice-class load case. 

Numerical uncertainty studies show that a linear shell element implementation will 

be a good choice within an optimization.  

3. Third, section 3.3 assesses and develops the ice-load model based on an idealized 

simplified ice pressure distribution. First the sensitivities in 2D will be shown after 

which the implementation of a steady 3D model is presented. 

4. Last, section 3.4 combines the geometry generation procedure and the optimization 

algorithm together with the analysis tools into a computational optimization 

framework. 

 

3.1 Boundary Element Method 

The theory as explained in section 2.2 is implemented in Marin’s in-house BEM PROCAL. 

Details on its implementation are reported by Bosschers (2009, 2014). PROCAL is widely 

used at MARIN and within the industry. Validation and benchmark computations have been 

reported internally at MARIN and published by i.e. Vaz & Bosschers (2006) and Bosschers 

et al. (2008).  

 

The goal of this section is to assess the capabilities of PROCAL as hydrodynamic analysis 

tool within an optimization. The following will be considered: 

 Numerical uncertainty should be as low as possible when comparing different 

propellers on geometrical details. This will be the topic of the first subsection 3.1.1 

which considers the reference propeller from the case study, section 1.5, as basis. 

 Different propellers should be predicted with similar numerical uncertainty which 

requires, beside a check afterwards, an assessment of grid layout and spacing. This 

will be covered in subsection 3.1.2. 

 As already mentioned in the introduction, propeller pitch needs to be corrected to 

obtain the required design point thrust. Besides an explanation of this method, an 

analysis is carried out to assess the sensitivity of efficiency to the design point in 

subsection 3.1.3. Combined with the numerical uncertainty and the physical relation 

with thrust and torque, a final uncertainty for efficiency will be assumed. 

 Although PROCAL is validated extensively and confidence in computational settings 

has been obtained with previous subsections, a short comparison of the open water 

data and the self propulsion model tests is performed to touch upon the relative 

differences between experimental and computational results in subsection 3.1.4. 

 

3.1.1 Grid Refinement Study 

A grid refinement study is carried out to estimate numerical uncertainty of different 

computational grids. In addition, a study into the grid distribution is performed to check the 

grid dependency. Steady computations with the reference propeller in open water conditions 

serve as basis. Note that different propeller geometry or design points could give different 

results. However, as indication for the best practice grid settings during an optimization this 

analysis is deemed to be sufficient.  



33 
 

 

Master’s Thesis 
 

 

Extensive grid refinement studies for PROCAL have already been performed in e.g. 

Boorsma (2005) in which it is shown that a grid of 30 to 40 panels chordwise direction and 

20 to 30 panels in radial direction is sufficient for conventional propellers. Numerical 

uncertainty and grid details, however, are not addressed in detail. 

 

Therefore, a grid refinement study is carried out in which the number of panels is varied. 

Following Boorsma (2005), the difference between the number of panels in radial and 

chordwise direction equals 10. Figure 3-1 shows the results for    and   . Table 3-1, in 

addition, presents the numerical uncertainty for efficiency. 

 
Figure 3-1: Grid refinement study results for    and   . The bars give the numerical uncertainty, also 

presented by the values in percentages. The number of elements in chordwise position is ten more 

than in radial direction.   

Table 3-1: Uncertainty percentages for       and  . Assuming independent variables, an uncertainty 

    is obtained for the efficiency. The number of elements is given in radial x chordwise direction. 

 Steady Unsteady 

Elements     [%]     [%]     [%]    [%]     [%]     [%]     [%]     [%] 

10x20 6.93 6.33 0.690 14.16 6.83 6.58 0.92 13.85 

14x24 4.19 3.77 0.380 8.27 3.93 3.77 0.57 8.34 

18x28 2.76 2.46 0.210 5.35 2.57 2.44 0.38 5.76 

22x32 2.06 1.77 0.140 3.90 1.82 1.72 0.27 3.96 

26x36 1.63 1.44 0.120 3.11 1.45 1.37 0.25 3.09 

30x40 1.36 1.19 0.100 2.58 1.15 1.12 0.25 2.44 

34x44 1.11 0.94 0.0800 2.07 0.93 0.88 0.21 2.05 

38x48 0.92 0.79 0.0600 1.72 0.75 0.74 0.15 1.79 

 

Numerical uncertainty for   could be based on a similar method assuming independent 

variables, which yields that the predicted numerical uncertainty     is an order smaller than 

the uncertainty for    and   . Physically, however,   is defined as 

 

 
  

  
  

 

  
 (75)  

 

which implies that the uncertainty of   incorporates the uncertainty of    and   . 

Considering both the upper and lower bound of   yields uncertainty    as 
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 (76)  

 

which is also represented in Table 3-1. This physically more justified uncertainty for   yields 

much higher uncertainty values than assuming   independent from    and   . 

 

Acceptable Numerical Uncertainty of Efficiency for  Optimization 

A numerical uncertainty of 3.11% is predicted for   when using a grid of 26x36 elements in 

radial and chordwise direction. For optimization purposes this uncertainty is hardly 

acceptable since relatively small efficiency gains are obtained in the order of few percents 

only.  

 

If one would only be interested in the prediction of  , it could be argued that its numerical 

prediction for uncertainty, the much lower    , could also be accepted. However, within an 

optimization also thrust should be predicted accurately to repitch the propellers towards the 

design point. For instance, the grid of 26x36 elements in radial and chordwise direction 

predicts thrust with 95% confidence with 1.63% uncertainty. This could be acceptable if  

 the bias between experimental and computational results for thrust is greater or 

equal than their uncertainty and  

 the sensitivity of efficiency to the design point is less or equal to    . 

which will be considered in the next subsections. 

 

Numerical Uncertainty in Unsteady Computations 

The grid refinement procedure was repeated for unsteady computations, taking the 

interaction with the wake field into account. These results are also given in Table 3-1. 

Numerical uncertainty for efficiency and the mean thrust and torque proved to be 10% lower 

on average compared to steady computations. The uncertainty for thrust variation    , 

however, is predicted as 3.09% while it should be noted that the wake field resolution is not 

varied.  

 

For  thrust variation it might be argued that the uncertainty is acceptable, since the thrust 

variation objective is also only an estimate of the interaction with the wake field. Detailed 

noise, vibration and cavitation analyses should be carried out to validate the validity of the 

thrust variation criterion.  

 

Neither grid refinement nor numerical uncertainty studies in combination with cavitation have 

been performed in this Master’s thesis. Nuland (2014), however, shows that the cavitation 

extent is highly grid dependent. The reference mesh of 26x36 elements in radial and 

chordwise direction will not suffice. For a balance between accuracy and computational time 

a grid of 40x50 elements in radial and chordwise direction will be used for cavitation 

computations.  

 

3.1.2 Grid Dependency 

No considerations on the shape and details of the grid have been made so far. Grid 

dependency on the relative spacing and shape of the elements may have significant 

influence. Ideally, the least grid dependency is desired since a range of geometries is to be 

considered within an optimization. 

 

A hyperbolic tangent is used to distribute the grid over the radius and chord outlines. The 

weight factors of the tangent are referred to as grid spacing. Higher weight factors give larger 

spacing. The grid spacing at the trailing edge, leading edge, hub and tip is varied for which 

the results are given in Figure 3-2 in percentages with respect to a reference grid of 26 x 36 

elements in radial and chordwise direction. For the sake of imagination, Figure 3-3 presents 
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three typical computational grids of 26x36 elements in radial and chordwise direction with 

different grid distributions. 

 

 

           

Figure 3-2: Variation of the grid spacing (10log) for the trailing edge (TE), leading edge (LE) and both 

(LE & TE). Also the spacing in the hub and tip region is varied. The reference grid with 26x36 panels in 

radial and chordwise direction serves as basis.       and   are given in percentages with respect to 

the reference grid.  

The reference grid features the spacing for the trailing edge (TE), leading edge (LE), hub 

and tip as the respective logarithmic values of  -2.15, -2.15, -1.70 and -2.0.  

 

 
Figure 3-3: Typical computational grids with different spacings. The left presents a case with extreme 

refinement at the edges representing the left side of Figure 3-2, the middle figure shows the reference 

grid and the right picture shows a typical grid for the right side of Figure 3-2. 

For smaller spacing, less panels are located in the midsection for which results will be 

computed less detailed. However, the refined region is described more accurate. The 

resulting pressure is predicted with higher resolution. Also, when the leading edge is refined 

more, effectively, the trailing edge will become less refined. These balances are presented in 

Figure 3-2. The following observations and notes should be made concerning this figure: 

 Hub spacing can be chosen large such that the grid is uniformly spaced 

 Tip spacing can be chosen as large as a logarithmic spacing of around -1.75. Above 

that, the grid would resemble the right grid of Figure 3-3 which does not capture the 

tip geometry correctly.  

 Both the leading edge and trailing edge need both to be refined below a logarithmic 

spacing of -2.0. Above that, numerical errors are introduced at the trailing edge or 

geometry is not captured accurate enough at the leading edge.  

 

This analysis shows that the edges should be refined, while the midsection and hub may 

remain relatively coarse. Note that the reference grid spacing is well chosen
24

: the spacing is 

outside the diverging or alternating trends. Hence, the reference grid settings can be used 

for future optimization. It is assumed that other propeller geometries behave similarly to the 

reference propeller.  

 

3.1.3 Propeller Design Point 

The goal of this section is twofold: 

1. Explanation of the pitch correction routine to obtain the design point thrust for each 

propeller geometry.  

2. Investigation of the sensitivity of efficiency on the design point.  

                                                      
24

 The grid refinement study in section 3.1.1 and this study have been iterated to choose a reference grid that 

performs well: the grid refinement study is carried out with the best practice spacings from Figure 3-2. 

Relative comparison of grid spacing in percentage of the reference grid 
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Pitch Correction Routine 

Although an equality constraint on thrust could be prescribed within an optimization 

algorithm, thrust is adjusted within a separate routine. After a propeller geometry has been 

generated, a steady BEM computation delivers its thrust. Mean pitch is iteratively adapted to 

meet the required thrust in the design point. Convergence is typically fast with only three to 

four iterations to obtain thrust within 0.1% accuracy at the design point. 

 

Steady hydrodynamic computations are used to save computational time. This assumption 

will be checked in the optimization results, since the converged propeller is subjected to an 

unsteady computation after convergence to analyze the thrust variations.  

 

A first estimate of the difference in thrust is based on the Wageningen B-series polynomials 

(Oosterveld & Oossanen, 1975) which requires pitch, number of blades, advance ratio and 

BAR to obtain thrust coefficients. After this estimate a linear interpolation and a quadratic 

interpolation are used. Typically, convergence within 0.1% of the design point thrust is 

reached by then. Sometimes, a fourth iteration is required for fine-tuning. Linear interpolation 

suffices, otherwise the propeller is marked as diverged.  

 

Efficiency Sensitivity on the Design Point 

Considering the numerical uncertainty    = 1.63% for the thrust prediction with steady 

computations and the numerical uncertainty for efficiency of     = 0.12% it should be studied 

how the influence of the thrust uncertainty is reflected in efficiency through the design point. 

The reference propeller is iterated to the design thrust   = 271   4.4 [kN]. It appears that the 

efficiency is predicted as 0.6445   0.0022 or 0.34%. Hence, the influence of the design point 

on efficiency is larger than its numerical uncertainty. Table 3-2 shows the analysis. Efficiency 

is calculated for three design points. While the numerical uncertainty for efficiency is taken 

into account, the efficiency difference for the three design points can be calculated.  

 

Table 3-2: Sensitivity of efficiency on the design point. 

 

 

Concluding Remark 

It might be argued, that for the reference propeller with a grid of 26x36 elements in radial and 

chordwise direction, efficiency can be predicted with an uncertainty of 0.47% within 95% 

confidence instead of the more justified prediction of uncertainty of 3.11%.  

 

3.1.4 Validation Computations 

Considering the case study, both open water results as self-propulsion tests are available 

which can be used to assess the validity of PROCAL. First the open water results will be 

compared, after which the self-propulsion tests will be computed, with a steady and unsteady 

computation.  

 

Open Water Tests 

Validation studies have been performed at MARIN by comparing PROCAL open water 

computations with model test results. Figure 3-4 repeats this study for the reference 

propeller of the ‘Streamline’ case study. Solid lines represent open water model experiment 

results as given by Di Felice (2011) as polynomial expressions. Markers represent PROCAL 

results. Grids were generated according to the gridding guidelines by Boorsma (2005). 

Figure 3-4 gives no notion on experimental uncertainty. Experience, however, learns that 2 

to 3 percent is generally accepted.  

Thrust [kN] Efficiency Efficiency with      Percentage 

266.6 0.6467 0.6475 0.465% 

271.0 0.6445   

275.4 0.6423 0.6415 -0.465% 
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Figure 3-4: Comparison of open water results for the reference propeller. 

Typical relative differences are around 3 to 5 percent at the design point   = 0.676. Without 

further investigation, for heavy loaded conditions outside the design point,    and   deviate 

up to 15%. The assumptions for the wake modeling might not be valid here while flow 

separation in combination with viscosity might play a role in reality. 

 

Although this compares well with earlier studies at MARIN, these studies also showed that 

the relative differences depend on propeller geometry. While this will be a recommendation 

for further study, in this Master’s thesis it is assumed that optimized propellers with 

significant different geometry feature similar relative differences with respect to experimental 

model tests as the reference propeller.  

 

Self Propulsion Tests 

Self propulsion model tests have also been performed for the case study on the ‘Streamline’ 

tanker. They form the basis of the definition of the design point as given in the introduction, 

section 1.5. Taking the effective wake field in steady and unsteady computations with BEM 

PROCAL would give an indication of the combined effect of the errors within geometry 

modelling, experiment measurements and the computational method.  

 

This comparison is given in Table 3-3 and its accompanying figure of the relative differences.  

It is shown that the thrust of the original, non-pitch-corrected propeller deviates from the 

design point with -3.1   1.63 [%] for steady computations and -2.3   1.45 [%] for unsteady 

computations taking the numerical uncertainty into account.  

 

Table 3-3: Comparison between experimental model test results, steady BEM computations and 

unsteady BEM computations 

 
 

This analysis shows that, although numerical uncertainty might be acceptable, optimization 

results should be compared with experimental results or full scale data to check whether the 

optimization resulted in physical improvements, rather than numerical artefacts. 

 

3.2 Finite Element Method  

Similar to any propeller, an ice-class propeller should be strong enough to withstand its 

lifetime loads. Ice-class rules specify the maximum lifetime loads in five load cases. If the 

propeller would be too strong, efficiency will be compromised. Damage will occur when the 

 Thrust 

[kN] 

Power 

[kW] 

    

[-] 

    

[-] 

  [-] 

Experiment 271.0 2367 0.248 0.0406 0.657 

Steady 262.8 2323 0.240 0.0399 0.649 

Unsteady 264.8 2349 0.242 0.0403 0.648 
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propeller is too weak. A FEM should predict the load carrying capacity of the propeller with 

sufficient accuracy. Taking the margins of safety within the ice-class loads into account, 

maximum stresses can be compared with the allowable stress. 

 

Preferably, the propeller geometry is meshed with unstructured solid elements with sufficient 

resolution in thickness including the connection of the hub to include all geometric details. 

The procedure as indicated by Valtonen (2015) at Aker Arctic should be followed.  

Unstructured meshing requires a solid model of the propeller blade. Due to geometry 

singularities in the tip region this process is not yet automated and requires considerable 

manual effort and 3D modeling skills. Therefore, this method is not suitable for automated 

optimization. However, it suits to check the results of other methods.  

 

Hence, four implementations of the FEM are considered in subsequent subsections: 

1. An unstructured dense solid mesh with tetrahedral elements is created to serve as 

reference for the three other implementations. 

2. To compare, an unstructured sweep mesh with hexahedral elements is considered. 

It allows a check of the effect of element shape and the influence of the number of 

elements in thickness direction can be analysed. 

3. To avoid the manual creation of a solid of the propeller geometry, a structured mesh 

can be used. A structured mesh with solid hexahedral elements is assessed for its 

performance. 

4. Considering the drawbacks of structured solid modeling, a FEM implementation with 

structured shell elements is assessed as well.  

 

For each implementation numerical uncertainty is assessed if possible and necessary. This 

section closes with conclusions and recommendations on the preferable method to be used 

in an optimization. 

 

The ANSYS workbench environment is used for the preprocessing of unstructured meshes, 

while the MATLAB programming environment is used as preprocessor with the user-defined 

function tjh_prep4ansys.m and its supporting underlying functions for the structured 

meshes. All four implementations are solved in batch with ANSYS Mechanical APDL. Details 

on the implementation of the elements and solver can be found in the theory reference by 

ANSYS (2013).   

 

3.2.1 Unstructured Tetrahedral Solid Elements 

Meshing is based on a free meshing method
25

 with tetrahedrons. A typical cell size can be 

prescribed. Pressure is directly applied on the element boundaries by means of interpolation. 

The root fillet and hub are not modeled, although this method allows full modeling of any 

propeller geometry details.  

 

A mesh refinement study with six different meshes is performed to check whether the finest 

mesh is refined enough to serve as reference for less computational expensive methods. 

Only one load case from the ice-class rules, load case five with load on the trailing edge as 

described in Figure 2-11, is considered for this study . This load case is the most severe one 

for the reference propeller.  

 

Comparison of different meshes is based on maximum stress. Figure 3-5 gives an overview 

of the stress contours and the mesh outline, while Table 3-4 summarizes the results 

quantitatively.  

 

 

 

 

                                                      
25

 ANSYS Workbench 15.0 was used. Details can be found in ANSYS (2015).  
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Table 3-4: Summary of solid model stress results 

Typical element size [m] 0.00625 0.0125 0.025 0.05 0.1 0.2 

Number of elements 563589 154618 44285 9662 1996 70 

Probe stress [MPa] 3.167E+08 3.165E+08 3.183E+08 3.228E+08 3.192E+08 2.472E+08 

 

 

 
 

 
Figure 3-5: Stress contours [Pa] on the reference propeller for unstructured triangulations with different 

mesh density. The results for load case five of the ice-class rules are presented. Top left is a mesh with 

2.00e3 elements, top right with 9.66e3 elements and bottom the results of the mesh with 5.64e5 

elements with the pressure side in the left and the suction side in the right picture.  

Qualitatively, all meshes capture the stress distribution in the propeller material. The four 

finest meshes have been used to estimate the numerical uncertainty as presented in Figure 

3-6. The two coarsest meshes are not in the asymptotic range which are not used in the 

estimation of numerical uncertainty. The relative numerical uncertainty of 0.70% is 

acceptable for the finest mesh to be used as reference for other FEM implementations. In 

conclusion, the reference value of stress for load case five can be given as     316.7   2.2 

[MPa]. 
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Figure 3-6: Numerical uncertainty analysis for results within the asymptotic range according to 

maximum stresses sigma. The horizontal axis which indicates the refinement level with respect to the 

finest mesh is defined as in Equation (74).The errorbar gives the uncertainty of 0.70% for the finest 

mesh. 

3.2.2 Unstructured Hexahedron Solid Elements 

Also hexahedron swept meshes were analyzed in which the number of elements in thickness 

can be varied while keeping the mesh constant. Similar results were obtained for the 

maximum stresses, i.e., the maximum stress approaches the reference value for load case 

five    with mesh refinement. Figure 3-7 shows that also for the coarser meshes the 

distribution of stresses compares well with Figure 3-5.  

 

 
Figure 3-7: Stress  levels in [Pa] of the reference propeller based on a coarse sweep mesh with 

hexahedrons for load case five of the ice-class rules. 

The swept meshes allow an assessment of the influence of the number of elements in 

thickness of the propeller blade. The coarse mesh of Figure 3-7 was used as basis in the 

comparison
26

. Only the element type and number of elements in thickness was adjusted. It is 

expected that shear locking
27

 is avoided by using elements with quadratic interpolation 

functions which use mid-side nodes. 

 

Table 3-5 gives an overview of the results. It shows that one quadratic element over the 

thickness would suffice for a swept mesh: there is no difference when using one or two 

elements in thickness direction. Linear elements, however, require more than four elements 

                                                      
26

 A coarse mesh is used to shorten computational time. This analysis requires significant user interaction, while 

also the meshing time can be significant for finer meshes. 
27

 Shear locking is a numerical error that occurs in FEM when using linear elements.  Linear elements do not 

accurately model the material curvature under bending; an artificial shear stress is introduced.  

[P
a

] 
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in thickness direction to converge towards the reference stress value. Since the additional 

computational time for using quadratic elements diminishes with the required meshing time 

by using multiple elements in thickness, quadratic solid elements should be used to analyze 

propellers.  

 

Table 3-5: Comparison of results with or without mid-side element nodes 

Mid-side nodes # elements in thickness # elements      / 10^8    [MPa] 

Yes 1 3046 3.237 

No 1 3046 3.323 

Yes 2 6092 3.236 

No 2 6092 3.281 

No 4 11900 3.258 

 

Besides the notion that the stress levels are apparently similar for tetrahedron and 

hexahedron shaped elements, no further analysis is deemed necessary in the context of this 

work. Although the load cases can be implemented more accurately, the effort to obtain the 

solid model of the propeller outweighs the benefits. Hence, an automated and faster method 

is to be used which also predicts the correct stress levels.  

 

3.2.3 Structured Solid Elements 

A structured solid element implementation was supplied as starting point
28

 with two quadratic 

elements in thickness. Referring to Table 3-5, two quadratic elements are sufficient. 

Although the results compare well qualitatively comparing Figure 3-5 and Figure 3-8, 

quantitatively the method is not suitable for optimization purposes. Besides the significant 

larger preprocessing time
29

, unphysical stress concentrations in the tip region are present 

due to poorly shaped brick elements which do not vanish with mesh refinement. The red oval 

in Figure 3-8 indicates the incorrect position of maximum stress. The actual value of 

maximum stress of 3.26e8 [MPa] compares reasonably well with both its magnitude and 

location with previous results, which justifies its use as qualitative method.  

 
 

Figure 3-8: Structured solid modelling results on the left, structured shell modelling results on the right.  

Contour levels are identical and in [Pa]. 

                                                      
28

 This implementation was available upon the start of this Master’s thesis at MARIN. 
29

 Despite several improvements were made by moving pre-processing tasks from ANSYS to MATLAB, additional 

steps in the element definition require significant computational resources. Hexahedral elements cannot be used at 

the propeller edges. Prism shaped elements are to be used instead. Prior to the element definition, volumes are 

defined in which an algorithm creates elements.  
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3.2.4 Structured Shell Elements 

Lack of robustness of the structured solid modeling and faulty results due to degenerated 

elements in the tip region require a more robust method. Based on the prescription of a mid-

surface, a shell element implementation is more efficient and robust, especially in the edge 

regions of a propeller blade.  Elements are formulated directly by defining nodes of the mid-

surface with their corresponding thickness.   

 

Load Application 

Grid refinement studies, however, revealed high scatter and poor convergence. Only for 

computational expensive grids the results compare well with the unstructured reference 

computation. High numerical uncertainty was present in this shell implementation due to 

incorrect application of loads. Although the magnitude of the forces was always scaled 

afterwards to the correct value, the location of the forces is highly grid-dependent since the 

nodes lie not the radial and chordwise positions as prescribed by the ice-class loads. 

 

To solve this issue, the hyperbolic tangent distributions to define the distribution of panels in 

radial and chordwise direction are split at the required locations of the ice-class load cases 

as indicated in Figure 2-11.  

 

Grid Refinement Study 

Either linear or quadratic shell elements can be used. A grid refinement study is used to 

compare both: each implementation is considered for a sequence of ten grids in which the 

number of elements in radial direction is 10 higher than in chordwise direction. This gives 

more or less square elements in case of for the reference propeller. An example of the grid 

with results from linear shell elements is given in Figure 3-8. Quadratic shell elements 

produce a similar figure. Both elements converge to the reference value     316.7   2.2 

[MPa]. An overview of the maximum stresses with their numerical uncertainty as is given in 

Figure 3-9.  

 
Figure 3-9: Comparison between linear shell elements and quadratic shell elements for different grid 

resolution. The number of elements in radial direction is 10 higher than the number of elements in 

chordwise direction. The errorbars present the numerical uncertainty. The numbers beneath and above 

the errorbars give the numerical uncertainty as percentage of the prediction. 

As seen in the results, the quadratic shell implementation does not converge faster than its 

linear variant. Probably due to the inaccurate position of the mid-side nodes with respect to 

blade curvature, an error is introduced, which vanishes with finer grids. In the implementation 

it was assumed, for simplicity, that mid-side nodes could be defined as the average of the 

element corner nodes.  
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Mid-side nodes could be placed correctly by using the panelling procedure as outlined in 

section 2.1.3 for both corner nodes and  and mid-side nodes. It is expected that this 

procedure would not result in shorter computational times for similar results. There is 

significant more pre-processing in both the panelling procedure and the FEM. In this 

Master’s thesis no further comparison has been performed since linear shell elements 

perform well and can be used in an optimization. 

 

Note that so far only the fifth load case was considered. Convergence and numerical 

uncertainty of the other load cases is given in Figure 3-10.  

 
Figure 3-10: Convergence properties of the ice-class load cases with linear shell elements. The 

numbers in the figure give the numerical uncertainty in percentage of the prediction.  

Maximum stress for load cases two, four and five is located at the trailing edge while for load 

cases one and three it appears at the hub, similarly to the propeller as presented with Figure 

4-4.  As the root fillet is not modelled, the results for load case one and three may feature 

higher numerical uncertainty. Valtonen (2015) indicates that the root fillet radius may have 

significant influence on stresses at the blade root. Conservativity is included in the current 

analysis method on top of the safety factor within  Equation (5). 

 

For the grid of 40x30 elements the numerical uncertainty of      4.18% is acceptable. 

Disregarding load case one and three, load case two gives 2.21%. Noting the high safety 

factors within the ice class rules, uncertainties within the material and shape this is deemed 

acceptable. Also, the stresses will only be checked by the inequality of Equation (5), instead 

of being used and compared mutually for different propeller geometries within an 

optimization.  

 

Concluding Remarks 

This section will be closed with concluding remarks concerning the strength prediction of an 

ice-class propeller blade.  

 A comparison between unstructured solid elements, structured solid elements and 

shell elements shows that shell elements perform the best on computational 

efficiency, numerical uncertainty and robustness. The shell element implementation 

has been developed within MATLAB and ANSYS in this Master's thesis. Best 

practice guidelines for the shell element implementation are created based on 

numerical uncertainty studies which shows that a grid of 40x30 elements in radial 

and chordwise direction already suffices within an optimization. 
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 A check of the displacements yields that they are in the order of 0.7% of the 

propeller diameter which is considered to be small and negligible. Hence, the 

linearization within Equation (60) is justified. There might be thin blade profiles with 

high stresses which do not comply, but they will automatically be rejected due to the 

stress constraints within the optimization framework.  

 Grid dependency has been studied together with the grid refinement study. The grid 

was iteratively adapted such that the numerical uncertainty for the all load cases 

balanced. The edges need to be refined such that the pressure can be applied  over 

the arc length of the profile in the correct direction. To predict the root bending 

stresses or buckle points of high skew propellers, resolution is needed in the 

midsection. A rectangular grid was generated while capturing the edge curvatures to 

be prepared for different locations of the maximum stress. 

 The foregoing analysis was performed for the reference propeller only, while other 

propeller geometries might feature high stresses at other locations due to different 

physical mechanisms. Hence, it is recommended to repeat an uncertainty study for 

different propellers. 

 

3.3 Ice Load Model 

The ice-induced pressure distribution from Soininen (1998) as outlined in section 2.4.1 is 

implemented in MATLAB function tjh_Soininen.m such that the model is compatible with 

propeller blade profile parameterizations from section 2.1. This script follows the steps as 

indicated in Table 3-6. Its input consists of the blade profile, cut width, angle of attack and 

the ice strength giving the output in the form of the pressure distribution, loaded area and 

total force and its point of application.  

 

Table 3-6: Flowchart of the 2D Soininen model as followed by tjh_Soininen.m 

 
 

The model is considered in subsection 3.3.1 for its sensitivity to the angle of attack and the 

blade profile geometry. However, since an ice simulation model is explicitly needed in 

combination with Soininen’s model to investigate ice loading for a complete propeller, 

Soininen’s ice contact model is only suited in a full stochastic simulation in which the ice 

block position and size is randomly varied. It makes no sense to optimize the propeller for 

one angle of attack only. It would, however, be computationally too expensive if ice 

simulation parameters have to be varied like was done in the work for the ice class rules for 

each propeller geometry. A compromise is sought: leaving time simulations, a steady milling 

situation for an infinite ice block can be analyzed. This simulation will be developed in 

subsection 3.3.2. 

 

• blade profile, cut width, angle of attack & ice strength Specify 

• blade profile according to the angle of attack Rotate 

• pressure values and location of the pressure points Determine 

• pressure distribution on the profile arclength Apply 

• pressure distribution using a rectangle method Integrate 

• resulting force and moment Decompose 

• point of application of the force  Determine 
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3.3.1 2D Parameters 

To become familiar and get confidence in the pressure distribution as proposed by Soininen,  

variation of thickness, location of maximum thickness and angle of attack are considered in 

the itemization below. 

 

1. Thickness. The angles on which Soininen’s model is based are located at larger 

chordwise positions on the profile for thicker blade profiles. Hence, high ice contact 

pressure will extent over a larger area of the blade: thicker propellers will undergo 

higher forces according to Soininen’s model. Figure 3-11 supports this hypothesis. 

Three blade profiles, with different maximum thickness, are presented with their 

pressure distributions at zero angle of attack. Note that the chordwise distribution of 

thickness and camber is constant; the pressure distribution extents to the chordwise 

position of maximum thickness for all blade profiles. The magnitude of pressure, 

however, extends further on the blade profile with increasing thickness. 

2. Position of maximum thickness. If the chordwise position of maximum thickness 

would be moved, the chordwise length of ice-exposure area will change.  An 

overview of the variation is given by Figure 3-12. Blunt edges will experience short 

ice-contact while its force is directed in blade profile direction. Sharper leading 

edges, on the other hand, are longer exposed to the ice. The force is directed more 

perpendicular with respect to the blade which might give higher bending moments. 

3. Angle of attack. Besides blade profile geometry, the angle of attack largely 

influences the ice-contact area. According to Soininen’s model, ice contact at the 

pressure side induces much lower pressure as contact on the suction side. Hence, 

positive angles of attack will cause high ice-loads. An overview is presented in 

Figure 3-13 in which three angles of attack are presented. The blade profile in green 

with angle of attack   of 5 degrees is loaded over the entire suction side.  

 

The observations are based on the graphs in Figure 3-11 to Figure 3-13. In these figures the 

colors and line-style indicate different blade profiles in the left-hand graph. The bold part of 

the blade profile contour gives the extent of ice-contact. The right hand graph gives the ice-

induced pressure according to Soininen’s model.  

 

 

 
Figure 3-11: Variation of maximum blade profile thickness. The left graph gives three blade profiles 

with different thickness. Colors and line-style are repeated in the right figure which gives the ice-

induced pressure according to Soininen’s model.  
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Figure 3-12: Variation of chordwise position of maximum thickness. The left graph gives four blade 

profiles with different position of maximum thickness. Colors and line-style are repeated in the right 

figure which gives the ice-induced pressure according to Soininen’s model.  

 

Figure 3-13: Variation of the angle of attack  . The left graph shows three blade profiles under -5, 0 

and 5 degree angle of attack.   is positive counter clockwise and further defined in Soininen’s model as 

indicated by the line from leading edge to trailing edge.  The right graph gives the pressure distribution.  

It should be noted that only one propeller geometry was tested during Soininen’s laboratory 

experiments, his model is hence only valid for conventional ice-class propellers with similar 

geometry. Further validation for other propeller geometries is outside the scope of this 

Master’s thesis. 

 

It may be argued that the results of Soininen (1998) and Veitch (1995) compare qualitatively. 

Veitch used tools that can be imagined as either side of a blade profile, split in half at the 

chord line to separate the physical ice failure mechanisms of spalling and crushing. Pressure 

side tools have almost no contact with the ice which is represented by Soininen’s model as 

well. Veitch’ suction side tools yield forces which are a factor 2 to 5 higher than pressure side 

tools, depending on angle of attack and profile shape. Roughly, these mechanisms are 

incorporated by Soininen which permits the usage of Soininen’s idealized pressure 

distribution as predictor of ice-induced loading. 

 

In Huisman (2015) it was hypothesized in that sharper edge could lead to lower ice-induced 

forces. This hypothesis should be rejected considering the governing physics of ice 

interaction. Soininen’s idealized pressure distribution, which models these physical 

processes, predicts that blunt leading edges yield lower forces. 

 

 

3.3.2 3D Milling Simulation Model 

The idealized pressure distribution as proposed by Soininen (1998) acts on the propeller 

blade sections. To include the complete propeller geometry, the propeller should be 

discretized into blade profile sections over the radius.  

 

It is assumed that the maximum ice-load during ice milling can be predicted using a steady 

computation. If the cut depth is large, the whole propeller blade profile cuts through the ice 

from a certain radius and upwards. Propeller pitch together with the apparent propeller blade 

speed is taken as a measure for the angle of attack.  
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A conceptual sketch of the propeller and the ice in this simulation is presented with Figure 

3-14. It shows a cross section of a large idealized rectangular ice mass through which the 

propeller mills. Concerning this figure the following notes should be made: 

 A propeller impacts the idealized massive ice piece from 0.6R and above yielding a 

cut depth of 0.4R. 

 The grooves from the previous blades are also visualized. These define the cut 

width   which is non-constant over de radius as function of advance ratio, propeller 

pitch and blade profile shape. For low advance ratio the suction side crushing is 

dominant. The whole suction side is in contact with the ice.  For high advance ratios 

the physical failure mechanism differs as only as only a small part of the blade 

crushes the ice while the leading edge spalls most of the ice.  

 In the tip section the angle of attack will not only be worse, such that the suction 

side is loaded more, also the cut width is larger yielding a higher leading edge 

pressure. Hence, while the ice-class rules assume uniform pressure, the pressure 

distribution will be non-constant, both in radial and chordwise direction. 

 In reality the contact surface will be non-smooth and highly irregular. Moreover, the 

spalling behavior at the pressure side is not visualized, but indicated with the black 

irregular lines. 

 

 

Figure 3-14: Conceptual sketch of the steady ice milling at the left for high 

advance ratio and middle for low advance ratio and a coordinate system and 

angles for the determination of the angle of attack   at the right.  

A flowchart of the 3D model is given in Table 3-7 in which all the steps of the implementation 

are listed
30

. The right of Figure 3-14 defines the coordinate system in which    denotes the 

rotational speed,    the velocity between ship and ice,   the advance direction of a propeller 

blade,    the propeller pitch at a certain radius and   the resulting angle of attack.  

 

In the 2D implementation of Soininen’s model the forces are computed with reference to the 

    -axis as given at the right in Figure 3-14. Hence they have to be transformed to the 

propeller axis system        A cylindrical coordinate system is used to find the normal 

vectors at the points of application. The propeller is discretized using the paneling procedure 

such that at each radial and chordwise location the normal vectors can be computed with the 

cross product of the tangential vectors in radial and chordwise direction. Based on these 

vectors the resultant force is rotated in the correct direction in space.  

 

                                                      
30

 Similar steps are programmed in the user defined MATLAB function tjh_Soininen_3D which is available upon 

request. 
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Table 3-7: Flowchart of 3D ice-interaction analysis based on Soininen’s model and a steady infinite-

mass ice block during ice milling. 

 
 

 

Comparison with the ice class rules 

A comparison with load of the ice class rules can be performed as check whether Soininen’s 

model gives loads within the same order of magnitude. A computation for the reference 

propeller yields Figure 3-15 below. 

 

 

 
Figure 3-15: Comparison of the magnitude of ice loading as function of advance ratio for the reference 
propeller. The value prescribed in the ice class rules is presented with the dotted orange line. At the left 
the forces are given, while at the left the ice-induced bending moment and torque are shown.  

 

 

 

• propeller in a description for R = 0.6-1.0 [-] only. Transform 

• angle of attack α and cut width w as function of propeller 
pitch P and advance ratio J 

Determine 

• sections with chordlength  Scale 

• 2D Soininen model for forces and points of application per 
section 

Evaluate 

• the resultant forces per section Determine 

• forces into force components in the propeller coordinate 
system 

Transform 

• points of application in 3D according to the procedure in 
Table 2.1  

Position 

• 3D orientation of the forces by means of normal vectors to 
the blade at the point of application 

Determine 

• the force in z-direction Rotate  

• resultant force into 3D components Decompose 

• the forces over radial length and dimensionalise Integrate 

• ice-induced torque and bending moment around the root Compute 
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In addition to the value of the total force and its comparison with the prescribed force within 

the ice-class rules, the root bending moment and the ice-induced torque are presented as 

well. The following can be observed from Figure 3-15: 

 The order or magnitude is correctly predicted for both the ice-induced force and 

torque.  

 Ice-induced loading is, as expected from the sketches in Figure 3-14, dependent on 

the advance ratio. Typical advance ratios in ice are below the normal operation point 

of J = 0.676 due to the added resistance in ice. For this region is appears that there 

is additional conservativity within the ice-class rules if the assumption is valid that 

steady ice load computations suffice for the estimation of the highest ice loading. 

The predication of the total force is significantly lower as prescribed within the ice 

class rules. It appears that the alternative design route within the ice-class rules can 

be utilized in the future to design higher efficient propellers as described in Huisman 

(2015). 

 The location of the ice load as predicted within the simulation differs with the first ice-

class load case which it should resemble for lower advance ratios. While on average 

over de radius the prescribed impact location of 20% of the chord length 

corresponds well with the simulation for higher advance ratios, the impact location 

for lower advance ratios is located towards the leading edge with a length of only 2% 

of the chord length. This also explains the behavior of the bending moment. For low 

advance ratios, the force is low with a higher moment arm while at higher advance 

ratios, for higher forces, the moment arm becomes lower.  

 

Since the bending moment is a function of both the force and the moment arm, optimization 

is not only required for the total ice-induced force, but also for the bending moment itself. 

Pitch becomes not only important in the prescription of the angle of attack, but also in the 

determination of the bending moment. It is assumed that the root bending moment is one of 

the mechanisms which govern the required propeller blade strength.  

 

Concluding Remarks 

Following the conclusions from the 2D model, it can be hypothesized that the most important 

parameters for the 3D simulation model are the angle of attack  , the blade profile shape, 

propeller pitch and thickness. Other parameters such as camber can also indirectly influence 

the ice-induced loading due to the mean pitch adaptation procedure within the optimization. 

 

The developed ice simulation model can be used within an optimization to quantify ice 

performance as function of ice-induced propeller torque, ice bending moment and total ice 

force.  Limiting the ice torque as function of propeller geometry provides a larger operational 

window for the ship in ice conditions, while the ice-induced bending moment might be 

considered as measure for fatigue and strength. Possibly, the alternative design route within 

the ice-class rules may be utilized by allowing lower design ice forces for such propeller 

geometries. 

 

 

 

3.4 Computational Framework 

The goal of this section is to combine the geometry parameterization, optimization algorithm 

and computational methods for hydrodynamics, structural strength and ice loads into a 

computational framework. 

 

A fully operational optimization framework for geometry parameterization, optimization 

algorithm and the coupling with hydrodynamic BEM PROCAL was already provided by 

MARIN within MATLAB as basis. Besides numerous small updates and debugging, the 

following expansions were made to the existing computational framework within this Master's 

thesis: 
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1. Generalization of optimization structure by separating the optimization algorithm, 

geometry parameterization and computational methods.  

2. Implementation and coupling of a shell element based FEM and the ice-load model. 

3. Update and expansions of the geometry parameterization to allow for chordwise 

distributions and different radial distributions including thickness according to section 

2.1.2. 

 

Separation 

Generalization of the computational framework is achieved by using a data array O in which 

optimization relevant data such as objectives, design parameters, ranks and constraint 

violations are tracked per generation, independently of parameterization, optimization 

algorithm or computational methods. Data array P stores propeller geometry and all 

computational results.  An interface writes new optimization algorithm generated design 

parameters to P. After geometry generation and analysis this interface searches within P for 

the required input for O. 

 

Coupling 

Strength computations are performed with ANSYS and coupled to the computational 

framework. ANSYS however, could not be installed on the LINUX cluster of high 

performance computers. To still allow PROCAL computations on a LINUX cluster
31

, ANSYS 

computations are performed separately outside the main computational optimization loop in 

a different MATLAB process. Each second thrust convergence is checked by the ANSYS 

loop. Upon thrust convergence, the propeller geometry is stored and read by the ANSYS 

computation loop. ANSYS is called on the local WINDOWS computer for an ice-load 

strength analysis. After all propellers have been computed, the main computational 

optimization loop checks whether all propellers have been computed by ANSYS after which 

the results are collected. The ice load model is directly implemented within the main loop.  

An overview and flowchart of the current computational framework is provided with Table 

3-8.   

 

Computational Time 

Typically, an unsteady PROCAL computation takes between 7 to 12 minutes with grid of 

26x36 elements in chordwise and radial direction. In comparison, a complete strength 

analysis with ANSYS takes up to 30 seconds for a 40x30 grid including pre- and post 

processing in MATLAB. Computation time for the ice-load model is negligible with only 3 

seconds for a range of angles of attack. A Windows 7 workstation with an Intel® Xeon® CPU 

W3520 @ 2.67 [GHz] was used with 6.00 [GB] installed work memory.  

  

Analysis Failures 

If a computation fails for any reason the optimization should still proceed. Errors may appear 

in the geometry generation procedure, paneling procedure or in the hydrodynamic or 

strength analysis.  Also for thrust divergence, the whole propeller is disqualified for further 

analysis. Hence, the propeller will get a low rank and become extinct.  Failure is dealt with by 

assigning the objectives the worst possible value such that the optimization algorithm will 

disregard the propeller during the ranking process. 

 

                                                      
31

 Although tested and implemented for the cluster, results for this thesis are generated on a single Windows 

workstation due to cluster maintenance and updates at the time. Preferably, the cluster should be used with larger 

population sizes and possibly cavitation computations.  
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Table 3-8: Computational sequence of the optimization procedure. The first four blocks in present the 

start-up phase, the next four blocks are performed for each individual propeller. Each generation is 

processed in the last two red blocks.  

 
  

•all input and settings to run the analysis tools and 
define the optimization problem 

Get 

• input with common defaults and reference propeller Check 

•optimization structure with design variables, objectives 
and constraints 

Initialize O   

• first propeller generation by random independent 
design parameters 

Generate P0 

• the mean pitch in steady hydrodynamic computations 
for the required thrust in the designpoint 

Iterate 

• converged propellers in an unsteady time simulation to 
the hydrodynamic BEM PROCAL 

Subject (1) 

• converged propellers to the load cases of the ice class 
rules within the shell FEM implementation in ANSYS 

Subject (2) 

• converged propellers to the ice-load model based on 
Soininen's simplified ice pressure distribution 

Subject (3) 

• results of each propeller to the optimization structure Write 

• the current population of propellers according to their 
objectives and constraint violations 

Rank Pi-2, Pi-1 

•new generation in a genetic algorithm based on 
sorting, reproduction, crossover and mutation. 

Generate Pi 
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4 OPTIMIZATION RESULTS 

The computational methods to obtain the optimization objectives and constraints as 

introduced in the introduction have been discussed in previous chapters. This chapter 

applies the computational framework on the case study as introduced by section 1.5.  

 

Prior to full optimization, numerous test cases have been performed. Only four will be 

considered in this report which cover all adaptations, tuning and conclusions from the test 

phase. Table 4-1 gives an overview of the simulations which are addressed in this chapter. 

 

Table 4-1: Definition of optimization cases. For each case the distributions that have been varied and 

the objectives are indicated. Note that the C- in the design parameters stands for a chordwise 

distribution while the others are defined over the radius as discussed in section 2.1.2.  
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Test Cases T-I                

T-II                

T-III                

T-IV                

Full Optimization F-I                

 

All optimization cases have been performed while taking the ice-class stress constraints into 

account. Design parameters are based on the parameterization of the radial and chordwise 

geometry distributions according to section 2.1.2 which defines the free variables within each 

optimization case. If not varied, the distributions from the reference propeller are maintained. 

The bounds for the design variables are iteratively found during the test phase. The final 

numbers for the case study can be found in Appendix A. 

 

This chapter is organized in two sections. Section 4.1 describes the test phase prior to more 

extensive optimization with the full design parameter set. After confidence in the 

computational framework has been grown, the full optimization will be addressed in section 

4.2.  It should be noted that often the conclusions from the test cases are also valid for the 

full optimization. 

 

Before continuing this chapter the following remarks should be made for legibility and 

understanding: 

 In this chapter the best propellers are defined as propellers which feature the best 

objective values within a certain population, generation, geometry parameterization 

and choice of design variables. It is possible that when other optimization or 

parameterization techniques would be applied, even better propellers could be 

designed in the future. 

 The optimization computations in this Master’s thesis are limited to small populations 

due to computational resources. Nonetheless, the principles can be applied for 

larger populations which will, eventually, reach better objective values as observed 

by Nuland (2014).  

 In optimization-case overview plots the colours vary from blue to red from left to 

right, indicating later generations within the optimization. Results of the last 

generation are encircled. The reference propeller from the case study will be 

indicated with a larger circle. Gray x-marked results indicate propellers which do not 

satisfy at least one of the ice-class stress constraints but survived the ranking 

process within the genetic algorithm.  
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4.1 Test Cases 

Optimization test cases prior to full optimization have been performed to enhance, debug 

and test the computational framework. It should be assessed whether the geometry 

parameterization suffices while best practice bounds for the design parameters should be 

established. Above all, the ice-class stress constraints should be automatically satisfied to 

design for ice-class propellers. In general the test phase suits to prepare for full optimization 

and provides direction to the answering of the main question. The test cases are 

summarized into four parts as indicated in Table 4-1 with T-I to T-IV. Specifically, the test 

cases are intended  

1. to assess the ability to comply with the ice-class stress constraints (T-I),  

2. to define proper bounds for the chordwise thickness and camber distributions while 

assessing the ability to use steady computations only (T-II), 

3. to include hydrodynamic effects of the interaction of the propeller with the ship by 

unsteady hydrodynamic computations (T-III) and 

4. to show that ice-class propellers may feature significant skew (T-IV)  and still be in 

accordance with the ice-class rules. 

These test cases will subsequently be addressed in the following subsections. Each 

subsection will be closed with concluding remarks and recommendations. 

 

4.1.1 Thickness Optimization (T-I) 

This optimization case is intended to test the algorithm in its ability to comply with the ice-

class stress constraints. Two objectives to maximize efficiency and minimize mass are 

chosen. The propeller is fully based on the reference propeller of the case study from section 

1.5. Only the radial thickness distribution is varied. A population of 128 propellers is analyzed 

in steady computations for 30 generations.  

 

Optimization Results 

A plot of the optimization progression and its results of the simulation is given in Figure 4-1. 

All propellers within the simulation are plotted, also the reference propeller is included with 

the black dotted circle. It is observed that an improvement in efficiency cannot be reached. 

Propeller mass, however, is slightly reduced with 5.4%. More importantly, the optimized 

propellers are ice-class propellers in contrast to the reference propeller which does not 

satisfy the ice-class constraints.  

 
Figure 4-1: Overview of thickness optimization of the reference propeller. Mass [kg] versus efficiency 

   [-] is plotted for the unsorted full design space to the left. A close-up on the best propellers is given 

to the right where the propellers are ranked for clarity of the representation. The large black dotted 

circle gives the initial reference propeller of the case study.  

The algorithm searches its way to the bottom right for highest efficiency while having the 

lowest possible mass.The randomly generated initial designs define the starting point of the 

optimization. Only thick heavy propellers satisfy the ice-class constraints, hence, the 

algorithm starts in the top left of Figure 4-1. In the early generations, the search area is wide, 

while later on the algorithm coverges almost linearly. Physically, mass is indirectly linked with 

reference propeller 

outlier 



54 
 

 

Master’s Thesis 
 

efficiency via the expanded blade area ratio and the chord and camber ratios with respect to 

thickness. Hence, this case also indirectly varies the blade shape and the resulting pressure 

distributions.  

 

Infeasible propellers 

The current algorithm actively searches towards higher efficiency propellers within the 

prescribed design parameter bounds, but is limited by the ice-class stress constraints. 

Although the algorithm is sufficiently adventurous to search the allowable design space, 48% 

of the computed propellers did not satisfy the ice-class constraints. Only 10% of them 

survived at least one generation and were subjected to the optimization tournament 

procedure, refer to section 2.7.3.  

 

The low-ranked short-living propellers which extinct after the ranking process are indicated 

with gray ‘x’ markers. They obtain higher efficiency and lower mass, but do not satisfy at 

least one of the ice-class stress constraints. The close-up of Figure 4-1 and following figures 

of the optimization results show only the ranked population for clarity of the presentation. 

The close-up shows that very little stress violating propeller survive their generation. 

However, taking the constraint violating propellers explictly into account could lead to faster 

convergence and more efficient optimization instead of the current trial and error behaviour. 

The optimium could then be approached from both constraint violation and constraint 

obedience points of view.  

 

Prior test cases showed that the algorithm performs better by prescribing five separate 

constraints for each load case instead of constraining the maximum of the five load cases. 

Propellers can be ranked according to the number of ice-class load cases that are satisfied. 

 

Population Size 

Prior to the case presented here, a smaller population size of 30 propellers was considered 

which did not converge. Probably due to the absence of a clear Pareto front, the genetic 

algorithm could not rank the propellers properly. Hence, the optimization was restarted with 

the current large population size of 128, which eventually reached better convergence as 

already observed and concluded by Nuland (2014).  

 

Convergence 

Behaviour of the optimization algorithm can also be studied by means of a visualisation of 

convergence. Figure 4-2 presents convergence for both the pure offspring or unranked 

generations and the generations after the tournament ranking process. Especially the first 

two generations produce a lot of propellers which violate the constraints. Generation three 

tries to correct this and searches for thicker heavier propellers; mass rises and efficiency 

falls. When the parent population in generation four and further satisfies the stress 

constraints the efficiency rises again until convergence. The unranked population, which 

does not necessarily comply to the constraints, is plotted as well to show the aforementioned 

adventurousness of the algorithm. 

 

Outliers 

Probably due to an error in a restart around generation seven, an outlier is present there that 

spoils the convergence plot for both efficiency and weight. The outlier is not present in the 

unranked offspring while it suddenly appears after ranking. Hence, a design check is 

recommendable. It indeed shows that the outlier does not satisfy the stress constraints and 

remains an outlier throughout the whole optimization altough the algorithm actively tries to fill 

the gap between the best propellers and the outliers considering the large density of 

infeasible propellers. If the outlier would be absent, it is expected that the ratio between 

infeasible ice-class constraint violating propellers and feasible propellers would be lower. 

Note that the outlier predicted in generation twelve satisfies the constraints and attracts the 

whole generation towards better objectives. This outlier survives until the end as best 

propeller. 
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Figure 4-2: Convergence of the thickness optimization of the reference propeller. Both the ranked 

generations and the unranked generations (pure offspring) are given for efficiency (left) and mass 

(right). The box plots give the extremes, first and third quartiles and the median of each generation. 

Outliers for the ranked population are plotted separately with markers. 

Analysis of best propellers 

The best propellers are selected for further analysis. The ten best performing propellers are 

plotted in Figure 4-3. The thickness distribution only suffices, the other parameters are 

constant.  

 
Figure 4-3: Comparison of simulation results. Thickness distributions with their control and handle 

points are visualised. Also the thickness distribution of the reference propeller is plotted for 

comparison. 

The shape of the thickness distribution might be explained as follows. The thickness at the 

hub is governed by the third load case. As already observed in Figure 3-10, the third load 

cases gives the highest stresses at the hub for the reference propeller. The fifth load case 

with load on the pressure side of the trailing edge requires thickness in the mid-section of the 

blade. The tip is non-critical for the current settings. Hence, there may be room for 

improvement by more advanced parametrization of the thickness distribution. The five load 

cases are presented in an overview below in Figure 4-4. The side with highest stresses is 

outlier 

best propellers 

reference propeller 
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shown. Critical load cases three and five are presented in the top, while the other, non-

critical load cases are visualised below them.  

 
Figure 4-4: Overview of stresses due to the application of the ice-class load cases for the thickness 

optimization test case. The colours present the Von Mises stress in [Pa]. Load case (LC) three and five 

feature critical stresses for the optimization algorithm. Their location of maximum stress is indicated 

with a red circle.  

Concluding Remarks 

Concerning this optimization test case in which only the thickness and its distribution is 

varied, the following concluding remarks should be made: 

 The proposed computational framework seems suitable for ice-class propeller 

design. The ice-class stress constraints can be evaluated and satisfied 

automatically. 

 A large portion of constraint violating propellers is rejected by the algorithm. Taking 

them into account in addition to the feasible propellers could lead to both faster 

convergence and higher computational efficiency of the complete optimization. 

 This thickness optimization test case does not give improvements in efficiency for 

the chosen thickness parametrization. Mass, however, can be reduced substantially 

with 5% in this case study which might be interesting in practice for FPPs.  

 A large population reaches better convergence while the probablity in finding the 

global optimum is increased. However, current computational resources limit the 

size of the population.  

 It is recommended to use a more sophisticated thickness distribution which avoids 

the generation of a fillet at the hub and allows for a finite thickness at the tip. 

Considering the efficiency, thickness distribution and stresses of the reference 
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propeller, it is expected that the optimization can converge further towards lower 

mass and higher efficiency.  

 Although laid out for ice-class propellers, the computational framework can be used 

for non-ice class propellers too. Hydrodynamic pressures could be applied, either 

with matching meshes for BEM and FEM or with interpolation techniques.  

 

4.1.2 Blade Profile Design (T-II) 

The goal in this optimization case is to define proper bounds for the chordwise thickness and 

camber distributions such that reasonable blade profiles can be generated. Steady 

hydrodynamic computations are used to search for pitfalls within the computational 

framework. As initial bounds were solely intended to generate smooth, continuous 

distributions, test cases showed that additional bounds need to be prescribed. 

 

Both the radial and chordwise description of the camber and thickness distributions are 

taken as design parameters. A population of 30 propellers is analyzed in steady 

computations for 65 generations taking mass and efficiency as objectives. 

 

Optimization Results 

Although the algorithm converges to high efficiency and low mass, see Figure 4-5, this 

optimization case does not result in better propellers than before when only thickness was 

varied in the previous section 4.1.1. There is no significant higher efficiency and even higher 

propeller mass. Probably, the absence of a clear trade-off curve complicates convergence. 

Since ranking is based on the position along the front, the low efficiency propellers with low 

mass spoil convergence towards high efficiency. 

 

 
Figure 4-5: Optimization overview for case C.I with mass [kg] and efficiency    [-]. Blade profiles are 

varied as well as the radial thickness and camber distribution. A selection of blade profiles within the 

encircled clustering is given in the right graph. The offset is dimensionless with propeller diameter. 

Similar thickness distributions as for the thickness optimization test case in Figure 4-3 are 

observed. Apparently, the population size of 30 propellers is also able to converge to the 

expected result from section 4.1.1 which used 128 propellers per generation.  

 

Hence, it can be concluded that the computational framework can generate blade profiles 

which are as efficient as the blade profile of the reference propeller. The parameterization 

can be used for further optimization cases.  

 

Prior Test Cases 

Prior test cases, however, did not generate profiles that are worth to be considered as 

visualized in Figure 4-6. Three typical undesirable blade profiles are selected for discussion: 
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 Green striped-dotted profile which features a very blunt leading edge, high thickness 

and a sharp shoulders at the suction side.  

 Blue solid profile which seems worth to consider. However, a numerical artefact is 

introduced at the trailing edge. As in reality separation will occur from the small flap, 

the assumptions within the BEM imply that the flow will follow the profile, yielding 

unphysical wake alignment and circulation. Consequently, pressures will not be 

predicted correctly. 

 The red dotted profile which has pronounced shoulders at both pressure and suction 

side. In addition, the location of maximum thickness is located too far from the 

leading edge for proper chordwise pressure distributions. 

 

 
Figure 4-6: Profiles at 0.7R from prior optimization test series. The right graph is a close up of the 

trailing edge. The offset is dimensionless with propeller diameter. 

Hence, proper bounds are required for the chordwise thickness and camber distribution to 

avoid unfeasible geometries such as the wedges and those presented in Figure 4-6. The 

bounds resulting from the test phase are presented in Appendix A. 

 

Concluding Remarks 

Although it is noted that the computational framework can generate blade profiles which are 

worth to consider further, it is also observed that due to the limitations of BEM and steady 

computations, the optimization algorithm cannot find reasonable profiles automatically. 

Solely considering the efficiency objective without any bounds on the geometry generation, 

hydrodynamic properties such as flow separation, pressure pulses, noise and cavitation are 

not taken into account sufficiently well.  

 

Hence, steady hydrodynamic computations, without consideration of the wake field, do not 

suffice for propeller optimization. In addition, proper design parameter bounds on the 

chordwise thickness and camber distributions are required to avoid numerical artefacts 

implied by the BEM assumptions.  

 

There is a trade-off between geometry parameterization bounds and the number of 

infeasible propellers due to the absence of the bounds. Bounds might overcast the global 

optimum if chosen too conservative.  They are always a compromise to avoid the generation 

of too much diverged propellers on which the algorithms fails. 

 

Furthermore it should be noted that a pronounced trade-off or relation between objectives is 

required for optimization progression. This case shows several low mass propellers with low 

efficiency which are ranked for the parent population therewith interfering with the high 

efficiency propellers. 
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4.1.3 Unsteady Hydrodynamic Computations (T-III) 

The goal for this case is to test the applicability of the thrust variation objective in unsteady 

hydrodynamic computations to include the interaction with the ship by means of its effective 

wake field. 

 

Design Parameters 

The trade-off between thrust variation and efficiency should be predicted during this test 

case without the large bias which would be introduced by taking skew into account. This 

optimization case, when leaving the skew distribution constant, gives insight in the 

possibilities to reduce thrust variations without featuring high skew angles. Rake was not 

considered too due to its little influence on the hydrodynamics and the need for a limited 

number of design parameters for earlier convergence. Moreover, due to the forward and 

backward forces of about equal magnitude within the ice-class rules, it is hypothesized that 

rake will be balanced. 

 

Computational Settings 

Again a population of 30 propellers was analyzed within the computational framework for 65 

generations.  Propellers were iterated for the required thrust in the design point using steady 

computations, followed by unsteady computations and strength analysis. Both the radial and 

chordwise thickness and camber distributions are parameterized with Bézier curves. In 

addition, the radial distributions for pitch and chord were parameterized in design variables 

according to section 2.1.2 and included in the optimization.  

 

Optimization Results 

The progression of the optimization is presented in the Pareto-front overview of Figure 4-7. 

Contrary to the preceding results, here the trade-off between efficiency and thrust variation is 

clearly visible: high efficiency can only be obtained at the cost of high thrust variations which 

may cause noise, vibrations and erosive cavitation. Corresponding to Figure 4-7, the 

propeller distributions are shown in Figure 4-8. The colours and arrows indicate the direction 

for high efficiency. While the chordwise positions appear to have a clear trend, the pitch and 

chord distribution are not yet fully converged and are presented without further 

consideration. The following observations should however be made before proceeding with 

full optimization:  

 Compared to the non-ice class reference propeller, it is noted that the efficiency of 

the optimized ice-class propellers is below the reference propeller. Thrust variation, 

however, is significantly
32

 lower. 

 The right plot within Figure 4-7 shows the blade profiles. Note the thick, heavy 

propellers to obtain low thrust variation. In addition, the chordwise thickness and 

camber distribution the middle position is preferred. This indicates a preference for 

thick elliptical profiles which are less sensitive to variations in the angle of attack 

while operating in the wake field yielding lower thrust variation.  

 The higher efficiency propellers, visualized in red in the inner part of the right graph 

in Figure 4-7, are very slender and well shaped which gives confidence for the final 

optimization. While the position of chordwise maximum thickness moves towards the 

leading edge, the position of maximum camber prefers the trailing edge. Hence, 

hydrodynamic pressure will be distributed more evenly over the complete blade 

profile. 

 Note that the thickness distribution of high efficient propellers resembles Figure 4-3. 

However, the fillet is more pronounced such that the maximum stress occurs further 

away from the hub. For full optimization, it is recommended to constrain fillet 

generation to allow other variations in the thickness distribution.  

 It should be noted that the optimization controls the camber by the normalised 

camber over diameter where the camber at the tip was constant and equal to zero. 

                                                      
32

 Even though the numerical uncertainty for thrust variation is around 3%.  
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Likewise the thickness distribution, the design freedom is limited which rises the 

recommendation for allowing finite tip camber. The higher efficiency propellers prefer 

high camber in tip to obtain higher efficiency. For cavitation however, this should be 

avoided. 

 

 
Figure 4-7: Optimization for efficiency and thrust variation by means of pitch, chord, thickness, camber 

and blade profiles. The reference propeller is indicated with the larger black circle. The arrows indicate 

the direction of the optimization progression. The right figure shows the shape of the blade profile at 

0.7R over the Pareto front. The thick blue blades are propellers with high mass, low efficiency and low 

thrust variation. Red slender blades feature high efficiency at the cost of thrust variations. 

 

Figure 4-8: Overview of the propeller distributions of the propellers within the Pareto front. Red 

corresponds to high efficiency, while blue indicates low thrust variation. The arrows indicate the general 

direction for high efficiency. Arrows are omitted for the pitch and chord distribution, no clear trend is 

visible. 

Convergence 

If one would plot the convergence of efficiency and thrust variation it is observed that the 

optimization is not yet converged. Efficiency was improved by 0.4% in only two generations. 

Especially the radial pitch and camber distributions are not yet converged and could be 

improved further as observed from Figure 4-8. Note that Figure 4-7 and Figure 4-8 show 

three different families within the generation presented with the blade profiles in red for high 

efficiency, orange/yellow in between and green/blue for thick low thrust variation propellers. 

If optimized further, sharing of information will probably lead to the extinction of the thick 

heavy propeller family while efficiency is still being improved. 

 

blue 

red 
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Also the material stresses give room for improvement as the most efficient propeller still has 

a margin of 36 [MPa] or 12% before the inequality of Equation (5) from the ice-class rules is 

violated. Additionally, the maximum stress is located at the hub near the fillet region where 

the ice-class criterion is conservative in the current strength analysis. In the tip region there 

still is a margin of about 20%. Furthermore, it can be observed that the stress constraint is 

not active for the low thrust variation propellers. 

 

Design Check 

A design check of the most efficient propeller has been performed before going to full 

optimization in order to assess whether the thrust variation objective steers the optimization 

towards non-cavitating propellers with well-defined pressure distributions such that the 

computational framework can be used for full optimization. First the hydrodynamic pressures 

will be presented after which the cavitation behavior will be discussed. An unsteady 

computation with cavitation serves as basis on a grid of 40x50 elements in radial and 

chordwise position.  

 

Figure 4-9 shows a selection of pressure profiles for different circumferential positions and 

radial positions. Pressure is plotted non-dimensionally disregarding hydrostatic effects with 

the normalized pressure coefficient –    such that suction side pressure is presented on top 

of the pressure side pressure. The area between the closed curves is an indication of the lift 

per surface area of the blade profile section. The angle   denotes the position within the 

propeller plane in which      denotes the top position.  

 

 

 
Figure 4-9: Pressure profiles over de blade profiles from leading edge to trailing edge. The black 

horizontal line corresponds to the cavitation inception pressure coefficient. In the bottom right, the 

cavitation extent (red line) and pressure below the cavitation inception pressure (shaded area) are 

sketched.  

Concerning the pressure profiles it should be noted that the load is smeared out over the 

complete blade area. Sharp suction peaks are only present in the tip area. Note that for 

upwards motion (       ) the leading edge produces negative thrust.  The black horizontal 

line denotes the cavitation inception pressure which is exceeded for the tip region in the top 

half of the wake field. Although Figure 4-9 also presents a prediction of the sheet cavitation 
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extent, the exceedance of the cavitation inception pressure in other locations indicates the 

risk of other cavitation appearances. The following is observed for cavitation: 

 Between       and      the cavitation expands violently due to the flat pressure 

distribution in the tip region. As seen in the pressures for      this leads to the 

collapse of pressure near the trailing edge. Cavitation will be unstable and may 

easily break up into patches which leave the trailing edge irregularly and erosive. 

 The sheet cavitation does not leave the tip smoothly, but sticks to the blade surface. 

An erosive re-entrant jet might be formed there to close the sheet cavitation and 

reattach the flow.  

 For the downward blade motion between      and       cavitation inception 

pressures are observed outside the prediction of the sheet cavitation. In reality, 

sheet cavitation could occur there too, but may be prone to separation and shedding 

yielding erosive cloud cavitating.  

 

Concluding Remarks 

A population of only 30 propellers is sufficient to find the Pareto front and seems to be 

usable for full optimization. Due to limited computational resources, optimization 

convergence has not been obtained. Either a larger population size or a larger number of 

generations should be chosen.  

 

Although the best efficiency propeller shows possibly erosive cavitation, it provides a starting 

point for high efficiency ice-class propellers. The behavior of the tip cavitation can be further 

improved manually by correcting the radial camber distribution for instance. 

 

Possibly, when taking a mass objective into account, the optimization will reject the thick 

propellers and tries to converge to low thrust variation without adapting the thickness 

distribution.   

 

In addition to more sophisticated radial thickness and camber distribution, it would be a 

recommendation to improve the chordwise distributions as well. Besides increased 

robustness of the optimization algorithm, more design freedom in the feasible space is 

created. An overview of existing blade foil parameterization techniques is given in Salunke et 

al. (2014). Also a Bézier-based, second-order continuous description is addressed which can 

be implemented in the current computational framework.  

 

4.1.4 High Skew Propellers (T-IV) 

This optimization test case is intended to show that ice-class propellers may feature 

significant skew. The computation settings are similar as for previous test case T-III. In 

addition, the mass objective is taken into account while skew and rake distributions are 

varied as well.  

 

The optimization progression is visualized in Figure 4-10. Thrust variation and mass are 

presented first on the left which produces a similar trade-off as was observed in Figure 4-7 of 

optimization case T-III. Thicker blade profiles yield lower thrust variation. In addition, due to 

highly skewed propeller geometry, the thrust variation is significantly lower compared to the 

results of T-III.  

 

The best performing propellers in terms of mass and thrust variation are not the best in terms 

of efficiency which is the reason for the scattering of the optimization result in the right of 

Figure 4-10. Although the lowest mass propellers feature significant lower efficiency than the 

highest efficiency propeller, the optimization also converges to high efficiency, low thrust 

variation propellers as seen in the bottom right clustering of propeller in the right graph of 

Figure 4-10.  
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Figure 4-10: Optimization progression plots of full optimization case (F-II).The optimization result in the 

form of the last generation is encircled. The reference propeller is presented by the larger black 

encircled dot. The arrows indicate the direction of the optimization progression which is also 

represented by the colors from blue to red. 

Propeller Geometry 

Without going into details on all propellers, the average of the design parameters of the 

clustering of high efficiency, low thrust variation propellers is considered as the optimization 

result. It is indicated with the black circle in the left of Figure 4-10.  The geometry 

distributions are presented below in Figure 4-11.  

 
Figure 4-11: Overview of propeller distributions for the best propeller within optimization test case T-IV. 

The green circles represent the handle points of the Bézier curves, while the red squares are their 

control points. A sketch of the blade profile at 0.7R is given inside the chordwise thickness distribution. 

Note the pitch reduction in the tip and the significant skew angle to obtain low thrust 

variation. Sectional profiles are laid down for high efficiency by moving the point of maximum 

thickness towards the leading edge while maximum camber is shifted towards the trailing 

edge as also observed in Figure 4-8 of test case T-III.  

 

High Skew Ice-Class Propellers 

From Figure 4-11 it becomes clear that the best propeller features a significant skew angle of 

more than 50 degrees. As explained in Huisman (2015), high skew propellers are prone to 

ice damages. The tip load cases were introduced for that reason, however, the optimization 

algorithm apparently manages to find highly skewed propellers which do satisfy the ice-class 

stress constraints. Note that the thickness in the tip region has significantly increased 

compared to optimization case T-III. Due to increased skew, more thickness is required in 

the tip region. The stress contours for each load case (LC) are given in Figure 4-12.  

 

Best 

Propellers 



64 
 

 

Master’s Thesis 
 

 
Figure 4-12: Stress contours for the high skew propeller in [Pa]. None of the ice-class load cases is 

critical. The most severe stress occurs for LC4 as 260 [MPa]. The red circles indicate the position of 

maximum stress.  

The maximum stress occurs for load case four in the middle of the blade. Load case five, 

intended for backing operations, results in acceptable stresses. For high skew propellers, 

however, the tip will enter the ice first, prior to the trailing edge. As demonstration, referring 

to Table 2-3 and Figure 2-11, when adjusting the location of the load for load case five from 

0.6R towards the tip at 0.8R the propeller does not satisfy the stress constraints as 

visualized below in Figure 4-13 and should be rejected as ice-class propeller. Damage cases 

by DNV (Norhamo et al., 2009) show that the location of the maximum stress on the suction 

side corresponds to the location where high skew ice-class propellers buckle in practice.   

 

 

Figure 4-13: Stress levels for adjusted load case five. Maximum stress occurs in the tip region 

indicating that the propeller blade is prone to bend tips due to ice interaction. To the left the suction 

side is given and at  the right the pressure side is visualized. The gray area and the red circles indicate 

exceedance of the maximum allowable stress. The color scale and units are similar to Figure 4-12. 

Numerical Uncertainty 

It should be noted that for the high skew propellers similar computation settings were used in 

the optimization as deduced in the numerical uncertainty studies in chapter 3. However, as 

recommended by Boorsma (2005) high skew propellers should feature higher tip spacing 

and more elements in radial direction. A similar study should be carried out for the best 

propeller within this optimization case to verify that these settings can be used with similar 

numerical uncertainty as found for the reference propeller. After performing this analysis it 

appears that numerical uncertainty is about twice as large, both for hydrodynamic and 

suction side pressure side 
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strength analysis. Attention towards numerical uncertainty within the optimization is required 

for further work. 

 

Cavitation Behavior 

Without repeating the more extensive design check of section 4.1.3 for optimization case T-

III, the cavitation behavior of the optimized propeller of this optimization case is given in 

Figure 4-14. Cavitation detaches first at     at the point of minimum pressure. Due to the 

thick blade profiles in the tip section the minimum pressure occurs at the point of maximum 

thickness from which the cavitation detaches. 

 

Also the pressure profiles of the blade sections at different radial positions are presented at 

the right of Figure 4-14. Note that the pressure profiles are flat and comparable to those 

observed in optimization case T-III.  

 
Figure 4-14: Cavitation behaviour of the optimized propeller. The cavitation extent (red line) and 

pressure below the cavitation inception pressure (shaded area) are sketched. To the right typical 

pressure profiles are shown. 

Concluding Remarks 

High skew ice-class propellers are generated by the optimization algorithm. The optimization 

algorithm automatically balances the blades due  to the stress constraints from load case 

one and three at the hub. It can, however, be argued whether the ice class rules prescribe 

the correct load case for a backing operation. It is shown that, when adjusting the load case, 

the propeller does not satisfy the ice-class stress constraints.  

 

Taking the mass objective into account does not necessarily lead to higher efficient 

propellers. Either due to the mass objective or the presence of skew
33

, very thick blade 

profiles as observed in T-III are not present in the current test case. On the other hand, it can 

be seen that thick blade profiles are required in the tip to balance the strength derogation 

due to skew.   

 

Compared to the reference propeller, an efficiency improvement of 1.43% is obtained, 

possibly due to the mass objective and additional design freedom in the radial camber 

distribution. Thrust variation can be reduced as much as 90%, mostly due to the skew 

distribution when comparing the results from test case T-III without skew. 

 

                                                      
33

 Having more influence on thrust variation than thicker blade profiles 
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4.2 Full Optimization 

This section presents the results of the optimization computations with the full set of design 

variables. With the obtained results it can be shown that it is possible to reduce the ice-

induced loading as function of propeller geometry. In this case it is also observed that ice-

class propellers may feature significant skew as already seen in optimization test case T-IV.  

 

Five objectives without any weight factors are chosen which yields that the algorithm tries to 

predict the trade-off for ten different objective combinations. Although ice-class stress 

constraints are satisfied, neither proper convergence towards high efficiency, low mass, low 

thrust variation nor low ice-induced loading can be observed as seen in the overview of 

Figure 4-15. The encircled propellers of the last generation are scattered, with only few high 

efficiency propellers. Nonetheless, the trade-offs between efficiency and thrust variation are 

already visible with the current population size. In general, the plots in Figure 4-15 that are 

supplied with an arrow show a clear optimization direction. 

 

Figure 4-15: Overview of the optimization result when taking all objectives into account. The colors 

denote the generation number from blue to red while the last generation is encircled. Nine out of ten 

possible combinations are visualized.  Propeller numbers are plotted to compare the position in the 

different trade-off plots.  

Convergence 
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The convergence properties of the algorithm are visualized in Figure 4-16 by means of box 

plots. The arrows indicate the desired convergence direction. Note, however, that the 

extremes within the population follow this direction, but the main part of the population 

averages between all objectives. For thrust variation and mass this behavior is acceptable, 

even desirable, however, efficiency should be weighted in further work such that only high 

efficiency propellers will be allowed within the optimization. The current implementation 

considers each objective as equally important. 

 
Figure 4-16: Visualization of convergence for the final optimization by means of box plots. The arrows 

give the desired convergence direction. The box plots give the extremes, first and third quartiles and 

the median of each generation. The bottom right plot gives a close up of the convergence of the ice-

induced bending moment with similar scale on the  -axis as in the comparison with the ice class rules 

for the reference propeller in Figure 3-15. 

Hypothetically, the observed convergence behavior might either be due to the small 

population size of only 32 propellers in relation to the 39 design variables and five objectives 

or the absence of a physical trade-off between each combination of objectives since this 

what the optimization algorithm is designed for.  

 

The optimization was terminated after only 42 generations to retain computational power for 

other tasks. Possibly, when taking a larger population size in addition to proper weighting of 

the objectives, each trade-off can be predicted with a sufficient number of propellers while 

high efficiency would be obtained. 

 

Overview of Propeller Geometries 

The marked propellers are sketched for their general outline and blade profile at 0.7R in 

Figure 3-11. Both extreme designs which perform best for one trade-off and more moderate 

designs are presented. All propellers do satisfy the ice-class material stress constraints. 

Although the convergence is not yet reached, high skew propellers are already preferred.  
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Figure 4-17: Sketches of general outline and blade profiles for optimized propellers. 

If a best propeller has to be chosen for further design, propeller 24 should be considered. It 

features high efficiency, while mass and thrust variation are acceptable. Moreover, its ice-

induced force and bending moment are significantly lower compared to the higher efficiency 

propellers four and eight. Due to its lower radial camber, the propeller features a slightly 

lower mean pitch which results in lower ice-induced loading. The distributions for propeller 

three,  four, seven  and 24 are visualized below in Figure 4-18. 

 

 
Figure 4-18: Overview of the propeller distributions for propeller three, four, seven and 24. These 
numbers correspond with Figure 4-15 and Figure 4-17. 

Ranking 

From the convergence properties and the geometrical overview of the propellers within the 

final generation it becomes clear that both extreme as moderate propellers are present 

within the optimization. The following examples show that propellers may stay within the 

population despite poor performance for multiple objectives: 

 Propeller three, for instance, stays within the optimization due to its good 

performance in terms of the total ice force and thrust variation. Due to is large 

thickness and blunt leading edge, both the ice force and thrust variation are low. In 

terms of the other objectives, this propeller should be rejected. Poor lift generation 

properties due to low camber are the reason for high mean pitch which induces a 

large ice-induced bending moment.  

 Also propeller four, with high efficiency and low mass stays within the optimization, 

despite its high ice induced bending moment. Propeller eight, equal on blade profile, 

    3         4             6      7              8             18              22             24     
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chord, pitch and skew features similar ice force. However, its bending moment is 

significantly lower due to lower thickness and higher camber. Apparently, the 

different direction of the force due to camber leads to a larger moment arm. 

 Propeller seven is maintained too. It features low mass and low ice bending moment 

although its hydrodynamic performance is bad in terms of efficiency and thrust 

variation. 

This shows both the strength and the weakness of the optimization algorithm. Its strength is 

to take best performing propellers for any combination of objectives into account, regardless 

of other combinations. In the optimization, their properties could merge into the best possible 

propeller. Its weakness is that no convergence towards optimum trade-off propeller is 

obtained when only searching for the extremes. 

 

Concluding Remarks on Ice Loading 

As observed from Figure 4-15, it is possible to reduce the ice induced loading according to 

Soininen idealized pressure distributions by means of geometry variation. However, no clear 

trade-off curves can be observed for either efficiency, mass or thrust variation. The following 

can be observed: 

 Concerning propeller geometry, it is hypothesized that ice-induced loading is most 

sensitive to the camber and pitch distributions. Both individually and mutually due to 

the coupling by means of mean pitch iteration towards the design point.  

 Furthermore, it is hypothesized that the skew distribution does also have significant 

influence on the ice-induced bending moment. The bottom right figure within Figure 

4-16 shows that the average bending moment over J = 0.2 to 0.7 cannot be reduced 

more than presented in Figure 3-15 for the reference propeller. Or in other words, 

high skew propeller seem to feature higher ice-induced bending moments. In 

addition to the observations for T-IV in section 4.1.4, it indicates that further study in 

the applicability of the ice-class rules for high skew propellers should be performed. 

 

A short sensitivity study by varying one variable at a time already produces encouraging 

results towards the confirmation of the above hypotheses. For future work, it is 

recommended to perform an in-depth sensitivity study to find the most sensitive design 

parameters.  
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5 CONCLUSIONS AND RECOMMENDATIONS 

The main question was formulated as: “How can propeller efficiency of ice-class cargo ships 

in operational conditions be improved by means of an automated propeller design 

optimization routine taking design constraints into account?” It was hypothesized that an 

optimization procedure would give valuable design insight in the trade-off between efficiency, 

ice performance, ice strengthening and cavitation nuisance. Concerning this hypothesis, it 

can be remarked that a computational optimization framework is further developed and 

expanded. It appears that this framework is capable to find the trade-off curves between 

efficiency, thrust variation, mass and ice-induced loads for ice-class propellers.   

 

Development of the Computational Optimization Framework 

In this Master's thesis the Non-Dominated Sorting Genetic Algorithm II (NSGAII) is coupled 

to MARIN’s in-house propeller geometry generator, hydrodynamic boundary element 

analysis method PROCAL and a finite element analysis to evaluate the propeller blade 

strength. Both the radial and chordwise propeller distributions are parameterized by means 

of Bézier curves into optimization design variables. Additionally, using Soininen's (1998) ice 

pressure distribution, the ice-induced loads during steady ice milling can be predicted. With 

these expansions, the computational framework is developed such that it should 

automatically satisfy the ice-class stress constraints while converging to the best possible 

objective values.  

 

Main Conclusions 

A case study has lead to the following main conclusions: 

1. Ice-class material stress constraints can be automatically satisfied using the Non-

Dominated Sorting Genetic Algorithm as optimization algorithm.  The stresses due to 

the five load cases of the Finish Swedish Ice Class Rules should be evaluated using 

linear shell elements in a finite element method. Hence, the proposed computational 

framework seems suitable for ice-class propeller design. 

2. The computational framework appears to be capable to optimize for hydrodynamic 

behavior and efficiency while satisfying the ice-class rules. Also high skew propellers 

seem to be allowed in the current version of the ice-class rules despite damage 

cases in practice. However, a small modification to the fifth load case results in a 

violation of the ice-class material stress constraints. 

3. Chordwise thickness and camber distributions with four and three design variables 

respectively already provide encouraging optimization results. It appears that a 

thrust variation objective steers the optimization towards flat chordwise pressure 

profiles throughout the wake field. Cavitation computations are not yet included in 

the optimization, nonetheless, the optimized propellers show only little cavitation in 

the tip region. 

4. Using Soininen’s (1998) idealized pressure distribution for propeller ice milling, it 

appears that  ice-induced loading can be reduced over a range of advance ratios, 

mainly as function of the blade profile, pitch and camber distribution although further 

research is deemed necessary on the geometric dependencies. 

 

In conclusion, for this case study the optimization seems to provide a well-balanced starting 

point towards the design of high efficiency ice-class propellers. As such, the computational 

framework can be applied in practice.  

 

Recommendations 

Due to the assessment of the computational framework and its result, the following 

recommendations are proposed: 

 Applicability.  Within this Master's thesis constant diameter, rotational speed and 

blade area ratio were chosen for comparison reasons. It is possible to use the 

computational framework to study large diameter propellers in combination with ice-

class. Furthermore, the structural analysis method based on linear shell elements 
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can also be applied for hydrodynamic pressures using matching meshes such that 

non-ice class propellers can be optimized too. 

 Optimization. For future work, it is recommended to optimize with a larger 

population size such that multiple-objective optimization becomes feasible. 

Additionally, it is recommended to include a weighting of the objectives within the 

ranking process of the genetic algorithm. The current computational framework 

considers each objective equally important, while efficiency will be the governing 

criterion in most cases. Lastly, although the current NSGAII optimization algorithm is 

capable to satisfy the ice-class rules, it is expected that the optimization can be 

improved using an algorithm which actively takes the constraint violations into 

account as discussed in the work of Vesting (2014). Currently, almost half of the 

propeller population is rejected for further consideration, while taking them into 

account could lead to faster convergence and shorter computational times. 

 Design Constraints. The current computational framework assumes that the ice-

class stress constraints are the only design constraints which have to be taken into 

account. Following the ice-class rules, it is assumed that hydrodynamic loads are 

included in the load cases. Possibly, including other class-rules, practical 

manufacturing constraints and hydrodynamic limiting load cases such as the crash-

stop load case will lead to more realistic results. Additionally, taking cavitation 

constraints into account the optimization could generate propellers which require 

less human intervention for the final design stage. 

 Computational Methods. Although best practice guidelines for moderately skewed 

propellers were given for both hydrodynamic and strength computations, it is 

recommended to verify and validate the computational tools further for high skew 

propellers. A decent numerical uncertainty study for the optimized propellers is not 

performed, but should be combined with validation studies for the final optimization 

results. 

 Ice Class Rules.  Since high skew propellers can be designed to satisfy the ice-

class stress constraints, further study in the applicability and validity of the ice-class 

rules for high skew propellers should be performed. Either the adjustment of the 

location of the load or its magnitude should be reconsidered.  

 Sensitivity Study. While this Master’s thesis focuses on the optimization of ice-

class propellers, another, maybe equally important approach would be a sensitivity 

study. When not only optimizing for efficiency, but also for thrust variation, mass, 

cavitation and ice-induced loading there becomes a need for knowledge on the most 

sensitive design parameters for each objective. Proper attention should be given to 

the cross-couplings between mutual design variables by several physical 

mechanism such as the mean pitch iteration. 
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Appendix A DESIGN PARAMETER BOUNDS 

 

Geometry parameterization bounds for the Streamline case study were found iteratively as 

presented in Table A-1. 

 

Table A-1: Overview of design parameters with their bounds and specific properties. The upper and 

lower values give the upper and lower bounds respectively. If only one number is provided, the 

parameter is fixed throughout the optimization. 

Radial                                                 

Rake (over 

D) 

-0.02 

0.02 

  + 0.1 

0.6 

-0.05 

0.1 

-0.02 

0.02 

0.6 

0.9 

-0.05 

0.05 

Camber 

(over D) 

0 

0.03 

   +0.2 

0.5 

0 

0.06 

0 

0.01 

0.5 

0.8 

0 

0.03 

Thickness 

(over D) 

0.04 

0.08 

   

0.5 

0.02 

0.08 

0.003 

0.007 

0.5 

1 

0.003 

0.02 

Skew (rad) 
-0.4 

-0.1 

  + 0.2 

0.5 

-0.8 

0.4 

0 

0.45 

0.5 

0.9 

-0.8 

0 

Radial                           

Chord  
0.2 

0.6 

0.35 

0.8 
1 

0.2 

0.6 
1  

Pitch 
0.2 

0.6 

0.4 

0.8 

0.5 

0.9 

0.3 

0.7 

0 

0.5 
 

Chord-

wise 
                               

Thickness  

[-] 

0.3 

0.8 

0.15 

0.4 

0.2 

0.6 

0.1 

0.4 
  

Camber 

[-] 
0.2 

0.4 

0.6 

0.4 

0.6 

0.6 

0.8 
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